1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /************************************************************ 3 * EFI GUID Partition Table handling 4 * 5 * http://www.uefi.org/specs/ 6 * http://www.intel.com/technology/efi/ 7 * 8 * efi.[ch] by Matt Domsch <Matt_Domsch@dell.com> 9 * Copyright 2000,2001,2002,2004 Dell Inc. 10 * 11 * TODO: 12 * 13 * Changelog: 14 * Mon August 5th, 2013 Davidlohr Bueso <davidlohr@hp.com> 15 * - detect hybrid MBRs, tighter pMBR checking & cleanups. 16 * 17 * Mon Nov 09 2004 Matt Domsch <Matt_Domsch@dell.com> 18 * - test for valid PMBR and valid PGPT before ever reading 19 * AGPT, allow override with 'gpt' kernel command line option. 20 * - check for first/last_usable_lba outside of size of disk 21 * 22 * Tue Mar 26 2002 Matt Domsch <Matt_Domsch@dell.com> 23 * - Ported to 2.5.7-pre1 and 2.5.7-dj2 24 * - Applied patch to avoid fault in alternate header handling 25 * - cleaned up find_valid_gpt 26 * - On-disk structure and copy in memory is *always* LE now - 27 * swab fields as needed 28 * - remove print_gpt_header() 29 * - only use first max_p partition entries, to keep the kernel minor number 30 * and partition numbers tied. 31 * 32 * Mon Feb 04 2002 Matt Domsch <Matt_Domsch@dell.com> 33 * - Removed __PRIPTR_PREFIX - not being used 34 * 35 * Mon Jan 14 2002 Matt Domsch <Matt_Domsch@dell.com> 36 * - Ported to 2.5.2-pre11 + library crc32 patch Linus applied 37 * 38 * Thu Dec 6 2001 Matt Domsch <Matt_Domsch@dell.com> 39 * - Added compare_gpts(). 40 * - moved le_efi_guid_to_cpus() back into this file. GPT is the only 41 * thing that keeps EFI GUIDs on disk. 42 * - Changed gpt structure names and members to be simpler and more Linux-like. 43 * 44 * Wed Oct 17 2001 Matt Domsch <Matt_Domsch@dell.com> 45 * - Removed CONFIG_DEVFS_VOLUMES_UUID code entirely per Martin Wilck 46 * 47 * Wed Oct 10 2001 Matt Domsch <Matt_Domsch@dell.com> 48 * - Changed function comments to DocBook style per Andreas Dilger suggestion. 49 * 50 * Mon Oct 08 2001 Matt Domsch <Matt_Domsch@dell.com> 51 * - Change read_lba() to use the page cache per Al Viro's work. 52 * - print u64s properly on all architectures 53 * - fixed debug_printk(), now Dprintk() 54 * 55 * Mon Oct 01 2001 Matt Domsch <Matt_Domsch@dell.com> 56 * - Style cleanups 57 * - made most functions static 58 * - Endianness addition 59 * - remove test for second alternate header, as it's not per spec, 60 * and is unnecessary. There's now a method to read/write the last 61 * sector of an odd-sized disk from user space. No tools have ever 62 * been released which used this code, so it's effectively dead. 63 * - Per Asit Mallick of Intel, added a test for a valid PMBR. 64 * - Added kernel command line option 'gpt' to override valid PMBR test. 65 * 66 * Wed Jun 6 2001 Martin Wilck <Martin.Wilck@Fujitsu-Siemens.com> 67 * - added devfs volume UUID support (/dev/volumes/uuids) for 68 * mounting file systems by the partition GUID. 69 * 70 * Tue Dec 5 2000 Matt Domsch <Matt_Domsch@dell.com> 71 * - Moved crc32() to linux/lib, added efi_crc32(). 72 * 73 * Thu Nov 30 2000 Matt Domsch <Matt_Domsch@dell.com> 74 * - Replaced Intel's CRC32 function with an equivalent 75 * non-license-restricted version. 76 * 77 * Wed Oct 25 2000 Matt Domsch <Matt_Domsch@dell.com> 78 * - Fixed the last_lba() call to return the proper last block 79 * 80 * Thu Oct 12 2000 Matt Domsch <Matt_Domsch@dell.com> 81 * - Thanks to Andries Brouwer for his debugging assistance. 82 * - Code works, detects all the partitions. 83 * 84 ************************************************************/ 85 #include <linux/kernel.h> 86 #include <linux/crc32.h> 87 #include <linux/ctype.h> 88 #include <linux/math64.h> 89 #include <linux/slab.h> 90 #include "check.h" 91 #include "efi.h" 92 93 /* This allows a kernel command line option 'gpt' to override 94 * the test for invalid PMBR. Not __initdata because reloading 95 * the partition tables happens after init too. 96 */ 97 static int force_gpt; 98 static int __init 99 force_gpt_fn(char *str) 100 { 101 force_gpt = 1; 102 return 1; 103 } 104 __setup("gpt", force_gpt_fn); 105 106 107 /** 108 * efi_crc32() - EFI version of crc32 function 109 * @buf: buffer to calculate crc32 of 110 * @len: length of buf 111 * 112 * Description: Returns EFI-style CRC32 value for @buf 113 * 114 * This function uses the little endian Ethernet polynomial 115 * but seeds the function with ~0, and xor's with ~0 at the end. 116 * Note, the EFI Specification, v1.02, has a reference to 117 * Dr. Dobbs Journal, May 1994 (actually it's in May 1992). 118 */ 119 static inline u32 120 efi_crc32(const void *buf, unsigned long len) 121 { 122 return (crc32(~0L, buf, len) ^ ~0L); 123 } 124 125 /** 126 * last_lba(): return number of last logical block of device 127 * @disk: block device 128 * 129 * Description: Returns last LBA value on success, 0 on error. 130 * This is stored (by sd and ide-geometry) in 131 * the part[0] entry for this disk, and is the number of 132 * physical sectors available on the disk. 133 */ 134 static u64 last_lba(struct gendisk *disk) 135 { 136 return div_u64(bdev_nr_bytes(disk->part0), 137 queue_logical_block_size(disk->queue)) - 1ULL; 138 } 139 140 static inline int pmbr_part_valid(gpt_mbr_record *part) 141 { 142 if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT) 143 goto invalid; 144 145 /* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */ 146 if (le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA) 147 goto invalid; 148 149 return GPT_MBR_PROTECTIVE; 150 invalid: 151 return 0; 152 } 153 154 /** 155 * is_pmbr_valid(): test Protective MBR for validity 156 * @mbr: pointer to a legacy mbr structure 157 * @total_sectors: amount of sectors in the device 158 * 159 * Description: Checks for a valid protective or hybrid 160 * master boot record (MBR). The validity of a pMBR depends 161 * on all of the following properties: 162 * 1) MSDOS signature is in the last two bytes of the MBR 163 * 2) One partition of type 0xEE is found 164 * 165 * In addition, a hybrid MBR will have up to three additional 166 * primary partitions, which point to the same space that's 167 * marked out by up to three GPT partitions. 168 * 169 * Returns 0 upon invalid MBR, or GPT_MBR_PROTECTIVE or 170 * GPT_MBR_HYBRID depending on the device layout. 171 */ 172 static int is_pmbr_valid(legacy_mbr *mbr, sector_t total_sectors) 173 { 174 uint32_t sz = 0; 175 int i, part = 0, ret = 0; /* invalid by default */ 176 177 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) 178 goto done; 179 180 for (i = 0; i < 4; i++) { 181 ret = pmbr_part_valid(&mbr->partition_record[i]); 182 if (ret == GPT_MBR_PROTECTIVE) { 183 part = i; 184 /* 185 * Ok, we at least know that there's a protective MBR, 186 * now check if there are other partition types for 187 * hybrid MBR. 188 */ 189 goto check_hybrid; 190 } 191 } 192 193 if (ret != GPT_MBR_PROTECTIVE) 194 goto done; 195 check_hybrid: 196 for (i = 0; i < 4; i++) 197 if ((mbr->partition_record[i].os_type != 198 EFI_PMBR_OSTYPE_EFI_GPT) && 199 (mbr->partition_record[i].os_type != 0x00)) 200 ret = GPT_MBR_HYBRID; 201 202 /* 203 * Protective MBRs take up the lesser of the whole disk 204 * or 2 TiB (32bit LBA), ignoring the rest of the disk. 205 * Some partitioning programs, nonetheless, choose to set 206 * the size to the maximum 32-bit limitation, disregarding 207 * the disk size. 208 * 209 * Hybrid MBRs do not necessarily comply with this. 210 * 211 * Consider a bad value here to be a warning to support dd'ing 212 * an image from a smaller disk to a larger disk. 213 */ 214 if (ret == GPT_MBR_PROTECTIVE) { 215 sz = le32_to_cpu(mbr->partition_record[part].size_in_lba); 216 if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF) 217 pr_debug("GPT: mbr size in lba (%u) different than whole disk (%u).\n", 218 sz, (uint32_t)min(total_sectors - 1, 0xFFFFFFFF)); 219 } 220 done: 221 return ret; 222 } 223 224 /** 225 * read_lba(): Read bytes from disk, starting at given LBA 226 * @state: disk parsed partitions 227 * @lba: the Logical Block Address of the partition table 228 * @buffer: destination buffer 229 * @count: bytes to read 230 * 231 * Description: Reads @count bytes from @state->disk into @buffer. 232 * Returns number of bytes read on success, 0 on error. 233 */ 234 static size_t read_lba(struct parsed_partitions *state, 235 u64 lba, u8 *buffer, size_t count) 236 { 237 size_t totalreadcount = 0; 238 sector_t n = lba * 239 (queue_logical_block_size(state->disk->queue) / 512); 240 241 if (!buffer || lba > last_lba(state->disk)) 242 return 0; 243 244 while (count) { 245 int copied = 512; 246 Sector sect; 247 unsigned char *data = read_part_sector(state, n++, §); 248 if (!data) 249 break; 250 if (copied > count) 251 copied = count; 252 memcpy(buffer, data, copied); 253 put_dev_sector(sect); 254 buffer += copied; 255 totalreadcount +=copied; 256 count -= copied; 257 } 258 return totalreadcount; 259 } 260 261 /** 262 * alloc_read_gpt_entries(): reads partition entries from disk 263 * @state: disk parsed partitions 264 * @gpt: GPT header 265 * 266 * Description: Returns ptes on success, NULL on error. 267 * Allocates space for PTEs based on information found in @gpt. 268 * Notes: remember to free pte when you're done! 269 */ 270 static gpt_entry *alloc_read_gpt_entries(struct parsed_partitions *state, 271 gpt_header *gpt) 272 { 273 size_t count; 274 gpt_entry *pte; 275 276 if (!gpt) 277 return NULL; 278 279 count = (size_t)le32_to_cpu(gpt->num_partition_entries) * 280 le32_to_cpu(gpt->sizeof_partition_entry); 281 if (!count) 282 return NULL; 283 pte = kmalloc(count, GFP_KERNEL); 284 if (!pte) 285 return NULL; 286 287 if (read_lba(state, le64_to_cpu(gpt->partition_entry_lba), 288 (u8 *) pte, count) < count) { 289 kfree(pte); 290 pte=NULL; 291 return NULL; 292 } 293 return pte; 294 } 295 296 /** 297 * alloc_read_gpt_header(): Allocates GPT header, reads into it from disk 298 * @state: disk parsed partitions 299 * @lba: the Logical Block Address of the partition table 300 * 301 * Description: returns GPT header on success, NULL on error. Allocates 302 * and fills a GPT header starting at @ from @state->disk. 303 * Note: remember to free gpt when finished with it. 304 */ 305 static gpt_header *alloc_read_gpt_header(struct parsed_partitions *state, 306 u64 lba) 307 { 308 gpt_header *gpt; 309 unsigned ssz = queue_logical_block_size(state->disk->queue); 310 311 gpt = kmalloc(ssz, GFP_KERNEL); 312 if (!gpt) 313 return NULL; 314 315 if (read_lba(state, lba, (u8 *) gpt, ssz) < ssz) { 316 kfree(gpt); 317 gpt=NULL; 318 return NULL; 319 } 320 321 return gpt; 322 } 323 324 /** 325 * is_gpt_valid() - tests one GPT header and PTEs for validity 326 * @state: disk parsed partitions 327 * @lba: logical block address of the GPT header to test 328 * @gpt: GPT header ptr, filled on return. 329 * @ptes: PTEs ptr, filled on return. 330 * 331 * Description: returns 1 if valid, 0 on error. 332 * If valid, returns pointers to newly allocated GPT header and PTEs. 333 */ 334 static int is_gpt_valid(struct parsed_partitions *state, u64 lba, 335 gpt_header **gpt, gpt_entry **ptes) 336 { 337 u32 crc, origcrc; 338 u64 lastlba, pt_size; 339 340 if (!ptes) 341 return 0; 342 if (!(*gpt = alloc_read_gpt_header(state, lba))) 343 return 0; 344 345 /* Check the GUID Partition Table signature */ 346 if (le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE) { 347 pr_debug("GUID Partition Table Header signature is wrong:" 348 "%lld != %lld\n", 349 (unsigned long long)le64_to_cpu((*gpt)->signature), 350 (unsigned long long)GPT_HEADER_SIGNATURE); 351 goto fail; 352 } 353 354 /* Check the GUID Partition Table header size is too big */ 355 if (le32_to_cpu((*gpt)->header_size) > 356 queue_logical_block_size(state->disk->queue)) { 357 pr_debug("GUID Partition Table Header size is too large: %u > %u\n", 358 le32_to_cpu((*gpt)->header_size), 359 queue_logical_block_size(state->disk->queue)); 360 goto fail; 361 } 362 363 /* Check the GUID Partition Table header size is too small */ 364 if (le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header)) { 365 pr_debug("GUID Partition Table Header size is too small: %u < %zu\n", 366 le32_to_cpu((*gpt)->header_size), 367 sizeof(gpt_header)); 368 goto fail; 369 } 370 371 /* Check the GUID Partition Table CRC */ 372 origcrc = le32_to_cpu((*gpt)->header_crc32); 373 (*gpt)->header_crc32 = 0; 374 crc = efi_crc32((const unsigned char *) (*gpt), le32_to_cpu((*gpt)->header_size)); 375 376 if (crc != origcrc) { 377 pr_debug("GUID Partition Table Header CRC is wrong: %x != %x\n", 378 crc, origcrc); 379 goto fail; 380 } 381 (*gpt)->header_crc32 = cpu_to_le32(origcrc); 382 383 /* Check that the my_lba entry points to the LBA that contains 384 * the GUID Partition Table */ 385 if (le64_to_cpu((*gpt)->my_lba) != lba) { 386 pr_debug("GPT my_lba incorrect: %lld != %lld\n", 387 (unsigned long long)le64_to_cpu((*gpt)->my_lba), 388 (unsigned long long)lba); 389 goto fail; 390 } 391 392 /* Check the first_usable_lba and last_usable_lba are 393 * within the disk. 394 */ 395 lastlba = last_lba(state->disk); 396 if (le64_to_cpu((*gpt)->first_usable_lba) > lastlba) { 397 pr_debug("GPT: first_usable_lba incorrect: %lld > %lld\n", 398 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba), 399 (unsigned long long)lastlba); 400 goto fail; 401 } 402 if (le64_to_cpu((*gpt)->last_usable_lba) > lastlba) { 403 pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", 404 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), 405 (unsigned long long)lastlba); 406 goto fail; 407 } 408 if (le64_to_cpu((*gpt)->last_usable_lba) < le64_to_cpu((*gpt)->first_usable_lba)) { 409 pr_debug("GPT: last_usable_lba incorrect: %lld > %lld\n", 410 (unsigned long long)le64_to_cpu((*gpt)->last_usable_lba), 411 (unsigned long long)le64_to_cpu((*gpt)->first_usable_lba)); 412 goto fail; 413 } 414 /* Check that sizeof_partition_entry has the correct value */ 415 if (le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) { 416 pr_debug("GUID Partition Entry Size check failed.\n"); 417 goto fail; 418 } 419 420 /* Sanity check partition table size */ 421 pt_size = (u64)le32_to_cpu((*gpt)->num_partition_entries) * 422 le32_to_cpu((*gpt)->sizeof_partition_entry); 423 if (pt_size > KMALLOC_MAX_SIZE) { 424 pr_debug("GUID Partition Table is too large: %llu > %lu bytes\n", 425 (unsigned long long)pt_size, KMALLOC_MAX_SIZE); 426 goto fail; 427 } 428 429 if (!(*ptes = alloc_read_gpt_entries(state, *gpt))) 430 goto fail; 431 432 /* Check the GUID Partition Entry Array CRC */ 433 crc = efi_crc32((const unsigned char *) (*ptes), pt_size); 434 435 if (crc != le32_to_cpu((*gpt)->partition_entry_array_crc32)) { 436 pr_debug("GUID Partition Entry Array CRC check failed.\n"); 437 goto fail_ptes; 438 } 439 440 /* We're done, all's well */ 441 return 1; 442 443 fail_ptes: 444 kfree(*ptes); 445 *ptes = NULL; 446 fail: 447 kfree(*gpt); 448 *gpt = NULL; 449 return 0; 450 } 451 452 /** 453 * is_pte_valid() - tests one PTE for validity 454 * @pte:pte to check 455 * @lastlba: last lba of the disk 456 * 457 * Description: returns 1 if valid, 0 on error. 458 */ 459 static inline int 460 is_pte_valid(const gpt_entry *pte, const u64 lastlba) 461 { 462 if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) || 463 le64_to_cpu(pte->starting_lba) > lastlba || 464 le64_to_cpu(pte->ending_lba) > lastlba) 465 return 0; 466 return 1; 467 } 468 469 /** 470 * compare_gpts() - Search disk for valid GPT headers and PTEs 471 * @pgpt: primary GPT header 472 * @agpt: alternate GPT header 473 * @lastlba: last LBA number 474 * 475 * Description: Returns nothing. Sanity checks pgpt and agpt fields 476 * and prints warnings on discrepancies. 477 * 478 */ 479 static void 480 compare_gpts(gpt_header *pgpt, gpt_header *agpt, u64 lastlba) 481 { 482 int error_found = 0; 483 if (!pgpt || !agpt) 484 return; 485 if (le64_to_cpu(pgpt->my_lba) != le64_to_cpu(agpt->alternate_lba)) { 486 pr_warn("GPT:Primary header LBA != Alt. header alternate_lba\n"); 487 pr_warn("GPT:%lld != %lld\n", 488 (unsigned long long)le64_to_cpu(pgpt->my_lba), 489 (unsigned long long)le64_to_cpu(agpt->alternate_lba)); 490 error_found++; 491 } 492 if (le64_to_cpu(pgpt->alternate_lba) != le64_to_cpu(agpt->my_lba)) { 493 pr_warn("GPT:Primary header alternate_lba != Alt. header my_lba\n"); 494 pr_warn("GPT:%lld != %lld\n", 495 (unsigned long long)le64_to_cpu(pgpt->alternate_lba), 496 (unsigned long long)le64_to_cpu(agpt->my_lba)); 497 error_found++; 498 } 499 if (le64_to_cpu(pgpt->first_usable_lba) != 500 le64_to_cpu(agpt->first_usable_lba)) { 501 pr_warn("GPT:first_usable_lbas don't match.\n"); 502 pr_warn("GPT:%lld != %lld\n", 503 (unsigned long long)le64_to_cpu(pgpt->first_usable_lba), 504 (unsigned long long)le64_to_cpu(agpt->first_usable_lba)); 505 error_found++; 506 } 507 if (le64_to_cpu(pgpt->last_usable_lba) != 508 le64_to_cpu(agpt->last_usable_lba)) { 509 pr_warn("GPT:last_usable_lbas don't match.\n"); 510 pr_warn("GPT:%lld != %lld\n", 511 (unsigned long long)le64_to_cpu(pgpt->last_usable_lba), 512 (unsigned long long)le64_to_cpu(agpt->last_usable_lba)); 513 error_found++; 514 } 515 if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid)) { 516 pr_warn("GPT:disk_guids don't match.\n"); 517 error_found++; 518 } 519 if (le32_to_cpu(pgpt->num_partition_entries) != 520 le32_to_cpu(agpt->num_partition_entries)) { 521 pr_warn("GPT:num_partition_entries don't match: " 522 "0x%x != 0x%x\n", 523 le32_to_cpu(pgpt->num_partition_entries), 524 le32_to_cpu(agpt->num_partition_entries)); 525 error_found++; 526 } 527 if (le32_to_cpu(pgpt->sizeof_partition_entry) != 528 le32_to_cpu(agpt->sizeof_partition_entry)) { 529 pr_warn("GPT:sizeof_partition_entry values don't match: " 530 "0x%x != 0x%x\n", 531 le32_to_cpu(pgpt->sizeof_partition_entry), 532 le32_to_cpu(agpt->sizeof_partition_entry)); 533 error_found++; 534 } 535 if (le32_to_cpu(pgpt->partition_entry_array_crc32) != 536 le32_to_cpu(agpt->partition_entry_array_crc32)) { 537 pr_warn("GPT:partition_entry_array_crc32 values don't match: " 538 "0x%x != 0x%x\n", 539 le32_to_cpu(pgpt->partition_entry_array_crc32), 540 le32_to_cpu(agpt->partition_entry_array_crc32)); 541 error_found++; 542 } 543 if (le64_to_cpu(pgpt->alternate_lba) != lastlba) { 544 pr_warn("GPT:Primary header thinks Alt. header is not at the end of the disk.\n"); 545 pr_warn("GPT:%lld != %lld\n", 546 (unsigned long long)le64_to_cpu(pgpt->alternate_lba), 547 (unsigned long long)lastlba); 548 error_found++; 549 } 550 551 if (le64_to_cpu(agpt->my_lba) != lastlba) { 552 pr_warn("GPT:Alternate GPT header not at the end of the disk.\n"); 553 pr_warn("GPT:%lld != %lld\n", 554 (unsigned long long)le64_to_cpu(agpt->my_lba), 555 (unsigned long long)lastlba); 556 error_found++; 557 } 558 559 if (error_found) 560 pr_warn("GPT: Use GNU Parted to correct GPT errors.\n"); 561 return; 562 } 563 564 /** 565 * find_valid_gpt() - Search disk for valid GPT headers and PTEs 566 * @state: disk parsed partitions 567 * @gpt: GPT header ptr, filled on return. 568 * @ptes: PTEs ptr, filled on return. 569 * 570 * Description: Returns 1 if valid, 0 on error. 571 * If valid, returns pointers to newly allocated GPT header and PTEs. 572 * Validity depends on PMBR being valid (or being overridden by the 573 * 'gpt' kernel command line option) and finding either the Primary 574 * GPT header and PTEs valid, or the Alternate GPT header and PTEs 575 * valid. If the Primary GPT header is not valid, the Alternate GPT header 576 * is not checked unless the 'gpt' kernel command line option is passed. 577 * This protects against devices which misreport their size, and forces 578 * the user to decide to use the Alternate GPT. 579 */ 580 static int find_valid_gpt(struct parsed_partitions *state, gpt_header **gpt, 581 gpt_entry **ptes) 582 { 583 int good_pgpt = 0, good_agpt = 0, good_pmbr = 0; 584 gpt_header *pgpt = NULL, *agpt = NULL; 585 gpt_entry *pptes = NULL, *aptes = NULL; 586 legacy_mbr *legacymbr; 587 struct gendisk *disk = state->disk; 588 const struct block_device_operations *fops = disk->fops; 589 sector_t total_sectors = get_capacity(state->disk); 590 u64 lastlba; 591 592 if (!ptes) 593 return 0; 594 595 lastlba = last_lba(state->disk); 596 if (!force_gpt) { 597 /* This will be added to the EFI Spec. per Intel after v1.02. */ 598 legacymbr = kzalloc(sizeof(*legacymbr), GFP_KERNEL); 599 if (!legacymbr) 600 goto fail; 601 602 read_lba(state, 0, (u8 *)legacymbr, sizeof(*legacymbr)); 603 good_pmbr = is_pmbr_valid(legacymbr, total_sectors); 604 kfree(legacymbr); 605 606 if (!good_pmbr) 607 goto fail; 608 609 pr_debug("Device has a %s MBR\n", 610 good_pmbr == GPT_MBR_PROTECTIVE ? 611 "protective" : "hybrid"); 612 } 613 614 good_pgpt = is_gpt_valid(state, GPT_PRIMARY_PARTITION_TABLE_LBA, 615 &pgpt, &pptes); 616 if (good_pgpt) 617 good_agpt = is_gpt_valid(state, 618 le64_to_cpu(pgpt->alternate_lba), 619 &agpt, &aptes); 620 if (!good_agpt && force_gpt) 621 good_agpt = is_gpt_valid(state, lastlba, &agpt, &aptes); 622 623 if (!good_agpt && force_gpt && fops->alternative_gpt_sector) { 624 sector_t agpt_sector; 625 int err; 626 627 err = fops->alternative_gpt_sector(disk, &agpt_sector); 628 if (!err) 629 good_agpt = is_gpt_valid(state, agpt_sector, 630 &agpt, &aptes); 631 } 632 633 /* The obviously unsuccessful case */ 634 if (!good_pgpt && !good_agpt) 635 goto fail; 636 637 compare_gpts(pgpt, agpt, lastlba); 638 639 /* The good cases */ 640 if (good_pgpt) { 641 *gpt = pgpt; 642 *ptes = pptes; 643 kfree(agpt); 644 kfree(aptes); 645 if (!good_agpt) 646 pr_warn("Alternate GPT is invalid, using primary GPT.\n"); 647 return 1; 648 } 649 else if (good_agpt) { 650 *gpt = agpt; 651 *ptes = aptes; 652 kfree(pgpt); 653 kfree(pptes); 654 pr_warn("Primary GPT is invalid, using alternate GPT.\n"); 655 return 1; 656 } 657 658 fail: 659 kfree(pgpt); 660 kfree(agpt); 661 kfree(pptes); 662 kfree(aptes); 663 *gpt = NULL; 664 *ptes = NULL; 665 return 0; 666 } 667 668 /** 669 * utf16_le_to_7bit(): Naively converts a UTF-16LE string to 7-bit ASCII characters 670 * @in: input UTF-16LE string 671 * @size: size of the input string 672 * @out: output string ptr, should be capable to store @size+1 characters 673 * 674 * Description: Converts @size UTF16-LE symbols from @in string to 7-bit 675 * ASCII characters and stores them to @out. Adds trailing zero to @out array. 676 */ 677 static void utf16_le_to_7bit(const __le16 *in, unsigned int size, u8 *out) 678 { 679 unsigned int i = 0; 680 681 out[size] = 0; 682 683 while (i < size) { 684 u8 c = le16_to_cpu(in[i]) & 0x7f; 685 686 if (c && !isprint(c)) 687 c = '!'; 688 out[i] = c; 689 i++; 690 } 691 } 692 693 /** 694 * efi_partition - scan for GPT partitions 695 * @state: disk parsed partitions 696 * 697 * Description: called from check.c, if the disk contains GPT 698 * partitions, sets up partition entries in the kernel. 699 * 700 * If the first block on the disk is a legacy MBR, 701 * it will get handled by msdos_partition(). 702 * If it's a Protective MBR, we'll handle it here. 703 * 704 * We do not create a Linux partition for GPT, but 705 * only for the actual data partitions. 706 * Returns: 707 * -1 if unable to read the partition table 708 * 0 if this isn't our partition table 709 * 1 if successful 710 * 711 */ 712 int efi_partition(struct parsed_partitions *state) 713 { 714 gpt_header *gpt = NULL; 715 gpt_entry *ptes = NULL; 716 u32 i; 717 unsigned ssz = queue_logical_block_size(state->disk->queue) / 512; 718 719 if (!find_valid_gpt(state, &gpt, &ptes) || !gpt || !ptes) { 720 kfree(gpt); 721 kfree(ptes); 722 return 0; 723 } 724 725 pr_debug("GUID Partition Table is valid! Yea!\n"); 726 727 for (i = 0; i < le32_to_cpu(gpt->num_partition_entries) && i < state->limit-1; i++) { 728 struct partition_meta_info *info; 729 unsigned label_max; 730 u64 start = le64_to_cpu(ptes[i].starting_lba); 731 u64 size = le64_to_cpu(ptes[i].ending_lba) - 732 le64_to_cpu(ptes[i].starting_lba) + 1ULL; 733 734 if (!is_pte_valid(&ptes[i], last_lba(state->disk))) 735 continue; 736 737 put_partition(state, i+1, start * ssz, size * ssz); 738 739 /* If this is a RAID volume, tell md */ 740 if (!efi_guidcmp(ptes[i].partition_type_guid, PARTITION_LINUX_RAID_GUID)) 741 state->parts[i + 1].flags = ADDPART_FLAG_RAID; 742 743 info = &state->parts[i + 1].info; 744 efi_guid_to_str(&ptes[i].unique_partition_guid, info->uuid); 745 746 /* Naively convert UTF16-LE to 7 bits. */ 747 label_max = min(ARRAY_SIZE(info->volname) - 1, 748 ARRAY_SIZE(ptes[i].partition_name)); 749 utf16_le_to_7bit(ptes[i].partition_name, label_max, info->volname); 750 state->parts[i + 1].has_info = true; 751 } 752 kfree(ptes); 753 kfree(gpt); 754 strlcat(state->pp_buf, "\n", PAGE_SIZE); 755 return 1; 756 } 757