1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * eCryptfs: Linux filesystem encryption layer
4 * In-kernel key management code. Includes functions to parse and
5 * write authentication token-related packets with the underlying
6 * file.
7 *
8 * Copyright (C) 2004-2006 International Business Machines Corp.
9 * Author(s): Michael A. Halcrow <mhalcrow@us.ibm.com>
10 * Michael C. Thompson <mcthomps@us.ibm.com>
11 * Trevor S. Highland <trevor.highland@gmail.com>
12 */
13
14 #include <crypto/skcipher.h>
15 #include <linux/string.h>
16 #include <linux/pagemap.h>
17 #include <linux/key.h>
18 #include <linux/random.h>
19 #include <linux/scatterlist.h>
20 #include <linux/slab.h>
21 #include "ecryptfs_kernel.h"
22
23 /*
24 * request_key returned an error instead of a valid key address;
25 * determine the type of error, make appropriate log entries, and
26 * return an error code.
27 */
process_request_key_err(long err_code)28 static int process_request_key_err(long err_code)
29 {
30 int rc = 0;
31
32 switch (err_code) {
33 case -ENOKEY:
34 ecryptfs_printk(KERN_WARNING, "No key\n");
35 rc = -ENOENT;
36 break;
37 case -EKEYEXPIRED:
38 ecryptfs_printk(KERN_WARNING, "Key expired\n");
39 rc = -ETIME;
40 break;
41 case -EKEYREVOKED:
42 ecryptfs_printk(KERN_WARNING, "Key revoked\n");
43 rc = -EINVAL;
44 break;
45 default:
46 ecryptfs_printk(KERN_WARNING, "Unknown error code: "
47 "[0x%.16lx]\n", err_code);
48 rc = -EINVAL;
49 }
50 return rc;
51 }
52
process_find_global_auth_tok_for_sig_err(int err_code)53 static int process_find_global_auth_tok_for_sig_err(int err_code)
54 {
55 int rc = err_code;
56
57 switch (err_code) {
58 case -ENOENT:
59 ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
60 break;
61 case -EINVAL:
62 ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
63 break;
64 default:
65 rc = process_request_key_err(err_code);
66 break;
67 }
68 return rc;
69 }
70
71 /**
72 * ecryptfs_parse_packet_length
73 * @data: Pointer to memory containing length at offset
74 * @size: This function writes the decoded size to this memory
75 * address; zero on error
76 * @length_size: The number of bytes occupied by the encoded length
77 *
78 * Returns zero on success; non-zero on error
79 */
ecryptfs_parse_packet_length(unsigned char * data,size_t * size,size_t * length_size)80 int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
81 size_t *length_size)
82 {
83 int rc = 0;
84
85 (*length_size) = 0;
86 (*size) = 0;
87 if (data[0] < 192) {
88 /* One-byte length */
89 (*size) = data[0];
90 (*length_size) = 1;
91 } else if (data[0] < 224) {
92 /* Two-byte length */
93 (*size) = (data[0] - 192) * 256;
94 (*size) += data[1] + 192;
95 (*length_size) = 2;
96 } else if (data[0] == 255) {
97 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
98 ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
99 "supported\n");
100 rc = -EINVAL;
101 goto out;
102 } else {
103 ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
104 rc = -EINVAL;
105 goto out;
106 }
107 out:
108 return rc;
109 }
110
111 /**
112 * ecryptfs_write_packet_length
113 * @dest: The byte array target into which to write the length. Must
114 * have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
115 * @size: The length to write.
116 * @packet_size_length: The number of bytes used to encode the packet
117 * length is written to this address.
118 *
119 * Returns zero on success; non-zero on error.
120 */
ecryptfs_write_packet_length(char * dest,size_t size,size_t * packet_size_length)121 int ecryptfs_write_packet_length(char *dest, size_t size,
122 size_t *packet_size_length)
123 {
124 int rc = 0;
125
126 if (size < 192) {
127 dest[0] = size;
128 (*packet_size_length) = 1;
129 } else if (size < 65536) {
130 dest[0] = (((size - 192) / 256) + 192);
131 dest[1] = ((size - 192) % 256);
132 (*packet_size_length) = 2;
133 } else {
134 /* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
135 rc = -EINVAL;
136 ecryptfs_printk(KERN_WARNING,
137 "Unsupported packet size: [%zd]\n", size);
138 }
139 return rc;
140 }
141
142 static int
write_tag_64_packet(char * signature,struct ecryptfs_session_key * session_key,char ** packet,size_t * packet_len)143 write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
144 char **packet, size_t *packet_len)
145 {
146 size_t i = 0;
147 size_t data_len;
148 size_t packet_size_len;
149 char *message;
150 int rc;
151
152 /*
153 * ***** TAG 64 Packet Format *****
154 * | Content Type | 1 byte |
155 * | Key Identifier Size | 1 or 2 bytes |
156 * | Key Identifier | arbitrary |
157 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
158 * | Encrypted File Encryption Key | arbitrary |
159 */
160 data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
161 + session_key->encrypted_key_size);
162 *packet = kmalloc(data_len, GFP_KERNEL);
163 message = *packet;
164 if (!message) {
165 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
166 rc = -ENOMEM;
167 goto out;
168 }
169 message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
170 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
171 &packet_size_len);
172 if (rc) {
173 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
174 "header; cannot generate packet length\n");
175 goto out;
176 }
177 i += packet_size_len;
178 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
179 i += ECRYPTFS_SIG_SIZE_HEX;
180 rc = ecryptfs_write_packet_length(&message[i],
181 session_key->encrypted_key_size,
182 &packet_size_len);
183 if (rc) {
184 ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
185 "header; cannot generate packet length\n");
186 goto out;
187 }
188 i += packet_size_len;
189 memcpy(&message[i], session_key->encrypted_key,
190 session_key->encrypted_key_size);
191 i += session_key->encrypted_key_size;
192 *packet_len = i;
193 out:
194 return rc;
195 }
196
197 static int
parse_tag_65_packet(struct ecryptfs_session_key * session_key,u8 * cipher_code,struct ecryptfs_message * msg)198 parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
199 struct ecryptfs_message *msg)
200 {
201 size_t i = 0;
202 char *data;
203 size_t data_len;
204 size_t m_size;
205 size_t message_len;
206 u16 checksum = 0;
207 u16 expected_checksum = 0;
208 int rc;
209
210 /*
211 * ***** TAG 65 Packet Format *****
212 * | Content Type | 1 byte |
213 * | Status Indicator | 1 byte |
214 * | File Encryption Key Size | 1 or 2 bytes |
215 * | File Encryption Key | arbitrary |
216 */
217 message_len = msg->data_len;
218 data = msg->data;
219 if (message_len < 4) {
220 rc = -EIO;
221 goto out;
222 }
223 if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
224 ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
225 rc = -EIO;
226 goto out;
227 }
228 if (data[i++]) {
229 ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
230 "[%d]\n", data[i-1]);
231 rc = -EIO;
232 goto out;
233 }
234 rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
235 if (rc) {
236 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
237 "rc = [%d]\n", rc);
238 goto out;
239 }
240 i += data_len;
241 if (message_len < (i + m_size)) {
242 ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
243 "is shorter than expected\n");
244 rc = -EIO;
245 goto out;
246 }
247 if (m_size < 3) {
248 ecryptfs_printk(KERN_ERR,
249 "The decrypted key is not long enough to "
250 "include a cipher code and checksum\n");
251 rc = -EIO;
252 goto out;
253 }
254 *cipher_code = data[i++];
255 /* The decrypted key includes 1 byte cipher code and 2 byte checksum */
256 session_key->decrypted_key_size = m_size - 3;
257 if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
258 ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
259 "the maximum key size [%d]\n",
260 session_key->decrypted_key_size,
261 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
262 rc = -EIO;
263 goto out;
264 }
265 memcpy(session_key->decrypted_key, &data[i],
266 session_key->decrypted_key_size);
267 i += session_key->decrypted_key_size;
268 expected_checksum += (unsigned char)(data[i++]) << 8;
269 expected_checksum += (unsigned char)(data[i++]);
270 for (i = 0; i < session_key->decrypted_key_size; i++)
271 checksum += session_key->decrypted_key[i];
272 if (expected_checksum != checksum) {
273 ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
274 "encryption key; expected [%x]; calculated "
275 "[%x]\n", expected_checksum, checksum);
276 rc = -EIO;
277 }
278 out:
279 return rc;
280 }
281
282
283 static int
write_tag_66_packet(char * signature,u8 cipher_code,struct ecryptfs_crypt_stat * crypt_stat,char ** packet,size_t * packet_len)284 write_tag_66_packet(char *signature, u8 cipher_code,
285 struct ecryptfs_crypt_stat *crypt_stat, char **packet,
286 size_t *packet_len)
287 {
288 size_t i = 0;
289 size_t j;
290 size_t data_len;
291 size_t checksum = 0;
292 size_t packet_size_len;
293 char *message;
294 int rc;
295
296 /*
297 * ***** TAG 66 Packet Format *****
298 * | Content Type | 1 byte |
299 * | Key Identifier Size | 1 or 2 bytes |
300 * | Key Identifier | arbitrary |
301 * | File Encryption Key Size | 1 or 2 bytes |
302 * | Cipher Code | 1 byte |
303 * | File Encryption Key | arbitrary |
304 * | Checksum | 2 bytes |
305 */
306 data_len = (8 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
307 *packet = kmalloc(data_len, GFP_KERNEL);
308 message = *packet;
309 if (!message) {
310 ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
311 rc = -ENOMEM;
312 goto out;
313 }
314 message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
315 rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
316 &packet_size_len);
317 if (rc) {
318 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
319 "header; cannot generate packet length\n");
320 goto out;
321 }
322 i += packet_size_len;
323 memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
324 i += ECRYPTFS_SIG_SIZE_HEX;
325 /* The encrypted key includes 1 byte cipher code and 2 byte checksum */
326 rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
327 &packet_size_len);
328 if (rc) {
329 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
330 "header; cannot generate packet length\n");
331 goto out;
332 }
333 i += packet_size_len;
334 message[i++] = cipher_code;
335 memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
336 i += crypt_stat->key_size;
337 for (j = 0; j < crypt_stat->key_size; j++)
338 checksum += crypt_stat->key[j];
339 message[i++] = (checksum / 256) % 256;
340 message[i++] = (checksum % 256);
341 *packet_len = i;
342 out:
343 return rc;
344 }
345
346 static int
parse_tag_67_packet(struct ecryptfs_key_record * key_rec,struct ecryptfs_message * msg)347 parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
348 struct ecryptfs_message *msg)
349 {
350 size_t i = 0;
351 char *data;
352 size_t data_len;
353 size_t message_len;
354 int rc;
355
356 /*
357 * ***** TAG 65 Packet Format *****
358 * | Content Type | 1 byte |
359 * | Status Indicator | 1 byte |
360 * | Encrypted File Encryption Key Size | 1 or 2 bytes |
361 * | Encrypted File Encryption Key | arbitrary |
362 */
363 message_len = msg->data_len;
364 data = msg->data;
365 /* verify that everything through the encrypted FEK size is present */
366 if (message_len < 4) {
367 rc = -EIO;
368 printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
369 "message length is [%d]\n", __func__, message_len, 4);
370 goto out;
371 }
372 if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
373 rc = -EIO;
374 printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
375 __func__);
376 goto out;
377 }
378 if (data[i++]) {
379 rc = -EIO;
380 printk(KERN_ERR "%s: Status indicator has non zero "
381 "value [%d]\n", __func__, data[i-1]);
382
383 goto out;
384 }
385 rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
386 &data_len);
387 if (rc) {
388 ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
389 "rc = [%d]\n", rc);
390 goto out;
391 }
392 i += data_len;
393 if (message_len < (i + key_rec->enc_key_size)) {
394 rc = -EIO;
395 printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
396 __func__, message_len, (i + key_rec->enc_key_size));
397 goto out;
398 }
399 if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
400 rc = -EIO;
401 printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
402 "the maximum key size [%d]\n", __func__,
403 key_rec->enc_key_size,
404 ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
405 goto out;
406 }
407 memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
408 out:
409 return rc;
410 }
411
412 /**
413 * ecryptfs_verify_version
414 * @version: The version number to confirm
415 *
416 * Returns zero on good version; non-zero otherwise
417 */
ecryptfs_verify_version(u16 version)418 static int ecryptfs_verify_version(u16 version)
419 {
420 int rc = 0;
421 unsigned char major;
422 unsigned char minor;
423
424 major = ((version >> 8) & 0xFF);
425 minor = (version & 0xFF);
426 if (major != ECRYPTFS_VERSION_MAJOR) {
427 ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
428 "Expected [%d]; got [%d]\n",
429 ECRYPTFS_VERSION_MAJOR, major);
430 rc = -EINVAL;
431 goto out;
432 }
433 if (minor != ECRYPTFS_VERSION_MINOR) {
434 ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
435 "Expected [%d]; got [%d]\n",
436 ECRYPTFS_VERSION_MINOR, minor);
437 rc = -EINVAL;
438 goto out;
439 }
440 out:
441 return rc;
442 }
443
444 /**
445 * ecryptfs_verify_auth_tok_from_key
446 * @auth_tok_key: key containing the authentication token
447 * @auth_tok: authentication token
448 *
449 * Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
450 * -EKEYREVOKED if the key was revoked before we acquired its semaphore.
451 */
452 static int
ecryptfs_verify_auth_tok_from_key(struct key * auth_tok_key,struct ecryptfs_auth_tok ** auth_tok)453 ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
454 struct ecryptfs_auth_tok **auth_tok)
455 {
456 int rc = 0;
457
458 (*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
459 if (IS_ERR(*auth_tok)) {
460 rc = PTR_ERR(*auth_tok);
461 *auth_tok = NULL;
462 goto out;
463 }
464
465 if (ecryptfs_verify_version((*auth_tok)->version)) {
466 printk(KERN_ERR "Data structure version mismatch. Userspace "
467 "tools must match eCryptfs kernel module with major "
468 "version [%d] and minor version [%d]\n",
469 ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
470 rc = -EINVAL;
471 goto out;
472 }
473 if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
474 && (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
475 printk(KERN_ERR "Invalid auth_tok structure "
476 "returned from key query\n");
477 rc = -EINVAL;
478 goto out;
479 }
480 out:
481 return rc;
482 }
483
484 static int
ecryptfs_find_global_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)485 ecryptfs_find_global_auth_tok_for_sig(
486 struct key **auth_tok_key,
487 struct ecryptfs_auth_tok **auth_tok,
488 struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
489 {
490 struct ecryptfs_global_auth_tok *walker;
491 int rc = 0;
492
493 (*auth_tok_key) = NULL;
494 (*auth_tok) = NULL;
495 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
496 list_for_each_entry(walker,
497 &mount_crypt_stat->global_auth_tok_list,
498 mount_crypt_stat_list) {
499 if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
500 continue;
501
502 if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
503 rc = -EINVAL;
504 goto out;
505 }
506
507 rc = key_validate(walker->global_auth_tok_key);
508 if (rc) {
509 if (rc == -EKEYEXPIRED)
510 goto out;
511 goto out_invalid_auth_tok;
512 }
513
514 down_write(&(walker->global_auth_tok_key->sem));
515 rc = ecryptfs_verify_auth_tok_from_key(
516 walker->global_auth_tok_key, auth_tok);
517 if (rc)
518 goto out_invalid_auth_tok_unlock;
519
520 (*auth_tok_key) = walker->global_auth_tok_key;
521 key_get(*auth_tok_key);
522 goto out;
523 }
524 rc = -ENOENT;
525 goto out;
526 out_invalid_auth_tok_unlock:
527 up_write(&(walker->global_auth_tok_key->sem));
528 out_invalid_auth_tok:
529 printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
530 walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
531 key_put(walker->global_auth_tok_key);
532 walker->global_auth_tok_key = NULL;
533 out:
534 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
535 return rc;
536 }
537
538 /**
539 * ecryptfs_find_auth_tok_for_sig
540 * @auth_tok_key: key containing the authentication token
541 * @auth_tok: Set to the matching auth_tok; NULL if not found
542 * @mount_crypt_stat: inode crypt_stat crypto context
543 * @sig: Sig of auth_tok to find
544 *
545 * For now, this function simply looks at the registered auth_tok's
546 * linked off the mount_crypt_stat, so all the auth_toks that can be
547 * used must be registered at mount time. This function could
548 * potentially try a lot harder to find auth_tok's (e.g., by calling
549 * out to ecryptfsd to dynamically retrieve an auth_tok object) so
550 * that static registration of auth_tok's will no longer be necessary.
551 *
552 * Returns zero on no error; non-zero on error
553 */
554 static int
ecryptfs_find_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig)555 ecryptfs_find_auth_tok_for_sig(
556 struct key **auth_tok_key,
557 struct ecryptfs_auth_tok **auth_tok,
558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
559 char *sig)
560 {
561 int rc = 0;
562
563 rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
564 mount_crypt_stat, sig);
565 if (rc == -ENOENT) {
566 /* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
567 * mount_crypt_stat structure, we prevent to use auth toks that
568 * are not inserted through the ecryptfs_add_global_auth_tok
569 * function.
570 */
571 if (mount_crypt_stat->flags
572 & ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
573 return -EINVAL;
574
575 rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
576 sig);
577 }
578 return rc;
579 }
580
581 /*
582 * write_tag_70_packet can gobble a lot of stack space. We stuff most
583 * of the function's parameters in a kmalloc'd struct to help reduce
584 * eCryptfs' overall stack usage.
585 */
586 struct ecryptfs_write_tag_70_packet_silly_stack {
587 u8 cipher_code;
588 size_t max_packet_size;
589 size_t packet_size_len;
590 size_t block_aligned_filename_size;
591 size_t block_size;
592 size_t i;
593 size_t j;
594 size_t num_rand_bytes;
595 struct mutex *tfm_mutex;
596 char *block_aligned_filename;
597 struct ecryptfs_auth_tok *auth_tok;
598 struct scatterlist src_sg[2];
599 struct scatterlist dst_sg[2];
600 struct crypto_skcipher *skcipher_tfm;
601 struct skcipher_request *skcipher_req;
602 char iv[ECRYPTFS_MAX_IV_BYTES];
603 char hash[MD5_DIGEST_SIZE];
604 };
605
606 /*
607 * write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
608 * @filename: NULL-terminated filename string
609 *
610 * This is the simplest mechanism for achieving filename encryption in
611 * eCryptfs. It encrypts the given filename with the mount-wide
612 * filename encryption key (FNEK) and stores it in a packet to @dest,
613 * which the callee will encode and write directly into the dentry
614 * name.
615 */
616 int
ecryptfs_write_tag_70_packet(char * dest,size_t * remaining_bytes,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * filename,size_t filename_size)617 ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
618 size_t *packet_size,
619 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
620 char *filename, size_t filename_size)
621 {
622 struct ecryptfs_write_tag_70_packet_silly_stack *s;
623 struct key *auth_tok_key = NULL;
624 int rc = 0;
625
626 s = kzalloc(sizeof(*s), GFP_KERNEL);
627 if (!s)
628 return -ENOMEM;
629
630 (*packet_size) = 0;
631 rc = ecryptfs_find_auth_tok_for_sig(
632 &auth_tok_key,
633 &s->auth_tok, mount_crypt_stat,
634 mount_crypt_stat->global_default_fnek_sig);
635 if (rc) {
636 printk(KERN_ERR "%s: Error attempting to find auth tok for "
637 "fnek sig [%s]; rc = [%d]\n", __func__,
638 mount_crypt_stat->global_default_fnek_sig, rc);
639 goto out;
640 }
641 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
642 &s->skcipher_tfm,
643 &s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
644 if (unlikely(rc)) {
645 printk(KERN_ERR "Internal error whilst attempting to get "
646 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
647 mount_crypt_stat->global_default_fn_cipher_name, rc);
648 goto out;
649 }
650 mutex_lock(s->tfm_mutex);
651 s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
652 /* Plus one for the \0 separator between the random prefix
653 * and the plaintext filename */
654 s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
655 s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
656 if ((s->block_aligned_filename_size % s->block_size) != 0) {
657 s->num_rand_bytes += (s->block_size
658 - (s->block_aligned_filename_size
659 % s->block_size));
660 s->block_aligned_filename_size = (s->num_rand_bytes
661 + filename_size);
662 }
663 /* Octet 0: Tag 70 identifier
664 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
665 * and block-aligned encrypted filename size)
666 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
667 * Octet N2-N3: Cipher identifier (1 octet)
668 * Octets N3-N4: Block-aligned encrypted filename
669 * - Consists of a minimum number of random characters, a \0
670 * separator, and then the filename */
671 s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
672 + s->block_aligned_filename_size);
673 if (!dest) {
674 (*packet_size) = s->max_packet_size;
675 goto out_unlock;
676 }
677 if (s->max_packet_size > (*remaining_bytes)) {
678 printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
679 "[%zd] available\n", __func__, s->max_packet_size,
680 (*remaining_bytes));
681 rc = -EINVAL;
682 goto out_unlock;
683 }
684
685 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
686 if (!s->skcipher_req) {
687 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
688 "skcipher_request_alloc for %s\n", __func__,
689 crypto_skcipher_driver_name(s->skcipher_tfm));
690 rc = -ENOMEM;
691 goto out_unlock;
692 }
693
694 skcipher_request_set_callback(s->skcipher_req,
695 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
696
697 s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
698 GFP_KERNEL);
699 if (!s->block_aligned_filename) {
700 rc = -ENOMEM;
701 goto out_unlock;
702 }
703 dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
704 rc = ecryptfs_write_packet_length(&dest[s->i],
705 (ECRYPTFS_SIG_SIZE
706 + 1 /* Cipher code */
707 + s->block_aligned_filename_size),
708 &s->packet_size_len);
709 if (rc) {
710 printk(KERN_ERR "%s: Error generating tag 70 packet "
711 "header; cannot generate packet length; rc = [%d]\n",
712 __func__, rc);
713 goto out_free_unlock;
714 }
715 s->i += s->packet_size_len;
716 ecryptfs_from_hex(&dest[s->i],
717 mount_crypt_stat->global_default_fnek_sig,
718 ECRYPTFS_SIG_SIZE);
719 s->i += ECRYPTFS_SIG_SIZE;
720 s->cipher_code = ecryptfs_code_for_cipher_string(
721 mount_crypt_stat->global_default_fn_cipher_name,
722 mount_crypt_stat->global_default_fn_cipher_key_bytes);
723 if (s->cipher_code == 0) {
724 printk(KERN_WARNING "%s: Unable to generate code for "
725 "cipher [%s] with key bytes [%zd]\n", __func__,
726 mount_crypt_stat->global_default_fn_cipher_name,
727 mount_crypt_stat->global_default_fn_cipher_key_bytes);
728 rc = -EINVAL;
729 goto out_free_unlock;
730 }
731 dest[s->i++] = s->cipher_code;
732 /* TODO: Support other key modules than passphrase for
733 * filename encryption */
734 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
735 rc = -EOPNOTSUPP;
736 printk(KERN_INFO "%s: Filename encryption only supports "
737 "password tokens\n", __func__);
738 goto out_free_unlock;
739 }
740
741 md5(s->auth_tok->token.password.session_key_encryption_key,
742 s->auth_tok->token.password.session_key_encryption_key_bytes,
743 s->hash);
744 for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
745 s->block_aligned_filename[s->j] =
746 s->hash[s->j % MD5_DIGEST_SIZE];
747 if ((s->j % MD5_DIGEST_SIZE) == (MD5_DIGEST_SIZE - 1))
748 md5(s->hash, MD5_DIGEST_SIZE, s->hash);
749 if (s->block_aligned_filename[s->j] == '\0')
750 s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
751 }
752 memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
753 filename_size);
754 rc = virt_to_scatterlist(s->block_aligned_filename,
755 s->block_aligned_filename_size, s->src_sg, 2);
756 if (rc < 1) {
757 printk(KERN_ERR "%s: Internal error whilst attempting to "
758 "convert filename memory to scatterlist; rc = [%d]. "
759 "block_aligned_filename_size = [%zd]\n", __func__, rc,
760 s->block_aligned_filename_size);
761 goto out_free_unlock;
762 }
763 rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
764 s->dst_sg, 2);
765 if (rc < 1) {
766 printk(KERN_ERR "%s: Internal error whilst attempting to "
767 "convert encrypted filename memory to scatterlist; "
768 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
769 __func__, rc, s->block_aligned_filename_size);
770 goto out_free_unlock;
771 }
772 /* The characters in the first block effectively do the job
773 * of the IV here, so we just use 0's for the IV. Note the
774 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
775 * >= ECRYPTFS_MAX_IV_BYTES. */
776 rc = crypto_skcipher_setkey(
777 s->skcipher_tfm,
778 s->auth_tok->token.password.session_key_encryption_key,
779 mount_crypt_stat->global_default_fn_cipher_key_bytes);
780 if (rc < 0) {
781 printk(KERN_ERR "%s: Error setting key for crypto context; "
782 "rc = [%d]. s->auth_tok->token.password.session_key_"
783 "encryption_key = [0x%p]; mount_crypt_stat->"
784 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
785 rc,
786 s->auth_tok->token.password.session_key_encryption_key,
787 mount_crypt_stat->global_default_fn_cipher_key_bytes);
788 goto out_free_unlock;
789 }
790 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
791 s->block_aligned_filename_size, s->iv);
792 rc = crypto_skcipher_encrypt(s->skcipher_req);
793 if (rc) {
794 printk(KERN_ERR "%s: Error attempting to encrypt filename; "
795 "rc = [%d]\n", __func__, rc);
796 goto out_free_unlock;
797 }
798 s->i += s->block_aligned_filename_size;
799 (*packet_size) = s->i;
800 (*remaining_bytes) -= (*packet_size);
801 out_free_unlock:
802 kfree_sensitive(s->block_aligned_filename);
803 out_unlock:
804 mutex_unlock(s->tfm_mutex);
805 out:
806 if (auth_tok_key) {
807 up_write(&(auth_tok_key->sem));
808 key_put(auth_tok_key);
809 }
810 skcipher_request_free(s->skcipher_req);
811 kfree(s);
812 return rc;
813 }
814
815 struct ecryptfs_parse_tag_70_packet_silly_stack {
816 u8 cipher_code;
817 size_t max_packet_size;
818 size_t packet_size_len;
819 size_t parsed_tag_70_packet_size;
820 size_t block_aligned_filename_size;
821 size_t block_size;
822 size_t i;
823 struct mutex *tfm_mutex;
824 char *decrypted_filename;
825 struct ecryptfs_auth_tok *auth_tok;
826 struct scatterlist src_sg[2];
827 struct scatterlist dst_sg[2];
828 struct crypto_skcipher *skcipher_tfm;
829 struct skcipher_request *skcipher_req;
830 char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
831 char iv[ECRYPTFS_MAX_IV_BYTES];
832 char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
833 };
834
835 /**
836 * ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
837 * @filename: This function kmalloc's the memory for the filename
838 * @filename_size: This function sets this to the amount of memory
839 * kmalloc'd for the filename
840 * @packet_size: This function sets this to the the number of octets
841 * in the packet parsed
842 * @mount_crypt_stat: The mount-wide cryptographic context
843 * @data: The memory location containing the start of the tag 70
844 * packet
845 * @max_packet_size: The maximum legal size of the packet to be parsed
846 * from @data
847 *
848 * Returns zero on success; non-zero otherwise
849 */
850 int
ecryptfs_parse_tag_70_packet(char ** filename,size_t * filename_size,size_t * packet_size,struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * data,size_t max_packet_size)851 ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
852 size_t *packet_size,
853 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
854 char *data, size_t max_packet_size)
855 {
856 struct ecryptfs_parse_tag_70_packet_silly_stack *s;
857 struct key *auth_tok_key = NULL;
858 int rc = 0;
859
860 (*packet_size) = 0;
861 (*filename_size) = 0;
862 (*filename) = NULL;
863 s = kzalloc(sizeof(*s), GFP_KERNEL);
864 if (!s)
865 return -ENOMEM;
866
867 if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
868 printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
869 "at least [%d]\n", __func__, max_packet_size,
870 ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
871 rc = -EINVAL;
872 goto out;
873 }
874 /* Octet 0: Tag 70 identifier
875 * Octets 1-N1: Tag 70 packet size (includes cipher identifier
876 * and block-aligned encrypted filename size)
877 * Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
878 * Octet N2-N3: Cipher identifier (1 octet)
879 * Octets N3-N4: Block-aligned encrypted filename
880 * - Consists of a minimum number of random numbers, a \0
881 * separator, and then the filename */
882 if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
883 printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
884 "tag [0x%.2x]\n", __func__,
885 data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
886 rc = -EINVAL;
887 goto out;
888 }
889 rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
890 &s->parsed_tag_70_packet_size,
891 &s->packet_size_len);
892 if (rc) {
893 printk(KERN_WARNING "%s: Error parsing packet length; "
894 "rc = [%d]\n", __func__, rc);
895 goto out;
896 }
897 s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
898 - ECRYPTFS_SIG_SIZE - 1);
899 if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
900 > max_packet_size) {
901 printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
902 "size is [%zd]\n", __func__, max_packet_size,
903 (1 + s->packet_size_len + 1
904 + s->block_aligned_filename_size));
905 rc = -EINVAL;
906 goto out;
907 }
908 (*packet_size) += s->packet_size_len;
909 ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
910 ECRYPTFS_SIG_SIZE);
911 s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
912 (*packet_size) += ECRYPTFS_SIG_SIZE;
913 s->cipher_code = data[(*packet_size)++];
914 rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
915 if (rc) {
916 printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
917 __func__, s->cipher_code);
918 goto out;
919 }
920 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
921 &s->auth_tok, mount_crypt_stat,
922 s->fnek_sig_hex);
923 if (rc) {
924 printk(KERN_ERR "%s: Error attempting to find auth tok for "
925 "fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
926 rc);
927 goto out;
928 }
929 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
930 &s->tfm_mutex,
931 s->cipher_string);
932 if (unlikely(rc)) {
933 printk(KERN_ERR "Internal error whilst attempting to get "
934 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
935 s->cipher_string, rc);
936 goto out;
937 }
938 mutex_lock(s->tfm_mutex);
939 rc = virt_to_scatterlist(&data[(*packet_size)],
940 s->block_aligned_filename_size, s->src_sg, 2);
941 if (rc < 1) {
942 printk(KERN_ERR "%s: Internal error whilst attempting to "
943 "convert encrypted filename memory to scatterlist; "
944 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
945 __func__, rc, s->block_aligned_filename_size);
946 goto out_unlock;
947 }
948 (*packet_size) += s->block_aligned_filename_size;
949 s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
950 GFP_KERNEL);
951 if (!s->decrypted_filename) {
952 rc = -ENOMEM;
953 goto out_unlock;
954 }
955 rc = virt_to_scatterlist(s->decrypted_filename,
956 s->block_aligned_filename_size, s->dst_sg, 2);
957 if (rc < 1) {
958 printk(KERN_ERR "%s: Internal error whilst attempting to "
959 "convert decrypted filename memory to scatterlist; "
960 "rc = [%d]. block_aligned_filename_size = [%zd]\n",
961 __func__, rc, s->block_aligned_filename_size);
962 goto out_free_unlock;
963 }
964
965 s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
966 if (!s->skcipher_req) {
967 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
968 "skcipher_request_alloc for %s\n", __func__,
969 crypto_skcipher_driver_name(s->skcipher_tfm));
970 rc = -ENOMEM;
971 goto out_free_unlock;
972 }
973
974 skcipher_request_set_callback(s->skcipher_req,
975 CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
976
977 /* The characters in the first block effectively do the job of
978 * the IV here, so we just use 0's for the IV. Note the
979 * constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
980 * >= ECRYPTFS_MAX_IV_BYTES. */
981 /* TODO: Support other key modules than passphrase for
982 * filename encryption */
983 if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
984 rc = -EOPNOTSUPP;
985 printk(KERN_INFO "%s: Filename encryption only supports "
986 "password tokens\n", __func__);
987 goto out_free_unlock;
988 }
989 rc = crypto_skcipher_setkey(
990 s->skcipher_tfm,
991 s->auth_tok->token.password.session_key_encryption_key,
992 mount_crypt_stat->global_default_fn_cipher_key_bytes);
993 if (rc < 0) {
994 printk(KERN_ERR "%s: Error setting key for crypto context; "
995 "rc = [%d]. s->auth_tok->token.password.session_key_"
996 "encryption_key = [0x%p]; mount_crypt_stat->"
997 "global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
998 rc,
999 s->auth_tok->token.password.session_key_encryption_key,
1000 mount_crypt_stat->global_default_fn_cipher_key_bytes);
1001 goto out_free_unlock;
1002 }
1003 skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1004 s->block_aligned_filename_size, s->iv);
1005 rc = crypto_skcipher_decrypt(s->skcipher_req);
1006 if (rc) {
1007 printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1008 "rc = [%d]\n", __func__, rc);
1009 goto out_free_unlock;
1010 }
1011
1012 while (s->i < s->block_aligned_filename_size &&
1013 s->decrypted_filename[s->i] != '\0')
1014 s->i++;
1015 if (s->i == s->block_aligned_filename_size) {
1016 printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1017 "find valid separator between random characters and "
1018 "the filename\n", __func__);
1019 rc = -EINVAL;
1020 goto out_free_unlock;
1021 }
1022 s->i++;
1023 (*filename_size) = (s->block_aligned_filename_size - s->i);
1024 if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1025 printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1026 "invalid\n", __func__, (*filename_size));
1027 rc = -EINVAL;
1028 goto out_free_unlock;
1029 }
1030 (*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1031 if (!(*filename)) {
1032 rc = -ENOMEM;
1033 goto out_free_unlock;
1034 }
1035 memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1036 (*filename)[(*filename_size)] = '\0';
1037 out_free_unlock:
1038 kfree(s->decrypted_filename);
1039 out_unlock:
1040 mutex_unlock(s->tfm_mutex);
1041 out:
1042 if (rc) {
1043 (*packet_size) = 0;
1044 (*filename_size) = 0;
1045 (*filename) = NULL;
1046 }
1047 if (auth_tok_key) {
1048 up_write(&(auth_tok_key->sem));
1049 key_put(auth_tok_key);
1050 }
1051 skcipher_request_free(s->skcipher_req);
1052 kfree(s);
1053 return rc;
1054 }
1055
1056 static int
ecryptfs_get_auth_tok_sig(char ** sig,struct ecryptfs_auth_tok * auth_tok)1057 ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1058 {
1059 int rc = 0;
1060
1061 (*sig) = NULL;
1062 switch (auth_tok->token_type) {
1063 case ECRYPTFS_PASSWORD:
1064 (*sig) = auth_tok->token.password.signature;
1065 break;
1066 case ECRYPTFS_PRIVATE_KEY:
1067 (*sig) = auth_tok->token.private_key.signature;
1068 break;
1069 default:
1070 printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1071 auth_tok->token_type);
1072 rc = -EINVAL;
1073 }
1074 return rc;
1075 }
1076
1077 /**
1078 * decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1079 * @auth_tok: The key authentication token used to decrypt the session key
1080 * @crypt_stat: The cryptographic context
1081 *
1082 * Returns zero on success; non-zero error otherwise.
1083 */
1084 static int
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1085 decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1086 struct ecryptfs_crypt_stat *crypt_stat)
1087 {
1088 u8 cipher_code = 0;
1089 struct ecryptfs_msg_ctx *msg_ctx;
1090 struct ecryptfs_message *msg = NULL;
1091 char *auth_tok_sig;
1092 char *payload = NULL;
1093 size_t payload_len = 0;
1094 int rc;
1095
1096 rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1097 if (rc) {
1098 printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1099 auth_tok->token_type);
1100 goto out;
1101 }
1102 rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1103 &payload, &payload_len);
1104 if (rc) {
1105 ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1106 goto out;
1107 }
1108 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1109 if (rc) {
1110 ecryptfs_printk(KERN_ERR, "Error sending message to "
1111 "ecryptfsd: %d\n", rc);
1112 goto out;
1113 }
1114 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1115 if (rc) {
1116 ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1117 "from the user space daemon\n");
1118 rc = -EIO;
1119 goto out;
1120 }
1121 rc = parse_tag_65_packet(&(auth_tok->session_key),
1122 &cipher_code, msg);
1123 if (rc) {
1124 printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1125 rc);
1126 goto out;
1127 }
1128 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1129 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1130 auth_tok->session_key.decrypted_key_size);
1131 crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1132 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1133 if (rc) {
1134 ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1135 cipher_code);
1136 goto out;
1137 }
1138 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1139 if (ecryptfs_verbosity > 0) {
1140 ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1141 ecryptfs_dump_hex(crypt_stat->key,
1142 crypt_stat->key_size);
1143 }
1144 out:
1145 kfree(msg);
1146 kfree(payload);
1147 return rc;
1148 }
1149
wipe_auth_tok_list(struct list_head * auth_tok_list_head)1150 static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1151 {
1152 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1153 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1154
1155 list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1156 auth_tok_list_head, list) {
1157 list_del(&auth_tok_list_item->list);
1158 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1159 auth_tok_list_item);
1160 }
1161 }
1162
1163 struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1164
1165 /**
1166 * parse_tag_1_packet
1167 * @crypt_stat: The cryptographic context to modify based on packet contents
1168 * @data: The raw bytes of the packet.
1169 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1170 * a new authentication token will be placed at the
1171 * end of this list for this packet.
1172 * @new_auth_tok: Pointer to a pointer to memory that this function
1173 * allocates; sets the memory address of the pointer to
1174 * NULL on error. This object is added to the
1175 * auth_tok_list.
1176 * @packet_size: This function writes the size of the parsed packet
1177 * into this memory location; zero on error.
1178 * @max_packet_size: The maximum allowable packet size
1179 *
1180 * Returns zero on success; non-zero on error.
1181 */
1182 static int
parse_tag_1_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1183 parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1184 unsigned char *data, struct list_head *auth_tok_list,
1185 struct ecryptfs_auth_tok **new_auth_tok,
1186 size_t *packet_size, size_t max_packet_size)
1187 {
1188 size_t body_size;
1189 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1190 size_t length_size;
1191 int rc = 0;
1192
1193 (*packet_size) = 0;
1194 (*new_auth_tok) = NULL;
1195 /**
1196 * This format is inspired by OpenPGP; see RFC 2440
1197 * packet tag 1
1198 *
1199 * Tag 1 identifier (1 byte)
1200 * Max Tag 1 packet size (max 3 bytes)
1201 * Version (1 byte)
1202 * Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1203 * Cipher identifier (1 byte)
1204 * Encrypted key size (arbitrary)
1205 *
1206 * 12 bytes minimum packet size
1207 */
1208 if (unlikely(max_packet_size < 12)) {
1209 printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1210 rc = -EINVAL;
1211 goto out;
1212 }
1213 if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1214 printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1215 ECRYPTFS_TAG_1_PACKET_TYPE);
1216 rc = -EINVAL;
1217 goto out;
1218 }
1219 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1220 * at end of function upon failure */
1221 auth_tok_list_item =
1222 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1223 GFP_KERNEL);
1224 if (!auth_tok_list_item) {
1225 printk(KERN_ERR "Unable to allocate memory\n");
1226 rc = -ENOMEM;
1227 goto out;
1228 }
1229 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1230 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1231 &length_size);
1232 if (rc) {
1233 printk(KERN_WARNING "Error parsing packet length; "
1234 "rc = [%d]\n", rc);
1235 goto out_free;
1236 }
1237 if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1238 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1239 rc = -EINVAL;
1240 goto out_free;
1241 }
1242 (*packet_size) += length_size;
1243 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1244 printk(KERN_WARNING "Packet size exceeds max\n");
1245 rc = -EINVAL;
1246 goto out_free;
1247 }
1248 if (unlikely(data[(*packet_size)++] != 0x03)) {
1249 printk(KERN_WARNING "Unknown version number [%d]\n",
1250 data[(*packet_size) - 1]);
1251 rc = -EINVAL;
1252 goto out_free;
1253 }
1254 ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1255 &data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1256 *packet_size += ECRYPTFS_SIG_SIZE;
1257 /* This byte is skipped because the kernel does not need to
1258 * know which public key encryption algorithm was used */
1259 (*packet_size)++;
1260 (*new_auth_tok)->session_key.encrypted_key_size =
1261 body_size - (ECRYPTFS_SIG_SIZE + 2);
1262 if ((*new_auth_tok)->session_key.encrypted_key_size
1263 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1264 printk(KERN_WARNING "Tag 1 packet contains key larger "
1265 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1266 rc = -EINVAL;
1267 goto out_free;
1268 }
1269 memcpy((*new_auth_tok)->session_key.encrypted_key,
1270 &data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1271 (*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1272 (*new_auth_tok)->session_key.flags &=
1273 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1274 (*new_auth_tok)->session_key.flags |=
1275 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1276 (*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1277 (*new_auth_tok)->flags = 0;
1278 (*new_auth_tok)->session_key.flags &=
1279 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1280 (*new_auth_tok)->session_key.flags &=
1281 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1282 list_add(&auth_tok_list_item->list, auth_tok_list);
1283 goto out;
1284 out_free:
1285 (*new_auth_tok) = NULL;
1286 memset(auth_tok_list_item, 0,
1287 sizeof(struct ecryptfs_auth_tok_list_item));
1288 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1289 auth_tok_list_item);
1290 out:
1291 if (rc)
1292 (*packet_size) = 0;
1293 return rc;
1294 }
1295
1296 /**
1297 * parse_tag_3_packet
1298 * @crypt_stat: The cryptographic context to modify based on packet
1299 * contents.
1300 * @data: The raw bytes of the packet.
1301 * @auth_tok_list: eCryptfs parses packets into authentication tokens;
1302 * a new authentication token will be placed at the end
1303 * of this list for this packet.
1304 * @new_auth_tok: Pointer to a pointer to memory that this function
1305 * allocates; sets the memory address of the pointer to
1306 * NULL on error. This object is added to the
1307 * auth_tok_list.
1308 * @packet_size: This function writes the size of the parsed packet
1309 * into this memory location; zero on error.
1310 * @max_packet_size: maximum number of bytes to parse
1311 *
1312 * Returns zero on success; non-zero on error.
1313 */
1314 static int
parse_tag_3_packet(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * data,struct list_head * auth_tok_list,struct ecryptfs_auth_tok ** new_auth_tok,size_t * packet_size,size_t max_packet_size)1315 parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1316 unsigned char *data, struct list_head *auth_tok_list,
1317 struct ecryptfs_auth_tok **new_auth_tok,
1318 size_t *packet_size, size_t max_packet_size)
1319 {
1320 size_t body_size;
1321 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1322 size_t length_size;
1323 int rc = 0;
1324
1325 (*packet_size) = 0;
1326 (*new_auth_tok) = NULL;
1327 /**
1328 *This format is inspired by OpenPGP; see RFC 2440
1329 * packet tag 3
1330 *
1331 * Tag 3 identifier (1 byte)
1332 * Max Tag 3 packet size (max 3 bytes)
1333 * Version (1 byte)
1334 * Cipher code (1 byte)
1335 * S2K specifier (1 byte)
1336 * Hash identifier (1 byte)
1337 * Salt (ECRYPTFS_SALT_SIZE)
1338 * Hash iterations (1 byte)
1339 * Encrypted key (arbitrary)
1340 *
1341 * (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1342 */
1343 if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1344 printk(KERN_ERR "Max packet size too large\n");
1345 rc = -EINVAL;
1346 goto out;
1347 }
1348 if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1349 printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1350 ECRYPTFS_TAG_3_PACKET_TYPE);
1351 rc = -EINVAL;
1352 goto out;
1353 }
1354 /* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1355 * at end of function upon failure */
1356 auth_tok_list_item =
1357 kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1358 if (!auth_tok_list_item) {
1359 printk(KERN_ERR "Unable to allocate memory\n");
1360 rc = -ENOMEM;
1361 goto out;
1362 }
1363 (*new_auth_tok) = &auth_tok_list_item->auth_tok;
1364 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1365 &length_size);
1366 if (rc) {
1367 printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1368 rc);
1369 goto out_free;
1370 }
1371 if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1372 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1373 rc = -EINVAL;
1374 goto out_free;
1375 }
1376 (*packet_size) += length_size;
1377 if (unlikely((*packet_size) + body_size > max_packet_size)) {
1378 printk(KERN_ERR "Packet size exceeds max\n");
1379 rc = -EINVAL;
1380 goto out_free;
1381 }
1382 (*new_auth_tok)->session_key.encrypted_key_size =
1383 (body_size - (ECRYPTFS_SALT_SIZE + 5));
1384 if ((*new_auth_tok)->session_key.encrypted_key_size
1385 > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1386 printk(KERN_WARNING "Tag 3 packet contains key larger "
1387 "than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1388 rc = -EINVAL;
1389 goto out_free;
1390 }
1391 if (unlikely(data[(*packet_size)++] != 0x04)) {
1392 printk(KERN_WARNING "Unknown version number [%d]\n",
1393 data[(*packet_size) - 1]);
1394 rc = -EINVAL;
1395 goto out_free;
1396 }
1397 rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1398 (u16)data[(*packet_size)]);
1399 if (rc)
1400 goto out_free;
1401 /* A little extra work to differentiate among the AES key
1402 * sizes; see RFC2440 */
1403 switch(data[(*packet_size)++]) {
1404 case RFC2440_CIPHER_AES_192:
1405 crypt_stat->key_size = 24;
1406 break;
1407 default:
1408 crypt_stat->key_size =
1409 (*new_auth_tok)->session_key.encrypted_key_size;
1410 }
1411 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1412 if (rc)
1413 goto out_free;
1414 if (unlikely(data[(*packet_size)++] != 0x03)) {
1415 printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1416 rc = -ENOSYS;
1417 goto out_free;
1418 }
1419 /* TODO: finish the hash mapping */
1420 switch (data[(*packet_size)++]) {
1421 case 0x01: /* See RFC2440 for these numbers and their mappings */
1422 /* Choose MD5 */
1423 memcpy((*new_auth_tok)->token.password.salt,
1424 &data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1425 (*packet_size) += ECRYPTFS_SALT_SIZE;
1426 /* This conversion was taken straight from RFC2440 */
1427 (*new_auth_tok)->token.password.hash_iterations =
1428 ((u32) 16 + (data[(*packet_size)] & 15))
1429 << ((data[(*packet_size)] >> 4) + 6);
1430 (*packet_size)++;
1431 /* Friendly reminder:
1432 * (*new_auth_tok)->session_key.encrypted_key_size =
1433 * (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1434 memcpy((*new_auth_tok)->session_key.encrypted_key,
1435 &data[(*packet_size)],
1436 (*new_auth_tok)->session_key.encrypted_key_size);
1437 (*packet_size) +=
1438 (*new_auth_tok)->session_key.encrypted_key_size;
1439 (*new_auth_tok)->session_key.flags &=
1440 ~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1441 (*new_auth_tok)->session_key.flags |=
1442 ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1443 (*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1444 break;
1445 default:
1446 ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1447 "[%d]\n", data[(*packet_size) - 1]);
1448 rc = -ENOSYS;
1449 goto out_free;
1450 }
1451 (*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1452 /* TODO: Parametarize; we might actually want userspace to
1453 * decrypt the session key. */
1454 (*new_auth_tok)->session_key.flags &=
1455 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1456 (*new_auth_tok)->session_key.flags &=
1457 ~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1458 list_add(&auth_tok_list_item->list, auth_tok_list);
1459 goto out;
1460 out_free:
1461 (*new_auth_tok) = NULL;
1462 memset(auth_tok_list_item, 0,
1463 sizeof(struct ecryptfs_auth_tok_list_item));
1464 kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1465 auth_tok_list_item);
1466 out:
1467 if (rc)
1468 (*packet_size) = 0;
1469 return rc;
1470 }
1471
1472 /**
1473 * parse_tag_11_packet
1474 * @data: The raw bytes of the packet
1475 * @contents: This function writes the data contents of the literal
1476 * packet into this memory location
1477 * @max_contents_bytes: The maximum number of bytes that this function
1478 * is allowed to write into contents
1479 * @tag_11_contents_size: This function writes the size of the parsed
1480 * contents into this memory location; zero on
1481 * error
1482 * @packet_size: This function writes the size of the parsed packet
1483 * into this memory location; zero on error
1484 * @max_packet_size: maximum number of bytes to parse
1485 *
1486 * Returns zero on success; non-zero on error.
1487 */
1488 static int
parse_tag_11_packet(unsigned char * data,unsigned char * contents,size_t max_contents_bytes,size_t * tag_11_contents_size,size_t * packet_size,size_t max_packet_size)1489 parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1490 size_t max_contents_bytes, size_t *tag_11_contents_size,
1491 size_t *packet_size, size_t max_packet_size)
1492 {
1493 size_t body_size;
1494 size_t length_size;
1495 int rc = 0;
1496
1497 (*packet_size) = 0;
1498 (*tag_11_contents_size) = 0;
1499 /* This format is inspired by OpenPGP; see RFC 2440
1500 * packet tag 11
1501 *
1502 * Tag 11 identifier (1 byte)
1503 * Max Tag 11 packet size (max 3 bytes)
1504 * Binary format specifier (1 byte)
1505 * Filename length (1 byte)
1506 * Filename ("_CONSOLE") (8 bytes)
1507 * Modification date (4 bytes)
1508 * Literal data (arbitrary)
1509 *
1510 * We need at least 16 bytes of data for the packet to even be
1511 * valid.
1512 */
1513 if (max_packet_size < 16) {
1514 printk(KERN_ERR "Maximum packet size too small\n");
1515 rc = -EINVAL;
1516 goto out;
1517 }
1518 if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1519 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1520 rc = -EINVAL;
1521 goto out;
1522 }
1523 rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1524 &length_size);
1525 if (rc) {
1526 printk(KERN_WARNING "Invalid tag 11 packet format\n");
1527 goto out;
1528 }
1529 if (body_size < 14) {
1530 printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1531 rc = -EINVAL;
1532 goto out;
1533 }
1534 (*packet_size) += length_size;
1535 (*tag_11_contents_size) = (body_size - 14);
1536 if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1537 printk(KERN_ERR "Packet size exceeds max\n");
1538 rc = -EINVAL;
1539 goto out;
1540 }
1541 if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1542 printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1543 "expected size\n");
1544 rc = -EINVAL;
1545 goto out;
1546 }
1547 if (data[(*packet_size)++] != 0x62) {
1548 printk(KERN_WARNING "Unrecognizable packet\n");
1549 rc = -EINVAL;
1550 goto out;
1551 }
1552 if (data[(*packet_size)++] != 0x08) {
1553 printk(KERN_WARNING "Unrecognizable packet\n");
1554 rc = -EINVAL;
1555 goto out;
1556 }
1557 (*packet_size) += 12; /* Ignore filename and modification date */
1558 memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1559 (*packet_size) += (*tag_11_contents_size);
1560 out:
1561 if (rc) {
1562 (*packet_size) = 0;
1563 (*tag_11_contents_size) = 0;
1564 }
1565 return rc;
1566 }
1567
ecryptfs_keyring_auth_tok_for_sig(struct key ** auth_tok_key,struct ecryptfs_auth_tok ** auth_tok,char * sig)1568 int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1569 struct ecryptfs_auth_tok **auth_tok,
1570 char *sig)
1571 {
1572 int rc = 0;
1573
1574 (*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1575 if (IS_ERR(*auth_tok_key)) {
1576 (*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1577 if (IS_ERR(*auth_tok_key)) {
1578 printk(KERN_ERR "Could not find key with description: [%s]\n",
1579 sig);
1580 rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1581 (*auth_tok_key) = NULL;
1582 goto out;
1583 }
1584 }
1585 down_write(&(*auth_tok_key)->sem);
1586 rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1587 if (rc) {
1588 up_write(&(*auth_tok_key)->sem);
1589 key_put(*auth_tok_key);
1590 (*auth_tok_key) = NULL;
1591 goto out;
1592 }
1593 out:
1594 return rc;
1595 }
1596
1597 /**
1598 * decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1599 * @auth_tok: The passphrase authentication token to use to encrypt the FEK
1600 * @crypt_stat: The cryptographic context
1601 *
1602 * Returns zero on success; non-zero error otherwise
1603 */
1604 static int
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat)1605 decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1606 struct ecryptfs_crypt_stat *crypt_stat)
1607 {
1608 struct scatterlist dst_sg[2];
1609 struct scatterlist src_sg[2];
1610 struct mutex *tfm_mutex;
1611 struct crypto_skcipher *tfm;
1612 struct skcipher_request *req = NULL;
1613 int rc = 0;
1614
1615 if (unlikely(ecryptfs_verbosity > 0)) {
1616 ecryptfs_printk(
1617 KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1618 auth_tok->token.password.session_key_encryption_key_bytes);
1619 ecryptfs_dump_hex(
1620 auth_tok->token.password.session_key_encryption_key,
1621 auth_tok->token.password.session_key_encryption_key_bytes);
1622 }
1623 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1624 crypt_stat->cipher);
1625 if (unlikely(rc)) {
1626 printk(KERN_ERR "Internal error whilst attempting to get "
1627 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
1628 crypt_stat->cipher, rc);
1629 goto out;
1630 }
1631 rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1632 auth_tok->session_key.encrypted_key_size,
1633 src_sg, 2);
1634 if (rc < 1 || rc > 2) {
1635 printk(KERN_ERR "Internal error whilst attempting to convert "
1636 "auth_tok->session_key.encrypted_key to scatterlist; "
1637 "expected rc = 1; got rc = [%d]. "
1638 "auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1639 auth_tok->session_key.encrypted_key_size);
1640 goto out;
1641 }
1642 auth_tok->session_key.decrypted_key_size =
1643 auth_tok->session_key.encrypted_key_size;
1644 rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1645 auth_tok->session_key.decrypted_key_size,
1646 dst_sg, 2);
1647 if (rc < 1 || rc > 2) {
1648 printk(KERN_ERR "Internal error whilst attempting to convert "
1649 "auth_tok->session_key.decrypted_key to scatterlist; "
1650 "expected rc = 1; got rc = [%d]\n", rc);
1651 goto out;
1652 }
1653 mutex_lock(tfm_mutex);
1654 req = skcipher_request_alloc(tfm, GFP_KERNEL);
1655 if (!req) {
1656 mutex_unlock(tfm_mutex);
1657 printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1658 "skcipher_request_alloc for %s\n", __func__,
1659 crypto_skcipher_driver_name(tfm));
1660 rc = -ENOMEM;
1661 goto out;
1662 }
1663
1664 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1665 NULL, NULL);
1666 rc = crypto_skcipher_setkey(
1667 tfm, auth_tok->token.password.session_key_encryption_key,
1668 crypt_stat->key_size);
1669 if (unlikely(rc < 0)) {
1670 mutex_unlock(tfm_mutex);
1671 printk(KERN_ERR "Error setting key for crypto context\n");
1672 rc = -EINVAL;
1673 goto out;
1674 }
1675 skcipher_request_set_crypt(req, src_sg, dst_sg,
1676 auth_tok->session_key.encrypted_key_size,
1677 NULL);
1678 rc = crypto_skcipher_decrypt(req);
1679 mutex_unlock(tfm_mutex);
1680 if (unlikely(rc)) {
1681 printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1682 goto out;
1683 }
1684 auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1685 memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1686 auth_tok->session_key.decrypted_key_size);
1687 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1688 if (unlikely(ecryptfs_verbosity > 0)) {
1689 ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1690 crypt_stat->key_size);
1691 ecryptfs_dump_hex(crypt_stat->key,
1692 crypt_stat->key_size);
1693 }
1694 out:
1695 skcipher_request_free(req);
1696 return rc;
1697 }
1698
1699 /**
1700 * ecryptfs_parse_packet_set
1701 * @crypt_stat: The cryptographic context
1702 * @src: Virtual address of region of memory containing the packets
1703 * @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1704 *
1705 * Get crypt_stat to have the file's session key if the requisite key
1706 * is available to decrypt the session key.
1707 *
1708 * Returns Zero if a valid authentication token was retrieved and
1709 * processed; negative value for file not encrypted or for error
1710 * conditions.
1711 */
ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat * crypt_stat,unsigned char * src,struct dentry * ecryptfs_dentry)1712 int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1713 unsigned char *src,
1714 struct dentry *ecryptfs_dentry)
1715 {
1716 size_t i = 0;
1717 size_t found_auth_tok;
1718 size_t next_packet_is_auth_tok_packet;
1719 struct list_head auth_tok_list;
1720 struct ecryptfs_auth_tok *matching_auth_tok;
1721 struct ecryptfs_auth_tok *candidate_auth_tok;
1722 char *candidate_auth_tok_sig;
1723 size_t packet_size;
1724 struct ecryptfs_auth_tok *new_auth_tok;
1725 unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1726 struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1727 size_t tag_11_contents_size;
1728 size_t tag_11_packet_size;
1729 struct key *auth_tok_key = NULL;
1730 int rc = 0;
1731
1732 INIT_LIST_HEAD(&auth_tok_list);
1733 /* Parse the header to find as many packets as we can; these will be
1734 * added the our &auth_tok_list */
1735 next_packet_is_auth_tok_packet = 1;
1736 while (next_packet_is_auth_tok_packet) {
1737 size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1738
1739 switch (src[i]) {
1740 case ECRYPTFS_TAG_3_PACKET_TYPE:
1741 rc = parse_tag_3_packet(crypt_stat,
1742 (unsigned char *)&src[i],
1743 &auth_tok_list, &new_auth_tok,
1744 &packet_size, max_packet_size);
1745 if (rc) {
1746 ecryptfs_printk(KERN_ERR, "Error parsing "
1747 "tag 3 packet\n");
1748 rc = -EIO;
1749 goto out_wipe_list;
1750 }
1751 i += packet_size;
1752 rc = parse_tag_11_packet((unsigned char *)&src[i],
1753 sig_tmp_space,
1754 ECRYPTFS_SIG_SIZE,
1755 &tag_11_contents_size,
1756 &tag_11_packet_size,
1757 max_packet_size);
1758 if (rc) {
1759 ecryptfs_printk(KERN_ERR, "No valid "
1760 "(ecryptfs-specific) literal "
1761 "packet containing "
1762 "authentication token "
1763 "signature found after "
1764 "tag 3 packet\n");
1765 rc = -EIO;
1766 goto out_wipe_list;
1767 }
1768 i += tag_11_packet_size;
1769 if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1770 ecryptfs_printk(KERN_ERR, "Expected "
1771 "signature of size [%d]; "
1772 "read size [%zd]\n",
1773 ECRYPTFS_SIG_SIZE,
1774 tag_11_contents_size);
1775 rc = -EIO;
1776 goto out_wipe_list;
1777 }
1778 ecryptfs_to_hex(new_auth_tok->token.password.signature,
1779 sig_tmp_space, tag_11_contents_size);
1780 new_auth_tok->token.password.signature[
1781 ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1782 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1783 break;
1784 case ECRYPTFS_TAG_1_PACKET_TYPE:
1785 rc = parse_tag_1_packet(crypt_stat,
1786 (unsigned char *)&src[i],
1787 &auth_tok_list, &new_auth_tok,
1788 &packet_size, max_packet_size);
1789 if (rc) {
1790 ecryptfs_printk(KERN_ERR, "Error parsing "
1791 "tag 1 packet\n");
1792 rc = -EIO;
1793 goto out_wipe_list;
1794 }
1795 i += packet_size;
1796 crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1797 break;
1798 case ECRYPTFS_TAG_11_PACKET_TYPE:
1799 ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1800 "(Tag 11 not allowed by itself)\n");
1801 rc = -EIO;
1802 goto out_wipe_list;
1803 default:
1804 ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1805 "of the file header; hex value of "
1806 "character is [0x%.2x]\n", i, src[i]);
1807 next_packet_is_auth_tok_packet = 0;
1808 }
1809 }
1810 if (list_empty(&auth_tok_list)) {
1811 printk(KERN_ERR "The lower file appears to be a non-encrypted "
1812 "eCryptfs file; this is not supported in this version "
1813 "of the eCryptfs kernel module\n");
1814 rc = -EINVAL;
1815 goto out;
1816 }
1817 /* auth_tok_list contains the set of authentication tokens
1818 * parsed from the metadata. We need to find a matching
1819 * authentication token that has the secret component(s)
1820 * necessary to decrypt the EFEK in the auth_tok parsed from
1821 * the metadata. There may be several potential matches, but
1822 * just one will be sufficient to decrypt to get the FEK. */
1823 find_next_matching_auth_tok:
1824 found_auth_tok = 0;
1825 list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1826 candidate_auth_tok = &auth_tok_list_item->auth_tok;
1827 if (unlikely(ecryptfs_verbosity > 0)) {
1828 ecryptfs_printk(KERN_DEBUG,
1829 "Considering candidate auth tok:\n");
1830 ecryptfs_dump_auth_tok(candidate_auth_tok);
1831 }
1832 rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1833 candidate_auth_tok);
1834 if (rc) {
1835 printk(KERN_ERR
1836 "Unrecognized candidate auth tok type: [%d]\n",
1837 candidate_auth_tok->token_type);
1838 rc = -EINVAL;
1839 goto out_wipe_list;
1840 }
1841 rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1842 &matching_auth_tok,
1843 crypt_stat->mount_crypt_stat,
1844 candidate_auth_tok_sig);
1845 if (!rc) {
1846 found_auth_tok = 1;
1847 goto found_matching_auth_tok;
1848 }
1849 }
1850 if (!found_auth_tok) {
1851 ecryptfs_printk(KERN_ERR, "Could not find a usable "
1852 "authentication token\n");
1853 rc = -EIO;
1854 goto out_wipe_list;
1855 }
1856 found_matching_auth_tok:
1857 if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1858 memcpy(&(candidate_auth_tok->token.private_key),
1859 &(matching_auth_tok->token.private_key),
1860 sizeof(struct ecryptfs_private_key));
1861 up_write(&(auth_tok_key->sem));
1862 key_put(auth_tok_key);
1863 rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1864 crypt_stat);
1865 } else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1866 memcpy(&(candidate_auth_tok->token.password),
1867 &(matching_auth_tok->token.password),
1868 sizeof(struct ecryptfs_password));
1869 up_write(&(auth_tok_key->sem));
1870 key_put(auth_tok_key);
1871 rc = decrypt_passphrase_encrypted_session_key(
1872 candidate_auth_tok, crypt_stat);
1873 } else {
1874 up_write(&(auth_tok_key->sem));
1875 key_put(auth_tok_key);
1876 rc = -EINVAL;
1877 }
1878 if (rc) {
1879 struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1880
1881 ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1882 "session key for authentication token with sig "
1883 "[%.*s]; rc = [%d]. Removing auth tok "
1884 "candidate from the list and searching for "
1885 "the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1886 candidate_auth_tok_sig, rc);
1887 list_for_each_entry_safe(auth_tok_list_item,
1888 auth_tok_list_item_tmp,
1889 &auth_tok_list, list) {
1890 if (candidate_auth_tok
1891 == &auth_tok_list_item->auth_tok) {
1892 list_del(&auth_tok_list_item->list);
1893 kmem_cache_free(
1894 ecryptfs_auth_tok_list_item_cache,
1895 auth_tok_list_item);
1896 goto find_next_matching_auth_tok;
1897 }
1898 }
1899 BUG();
1900 }
1901 rc = ecryptfs_compute_root_iv(crypt_stat);
1902 if (rc) {
1903 ecryptfs_printk(KERN_ERR, "Error computing "
1904 "the root IV\n");
1905 goto out_wipe_list;
1906 }
1907 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1908 if (rc) {
1909 ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1910 "context for cipher [%s]; rc = [%d]\n",
1911 crypt_stat->cipher, rc);
1912 }
1913 out_wipe_list:
1914 wipe_auth_tok_list(&auth_tok_list);
1915 out:
1916 return rc;
1917 }
1918
1919 static int
pki_encrypt_session_key(struct key * auth_tok_key,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec)1920 pki_encrypt_session_key(struct key *auth_tok_key,
1921 struct ecryptfs_auth_tok *auth_tok,
1922 struct ecryptfs_crypt_stat *crypt_stat,
1923 struct ecryptfs_key_record *key_rec)
1924 {
1925 struct ecryptfs_msg_ctx *msg_ctx = NULL;
1926 char *payload = NULL;
1927 size_t payload_len = 0;
1928 struct ecryptfs_message *msg;
1929 int rc;
1930
1931 rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1932 ecryptfs_code_for_cipher_string(
1933 crypt_stat->cipher,
1934 crypt_stat->key_size),
1935 crypt_stat, &payload, &payload_len);
1936 up_write(&(auth_tok_key->sem));
1937 key_put(auth_tok_key);
1938 if (rc) {
1939 ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1940 goto out;
1941 }
1942 rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1943 if (rc) {
1944 ecryptfs_printk(KERN_ERR, "Error sending message to "
1945 "ecryptfsd: %d\n", rc);
1946 goto out;
1947 }
1948 rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1949 if (rc) {
1950 ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1951 "from the user space daemon\n");
1952 rc = -EIO;
1953 goto out;
1954 }
1955 rc = parse_tag_67_packet(key_rec, msg);
1956 if (rc)
1957 ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
1958 kfree(msg);
1959 out:
1960 kfree(payload);
1961 return rc;
1962 }
1963 /**
1964 * write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
1965 * @dest: Buffer into which to write the packet
1966 * @remaining_bytes: Maximum number of bytes that can be writtn
1967 * @auth_tok_key: The authentication token key to unlock and put when done with
1968 * @auth_tok
1969 * @auth_tok: The authentication token used for generating the tag 1 packet
1970 * @crypt_stat: The cryptographic context
1971 * @key_rec: The key record struct for the tag 1 packet
1972 * @packet_size: This function will write the number of bytes that end
1973 * up constituting the packet; set to zero on error
1974 *
1975 * Returns zero on success; non-zero on error.
1976 */
1977 static int
write_tag_1_packet(char * dest,size_t * remaining_bytes,struct key * auth_tok_key,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)1978 write_tag_1_packet(char *dest, size_t *remaining_bytes,
1979 struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
1980 struct ecryptfs_crypt_stat *crypt_stat,
1981 struct ecryptfs_key_record *key_rec, size_t *packet_size)
1982 {
1983 size_t i;
1984 size_t encrypted_session_key_valid = 0;
1985 size_t packet_size_length;
1986 size_t max_packet_size;
1987 int rc = 0;
1988
1989 (*packet_size) = 0;
1990 ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
1991 ECRYPTFS_SIG_SIZE);
1992 encrypted_session_key_valid = 0;
1993 for (i = 0; i < crypt_stat->key_size; i++)
1994 encrypted_session_key_valid |=
1995 auth_tok->session_key.encrypted_key[i];
1996 if (encrypted_session_key_valid) {
1997 memcpy(key_rec->enc_key,
1998 auth_tok->session_key.encrypted_key,
1999 auth_tok->session_key.encrypted_key_size);
2000 up_write(&(auth_tok_key->sem));
2001 key_put(auth_tok_key);
2002 goto encrypted_session_key_set;
2003 }
2004 if (auth_tok->session_key.encrypted_key_size == 0)
2005 auth_tok->session_key.encrypted_key_size =
2006 auth_tok->token.private_key.key_size;
2007 rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2008 key_rec);
2009 if (rc) {
2010 printk(KERN_ERR "Failed to encrypt session key via a key "
2011 "module; rc = [%d]\n", rc);
2012 goto out;
2013 }
2014 if (ecryptfs_verbosity > 0) {
2015 ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2016 ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2017 }
2018 encrypted_session_key_set:
2019 /* This format is inspired by OpenPGP; see RFC 2440
2020 * packet tag 1 */
2021 max_packet_size = (1 /* Tag 1 identifier */
2022 + 3 /* Max Tag 1 packet size */
2023 + 1 /* Version */
2024 + ECRYPTFS_SIG_SIZE /* Key identifier */
2025 + 1 /* Cipher identifier */
2026 + key_rec->enc_key_size); /* Encrypted key size */
2027 if (max_packet_size > (*remaining_bytes)) {
2028 printk(KERN_ERR "Packet length larger than maximum allowable; "
2029 "need up to [%td] bytes, but there are only [%td] "
2030 "available\n", max_packet_size, (*remaining_bytes));
2031 rc = -EINVAL;
2032 goto out;
2033 }
2034 dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2035 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2036 (max_packet_size - 4),
2037 &packet_size_length);
2038 if (rc) {
2039 ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2040 "header; cannot generate packet length\n");
2041 goto out;
2042 }
2043 (*packet_size) += packet_size_length;
2044 dest[(*packet_size)++] = 0x03; /* version 3 */
2045 memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2046 (*packet_size) += ECRYPTFS_SIG_SIZE;
2047 dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2048 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2049 key_rec->enc_key_size);
2050 (*packet_size) += key_rec->enc_key_size;
2051 out:
2052 if (rc)
2053 (*packet_size) = 0;
2054 else
2055 (*remaining_bytes) -= (*packet_size);
2056 return rc;
2057 }
2058
2059 /**
2060 * write_tag_11_packet
2061 * @dest: Target into which Tag 11 packet is to be written
2062 * @remaining_bytes: Maximum packet length
2063 * @contents: Byte array of contents to copy in
2064 * @contents_length: Number of bytes in contents
2065 * @packet_length: Length of the Tag 11 packet written; zero on error
2066 *
2067 * Returns zero on success; non-zero on error.
2068 */
2069 static int
write_tag_11_packet(char * dest,size_t * remaining_bytes,char * contents,size_t contents_length,size_t * packet_length)2070 write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2071 size_t contents_length, size_t *packet_length)
2072 {
2073 size_t packet_size_length;
2074 size_t max_packet_size;
2075 int rc = 0;
2076
2077 (*packet_length) = 0;
2078 /* This format is inspired by OpenPGP; see RFC 2440
2079 * packet tag 11 */
2080 max_packet_size = (1 /* Tag 11 identifier */
2081 + 3 /* Max Tag 11 packet size */
2082 + 1 /* Binary format specifier */
2083 + 1 /* Filename length */
2084 + 8 /* Filename ("_CONSOLE") */
2085 + 4 /* Modification date */
2086 + contents_length); /* Literal data */
2087 if (max_packet_size > (*remaining_bytes)) {
2088 printk(KERN_ERR "Packet length larger than maximum allowable; "
2089 "need up to [%td] bytes, but there are only [%td] "
2090 "available\n", max_packet_size, (*remaining_bytes));
2091 rc = -EINVAL;
2092 goto out;
2093 }
2094 dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2095 rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2096 (max_packet_size - 4),
2097 &packet_size_length);
2098 if (rc) {
2099 printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2100 "generate packet length. rc = [%d]\n", rc);
2101 goto out;
2102 }
2103 (*packet_length) += packet_size_length;
2104 dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2105 dest[(*packet_length)++] = 8;
2106 memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2107 (*packet_length) += 8;
2108 memset(&dest[(*packet_length)], 0x00, 4);
2109 (*packet_length) += 4;
2110 memcpy(&dest[(*packet_length)], contents, contents_length);
2111 (*packet_length) += contents_length;
2112 out:
2113 if (rc)
2114 (*packet_length) = 0;
2115 else
2116 (*remaining_bytes) -= (*packet_length);
2117 return rc;
2118 }
2119
2120 /**
2121 * write_tag_3_packet
2122 * @dest: Buffer into which to write the packet
2123 * @remaining_bytes: Maximum number of bytes that can be written
2124 * @auth_tok: Authentication token
2125 * @crypt_stat: The cryptographic context
2126 * @key_rec: encrypted key
2127 * @packet_size: This function will write the number of bytes that end
2128 * up constituting the packet; set to zero on error
2129 *
2130 * Returns zero on success; non-zero on error.
2131 */
2132 static int
write_tag_3_packet(char * dest,size_t * remaining_bytes,struct ecryptfs_auth_tok * auth_tok,struct ecryptfs_crypt_stat * crypt_stat,struct ecryptfs_key_record * key_rec,size_t * packet_size)2133 write_tag_3_packet(char *dest, size_t *remaining_bytes,
2134 struct ecryptfs_auth_tok *auth_tok,
2135 struct ecryptfs_crypt_stat *crypt_stat,
2136 struct ecryptfs_key_record *key_rec, size_t *packet_size)
2137 {
2138 size_t i;
2139 size_t encrypted_session_key_valid = 0;
2140 char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2141 struct scatterlist dst_sg[2];
2142 struct scatterlist src_sg[2];
2143 struct mutex *tfm_mutex = NULL;
2144 u8 cipher_code;
2145 size_t packet_size_length;
2146 size_t max_packet_size;
2147 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2148 crypt_stat->mount_crypt_stat;
2149 struct crypto_skcipher *tfm;
2150 struct skcipher_request *req;
2151 int rc = 0;
2152
2153 (*packet_size) = 0;
2154 ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2155 ECRYPTFS_SIG_SIZE);
2156 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2157 crypt_stat->cipher);
2158 if (unlikely(rc)) {
2159 printk(KERN_ERR "Internal error whilst attempting to get "
2160 "tfm and mutex for cipher name [%s]; rc = [%d]\n",
2161 crypt_stat->cipher, rc);
2162 goto out;
2163 }
2164 if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2165 printk(KERN_WARNING "No key size specified at mount; "
2166 "defaulting to [%d]\n",
2167 crypto_skcipher_max_keysize(tfm));
2168 mount_crypt_stat->global_default_cipher_key_size =
2169 crypto_skcipher_max_keysize(tfm);
2170 }
2171 if (crypt_stat->key_size == 0)
2172 crypt_stat->key_size =
2173 mount_crypt_stat->global_default_cipher_key_size;
2174 if (auth_tok->session_key.encrypted_key_size == 0)
2175 auth_tok->session_key.encrypted_key_size =
2176 crypt_stat->key_size;
2177 if (crypt_stat->key_size == 24
2178 && strcmp("aes", crypt_stat->cipher) == 0) {
2179 memset((crypt_stat->key + 24), 0, 8);
2180 auth_tok->session_key.encrypted_key_size = 32;
2181 } else
2182 auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2183 key_rec->enc_key_size =
2184 auth_tok->session_key.encrypted_key_size;
2185 encrypted_session_key_valid = 0;
2186 for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2187 encrypted_session_key_valid |=
2188 auth_tok->session_key.encrypted_key[i];
2189 if (encrypted_session_key_valid) {
2190 ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2191 "using auth_tok->session_key.encrypted_key, "
2192 "where key_rec->enc_key_size = [%zd]\n",
2193 key_rec->enc_key_size);
2194 memcpy(key_rec->enc_key,
2195 auth_tok->session_key.encrypted_key,
2196 key_rec->enc_key_size);
2197 goto encrypted_session_key_set;
2198 }
2199 if (auth_tok->token.password.flags &
2200 ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2201 ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2202 "session key encryption key of size [%d]\n",
2203 auth_tok->token.password.
2204 session_key_encryption_key_bytes);
2205 memcpy(session_key_encryption_key,
2206 auth_tok->token.password.session_key_encryption_key,
2207 crypt_stat->key_size);
2208 ecryptfs_printk(KERN_DEBUG,
2209 "Cached session key encryption key:\n");
2210 if (ecryptfs_verbosity > 0)
2211 ecryptfs_dump_hex(session_key_encryption_key, 16);
2212 }
2213 if (unlikely(ecryptfs_verbosity > 0)) {
2214 ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2215 ecryptfs_dump_hex(session_key_encryption_key, 16);
2216 }
2217 rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2218 src_sg, 2);
2219 if (rc < 1 || rc > 2) {
2220 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2221 "for crypt_stat session key; expected rc = 1; "
2222 "got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2223 rc, key_rec->enc_key_size);
2224 rc = -ENOMEM;
2225 goto out;
2226 }
2227 rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2228 dst_sg, 2);
2229 if (rc < 1 || rc > 2) {
2230 ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2231 "for crypt_stat encrypted session key; "
2232 "expected rc = 1; got rc = [%d]. "
2233 "key_rec->enc_key_size = [%zd]\n", rc,
2234 key_rec->enc_key_size);
2235 rc = -ENOMEM;
2236 goto out;
2237 }
2238 mutex_lock(tfm_mutex);
2239 rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2240 crypt_stat->key_size);
2241 if (rc < 0) {
2242 mutex_unlock(tfm_mutex);
2243 ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2244 "context; rc = [%d]\n", rc);
2245 goto out;
2246 }
2247
2248 req = skcipher_request_alloc(tfm, GFP_KERNEL);
2249 if (!req) {
2250 mutex_unlock(tfm_mutex);
2251 ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2252 "attempting to skcipher_request_alloc for "
2253 "%s\n", crypto_skcipher_driver_name(tfm));
2254 rc = -ENOMEM;
2255 goto out;
2256 }
2257
2258 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2259 NULL, NULL);
2260
2261 rc = 0;
2262 ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2263 crypt_stat->key_size);
2264 skcipher_request_set_crypt(req, src_sg, dst_sg,
2265 (*key_rec).enc_key_size, NULL);
2266 rc = crypto_skcipher_encrypt(req);
2267 mutex_unlock(tfm_mutex);
2268 skcipher_request_free(req);
2269 if (rc) {
2270 printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2271 goto out;
2272 }
2273 ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2274 if (ecryptfs_verbosity > 0) {
2275 ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2276 key_rec->enc_key_size);
2277 ecryptfs_dump_hex(key_rec->enc_key,
2278 key_rec->enc_key_size);
2279 }
2280 encrypted_session_key_set:
2281 /* This format is inspired by OpenPGP; see RFC 2440
2282 * packet tag 3 */
2283 max_packet_size = (1 /* Tag 3 identifier */
2284 + 3 /* Max Tag 3 packet size */
2285 + 1 /* Version */
2286 + 1 /* Cipher code */
2287 + 1 /* S2K specifier */
2288 + 1 /* Hash identifier */
2289 + ECRYPTFS_SALT_SIZE /* Salt */
2290 + 1 /* Hash iterations */
2291 + key_rec->enc_key_size); /* Encrypted key size */
2292 if (max_packet_size > (*remaining_bytes)) {
2293 printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2294 "there are only [%td] available\n", max_packet_size,
2295 (*remaining_bytes));
2296 rc = -EINVAL;
2297 goto out;
2298 }
2299 dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2300 /* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2301 * to get the number of octets in the actual Tag 3 packet */
2302 rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2303 (max_packet_size - 4),
2304 &packet_size_length);
2305 if (rc) {
2306 printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2307 "generate packet length. rc = [%d]\n", rc);
2308 goto out;
2309 }
2310 (*packet_size) += packet_size_length;
2311 dest[(*packet_size)++] = 0x04; /* version 4 */
2312 /* TODO: Break from RFC2440 so that arbitrary ciphers can be
2313 * specified with strings */
2314 cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2315 crypt_stat->key_size);
2316 if (cipher_code == 0) {
2317 ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2318 "cipher [%s]\n", crypt_stat->cipher);
2319 rc = -EINVAL;
2320 goto out;
2321 }
2322 dest[(*packet_size)++] = cipher_code;
2323 dest[(*packet_size)++] = 0x03; /* S2K */
2324 dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2325 memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2326 ECRYPTFS_SALT_SIZE);
2327 (*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2328 dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2329 memcpy(&dest[(*packet_size)], key_rec->enc_key,
2330 key_rec->enc_key_size);
2331 (*packet_size) += key_rec->enc_key_size;
2332 out:
2333 if (rc)
2334 (*packet_size) = 0;
2335 else
2336 (*remaining_bytes) -= (*packet_size);
2337 return rc;
2338 }
2339
2340 struct kmem_cache *ecryptfs_key_record_cache;
2341
2342 /**
2343 * ecryptfs_generate_key_packet_set
2344 * @dest_base: Virtual address from which to write the key record set
2345 * @crypt_stat: The cryptographic context from which the
2346 * authentication tokens will be retrieved
2347 * @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2348 * for the global parameters
2349 * @len: The amount written
2350 * @max: The maximum amount of data allowed to be written
2351 *
2352 * Generates a key packet set and writes it to the virtual address
2353 * passed in.
2354 *
2355 * Returns zero on success; non-zero on error.
2356 */
2357 int
ecryptfs_generate_key_packet_set(char * dest_base,struct ecryptfs_crypt_stat * crypt_stat,struct dentry * ecryptfs_dentry,size_t * len,size_t max)2358 ecryptfs_generate_key_packet_set(char *dest_base,
2359 struct ecryptfs_crypt_stat *crypt_stat,
2360 struct dentry *ecryptfs_dentry, size_t *len,
2361 size_t max)
2362 {
2363 struct ecryptfs_auth_tok *auth_tok;
2364 struct key *auth_tok_key = NULL;
2365 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2366 &ecryptfs_superblock_to_private(
2367 ecryptfs_dentry->d_sb)->mount_crypt_stat;
2368 size_t written;
2369 struct ecryptfs_key_record *key_rec;
2370 struct ecryptfs_key_sig *key_sig;
2371 int rc = 0;
2372
2373 (*len) = 0;
2374 mutex_lock(&crypt_stat->keysig_list_mutex);
2375 key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2376 if (!key_rec) {
2377 rc = -ENOMEM;
2378 goto out;
2379 }
2380 list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2381 crypt_stat_list) {
2382 memset(key_rec, 0, sizeof(*key_rec));
2383 rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2384 &auth_tok,
2385 mount_crypt_stat,
2386 key_sig->keysig);
2387 if (rc) {
2388 printk(KERN_WARNING "Unable to retrieve auth tok with "
2389 "sig = [%s]\n", key_sig->keysig);
2390 rc = process_find_global_auth_tok_for_sig_err(rc);
2391 goto out_free;
2392 }
2393 if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2394 rc = write_tag_3_packet((dest_base + (*len)),
2395 &max, auth_tok,
2396 crypt_stat, key_rec,
2397 &written);
2398 up_write(&(auth_tok_key->sem));
2399 key_put(auth_tok_key);
2400 if (rc) {
2401 ecryptfs_printk(KERN_WARNING, "Error "
2402 "writing tag 3 packet\n");
2403 goto out_free;
2404 }
2405 (*len) += written;
2406 /* Write auth tok signature packet */
2407 rc = write_tag_11_packet((dest_base + (*len)), &max,
2408 key_rec->sig,
2409 ECRYPTFS_SIG_SIZE, &written);
2410 if (rc) {
2411 ecryptfs_printk(KERN_ERR, "Error writing "
2412 "auth tok signature packet\n");
2413 goto out_free;
2414 }
2415 (*len) += written;
2416 } else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2417 rc = write_tag_1_packet(dest_base + (*len), &max,
2418 auth_tok_key, auth_tok,
2419 crypt_stat, key_rec, &written);
2420 if (rc) {
2421 ecryptfs_printk(KERN_WARNING, "Error "
2422 "writing tag 1 packet\n");
2423 goto out_free;
2424 }
2425 (*len) += written;
2426 } else {
2427 up_write(&(auth_tok_key->sem));
2428 key_put(auth_tok_key);
2429 ecryptfs_printk(KERN_WARNING, "Unsupported "
2430 "authentication token type\n");
2431 rc = -EINVAL;
2432 goto out_free;
2433 }
2434 }
2435 if (likely(max > 0)) {
2436 dest_base[(*len)] = 0x00;
2437 } else {
2438 ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2439 rc = -EIO;
2440 }
2441 out_free:
2442 kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2443 out:
2444 if (rc)
2445 (*len) = 0;
2446 mutex_unlock(&crypt_stat->keysig_list_mutex);
2447 return rc;
2448 }
2449
2450 struct kmem_cache *ecryptfs_key_sig_cache;
2451
ecryptfs_add_keysig(struct ecryptfs_crypt_stat * crypt_stat,char * sig)2452 int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2453 {
2454 struct ecryptfs_key_sig *new_key_sig;
2455
2456 new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2457 if (!new_key_sig)
2458 return -ENOMEM;
2459
2460 memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2461 new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2462 /* Caller must hold keysig_list_mutex */
2463 list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2464
2465 return 0;
2466 }
2467
2468 struct kmem_cache *ecryptfs_global_auth_tok_cache;
2469
2470 int
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat * mount_crypt_stat,char * sig,u32 global_auth_tok_flags)2471 ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2472 char *sig, u32 global_auth_tok_flags)
2473 {
2474 struct ecryptfs_global_auth_tok *new_auth_tok;
2475
2476 new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2477 GFP_KERNEL);
2478 if (!new_auth_tok)
2479 return -ENOMEM;
2480
2481 memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2482 new_auth_tok->flags = global_auth_tok_flags;
2483 new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2484 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2485 list_add(&new_auth_tok->mount_crypt_stat_list,
2486 &mount_crypt_stat->global_auth_tok_list);
2487 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2488 return 0;
2489 }
2490
2491