1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26
27 /*
28 *
29 * IEEE 1284 Parallel Port Device Driver
30 *
31 */
32
33 #include <sys/param.h>
34 #include <sys/errno.h>
35 #include <sys/file.h>
36 #include <sys/cmn_err.h>
37 #include <sys/stropts.h>
38 #include <sys/debug.h>
39 #include <sys/stream.h>
40 #include <sys/strsun.h>
41 #include <sys/kmem.h>
42 #include <sys/ddi.h>
43 #include <sys/sunddi.h>
44 #include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */
45 #include <sys/modctl.h> /* for modldrv */
46 #include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */
47 #include <sys/open.h>
48 #include <sys/ddi_impldefs.h>
49 #include <sys/kstat.h>
50
51 #include <sys/prnio.h>
52 #include <sys/ecppreg.h> /* hw description */
53 #include <sys/ecppio.h> /* ioctl description */
54 #include <sys/ecppvar.h> /* driver description */
55 #include <sys/dma_engine.h>
56 #include <sys/dma_i8237A.h>
57
58 /*
59 * Background
60 * ==========
61 * IEEE 1284-1994 standard defines "a signalling method for asynchronous,
62 * fully interlocked, bidirectional parallel communications between hosts
63 * and printers or other peripherals." (1.1) The standard defines 5 modes
64 * of operation - Compatibility, Nibble, Byte, ECP and EPP - which differ
65 * in direction, bandwidth, pins assignment, DMA capability, etc.
66 *
67 * Negotiation is a mechanism for moving between modes. Compatibility mode
68 * is a default mode, from which negotiations to other modes occur and
69 * to which both host and peripheral break in case of interface errors.
70 * Compatibility mode provides a unidirectional (forward) channel for
71 * communicating with old pre-1284 peripherals.
72 *
73 * Each mode has a number of phases. [Mode, phase] pair represents the
74 * interface state. Host initiates all transfers, though peripheral can
75 * request backchannel transfer by asserting nErr pin.
76 *
77 * Ecpp driver implements an IEEE 1284-compliant host using a combination
78 * of hardware and software. Hardware part is represented by a controller,
79 * which is a part of the SuperIO chip. Ecpp supports the following SuperIOs:
80 * PC82332/PC82336 (U5/U10/U60), PC97317 (U100), M1553 (Grover).
81 * Struct ecpp_hw describes each SuperIO and is determined in ecpp_attach().
82 *
83 * Negotiation is performed in software. Transfer may be performed either
84 * in software by driving output pins for each byte (PIO method), or with
85 * hardware assistance - SuperIO has a 16-byte FIFO, which is filled by
86 * the driver (normally using DMA), while the chip performs the actual xfer.
87 * PIO is used for Nibble and Compat, DMA is used for ECP and Compat modes.
88 *
89 * Driver currently supports the following modes:
90 *
91 * - Compatibility mode: byte-wide forward channel ~50KB/sec;
92 * pp->io_mode defines PIO or DMA method of transfer;
93 * - Nibble mode: nibble-wide (4-bit) reverse channel ~30KB/sec;
94 * - ECP mode: byte-wide bidirectional channel (~1MB/sec);
95 *
96 * Theory of operation
97 * ===================
98 * The manner in which ecpp drives 1284 interface is that of a state machine.
99 * State is a combination of 1284 mode {ECPP_*_MODE}, 1284 phase {ECPP_PHASE_*}
100 * and transfer method {PIO, DMA}. State is a function of application actions
101 * {write(2), ioctl(2)} and peripheral reaction.
102 *
103 * 1284 interface state is described by the following variables:
104 * pp->current_mode -- 1284 mode used for forward transfers;
105 * pp->backchannel -- 1284 mode used for backward transfers;
106 * pp->curent_phase -- 1284 phase;
107 *
108 * Bidirectional operation in Compatibility mode is provided by a combination:
109 * pp->current_mode == ECPP_COMPAT_MODE && pp->backchannel == ECPP_NIBBLE_MODE
110 * ECPP_CENTRONICS means no backchannel
111 *
112 * Driver internal state is defined by pp->e_busy as follows:
113 * ECPP_IDLE -- idle, no active transfers;
114 * ECPP_BUSY -- transfer is in progress;
115 * ECPP_ERR -- have data to transfer, but peripheral can`t receive data;
116 * ECPP_FLUSH -- flushing the queues;
117 *
118 * When opened, driver is in ECPP_IDLE state, current mode is ECPP_CENTRONICS
119 * Default negotiation tries to negotiate to the best mode supported by printer,
120 * sets pp->current_mode and pp->backchannel accordingly.
121 *
122 * When output data arrives in M_DATA mblks ecpp_wput() puts them on the queue
123 * to let ecpp_wsrv() concatenate small blocks into one big transfer
124 * by copying them into pp->ioblock. If first the mblk data is bigger than
125 * pp->ioblock, then it is used instead of i/o block (pointed by pp->msg)
126 *
127 * Before starting the transfer the driver will check if peripheral is ready
128 * by calling ecpp_check_status() and if it is not, driver goes ECPP_ERR state
129 * and schedules ecpp_wsrv_timer() which would qenable() the wq, effectively
130 * rechecking the peripheral readiness and restarting itself until it is ready.
131 * The transfer is then started by calling ecpp_start(), driver goes ECPP_BUSY
132 *
133 * While transfer is in progress all arriving messages will be queued up.
134 * Transfer can end up in either of two ways:
135 * - interrupt occurs, ecpp_isr() checks if all the data was transferred, if so
136 * cleanup and go ECPP_IDLE, otherwise putback untransferred and qenable();
137 * - ecpp_xfer_timeout() cancels the transfer and puts back untransferred data;
138 *
139 * PIO transfer method is very CPU intensive: for each sent byte the peripheral
140 * state is checked, then the byte is transfered and driver waits for an nAck
141 * interrupt; ecpp_isr() will then look if there is more data and if so
142 * triggers the soft interrupt, which transfers the next byte. PIO method
143 * is needed only for legacy printers which are sensitive to strobe problem
144 * (Bugid 4192788).
145 *
146 * ecpp_wsrv() is responsible for both starting transfers (ecpp_start()) and
147 * going idle (ecpp_idle_phase()). Many routines qenable() the write queue,
148 * meaning "check if there are pending requests, process them and go idle".
149 *
150 * In it`s idle state the driver will always try to listen to the backchannel
151 * (as advised by 1284).
152 *
153 * The mechanism for handling backchannel requests is as follows:
154 * - when the peripheral has data to send it asserts nErr pin
155 * (and also nAck in Nibble Mode) which results in an interrupt on the host;
156 * - ISR creates M_CTL message containing an ECPP_BACKCHANNEL byte and
157 * puts it back on the write queue;
158 * - ecpp_wsrv() gets M_CTL and calls ecpp_peripheral2host(), which kicks off
159 * the transfer;
160 *
161 * This way Nibble and ECP mode backchannel are implemented.
162 * If the read queue gets full, backchannel request is rejected.
163 * As the application reads data and queue size falls below the low watermark,
164 * ecpp_rsrv() gets called and enables the backchannel again.
165 *
166 * Future enhancements
167 * ===================
168 *
169 * Support new modes: Byte and EPP.
170 */
171
172 #ifndef ECPP_DEBUG
173 #define ECPP_DEBUG 0
174 #endif /* ECPP_DEBUG */
175 int ecpp_debug = ECPP_DEBUG;
176
177 int noecp = 0; /* flag not to use ECP mode */
178
179 /* driver entry point fn definitions */
180 static int ecpp_open(queue_t *, dev_t *, int, int, cred_t *);
181 static int ecpp_close(queue_t *, int, cred_t *);
182 static uint_t ecpp_isr(caddr_t);
183 static uint_t ecpp_softintr(caddr_t);
184
185 /* configuration entry point fn definitions */
186 static int ecpp_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
187 static int ecpp_attach(dev_info_t *, ddi_attach_cmd_t);
188 static int ecpp_detach(dev_info_t *, ddi_detach_cmd_t);
189 static struct ecpp_hw_bind *ecpp_determine_sio_type(struct ecppunit *);
190
191 /* isr support routines */
192 static uint_t ecpp_nErr_ihdlr(struct ecppunit *);
193 static uint_t ecpp_pio_ihdlr(struct ecppunit *);
194 static uint_t ecpp_dma_ihdlr(struct ecppunit *);
195 static uint_t ecpp_M1553_intr(struct ecppunit *);
196
197 /* configuration support routines */
198 static void ecpp_get_props(struct ecppunit *);
199
200 /* Streams Routines */
201 static int ecpp_wput(queue_t *, mblk_t *);
202 static int ecpp_wsrv(queue_t *);
203 static int ecpp_rsrv(queue_t *);
204 static void ecpp_flush(struct ecppunit *, int);
205 static void ecpp_start(struct ecppunit *, caddr_t, size_t);
206
207 /* ioctl handling */
208 static void ecpp_putioc(queue_t *, mblk_t *);
209 static void ecpp_srvioc(queue_t *, mblk_t *);
210 static void ecpp_wput_iocdata_devid(queue_t *, mblk_t *, uintptr_t);
211 static void ecpp_putioc_copyout(queue_t *, mblk_t *, void *, int);
212 static void ecpp_putioc_stateful_copyin(queue_t *, mblk_t *, size_t);
213 static void ecpp_srvioc_devid(queue_t *, mblk_t *,
214 struct ecpp_device_id *, int *);
215 static void ecpp_srvioc_prnif(queue_t *, mblk_t *);
216 static void ecpp_ack_ioctl(queue_t *, mblk_t *);
217 static void ecpp_nack_ioctl(queue_t *, mblk_t *, int);
218
219 /* kstat routines */
220 static void ecpp_kstat_init(struct ecppunit *);
221 static int ecpp_kstat_update(kstat_t *, int);
222 static int ecpp_kstatintr_update(kstat_t *, int);
223
224 /* dma routines */
225 static void ecpp_putback_untransfered(struct ecppunit *, void *, uint_t);
226 static uint8_t ecpp_setup_dma_resources(struct ecppunit *, caddr_t, size_t);
227 static uint8_t ecpp_init_dma_xfer(struct ecppunit *, caddr_t, size_t);
228
229 /* pio routines */
230 static void ecpp_pio_writeb(struct ecppunit *);
231 static void ecpp_xfer_cleanup(struct ecppunit *);
232 static uint8_t ecpp_prep_pio_xfer(struct ecppunit *, caddr_t, size_t);
233
234 /* misc */
235 static uchar_t ecpp_reset_port_regs(struct ecppunit *);
236 static void ecpp_xfer_timeout(void *);
237 static void ecpp_fifo_timer(void *);
238 static void ecpp_wsrv_timer(void *);
239 static uchar_t dcr_write(struct ecppunit *, uint8_t);
240 static uchar_t ecr_write(struct ecppunit *, uint8_t);
241 static uchar_t ecpp_check_status(struct ecppunit *);
242 static int ecpp_backchan_req(struct ecppunit *);
243 static void ecpp_untimeout_unblock(struct ecppunit *, timeout_id_t *);
244 static uint_t ecpp_get_prn_ifcap(struct ecppunit *);
245
246 /* stubs */
247 static void empty_config_mode(struct ecppunit *);
248 static void empty_mask_intr(struct ecppunit *);
249
250 /* PC87332 support */
251 static int pc87332_map_regs(struct ecppunit *);
252 static void pc87332_unmap_regs(struct ecppunit *);
253 static int pc87332_config_chip(struct ecppunit *);
254 static void pc87332_config_mode(struct ecppunit *);
255 static uint8_t pc87332_read_config_reg(struct ecppunit *, uint8_t);
256 static void pc87332_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
257 static void cheerio_mask_intr(struct ecppunit *);
258 static void cheerio_unmask_intr(struct ecppunit *);
259 static int cheerio_dma_start(struct ecppunit *);
260 static int cheerio_dma_stop(struct ecppunit *, size_t *);
261 static size_t cheerio_getcnt(struct ecppunit *);
262 static void cheerio_reset_dcsr(struct ecppunit *);
263
264 /* PC97317 support */
265 static int pc97317_map_regs(struct ecppunit *);
266 static void pc97317_unmap_regs(struct ecppunit *);
267 static int pc97317_config_chip(struct ecppunit *);
268 static void pc97317_config_mode(struct ecppunit *);
269
270 /* M1553 Southbridge support */
271 static int m1553_map_regs(struct ecppunit *pp);
272 static void m1553_unmap_regs(struct ecppunit *pp);
273 static int m1553_config_chip(struct ecppunit *);
274 static uint8_t m1553_read_config_reg(struct ecppunit *, uint8_t);
275 static void m1553_write_config_reg(struct ecppunit *, uint8_t, uint8_t);
276
277 /* M1553 Southbridge DMAC 8237 support routines */
278 static int dma8237_dma_start(struct ecppunit *);
279 static int dma8237_dma_stop(struct ecppunit *, size_t *);
280 static size_t dma8237_getcnt(struct ecppunit *);
281 static void dma8237_write_addr(struct ecppunit *, uint32_t);
282 static void dma8237_write_count(struct ecppunit *, uint32_t);
283 static uint32_t dma8237_read_count(struct ecppunit *);
284 static void dma8237_write(struct ecppunit *, int, uint8_t);
285 static uint8_t dma8237_read(struct ecppunit *, int);
286 #ifdef INCLUDE_DMA8237_READ_ADDR
287 static uint32_t dma8237_read_addr(struct ecppunit *);
288 #endif
289
290 /* i86 PC support rountines */
291
292 #if defined(__x86)
293 static int x86_dma_start(struct ecppunit *);
294 static int x86_dma_stop(struct ecppunit *, size_t *);
295 static int x86_map_regs(struct ecppunit *);
296 static void x86_unmap_regs(struct ecppunit *);
297 static int x86_config_chip(struct ecppunit *);
298 static size_t x86_getcnt(struct ecppunit *);
299 #endif
300
301 /* IEEE 1284 phase transitions */
302 static void ecpp_1284_init_interface(struct ecppunit *);
303 static int ecpp_1284_termination(struct ecppunit *);
304 static uchar_t ecpp_idle_phase(struct ecppunit *);
305 static int ecp_forward2reverse(struct ecppunit *);
306 static int ecp_reverse2forward(struct ecppunit *);
307 static int read_nibble_backchan(struct ecppunit *);
308
309 /* reverse transfers */
310 static uint_t ecpp_peripheral2host(struct ecppunit *);
311 static uchar_t ecp_peripheral2host(struct ecppunit *);
312 static uchar_t nibble_peripheral2host(struct ecppunit *pp, uint8_t *);
313 static int ecpp_getdevid(struct ecppunit *, uint8_t *, int *, int);
314 static void ecpp_ecp_read_timeout(void *);
315 static void ecpp_ecp_read_completion(struct ecppunit *);
316
317 /* IEEE 1284 mode transitions */
318 static void ecpp_default_negotiation(struct ecppunit *);
319 static int ecpp_mode_negotiation(struct ecppunit *, uchar_t);
320 static int ecpp_1284_negotiation(struct ecppunit *, uint8_t, uint8_t *);
321 static int ecp_negotiation(struct ecppunit *);
322 static int nibble_negotiation(struct ecppunit *);
323 static int devidnib_negotiation(struct ecppunit *);
324
325 /* IEEE 1284 utility routines */
326 static int wait_dsr(struct ecppunit *, uint8_t, uint8_t, int);
327
328 /* debugging functions */
329 static void ecpp_error(dev_info_t *, char *, ...);
330 static uchar_t ecpp_get_error_status(uchar_t);
331
332 /*
333 * Chip-dependent structures
334 */
335 static ddi_dma_attr_t cheerio_dma_attr = {
336 DMA_ATTR_VERSION, /* version */
337 0x00000000ull, /* dlim_addr_lo */
338 0xfffffffeull, /* dlim_addr_hi */
339 0xffffff, /* DMA counter register */
340 1, /* DMA address alignment */
341 0x74, /* burst sizes */
342 0x0001, /* min effective DMA size */
343 0xffff, /* maximum transfer size */
344 0xffff, /* segment boundary */
345 1, /* s/g list length */
346 1, /* granularity of device */
347 0 /* DMA flags */
348 };
349
350 static struct ecpp_hw pc87332 = {
351 pc87332_map_regs,
352 pc87332_unmap_regs,
353 pc87332_config_chip,
354 pc87332_config_mode,
355 cheerio_mask_intr,
356 cheerio_unmask_intr,
357 cheerio_dma_start,
358 cheerio_dma_stop,
359 cheerio_getcnt,
360 &cheerio_dma_attr
361 };
362
363 static struct ecpp_hw pc97317 = {
364 pc97317_map_regs,
365 pc97317_unmap_regs,
366 pc97317_config_chip,
367 pc97317_config_mode,
368 cheerio_mask_intr,
369 cheerio_unmask_intr,
370 cheerio_dma_start,
371 cheerio_dma_stop,
372 cheerio_getcnt,
373 &cheerio_dma_attr
374 };
375
376 static ddi_dma_attr_t i8237_dma_attr = {
377 DMA_ATTR_VERSION, /* version */
378 0x00000000ull, /* dlim_addr_lo */
379 0xfffffffeull, /* dlim_addr_hi */
380 0xffff, /* DMA counter register */
381 1, /* DMA address alignment */
382 0x01, /* burst sizes */
383 0x0001, /* min effective DMA size */
384 0xffff, /* maximum transfer size */
385 0x7fff, /* segment boundary */
386 1, /* s/g list length */
387 1, /* granularity of device */
388 0 /* DMA flags */
389 };
390
391 static struct ecpp_hw m1553 = {
392 m1553_map_regs,
393 m1553_unmap_regs,
394 m1553_config_chip,
395 empty_config_mode, /* no config_mode */
396 empty_mask_intr, /* no mask_intr */
397 empty_mask_intr, /* no unmask_intr */
398 dma8237_dma_start,
399 dma8237_dma_stop,
400 dma8237_getcnt,
401 &i8237_dma_attr
402 };
403
404 #if defined(__x86)
405 static ddi_dma_attr_t sb_dma_attr = {
406 DMA_ATTR_VERSION, /* version */
407 0x00000000ull, /* dlim_addr_lo */
408 0xffffff, /* dlim_addr_hi */
409 0xffff, /* DMA counter register */
410 1, /* DMA address alignment */
411 0x01, /* burst sizes */
412 0x0001, /* min effective DMA size */
413 0xffffffff, /* maximum transfer size */
414 0xffff, /* segment boundary */
415 1, /* s/g list length */
416 1, /* granularity of device */
417 0 /* DMA flags */
418 };
419
420 static struct ecpp_hw x86 = {
421 x86_map_regs,
422 x86_unmap_regs,
423 x86_config_chip,
424 empty_config_mode, /* no config_mode */
425 empty_mask_intr, /* no mask_intr */
426 empty_mask_intr, /* no unmask_intr */
427 x86_dma_start,
428 x86_dma_stop,
429 x86_getcnt,
430 &sb_dma_attr
431 };
432 #endif
433
434 /*
435 * list of supported devices
436 */
437 struct ecpp_hw_bind ecpp_hw_bind[] = {
438 { "ns87317-ecpp", &pc97317, "PC97317" },
439 { "pnpALI,1533,3", &m1553, "M1553" },
440 { "ecpp", &pc87332, "PC87332" },
441 #if defined(__x86)
442 { "lp", &x86, "i86pc"},
443 #endif
444 };
445
446 static ddi_device_acc_attr_t acc_attr = {
447 DDI_DEVICE_ATTR_V0,
448 DDI_STRUCTURE_LE_ACC,
449 DDI_STRICTORDER_ACC
450 };
451
452 static struct ecpp_transfer_parms default_xfer_parms = {
453 FWD_TIMEOUT_DEFAULT, /* write timeout in seconds */
454 ECPP_CENTRONICS /* supported mode */
455 };
456
457 /* prnio interface info string */
458 static const char prn_ifinfo[] = PRN_PARALLEL;
459
460 /* prnio timeouts */
461 static const struct prn_timeouts prn_timeouts_default = {
462 FWD_TIMEOUT_DEFAULT, /* forward timeout */
463 REV_TIMEOUT_DEFAULT /* reverse timeout */
464 };
465
466 static int ecpp_isr_max_delay = ECPP_ISR_MAX_DELAY;
467 static int ecpp_def_timeout = 90; /* left in for 2.7 compatibility */
468
469 static void *ecppsoft_statep;
470
471 /*
472 * STREAMS framework manages locks for these structures
473 */
474 _NOTE(SCHEME_PROTECTS_DATA("unique per call", iocblk))
475 _NOTE(SCHEME_PROTECTS_DATA("unique per call", datab))
476 _NOTE(SCHEME_PROTECTS_DATA("unique per call", msgb))
477 _NOTE(SCHEME_PROTECTS_DATA("unique per call", queue))
478 _NOTE(SCHEME_PROTECTS_DATA("unique per call", copyreq))
479 _NOTE(SCHEME_PROTECTS_DATA("unique per call", stroptions))
480
481 struct module_info ecppinfo = {
482 /* id, name, min pkt siz, max pkt siz, hi water, low water */
483 42, "ecpp", 0, IO_BLOCK_SZ, ECPPHIWAT, ECPPLOWAT
484 };
485
486 static struct qinit ecpp_rinit = {
487 putq, ecpp_rsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
488 };
489
490 static struct qinit ecpp_wint = {
491 ecpp_wput, ecpp_wsrv, ecpp_open, ecpp_close, NULL, &ecppinfo, NULL
492 };
493
494 struct streamtab ecpp_str_info = {
495 &ecpp_rinit, &ecpp_wint, NULL, NULL
496 };
497
498 static struct cb_ops ecpp_cb_ops = {
499 nodev, /* cb_open */
500 nodev, /* cb_close */
501 nodev, /* cb_strategy */
502 nodev, /* cb_print */
503 nodev, /* cb_dump */
504 nodev, /* cb_read */
505 nodev, /* cb_write */
506 nodev, /* cb_ioctl */
507 nodev, /* cb_devmap */
508 nodev, /* cb_mmap */
509 nodev, /* cb_segmap */
510 nochpoll, /* cb_chpoll */
511 ddi_prop_op, /* cb_prop_op */
512 &ecpp_str_info, /* cb_stream */
513 (D_NEW | D_MP | D_MTPERQ) /* cb_flag */
514 };
515
516 /*
517 * Declare ops vectors for auto configuration.
518 */
519 struct dev_ops ecpp_ops = {
520 DEVO_REV, /* devo_rev */
521 0, /* devo_refcnt */
522 ecpp_getinfo, /* devo_getinfo */
523 nulldev, /* devo_identify */
524 nulldev, /* devo_probe */
525 ecpp_attach, /* devo_attach */
526 ecpp_detach, /* devo_detach */
527 nodev, /* devo_reset */
528 &ecpp_cb_ops, /* devo_cb_ops */
529 (struct bus_ops *)NULL, /* devo_bus_ops */
530 nulldev, /* devo_power */
531 ddi_quiesce_not_needed, /* devo_quiesce */
532 };
533
534 extern struct mod_ops mod_driverops;
535
536 static struct modldrv ecppmodldrv = {
537 &mod_driverops, /* type of module - driver */
538 "parallel port driver",
539 &ecpp_ops,
540 };
541
542 static struct modlinkage ecppmodlinkage = {
543 MODREV_1,
544 &ecppmodldrv,
545 0
546 };
547
548
549 /*
550 *
551 * DDI/DKI entry points and supplementary routines
552 *
553 */
554
555
556 int
_init(void)557 _init(void)
558 {
559 int error;
560
561 if ((error = mod_install(&ecppmodlinkage)) == 0) {
562 (void) ddi_soft_state_init(&ecppsoft_statep,
563 sizeof (struct ecppunit), 1);
564 }
565
566 return (error);
567 }
568
569 int
_fini(void)570 _fini(void)
571 {
572 int error;
573
574 if ((error = mod_remove(&ecppmodlinkage)) == 0) {
575 ddi_soft_state_fini(&ecppsoft_statep);
576 }
577
578 return (error);
579 }
580
581 int
_info(struct modinfo * modinfop)582 _info(struct modinfo *modinfop)
583 {
584 return (mod_info(&ecppmodlinkage, modinfop));
585 }
586
587 static int
ecpp_attach(dev_info_t * dip,ddi_attach_cmd_t cmd)588 ecpp_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
589 {
590 int instance;
591 char name[16];
592 struct ecppunit *pp;
593 struct ecpp_hw_bind *hw_bind;
594
595 instance = ddi_get_instance(dip);
596
597 switch (cmd) {
598 case DDI_ATTACH:
599 break;
600
601 case DDI_RESUME:
602 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
603 return (DDI_FAILURE);
604 }
605
606 mutex_enter(&pp->umutex);
607
608 pp->suspended = FALSE;
609
610 /*
611 * Initialize the chip and restore current mode if needed
612 */
613 (void) ECPP_CONFIG_CHIP(pp);
614 (void) ecpp_reset_port_regs(pp);
615
616 if (pp->oflag == TRUE) {
617 int current_mode = pp->current_mode;
618
619 (void) ecpp_1284_termination(pp);
620 (void) ecpp_mode_negotiation(pp, current_mode);
621 }
622
623 mutex_exit(&pp->umutex);
624
625 return (DDI_SUCCESS);
626
627 default:
628 return (DDI_FAILURE);
629 }
630
631 if (ddi_soft_state_zalloc(ecppsoft_statep, instance) != 0) {
632 ecpp_error(dip, "ddi_soft_state_zalloc failed\n");
633 goto fail;
634 }
635
636 pp = ddi_get_soft_state(ecppsoft_statep, instance);
637
638 pp->dip = dip;
639 pp->suspended = FALSE;
640
641 /*
642 * Determine SuperIO type and set chip-dependent variables
643 */
644 hw_bind = ecpp_determine_sio_type(pp);
645
646 if (hw_bind == NULL) {
647 cmn_err(CE_NOTE, "parallel port controller not supported");
648 goto fail_sio;
649 } else {
650 pp->hw = hw_bind->hw;
651 ecpp_error(pp->dip, "SuperIO type: %s\n", hw_bind->info);
652 }
653
654 /*
655 * Map registers
656 */
657 if (ECPP_MAP_REGS(pp) != SUCCESS) {
658 goto fail_map;
659 }
660
661 if (ddi_dma_alloc_handle(dip, pp->hw->attr, DDI_DMA_DONTWAIT,
662 NULL, &pp->dma_handle) != DDI_SUCCESS) {
663 ecpp_error(dip, "ecpp_attach: failed ddi_dma_alloc_handle\n");
664 goto fail_dma;
665 }
666
667 if (ddi_get_iblock_cookie(dip, 0,
668 &pp->ecpp_trap_cookie) != DDI_SUCCESS) {
669 ecpp_error(dip, "ecpp_attach: failed ddi_get_iblock_cookie\n");
670 goto fail_ibc;
671 }
672
673 mutex_init(&pp->umutex, NULL, MUTEX_DRIVER,
674 (void *)pp->ecpp_trap_cookie);
675
676 cv_init(&pp->pport_cv, NULL, CV_DRIVER, NULL);
677
678 if (ddi_add_intr(dip, 0, &pp->ecpp_trap_cookie, NULL, ecpp_isr,
679 (caddr_t)pp) != DDI_SUCCESS) {
680 ecpp_error(dip, "ecpp_attach: failed to add hard intr\n");
681 goto fail_intr;
682 }
683
684 if (ddi_add_softintr(dip, DDI_SOFTINT_LOW,
685 &pp->softintr_id, 0, 0, ecpp_softintr,
686 (caddr_t)pp) != DDI_SUCCESS) {
687 ecpp_error(dip, "ecpp_attach: failed to add soft intr\n");
688 goto fail_softintr;
689 }
690
691 (void) sprintf(name, "ecpp%d", instance);
692
693 if (ddi_create_minor_node(dip, name, S_IFCHR, instance,
694 DDI_NT_PRINTER, NULL) == DDI_FAILURE) {
695 ecpp_error(dip, "ecpp_attach: create_minor_node failed\n");
696 goto fail_minor;
697 }
698
699 pp->ioblock = (caddr_t)kmem_alloc(IO_BLOCK_SZ, KM_SLEEP);
700 if (pp->ioblock == NULL) {
701 ecpp_error(dip, "ecpp_attach: kmem_alloc failed\n");
702 goto fail_iob;
703 } else {
704 ecpp_error(pp->dip, "ecpp_attach: ioblock=0x%x\n", pp->ioblock);
705 }
706
707 ecpp_get_props(pp);
708 #if defined(__x86)
709 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff) {
710 if (ddi_dmae_alloc(dip, pp->uh.x86.chn,
711 DDI_DMA_DONTWAIT, NULL) == DDI_SUCCESS)
712 ecpp_error(pp->dip, "dmae_alloc success!\n");
713 }
714 #endif
715 if (ECPP_CONFIG_CHIP(pp) == FAILURE) {
716 ecpp_error(pp->dip, "config_chip failed.\n");
717 goto fail_config;
718 }
719
720 ecpp_kstat_init(pp);
721
722 ddi_report_dev(dip);
723
724 return (DDI_SUCCESS);
725
726 fail_config:
727 ddi_prop_remove_all(dip);
728 kmem_free(pp->ioblock, IO_BLOCK_SZ);
729 fail_iob:
730 ddi_remove_minor_node(dip, NULL);
731 fail_minor:
732 ddi_remove_softintr(pp->softintr_id);
733 fail_softintr:
734 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie);
735 fail_intr:
736 mutex_destroy(&pp->umutex);
737 cv_destroy(&pp->pport_cv);
738 fail_ibc:
739 ddi_dma_free_handle(&pp->dma_handle);
740 fail_dma:
741 ECPP_UNMAP_REGS(pp);
742 fail_map:
743 fail_sio:
744 ddi_soft_state_free(ecppsoft_statep, instance);
745 fail:
746 ecpp_error(dip, "ecpp_attach: failed.\n");
747
748 return (DDI_FAILURE);
749 }
750
751 static int
ecpp_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)752 ecpp_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
753 {
754 int instance;
755 struct ecppunit *pp;
756
757 instance = ddi_get_instance(dip);
758
759 switch (cmd) {
760 case DDI_DETACH:
761 break;
762
763 case DDI_SUSPEND:
764 if (!(pp = ddi_get_soft_state(ecppsoft_statep, instance))) {
765 return (DDI_FAILURE);
766 }
767
768 mutex_enter(&pp->umutex);
769 ASSERT(pp->suspended == FALSE);
770
771 pp->suspended = TRUE; /* prevent new transfers */
772
773 /*
774 * Wait if there's any activity on the port
775 */
776 if ((pp->e_busy == ECPP_BUSY) || (pp->e_busy == ECPP_FLUSH)) {
777 (void) cv_reltimedwait(&pp->pport_cv, &pp->umutex,
778 SUSPEND_TOUT * drv_usectohz(1000000),
779 TR_CLOCK_TICK);
780 if ((pp->e_busy == ECPP_BUSY) ||
781 (pp->e_busy == ECPP_FLUSH)) {
782 pp->suspended = FALSE;
783 mutex_exit(&pp->umutex);
784 ecpp_error(pp->dip,
785 "ecpp_detach: suspend timeout\n");
786 return (DDI_FAILURE);
787 }
788 }
789
790 mutex_exit(&pp->umutex);
791 return (DDI_SUCCESS);
792
793 default:
794 return (DDI_FAILURE);
795 }
796
797 pp = ddi_get_soft_state(ecppsoft_statep, instance);
798 #if defined(__x86)
799 if (pp->hw == &x86 && pp->uh.x86.chn != 0xff)
800 (void) ddi_dmae_release(pp->dip, pp->uh.x86.chn);
801 #endif
802 if (pp->dma_handle != NULL)
803 ddi_dma_free_handle(&pp->dma_handle);
804
805 ddi_remove_minor_node(dip, NULL);
806
807 ddi_remove_softintr(pp->softintr_id);
808
809 ddi_remove_intr(dip, (uint_t)0, pp->ecpp_trap_cookie);
810
811 if (pp->ksp) {
812 kstat_delete(pp->ksp);
813 }
814 if (pp->intrstats) {
815 kstat_delete(pp->intrstats);
816 }
817
818 cv_destroy(&pp->pport_cv);
819
820 mutex_destroy(&pp->umutex);
821
822 ECPP_UNMAP_REGS(pp);
823
824 kmem_free(pp->ioblock, IO_BLOCK_SZ);
825
826 ddi_prop_remove_all(dip);
827
828 ddi_soft_state_free(ecppsoft_statep, instance);
829
830 return (DDI_SUCCESS);
831
832 }
833
834 /*
835 * ecpp_get_props() reads ecpp.conf for user defineable tuneables.
836 * If the file or a particular variable is not there, a default value
837 * is assigned.
838 */
839
840 static void
ecpp_get_props(struct ecppunit * pp)841 ecpp_get_props(struct ecppunit *pp)
842 {
843 char *prop;
844 #if defined(__x86)
845 int len;
846 int value;
847 #endif
848 /*
849 * If fast_centronics is TRUE, non-compliant IEEE 1284
850 * peripherals ( Centronics peripherals) will operate in DMA mode.
851 * Transfers betwee main memory and the device will be via DMA;
852 * peripheral handshaking will be conducted by superio logic.
853 * If ecpp can not read the variable correctly fast_centronics will
854 * be set to FALSE. In this case, transfers and handshaking
855 * will be conducted by PIO for Centronics devices.
856 */
857 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
858 "fast-centronics", &prop) == DDI_PROP_SUCCESS) {
859 pp->fast_centronics =
860 (strcmp(prop, "true") == 0) ? TRUE : FALSE;
861 ddi_prop_free(prop);
862 } else {
863 pp->fast_centronics = FALSE;
864 }
865
866 /*
867 * If fast-1284-compatible is set to TRUE, when ecpp communicates
868 * with IEEE 1284 compliant peripherals, data transfers between
869 * main memory and the parallel port will be conducted by DMA.
870 * Handshaking between the port and peripheral will be conducted
871 * by superio logic. This is the default characteristic. If
872 * fast-1284-compatible is set to FALSE, transfers and handshaking
873 * will be conducted by PIO.
874 */
875
876 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
877 "fast-1284-compatible", &prop) == DDI_PROP_SUCCESS) {
878 pp->fast_compat = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
879 ddi_prop_free(prop);
880 } else {
881 pp->fast_compat = TRUE;
882 }
883
884 /*
885 * Some centronics peripherals require the nInit signal to be
886 * toggled to reset the device. If centronics_init_seq is set
887 * to TRUE, ecpp will toggle the nInit signal upon every ecpp_open().
888 * Applications have the opportunity to toggle the nInit signal
889 * with ioctl(2) calls as well. The default is to set it to FALSE.
890 */
891 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, pp->dip, 0,
892 "centronics-init-seq", &prop) == DDI_PROP_SUCCESS) {
893 pp->init_seq = (strcmp(prop, "true") == 0) ? TRUE : FALSE;
894 ddi_prop_free(prop);
895 } else {
896 pp->init_seq = FALSE;
897 }
898
899 /*
900 * If one of the centronics status signals are in an erroneous
901 * state, ecpp_wsrv() will be reinvoked centronics-retry ms to
902 * check if the status is ok to transfer. If the property is not
903 * found, wsrv_retry will be set to CENTRONICS_RETRY ms.
904 */
905 pp->wsrv_retry = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
906 "centronics-retry", CENTRONICS_RETRY);
907
908 /*
909 * In PIO mode, ecpp_isr() will loop for wait for the busy signal
910 * to be deasserted before transferring the next byte. wait_for_busy
911 * is specificied in microseconds. If the property is not found
912 * ecpp_isr() will wait for a maximum of WAIT_FOR_BUSY us.
913 */
914 pp->wait_for_busy = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
915 "centronics-wait-for-busy", WAIT_FOR_BUSY);
916
917 /*
918 * In PIO mode, centronics transfers must hold the data signals
919 * for a data_setup_time milliseconds before the strobe is asserted.
920 */
921 pp->data_setup_time = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
922 "centronics-data-setup-time", DATA_SETUP_TIME);
923
924 /*
925 * In PIO mode, centronics transfers asserts the strobe signal
926 * for a period of strobe_pulse_width milliseconds.
927 */
928 pp->strobe_pulse_width = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
929 "centronics-strobe-pulse-width", STROBE_PULSE_WIDTH);
930
931 /*
932 * Upon a transfer the peripheral, ecpp waits write_timeout seconds
933 * for the transmission to complete.
934 */
935 default_xfer_parms.write_timeout = ddi_prop_get_int(DDI_DEV_T_ANY,
936 pp->dip, 0, "ecpp-transfer-timeout", ecpp_def_timeout);
937
938 pp->xfer_parms = default_xfer_parms;
939
940 /*
941 * Get dma channel for M1553
942 */
943 if (pp->hw == &m1553) {
944 pp->uh.m1553.chn = ddi_prop_get_int(DDI_DEV_T_ANY,
945 pp->dip, 0, "dma-channel", 0x1);
946 ecpp_error(pp->dip, "ecpp_get_prop:chn=%x\n", pp->uh.m1553.chn);
947 }
948 #if defined(__x86)
949 len = sizeof (value);
950 /* Get dma channel for i86 pc */
951 if (pp->hw == &x86) {
952 if (ddi_prop_op(DDI_DEV_T_ANY, pp->dip, PROP_LEN_AND_VAL_BUF,
953 DDI_PROP_DONTPASS, "dma-channels", (caddr_t)&value, &len)
954 != DDI_PROP_SUCCESS) {
955 ecpp_error(pp->dip, "No dma channel found\n");
956 pp->uh.x86.chn = 0xff;
957 pp->fast_compat = FALSE;
958 pp->noecpregs = TRUE;
959 } else
960 pp->uh.x86.chn = (uint8_t)value;
961 }
962 #endif
963 /*
964 * these properties are not yet public
965 */
966 pp->ecp_rev_speed = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
967 "ecp-rev-speed", ECP_REV_SPEED);
968
969 pp->rev_watchdog = ddi_prop_get_int(DDI_DEV_T_ANY, pp->dip, 0,
970 "rev-watchdog", REV_WATCHDOG);
971
972 ecpp_error(pp->dip,
973 "ecpp_get_prop: fast_centronics=%x, fast-1284=%x\n"
974 "ecpp_get_prop: wsrv_retry=%d, wait_for_busy=%d\n"
975 "ecpp_get_prop: data_setup=%d, strobe_pulse=%d\n"
976 "ecpp_get_prop: transfer-timeout=%d\n",
977 pp->fast_centronics, pp->fast_compat,
978 pp->wsrv_retry, pp->wait_for_busy,
979 pp->data_setup_time, pp->strobe_pulse_width,
980 pp->xfer_parms.write_timeout);
981 }
982
983 /*ARGSUSED*/
984 int
ecpp_getinfo(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)985 ecpp_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
986 {
987 dev_t dev = (dev_t)arg;
988 struct ecppunit *pp;
989 int instance, ret;
990
991 instance = getminor(dev);
992
993 switch (infocmd) {
994 case DDI_INFO_DEVT2DEVINFO:
995 pp = ddi_get_soft_state(ecppsoft_statep, instance);
996 if (pp != NULL) {
997 *result = pp->dip;
998 ret = DDI_SUCCESS;
999 } else {
1000 ret = DDI_FAILURE;
1001 }
1002 break;
1003
1004 case DDI_INFO_DEVT2INSTANCE:
1005 *result = (void *)(uintptr_t)instance;
1006 ret = DDI_SUCCESS;
1007 break;
1008
1009 default:
1010 ret = DDI_FAILURE;
1011 break;
1012 }
1013
1014 return (ret);
1015 }
1016
1017 /*ARGSUSED2*/
1018 static int
ecpp_open(queue_t * q,dev_t * dev,int flag,int sflag,cred_t * credp)1019 ecpp_open(queue_t *q, dev_t *dev, int flag, int sflag, cred_t *credp)
1020 {
1021 struct ecppunit *pp;
1022 int instance;
1023 struct stroptions *sop;
1024 mblk_t *mop;
1025
1026 instance = getminor(*dev);
1027
1028 if (instance < 0) {
1029 return (ENXIO);
1030 }
1031
1032 pp = (struct ecppunit *)ddi_get_soft_state(ecppsoft_statep, instance);
1033
1034 if (pp == NULL) {
1035 return (ENXIO);
1036 }
1037
1038 mutex_enter(&pp->umutex);
1039
1040 /*
1041 * Parallel port is an exclusive-use device
1042 * thus providing print job integrity
1043 */
1044 if (pp->oflag == TRUE) {
1045 ecpp_error(pp->dip, "ecpp open failed");
1046 mutex_exit(&pp->umutex);
1047 return (EBUSY);
1048 }
1049
1050 pp->oflag = TRUE;
1051
1052 /* initialize state variables */
1053 pp->prn_timeouts = prn_timeouts_default;
1054 pp->xfer_parms = default_xfer_parms;
1055 pp->current_mode = ECPP_CENTRONICS;
1056 pp->backchannel = ECPP_CENTRONICS;
1057 pp->current_phase = ECPP_PHASE_PO;
1058 pp->port = ECPP_PORT_DMA;
1059 pp->instance = instance;
1060 pp->timeout_error = 0;
1061 pp->saved_dsr = DSR_READ(pp);
1062 pp->ecpp_drain_counter = 0;
1063 pp->dma_cancelled = FALSE;
1064 pp->io_mode = ECPP_DMA;
1065 pp->joblen = 0;
1066 pp->tfifo_intr = 0;
1067 pp->softintr_pending = 0;
1068 pp->nread = 0;
1069
1070 /* clear the state flag */
1071 pp->e_busy = ECPP_IDLE;
1072
1073 pp->readq = RD(q);
1074 pp->writeq = WR(q);
1075 pp->msg = NULL;
1076
1077 RD(q)->q_ptr = WR(q)->q_ptr = (caddr_t)pp;
1078
1079 /*
1080 * Get ready: check host/peripheral, negotiate into default mode
1081 */
1082 if (ecpp_reset_port_regs(pp) == FAILURE) {
1083 mutex_exit(&pp->umutex);
1084 return (EIO);
1085 }
1086
1087 mutex_exit(&pp->umutex);
1088
1089 /*
1090 * Configure the Stream head and enable the Stream
1091 */
1092 if (!(mop = allocb(sizeof (struct stroptions), BPRI_MED))) {
1093 return (EAGAIN);
1094 }
1095
1096 mop->b_datap->db_type = M_SETOPTS;
1097 mop->b_wptr += sizeof (struct stroptions);
1098
1099 /*
1100 * if device is open with O_NONBLOCK flag set, let read(2) return 0
1101 * if no data waiting to be read. Writes will block on flow control.
1102 */
1103 sop = (struct stroptions *)mop->b_rptr;
1104 sop->so_flags = SO_HIWAT | SO_LOWAT | SO_NDELON | SO_MREADON;
1105 sop->so_hiwat = ECPPHIWAT;
1106 sop->so_lowat = ECPPLOWAT;
1107
1108 /* enable the stream */
1109 qprocson(q);
1110
1111 putnext(q, mop);
1112
1113 mutex_enter(&pp->umutex);
1114
1115 ecpp_default_negotiation(pp);
1116
1117 /* go revidle */
1118 (void) ecpp_idle_phase(pp);
1119
1120 ecpp_error(pp->dip,
1121 "ecpp_open: mode=%x, phase=%x ecr=%x, dsr=%x, dcr=%x\n",
1122 pp->current_mode, pp->current_phase,
1123 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1124
1125 mutex_exit(&pp->umutex);
1126
1127 return (0);
1128 }
1129
1130 /*ARGSUSED1*/
1131 static int
ecpp_close(queue_t * q,int flag,cred_t * cred_p)1132 ecpp_close(queue_t *q, int flag, cred_t *cred_p)
1133 {
1134 struct ecppunit *pp;
1135 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
1136
1137 pp = (struct ecppunit *)q->q_ptr;
1138
1139 ecpp_error(pp->dip, "ecpp_close: entering ...\n");
1140
1141 mutex_enter(&pp->umutex);
1142
1143 /*
1144 * ecpp_close() will continue to loop until the
1145 * queue has been drained or if the thread
1146 * has received a SIG. Typically, when the queue
1147 * has data, the port will be ECPP_BUSY. However,
1148 * after a dma completes and before the wsrv
1149 * starts the next transfer, the port may be IDLE.
1150 * In this case, ecpp_close() will loop within this
1151 * while(qsize) segment. Since, ecpp_wsrv() runs
1152 * at software interupt level, this shouldn't loop
1153 * very long.
1154 */
1155 while (pp->e_busy != ECPP_IDLE || qsize(WR(q))) {
1156 if (!cv_wait_sig(&pp->pport_cv, &pp->umutex)) {
1157 ecpp_error(pp->dip, "ecpp_close:B: received SIG\n");
1158 /*
1159 * Returning from a signal such as
1160 * SIGTERM or SIGKILL
1161 */
1162 ecpp_flush(pp, FWRITE);
1163 break;
1164 } else {
1165 ecpp_error(pp->dip, "ecpp_close:rcvd cv-sig\n");
1166 }
1167 }
1168
1169 ecpp_error(pp->dip, "ecpp_close: joblen=%d, ctx_cf=%d, "
1170 "qsize(WR(q))=%d, qsize(RD(q))=%d\n",
1171 pp->joblen, pp->ctx_cf, qsize(pp->writeq), qsize(q));
1172
1173 /*
1174 * Cancel all timeouts, disable interrupts
1175 *
1176 * Note that we can`t call untimeout(9F) with mutex held:
1177 * callout may be blocked on the same mutex, and untimeout() will
1178 * cv_wait() while callout is executing, thus creating a deadlock
1179 * So we zero the timeout id's inside mutex and call untimeout later
1180 */
1181 timeout_id = pp->timeout_id;
1182 fifo_timer_id = pp->fifo_timer_id;
1183 wsrv_timer_id = pp->wsrv_timer_id;
1184
1185 pp->timeout_id = pp->fifo_timer_id = pp->wsrv_timer_id = 0;
1186
1187 pp->softintr_pending = 0;
1188 pp->dma_cancelled = TRUE;
1189 ECPP_MASK_INTR(pp);
1190
1191 mutex_exit(&pp->umutex);
1192
1193 qprocsoff(q);
1194
1195 if (timeout_id) {
1196 (void) untimeout(timeout_id);
1197 }
1198 if (fifo_timer_id) {
1199 (void) untimeout(fifo_timer_id);
1200 }
1201 if (wsrv_timer_id) {
1202 (void) untimeout(wsrv_timer_id);
1203 }
1204
1205 mutex_enter(&pp->umutex);
1206
1207 /* set link to Compatible mode */
1208 if ((pp->current_mode == ECPP_ECP_MODE) &&
1209 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
1210 (void) ecp_reverse2forward(pp);
1211 }
1212
1213 (void) ecpp_1284_termination(pp);
1214
1215 pp->oflag = FALSE;
1216 q->q_ptr = WR(q)->q_ptr = NULL;
1217 pp->readq = pp->writeq = NULL;
1218 pp->msg = NULL;
1219
1220 ecpp_error(pp->dip, "ecpp_close: ecr=%x, dsr=%x, dcr=%x\n",
1221 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
1222
1223 mutex_exit(&pp->umutex);
1224
1225 return (0);
1226 }
1227
1228 /*
1229 * standard put procedure for ecpp
1230 */
1231 static int
ecpp_wput(queue_t * q,mblk_t * mp)1232 ecpp_wput(queue_t *q, mblk_t *mp)
1233 {
1234 struct msgb *nmp;
1235 struct ecppunit *pp;
1236
1237 pp = (struct ecppunit *)q->q_ptr;
1238
1239 if (!mp) {
1240 return (0);
1241 }
1242
1243 if ((mp->b_wptr - mp->b_rptr) <= 0) {
1244 ecpp_error(pp->dip,
1245 "ecpp_wput:bogus packet recieved mp=%x\n", mp);
1246 freemsg(mp);
1247 return (0);
1248 }
1249
1250 switch (DB_TYPE(mp)) {
1251 case M_DATA:
1252 /*
1253 * This is a quick fix for multiple message block problem,
1254 * it will be changed later with better performance code.
1255 */
1256 if (mp->b_cont) {
1257 /*
1258 * mblk has scattered data ... do msgpullup
1259 * if it fails, continue with the current mblk
1260 */
1261 if ((nmp = msgpullup(mp, -1)) != NULL) {
1262 freemsg(mp);
1263 mp = nmp;
1264 ecpp_error(pp->dip,
1265 "ecpp_wput:msgpullup: mp=%p len=%d\n",
1266 mp, mp->b_wptr - mp->b_rptr);
1267 }
1268 }
1269
1270 /* let ecpp_wsrv() concatenate small blocks */
1271 (void) putq(q, mp);
1272
1273 break;
1274
1275 case M_CTL:
1276 (void) putq(q, mp);
1277
1278 break;
1279
1280 case M_IOCTL: {
1281 struct iocblk *iocbp;
1282
1283 iocbp = (struct iocblk *)mp->b_rptr;
1284
1285 ecpp_error(pp->dip, "ecpp_wput:M_IOCTL %x\n", iocbp->ioc_cmd);
1286
1287 mutex_enter(&pp->umutex);
1288
1289 /* TESTIO and GET_STATUS can be used during transfer */
1290 if ((pp->e_busy == ECPP_BUSY) &&
1291 (iocbp->ioc_cmd != BPPIOC_TESTIO) &&
1292 (iocbp->ioc_cmd != PRNIOC_GET_STATUS)) {
1293 mutex_exit(&pp->umutex);
1294 (void) putq(q, mp);
1295 } else {
1296 mutex_exit(&pp->umutex);
1297 ecpp_putioc(q, mp);
1298 }
1299
1300 break;
1301 }
1302
1303 case M_IOCDATA: {
1304 struct copyresp *csp;
1305
1306 ecpp_error(pp->dip, "ecpp_wput:M_IOCDATA\n");
1307
1308 csp = (struct copyresp *)mp->b_rptr;
1309
1310 /*
1311 * If copy request failed, quit now
1312 */
1313 if (csp->cp_rval != 0) {
1314 freemsg(mp);
1315 return (0);
1316 }
1317
1318 switch (csp->cp_cmd) {
1319 case ECPPIOC_SETPARMS:
1320 case ECPPIOC_SETREGS:
1321 case ECPPIOC_SETPORT:
1322 case ECPPIOC_SETDATA:
1323 case PRNIOC_SET_IFCAP:
1324 case PRNIOC_SET_TIMEOUTS:
1325 /*
1326 * need to retrieve and use the data, but if the
1327 * device is busy, wait.
1328 */
1329 (void) putq(q, mp);
1330 break;
1331
1332 case ECPPIOC_GETPARMS:
1333 case ECPPIOC_GETREGS:
1334 case ECPPIOC_GETPORT:
1335 case ECPPIOC_GETDATA:
1336 case BPPIOC_GETERR:
1337 case BPPIOC_TESTIO:
1338 case PRNIOC_GET_IFCAP:
1339 case PRNIOC_GET_STATUS:
1340 case PRNIOC_GET_1284_STATUS:
1341 case PRNIOC_GET_TIMEOUTS:
1342 /* data transfered to user space okay */
1343 ecpp_ack_ioctl(q, mp);
1344 break;
1345
1346 case ECPPIOC_GETDEVID:
1347 ecpp_wput_iocdata_devid(q, mp,
1348 offsetof(struct ecpp_device_id, rlen));
1349 break;
1350
1351 case PRNIOC_GET_1284_DEVID:
1352 ecpp_wput_iocdata_devid(q, mp,
1353 offsetof(struct prn_1284_device_id, id_rlen));
1354 break;
1355
1356 case PRNIOC_GET_IFINFO:
1357 ecpp_wput_iocdata_devid(q, mp,
1358 offsetof(struct prn_interface_info, if_rlen));
1359 break;
1360
1361 default:
1362 ecpp_nack_ioctl(q, mp, EINVAL);
1363 break;
1364 }
1365
1366 break;
1367 }
1368
1369 case M_FLUSH:
1370 ecpp_error(pp->dip, "ecpp_wput:M_FLUSH\n");
1371
1372 if (*mp->b_rptr & FLUSHW) {
1373 mutex_enter(&pp->umutex);
1374 ecpp_flush(pp, FWRITE);
1375 mutex_exit(&pp->umutex);
1376 }
1377
1378 if (*mp->b_rptr & FLUSHR) {
1379 mutex_enter(&pp->umutex);
1380 ecpp_flush(pp, FREAD);
1381 mutex_exit(&pp->umutex);
1382 qreply(q, mp);
1383 } else {
1384 freemsg(mp);
1385 }
1386
1387 break;
1388
1389 case M_READ:
1390 /*
1391 * When the user calls read(2), M_READ message is sent to us,
1392 * first byte of which is the number of requested bytes
1393 * We add up user requests and use resulting number
1394 * to calculate the reverse transfer block size
1395 */
1396 mutex_enter(&pp->umutex);
1397 if (pp->e_busy == ECPP_IDLE) {
1398 pp->nread += *(size_t *)mp->b_rptr;
1399 ecpp_error(pp->dip, "ecpp_wput: M_READ %d", pp->nread);
1400 freemsg(mp);
1401 } else {
1402 ecpp_error(pp->dip, "ecpp_wput: M_READ queueing");
1403 (void) putq(q, mp);
1404 }
1405 mutex_exit(&pp->umutex);
1406 break;
1407
1408 default:
1409 ecpp_error(pp->dip, "ecpp_wput: bad messagetype 0x%x\n",
1410 DB_TYPE(mp));
1411 freemsg(mp);
1412 break;
1413 }
1414
1415 return (0);
1416 }
1417
1418 /*
1419 * Process ECPPIOC_GETDEVID-like ioctls
1420 */
1421 static void
ecpp_wput_iocdata_devid(queue_t * q,mblk_t * mp,uintptr_t rlen_offset)1422 ecpp_wput_iocdata_devid(queue_t *q, mblk_t *mp, uintptr_t rlen_offset)
1423 {
1424 struct copyresp *csp;
1425 struct ecpp_copystate *stp;
1426 mblk_t *datamp;
1427
1428 csp = (struct copyresp *)mp->b_rptr;
1429 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
1430
1431 /* determine the state of copyin/copyout process */
1432 switch (stp->state) {
1433 case ECPP_STRUCTIN:
1434 /* user structure has arrived */
1435 (void) putq(q, mp);
1436 break;
1437
1438 case ECPP_ADDROUT:
1439 /*
1440 * data transfered to user space okay
1441 * now update user structure
1442 */
1443 datamp = allocb(sizeof (int), BPRI_MED);
1444 if (datamp == NULL) {
1445 ecpp_nack_ioctl(q, mp, ENOSR);
1446 break;
1447 }
1448
1449 *(int *)datamp->b_rptr =
1450 *(int *)((char *)&stp->un + rlen_offset);
1451 stp->state = ECPP_STRUCTOUT;
1452
1453 mcopyout(mp, csp->cp_private, sizeof (int),
1454 (char *)stp->uaddr + rlen_offset, datamp);
1455 qreply(q, mp);
1456 break;
1457
1458 case ECPP_STRUCTOUT:
1459 /* user structure was updated okay */
1460 freemsg(csp->cp_private);
1461 ecpp_ack_ioctl(q, mp);
1462 break;
1463
1464 default:
1465 ecpp_nack_ioctl(q, mp, EINVAL);
1466 break;
1467 }
1468 }
1469
1470 static uchar_t
ecpp_get_error_status(uchar_t status)1471 ecpp_get_error_status(uchar_t status)
1472 {
1473 uchar_t pin_status = 0;
1474
1475 if (!(status & ECPP_nERR)) {
1476 pin_status |= BPP_ERR_ERR;
1477 }
1478
1479 if (status & ECPP_PE) {
1480 pin_status |= BPP_PE_ERR;
1481 }
1482
1483 if (!(status & ECPP_SLCT)) {
1484 pin_status |= BPP_SLCT_ERR;
1485 }
1486
1487 if (!(status & ECPP_nBUSY)) {
1488 pin_status |= BPP_SLCT_ERR;
1489 }
1490
1491 return (pin_status);
1492 }
1493
1494 /*
1495 * ioctl handler for output PUT procedure.
1496 */
1497 static void
ecpp_putioc(queue_t * q,mblk_t * mp)1498 ecpp_putioc(queue_t *q, mblk_t *mp)
1499 {
1500 struct iocblk *iocbp;
1501 struct ecppunit *pp;
1502
1503 pp = (struct ecppunit *)q->q_ptr;
1504
1505 iocbp = (struct iocblk *)mp->b_rptr;
1506
1507 /* I_STR ioctls are invalid */
1508 if (iocbp->ioc_count != TRANSPARENT) {
1509 ecpp_nack_ioctl(q, mp, EINVAL);
1510 return;
1511 }
1512
1513 switch (iocbp->ioc_cmd) {
1514 case ECPPIOC_SETPARMS: {
1515 mcopyin(mp, NULL, sizeof (struct ecpp_transfer_parms), NULL);
1516 qreply(q, mp);
1517 break;
1518 }
1519
1520 case ECPPIOC_GETPARMS: {
1521 struct ecpp_transfer_parms xfer_parms;
1522
1523 mutex_enter(&pp->umutex);
1524
1525 pp->xfer_parms.mode = pp->current_mode;
1526 xfer_parms = pp->xfer_parms;
1527
1528 mutex_exit(&pp->umutex);
1529
1530 ecpp_putioc_copyout(q, mp, &xfer_parms, sizeof (xfer_parms));
1531 break;
1532 }
1533
1534 case ECPPIOC_SETREGS: {
1535 mutex_enter(&pp->umutex);
1536 if (pp->current_mode != ECPP_DIAG_MODE) {
1537 mutex_exit(&pp->umutex);
1538 ecpp_nack_ioctl(q, mp, EINVAL);
1539 break;
1540 }
1541 mutex_exit(&pp->umutex);
1542
1543 mcopyin(mp, NULL, sizeof (struct ecpp_regs), NULL);
1544 qreply(q, mp);
1545 break;
1546 }
1547
1548 case ECPPIOC_GETREGS: {
1549 struct ecpp_regs rg;
1550
1551 mutex_enter(&pp->umutex);
1552
1553 if (pp->current_mode != ECPP_DIAG_MODE) {
1554 mutex_exit(&pp->umutex);
1555 ecpp_nack_ioctl(q, mp, EINVAL);
1556 break;
1557 }
1558
1559 rg.dsr = DSR_READ(pp);
1560 rg.dcr = DCR_READ(pp);
1561
1562 mutex_exit(&pp->umutex);
1563
1564 ecpp_error(pp->dip, "ECPPIOC_GETREGS: dsr=%x,dcr=%x\n",
1565 rg.dsr, rg.dcr);
1566
1567 /* these bits must be 1 */
1568 rg.dsr |= ECPP_SETREGS_DSR_MASK;
1569 rg.dcr |= ECPP_SETREGS_DCR_MASK;
1570
1571 ecpp_putioc_copyout(q, mp, &rg, sizeof (rg));
1572 break;
1573 }
1574
1575 case ECPPIOC_SETPORT:
1576 case ECPPIOC_SETDATA: {
1577 mutex_enter(&pp->umutex);
1578 if (pp->current_mode != ECPP_DIAG_MODE) {
1579 mutex_exit(&pp->umutex);
1580 ecpp_nack_ioctl(q, mp, EINVAL);
1581 break;
1582 }
1583 mutex_exit(&pp->umutex);
1584
1585 /*
1586 * each of the commands fetches a byte quantity.
1587 */
1588 mcopyin(mp, NULL, sizeof (uchar_t), NULL);
1589 qreply(q, mp);
1590 break;
1591 }
1592
1593 case ECPPIOC_GETDATA:
1594 case ECPPIOC_GETPORT: {
1595 uchar_t byte;
1596
1597 mutex_enter(&pp->umutex);
1598
1599 /* must be in diagnostic mode for these commands to work */
1600 if (pp->current_mode != ECPP_DIAG_MODE) {
1601 mutex_exit(&pp->umutex);
1602 ecpp_nack_ioctl(q, mp, EINVAL);
1603 break;
1604 }
1605
1606 if (iocbp->ioc_cmd == ECPPIOC_GETPORT) {
1607 byte = pp->port;
1608 } else if (iocbp->ioc_cmd == ECPPIOC_GETDATA) {
1609 switch (pp->port) {
1610 case ECPP_PORT_PIO:
1611 byte = DATAR_READ(pp);
1612 break;
1613 case ECPP_PORT_TDMA:
1614 byte = TFIFO_READ(pp);
1615 ecpp_error(pp->dip, "GETDATA=0x%x\n", byte);
1616 break;
1617 default:
1618 ecpp_nack_ioctl(q, mp, EINVAL);
1619 break;
1620 }
1621 } else {
1622 mutex_exit(&pp->umutex);
1623 ecpp_error(pp->dip, "weird command");
1624 ecpp_nack_ioctl(q, mp, EINVAL);
1625 break;
1626 }
1627
1628 mutex_exit(&pp->umutex);
1629
1630 ecpp_putioc_copyout(q, mp, &byte, sizeof (byte));
1631
1632 break;
1633 }
1634
1635 case BPPIOC_GETERR: {
1636 struct bpp_error_status bpp_status;
1637
1638 mutex_enter(&pp->umutex);
1639
1640 bpp_status.timeout_occurred = pp->timeout_error;
1641 bpp_status.bus_error = 0; /* not used */
1642 bpp_status.pin_status = ecpp_get_error_status(pp->saved_dsr);
1643
1644 mutex_exit(&pp->umutex);
1645
1646 ecpp_putioc_copyout(q, mp, &bpp_status, sizeof (bpp_status));
1647
1648 break;
1649 }
1650
1651 case BPPIOC_TESTIO: {
1652 mutex_enter(&pp->umutex);
1653
1654 if (!((pp->current_mode == ECPP_CENTRONICS) ||
1655 (pp->current_mode == ECPP_COMPAT_MODE))) {
1656 ecpp_nack_ioctl(q, mp, EINVAL);
1657 } else {
1658 pp->saved_dsr = DSR_READ(pp);
1659
1660 if ((pp->saved_dsr & ECPP_PE) ||
1661 !(pp->saved_dsr & ECPP_SLCT) ||
1662 !(pp->saved_dsr & ECPP_nERR)) {
1663 ecpp_nack_ioctl(q, mp, EIO);
1664 } else {
1665 ecpp_ack_ioctl(q, mp);
1666 }
1667 }
1668
1669 mutex_exit(&pp->umutex);
1670
1671 break;
1672 }
1673
1674 case PRNIOC_RESET:
1675 /*
1676 * Initialize interface only if no transfer is in progress
1677 */
1678 mutex_enter(&pp->umutex);
1679 if (pp->e_busy == ECPP_BUSY) {
1680 mutex_exit(&pp->umutex);
1681 ecpp_nack_ioctl(q, mp, EIO);
1682 } else {
1683 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
1684
1685 DCR_WRITE(pp, ECPP_SLCTIN);
1686 drv_usecwait(2);
1687 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
1688
1689 ecpp_default_negotiation(pp);
1690
1691 mutex_exit(&pp->umutex);
1692 ecpp_ack_ioctl(q, mp);
1693 }
1694 break;
1695
1696 case PRNIOC_GET_IFCAP: {
1697 uint_t ifcap;
1698
1699 mutex_enter(&pp->umutex);
1700
1701 ifcap = ecpp_get_prn_ifcap(pp);
1702
1703 mutex_exit(&pp->umutex);
1704
1705 ecpp_putioc_copyout(q, mp, &ifcap, sizeof (ifcap));
1706 break;
1707 }
1708
1709 case PRNIOC_SET_IFCAP: {
1710 mcopyin(mp, NULL, sizeof (uint_t), NULL);
1711 qreply(q, mp);
1712 break;
1713 }
1714
1715 case PRNIOC_GET_TIMEOUTS: {
1716 struct prn_timeouts timeouts;
1717
1718 mutex_enter(&pp->umutex);
1719 timeouts = pp->prn_timeouts;
1720 mutex_exit(&pp->umutex);
1721
1722 ecpp_putioc_copyout(q, mp, &timeouts, sizeof (timeouts));
1723
1724 break;
1725 }
1726
1727 case PRNIOC_SET_TIMEOUTS:
1728 mcopyin(mp, NULL, sizeof (struct prn_timeouts),
1729 *(caddr_t *)(void *)mp->b_cont->b_rptr);
1730 qreply(q, mp);
1731 break;
1732
1733 case PRNIOC_GET_STATUS: {
1734 uint8_t dsr;
1735 uint_t status;
1736
1737 mutex_enter(&pp->umutex);
1738
1739 /* DSR only makes sense in Centronics & Compat mode */
1740 if (pp->current_mode == ECPP_CENTRONICS ||
1741 pp->current_mode == ECPP_COMPAT_MODE) {
1742 dsr = DSR_READ(pp);
1743 if ((dsr & ECPP_PE) ||
1744 !(dsr & ECPP_SLCT) || !(dsr & ECPP_nERR)) {
1745 status = PRN_ONLINE;
1746 } else {
1747 status = PRN_ONLINE | PRN_READY;
1748 }
1749 } else {
1750 status = PRN_ONLINE | PRN_READY;
1751 }
1752
1753 mutex_exit(&pp->umutex);
1754
1755 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1756 break;
1757 }
1758
1759 case PRNIOC_GET_1284_STATUS: {
1760 uint8_t dsr;
1761 uchar_t status;
1762
1763 mutex_enter(&pp->umutex);
1764
1765 /* status only makes sense in Centronics & Compat mode */
1766 if (pp->current_mode != ECPP_COMPAT_MODE &&
1767 pp->current_mode != ECPP_CENTRONICS) {
1768 mutex_exit(&pp->umutex);
1769 ecpp_nack_ioctl(q, mp, EINVAL);
1770 break;
1771 }
1772
1773 dsr = DSR_READ(pp); /* read status */
1774
1775 mutex_exit(&pp->umutex);
1776
1777 ecpp_error(pp->dip, "PRNIOC_GET_STATUS: %x\n", dsr);
1778
1779 status = (dsr & (ECPP_SLCT | ECPP_PE | ECPP_nERR)) |
1780 (~dsr & ECPP_nBUSY);
1781
1782 ecpp_putioc_copyout(q, mp, &status, sizeof (status));
1783 break;
1784 }
1785
1786 case ECPPIOC_GETDEVID:
1787 ecpp_putioc_stateful_copyin(q, mp,
1788 sizeof (struct ecpp_device_id));
1789 break;
1790
1791 case PRNIOC_GET_1284_DEVID:
1792 ecpp_putioc_stateful_copyin(q, mp,
1793 sizeof (struct prn_1284_device_id));
1794 break;
1795
1796 case PRNIOC_GET_IFINFO:
1797 ecpp_putioc_stateful_copyin(q, mp,
1798 sizeof (struct prn_interface_info));
1799 break;
1800
1801 default:
1802 ecpp_error(pp->dip, "putioc: unknown IOCTL: %x\n",
1803 iocbp->ioc_cmd);
1804 ecpp_nack_ioctl(q, mp, EINVAL);
1805 break;
1806 }
1807 }
1808
1809 /*
1810 * allocate mblk and copyout the requested number of bytes
1811 */
1812 static void
ecpp_putioc_copyout(queue_t * q,mblk_t * mp,void * buf,int len)1813 ecpp_putioc_copyout(queue_t *q, mblk_t *mp, void *buf, int len)
1814 {
1815 mblk_t *tmp;
1816
1817 if ((tmp = allocb(len, BPRI_MED)) == NULL) {
1818 ecpp_nack_ioctl(q, mp, ENOSR);
1819 return;
1820 }
1821
1822 bcopy(buf, tmp->b_wptr, len);
1823
1824 mcopyout(mp, NULL, len, NULL, tmp);
1825 qreply(q, mp);
1826 }
1827
1828 /*
1829 * copyin the structure using struct ecpp_copystate
1830 */
1831 static void
ecpp_putioc_stateful_copyin(queue_t * q,mblk_t * mp,size_t size)1832 ecpp_putioc_stateful_copyin(queue_t *q, mblk_t *mp, size_t size)
1833 {
1834 mblk_t *tmp;
1835 struct ecpp_copystate *stp;
1836
1837 if ((tmp = allocb(sizeof (struct ecpp_copystate), BPRI_MED)) == NULL) {
1838 ecpp_nack_ioctl(q, mp, EAGAIN);
1839 return;
1840 }
1841
1842 stp = (struct ecpp_copystate *)tmp->b_rptr;
1843 stp->state = ECPP_STRUCTIN;
1844 stp->uaddr = *(caddr_t *)mp->b_cont->b_rptr;
1845
1846 tmp->b_wptr += sizeof (struct ecpp_copystate);
1847
1848 mcopyin(mp, tmp, size, stp->uaddr);
1849 qreply(q, mp);
1850 }
1851
1852 /*
1853 * read queue is only used when the peripheral sends data faster,
1854 * then the application consumes it;
1855 * once the low water mark is reached, this routine will be scheduled
1856 */
1857 static int
ecpp_rsrv(queue_t * q)1858 ecpp_rsrv(queue_t *q)
1859 {
1860 struct msgb *mp;
1861
1862 /*
1863 * send data upstream until next queue is full or the queue is empty
1864 */
1865 while (canputnext(q) && (mp = getq(q))) {
1866 putnext(q, mp);
1867 }
1868
1869 /*
1870 * if there is still space on the queue, enable backchannel
1871 */
1872 if (canputnext(q)) {
1873 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1874
1875 mutex_enter(&pp->umutex);
1876
1877 if (pp->e_busy == ECPP_IDLE) {
1878 (void) ecpp_idle_phase(pp);
1879 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
1880 }
1881
1882 mutex_exit(&pp->umutex);
1883 }
1884
1885 return (0);
1886 }
1887
1888 static int
ecpp_wsrv(queue_t * q)1889 ecpp_wsrv(queue_t *q)
1890 {
1891 struct ecppunit *pp = (struct ecppunit *)q->q_ptr;
1892 struct msgb *mp;
1893 size_t len, total_len;
1894 size_t my_ioblock_sz;
1895 caddr_t my_ioblock;
1896 caddr_t start_addr;
1897
1898 mutex_enter(&pp->umutex);
1899
1900 ecpp_error(pp->dip, "ecpp_wsrv: e_busy=%x\n", pp->e_busy);
1901
1902 /* if channel is actively doing work, wait till completed */
1903 if (pp->e_busy == ECPP_BUSY || pp->e_busy == ECPP_FLUSH) {
1904 mutex_exit(&pp->umutex);
1905 return (0);
1906 } else if (pp->suspended == TRUE) {
1907 /*
1908 * if the system is about to suspend and ecpp_detach()
1909 * is blocked due to active transfers, wake it up and exit
1910 */
1911 cv_signal(&pp->pport_cv);
1912 mutex_exit(&pp->umutex);
1913 return (0);
1914 }
1915
1916 /* peripheral status should be okay before starting transfer */
1917 if (pp->e_busy == ECPP_ERR) {
1918 if (ecpp_check_status(pp) == FAILURE) {
1919 if (pp->wsrv_timer_id == 0) {
1920 ecpp_error(pp->dip, "wsrv: start wrsv_timer\n");
1921 pp->wsrv_timer_id = timeout(ecpp_wsrv_timer,
1922 (caddr_t)pp,
1923 drv_usectohz(pp->wsrv_retry * 1000));
1924 } else {
1925 ecpp_error(pp->dip,
1926 "ecpp_wsrv: wrsv_timer is active\n");
1927 }
1928
1929 mutex_exit(&pp->umutex);
1930 return (0);
1931 } else {
1932 pp->e_busy = ECPP_IDLE;
1933 }
1934 }
1935
1936 my_ioblock = pp->ioblock;
1937 my_ioblock_sz = IO_BLOCK_SZ;
1938
1939 /*
1940 * it`s important to null pp->msg here,
1941 * cleaning up from the previous transfer attempts
1942 */
1943 pp->msg = NULL;
1944
1945 start_addr = NULL;
1946 len = total_len = 0;
1947 /*
1948 * The following loop is implemented to gather the
1949 * many small writes that the lp subsystem makes and
1950 * compile them into one large dma transfer. The len and
1951 * total_len variables are a running count of the number of
1952 * bytes that have been gathered. They are bcopied to the
1953 * ioblock buffer. The pp->e_busy is set to E_BUSY as soon as
1954 * we start gathering packets to indicate the following transfer.
1955 */
1956 while (mp = getq(q)) {
1957 switch (DB_TYPE(mp)) {
1958 case M_DATA:
1959 pp->e_busy = ECPP_BUSY;
1960 len = mp->b_wptr - mp->b_rptr;
1961
1962 if ((total_len == 0) && (len >= my_ioblock_sz)) {
1963 /*
1964 * if the first M_DATA is bigger than ioblock,
1965 * just use this mblk and start the transfer
1966 */
1967 total_len = len;
1968 start_addr = (caddr_t)mp->b_rptr;
1969 pp->msg = mp;
1970 goto breakout;
1971 } else if (total_len + len > my_ioblock_sz) {
1972 /*
1973 * current M_DATA does not fit in ioblock,
1974 * put it back and start the transfer
1975 */
1976 (void) putbq(q, mp);
1977 goto breakout;
1978 } else {
1979 /*
1980 * otherwise add data to ioblock and free mblk
1981 */
1982 bcopy(mp->b_rptr, my_ioblock, len);
1983 my_ioblock += len;
1984 total_len += len;
1985 start_addr = (caddr_t)pp->ioblock;
1986 freemsg(mp);
1987 }
1988 break;
1989
1990 case M_IOCTL:
1991 /*
1992 * Assume a simple loopback test: an application
1993 * writes data into the TFIFO, reads it using
1994 * ECPPIOC_GETDATA and compares. If the transfer
1995 * times out (which is only possible on Grover),
1996 * the ioctl might be processed before the data
1997 * got to the TFIFO, which leads to miscompare.
1998 * So if we met ioctl, postpone it until after xfer.
1999 */
2000 if (total_len > 0) {
2001 (void) putbq(q, mp);
2002 goto breakout;
2003 }
2004
2005 ecpp_error(pp->dip, "M_IOCTL.\n");
2006
2007 mutex_exit(&pp->umutex);
2008
2009 ecpp_putioc(q, mp);
2010
2011 mutex_enter(&pp->umutex);
2012
2013 break;
2014
2015 case M_IOCDATA: {
2016 struct copyresp *csp = (struct copyresp *)mp->b_rptr;
2017
2018 ecpp_error(pp->dip, "M_IOCDATA\n");
2019
2020 /*
2021 * If copy request failed, quit now
2022 */
2023 if (csp->cp_rval != 0) {
2024 freemsg(mp);
2025 break;
2026 }
2027
2028 switch (csp->cp_cmd) {
2029 case ECPPIOC_SETPARMS:
2030 case ECPPIOC_SETREGS:
2031 case ECPPIOC_SETPORT:
2032 case ECPPIOC_SETDATA:
2033 case ECPPIOC_GETDEVID:
2034 case PRNIOC_SET_IFCAP:
2035 case PRNIOC_GET_1284_DEVID:
2036 case PRNIOC_SET_TIMEOUTS:
2037 case PRNIOC_GET_IFINFO:
2038 ecpp_srvioc(q, mp);
2039 break;
2040
2041 default:
2042 ecpp_nack_ioctl(q, mp, EINVAL);
2043 break;
2044 }
2045
2046 break;
2047 }
2048
2049 case M_CTL:
2050 if (pp->e_busy != ECPP_IDLE) {
2051 ecpp_error(pp->dip, "wsrv: M_CTL postponed\n");
2052 (void) putbq(q, mp);
2053 goto breakout;
2054 } else {
2055 ecpp_error(pp->dip, "wsrv: M_CTL\n");
2056 }
2057
2058 /* sanity check */
2059 if ((mp->b_wptr - mp->b_rptr != sizeof (int)) ||
2060 (*(int *)mp->b_rptr != ECPP_BACKCHANNEL)) {
2061 ecpp_error(pp->dip, "wsrv: bogus M_CTL");
2062 freemsg(mp);
2063 break;
2064 } else {
2065 freemsg(mp);
2066 }
2067
2068 /* This was a backchannel request */
2069 (void) ecpp_peripheral2host(pp);
2070
2071 /* exit if transfer have been initiated */
2072 if (pp->e_busy == ECPP_BUSY) {
2073 goto breakout;
2074 }
2075 break;
2076
2077 case M_READ:
2078 pp->nread += *(size_t *)mp->b_rptr;
2079 freemsg(mp);
2080 ecpp_error(pp->dip, "wsrv: M_READ %d", pp->nread);
2081 break;
2082
2083 default:
2084 ecpp_error(pp->dip, "wsrv: should never get here\n");
2085 freemsg(mp);
2086 break;
2087 }
2088 }
2089 breakout:
2090 /*
2091 * If total_len > 0 then start the transfer, otherwise goto idle state
2092 */
2093 if (total_len > 0) {
2094 ecpp_error(pp->dip, "wsrv:starting: total_len=%d\n", total_len);
2095 pp->e_busy = ECPP_BUSY;
2096 ecpp_start(pp, start_addr, total_len);
2097 } else {
2098 ecpp_error(pp->dip, "wsrv:finishing: ebusy=%x\n", pp->e_busy);
2099
2100 /* IDLE if xfer_timeout, or FIFO_EMPTY */
2101 if (pp->e_busy == ECPP_IDLE) {
2102 (void) ecpp_idle_phase(pp);
2103 cv_signal(&pp->pport_cv); /* signal ecpp_close() */
2104 }
2105 }
2106
2107 mutex_exit(&pp->umutex);
2108 return (1);
2109 }
2110
2111 /*
2112 * Ioctl processor for queued ioctl data transfer messages.
2113 */
2114 static void
ecpp_srvioc(queue_t * q,mblk_t * mp)2115 ecpp_srvioc(queue_t *q, mblk_t *mp)
2116 {
2117 struct iocblk *iocbp;
2118 struct ecppunit *pp;
2119
2120 iocbp = (struct iocblk *)mp->b_rptr;
2121 pp = (struct ecppunit *)q->q_ptr;
2122
2123 switch (iocbp->ioc_cmd) {
2124 case ECPPIOC_SETPARMS: {
2125 struct ecpp_transfer_parms *xferp;
2126
2127 xferp = (struct ecpp_transfer_parms *)mp->b_cont->b_rptr;
2128
2129 if (xferp->write_timeout <= 0 ||
2130 xferp->write_timeout >= ECPP_MAX_TIMEOUT) {
2131 ecpp_nack_ioctl(q, mp, EINVAL);
2132 break;
2133 }
2134
2135 if (!((xferp->mode == ECPP_CENTRONICS) ||
2136 (xferp->mode == ECPP_COMPAT_MODE) ||
2137 (xferp->mode == ECPP_NIBBLE_MODE) ||
2138 (xferp->mode == ECPP_ECP_MODE) ||
2139 (xferp->mode == ECPP_DIAG_MODE))) {
2140 ecpp_nack_ioctl(q, mp, EINVAL);
2141 break;
2142 }
2143
2144 pp->xfer_parms = *xferp;
2145 pp->prn_timeouts.tmo_forward = pp->xfer_parms.write_timeout;
2146
2147 ecpp_error(pp->dip, "srvioc: current_mode =%x new mode=%x\n",
2148 pp->current_mode, pp->xfer_parms.mode);
2149
2150 if (ecpp_mode_negotiation(pp, pp->xfer_parms.mode) == FAILURE) {
2151 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2152 } else {
2153 /*
2154 * mode nego was a success. If nibble mode check
2155 * back channel and set into REVIDLE.
2156 */
2157 if ((pp->current_mode == ECPP_NIBBLE_MODE) &&
2158 (read_nibble_backchan(pp) == FAILURE)) {
2159 /*
2160 * problems reading the backchannel
2161 * returned to centronics;
2162 * ioctl fails.
2163 */
2164 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2165 break;
2166 }
2167
2168 ecpp_ack_ioctl(q, mp);
2169 }
2170 if (pp->current_mode != ECPP_DIAG_MODE) {
2171 pp->port = ECPP_PORT_DMA;
2172 } else {
2173 pp->port = ECPP_PORT_PIO;
2174 }
2175
2176 pp->xfer_parms.mode = pp->current_mode;
2177
2178 break;
2179 }
2180
2181 case ECPPIOC_SETREGS: {
2182 struct ecpp_regs *rg;
2183 uint8_t dcr;
2184
2185 rg = (struct ecpp_regs *)mp->b_cont->b_rptr;
2186
2187 /* must be in diagnostic mode for these commands to work */
2188 if (pp->current_mode != ECPP_DIAG_MODE) {
2189 ecpp_nack_ioctl(q, mp, EINVAL);
2190 break;
2191 }
2192
2193 /* bits 4-7 must be 1 or return EINVAL */
2194 if ((rg->dcr & ECPP_SETREGS_DCR_MASK) !=
2195 ECPP_SETREGS_DCR_MASK) {
2196 ecpp_nack_ioctl(q, mp, EINVAL);
2197 break;
2198 }
2199
2200 /* get the old dcr */
2201 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
2202 /* get the new dcr */
2203 dcr = (dcr & ECPP_SETREGS_DCR_MASK) |
2204 (rg->dcr & ~ECPP_SETREGS_DCR_MASK);
2205 DCR_WRITE(pp, dcr);
2206 ecpp_error(pp->dip, "ECPPIOC_SETREGS:dcr=%x\n", dcr);
2207 ecpp_ack_ioctl(q, mp);
2208 break;
2209 }
2210
2211 case ECPPIOC_SETPORT: {
2212 uchar_t *port;
2213
2214 port = (uchar_t *)mp->b_cont->b_rptr;
2215
2216 /* must be in diagnostic mode for these commands to work */
2217 if (pp->current_mode != ECPP_DIAG_MODE) {
2218 ecpp_nack_ioctl(q, mp, EINVAL);
2219 break;
2220 }
2221
2222 switch (*port) {
2223 case ECPP_PORT_PIO:
2224 /* put superio into PIO mode */
2225 ECR_WRITE(pp,
2226 ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2227 pp->port = *port;
2228 ecpp_ack_ioctl(q, mp);
2229 break;
2230
2231 case ECPP_PORT_TDMA:
2232 ecpp_error(pp->dip, "SETPORT: to TDMA\n");
2233 pp->tfifo_intr = 1;
2234 /* change to mode 110 */
2235 ECR_WRITE(pp,
2236 ECR_mode_110 | ECPP_INTR_MASK | ECPP_INTR_SRV);
2237 pp->port = *port;
2238 ecpp_ack_ioctl(q, mp);
2239 break;
2240
2241 default:
2242 ecpp_nack_ioctl(q, mp, EINVAL);
2243 }
2244
2245 break;
2246 }
2247
2248 case ECPPIOC_SETDATA: {
2249 uchar_t *data;
2250
2251 data = (uchar_t *)mp->b_cont->b_rptr;
2252
2253 /* must be in diagnostic mode for these commands to work */
2254 if (pp->current_mode != ECPP_DIAG_MODE) {
2255 ecpp_nack_ioctl(q, mp, EINVAL);
2256 break;
2257 }
2258
2259 switch (pp->port) {
2260 case ECPP_PORT_PIO:
2261 DATAR_WRITE(pp, *data);
2262 ecpp_ack_ioctl(q, mp);
2263 break;
2264
2265 case ECPP_PORT_TDMA:
2266 TFIFO_WRITE(pp, *data);
2267 ecpp_ack_ioctl(q, mp);
2268 break;
2269
2270 default:
2271 ecpp_nack_ioctl(q, mp, EINVAL);
2272 }
2273
2274 break;
2275 }
2276
2277 case ECPPIOC_GETDEVID: {
2278 struct copyresp *csp;
2279 struct ecpp_copystate *stp;
2280 struct ecpp_device_id *dp;
2281 struct ecpp_device_id id;
2282
2283 csp = (struct copyresp *)mp->b_rptr;
2284 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2285 dp = (struct ecpp_device_id *)mp->b_cont->b_rptr;
2286
2287 #ifdef _MULTI_DATAMODEL
2288 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2289 struct ecpp_device_id32 *dp32;
2290
2291 dp32 = (struct ecpp_device_id32 *)dp;
2292 id.mode = dp32->mode;
2293 id.len = dp32->len;
2294 id.addr = (char *)(uintptr_t)dp32->addr;
2295 } else {
2296 #endif /* _MULTI_DATAMODEL */
2297 id = *dp;
2298 #ifdef _MULTI_DATAMODEL
2299 }
2300 #endif /* _MULTI_DATAMODEL */
2301
2302 ecpp_srvioc_devid(q, mp, &id, &stp->un.devid.rlen);
2303 break;
2304 }
2305
2306 case PRNIOC_GET_1284_DEVID: {
2307 struct copyresp *csp;
2308 struct ecpp_copystate *stp;
2309 struct prn_1284_device_id *dp;
2310 struct ecpp_device_id id;
2311
2312 csp = (struct copyresp *)mp->b_rptr;
2313 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2314 dp = (struct prn_1284_device_id *)mp->b_cont->b_rptr;
2315
2316 /* imitate struct ecpp_device_id */
2317 id.mode = ECPP_NIBBLE_MODE;
2318
2319 #ifdef _MULTI_DATAMODEL
2320 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2321 struct prn_1284_device_id32 *dp32;
2322
2323 dp32 = (struct prn_1284_device_id32 *)dp;
2324 id.len = dp32->id_len;
2325 id.addr = (char *)(uintptr_t)dp32->id_data;
2326 } else {
2327 #endif /* _MULTI_DATAMODEL */
2328 id.len = dp->id_len;
2329 id.addr = (char *)dp->id_data;
2330 #ifdef _MULTI_DATAMODEL
2331 }
2332 #endif /* _MULTI_DATAMODEL */
2333
2334 ecpp_srvioc_devid(q, mp, &id,
2335 (int *)&stp->un.prn_devid.id_rlen);
2336 break;
2337 }
2338
2339 case PRNIOC_SET_IFCAP: {
2340 uint_t ifcap, new_ifcap;
2341
2342 ifcap = ecpp_get_prn_ifcap(pp);
2343 new_ifcap = *(uint_t *)mp->b_cont->b_rptr;
2344
2345 if (ifcap == new_ifcap) {
2346 ecpp_ack_ioctl(q, mp);
2347 break;
2348 }
2349
2350 /* only changing PRN_BIDI is supported */
2351 if ((ifcap ^ new_ifcap) & ~PRN_BIDI) {
2352 ecpp_nack_ioctl(q, mp, EINVAL);
2353 break;
2354 }
2355
2356 if (new_ifcap & PRN_BIDI) { /* go bidirectional */
2357 ecpp_default_negotiation(pp);
2358 } else { /* go unidirectional */
2359 (void) ecpp_mode_negotiation(pp, ECPP_CENTRONICS);
2360 }
2361
2362 ecpp_ack_ioctl(q, mp);
2363 break;
2364 }
2365
2366 case PRNIOC_SET_TIMEOUTS: {
2367 struct prn_timeouts *prn_timeouts;
2368
2369 prn_timeouts = (struct prn_timeouts *)mp->b_cont->b_rptr;
2370
2371 if (prn_timeouts->tmo_forward > ECPP_MAX_TIMEOUT) {
2372 ecpp_nack_ioctl(q, mp, EINVAL);
2373 break;
2374 }
2375
2376 pp->prn_timeouts = *prn_timeouts;
2377 pp->xfer_parms.write_timeout = (int)prn_timeouts->tmo_forward;
2378
2379 ecpp_ack_ioctl(q, mp);
2380 break;
2381 }
2382
2383 case PRNIOC_GET_IFINFO:
2384 ecpp_srvioc_prnif(q, mp);
2385 break;
2386
2387 default: /* unexpected ioctl type */
2388 ecpp_nack_ioctl(q, mp, EINVAL);
2389 break;
2390 }
2391 }
2392
2393 static void
ecpp_srvioc_devid(queue_t * q,mblk_t * mp,struct ecpp_device_id * id,int * rlen)2394 ecpp_srvioc_devid(queue_t *q, mblk_t *mp, struct ecpp_device_id *id, int *rlen)
2395 {
2396 struct ecppunit *pp;
2397 struct copyresp *csp;
2398 struct ecpp_copystate *stp;
2399 int error;
2400 int len;
2401 int mode;
2402 mblk_t *datamp;
2403
2404 pp = (struct ecppunit *)q->q_ptr;
2405 csp = (struct copyresp *)mp->b_rptr;
2406 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2407 mode = id->mode;
2408
2409 /* check arguments */
2410 if ((mode < ECPP_CENTRONICS) || (mode > ECPP_ECP_MODE)) {
2411 ecpp_error(pp->dip, "ecpp_srvioc_devid: mode=%x, len=%x\n",
2412 mode, id->len);
2413 ecpp_nack_ioctl(q, mp, EINVAL);
2414 return;
2415 }
2416
2417 /* Currently only Nibble mode is supported */
2418 if (mode != ECPP_NIBBLE_MODE) {
2419 ecpp_nack_ioctl(q, mp, EPROTONOSUPPORT);
2420 return;
2421 }
2422
2423 if ((id->addr == NULL) && (id->len != 0)) {
2424 ecpp_nack_ioctl(q, mp, EFAULT);
2425 return;
2426 }
2427
2428 /* read device ID length */
2429 if (error = ecpp_getdevid(pp, NULL, &len, mode)) {
2430 ecpp_nack_ioctl(q, mp, error);
2431 goto breakout;
2432 }
2433
2434 /* don't take into account two length bytes */
2435 len -= 2;
2436 *rlen = len;
2437
2438 /* limit transfer to user buffer length */
2439 if (id->len < len) {
2440 len = id->len;
2441 }
2442
2443 if (len == 0) {
2444 /* just return rlen */
2445 stp->state = ECPP_ADDROUT;
2446 ecpp_wput_iocdata_devid(q, mp,
2447 (uintptr_t)rlen - (uintptr_t)&stp->un);
2448 goto breakout;
2449 }
2450
2451 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2452 ecpp_nack_ioctl(q, mp, ENOSR);
2453 goto breakout;
2454 }
2455
2456 /* read ID string */
2457 error = ecpp_getdevid(pp, datamp->b_rptr, &len, mode);
2458 if (error) {
2459 freemsg(datamp);
2460 ecpp_nack_ioctl(q, mp, error);
2461 goto breakout;
2462 } else {
2463 datamp->b_wptr += len;
2464
2465 stp->state = ECPP_ADDROUT;
2466 mcopyout(mp, csp->cp_private, len, id->addr, datamp);
2467 qreply(q, mp);
2468 }
2469
2470 return;
2471
2472 breakout:
2473 (void) ecpp_1284_termination(pp);
2474 }
2475
2476 /*
2477 * PRNIOC_GET_IFINFO: return prnio interface info string
2478 */
2479 static void
ecpp_srvioc_prnif(queue_t * q,mblk_t * mp)2480 ecpp_srvioc_prnif(queue_t *q, mblk_t *mp)
2481 {
2482 struct copyresp *csp;
2483 struct ecpp_copystate *stp;
2484 uint_t len;
2485 struct prn_interface_info *ip;
2486 struct prn_interface_info info;
2487 mblk_t *datamp;
2488 #ifdef _MULTI_DATAMODEL
2489 struct iocblk *iocbp = (struct iocblk *)mp->b_rptr;
2490 #endif
2491
2492 csp = (struct copyresp *)mp->b_rptr;
2493 stp = (struct ecpp_copystate *)csp->cp_private->b_rptr;
2494 ip = (struct prn_interface_info *)mp->b_cont->b_rptr;
2495
2496 #ifdef _MULTI_DATAMODEL
2497 if (IOC_CONVERT_FROM(iocbp) == IOC_ILP32) {
2498 struct prn_interface_info32 *ip32;
2499
2500 ip32 = (struct prn_interface_info32 *)ip;
2501 info.if_len = ip32->if_len;
2502 info.if_data = (char *)(uintptr_t)ip32->if_data;
2503 } else {
2504 #endif /* _MULTI_DATAMODEL */
2505 info = *ip;
2506 #ifdef _MULTI_DATAMODEL
2507 }
2508 #endif /* _MULTI_DATAMODEL */
2509
2510 len = strlen(prn_ifinfo);
2511 stp->un.prn_if.if_rlen = len;
2512 stp->state = ECPP_ADDROUT;
2513
2514 /* check arguments */
2515 if ((info.if_data == NULL) && (info.if_len != 0)) {
2516 ecpp_nack_ioctl(q, mp, EFAULT);
2517 return;
2518 }
2519
2520 if (info.if_len == 0) {
2521 /* just copyout rlen */
2522 ecpp_wput_iocdata_devid(q, mp,
2523 offsetof(struct prn_interface_info, if_rlen));
2524 return;
2525 }
2526
2527 /* if needed, trim to the buffer size */
2528 if (len > info.if_len) {
2529 len = info.if_len;
2530 }
2531
2532 if ((datamp = allocb(len, BPRI_MED)) == NULL) {
2533 ecpp_nack_ioctl(q, mp, ENOSR);
2534 return;
2535 }
2536
2537 bcopy(&prn_ifinfo[0], datamp->b_wptr, len);
2538 datamp->b_wptr += len;
2539
2540 mcopyout(mp, csp->cp_private, len, info.if_data, datamp);
2541 qreply(q, mp);
2542 }
2543
2544 static void
ecpp_flush(struct ecppunit * pp,int cmd)2545 ecpp_flush(struct ecppunit *pp, int cmd)
2546 {
2547 queue_t *q;
2548 uint8_t ecr, dcr;
2549 timeout_id_t timeout_id, fifo_timer_id, wsrv_timer_id;
2550
2551 ASSERT(mutex_owned(&pp->umutex));
2552
2553 if (!(cmd & FWRITE)) {
2554 return;
2555 }
2556
2557 q = pp->writeq;
2558 timeout_id = fifo_timer_id = wsrv_timer_id = 0;
2559
2560 ecpp_error(pp->dip, "ecpp_flush e_busy=%x\n", pp->e_busy);
2561
2562 /* if there is an ongoing DMA, it needs to be turned off. */
2563 switch (pp->e_busy) {
2564 case ECPP_BUSY:
2565 /*
2566 * Change the port status to ECPP_FLUSH to
2567 * indicate to ecpp_wsrv that the wq is being flushed.
2568 */
2569 pp->e_busy = ECPP_FLUSH;
2570
2571 /*
2572 * dma_cancelled indicates to ecpp_isr() that we have
2573 * turned off the DMA. Since the mutex is held, ecpp_isr()
2574 * may be blocked. Once ecpp_flush() finishes and ecpp_isr()
2575 * gains the mutex, ecpp_isr() will have a _reset_ DMAC. Most
2576 * significantly, the DMAC will be reset after ecpp_isr() was
2577 * invoked. Therefore we need to have a flag "dma_cancelled"
2578 * to signify when the described condition has occured. If
2579 * ecpp_isr() notes a dma_cancelled, it will ignore the DMAC csr
2580 * and simply claim the interupt.
2581 */
2582
2583 pp->dma_cancelled = TRUE;
2584
2585 /* either DMA or PIO transfer */
2586 if (COMPAT_DMA(pp) ||
2587 (pp->current_mode == ECPP_ECP_MODE) ||
2588 (pp->current_mode == ECPP_DIAG_MODE)) {
2589 /*
2590 * if the bcr is zero, then DMA is complete and
2591 * we are waiting for the fifo to drain. Therefore,
2592 * turn off dma.
2593 */
2594 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
2595 ecpp_error(pp->dip,
2596 "ecpp_flush: dma_stop failed.\n");
2597 }
2598
2599 /*
2600 * If the status of the port is ECPP_BUSY,
2601 * the DMA is stopped by either explicitly above, or by
2602 * ecpp_isr() but the FIFO hasn't drained yet. In either
2603 * case, we need to unbind the dma mappings.
2604 */
2605 if (ddi_dma_unbind_handle(
2606 pp->dma_handle) != DDI_SUCCESS)
2607 ecpp_error(pp->dip,
2608 "ecpp_flush: unbind failed.\n");
2609
2610 if (pp->msg != NULL) {
2611 freemsg(pp->msg);
2612 pp->msg = NULL;
2613 }
2614 } else {
2615 /*
2616 * PIO transfer: disable nAck interrups
2617 */
2618 dcr = DCR_READ(pp);
2619 dcr &= ~(ECPP_REV_DIR | ECPP_INTR_EN);
2620 DCR_WRITE(pp, dcr);
2621 ECPP_MASK_INTR(pp);
2622 }
2623
2624 /*
2625 * The transfer is cleaned up. There may or may not be data
2626 * in the fifo. We don't care at this point. Ie. SuperIO may
2627 * transfer the remaining bytes in the fifo or not. it doesn't
2628 * matter. All that is important at this stage is that no more
2629 * fifo timers are started.
2630 */
2631
2632 timeout_id = pp->timeout_id;
2633 fifo_timer_id = pp->fifo_timer_id;
2634 pp->timeout_id = pp->fifo_timer_id = 0;
2635 pp->softintr_pending = 0;
2636
2637 break;
2638
2639 case ECPP_ERR:
2640 /*
2641 * Change the port status to ECPP_FLUSH to
2642 * indicate to ecpp_wsrv that the wq is being flushed.
2643 */
2644 pp->e_busy = ECPP_FLUSH;
2645
2646 /*
2647 * Most likely there are mblks in the queue,
2648 * but the driver can not transmit because
2649 * of the bad port status. In this case,
2650 * ecpp_flush() should make sure ecpp_wsrv_timer()
2651 * is turned off.
2652 */
2653 wsrv_timer_id = pp->wsrv_timer_id;
2654 pp->wsrv_timer_id = 0;
2655
2656 break;
2657
2658 case ECPP_IDLE:
2659 /* No work to do. Ready to flush */
2660 break;
2661
2662 default:
2663 ecpp_error(pp->dip,
2664 "ecpp_flush: illegal state %x\n", pp->e_busy);
2665 }
2666
2667 /* in DIAG mode clear TFIFO if needed */
2668 if (pp->current_mode == ECPP_DIAG_MODE) {
2669 ecr = ECR_READ(pp);
2670 if (!(ecr & ECPP_FIFO_EMPTY)) {
2671 ECR_WRITE(pp,
2672 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2673 ECR_WRITE(pp, ecr);
2674 }
2675 }
2676
2677 /* Discard all messages on the output queue. */
2678 flushq(q, FLUSHDATA);
2679
2680 /* The port is no longer flushing or dma'ing for that matter. */
2681 pp->e_busy = ECPP_IDLE;
2682
2683 /* Set the right phase */
2684 if (pp->current_mode == ECPP_ECP_MODE) {
2685 if (pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
2686 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
2687 } else {
2688 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
2689 }
2690 }
2691
2692 /* cancel timeouts if any */
2693 mutex_exit(&pp->umutex);
2694
2695 if (timeout_id) {
2696 (void) untimeout(timeout_id);
2697 }
2698 if (fifo_timer_id) {
2699 (void) untimeout(fifo_timer_id);
2700 }
2701 if (wsrv_timer_id) {
2702 (void) untimeout(wsrv_timer_id);
2703 }
2704
2705 mutex_enter(&pp->umutex);
2706
2707 cv_signal(&pp->pport_cv); /* wake up ecpp_close() */
2708 }
2709
2710 static void
ecpp_start(struct ecppunit * pp,caddr_t addr,size_t len)2711 ecpp_start(struct ecppunit *pp, caddr_t addr, size_t len)
2712 {
2713 ASSERT(mutex_owned(&pp->umutex));
2714 ASSERT(pp->e_busy == ECPP_BUSY);
2715
2716 ecpp_error(pp->dip,
2717 "ecpp_start:current_mode=%x,current_phase=%x,ecr=%x,len=%d\n",
2718 pp->current_mode, pp->current_phase, ECR_READ(pp), len);
2719
2720 pp->dma_dir = DDI_DMA_WRITE; /* this is a forward transfer */
2721
2722 switch (pp->current_mode) {
2723 case ECPP_NIBBLE_MODE:
2724 (void) ecpp_1284_termination(pp);
2725
2726 /* After termination we are either Compatible or Centronics */
2727
2728 /* FALLTHRU */
2729
2730 case ECPP_CENTRONICS:
2731 case ECPP_COMPAT_MODE:
2732 if (pp->io_mode == ECPP_DMA) {
2733 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2734 return;
2735 }
2736 } else {
2737 /* PIO mode */
2738 if (ecpp_prep_pio_xfer(pp, addr, len) == FAILURE) {
2739 return;
2740 }
2741 (void) ecpp_pio_writeb(pp);
2742 }
2743 break;
2744
2745 case ECPP_DIAG_MODE: {
2746 int oldlen;
2747
2748 /* put superio into TFIFO mode, if not already */
2749 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2750 /*
2751 * DMA would block if the TFIFO is not empty
2752 * if by this moment nobody read these bytes, they`re gone
2753 */
2754 drv_usecwait(1);
2755 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
2756 ecpp_error(pp->dip,
2757 "ecpp_start: TFIFO not empty, clearing\n");
2758 ECR_WRITE(pp,
2759 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
2760 ECR_WRITE(pp,
2761 ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_110);
2762 }
2763
2764 /* we can DMA at most 16 bytes into TFIFO */
2765 oldlen = len;
2766 if (len > ECPP_FIFO_SZ) {
2767 len = ECPP_FIFO_SZ;
2768 }
2769
2770 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2771 return;
2772 }
2773
2774 /* put the rest of data back on the queue */
2775 if (oldlen > len) {
2776 ecpp_putback_untransfered(pp, addr + len, oldlen - len);
2777 }
2778
2779 break;
2780 }
2781
2782 case ECPP_ECP_MODE:
2783 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
2784 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
2785
2786 /* if in Reverse Phase negotiate to Forward */
2787 if (pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) {
2788 if (ecp_reverse2forward(pp) == FAILURE) {
2789 if (pp->msg) {
2790 (void) putbq(pp->writeq, pp->msg);
2791 } else {
2792 ecpp_putback_untransfered(pp,
2793 addr, len);
2794 }
2795 }
2796 }
2797
2798 if (ecpp_init_dma_xfer(pp, addr, len) == FAILURE) {
2799 return;
2800 }
2801
2802 break;
2803 }
2804
2805 /* schedule transfer timeout */
2806 pp->timeout_id = timeout(ecpp_xfer_timeout, (caddr_t)pp,
2807 pp->xfer_parms.write_timeout * drv_usectohz(1000000));
2808 }
2809
2810 /*
2811 * Transfer a PIO "block" a byte at a time.
2812 * The block is starts at addr and ends at pp->last_byte
2813 */
2814 static uint8_t
ecpp_prep_pio_xfer(struct ecppunit * pp,caddr_t addr,size_t len)2815 ecpp_prep_pio_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2816 {
2817 pp->next_byte = addr;
2818 pp->last_byte = (caddr_t)((ulong_t)addr + len);
2819
2820 if (ecpp_check_status(pp) == FAILURE) {
2821 /*
2822 * if status signals are bad, do not start PIO,
2823 * put everything back on the queue.
2824 */
2825 ecpp_error(pp->dip,
2826 "ecpp_prep_pio_xfer:suspend PIO len=%d\n", len);
2827
2828 if (pp->msg != NULL) {
2829 /*
2830 * this circumstance we want to copy the
2831 * untransfered section of msg to a new mblk,
2832 * then free the orignal one.
2833 */
2834 ecpp_putback_untransfered(pp,
2835 (void *)pp->msg->b_rptr, len);
2836 ecpp_error(pp->dip,
2837 "ecpp_prep_pio_xfer: len1=%d\n", len);
2838
2839 freemsg(pp->msg);
2840 pp->msg = NULL;
2841 } else {
2842 ecpp_putback_untransfered(pp, pp->ioblock, len);
2843 ecpp_error(pp->dip,
2844 "ecpp_prep_pio_xfer: len2=%d\n", len);
2845 }
2846 qenable(pp->writeq);
2847
2848 return (FAILURE);
2849 }
2850
2851 pp->dma_cancelled = FALSE;
2852
2853 /* pport must be in PIO mode */
2854 if (ecr_write(pp, ECR_mode_001 |
2855 ECPP_INTR_MASK | ECPP_INTR_SRV) != SUCCESS) {
2856 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: failed w/ECR.\n");
2857 }
2858
2859 ecpp_error(pp->dip, "ecpp_prep_pio_xfer: dcr=%x ecr=%x\n",
2860 DCR_READ(pp), ECR_READ(pp));
2861
2862 return (SUCCESS);
2863 }
2864
2865 static uint8_t
ecpp_init_dma_xfer(struct ecppunit * pp,caddr_t addr,size_t len)2866 ecpp_init_dma_xfer(struct ecppunit *pp, caddr_t addr, size_t len)
2867 {
2868 uint8_t ecr_mode[] = {
2869 0,
2870 ECR_mode_010, /* Centronix */
2871 ECR_mode_010, /* Compat */
2872 0, /* Byte */
2873 0, /* Nibble */
2874 ECR_mode_011, /* ECP */
2875 0, /* Failure */
2876 ECR_mode_110, /* Diag */
2877 };
2878 uint8_t ecr;
2879
2880 ASSERT((pp->current_mode <= ECPP_DIAG_MODE) &&
2881 (ecr_mode[pp->current_mode] != 0));
2882
2883 if (ecpp_setup_dma_resources(pp, addr, len) == FAILURE) {
2884 qenable(pp->writeq);
2885 return (FAILURE);
2886 }
2887
2888 if (ecpp_check_status(pp) == FAILURE) {
2889 /*
2890 * if status signals are bad, do not start DMA, but
2891 * rather put everything back on the queue.
2892 */
2893 ecpp_error(pp->dip,
2894 "ecpp_init_dma_xfer: suspending DMA len=%d\n",
2895 pp->dma_cookie.dmac_size);
2896
2897 if (pp->msg != NULL) {
2898 /*
2899 * this circumstance we want to copy the
2900 * untransfered section of msg to a new mblk,
2901 * then free the orignal one.
2902 */
2903 ecpp_putback_untransfered(pp,
2904 (void *)pp->msg->b_rptr, len);
2905 ecpp_error(pp->dip,
2906 "ecpp_init_dma_xfer:a:len=%d\n", len);
2907
2908 freemsg(pp->msg);
2909 pp->msg = NULL;
2910 } else {
2911 ecpp_putback_untransfered(pp, pp->ioblock, len);
2912 ecpp_error(pp->dip,
2913 "ecpp_init_dma_xfer:b:len=%d\n", len);
2914 }
2915
2916 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
2917 ecpp_error(pp->dip,
2918 "ecpp_init_dma_xfer: unbind FAILURE.\n");
2919 }
2920 qenable(pp->writeq);
2921 return (FAILURE);
2922 }
2923
2924 pp->xfercnt = pp->resid = len;
2925 pp->dma_cancelled = FALSE;
2926 pp->tfifo_intr = 0;
2927
2928 /* set the right ECR mode and disable DMA */
2929 ecr = ecr_mode[pp->current_mode];
2930 (void) ecr_write(pp, ecr | ECPP_INTR_SRV | ECPP_INTR_MASK);
2931
2932 /* prepare DMAC for a transfer */
2933 if (ECPP_DMA_START(pp) == FAILURE) {
2934 ecpp_error(pp->dip, "ecpp_init_dma_xfer: dma_start FAILED.\n");
2935 return (FAILURE);
2936 }
2937
2938 /* GO! */
2939 (void) ecr_write(pp, ecr | ECPP_DMA_ENABLE | ECPP_INTR_MASK);
2940
2941 return (SUCCESS);
2942 }
2943
2944 static uint8_t
ecpp_setup_dma_resources(struct ecppunit * pp,caddr_t addr,size_t len)2945 ecpp_setup_dma_resources(struct ecppunit *pp, caddr_t addr, size_t len)
2946 {
2947 int err;
2948 off_t woff;
2949 size_t wlen;
2950
2951 ASSERT(pp->dma_dir == DDI_DMA_READ || pp->dma_dir == DDI_DMA_WRITE);
2952
2953 err = ddi_dma_addr_bind_handle(pp->dma_handle, NULL,
2954 addr, len, pp->dma_dir | DDI_DMA_PARTIAL,
2955 DDI_DMA_DONTWAIT, NULL,
2956 &pp->dma_cookie, &pp->dma_cookie_count);
2957
2958 switch (err) {
2959 case DDI_DMA_MAPPED:
2960 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_MAPPED\n");
2961
2962 pp->dma_nwin = 1;
2963 pp->dma_curwin = 1;
2964 break;
2965
2966 case DDI_DMA_PARTIAL_MAP: {
2967 ecpp_error(pp->dip, "ecpp_setup_dma: DMA_PARTIAL_MAP\n");
2968
2969 if (ddi_dma_numwin(pp->dma_handle,
2970 &pp->dma_nwin) != DDI_SUCCESS) {
2971 (void) ddi_dma_unbind_handle(pp->dma_handle);
2972 return (FAILURE);
2973 }
2974 pp->dma_curwin = 1;
2975
2976 /*
2977 * The very first window is returned by bind_handle,
2978 * but we must do this explicitly here, otherwise
2979 * next getwin would return wrong cookie dmac_size
2980 */
2981 if (ddi_dma_getwin(pp->dma_handle, 0, &woff, &wlen,
2982 &pp->dma_cookie, &pp->dma_cookie_count) != DDI_SUCCESS) {
2983 ecpp_error(pp->dip,
2984 "ecpp_setup_dma: ddi_dma_getwin failed!");
2985 (void) ddi_dma_unbind_handle(pp->dma_handle);
2986 return (FAILURE);
2987 }
2988
2989 ecpp_error(pp->dip,
2990 "ecpp_setup_dma: cookies=%d, windows=%d"
2991 " addr=%lx len=%d\n",
2992 pp->dma_cookie_count, pp->dma_nwin,
2993 pp->dma_cookie.dmac_address, pp->dma_cookie.dmac_size);
2994
2995 break;
2996 }
2997
2998 default:
2999 ecpp_error(pp->dip, "ecpp_setup_dma: err=%x\n", err);
3000 return (FAILURE);
3001 }
3002
3003 return (SUCCESS);
3004 }
3005
3006 static void
ecpp_ack_ioctl(queue_t * q,mblk_t * mp)3007 ecpp_ack_ioctl(queue_t *q, mblk_t *mp)
3008 {
3009 struct iocblk *iocbp;
3010
3011 mp->b_datap->db_type = M_IOCACK;
3012 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3013
3014 if (mp->b_cont) {
3015 freemsg(mp->b_cont);
3016 mp->b_cont = NULL;
3017 }
3018
3019 iocbp = (struct iocblk *)mp->b_rptr;
3020 iocbp->ioc_error = 0;
3021 iocbp->ioc_count = 0;
3022 iocbp->ioc_rval = 0;
3023
3024 qreply(q, mp);
3025 }
3026
3027 static void
ecpp_nack_ioctl(queue_t * q,mblk_t * mp,int err)3028 ecpp_nack_ioctl(queue_t *q, mblk_t *mp, int err)
3029 {
3030 struct iocblk *iocbp;
3031
3032 mp->b_datap->db_type = M_IOCNAK;
3033 mp->b_wptr = mp->b_rptr + sizeof (struct iocblk);
3034 iocbp = (struct iocblk *)mp->b_rptr;
3035 iocbp->ioc_error = err;
3036
3037 if (mp->b_cont) {
3038 freemsg(mp->b_cont);
3039 mp->b_cont = NULL;
3040 }
3041
3042 qreply(q, mp);
3043 }
3044
3045 uint_t
ecpp_isr(caddr_t arg)3046 ecpp_isr(caddr_t arg)
3047 {
3048 struct ecppunit *pp = (struct ecppunit *)(void *)arg;
3049 uint32_t dcsr;
3050 uint8_t dsr;
3051 int cheerio_pend_counter;
3052 int retval = DDI_INTR_UNCLAIMED;
3053 hrtime_t now;
3054
3055 mutex_enter(&pp->umutex);
3056 /*
3057 * interrupt may occur while other thread is holding the lock
3058 * and cancels DMA transfer (e.g. ecpp_flush())
3059 * since it cannot cancel the interrupt thread,
3060 * it just sets dma_cancelled to TRUE,
3061 * telling interrupt handler to exit immediately
3062 */
3063 if (pp->dma_cancelled == TRUE) {
3064 ecpp_error(pp->dip, "dma-cancel isr\n");
3065
3066 pp->intr_hard++;
3067 pp->dma_cancelled = FALSE;
3068
3069 mutex_exit(&pp->umutex);
3070 return (DDI_INTR_CLAIMED);
3071 }
3072
3073 /* Southbridge interrupts are handled separately */
3074 #if defined(__x86)
3075 if (pp->hw == &x86)
3076 #else
3077 if (pp->hw == &m1553)
3078 #endif
3079 {
3080 retval = ecpp_M1553_intr(pp);
3081 if (retval == DDI_INTR_UNCLAIMED) {
3082 goto unexpected;
3083 }
3084 mutex_exit(&pp->umutex);
3085 return (DDI_INTR_CLAIMED);
3086 }
3087
3088 /*
3089 * the intr is through the motherboard. it is faster than PCI route.
3090 * sometimes ecpp_isr() is invoked before cheerio csr is updated.
3091 */
3092 cheerio_pend_counter = ecpp_isr_max_delay;
3093 dcsr = GET_DMAC_CSR(pp);
3094
3095 while (!(dcsr & DCSR_INT_PEND) && cheerio_pend_counter-- > 0) {
3096 drv_usecwait(1);
3097 dcsr = GET_DMAC_CSR(pp);
3098 }
3099
3100 /*
3101 * This is a workaround for what seems to be a timing problem
3102 * with the delivery of interrupts and CSR updating with the
3103 * ebus2 csr, superio and the n_ERR pin from the peripheral.
3104 *
3105 * delay is not needed for PIO mode
3106 */
3107 if (!COMPAT_PIO(pp)) {
3108 drv_usecwait(100);
3109 dcsr = GET_DMAC_CSR(pp);
3110 }
3111
3112 /* on 97317 in Extended mode IRQ_ST of DSR is deasserted when read */
3113 dsr = DSR_READ(pp);
3114
3115 /*
3116 * check if interrupt is for this device:
3117 * it should be reflected either in cheerio DCSR register
3118 * or in IRQ_ST bit of DSR on 97317
3119 */
3120 if ((dcsr & DCSR_INT_PEND) == 0) {
3121 if (pp->hw != &pc97317) {
3122 goto unclaimed;
3123 }
3124 /*
3125 * on Excalibur, reading DSR will deassert SuperIO IRQx line
3126 * RIO's DCSR_INT_PEND seems to follow IRQx transitions,
3127 * so if DSR is read after interrupt occured, but before
3128 * we get here, IRQx and hence INT_PEND will be deasserted
3129 * as a result, we can miss a service interrupt in PIO mode
3130 *
3131 * malicious DSR reader is BPPIOC_TESTIO, which is called
3132 * by LP in between data blocks to check printer status
3133 * this workaround lets us not to miss an interrupt
3134 *
3135 * also, nErr interrupt (ECP mode) not always reflected in DCSR
3136 */
3137 if (((dsr & ECPP_IRQ_ST) == 0) ||
3138 ((COMPAT_PIO(pp)) && (pp->e_busy == ECPP_BUSY)) ||
3139 (((dsr & ECPP_nERR) == 0) &&
3140 (pp->current_mode == ECPP_ECP_MODE))) {
3141 dcsr = 0;
3142 } else {
3143 goto unclaimed;
3144 }
3145 }
3146
3147 pp->intr_hard++;
3148
3149 /* the intr is for us - check all possible interrupt sources */
3150 if (dcsr & DCSR_ERR_PEND) {
3151 size_t bcr;
3152
3153 /* we are expecting a data transfer interrupt */
3154 ASSERT(pp->e_busy == ECPP_BUSY);
3155
3156 /*
3157 * some kind of DMA error
3158 */
3159 if (ECPP_DMA_STOP(pp, &bcr) == FAILURE) {
3160 ecpp_error(pp->dip, "ecpp_isr: dma_stop failed\n");
3161 }
3162
3163 ecpp_error(pp->dip, "ecpp_isr: DMAC ERROR bcr=%d\n", bcr);
3164
3165 ecpp_xfer_cleanup(pp);
3166
3167 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3168 ecpp_error(pp->dip, "ecpp_isr(e): unbind failed\n");
3169 }
3170
3171 mutex_exit(&pp->umutex);
3172 return (DDI_INTR_CLAIMED);
3173 }
3174
3175 if (dcsr & DCSR_TC) {
3176 retval = ecpp_dma_ihdlr(pp);
3177 mutex_exit(&pp->umutex);
3178 return (DDI_INTR_CLAIMED);
3179 }
3180
3181 if (COMPAT_PIO(pp)) {
3182 retval = ecpp_pio_ihdlr(pp);
3183 mutex_exit(&pp->umutex);
3184 return (DDI_INTR_CLAIMED);
3185 }
3186
3187 /* does peripheral need attention? */
3188 if ((dsr & ECPP_nERR) == 0) {
3189 retval = ecpp_nErr_ihdlr(pp);
3190 mutex_exit(&pp->umutex);
3191 return (DDI_INTR_CLAIMED);
3192 }
3193
3194 pp->intr_hard--;
3195
3196 unexpected:
3197
3198 pp->intr_spurious++;
3199
3200 /*
3201 * The following procedure tries to prevent soft hangs
3202 * in event of peripheral/superio misbehaviour:
3203 * if number of unexpected interrupts in the last SPUR_PERIOD ns
3204 * exceeded SPUR_CRITICAL, then shut up interrupts
3205 */
3206 now = gethrtime();
3207 if (pp->lastspur == 0 || now - pp->lastspur > SPUR_PERIOD) {
3208 /* last unexpected interrupt was long ago */
3209 pp->lastspur = now;
3210 pp->nspur = 1;
3211 } else {
3212 /* last unexpected interrupt was recently */
3213 pp->nspur++;
3214 }
3215
3216 if (pp->nspur >= SPUR_CRITICAL) {
3217 ECPP_MASK_INTR(pp);
3218 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK | ECPP_INTR_SRV);
3219 pp->nspur = 0;
3220 cmn_err(CE_NOTE, "%s%d: too many interrupt requests",
3221 ddi_get_name(pp->dip), ddi_get_instance(pp->dip));
3222 } else {
3223 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_SRV | ECPP_INTR_MASK);
3224 }
3225
3226 ecpp_error(pp->dip,
3227 "isr:unknown: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3228 dcsr, ECR_READ(pp), dsr, DCR_READ(pp),
3229 pp->current_mode, pp->current_phase);
3230
3231 mutex_exit(&pp->umutex);
3232 return (DDI_INTR_CLAIMED);
3233
3234 unclaimed:
3235
3236 pp->intr_spurious++;
3237
3238 ecpp_error(pp->dip,
3239 "isr:UNCL: dcsr=%x ecr=%x dsr=%x dcr=%x\nmode=%x phase=%x\n",
3240 dcsr, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp),
3241 pp->current_mode, pp->current_phase);
3242
3243 mutex_exit(&pp->umutex);
3244 return (DDI_INTR_UNCLAIMED);
3245 }
3246
3247 /*
3248 * M1553 intr handler
3249 */
3250 static uint_t
ecpp_M1553_intr(struct ecppunit * pp)3251 ecpp_M1553_intr(struct ecppunit *pp)
3252 {
3253 int retval = DDI_INTR_UNCLAIMED;
3254
3255 pp->intr_hard++;
3256
3257 if (pp->e_busy == ECPP_BUSY) {
3258 /* Centronics or Compat PIO transfer */
3259 if (COMPAT_PIO(pp)) {
3260 return (ecpp_pio_ihdlr(pp));
3261 }
3262
3263 /* Centronics or Compat DMA transfer */
3264 if (COMPAT_DMA(pp) ||
3265 (pp->current_mode == ECPP_ECP_MODE) ||
3266 (pp->current_mode == ECPP_DIAG_MODE)) {
3267 return (ecpp_dma_ihdlr(pp));
3268 }
3269 }
3270
3271 /* Nibble or ECP backchannel request? */
3272 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
3273 return (ecpp_nErr_ihdlr(pp));
3274 }
3275
3276 return (retval);
3277 }
3278
3279 /*
3280 * DMA completion interrupt handler
3281 */
3282 static uint_t
ecpp_dma_ihdlr(struct ecppunit * pp)3283 ecpp_dma_ihdlr(struct ecppunit *pp)
3284 {
3285 clock_t tm;
3286
3287 ecpp_error(pp->dip, "ecpp_dma_ihdlr(%x): ecr=%x, dsr=%x, dcr=%x\n",
3288 pp->current_mode, ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
3289
3290 /* we are expecting a data transfer interrupt */
3291 ASSERT(pp->e_busy == ECPP_BUSY);
3292
3293 /* Intr generated while invoking TFIFO mode. Exit */
3294 if (pp->tfifo_intr == 1) {
3295 pp->tfifo_intr = 0;
3296 ecpp_error(pp->dip, "ecpp_dma_ihdlr: tfifo_intr is 1\n");
3297 return (DDI_INTR_CLAIMED);
3298 }
3299
3300 if (ECPP_DMA_STOP(pp, NULL) == FAILURE) {
3301 ecpp_error(pp->dip, "ecpp_dma_ihdlr: dma_stop failed\n");
3302 }
3303
3304 if (pp->current_mode == ECPP_ECP_MODE &&
3305 pp->current_phase == ECPP_PHASE_ECP_REV_XFER) {
3306 ecpp_ecp_read_completion(pp);
3307 } else {
3308 /*
3309 * fifo_timer() will do the cleanup when the FIFO drains
3310 */
3311 if ((ECR_READ(pp) & ECPP_FIFO_EMPTY) ||
3312 (pp->current_mode == ECPP_DIAG_MODE)) {
3313 tm = 0; /* no use in waiting if FIFO is already empty */
3314 } else {
3315 tm = drv_usectohz(FIFO_DRAIN_PERIOD);
3316 }
3317 pp->fifo_timer_id = timeout(ecpp_fifo_timer, (caddr_t)pp, tm);
3318 }
3319
3320 /*
3321 * Stop the DMA transfer timeout timer
3322 * this operation will temporarily give up the mutex,
3323 * so we do it in the end of the handler to avoid races
3324 */
3325 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3326
3327 return (DDI_INTR_CLAIMED);
3328 }
3329
3330 /*
3331 * ecpp_pio_ihdlr() is a PIO interrupt processing routine
3332 * It masks interrupts, updates statistics and initiates next byte transfer
3333 */
3334 static uint_t
ecpp_pio_ihdlr(struct ecppunit * pp)3335 ecpp_pio_ihdlr(struct ecppunit *pp)
3336 {
3337 ASSERT(mutex_owned(&pp->umutex));
3338 ASSERT(pp->e_busy == ECPP_BUSY);
3339
3340 /* update statistics */
3341 pp->joblen++;
3342 pp->ctxpio_obytes++;
3343
3344 /* disable nAck interrups */
3345 ECPP_MASK_INTR(pp);
3346 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3347
3348 /*
3349 * If it was the last byte of the data block cleanup,
3350 * otherwise trigger a soft interrupt to send the next byte
3351 */
3352 if (pp->next_byte >= pp->last_byte) {
3353 ecpp_xfer_cleanup(pp);
3354 ecpp_error(pp->dip,
3355 "ecpp_pio_ihdlr: pp->joblen=%d,pp->ctx_cf=%d,\n",
3356 pp->joblen, pp->ctx_cf);
3357 } else {
3358 if (pp->softintr_pending) {
3359 ecpp_error(pp->dip,
3360 "ecpp_pio_ihdlr:E: next byte in progress\n");
3361 } else {
3362 pp->softintr_flags = ECPP_SOFTINTR_PIONEXT;
3363 pp->softintr_pending = 1;
3364 ddi_trigger_softintr(pp->softintr_id);
3365 }
3366 }
3367
3368 return (DDI_INTR_CLAIMED);
3369 }
3370
3371 /*
3372 * ecpp_pio_writeb() sends a byte using Centronics handshake
3373 */
3374 static void
ecpp_pio_writeb(struct ecppunit * pp)3375 ecpp_pio_writeb(struct ecppunit *pp)
3376 {
3377 uint8_t dcr;
3378
3379 dcr = DCR_READ(pp) & ~ECPP_REV_DIR;
3380 dcr |= ECPP_INTR_EN;
3381
3382 /* send the next byte */
3383 DATAR_WRITE(pp, *(pp->next_byte++));
3384
3385 drv_usecwait(pp->data_setup_time);
3386
3387 /* Now Assert (neg logic) nStrobe */
3388 if (dcr_write(pp, dcr | ECPP_STB) == FAILURE) {
3389 ecpp_error(pp->dip, "ecpp_pio_writeb:1: failed w/DCR\n");
3390 }
3391
3392 /* Enable nAck interrupts */
3393 (void) DSR_READ(pp); /* ensure IRQ_ST is armed */
3394 ECPP_UNMASK_INTR(pp);
3395
3396 drv_usecwait(pp->strobe_pulse_width);
3397
3398 if (dcr_write(pp, dcr & ~ECPP_STB) == FAILURE) {
3399 ecpp_error(pp->dip, "ecpp_pio_writeb:2: failed w/DCR\n");
3400 }
3401 }
3402
3403 /*
3404 * Backchannel request interrupt handler
3405 */
3406 static uint_t
ecpp_nErr_ihdlr(struct ecppunit * pp)3407 ecpp_nErr_ihdlr(struct ecppunit *pp)
3408 {
3409 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: mode=%x, phase=%x\n",
3410 pp->current_mode, pp->current_phase);
3411
3412 if (pp->oflag != TRUE) {
3413 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: not open!\n");
3414 return (DDI_INTR_UNCLAIMED);
3415 }
3416
3417 if (pp->e_busy == ECPP_BUSY) {
3418 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: busy\n");
3419 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3420 return (DDI_INTR_CLAIMED);
3421 }
3422
3423 /* mask nErr & nAck interrupts */
3424 ECPP_MASK_INTR(pp);
3425 DCR_WRITE(pp, DCR_READ(pp) & ~(ECPP_INTR_EN | ECPP_REV_DIR));
3426 ECR_WRITE(pp, ECR_READ(pp) | ECPP_INTR_MASK);
3427
3428 /* going reverse */
3429 switch (pp->current_mode) {
3430 case ECPP_ECP_MODE:
3431 /*
3432 * Peripheral asserts nPeriphRequest (nFault)
3433 */
3434 break;
3435 case ECPP_NIBBLE_MODE:
3436 /*
3437 * Event 18: Periph asserts nErr to indicate data avail
3438 * Event 19: After waiting minimum pulse width,
3439 * periph sets nAck high to generate an interrupt
3440 *
3441 * Interface is in Interrupt Phase
3442 */
3443 pp->current_phase = ECPP_PHASE_NIBT_REVINTR;
3444
3445 break;
3446 default:
3447 ecpp_error(pp->dip, "ecpp_nErr_ihdlr: wrong mode!\n");
3448 return (DDI_INTR_UNCLAIMED);
3449 }
3450
3451 (void) ecpp_backchan_req(pp); /* put backchannel request on the wq */
3452
3453 return (DDI_INTR_CLAIMED);
3454 }
3455
3456 /*
3457 * Softintr handler does work according to softintr_flags:
3458 * in case of ECPP_SOFTINTR_PIONEXT it sends next byte of PIO transfer
3459 */
3460 static uint_t
ecpp_softintr(caddr_t arg)3461 ecpp_softintr(caddr_t arg)
3462 {
3463 struct ecppunit *pp = (struct ecppunit *)arg;
3464 uint32_t unx_len, ecpp_reattempts = 0;
3465
3466 mutex_enter(&pp->umutex);
3467
3468 pp->intr_soft++;
3469
3470 if (!pp->softintr_pending) {
3471 mutex_exit(&pp->umutex);
3472 return (DDI_INTR_CLAIMED);
3473 } else {
3474 pp->softintr_pending = 0;
3475 }
3476
3477 if (pp->softintr_flags & ECPP_SOFTINTR_PIONEXT) {
3478 pp->softintr_flags &= ~ECPP_SOFTINTR_PIONEXT;
3479 /*
3480 * Sent next byte in PIO mode
3481 */
3482 ecpp_reattempts = 0;
3483 do {
3484 if (ecpp_check_status(pp) == SUCCESS) {
3485 pp->e_busy = ECPP_BUSY;
3486 break;
3487 }
3488 drv_usecwait(1);
3489 if (pp->isr_reattempt_high < ecpp_reattempts) {
3490 pp->isr_reattempt_high = ecpp_reattempts;
3491 }
3492 } while (++ecpp_reattempts < pp->wait_for_busy);
3493
3494 /* if the peripheral still not recovered suspend the transfer */
3495 if (pp->e_busy == ECPP_ERR) {
3496 ++pp->ctx_cf; /* check status fail */
3497 ecpp_error(pp->dip, "ecpp_softintr:check_status:F: "
3498 "dsr=%x jl=%d cf_isr=%d\n",
3499 DSR_READ(pp), pp->joblen, pp->ctx_cf);
3500
3501 /*
3502 * if status signals are bad,
3503 * put everything back on the wq.
3504 */
3505 unx_len = pp->last_byte - pp->next_byte;
3506 if (pp->msg != NULL) {
3507 ecpp_putback_untransfered(pp,
3508 (void *)pp->msg->b_rptr, unx_len);
3509 ecpp_error(pp->dip,
3510 "ecpp_softintr:e1:unx_len=%d\n", unx_len);
3511
3512 freemsg(pp->msg);
3513 pp->msg = NULL;
3514 } else {
3515 ecpp_putback_untransfered(pp,
3516 pp->next_byte, unx_len);
3517 ecpp_error(pp->dip,
3518 "ecpp_softintr:e2:unx_len=%d\n", unx_len);
3519 }
3520
3521 ecpp_xfer_cleanup(pp);
3522 pp->e_busy = ECPP_ERR;
3523 qenable(pp->writeq);
3524 } else {
3525 /* send the next one */
3526 pp->e_busy = ECPP_BUSY;
3527 (void) ecpp_pio_writeb(pp);
3528 }
3529 }
3530
3531 mutex_exit(&pp->umutex);
3532 return (DDI_INTR_CLAIMED);
3533 }
3534
3535
3536 /*
3537 * Transfer clean-up:
3538 * shut down the DMAC
3539 * stop the transfer timer
3540 * enable write queue
3541 */
3542 static void
ecpp_xfer_cleanup(struct ecppunit * pp)3543 ecpp_xfer_cleanup(struct ecppunit *pp)
3544 {
3545 ASSERT(mutex_owned(&pp->umutex));
3546
3547 /*
3548 * if we did not use the ioblock, the mblk that
3549 * was used should be freed.
3550 */
3551 if (pp->msg != NULL) {
3552 freemsg(pp->msg);
3553 pp->msg = NULL;
3554 }
3555
3556 /* The port is no longer active */
3557 pp->e_busy = ECPP_IDLE;
3558
3559 /* Stop the transfer timeout timer */
3560 ecpp_untimeout_unblock(pp, &pp->timeout_id);
3561
3562 qenable(pp->writeq);
3563 }
3564
3565 /*VARARGS*/
3566 static void
ecpp_error(dev_info_t * dip,char * fmt,...)3567 ecpp_error(dev_info_t *dip, char *fmt, ...)
3568 {
3569 static long last;
3570 static char *lastfmt;
3571 char msg_buffer[255];
3572 va_list ap;
3573 time_t now;
3574
3575 if (!ecpp_debug) {
3576 return;
3577 }
3578
3579 /*
3580 * This function is supposed to be a quick non-blockable
3581 * wrapper for cmn_err(9F), which provides a sensible degree
3582 * of debug message throttling. Not using any type of lock
3583 * is a requirement, but this also leaves two static variables
3584 * - last and lastfmt - unprotected. However, this will not do
3585 * any harm to driver functionality, it can only weaken throttling.
3586 * The following directive asks warlock to not worry about these
3587 * variables.
3588 */
3589 _NOTE(NOW_INVISIBLE_TO_OTHER_THREADS(last, lastfmt))
3590
3591 /*
3592 * Don't print same error message too often.
3593 */
3594 now = gethrestime_sec();
3595 if ((last == (now & ~1)) && (lastfmt == fmt))
3596 return;
3597
3598 last = now & ~1;
3599 lastfmt = fmt;
3600
3601 va_start(ap, fmt);
3602 (void) vsprintf(msg_buffer, fmt, ap);
3603 cmn_err(CE_CONT, "%s%d: %s", ddi_get_name(dip),
3604 ddi_get_instance(dip), msg_buffer);
3605 va_end(ap);
3606 }
3607
3608 /*
3609 * Forward transfer timeout
3610 */
3611 static void
ecpp_xfer_timeout(void * arg)3612 ecpp_xfer_timeout(void *arg)
3613 {
3614 struct ecppunit *pp = arg;
3615 void *unx_addr;
3616 size_t unx_len, xferd;
3617 uint8_t dcr;
3618 timeout_id_t fifo_timer_id;
3619
3620 mutex_enter(&pp->umutex);
3621
3622 if (pp->timeout_id == 0) {
3623 mutex_exit(&pp->umutex);
3624 return;
3625 } else {
3626 pp->timeout_id = 0;
3627 }
3628
3629 pp->xfer_tout++;
3630
3631 pp->dma_cancelled = TRUE; /* prevent race with isr() */
3632
3633 if (COMPAT_PIO(pp)) {
3634 /*
3635 * PIO mode timeout
3636 */
3637
3638 /* turn off nAck interrupts */
3639 dcr = DCR_READ(pp);
3640 (void) dcr_write(pp, dcr & ~(ECPP_REV_DIR | ECPP_INTR_EN));
3641 ECPP_MASK_INTR(pp);
3642
3643 pp->softintr_pending = 0;
3644 unx_len = pp->last_byte - pp->next_byte;
3645 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3646
3647 if (unx_len > 0) {
3648 unx_addr = pp->next_byte;
3649 } else {
3650 ecpp_xfer_cleanup(pp);
3651 qenable(pp->writeq);
3652 mutex_exit(&pp->umutex);
3653 return;
3654 }
3655 } else {
3656 /*
3657 * DMA mode timeout
3658 *
3659 * If DMAC fails to shut off, continue anyways and attempt
3660 * to put untransfered data back on queue.
3661 */
3662 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
3663 ecpp_error(pp->dip,
3664 "ecpp_xfer_timeout: failed dma_stop\n");
3665 }
3666
3667 ecpp_error(pp->dip, "xfer_timeout: unx_len=%d\n", unx_len);
3668
3669 if (ddi_dma_unbind_handle(pp->dma_handle) == DDI_FAILURE) {
3670 ecpp_error(pp->dip,
3671 "ecpp_xfer_timeout: failed unbind\n");
3672 }
3673
3674 /*
3675 * if the bcr is zero, then DMA is complete and
3676 * we are waiting for the fifo to drain. So let
3677 * ecpp_fifo_timer() look after the clean up.
3678 */
3679 if (unx_len == 0) {
3680 qenable(pp->writeq);
3681 mutex_exit(&pp->umutex);
3682 return;
3683 } else {
3684 xferd = pp->dma_cookie.dmac_size - unx_len;
3685 pp->resid -= xferd;
3686 unx_len = pp->resid;
3687
3688 /* update statistics */
3689 pp->obytes[pp->current_mode] += xferd;
3690 pp->joblen += xferd;
3691
3692 if (pp->msg != NULL) {
3693 unx_addr = (caddr_t)pp->msg->b_wptr - unx_len;
3694 } else {
3695 unx_addr = pp->ioblock +
3696 (pp->xfercnt - unx_len);
3697 }
3698 }
3699 }
3700
3701 /* Following code is common for PIO and DMA modes */
3702
3703 ecpp_putback_untransfered(pp, (caddr_t)unx_addr, unx_len);
3704
3705 if (pp->msg != NULL) {
3706 freemsg(pp->msg);
3707 pp->msg = NULL;
3708 }
3709
3710 /* mark the error status structure */
3711 pp->timeout_error = 1;
3712 pp->e_busy = ECPP_ERR;
3713 fifo_timer_id = pp->fifo_timer_id;
3714 pp->fifo_timer_id = 0;
3715
3716 qenable(pp->writeq);
3717
3718 mutex_exit(&pp->umutex);
3719
3720 if (fifo_timer_id) {
3721 (void) untimeout(fifo_timer_id);
3722 }
3723 }
3724
3725 static void
ecpp_putback_untransfered(struct ecppunit * pp,void * startp,uint_t len)3726 ecpp_putback_untransfered(struct ecppunit *pp, void *startp, uint_t len)
3727 {
3728 mblk_t *new_mp;
3729
3730 ecpp_error(pp->dip, "ecpp_putback_untrans=%d\n", len);
3731
3732 if (len == 0) {
3733 return;
3734 }
3735
3736 new_mp = allocb(len, BPRI_MED);
3737 if (new_mp == NULL) {
3738 ecpp_error(pp->dip,
3739 "ecpp_putback_untransfered: allocb FAILURE.\n");
3740 return;
3741 }
3742
3743 bcopy(startp, new_mp->b_rptr, len);
3744 new_mp->b_wptr = new_mp->b_rptr + len;
3745
3746 if (!putbq(pp->writeq, new_mp)) {
3747 freemsg(new_mp);
3748 }
3749 }
3750
3751 static uchar_t
ecr_write(struct ecppunit * pp,uint8_t ecr_byte)3752 ecr_write(struct ecppunit *pp, uint8_t ecr_byte)
3753 {
3754 int i, current_ecr;
3755
3756 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3757 ECR_WRITE(pp, ecr_byte);
3758
3759 current_ecr = ECR_READ(pp);
3760
3761 /* mask off the lower two read-only bits */
3762 if ((ecr_byte & 0xFC) == (current_ecr & 0xFC))
3763 return (SUCCESS);
3764 }
3765 return (FAILURE);
3766 }
3767
3768 static uchar_t
dcr_write(struct ecppunit * pp,uint8_t dcr_byte)3769 dcr_write(struct ecppunit *pp, uint8_t dcr_byte)
3770 {
3771 uint8_t current_dcr;
3772 int i;
3773
3774 for (i = ECPP_REG_WRITE_MAX_LOOP; i > 0; i--) {
3775 DCR_WRITE(pp, dcr_byte);
3776
3777 current_dcr = DCR_READ(pp);
3778
3779 /* compare only bits 0-4 (direction bit return 1) */
3780 if ((dcr_byte & 0x1F) == (current_dcr & 0x1F))
3781 return (SUCCESS);
3782 }
3783 ecpp_error(pp->dip,
3784 "(%d)dcr_write: dcr written =%x, dcr readback =%x\n",
3785 i, dcr_byte, current_dcr);
3786
3787 return (FAILURE);
3788 }
3789
3790 static uchar_t
ecpp_reset_port_regs(struct ecppunit * pp)3791 ecpp_reset_port_regs(struct ecppunit *pp)
3792 {
3793 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
3794 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
3795 return (SUCCESS);
3796 }
3797
3798 /*
3799 * The data transferred by the DMA engine goes through the FIFO,
3800 * so that when the DMA counter reaches zero (and an interrupt occurs)
3801 * the FIFO can still contain data. If this is the case, the ISR will
3802 * schedule this callback to wait until the FIFO drains or a timeout occurs.
3803 */
3804 static void
ecpp_fifo_timer(void * arg)3805 ecpp_fifo_timer(void *arg)
3806 {
3807 struct ecppunit *pp = arg;
3808 uint8_t ecr;
3809 timeout_id_t timeout_id;
3810
3811 mutex_enter(&pp->umutex);
3812
3813 /*
3814 * If the FIFO timer has been turned off, exit.
3815 */
3816 if (pp->fifo_timer_id == 0) {
3817 ecpp_error(pp->dip, "ecpp_fifo_timer: untimedout\n");
3818 mutex_exit(&pp->umutex);
3819 return;
3820 } else {
3821 pp->fifo_timer_id = 0;
3822 }
3823
3824 /*
3825 * If the FIFO is not empty restart timer. Wait FIFO_DRAIN_PERIOD
3826 * (250 ms) and check FIFO_EMPTY bit again. Repeat until FIFO is
3827 * empty or until 10 * FIFO_DRAIN_PERIOD expires.
3828 */
3829 ecr = ECR_READ(pp);
3830
3831 if ((pp->current_mode != ECPP_DIAG_MODE) &&
3832 (((ecr & ECPP_FIFO_EMPTY) == 0) &&
3833 (pp->ecpp_drain_counter < 10))) {
3834
3835 ecpp_error(pp->dip,
3836 "ecpp_fifo_timer(%d):FIFO not empty:ecr=%x\n",
3837 pp->ecpp_drain_counter, ecr);
3838
3839 pp->fifo_timer_id = timeout(ecpp_fifo_timer,
3840 (caddr_t)pp, drv_usectohz(FIFO_DRAIN_PERIOD));
3841 ++pp->ecpp_drain_counter;
3842
3843 mutex_exit(&pp->umutex);
3844 return;
3845 }
3846
3847 if (pp->current_mode != ECPP_DIAG_MODE) {
3848 /*
3849 * If the FIFO won't drain after 10 FIFO_DRAIN_PERIODs
3850 * then don't wait any longer. Simply clean up the transfer.
3851 */
3852 if (pp->ecpp_drain_counter >= 10) {
3853 ecpp_error(pp->dip, "ecpp_fifo_timer(%d):"
3854 " clearing FIFO,can't wait:ecr=%x\n",
3855 pp->ecpp_drain_counter, ecr);
3856 } else {
3857 ecpp_error(pp->dip,
3858 "ecpp_fifo_timer(%d):FIFO empty:ecr=%x\n",
3859 pp->ecpp_drain_counter, ecr);
3860 }
3861
3862 pp->ecpp_drain_counter = 0;
3863 }
3864
3865 /*
3866 * Main section of routine:
3867 * - stop the DMA transfer timer
3868 * - program DMA with next cookie/window or unbind the DMA mapping
3869 * - update stats
3870 * - if last mblk in queue, signal to close() & return to idle state
3871 */
3872
3873 /* Stop the DMA transfer timeout timer */
3874 timeout_id = pp->timeout_id;
3875 pp->timeout_id = 0;
3876
3877 /* data has drained from fifo, it is ok to free dma resource */
3878 if (pp->current_mode == ECPP_ECP_MODE ||
3879 pp->current_mode == ECPP_DIAG_MODE ||
3880 COMPAT_DMA(pp)) {
3881 off_t off;
3882 size_t len;
3883
3884 /* update residual */
3885 pp->resid -= pp->dma_cookie.dmac_size;
3886
3887 /* update statistics */
3888 pp->joblen += pp->dma_cookie.dmac_size;
3889 if (pp->dma_dir == DDI_DMA_WRITE) {
3890 pp->obytes[pp->current_mode] +=
3891 pp->dma_cookie.dmac_size;
3892 } else {
3893 pp->ibytes[pp->current_mode] +=
3894 pp->dma_cookie.dmac_size;
3895 }
3896
3897 /*
3898 * Look if any cookies/windows left
3899 */
3900 if (--pp->dma_cookie_count > 0) {
3901 /* process the next cookie */
3902 ddi_dma_nextcookie(pp->dma_handle,
3903 &pp->dma_cookie);
3904 } else if (pp->dma_curwin < pp->dma_nwin) {
3905 /* process the next window */
3906 if (ddi_dma_getwin(pp->dma_handle,
3907 pp->dma_curwin, &off, &len,
3908 &pp->dma_cookie,
3909 &pp->dma_cookie_count) != DDI_SUCCESS) {
3910 ecpp_error(pp->dip,
3911 "ecpp_fifo_timer: ddi_dma_getwin failed\n");
3912 goto dma_done;
3913 }
3914
3915 pp->dma_curwin++;
3916 } else {
3917 goto dma_done;
3918 }
3919
3920 ecpp_error(pp->dip, "ecpp_fifo_timer: next addr=%llx len=%d\n",
3921 pp->dma_cookie.dmac_address,
3922 pp->dma_cookie.dmac_size);
3923
3924 /* kick off new transfer */
3925 if (ECPP_DMA_START(pp) != SUCCESS) {
3926 ecpp_error(pp->dip,
3927 "ecpp_fifo_timer: dma_start failed\n");
3928 goto dma_done;
3929 }
3930
3931 (void) ecr_write(pp, (ecr & 0xe0) |
3932 ECPP_DMA_ENABLE | ECPP_INTR_MASK);
3933
3934 mutex_exit(&pp->umutex);
3935
3936 if (timeout_id) {
3937 (void) untimeout(timeout_id);
3938 }
3939 return;
3940
3941 dma_done:
3942 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
3943 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind failed\n");
3944 } else {
3945 ecpp_error(pp->dip, "ecpp_fifo_timer: unbind ok\n");
3946 }
3947 }
3948
3949 /*
3950 * if we did not use the dmablock, the mblk that
3951 * was used should be freed.
3952 */
3953 if (pp->msg != NULL) {
3954 freemsg(pp->msg);
3955 pp->msg = NULL;
3956 }
3957
3958 /* The port is no longer active */
3959 pp->e_busy = ECPP_IDLE;
3960
3961 qenable(pp->writeq);
3962
3963 mutex_exit(&pp->umutex);
3964
3965 if (timeout_id) {
3966 (void) untimeout(timeout_id);
3967 }
3968 }
3969
3970 /*
3971 * In Compatibility mode, check if the peripheral is ready to accept data
3972 */
3973 static uint8_t
ecpp_check_status(struct ecppunit * pp)3974 ecpp_check_status(struct ecppunit *pp)
3975 {
3976 uint8_t dsr;
3977 uint8_t statmask;
3978
3979 if (pp->current_mode == ECPP_ECP_MODE ||
3980 pp->current_mode == ECPP_DIAG_MODE)
3981 return (SUCCESS);
3982
3983 statmask = ECPP_nERR | ECPP_SLCT | ECPP_nBUSY | ECPP_nACK;
3984
3985 dsr = DSR_READ(pp);
3986 if ((dsr & ECPP_PE) || ((dsr & statmask) != statmask)) {
3987 pp->e_busy = ECPP_ERR;
3988 return (FAILURE);
3989 } else {
3990 return (SUCCESS);
3991 }
3992 }
3993
3994 /*
3995 * if the peripheral is not ready to accept data, write service routine
3996 * periodically reschedules itself to recheck peripheral status
3997 * and start data transfer as soon as possible
3998 */
3999 static void
ecpp_wsrv_timer(void * arg)4000 ecpp_wsrv_timer(void *arg)
4001 {
4002 struct ecppunit *pp = arg;
4003
4004 ecpp_error(pp->dip, "ecpp_wsrv_timer: starting\n");
4005
4006 mutex_enter(&pp->umutex);
4007
4008 if (pp->wsrv_timer_id == 0) {
4009 mutex_exit(&pp->umutex);
4010 return;
4011 } else {
4012 pp->wsrv_timer_id = 0;
4013 }
4014
4015 ecpp_error(pp->dip, "ecpp_wsrv_timer: qenabling...\n");
4016
4017 qenable(pp->writeq);
4018
4019 mutex_exit(&pp->umutex);
4020 }
4021
4022 /*
4023 * Allocate a message indicating a backchannel request
4024 * and put it on the write queue
4025 */
4026 static int
ecpp_backchan_req(struct ecppunit * pp)4027 ecpp_backchan_req(struct ecppunit *pp)
4028 {
4029 mblk_t *mp;
4030
4031 if ((mp = allocb(sizeof (int), BPRI_MED)) == NULL) {
4032 ecpp_error(pp->dip, "ecpp_backchan_req: allocb failed\n");
4033 return (FAILURE);
4034 } else {
4035 mp->b_datap->db_type = M_CTL;
4036 *(int *)mp->b_rptr = ECPP_BACKCHANNEL;
4037 mp->b_wptr = mp->b_rptr + sizeof (int);
4038 if (!putbq(pp->writeq, mp)) {
4039 ecpp_error(pp->dip, "ecpp_backchan_req:putbq failed\n");
4040 freemsg(mp);
4041 return (FAILURE);
4042 }
4043 return (SUCCESS);
4044 }
4045 }
4046
4047 /*
4048 * Cancel the function scheduled with timeout(9F)
4049 * This function is to be called with the mutex held
4050 */
4051 static void
ecpp_untimeout_unblock(struct ecppunit * pp,timeout_id_t * id)4052 ecpp_untimeout_unblock(struct ecppunit *pp, timeout_id_t *id)
4053 {
4054 timeout_id_t saved_id;
4055
4056 ASSERT(mutex_owned(&pp->umutex));
4057
4058 if (*id) {
4059 saved_id = *id;
4060 *id = 0;
4061 mutex_exit(&pp->umutex);
4062 (void) untimeout(saved_id);
4063 mutex_enter(&pp->umutex);
4064 }
4065 }
4066
4067 /*
4068 * get prnio interface capabilities
4069 */
4070 static uint_t
ecpp_get_prn_ifcap(struct ecppunit * pp)4071 ecpp_get_prn_ifcap(struct ecppunit *pp)
4072 {
4073 uint_t ifcap;
4074
4075 ifcap = PRN_1284_DEVID | PRN_TIMEOUTS | PRN_STREAMS;
4076
4077 /* status (DSR) only makes sense in Centronics & Compat modes */
4078 if (pp->current_mode == ECPP_CENTRONICS ||
4079 pp->current_mode == ECPP_COMPAT_MODE) {
4080 ifcap |= PRN_1284_STATUS;
4081 } else if (pp->current_mode == ECPP_NIBBLE_MODE ||
4082 pp->current_mode == ECPP_ECP_MODE) {
4083 ifcap |= PRN_BIDI;
4084 }
4085
4086 return (ifcap);
4087 }
4088
4089 /*
4090 * Determine SuperI/O type
4091 */
4092 static struct ecpp_hw_bind *
ecpp_determine_sio_type(struct ecppunit * pp)4093 ecpp_determine_sio_type(struct ecppunit *pp)
4094 {
4095 struct ecpp_hw_bind *hw_bind;
4096 char *name;
4097 int i;
4098
4099 name = ddi_binding_name(pp->dip);
4100
4101 for (hw_bind = NULL, i = 0; i < NELEM(ecpp_hw_bind); i++) {
4102 if (strcmp(name, ecpp_hw_bind[i].name) == 0) {
4103 hw_bind = &ecpp_hw_bind[i];
4104 break;
4105 }
4106 }
4107
4108 return (hw_bind);
4109 }
4110
4111
4112 /*
4113 *
4114 * IEEE 1284 support routines:
4115 * negotiation and termination;
4116 * phase transitions;
4117 * device ID;
4118 *
4119 */
4120
4121 /*
4122 * Interface initialization, abnormal termination into Compatibility mode
4123 *
4124 * Peripheral may be non-1284, so we set current mode to ECPP_CENTRONICS
4125 */
4126 static void
ecpp_1284_init_interface(struct ecppunit * pp)4127 ecpp_1284_init_interface(struct ecppunit *pp)
4128 {
4129 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4130
4131 /*
4132 * Toggle the nInit signal if configured in ecpp.conf
4133 * for most peripherals it is not needed
4134 */
4135 if (pp->init_seq == TRUE) {
4136 DCR_WRITE(pp, ECPP_SLCTIN);
4137 drv_usecwait(50); /* T(ER) = 50us */
4138 }
4139
4140 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4141
4142 pp->current_mode = pp->backchannel = ECPP_CENTRONICS;
4143 pp->current_phase = ECPP_PHASE_C_IDLE;
4144 ECPP_CONFIG_MODE(pp);
4145 pp->to_mode[pp->current_mode]++;
4146
4147 ecpp_error(pp->dip, "ecpp_1284_init_interface: ok\n");
4148 }
4149
4150 /*
4151 * ECP mode negotiation
4152 */
4153 static int
ecp_negotiation(struct ecppunit * pp)4154 ecp_negotiation(struct ecppunit *pp)
4155 {
4156 uint8_t dsr;
4157
4158 /* ECP mode negotiation */
4159
4160 if (ecpp_1284_negotiation(pp, ECPP_XREQ_ECP, &dsr) == FAILURE)
4161 return (FAILURE);
4162
4163 /* Event 5: peripheral deasserts PError and Busy, asserts Select */
4164 if ((dsr & (ECPP_PE | ECPP_nBUSY | ECPP_SLCT)) !=
4165 (ECPP_nBUSY | ECPP_SLCT)) {
4166 ecpp_error(pp->dip,
4167 "ecp_negotiation: failed event 5 %x\n", DSR_READ(pp));
4168 (void) ecpp_1284_termination(pp);
4169 return (FAILURE);
4170 }
4171
4172 /* entered Setup Phase */
4173 pp->current_phase = ECPP_PHASE_ECP_SETUP;
4174
4175 /* Event 30: host asserts nAutoFd */
4176 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4177
4178 /* Event 31: peripheral asserts PError */
4179 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4180 ecpp_error(pp->dip,
4181 "ecp_negotiation: failed event 31 %x\n", DSR_READ(pp));
4182 (void) ecpp_1284_termination(pp);
4183 return (FAILURE);
4184 }
4185
4186 /* entered Forward Idle Phase */
4187 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4188
4189 /* successful negotiation into ECP mode */
4190 pp->current_mode = ECPP_ECP_MODE;
4191 pp->backchannel = ECPP_ECP_MODE;
4192
4193 ecpp_error(pp->dip, "ecp_negotiation: ok\n");
4194
4195 return (SUCCESS);
4196 }
4197
4198 /*
4199 * Nibble mode negotiation
4200 */
4201 static int
nibble_negotiation(struct ecppunit * pp)4202 nibble_negotiation(struct ecppunit *pp)
4203 {
4204 uint8_t dsr;
4205
4206 if (ecpp_1284_negotiation(pp, ECPP_XREQ_NIBBLE, &dsr) == FAILURE) {
4207 return (FAILURE);
4208 }
4209
4210 /*
4211 * If peripheral has data available, PE and nErr will
4212 * be set low at Event 5 & 6.
4213 */
4214 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
4215 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4216 } else {
4217 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
4218 }
4219
4220 /* successful negotiation into Nibble mode */
4221 pp->current_mode = ECPP_NIBBLE_MODE;
4222 pp->backchannel = ECPP_NIBBLE_MODE;
4223
4224 ecpp_error(pp->dip, "nibble_negotiation: ok (phase=%x)\n",
4225 pp->current_phase);
4226
4227 return (SUCCESS);
4228
4229 }
4230
4231 /*
4232 * Wait ptimeout usec for periph to set 'mask' bits to 'val' state
4233 *
4234 * return value < 0 indicates timeout
4235 */
4236 static int
wait_dsr(struct ecppunit * pp,uint8_t mask,uint8_t val,int ptimeout)4237 wait_dsr(struct ecppunit *pp, uint8_t mask, uint8_t val, int ptimeout)
4238 {
4239 while (((DSR_READ(pp) & mask) != val) && ptimeout--) {
4240 drv_usecwait(1);
4241 }
4242
4243 return (ptimeout);
4244 }
4245
4246 /*
4247 * 1284 negotiation Events 0..6
4248 * required mode is indicated by extensibility request value
4249 *
4250 * After successful negotiation SUCCESS is returned and
4251 * current mode is set according to xreq,
4252 * otherwise FAILURE is returned and current mode is set to
4253 * either COMPAT (1284 periph) or CENTRONICS (non-1284 periph)
4254 *
4255 * Current phase must be set by the caller (mode-specific negotiation)
4256 *
4257 * If rdsr is not NULL, DSR value after Event 6 is stored here
4258 */
4259 static int
ecpp_1284_negotiation(struct ecppunit * pp,uint8_t xreq,uint8_t * rdsr)4260 ecpp_1284_negotiation(struct ecppunit *pp, uint8_t xreq, uint8_t *rdsr)
4261 {
4262 int xflag;
4263
4264 ecpp_error(pp->dip, "nego(%x): entering...\n", xreq);
4265
4266 /* negotiation should start in Compatibility mode */
4267 (void) ecpp_1284_termination(pp);
4268
4269 /* Set host into Compat mode */
4270 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4271
4272 pp->current_phase = ECPP_PHASE_NEGO;
4273
4274 /* Event 0: host sets extensibility request on data lines */
4275 DATAR_WRITE(pp, xreq);
4276
4277 /* Event 1: host deassert nSelectin and assert nAutoFd */
4278 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4279
4280 drv_usecwait(1); /* Tp(ecp) == 0.5us */
4281
4282 /*
4283 * Event 2: peripheral asserts nAck, deasserts nFault,
4284 * asserts Select, asserts PError
4285 */
4286 if (wait_dsr(pp, ECPP_nERR | ECPP_SLCT | ECPP_PE | ECPP_nACK,
4287 ECPP_nERR | ECPP_SLCT | ECPP_PE, 35000) < 0) {
4288 /* peripheral is not 1284-compliant */
4289 ecpp_error(pp->dip,
4290 "nego(%x): failed event 2 %x\n", xreq, DSR_READ(pp));
4291 (void) ecpp_1284_termination(pp);
4292 return (FAILURE);
4293 }
4294
4295 /*
4296 * Event 3: host asserts nStrobe, latching extensibility value into
4297 * peripherals input latch.
4298 */
4299 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_STB);
4300
4301 drv_usecwait(2); /* Tp(ecp) = 0.5us */
4302
4303 /*
4304 * Event 4: hosts deasserts nStrobe and nAutoFD to acknowledge that
4305 * it has recognized an 1284 compatible peripheral
4306 */
4307 DCR_WRITE(pp, ECPP_nINIT);
4308
4309 /*
4310 * Event 5: Peripheral confirms it supports requested extension
4311 * For Nibble mode Xflag must be low, otherwise it must be high
4312 */
4313 xflag = (xreq == ECPP_XREQ_NIBBLE) ? 0 : ECPP_SLCT;
4314
4315 /*
4316 * Event 6: Peripheral sets nAck high
4317 * indicating that status lines are valid
4318 */
4319 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4320 /* Something wrong with peripheral */
4321 ecpp_error(pp->dip,
4322 "nego(%x): failed event 6 %x\n", xreq, DSR_READ(pp));
4323 (void) ecpp_1284_termination(pp);
4324 return (FAILURE);
4325 }
4326
4327 if ((DSR_READ(pp) & ECPP_SLCT) != xflag) {
4328 /* Extensibility value is not supported */
4329 ecpp_error(pp->dip,
4330 "nego(%x): failed event 5 %x\n", xreq, DSR_READ(pp));
4331 (void) ecpp_1284_termination(pp);
4332 return (FAILURE);
4333 }
4334
4335 if (rdsr) {
4336 *rdsr = DSR_READ(pp);
4337 }
4338
4339 return (SUCCESS);
4340 }
4341
4342 /*
4343 * 1284 Termination: Events 22..28 - set link to Compatibility mode
4344 *
4345 * This routine is not designed for Immediate termination,
4346 * caller must take care of waiting for a valid state,
4347 * (in particular, in ECP mode current phase must be Forward Idle)
4348 * otherwise interface will be reinitialized
4349 *
4350 * In case of Valid state termination SUCCESS is returned and
4351 * current_mode is ECPP_COMPAT_MODE, current phase is ECPP_PHASE_C_IDLE
4352 * Otherwise interface is reinitialized, FAILURE is returned and
4353 * current mode is ECPP_CENTRONICS, current phase is ECPP_PHASE_C_IDLE
4354 */
4355 static int
ecpp_1284_termination(struct ecppunit * pp)4356 ecpp_1284_termination(struct ecppunit *pp)
4357 {
4358 int previous_mode = pp->current_mode;
4359
4360 if (((pp->current_mode == ECPP_COMPAT_MODE ||
4361 pp->current_mode == ECPP_CENTRONICS) &&
4362 pp->current_phase == ECPP_PHASE_C_IDLE) ||
4363 pp->current_mode == ECPP_DIAG_MODE) {
4364 ecpp_error(pp->dip, "termination: not needed\n");
4365 return (SUCCESS);
4366 }
4367
4368 /* Set host into Compat mode, interrupts disabled */
4369 ECPP_MASK_INTR(pp);
4370 ECR_WRITE(pp, ECPP_INTR_SRV | ECPP_INTR_MASK | ECR_mode_001);
4371
4372 pp->current_mode = ECPP_COMPAT_MODE; /* needed by next function */
4373
4374 ECPP_CONFIG_MODE(pp);
4375
4376 /*
4377 * EPP mode uses simple nInit pulse for termination
4378 */
4379 if (previous_mode == ECPP_EPP_MODE) {
4380 /* Event 68: host sets nInit low */
4381 DCR_WRITE(pp, 0);
4382
4383 drv_usecwait(55); /* T(ER) = 50us */
4384
4385 /* Event 69: host sets nInit high */
4386 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4387
4388 goto endterm;
4389 }
4390
4391 /* terminate peripheral to Compat mode */
4392 pp->current_phase = ECPP_PHASE_TERM;
4393
4394 /* Event 22: hosts sets nSelectIn low and nAutoFd high */
4395 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4396
4397 /* Event 23: peripheral deasserts nFault and nBusy */
4398 /* Event 24: peripheral asserts nAck */
4399 if (wait_dsr(pp, ECPP_nERR | ECPP_nBUSY | ECPP_nACK,
4400 ECPP_nERR, 35000) < 0) {
4401 ecpp_error(pp->dip,
4402 "termination: failed events 23,24 %x\n", DSR_READ(pp));
4403 ecpp_1284_init_interface(pp);
4404 return (FAILURE);
4405 }
4406
4407 drv_usecwait(1); /* Tp = 0.5us */
4408
4409 /* Event 25: hosts sets nAutoFd low */
4410 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN | ECPP_AFX);
4411
4412 /* Event 26: the peripheral puts itself in Compatible mode */
4413
4414 /* Event 27: peripheral deasserts nAck */
4415 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4416 ecpp_error(pp->dip,
4417 "termination: failed event 27 %x\n", DSR_READ(pp));
4418 ecpp_1284_init_interface(pp);
4419 return (FAILURE);
4420 }
4421
4422 drv_usecwait(1); /* Tp = 0.5us */
4423
4424 /* Event 28: hosts deasserts nAutoFd */
4425 DCR_WRITE(pp, ECPP_nINIT | ECPP_SLCTIN);
4426
4427 drv_usecwait(1); /* Tp = 0.5us */
4428
4429 endterm:
4430 /* Compatible mode Idle Phase */
4431 pp->current_phase = ECPP_PHASE_C_IDLE;
4432
4433 ecpp_error(pp->dip, "termination: completed %x %x\n",
4434 DSR_READ(pp), DCR_READ(pp));
4435
4436 return (SUCCESS);
4437 }
4438
4439 /*
4440 * Initiate ECP backchannel DMA transfer
4441 */
4442 static uchar_t
ecp_peripheral2host(struct ecppunit * pp)4443 ecp_peripheral2host(struct ecppunit *pp)
4444 {
4445 mblk_t *mp = NULL;
4446 size_t len;
4447 uint32_t xfer_time;
4448
4449 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4450 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4451
4452 /*
4453 * hardware generates cycles to receive data from the peripheral
4454 * we only need to read from FIFO
4455 */
4456
4457 /*
4458 * If user issued read(2) of rev_resid bytes, xfer exactly this amount
4459 * unless it exceeds ECP_REV_BLKSZ_MAX; otherwise try to read
4460 * ECP_REV_BLKSZ_MAX or at least ECP_REV_BLKSZ bytes
4461 */
4462 if (pp->nread > 0) {
4463 len = min(pp->nread, ECP_REV_BLKSZ_MAX);
4464 } else {
4465 len = ECP_REV_BLKSZ_MAX;
4466 }
4467
4468 pp->nread = 0; /* clear after use */
4469
4470 /*
4471 * Allocate mblk for data, make max 2 attepmts:
4472 * if len bytes block fails, try our block size
4473 */
4474 while ((mp = allocb(len, BPRI_MED)) == NULL) {
4475 ecpp_error(pp->dip,
4476 "ecp_periph2host: failed allocb(%d)\n", len);
4477 if (len > ECP_REV_BLKSZ) {
4478 len = ECP_REV_BLKSZ;
4479 } else {
4480 break;
4481 }
4482 }
4483
4484 if (mp == NULL) {
4485 goto fail;
4486 }
4487
4488 pp->msg = mp;
4489 pp->e_busy = ECPP_BUSY;
4490 pp->dma_dir = DDI_DMA_READ;
4491 pp->current_phase = ECPP_PHASE_ECP_REV_XFER;
4492
4493 if (ecpp_init_dma_xfer(pp, (caddr_t)mp->b_rptr, len) == FAILURE) {
4494 goto fail;
4495 }
4496
4497 /*
4498 * there are two problems with defining ECP backchannel xfer timeout
4499 *
4500 * a) IEEE 1284 allows infinite time between backchannel bytes,
4501 * but we must stop at some point to send the data upstream,
4502 * look if any forward transfer requests are pending, etc;
4503 * all that done, we can continue with backchannel data;
4504 *
4505 * b) we don`t know how much data peripheral has;
4506 * DMA counter is set to our buffer size, which can be bigger
4507 * than needed - in this case a timeout must detect this;
4508 *
4509 * The timeout we schedule here serves as both the transfer timeout
4510 * and a means of detecting backchannel stalls; in fact, there are
4511 * two timeouts in one:
4512 *
4513 * - transfer timeout is based on the ECP bandwidth of ~1MB/sec and
4514 * equals the time needed to transfer the whole buffer
4515 * (but not less than ECP_REV_MINTOUT ms); if it occurs,
4516 * DMA is stopped and the data is sent upstream;
4517 *
4518 * - backchannel watchdog, which would look at DMA counter
4519 * every rev_watchdog ms and stop the transfer only
4520 * if the counter hasn`t changed since the last time;
4521 * otherwise it would save DMA counter value and restart itself;
4522 *
4523 * transfer timeout is a multiple of rev_watchdog
4524 * and implemented as a downward counter
4525 *
4526 * on Grover, we can`t access DMAC registers while DMA is in flight,
4527 * so we can`t have watchdog on Grover, only timeout
4528 */
4529
4530 /* calculate number of watchdog invocations equal to the xfer timeout */
4531 xfer_time = max((1000 * len) / pp->ecp_rev_speed, ECP_REV_MINTOUT);
4532 #if defined(__x86)
4533 pp->rev_timeout_cnt = (pp->hw == &x86) ? 1 :
4534 max(xfer_time / pp->rev_watchdog, 1);
4535 #else
4536 pp->rev_timeout_cnt = (pp->hw == &m1553) ? 1 :
4537 max(xfer_time / pp->rev_watchdog, 1);
4538 #endif
4539
4540 pp->last_dmacnt = len; /* nothing xferred yet */
4541
4542 pp->timeout_id = timeout(ecpp_ecp_read_timeout, (caddr_t)pp,
4543 drv_usectohz(pp->rev_watchdog * 1000));
4544
4545 ecpp_error(pp->dip, "ecp_periph2host: DMA started len=%d\n"
4546 "xfer_time=%d wdog=%d cnt=%d\n",
4547 len, xfer_time, pp->rev_watchdog, pp->rev_timeout_cnt);
4548
4549 return (SUCCESS);
4550
4551 fail:
4552 if (mp) {
4553 freemsg(mp);
4554 }
4555 pp->e_busy = ECPP_IDLE;
4556 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4557
4558 return (FAILURE);
4559 }
4560
4561 /*
4562 * ECP backchannel read timeout
4563 * implements both backchannel watchdog and transfer timeout in ECP mode
4564 * if the transfer is still in progress, reschedule itself,
4565 * otherwise call completion routine
4566 */
4567 static void
ecpp_ecp_read_timeout(void * arg)4568 ecpp_ecp_read_timeout(void *arg)
4569 {
4570 struct ecppunit *pp = arg;
4571 size_t dmacnt;
4572
4573 mutex_enter(&pp->umutex);
4574
4575 if (pp->timeout_id == 0) {
4576 mutex_exit(&pp->umutex);
4577 return;
4578 } else {
4579 pp->timeout_id = 0;
4580 }
4581
4582 if (--pp->rev_timeout_cnt == 0) {
4583 /*
4584 * Transfer timed out
4585 */
4586 ecpp_error(pp->dip, "ecp_read_timeout: timeout\n");
4587 pp->xfer_tout++;
4588 ecpp_ecp_read_completion(pp);
4589 } else {
4590 /*
4591 * Backchannel watchdog:
4592 * look if DMA made any progress from the last time
4593 */
4594 dmacnt = ECPP_DMA_GETCNT(pp);
4595 if (dmacnt - pp->last_dmacnt == 0) {
4596 /*
4597 * No progress - stop the transfer and send
4598 * whatever has been read so far up the stream
4599 */
4600 ecpp_error(pp->dip, "ecp_read_timeout: no progress\n");
4601 pp->xfer_tout++;
4602 ecpp_ecp_read_completion(pp);
4603 } else {
4604 /*
4605 * Something was transferred - restart ourselves
4606 */
4607 ecpp_error(pp->dip, "ecp_read_timeout: restarting\n");
4608 pp->last_dmacnt = dmacnt;
4609 pp->timeout_id = timeout(ecpp_ecp_read_timeout,
4610 (caddr_t)pp,
4611 drv_usectohz(pp->rev_watchdog * 1000));
4612 }
4613 }
4614
4615 mutex_exit(&pp->umutex);
4616 }
4617
4618 /*
4619 * ECP backchannel read completion:
4620 * stop the DMA, free DMA resources and send read data upstream
4621 */
4622 static void
ecpp_ecp_read_completion(struct ecppunit * pp)4623 ecpp_ecp_read_completion(struct ecppunit *pp)
4624 {
4625 size_t xfer_len, unx_len;
4626 mblk_t *mp;
4627
4628 ASSERT(mutex_owned(&pp->umutex));
4629 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4630 pp->current_phase == ECPP_PHASE_ECP_REV_XFER);
4631 ASSERT(pp->msg != NULL);
4632
4633 /*
4634 * Stop the transfer and unbind DMA handle
4635 */
4636 if (ECPP_DMA_STOP(pp, &unx_len) == FAILURE) {
4637 unx_len = pp->resid;
4638 ecpp_error(pp->dip, "ecp_read_completion: failed dma_stop\n");
4639 }
4640
4641 mp = pp->msg;
4642 xfer_len = pp->resid - unx_len; /* how much data was transferred */
4643
4644 if (ddi_dma_unbind_handle(pp->dma_handle) != DDI_SUCCESS) {
4645 ecpp_error(pp->dip, "ecp_read_completion: unbind failed.\n");
4646 }
4647
4648 ecpp_error(pp->dip, "ecp_read_completion: xfered %d bytes of %d\n",
4649 xfer_len, pp->resid);
4650
4651 /* clean up and update statistics */
4652 pp->msg = NULL;
4653 pp->resid -= xfer_len;
4654 pp->ibytes[pp->current_mode] += xfer_len;
4655 pp->e_busy = ECPP_IDLE;
4656 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4657
4658 /*
4659 * Send the read data up the stream
4660 */
4661 mp->b_wptr += xfer_len;
4662 if (canputnext(pp->readq)) {
4663 mutex_exit(&pp->umutex);
4664 putnext(pp->readq, mp);
4665 mutex_enter(&pp->umutex);
4666 } else {
4667 ecpp_error(pp->dip, "ecp_read_completion: fail canputnext\n");
4668 if (!putq(pp->readq, mp)) {
4669 freemsg(mp);
4670 }
4671 }
4672
4673 /* if bytes left in the FIFO another transfer is needed */
4674 if (!(ECR_READ(pp) & ECPP_FIFO_EMPTY)) {
4675 (void) ecpp_backchan_req(pp);
4676 }
4677
4678 qenable(pp->writeq);
4679 }
4680
4681 /*
4682 * Read one byte in the Nibble mode
4683 */
4684 static uchar_t
nibble_peripheral2host(struct ecppunit * pp,uint8_t * byte)4685 nibble_peripheral2host(struct ecppunit *pp, uint8_t *byte)
4686 {
4687 uint8_t n[2]; /* two nibbles */
4688 int i;
4689
4690 /*
4691 * One byte is made of two nibbles
4692 */
4693 for (i = 0; i < 2; i++) {
4694 /* Event 7, 12: host asserts nAutoFd to move to read a nibble */
4695 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX);
4696
4697 /* Event 8: peripheral puts data on the status lines */
4698
4699 /* Event 9: peripheral asserts nAck, data available */
4700 if (wait_dsr(pp, ECPP_nACK, 0, 35000) < 0) {
4701 ecpp_error(pp->dip,
4702 "nibble_periph2host(%d): failed event 9 %x\n",
4703 i + 1, DSR_READ(pp));
4704 (void) ecpp_1284_termination(pp);
4705 return (FAILURE);
4706 }
4707
4708 n[i] = DSR_READ(pp); /* get a nibble */
4709
4710 /* Event 10: host deasserts nAutoFd to say it grabbed data */
4711 DCR_WRITE(pp, ECPP_nINIT);
4712
4713 /* (2) Event 13: peripheral asserts PE - end of data phase */
4714
4715 /* Event 11: peripheral deasserts nAck to finish handshake */
4716 if (wait_dsr(pp, ECPP_nACK, ECPP_nACK, 35000) < 0) {
4717 ecpp_error(pp->dip,
4718 "nibble_periph2host(%d): failed event 11 %x\n",
4719 i + 1, DSR_READ(pp));
4720 (void) ecpp_1284_termination(pp);
4721 return (FAILURE);
4722 }
4723 }
4724
4725 /* extract data byte from two nibbles - optimized formula */
4726 *byte = ((((n[1] & ~ECPP_nACK) << 1) | (~n[1] & ECPP_nBUSY)) & 0xf0) |
4727 ((((n[0] & ~ECPP_nACK) >> 3) | ((~n[0] & ECPP_nBUSY) >> 4)) & 0x0f);
4728
4729 pp->ibytes[ECPP_NIBBLE_MODE]++;
4730 return (SUCCESS);
4731 }
4732
4733 /*
4734 * process data transfers requested by the peripheral
4735 */
4736 static uint_t
ecpp_peripheral2host(struct ecppunit * pp)4737 ecpp_peripheral2host(struct ecppunit *pp)
4738 {
4739 if (!canputnext(pp->readq)) {
4740 ecpp_error(pp->dip, "ecpp_peripheral2host: readq full\n");
4741 return (SUCCESS);
4742 }
4743
4744 switch (pp->backchannel) {
4745 case ECPP_CENTRONICS:
4746 /* no backchannel */
4747 return (SUCCESS);
4748
4749 case ECPP_NIBBLE_MODE:
4750 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
4751
4752 /*
4753 * Event 20: Host sets nAutoFd high to ack request
4754 */
4755 DCR_WRITE(pp, ECPP_nINIT);
4756
4757 /* Event 21: Periph sets PError low to ack host */
4758 if (wait_dsr(pp, ECPP_PE, 0, 35000) < 0) {
4759 ecpp_error(pp->dip,
4760 "ecpp_periph2host: failed event 21 %x\n",
4761 DSR_READ(pp));
4762 (void) ecpp_1284_termination(pp);
4763 return (FAILURE);
4764 }
4765
4766 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
4767
4768 /* this routine will read the data in Nibble mode */
4769 return (ecpp_idle_phase(pp));
4770
4771 case ECPP_ECP_MODE:
4772 if ((pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE) &&
4773 (ecp_forward2reverse(pp) == FAILURE)) {
4774 return (FAILURE);
4775 }
4776
4777 return (ecp_peripheral2host(pp)); /* start the transfer */
4778
4779 case ECPP_DIAG_MODE: {
4780 mblk_t *mp;
4781 int i;
4782
4783 if (ECR_READ(pp) & ECPP_FIFO_EMPTY) {
4784 ecpp_error(pp->dip, "ecpp_periph2host: fifo empty\n");
4785 return (SUCCESS);
4786 }
4787
4788 /* allocate the FIFO size */
4789 if ((mp = allocb(ECPP_FIFO_SZ, BPRI_MED)) == NULL) {
4790 ecpp_error(pp->dip,
4791 "ecpp_periph2host: allocb FAILURE.\n");
4792 return (FAILURE);
4793 }
4794
4795 /*
4796 * For the time being just read it byte by byte
4797 */
4798 i = ECPP_FIFO_SZ;
4799 while (i-- && (!(ECR_READ(pp) & ECPP_FIFO_EMPTY))) {
4800 *mp->b_wptr++ = TFIFO_READ(pp);
4801 drv_usecwait(1); /* ECR is sometimes slow to update */
4802 }
4803
4804 if (canputnext(pp->readq)) {
4805 mutex_exit(&pp->umutex);
4806 mp->b_datap->db_type = M_DATA;
4807 ecpp_error(pp->dip,
4808 "ecpp_periph2host: sending %d bytes\n",
4809 mp->b_wptr - mp->b_rptr);
4810 putnext(pp->readq, mp);
4811 mutex_enter(&pp->umutex);
4812 return (SUCCESS);
4813 } else {
4814 ecpp_error(pp->dip,
4815 "ecpp_periph2host: !canputnext data lost\n");
4816 freemsg(mp);
4817 return (FAILURE);
4818 }
4819 }
4820
4821 default:
4822 ecpp_error(pp->dip, "ecpp_peripheraltohost: illegal back");
4823 return (FAILURE);
4824 }
4825 }
4826
4827 /*
4828 * Negotiate from ECP Forward Idle to Reverse Idle Phase
4829 *
4830 * (manipulations with dcr/ecr are according to ECP Specification)
4831 */
4832 static int
ecp_forward2reverse(struct ecppunit * pp)4833 ecp_forward2reverse(struct ecppunit *pp)
4834 {
4835 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4836 pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE);
4837
4838 /* place port into PS2 mode */
4839 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4840
4841 /* set direction bit (DCR3-0 must be 0100 - National) */
4842 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4843
4844 /* enable hardware assist */
4845 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4846
4847 drv_usecwait(1); /* Tp(ecp) = 0.5us */
4848
4849 /* Event 39: host sets nInit low */
4850 DCR_WRITE(pp, ECPP_REV_DIR);
4851
4852 /* Event 40: peripheral sets PError low */
4853
4854 pp->current_phase = ECPP_PHASE_ECP_REV_IDLE;
4855
4856 ecpp_error(pp->dip, "ecp_forward2reverse ok\n");
4857
4858 return (SUCCESS);
4859 }
4860
4861 /*
4862 * Negotiate from ECP Reverse Idle to Forward Idle Phase
4863 *
4864 * (manipulations with dcr/ecr are according to ECP Specification)
4865 */
4866 static int
ecp_reverse2forward(struct ecppunit * pp)4867 ecp_reverse2forward(struct ecppunit *pp)
4868 {
4869 ASSERT(pp->current_mode == ECPP_ECP_MODE &&
4870 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
4871
4872 /* Event 47: host deasserts nInit */
4873 DCR_WRITE(pp, ECPP_REV_DIR | ECPP_nINIT);
4874
4875 /*
4876 * Event 48: peripheral deasserts nAck
4877 * Event 49: peripheral asserts PError
4878 */
4879 if (wait_dsr(pp, ECPP_PE, ECPP_PE, 35000) < 0) {
4880 ecpp_error(pp->dip,
4881 "ecp_reverse2forward: failed event 49 %x\n", DSR_READ(pp));
4882 (void) ecpp_1284_termination(pp);
4883 return (FAILURE);
4884 }
4885
4886 /* place port into PS2 mode */
4887 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4888
4889 /* clear direction bit */
4890 DCR_WRITE(pp, ECPP_nINIT);
4891
4892 /* reenable hardware assist */
4893 ECR_WRITE(pp, ECR_mode_011 | ECPP_INTR_SRV | ECPP_INTR_MASK);
4894
4895 pp->current_phase = ECPP_PHASE_ECP_FWD_IDLE;
4896
4897 ecpp_error(pp->dip, "ecp_reverse2forward ok\n");
4898
4899 return (SUCCESS);
4900 }
4901
4902 /*
4903 * Default negotiation chooses the best mode supported by peripheral
4904 * Note that backchannel mode may be different from forward mode
4905 */
4906 static void
ecpp_default_negotiation(struct ecppunit * pp)4907 ecpp_default_negotiation(struct ecppunit *pp)
4908 {
4909 if (!noecp && (ecpp_mode_negotiation(pp, ECPP_ECP_MODE) == SUCCESS)) {
4910 /* 1284 compatible device */
4911 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4912 return;
4913 } else if (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == SUCCESS) {
4914 /* 1284 compatible device */
4915 pp->io_mode = (pp->fast_compat == TRUE) ? ECPP_DMA : ECPP_PIO;
4916 } else {
4917 /* Centronics device */
4918 pp->io_mode =
4919 (pp->fast_centronics == TRUE) ? ECPP_DMA : ECPP_PIO;
4920 }
4921 ECPP_CONFIG_MODE(pp);
4922 }
4923
4924 /*
4925 * Negotiate to the mode indicated by newmode
4926 */
4927 static int
ecpp_mode_negotiation(struct ecppunit * pp,uchar_t newmode)4928 ecpp_mode_negotiation(struct ecppunit *pp, uchar_t newmode)
4929 {
4930 /* any other mode is impossible */
4931 ASSERT(pp->current_mode == ECPP_CENTRONICS ||
4932 pp->current_mode == ECPP_COMPAT_MODE ||
4933 pp->current_mode == ECPP_NIBBLE_MODE ||
4934 pp->current_mode == ECPP_ECP_MODE ||
4935 pp->current_mode == ECPP_DIAG_MODE);
4936
4937 if (pp->current_mode == newmode) {
4938 return (SUCCESS);
4939 }
4940
4941 /* termination from ECP is only allowed from the Forward Idle Phase */
4942 if ((pp->current_mode == ECPP_ECP_MODE) &&
4943 (pp->current_phase != ECPP_PHASE_ECP_FWD_IDLE)) {
4944 /* this may break into Centronics */
4945 (void) ecp_reverse2forward(pp);
4946 }
4947
4948 switch (newmode) {
4949 case ECPP_CENTRONICS:
4950 (void) ecpp_1284_termination(pp);
4951
4952 /* put superio into PIO mode */
4953 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
4954
4955 pp->current_mode = ECPP_CENTRONICS;
4956 pp->backchannel = ECPP_CENTRONICS;
4957 ECPP_CONFIG_MODE(pp);
4958
4959 pp->to_mode[pp->current_mode]++;
4960 return (SUCCESS);
4961
4962 case ECPP_COMPAT_MODE:
4963 /* ECPP_COMPAT_MODE should support Nibble as a backchannel */
4964 if (pp->current_mode == ECPP_NIBBLE_MODE) {
4965 if (ecpp_1284_termination(pp) == SUCCESS) {
4966 pp->current_mode = ECPP_COMPAT_MODE;
4967 pp->backchannel = ECPP_NIBBLE_MODE;
4968 ECPP_CONFIG_MODE(pp);
4969 pp->to_mode[pp->current_mode]++;
4970 return (SUCCESS);
4971 } else {
4972 return (FAILURE);
4973 }
4974 }
4975
4976 if ((nibble_negotiation(pp) == SUCCESS) &&
4977 (ecpp_1284_termination(pp) == SUCCESS)) {
4978 pp->backchannel = ECPP_NIBBLE_MODE;
4979 pp->current_mode = ECPP_COMPAT_MODE;
4980 ECPP_CONFIG_MODE(pp);
4981 pp->to_mode[pp->current_mode]++;
4982 return (SUCCESS);
4983 } else {
4984 return (FAILURE);
4985 }
4986
4987 case ECPP_NIBBLE_MODE:
4988 if (nibble_negotiation(pp) == FAILURE) {
4989 return (FAILURE);
4990 }
4991
4992 pp->backchannel = ECPP_NIBBLE_MODE;
4993 ECPP_CONFIG_MODE(pp);
4994 pp->to_mode[pp->current_mode]++;
4995
4996 return (SUCCESS);
4997
4998 case ECPP_ECP_MODE:
4999 if (pp->noecpregs)
5000 return (FAILURE);
5001 if (ecp_negotiation(pp) == FAILURE) {
5002 return (FAILURE);
5003 }
5004
5005 /*
5006 * National says CTR[3:0] should be 0100b before moving to 011
5007 */
5008 DCR_WRITE(pp, ECPP_nINIT);
5009
5010 if (ecr_write(pp, ECR_mode_011 |
5011 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5012 ecpp_error(pp->dip, "mode_nego:ECP: failed w/ecr\n");
5013 return (FAILURE);
5014 }
5015
5016 ECPP_CONFIG_MODE(pp);
5017 pp->to_mode[pp->current_mode]++;
5018
5019 return (SUCCESS);
5020
5021 case ECPP_DIAG_MODE:
5022 /*
5023 * In DIAG mode application can do nasty things(e.g drive pins)
5024 * To keep peripheral sane, terminate to Compatibility mode
5025 */
5026 (void) ecpp_1284_termination(pp);
5027
5028 /* put superio into TFIFO mode */
5029 if (ecr_write(pp, ECR_mode_001 |
5030 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5031 ecpp_error(pp->dip, "put to TFIFO: failed w/ecr\n");
5032 return (FAILURE);
5033 }
5034
5035 pp->current_mode = ECPP_DIAG_MODE;
5036 pp->backchannel = ECPP_DIAG_MODE;
5037 ECPP_CONFIG_MODE(pp);
5038 pp->to_mode[pp->current_mode]++;
5039
5040 return (SUCCESS);
5041
5042 default:
5043 ecpp_error(pp->dip,
5044 "ecpp_mode_negotiation: mode %d not supported\n", newmode);
5045 return (FAILURE);
5046 }
5047 }
5048
5049 /*
5050 * Standard (9.1): Peripheral data is available only when the host places
5051 * the interface in a mode capable of peripheral-to-host data transfer.
5052 * This requires the host periodically to place the interface in such a mode.
5053 * Polling can be eliminated by leaving the interface in an 1284 idle phase.
5054 */
5055 static uchar_t
ecpp_idle_phase(struct ecppunit * pp)5056 ecpp_idle_phase(struct ecppunit *pp)
5057 {
5058 uchar_t rval = FAILURE;
5059
5060 /*
5061 * If there is no space on the read queue, do not reverse channel
5062 */
5063 if (!canputnext(pp->readq)) {
5064 ecpp_error(pp->dip, "ecpp_idle_phase: readq full\n");
5065 return (SUCCESS);
5066 }
5067
5068 switch (pp->backchannel) {
5069 case ECPP_CENTRONICS:
5070 case ECPP_COMPAT_MODE:
5071 case ECPP_DIAG_MODE:
5072 /* nothing */
5073 ecpp_error(pp->dip, "ecpp_idle_phase: compat idle\n");
5074 return (SUCCESS);
5075
5076 case ECPP_NIBBLE_MODE:
5077 /*
5078 * read as much data as possible, ending up in either
5079 * Reverse Idle or Host Busy Data Available phase
5080 */
5081 ecpp_error(pp->dip, "ecpp_idle_phase: nibble backchannel\n");
5082 if ((pp->current_mode != ECPP_NIBBLE_MODE) &&
5083 (ecpp_mode_negotiation(pp, ECPP_NIBBLE_MODE) == FAILURE)) {
5084 break;
5085 }
5086
5087 rval = read_nibble_backchan(pp);
5088
5089 /* put interface into Reverse Idle phase */
5090 if (pp->current_phase == ECPP_PHASE_NIBT_NAVAIL &&
5091 canputnext(pp->readq)) {
5092 ecpp_error(pp->dip, "ecpp_idle_phase: going revidle\n");
5093
5094 /*
5095 * Event 7: host asserts nAutoFd
5096 * enable nAck interrupt to get a backchannel request
5097 */
5098 DCR_WRITE(pp, ECPP_nINIT | ECPP_AFX | ECPP_INTR_EN);
5099
5100 ECPP_UNMASK_INTR(pp);
5101 }
5102
5103 break;
5104
5105 case ECPP_ECP_MODE:
5106 /*
5107 * if data is already available, request the backchannel xfer
5108 * otherwise stay in Forward Idle and enable nErr interrupts
5109 */
5110 ecpp_error(pp->dip, "ecpp_idle_phase: ECP forward\n");
5111
5112 ASSERT(pp->current_phase == ECPP_PHASE_ECP_FWD_IDLE ||
5113 pp->current_phase == ECPP_PHASE_ECP_REV_IDLE);
5114
5115 /* put interface into Forward Idle phase */
5116 if ((pp->current_phase == ECPP_PHASE_ECP_REV_IDLE) &&
5117 (ecp_reverse2forward(pp) == FAILURE)) {
5118 return (FAILURE);
5119 }
5120
5121 /*
5122 * if data already available, put backchannel request on the wq
5123 * otherwise enable nErr interrupts
5124 */
5125 if ((DSR_READ(pp) & ECPP_nERR) == 0) {
5126 (void) ecpp_backchan_req(pp);
5127 } else {
5128 ECR_WRITE(pp,
5129 ECR_READ(pp) & ~ECPP_INTR_MASK | ECPP_INTR_SRV);
5130
5131 ECPP_UNMASK_INTR(pp);
5132 }
5133
5134 return (SUCCESS);
5135
5136 default:
5137 ecpp_error(pp->dip, "ecpp_idle_phase: illegal backchannel");
5138 }
5139
5140 return (rval);
5141 }
5142
5143 /*
5144 * This routine will leave the port in ECPP_PHASE_NIBT_REVIDLE
5145 * Due to flow control, though, it may stop at ECPP_PHASE_NIBT_AVAIL,
5146 * and continue later as the user consumes data from the read queue
5147 *
5148 * The current phase should be NIBT_AVAIL or NIBT_NAVAIL
5149 * If some events fail during transfer, termination puts link
5150 * to Compatibility mode and FAILURE is returned
5151 */
5152 static int
read_nibble_backchan(struct ecppunit * pp)5153 read_nibble_backchan(struct ecppunit *pp)
5154 {
5155 mblk_t *mp;
5156 int i;
5157 int rval = SUCCESS;
5158
5159 ASSERT(pp->current_mode == ECPP_NIBBLE_MODE);
5160
5161 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5162 ? ECPP_PHASE_NIBT_NAVAIL : ECPP_PHASE_NIBT_AVAIL;
5163
5164 ecpp_error(pp->dip, "read_nibble_backchan: %x\n", DSR_READ(pp));
5165
5166 /*
5167 * While data is available, read it in NIBBLE_REV_BLKSZ byte chunks
5168 * and send up the stream
5169 */
5170 while (pp->current_phase == ECPP_PHASE_NIBT_AVAIL && rval == SUCCESS) {
5171 /* see if there's space on the queue */
5172 if (!canputnext(pp->readq)) {
5173 ecpp_error(pp->dip,
5174 "read_nibble_backchan: canputnext failed\n");
5175 return (SUCCESS);
5176 }
5177
5178 if ((mp = allocb(NIBBLE_REV_BLKSZ, BPRI_MED)) == NULL) {
5179 ecpp_error(pp->dip,
5180 "read_nibble_backchan: allocb failed\n");
5181 return (SUCCESS);
5182 }
5183
5184 /* read a chunk of data from the peripheral byte by byte */
5185 i = NIBBLE_REV_BLKSZ;
5186 while (i-- && !(DSR_READ(pp) & ECPP_nERR)) {
5187 if (nibble_peripheral2host(pp, mp->b_wptr) != SUCCESS) {
5188 rval = FAILURE;
5189 break;
5190 }
5191 mp->b_wptr++;
5192 }
5193
5194 pp->current_phase = (DSR_READ(pp) & (ECPP_nERR | ECPP_PE))
5195 ? ECPP_PHASE_NIBT_NAVAIL
5196 : ECPP_PHASE_NIBT_AVAIL;
5197
5198 if (mp->b_wptr - mp->b_rptr > 0) {
5199 ecpp_error(pp->dip,
5200 "read_nibble_backchan: sending %d bytes\n",
5201 mp->b_wptr - mp->b_rptr);
5202 pp->nread = 0;
5203 mutex_exit(&pp->umutex);
5204 putnext(pp->readq, mp);
5205 mutex_enter(&pp->umutex);
5206 } else {
5207 freemsg(mp);
5208 }
5209 }
5210
5211 return (rval);
5212 }
5213
5214 /*
5215 * 'Request Device ID using nibble mode' negotiation
5216 */
5217 static int
devidnib_negotiation(struct ecppunit * pp)5218 devidnib_negotiation(struct ecppunit *pp)
5219 {
5220 uint8_t dsr;
5221
5222 if (ecpp_1284_negotiation(pp,
5223 ECPP_XREQ_NIBBLE | ECPP_XREQ_ID, &dsr) == FAILURE) {
5224 return (FAILURE);
5225 }
5226
5227 /*
5228 * If peripheral has data available, PE and nErr will
5229 * be set low at Event 5 & 6.
5230 */
5231 if ((dsr & (ECPP_PE | ECPP_nERR)) == 0) {
5232 pp->current_phase = ECPP_PHASE_NIBT_AVAIL;
5233 } else {
5234 pp->current_phase = ECPP_PHASE_NIBT_NAVAIL;
5235 }
5236
5237 ecpp_error(pp->dip, "ecpp_devidnib_nego: current_phase=%x\n",
5238 pp->current_phase);
5239
5240 /* successful negotiation into Nibble mode */
5241 pp->current_mode = ECPP_NIBBLE_MODE;
5242 pp->backchannel = ECPP_NIBBLE_MODE;
5243
5244 ecpp_error(pp->dip, "ecpp_devidnib_nego: ok\n");
5245
5246 return (SUCCESS);
5247 }
5248
5249 /*
5250 * Read 1284 device ID sequence
5251 *
5252 * This function should be called two times:
5253 * 1) ecpp_getdevid(pp, NULL, &len) - to retrieve ID length;
5254 * 2) ecpp_getdevid(pp, buffer, &len) - to read len bytes into buffer
5255 *
5256 * After 2) port is in Compatible mode
5257 * If the caller fails to make second call, it must reset port to Centronics
5258 *
5259 */
5260 static int
ecpp_getdevid(struct ecppunit * pp,uint8_t * id,int * lenp,int mode)5261 ecpp_getdevid(struct ecppunit *pp, uint8_t *id, int *lenp, int mode)
5262 {
5263 uint8_t lenhi, lenlo;
5264 uint8_t dsr;
5265 int i;
5266
5267 switch (mode) {
5268 case ECPP_NIBBLE_MODE:
5269 /* negotiate only if neccessary */
5270 if ((pp->current_mode != mode) || (id == NULL)) {
5271 if (devidnib_negotiation(pp) == FAILURE) {
5272 return (EIO);
5273 }
5274 }
5275
5276 if (pp->current_phase != ECPP_PHASE_NIBT_AVAIL) {
5277 return (EIO);
5278 }
5279
5280 /*
5281 * Event 14: Host tristates data bus, peripheral
5282 * asserts nERR if data available, usually the
5283 * status bits (7-0) and requires two reads since
5284 * only nibbles are transfered.
5285 */
5286 dsr = DSR_READ(pp);
5287
5288 if (id == NULL) {
5289 /*
5290 * first two bytes are the length of the sequence
5291 * (incl. these bytes)
5292 * first byte is MSB
5293 */
5294 if ((dsr & ECPP_nERR) ||
5295 (nibble_peripheral2host(pp, &lenhi) == FAILURE) ||
5296 (dsr & ECPP_nERR) ||
5297 (nibble_peripheral2host(pp, &lenlo) == FAILURE)) {
5298 ecpp_error(pp->dip,
5299 "ecpp_getdevid: id length read error\n");
5300 return (EIO);
5301 }
5302
5303 *lenp = (lenhi << 8) | (lenlo);
5304
5305 ecpp_error(pp->dip,
5306 "ecpp_getdevid: id length = %d\n", *lenp);
5307
5308 if (*lenp < 2) {
5309 return (EIO);
5310 }
5311 } else {
5312 /*
5313 * read the rest of the data
5314 */
5315 i = *lenp;
5316 while (i && ((dsr & ECPP_nERR) == 0)) {
5317 if (nibble_peripheral2host(pp, id++) == FAILURE)
5318 break;
5319
5320 i--;
5321 dsr = DSR_READ(pp);
5322 }
5323 ecpp_error(pp->dip,
5324 "ecpp_getdevid: read %d bytes\n", *lenp - i);
5325
5326 /*
5327 * 1284: After receiving the sequence, the host is
5328 * required to return the link to the Compatibility mode
5329 */
5330 (void) ecpp_1284_termination(pp);
5331 }
5332
5333 break;
5334
5335 /* Other modes are not yet supported */
5336 default:
5337 return (EINVAL);
5338 }
5339
5340 return (0);
5341 }
5342
5343 /*
5344 * Various hardware support
5345 *
5346 * First define some stubs for functions that do nothing
5347 */
5348
5349 /*ARGSUSED*/
5350 static void
empty_config_mode(struct ecppunit * pp)5351 empty_config_mode(struct ecppunit *pp)
5352 {
5353 }
5354
5355 /*ARGSUSED*/
5356 static void
empty_mask_intr(struct ecppunit * pp)5357 empty_mask_intr(struct ecppunit *pp)
5358 {
5359 }
5360
5361 #if defined(__x86)
5362 static size_t
x86_getcnt(struct ecppunit * pp)5363 x86_getcnt(struct ecppunit *pp)
5364 {
5365 int count;
5366
5367 (void) ddi_dmae_getcnt(pp->dip, pp->uh.x86.chn, &count);
5368 return (count);
5369 }
5370 #endif
5371
5372 /*
5373 *
5374 * National PC87332 and PC97317 SuperIOs support routines
5375 * These chips are used in PCI-based Darwin, Quark, Quasar, Excalibur
5376 * and use EBus DMA facilities (Cheerio or RIO)
5377 *
5378 */
5379
5380 static int
pc87332_map_regs(struct ecppunit * pp)5381 pc87332_map_regs(struct ecppunit *pp)
5382 {
5383 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.ebus.c_reg, 0,
5384 sizeof (struct config_reg), &acc_attr,
5385 &pp->uh.ebus.c_handle) != DDI_SUCCESS) {
5386 ecpp_error(pp->dip, "pc87332_map_regs: failed c_reg\n");
5387 goto fail;
5388 }
5389
5390 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5391 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5392 != DDI_SUCCESS) {
5393 ecpp_error(pp->dip, "pc87332_map_regs: failed i_reg\n");
5394 goto fail;
5395 }
5396
5397 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5398 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5399 != DDI_SUCCESS) {
5400 ecpp_error(pp->dip, "pc87332_map_regs: failed f_reg\n");
5401 goto fail;
5402 }
5403
5404 if (ddi_regs_map_setup(pp->dip, 2, (caddr_t *)&pp->uh.ebus.dmac, 0,
5405 sizeof (struct cheerio_dma_reg), &acc_attr,
5406 &pp->uh.ebus.d_handle) != DDI_SUCCESS) {
5407 ecpp_error(pp->dip, "pc87332_map_regs: failed dmac\n");
5408 goto fail;
5409 }
5410
5411 return (SUCCESS);
5412
5413 fail:
5414 pc87332_unmap_regs(pp);
5415 return (FAILURE);
5416 }
5417
5418 static void
pc87332_unmap_regs(struct ecppunit * pp)5419 pc87332_unmap_regs(struct ecppunit *pp)
5420 {
5421 if (pp->uh.ebus.c_handle) {
5422 ddi_regs_map_free(&pp->uh.ebus.c_handle);
5423 }
5424 if (pp->uh.ebus.d_handle) {
5425 ddi_regs_map_free(&pp->uh.ebus.d_handle);
5426 }
5427 if (pp->i_handle) {
5428 ddi_regs_map_free(&pp->i_handle);
5429 }
5430 if (pp->f_handle) {
5431 ddi_regs_map_free(&pp->f_handle);
5432 }
5433 }
5434
5435 static uint8_t
pc87332_read_config_reg(struct ecppunit * pp,uint8_t reg_num)5436 pc87332_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5437 {
5438 uint8_t retval;
5439
5440 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5441 retval = PP_GETB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data);
5442
5443 return (retval);
5444 }
5445
5446 static void
pc87332_write_config_reg(struct ecppunit * pp,uint8_t reg_num,uint8_t val)5447 pc87332_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5448 {
5449 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->index, reg_num);
5450 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5451
5452 /*
5453 * second write to this register is needed. the register behaves as
5454 * a fifo. the first value written goes to the data register. the
5455 * second write pushes the initial value to the register indexed.
5456 */
5457
5458 PP_PUTB(pp->uh.ebus.c_handle, &pp->uh.ebus.c_reg->data, val);
5459 }
5460
5461 static int
pc87332_config_chip(struct ecppunit * pp)5462 pc87332_config_chip(struct ecppunit *pp)
5463 {
5464 uint8_t pmc, fcr;
5465
5466 pp->current_phase = ECPP_PHASE_INIT;
5467
5468 /* ECP DMA configuration bit (PMC4) must be set */
5469 pmc = pc87332_read_config_reg(pp, PMC);
5470 if (!(pmc & PC87332_PMC_ECP_DMA_CONFIG)) {
5471 pc87332_write_config_reg(pp, PMC,
5472 pmc | PC87332_PMC_ECP_DMA_CONFIG);
5473 }
5474
5475 /*
5476 * The Parallel Port Multiplexor pins must be driven.
5477 * Check to see if FCR3 is zero, if not clear FCR3.
5478 */
5479 fcr = pc87332_read_config_reg(pp, FCR);
5480 if (fcr & PC87332_FCR_PPM_FLOAT_CTL) {
5481 pc87332_write_config_reg(pp, FCR,
5482 fcr & ~PC87332_FCR_PPM_FLOAT_CTL);
5483 }
5484
5485 /*
5486 * clear bits 3-0 in CTR (aka DCR) prior to enabling ECP mode
5487 * CTR5 can not be cleared in SPP mode, CTR5 will return 1.
5488 * "FAILURE" in this case is ok. Better to use dcr_write()
5489 * to ensure reliable writing to DCR.
5490 */
5491 if (dcr_write(pp, ECPP_DCR_SET | ECPP_nINIT) == FAILURE) {
5492 ecpp_error(pp->dip, "ecpp_config_87332: DCR config\n");
5493 }
5494
5495 /* enable ECP mode, level intr (note that DCR bits 3-0 == 0x0) */
5496 pc87332_write_config_reg(pp, PCR,
5497 PC87332_PCR_INTR_LEVL | PC87332_PCR_ECP_EN);
5498
5499 /* put SuperIO in initial state */
5500 if (ecr_write(pp, ECR_mode_001 |
5501 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5502 ecpp_error(pp->dip, "ecpp_config_87332: ECR\n");
5503 }
5504
5505 if (dcr_write(pp, ECPP_DCR_SET | ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5506 ecpp_error(pp->dip, "ecpp_config_87332: w/DCR failed2.\n");
5507 return (FAILURE);
5508
5509 }
5510 /* we are in centronic mode */
5511 pp->current_mode = ECPP_CENTRONICS;
5512
5513 /* in compatible mode with no data transfer in progress */
5514 pp->current_phase = ECPP_PHASE_C_IDLE;
5515
5516 return (SUCCESS);
5517 }
5518
5519 /*
5520 * A new mode was set, do some mode specific reconfiguration
5521 * in this case - set interrupt characteristic
5522 */
5523 static void
pc87332_config_mode(struct ecppunit * pp)5524 pc87332_config_mode(struct ecppunit *pp)
5525 {
5526 if (COMPAT_PIO(pp)) {
5527 pc87332_write_config_reg(pp, PCR, 0x04);
5528 } else {
5529 pc87332_write_config_reg(pp, PCR, 0x14);
5530 }
5531 }
5532
5533 static int
pc97317_map_regs(struct ecppunit * pp)5534 pc97317_map_regs(struct ecppunit *pp)
5535 {
5536 if (pc87332_map_regs(pp) != SUCCESS) {
5537 return (FAILURE);
5538 }
5539
5540 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->uh.ebus.c2_reg,
5541 0x403, sizeof (struct config2_reg), &acc_attr,
5542 &pp->uh.ebus.c2_handle) != DDI_SUCCESS) {
5543 ecpp_error(pp->dip, "pc97317_map_regs: failed c2_reg\n");
5544 pc87332_unmap_regs(pp);
5545 return (FAILURE);
5546 } else {
5547 return (SUCCESS);
5548 }
5549 }
5550
5551 static void
pc97317_unmap_regs(struct ecppunit * pp)5552 pc97317_unmap_regs(struct ecppunit *pp)
5553 {
5554 if (pp->uh.ebus.c2_handle) {
5555 ddi_regs_map_free(&pp->uh.ebus.c2_handle);
5556 }
5557
5558 pc87332_unmap_regs(pp);
5559 }
5560
5561 /*
5562 * OBP should configure the PC97317 such that it does not need further
5563 * configuration. Upon sustaining, it may be necessary to examine
5564 * or change the configuration registers. This routine is left in
5565 * the file for that purpose.
5566 */
5567 static int
pc97317_config_chip(struct ecppunit * pp)5568 pc97317_config_chip(struct ecppunit *pp)
5569 {
5570 uint8_t conreg;
5571
5572 /* set the logical device name */
5573 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5574
5575 /* SPP Compatibility */
5576 PP_PUTB(pp->uh.ebus.c2_handle,
5577 &pp->uh.ebus.c2_reg->eir, PC97317_CONFIG2_CONTROL2);
5578 PP_PUTB(pp->uh.ebus.c2_handle, &pp->uh.ebus.c2_reg->edr, 0x80);
5579
5580 /* low interrupt polarity */
5581 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5582
5583 /* ECP mode */
5584 pc87332_write_config_reg(pp, PC97317_CONFIG_PP_CONFIG, 0xf2);
5585
5586 if (dcr_write(pp, ECPP_SLCTIN | ECPP_nINIT) == FAILURE) {
5587 ecpp_error(pp->dip, "pc97317_config_chip: failed w/DCR\n");
5588 }
5589
5590 if (ecr_write(pp, ECR_mode_001 |
5591 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5592 ecpp_error(pp->dip, "pc97317_config_chip: failed w/ECR\n");
5593 }
5594
5595 #ifdef DEBUG
5596 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DEV_NO);
5597 ecpp_error(pp->dip, "97317:conreg7(logical dev)=%x\n", conreg);
5598
5599 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_MSB);
5600 ecpp_error(pp->dip, "97317:conreg60(addrHi)=%x\n", conreg);
5601
5602 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_BASE_ADDR_LSB);
5603 ecpp_error(pp->dip, "97317:conreg61(addrLo)=%x\n", conreg);
5604
5605 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_SEL);
5606 ecpp_error(pp->dip, "97317:conreg70(IRQL)=%x\n", conreg);
5607
5608 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_INTR_TYPE);
5609 ecpp_error(pp->dip, "97317:conreg71(intr type)=%x\n", conreg);
5610
5611 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_ACTIVATE);
5612 ecpp_error(pp->dip, "97317:conreg30(Active)=%x\n", conreg);
5613
5614 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_IO_RANGE);
5615 ecpp_error(pp->dip, "97317:conreg31(IO Range Check)=%x\n", conreg);
5616
5617 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA0_CHAN);
5618 ecpp_error(pp->dip, "97317:conreg74(DMA0 Chan)=%x\n", conreg);
5619 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_DMA1_CHAN);
5620 ecpp_error(pp->dip, "97317:conreg75(DMA1 Chan)=%x\n", conreg);
5621
5622 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5623 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5624
5625 conreg = pc87332_read_config_reg(pp, PC97317_CONFIG_PP_CONFIG);
5626 ecpp_error(pp->dip, "97317:conregFO(pport conf)=%x\n", conreg);
5627 #endif /* DEBUG */
5628
5629 return (SUCCESS);
5630 }
5631
5632 /*
5633 * A new mode was set, do some mode specific reconfiguration
5634 * in this case - set interrupt polarity
5635 */
5636 static void
pc97317_config_mode(struct ecppunit * pp)5637 pc97317_config_mode(struct ecppunit *pp)
5638 {
5639 /* set the logical device name */
5640 pc87332_write_config_reg(pp, PC97317_CONFIG_DEV_NO, 0x4);
5641
5642 if (COMPAT_PIO(pp) || pp->current_mode == ECPP_NIBBLE_MODE) {
5643 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x02);
5644 } else {
5645 pc87332_write_config_reg(pp, PC97317_CONFIG_INTR_TYPE, 0x00);
5646 }
5647 }
5648
5649 static void
cheerio_mask_intr(struct ecppunit * pp)5650 cheerio_mask_intr(struct ecppunit *pp)
5651 {
5652 /* mask Cheerio interrupts */
5653 AND_SET_LONG_R(pp->uh.ebus.d_handle,
5654 &pp->uh.ebus.dmac->csr, ~DCSR_INT_EN);
5655 }
5656
5657 static void
cheerio_unmask_intr(struct ecppunit * pp)5658 cheerio_unmask_intr(struct ecppunit *pp)
5659 {
5660 /* unmask Cheerio interrupts */
5661 OR_SET_LONG_R(pp->uh.ebus.d_handle,
5662 &pp->uh.ebus.dmac->csr, DCSR_INT_EN | DCSR_TCI_DIS);
5663 }
5664
5665 static int
cheerio_dma_start(struct ecppunit * pp)5666 cheerio_dma_start(struct ecppunit *pp)
5667 {
5668 cheerio_reset_dcsr(pp);
5669 SET_DMAC_BCR(pp, pp->dma_cookie.dmac_size);
5670 SET_DMAC_ACR(pp, pp->dma_cookie.dmac_address);
5671
5672 if (pp->dma_dir == DDI_DMA_READ) {
5673 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5674 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0 | DCSR_WRITE);
5675 } else {
5676 SET_DMAC_CSR(pp, DCSR_INT_EN | DCSR_EN_CNT | DCSR_EN_DMA |
5677 DCSR_CSR_DRAIN | DCSR_BURST_1 | DCSR_BURST_0);
5678 }
5679
5680 return (SUCCESS);
5681 }
5682
5683 /*
5684 * Note: BCR is reset to 0, so counter should always be read before dma_stop
5685 */
5686 static int
cheerio_dma_stop(struct ecppunit * pp,size_t * countp)5687 cheerio_dma_stop(struct ecppunit *pp, size_t *countp)
5688 {
5689 uint8_t ecr;
5690
5691 /* disable DMA and byte counter */
5692 AND_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5693 ~(DCSR_EN_DMA | DCSR_EN_CNT| DCSR_INT_EN));
5694
5695 /* ACK and disable the TC interrupt */
5696 OR_SET_LONG_R(pp->uh.ebus.d_handle, &pp->uh.ebus.dmac->csr,
5697 DCSR_TC | DCSR_TCI_DIS);
5698
5699 /* read DMA count if requested */
5700 if (countp) {
5701 *countp = cheerio_getcnt(pp);
5702 }
5703
5704 cheerio_reset_dcsr(pp);
5705 SET_DMAC_BCR(pp, 0);
5706
5707 /* turn off SuperIO's DMA */
5708 ecr = ECR_READ(pp);
5709 if (ecr_write(pp, ecr & ~ECPP_DMA_ENABLE) == FAILURE) {
5710 return (FAILURE);
5711 }
5712
5713 /* Disable SuperIO interrupts and DMA */
5714 ecr = ECR_READ(pp);
5715
5716 return (ecr_write(pp, ecr | ECPP_INTR_SRV));
5717 }
5718
5719 static size_t
cheerio_getcnt(struct ecppunit * pp)5720 cheerio_getcnt(struct ecppunit *pp)
5721 {
5722 return (GET_DMAC_BCR(pp));
5723 }
5724
5725 /*
5726 * Reset the DCSR by first setting the RESET bit to 1. Poll the
5727 * DCSR_CYC_PEND bit to make sure there are no more pending DMA cycles.
5728 * If there are no more pending cycles, clear the RESET bit.
5729 */
5730 static void
cheerio_reset_dcsr(struct ecppunit * pp)5731 cheerio_reset_dcsr(struct ecppunit *pp)
5732 {
5733 int timeout = DMAC_RESET_TIMEOUT;
5734
5735 SET_DMAC_CSR(pp, DCSR_RESET);
5736
5737 while (GET_DMAC_CSR(pp) & DCSR_CYC_PEND) {
5738 if (timeout == 0) {
5739 ecpp_error(pp->dip, "cheerio_reset_dcsr: timeout\n");
5740 break;
5741 } else {
5742 drv_usecwait(1);
5743 timeout--;
5744 }
5745 }
5746
5747 SET_DMAC_CSR(pp, 0);
5748 }
5749
5750 /*
5751 *
5752 * Grover Southbridge (M1553) support routines
5753 * Southbridge contains an Intel 8237 DMAC onboard which is used
5754 * to transport data to/from PCI space to superio parallel port
5755 *
5756 */
5757
5758
5759 static int
m1553_map_regs(struct ecppunit * pp)5760 m1553_map_regs(struct ecppunit *pp)
5761 {
5762 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->uh.m1553.isa_space,
5763 0, sizeof (struct isaspace), &acc_attr,
5764 &pp->uh.m1553.d_handle) != DDI_SUCCESS) {
5765 ecpp_error(pp->dip, "m1553_map_regs: failed isa space\n");
5766 goto fail;
5767 }
5768
5769 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5770 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5771 != DDI_SUCCESS) {
5772 ecpp_error(pp->dip, "m1553_map_regs: failed i_reg\n");
5773 goto fail;
5774 }
5775
5776 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->f_reg, 0x400,
5777 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5778 != DDI_SUCCESS) {
5779 ecpp_error(pp->dip, "m1553_map_regs: failed f_reg\n");
5780 goto fail;
5781 }
5782
5783 return (SUCCESS);
5784
5785 fail:
5786 m1553_unmap_regs(pp);
5787 return (FAILURE);
5788 }
5789
5790 static void
m1553_unmap_regs(struct ecppunit * pp)5791 m1553_unmap_regs(struct ecppunit *pp)
5792 {
5793 if (pp->uh.m1553.d_handle) {
5794 ddi_regs_map_free(&pp->uh.m1553.d_handle);
5795 }
5796 if (pp->i_handle) {
5797 ddi_regs_map_free(&pp->i_handle);
5798 }
5799 if (pp->f_handle) {
5800 ddi_regs_map_free(&pp->f_handle);
5801 }
5802 }
5803
5804 #if defined(__x86)
5805 static int
x86_map_regs(struct ecppunit * pp)5806 x86_map_regs(struct ecppunit *pp)
5807 {
5808 int nregs = 0;
5809
5810 if (ddi_regs_map_setup(pp->dip, 0, (caddr_t *)&pp->i_reg, 0,
5811 sizeof (struct info_reg), &acc_attr, &pp->i_handle)
5812 != DDI_SUCCESS) {
5813 ecpp_error(pp->dip, "x86_map_regs: failed i_reg\n");
5814 goto fail;
5815 }
5816 if (ddi_dev_nregs(pp->dip, &nregs) == DDI_SUCCESS && nregs == 2) {
5817 if (ddi_regs_map_setup(pp->dip, 1, (caddr_t *)&pp->f_reg, 0,
5818 sizeof (struct fifo_reg), &acc_attr, &pp->f_handle)
5819 != DDI_SUCCESS) {
5820 ecpp_error(pp->dip, "x86_map_regs: failed f_reg\n");
5821 goto fail;
5822 } else
5823 pp->noecpregs = FALSE;
5824 } else {
5825 pp->noecpregs = TRUE;
5826 }
5827 return (SUCCESS);
5828 fail:
5829 x86_unmap_regs(pp);
5830 return (FAILURE);
5831 }
5832
5833 static void
x86_unmap_regs(struct ecppunit * pp)5834 x86_unmap_regs(struct ecppunit *pp)
5835 {
5836 if (pp->i_handle) {
5837 ddi_regs_map_free(&pp->i_handle);
5838 }
5839 if (pp->f_handle) {
5840 ddi_regs_map_free(&pp->f_handle);
5841 }
5842 }
5843 #endif
5844
5845 static uint8_t
m1553_read_config_reg(struct ecppunit * pp,uint8_t reg_num)5846 m1553_read_config_reg(struct ecppunit *pp, uint8_t reg_num)
5847 {
5848 uint8_t retval;
5849
5850 dma8237_write(pp, 0x3F0, reg_num);
5851 retval = dma8237_read(pp, 0x3F1);
5852
5853 return (retval);
5854 }
5855
5856 static void
m1553_write_config_reg(struct ecppunit * pp,uint8_t reg_num,uint8_t val)5857 m1553_write_config_reg(struct ecppunit *pp, uint8_t reg_num, uint8_t val)
5858 {
5859 dma8237_write(pp, 0x3F0, reg_num);
5860 dma8237_write(pp, 0x3F1, val);
5861 }
5862
5863 static int
m1553_config_chip(struct ecppunit * pp)5864 m1553_config_chip(struct ecppunit *pp)
5865 {
5866 uint8_t conreg;
5867
5868 /* Unlock configuration regs with "key sequence" */
5869 dma8237_write(pp, 0x3F0, 0x51);
5870 dma8237_write(pp, 0x3F0, 0x23);
5871
5872 m1553_write_config_reg(pp, PnP_CONFIG_DEV_NO, 0x3);
5873 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DEV_NO);
5874 ecpp_error(pp->dip, "M1553:conreg7(logical dev)=%x\n", conreg);
5875
5876 conreg = m1553_read_config_reg(pp, PnP_CONFIG_ACTIVATE);
5877 ecpp_error(pp->dip, "M1553:conreg30(Active)=%x\n", conreg);
5878
5879 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_MSB);
5880 ecpp_error(pp->dip, "M1553:conreg60(addrHi)=%x\n", conreg);
5881 conreg = m1553_read_config_reg(pp, PnP_CONFIG_BASE_ADDR_LSB);
5882 ecpp_error(pp->dip, "M1553:conreg61(addrLo)=%x\n", conreg);
5883
5884 conreg = m1553_read_config_reg(pp, PnP_CONFIG_INTR_SEL);
5885 ecpp_error(pp->dip, "M1553:conreg70(IRQL)=%x\n", conreg);
5886
5887 conreg = m1553_read_config_reg(pp, PnP_CONFIG_DMA0_CHAN);
5888 ecpp_error(pp->dip, "M1553:conreg74(DMA0 Chan)=%x\n", conreg);
5889
5890 /* set FIFO threshold 1 and ECP mode, preserve bit 7 (IRQ polarity) */
5891 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5892 conreg = (conreg & ~0x7F) | 0x0A;
5893 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG0, conreg);
5894 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG0);
5895 ecpp_error(pp->dip, "M1553:conregFO(pport conf)=%x\n", conreg);
5896
5897 m1553_write_config_reg(pp, PnP_CONFIG_PP_CONFIG1, 0x04);
5898 conreg = m1553_read_config_reg(pp, PnP_CONFIG_PP_CONFIG1);
5899 ecpp_error(pp->dip, "M1553:conregF1(outconf)=%x\n", conreg);
5900
5901 /* lock configuration regs with key */
5902 dma8237_write(pp, 0x3F0, 0xBB);
5903
5904 /* Set ECR, DCR in known state */
5905 ECR_WRITE(pp, ECR_mode_001 | ECPP_INTR_MASK | ECPP_INTR_SRV);
5906 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5907
5908 ecpp_error(pp->dip, "m1553_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5909 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5910
5911 return (SUCCESS);
5912 }
5913
5914 #if defined(__x86)
5915 static int
x86_config_chip(struct ecppunit * pp)5916 x86_config_chip(struct ecppunit *pp)
5917 {
5918 if (ecr_write(pp, ECR_mode_001 |
5919 ECPP_INTR_MASK | ECPP_INTR_SRV) == FAILURE) {
5920 ecpp_error(pp->dip, "config chip: failed w/ecr\n");
5921 pp->noecpregs = TRUE;
5922 }
5923 if (pp->noecpregs)
5924 pp->fast_compat = FALSE;
5925 DCR_WRITE(pp, ECPP_SLCTIN | ECPP_nINIT);
5926 ecpp_error(pp->dip, "x86_config_chip: ecr=%x, dsr=%x, dcr=%x\n",
5927 ECR_READ(pp), DSR_READ(pp), DCR_READ(pp));
5928 return (SUCCESS);
5929 }
5930 #endif
5931
5932 /*
5933 * dma8237_dma_start() programs the selected 8 bit channel
5934 * of DMAC1 with the dma cookie. pp->dma_cookie must
5935 * be set before this routine is called.
5936 */
5937 static int
dma8237_dma_start(struct ecppunit * pp)5938 dma8237_dma_start(struct ecppunit *pp)
5939 {
5940 uint8_t chn;
5941
5942 chn = pp->uh.m1553.chn;
5943
5944 ASSERT(chn <= DMAE_CH3 &&
5945 pp->dma_cookie.dmac_size != 0 &&
5946 pp->dma_cookie.dmac_address != NULL);
5947
5948 /* At this point Southbridge has not yet asserted DREQ */
5949
5950 /* set mode to read-from-memory. */
5951 dma8237_write(pp, DMAC2_MODE, DMAMODE_CASC);
5952 if (pp->dma_dir == DDI_DMA_READ) {
5953 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5954 DMAMODE_READ | chn);
5955 } else {
5956 dma8237_write(pp, DMAC1_MODE, DMAMODE_SINGLE |
5957 DMAMODE_WRITE | chn);
5958 }
5959
5960 dma8237_write_addr(pp, pp->dma_cookie.dmac_address);
5961 dma8237_write_count(pp, pp->dma_cookie.dmac_size - 1);
5962
5963 /*
5964 * M1553 chip does not permit to access DMA register banks
5965 * while DMA is in flight. As a result, ecpp and floppy drivers
5966 * can potentially corrupt each other's DMA. The interlocking mechanism
5967 * is provided by a parent nexus driver (isadma), which is enabled
5968 * indirectly through a DMAC1_ALLMASK register access:
5969 *
5970 * writing a non-zero value to this register enters a lock,
5971 * writing zero releases the lock.
5972 *
5973 * DMA transfer must only occur after entering a lock.
5974 * If the lock is already owned by other driver, we will block.
5975 *
5976 * The following operation unmasks our channel and masks all others
5977 */
5978 dma8237_write(pp, DMAC1_ALLMASK, ~(1 << chn));
5979 pp->uh.m1553.isadma_entered = 1;
5980
5981 return (SUCCESS);
5982 }
5983
5984 static int
dma8237_dma_stop(struct ecppunit * pp,size_t * countp)5985 dma8237_dma_stop(struct ecppunit *pp, size_t *countp)
5986 {
5987 uint8_t ecr;
5988
5989 /* stop DMA */
5990 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
5991 (void) ecr_write(pp, ecr);
5992
5993 if (pp->uh.m1553.isadma_entered) {
5994 /* reset the channel mask so we can issue PIO's to our device */
5995 dma8237_write(pp, DMAC1_ALLMASK, 0);
5996 pp->uh.m1553.isadma_entered = 0;
5997
5998 }
5999
6000 /* read DMA count if requested */
6001 if (countp) {
6002 *countp = dma8237_getcnt(pp);
6003 if (pp->dma_dir == DDI_DMA_READ && *countp > 0) {
6004 (*countp)++; /* need correction for reverse xfers */
6005 }
6006 }
6007 return (SUCCESS);
6008 }
6009 #if defined(__x86)
6010 static int
x86_dma_start(struct ecppunit * pp)6011 x86_dma_start(struct ecppunit *pp)
6012 {
6013 uint8_t chn;
6014 struct ddi_dmae_req dmaereq;
6015
6016 chn = pp->uh.x86.chn;
6017 ASSERT(chn <= DMAE_CH3 &&
6018 pp->dma_cookie.dmac_size != 0 &&
6019 pp->dma_cookie.dmac_address != NULL);
6020 bzero(&dmaereq, sizeof (struct ddi_dmae_req));
6021 dmaereq.der_command =
6022 (pp->dma_dir & DDI_DMA_READ) ? DMAE_CMD_READ : DMAE_CMD_WRITE;
6023 if (ddi_dmae_prog(pp->dip, &dmaereq, &pp->dma_cookie, chn)
6024 != DDI_SUCCESS)
6025 ecpp_error(pp->dip, "prog failed !!!\n");
6026 ecpp_error(pp->dip, "dma_started..\n");
6027 return (SUCCESS);
6028 }
6029
6030 static int
x86_dma_stop(struct ecppunit * pp,size_t * countp)6031 x86_dma_stop(struct ecppunit *pp, size_t *countp)
6032 {
6033 uint8_t ecr;
6034
6035 /* stop DMA */
6036 if (pp->uh.x86.chn == 0xff)
6037 return (FAILURE);
6038 ecr = (ECR_READ(pp) & 0xe0) | ECPP_INTR_MASK | ECPP_INTR_SRV;
6039 (void) ecr_write(pp, ecr);
6040 ecpp_error(pp->dip, "dma_stop\n");
6041
6042 /* read DMA count if requested */
6043 if (countp) {
6044 *countp = x86_getcnt(pp);
6045 }
6046 ecpp_error(pp->dip, "dma_stoped..\n");
6047 return (SUCCESS);
6048 }
6049 #endif
6050
6051 /* channel must be masked */
6052 static void
dma8237_write_addr(struct ecppunit * pp,uint32_t addr)6053 dma8237_write_addr(struct ecppunit *pp, uint32_t addr)
6054 {
6055 uint8_t c_addr, c_lpage;
6056 uint16_t c_hpage, *p;
6057
6058 switch (pp->uh.m1553.chn) {
6059 case DMAE_CH0:
6060 c_addr = DMA_0ADR;
6061 c_lpage = DMA_0PAGE;
6062 c_hpage = DMA_0HPG;
6063 break;
6064
6065 case DMAE_CH1:
6066 c_addr = DMA_1ADR;
6067 c_lpage = DMA_1PAGE;
6068 c_hpage = DMA_1HPG;
6069 break;
6070
6071 case DMAE_CH2:
6072 c_addr = DMA_2ADR;
6073 c_lpage = DMA_2PAGE;
6074 c_hpage = DMA_2HPG;
6075 break;
6076
6077 case DMAE_CH3:
6078 c_addr = DMA_3ADR;
6079 c_lpage = DMA_3PAGE;
6080 c_hpage = DMA_3HPG;
6081 break;
6082
6083 default:
6084 return;
6085 }
6086
6087 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6088 ddi_put16(pp->uh.m1553.d_handle, p, addr & 0xFFFF);
6089
6090 dma8237_write(pp, c_lpage, (addr & 0xFF0000) >> 16);
6091 dma8237_write(pp, c_hpage, (addr & 0xFF000000) >> 24);
6092
6093 }
6094
6095 /*
6096 * This function may be useful during debugging,
6097 * so we leave it in, but do not include in the binary
6098 */
6099 #ifdef INCLUDE_DMA8237_READ_ADDR
6100 static uint32_t
dma8237_read_addr(struct ecppunit * pp)6101 dma8237_read_addr(struct ecppunit *pp)
6102 {
6103 uint8_t rval3, rval4;
6104 uint16_t rval16;
6105 uint32_t rval;
6106 uint8_t c_addr, c_lpage;
6107 uint16_t c_hpage, *p;
6108
6109 switch (pp->uh.m1553.chn) {
6110 case DMAE_CH0:
6111 c_addr = DMA_0ADR;
6112 c_lpage = DMA_0PAGE;
6113 c_hpage = DMA_0HPG;
6114 break;
6115
6116 case DMAE_CH1:
6117 c_addr = DMA_1ADR;
6118 c_lpage = DMA_1PAGE;
6119 c_hpage = DMA_1HPG;
6120 break;
6121
6122 case DMAE_CH2:
6123 c_addr = DMA_2ADR;
6124 c_lpage = DMA_2PAGE;
6125 c_hpage = DMA_2HPG;
6126 break;
6127
6128 case DMAE_CH3:
6129 c_addr = DMA_3ADR;
6130 c_lpage = DMA_3PAGE;
6131 c_hpage = DMA_3HPG;
6132 break;
6133
6134 default:
6135 return (NULL);
6136 }
6137
6138 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_addr];
6139 rval16 = ddi_get16(pp->uh.m1553.d_handle, p);
6140
6141 rval3 = dma8237_read(pp, c_lpage);
6142 rval4 = dma8237_read(pp, c_hpage);
6143
6144 rval = rval16 | (rval3 << 16) | (rval4 <<24);
6145
6146 return (rval);
6147 }
6148 #endif
6149
6150 static void
dma8237_write_count(struct ecppunit * pp,uint32_t count)6151 dma8237_write_count(struct ecppunit *pp, uint32_t count)
6152 {
6153 uint8_t c_wcnt;
6154 uint16_t *p;
6155
6156 switch (pp->uh.m1553.chn) {
6157 case DMAE_CH0:
6158 c_wcnt = DMA_0WCNT;
6159 break;
6160
6161 case DMAE_CH1:
6162 c_wcnt = DMA_1WCNT;
6163 break;
6164
6165 case DMAE_CH2:
6166 c_wcnt = DMA_2WCNT;
6167 break;
6168
6169 case DMAE_CH3:
6170 c_wcnt = DMA_3WCNT;
6171 break;
6172
6173 default:
6174 return;
6175 }
6176
6177 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6178 ddi_put16(pp->uh.m1553.d_handle, p, count & 0xFFFF);
6179
6180 }
6181
6182 static uint32_t
dma8237_read_count(struct ecppunit * pp)6183 dma8237_read_count(struct ecppunit *pp)
6184 {
6185 uint8_t c_wcnt;
6186 uint16_t *p;
6187
6188 switch (pp->uh.m1553.chn) {
6189 case DMAE_CH0:
6190 c_wcnt = DMA_0WCNT;
6191 break;
6192
6193 case DMAE_CH1:
6194 c_wcnt = DMA_1WCNT;
6195 break;
6196
6197 case DMAE_CH2:
6198 c_wcnt = DMA_2WCNT;
6199 break;
6200
6201 case DMAE_CH3:
6202 c_wcnt = DMA_3WCNT;
6203 break;
6204
6205 default:
6206 return (NULL);
6207 }
6208
6209 p = (uint16_t *)&pp->uh.m1553.isa_space->isa_reg[c_wcnt];
6210 return (ddi_get16(pp->uh.m1553.d_handle, p));
6211
6212 }
6213
6214 static void
dma8237_write(struct ecppunit * pp,int reg_num,uint8_t val)6215 dma8237_write(struct ecppunit *pp, int reg_num, uint8_t val)
6216 {
6217 ddi_put8(pp->uh.m1553.d_handle,
6218 &pp->uh.m1553.isa_space->isa_reg[reg_num], val);
6219 }
6220
6221 static uint8_t
dma8237_read(struct ecppunit * pp,int reg_num)6222 dma8237_read(struct ecppunit *pp, int reg_num)
6223 {
6224 return (ddi_get8(pp->uh.m1553.d_handle,
6225 &pp->uh.m1553.isa_space->isa_reg[reg_num]));
6226 }
6227
6228 static size_t
dma8237_getcnt(struct ecppunit * pp)6229 dma8237_getcnt(struct ecppunit *pp)
6230 {
6231 uint32_t cnt;
6232
6233 if ((cnt = dma8237_read_count(pp)) == 0xffff)
6234 cnt = 0;
6235 else
6236 cnt++;
6237 return (cnt);
6238 }
6239
6240
6241 /*
6242 *
6243 * Kstat support routines
6244 *
6245 */
6246 static void
ecpp_kstat_init(struct ecppunit * pp)6247 ecpp_kstat_init(struct ecppunit *pp)
6248 {
6249 struct ecppkstat *ekp;
6250 char buf[16];
6251
6252 /*
6253 * Allocate, initialize and install interrupt counter kstat
6254 */
6255 (void) sprintf(buf, "ecppc%d", pp->instance);
6256 pp->intrstats = kstat_create("ecpp", pp->instance, buf, "controller",
6257 KSTAT_TYPE_INTR, 1, KSTAT_FLAG_PERSISTENT);
6258 if (pp->intrstats == NULL) {
6259 ecpp_error(pp->dip, "ecpp_kstat_init:1: kstat_create failed");
6260 } else {
6261 pp->intrstats->ks_update = ecpp_kstatintr_update;
6262 pp->intrstats->ks_private = (void *) pp;
6263 kstat_install(pp->intrstats);
6264 }
6265
6266 /*
6267 * Allocate, initialize and install misc stats kstat
6268 */
6269 pp->ksp = kstat_create("ecpp", pp->instance, NULL, "misc",
6270 KSTAT_TYPE_NAMED,
6271 sizeof (struct ecppkstat) / sizeof (kstat_named_t),
6272 KSTAT_FLAG_PERSISTENT);
6273 if (pp->ksp == NULL) {
6274 ecpp_error(pp->dip, "ecpp_kstat_init:2: kstat_create failed");
6275 return;
6276 }
6277
6278 ekp = (struct ecppkstat *)pp->ksp->ks_data;
6279
6280 #define EK_NAMED_INIT(name) \
6281 kstat_named_init(&ekp->ek_##name, #name, KSTAT_DATA_UINT32)
6282
6283 EK_NAMED_INIT(ctx_obytes);
6284 EK_NAMED_INIT(ctxpio_obytes);
6285 EK_NAMED_INIT(nib_ibytes);
6286 EK_NAMED_INIT(ecp_obytes);
6287 EK_NAMED_INIT(ecp_ibytes);
6288 EK_NAMED_INIT(epp_obytes);
6289 EK_NAMED_INIT(epp_ibytes);
6290 EK_NAMED_INIT(diag_obytes);
6291 EK_NAMED_INIT(to_ctx);
6292 EK_NAMED_INIT(to_nib);
6293 EK_NAMED_INIT(to_ecp);
6294 EK_NAMED_INIT(to_epp);
6295 EK_NAMED_INIT(to_diag);
6296 EK_NAMED_INIT(xfer_tout);
6297 EK_NAMED_INIT(ctx_cf);
6298 EK_NAMED_INIT(joblen);
6299 EK_NAMED_INIT(isr_reattempt_high);
6300 EK_NAMED_INIT(mode);
6301 EK_NAMED_INIT(phase);
6302 EK_NAMED_INIT(backchan);
6303 EK_NAMED_INIT(iomode);
6304 EK_NAMED_INIT(state);
6305
6306 pp->ksp->ks_update = ecpp_kstat_update;
6307 pp->ksp->ks_private = (void *) pp;
6308 kstat_install(pp->ksp);
6309 }
6310
6311 static int
ecpp_kstat_update(kstat_t * ksp,int rw)6312 ecpp_kstat_update(kstat_t *ksp, int rw)
6313 {
6314 struct ecppunit *pp;
6315 struct ecppkstat *ekp;
6316
6317 /*
6318 * For the time being there is no point
6319 * in supporting writable kstats
6320 */
6321 if (rw == KSTAT_WRITE) {
6322 return (EACCES);
6323 }
6324
6325 pp = (struct ecppunit *)ksp->ks_private;
6326 ekp = (struct ecppkstat *)ksp->ks_data;
6327
6328 mutex_enter(&pp->umutex);
6329
6330 ekp->ek_ctx_obytes.value.ui32 = pp->obytes[ECPP_CENTRONICS] +
6331 pp->obytes[ECPP_COMPAT_MODE];
6332 ekp->ek_ctxpio_obytes.value.ui32 = pp->ctxpio_obytes;
6333 ekp->ek_nib_ibytes.value.ui32 = pp->ibytes[ECPP_NIBBLE_MODE];
6334 ekp->ek_ecp_obytes.value.ui32 = pp->obytes[ECPP_ECP_MODE];
6335 ekp->ek_ecp_ibytes.value.ui32 = pp->ibytes[ECPP_ECP_MODE];
6336 ekp->ek_epp_obytes.value.ui32 = pp->obytes[ECPP_EPP_MODE];
6337 ekp->ek_epp_ibytes.value.ui32 = pp->ibytes[ECPP_EPP_MODE];
6338 ekp->ek_diag_obytes.value.ui32 = pp->obytes[ECPP_DIAG_MODE];
6339 ekp->ek_to_ctx.value.ui32 = pp->to_mode[ECPP_CENTRONICS] +
6340 pp->to_mode[ECPP_COMPAT_MODE];
6341 ekp->ek_to_nib.value.ui32 = pp->to_mode[ECPP_NIBBLE_MODE];
6342 ekp->ek_to_ecp.value.ui32 = pp->to_mode[ECPP_ECP_MODE];
6343 ekp->ek_to_epp.value.ui32 = pp->to_mode[ECPP_EPP_MODE];
6344 ekp->ek_to_diag.value.ui32 = pp->to_mode[ECPP_DIAG_MODE];
6345 ekp->ek_xfer_tout.value.ui32 = pp->xfer_tout;
6346 ekp->ek_ctx_cf.value.ui32 = pp->ctx_cf;
6347 ekp->ek_joblen.value.ui32 = pp->joblen;
6348 ekp->ek_isr_reattempt_high.value.ui32 = pp->isr_reattempt_high;
6349 ekp->ek_mode.value.ui32 = pp->current_mode;
6350 ekp->ek_phase.value.ui32 = pp->current_phase;
6351 ekp->ek_backchan.value.ui32 = pp->backchannel;
6352 ekp->ek_iomode.value.ui32 = pp->io_mode;
6353 ekp->ek_state.value.ui32 = pp->e_busy;
6354
6355 mutex_exit(&pp->umutex);
6356
6357 return (0);
6358 }
6359
6360 static int
ecpp_kstatintr_update(kstat_t * ksp,int rw)6361 ecpp_kstatintr_update(kstat_t *ksp, int rw)
6362 {
6363 struct ecppunit *pp;
6364
6365 /*
6366 * For the time being there is no point
6367 * in supporting writable kstats
6368 */
6369 if (rw == KSTAT_WRITE) {
6370 return (EACCES);
6371 }
6372
6373 pp = (struct ecppunit *)ksp->ks_private;
6374
6375 mutex_enter(&pp->umutex);
6376
6377 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_HARD] = pp->intr_hard;
6378 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SPURIOUS] = pp->intr_spurious;
6379 KSTAT_INTR_PTR(ksp)->intrs[KSTAT_INTR_SOFT] = pp->intr_soft;
6380
6381 mutex_exit(&pp->umutex);
6382
6383 return (0);
6384 }
6385