1 /*
2 * Copyright (c) 2017-2018 Cavium, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 * POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /*
29 * File : ecore_cxt.c
30 */
31 #include <sys/cdefs.h>
32 #include "bcm_osal.h"
33 #include "reg_addr.h"
34 #include "common_hsi.h"
35 #include "ecore_hsi_common.h"
36 #include "ecore_hsi_eth.h"
37 #include "tcp_common.h"
38 #include "ecore_hsi_iscsi.h"
39 #include "ecore_hsi_fcoe.h"
40 #include "ecore_hsi_roce.h"
41 #include "ecore_hsi_iwarp.h"
42 #include "ecore_rt_defs.h"
43 #include "ecore_status.h"
44 #include "ecore.h"
45 #include "ecore_init_ops.h"
46 #include "ecore_init_fw_funcs.h"
47 #include "ecore_cxt.h"
48 #include "ecore_hw.h"
49 #include "ecore_dev_api.h"
50 #include "ecore_sriov.h"
51 #include "ecore_rdma.h"
52 #include "ecore_mcp.h"
53
54 /* Max number of connection types in HW (DQ/CDU etc.) */
55 #define MAX_CONN_TYPES PROTOCOLID_COMMON
56 #define NUM_TASK_TYPES 2
57 #define NUM_TASK_PF_SEGMENTS 4
58 #define NUM_TASK_VF_SEGMENTS 1
59
60 /* Doorbell-Queue constants */
61 #define DQ_RANGE_SHIFT 4
62 #define DQ_RANGE_ALIGN (1 << DQ_RANGE_SHIFT)
63
64 /* Searcher constants */
65 #define SRC_MIN_NUM_ELEMS 256
66
67 /* Timers constants */
68 #define TM_SHIFT 7
69 #define TM_ALIGN (1 << TM_SHIFT)
70 #define TM_ELEM_SIZE 4
71
72 /* ILT constants */
73 #define ILT_PAGE_IN_BYTES(hw_p_size) (1U << ((hw_p_size) + 12))
74 #define ILT_CFG_REG(cli, reg) PSWRQ2_REG_##cli##_##reg##_RT_OFFSET
75
76 /* ILT entry structure */
77 #define ILT_ENTRY_PHY_ADDR_MASK 0x000FFFFFFFFFFFULL
78 #define ILT_ENTRY_PHY_ADDR_SHIFT 0
79 #define ILT_ENTRY_VALID_MASK 0x1ULL
80 #define ILT_ENTRY_VALID_SHIFT 52
81 #define ILT_ENTRY_IN_REGS 2
82 #define ILT_REG_SIZE_IN_BYTES 4
83
84 /* connection context union */
85 union conn_context {
86 struct e4_core_conn_context core_ctx;
87 struct e4_eth_conn_context eth_ctx;
88 struct e4_iscsi_conn_context iscsi_ctx;
89 struct e4_fcoe_conn_context fcoe_ctx;
90 struct e4_roce_conn_context roce_ctx;
91 };
92
93 /* TYPE-0 task context - iSCSI, FCOE */
94 union type0_task_context {
95 struct e4_iscsi_task_context iscsi_ctx;
96 struct e4_fcoe_task_context fcoe_ctx;
97 };
98
99 /* TYPE-1 task context - ROCE */
100 union type1_task_context {
101 struct e4_rdma_task_context roce_ctx;
102 };
103
104 struct src_ent {
105 u8 opaque[56];
106 u64 next;
107 };
108
109 #define CDUT_SEG_ALIGNMET 3 /* in 4k chunks */
110 #define CDUT_SEG_ALIGNMET_IN_BYTES (1 << (CDUT_SEG_ALIGNMET + 12))
111
112 #define CONN_CXT_SIZE(p_hwfn) \
113 ALIGNED_TYPE_SIZE(union conn_context, p_hwfn)
114
115 #define SRQ_CXT_SIZE (sizeof(struct rdma_srq_context))
116 #define XRC_SRQ_CXT_SIZE (sizeof(struct rdma_xrc_srq_context))
117
118 #define TYPE0_TASK_CXT_SIZE(p_hwfn) \
119 ALIGNED_TYPE_SIZE(union type0_task_context, p_hwfn)
120
121 /* Alignment is inherent to the type1_task_context structure */
122 #define TYPE1_TASK_CXT_SIZE(p_hwfn) sizeof(union type1_task_context)
123
124 /* PF per protocl configuration object */
125 #define TASK_SEGMENTS (NUM_TASK_PF_SEGMENTS + NUM_TASK_VF_SEGMENTS)
126 #define TASK_SEGMENT_VF (NUM_TASK_PF_SEGMENTS)
127
128 struct ecore_tid_seg {
129 u32 count;
130 u8 type;
131 bool has_fl_mem;
132 };
133
134 struct ecore_conn_type_cfg {
135 u32 cid_count;
136 u32 cids_per_vf;
137 struct ecore_tid_seg tid_seg[TASK_SEGMENTS];
138 };
139
140 /* ILT Client configuration,
141 * Per connection type (protocol) resources (cids, tis, vf cids etc.)
142 * 1 - for connection context (CDUC) and for each task context we need two
143 * values, for regular task context and for force load memory
144 */
145 #define ILT_CLI_PF_BLOCKS (1 + NUM_TASK_PF_SEGMENTS * 2)
146 #define ILT_CLI_VF_BLOCKS (1 + NUM_TASK_VF_SEGMENTS * 2)
147 #define CDUC_BLK (0)
148 #define SRQ_BLK (0)
149 #define CDUT_SEG_BLK(n) (1 + (u8)(n))
150 #define CDUT_FL_SEG_BLK(n, X) (1 + (n) + NUM_TASK_##X##_SEGMENTS)
151
152 struct ilt_cfg_pair {
153 u32 reg;
154 u32 val;
155 };
156
157 struct ecore_ilt_cli_blk {
158 u32 total_size; /* 0 means not active */
159 u32 real_size_in_page;
160 u32 start_line;
161 u32 dynamic_line_cnt;
162 };
163
164 struct ecore_ilt_client_cfg {
165 bool active;
166
167 /* ILT boundaries */
168 struct ilt_cfg_pair first;
169 struct ilt_cfg_pair last;
170 struct ilt_cfg_pair p_size;
171
172 /* ILT client blocks for PF */
173 struct ecore_ilt_cli_blk pf_blks[ILT_CLI_PF_BLOCKS];
174 u32 pf_total_lines;
175
176 /* ILT client blocks for VFs */
177 struct ecore_ilt_cli_blk vf_blks[ILT_CLI_VF_BLOCKS];
178 u32 vf_total_lines;
179 };
180
181 /* Per Path -
182 * ILT shadow table
183 * Protocol acquired CID lists
184 * PF start line in ILT
185 */
186 struct ecore_dma_mem {
187 dma_addr_t p_phys;
188 void *p_virt;
189 osal_size_t size;
190 };
191
192 #define MAP_WORD_SIZE sizeof(unsigned long)
193 #define BITS_PER_MAP_WORD (MAP_WORD_SIZE * 8)
194
195 struct ecore_cid_acquired_map {
196 u32 start_cid;
197 u32 max_count;
198 unsigned long *cid_map;
199 };
200
201 struct ecore_cxt_mngr {
202 /* Per protocl configuration */
203 struct ecore_conn_type_cfg conn_cfg[MAX_CONN_TYPES];
204
205 /* computed ILT structure */
206 struct ecore_ilt_client_cfg clients[ILT_CLI_MAX];
207
208 /* Task type sizes */
209 u32 task_type_size[NUM_TASK_TYPES];
210
211 /* total number of VFs for this hwfn -
212 * ALL VFs are symmetric in terms of HW resources
213 */
214 u32 vf_count;
215
216 /* Acquired CIDs */
217 struct ecore_cid_acquired_map acquired[MAX_CONN_TYPES];
218 /* TBD - do we want this allocated to reserve space? */
219 struct ecore_cid_acquired_map acquired_vf[MAX_CONN_TYPES][COMMON_MAX_NUM_VFS];
220
221 /* ILT shadow table */
222 struct ecore_dma_mem *ilt_shadow;
223 u32 pf_start_line;
224
225 /* Mutex for a dynamic ILT allocation */
226 osal_mutex_t mutex;
227
228 /* SRC T2 */
229 struct ecore_dma_mem *t2;
230 u32 t2_num_pages;
231 u64 first_free;
232 u64 last_free;
233
234 /* The infrastructure originally was very generic and context/task
235 * oriented - per connection-type we would set how many of those
236 * are needed, and later when determining how much memory we're
237 * needing for a given block we'd iterate over all the relevant
238 * connection-types.
239 * But since then we've had some additional resources, some of which
240 * require memory which is independent of the general context/task
241 * scheme. We add those here explicitly per-feature.
242 */
243
244 /* total number of SRQ's for this hwfn */
245 u32 srq_count;
246 u32 xrc_srq_count;
247
248 /* Maximal number of L2 steering filters */
249 u32 arfs_count;
250
251 /* TODO - VF arfs filters ? */
252 };
253
254 /* check if resources/configuration is required according to protocol type */
src_proto(enum protocol_type type)255 static bool src_proto(enum protocol_type type)
256 {
257 return type == PROTOCOLID_ISCSI ||
258 type == PROTOCOLID_FCOE ||
259 type == PROTOCOLID_IWARP;
260 }
261
tm_cid_proto(enum protocol_type type)262 static bool tm_cid_proto(enum protocol_type type)
263 {
264 return type == PROTOCOLID_ISCSI ||
265 type == PROTOCOLID_FCOE ||
266 type == PROTOCOLID_ROCE ||
267 type == PROTOCOLID_IWARP;
268 }
269
tm_tid_proto(enum protocol_type type)270 static bool tm_tid_proto(enum protocol_type type)
271 {
272 return type == PROTOCOLID_FCOE;
273 }
274
275 /* counts the iids for the CDU/CDUC ILT client configuration */
276 struct ecore_cdu_iids {
277 u32 pf_cids;
278 u32 per_vf_cids;
279 };
280
ecore_cxt_cdu_iids(struct ecore_cxt_mngr * p_mngr,struct ecore_cdu_iids * iids)281 static void ecore_cxt_cdu_iids(struct ecore_cxt_mngr *p_mngr,
282 struct ecore_cdu_iids *iids)
283 {
284 u32 type;
285
286 for (type = 0; type < MAX_CONN_TYPES; type++) {
287 iids->pf_cids += p_mngr->conn_cfg[type].cid_count;
288 iids->per_vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
289 }
290 }
291
292 /* counts the iids for the Searcher block configuration */
293 struct ecore_src_iids {
294 u32 pf_cids;
295 u32 per_vf_cids;
296 };
297
ecore_cxt_src_iids(struct ecore_cxt_mngr * p_mngr,struct ecore_src_iids * iids)298 static void ecore_cxt_src_iids(struct ecore_cxt_mngr *p_mngr,
299 struct ecore_src_iids *iids)
300 {
301 u32 i;
302
303 for (i = 0; i < MAX_CONN_TYPES; i++) {
304 if (!src_proto(i))
305 continue;
306
307 iids->pf_cids += p_mngr->conn_cfg[i].cid_count;
308 iids->per_vf_cids += p_mngr->conn_cfg[i].cids_per_vf;
309 }
310
311 /* Add L2 filtering filters in addition */
312 iids->pf_cids += p_mngr->arfs_count;
313 }
314
315 /* counts the iids for the Timers block configuration */
316 struct ecore_tm_iids {
317 u32 pf_cids;
318 u32 pf_tids[NUM_TASK_PF_SEGMENTS]; /* per segment */
319 u32 pf_tids_total;
320 u32 per_vf_cids;
321 u32 per_vf_tids;
322 };
323
ecore_cxt_tm_iids(struct ecore_cxt_mngr * p_mngr,struct ecore_tm_iids * iids)324 static void ecore_cxt_tm_iids(struct ecore_cxt_mngr *p_mngr,
325 struct ecore_tm_iids *iids)
326 {
327 bool tm_vf_required = false;
328 bool tm_required = false;
329 int i, j;
330
331 /* Timers is a special case -> we don't count how many cids require
332 * timers but what's the max cid that will be used by the timer block.
333 * therefore we traverse in reverse order, and once we hit a protocol
334 * that requires the timers memory, we'll sum all the protocols up
335 * to that one.
336 */
337 for (i = MAX_CONN_TYPES - 1; i >= 0; i--) {
338 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[i];
339
340 if (tm_cid_proto(i) || tm_required) {
341 if (p_cfg->cid_count)
342 tm_required = true;
343
344 iids->pf_cids += p_cfg->cid_count;
345 }
346
347 if (tm_cid_proto(i) || tm_vf_required) {
348 if (p_cfg->cids_per_vf)
349 tm_vf_required = true;
350
351 iids->per_vf_cids += p_cfg->cids_per_vf;
352 }
353
354 if (tm_tid_proto(i)) {
355 struct ecore_tid_seg *segs = p_cfg->tid_seg;
356
357 /* for each segment there is at most one
358 * protocol for which count is not 0.
359 */
360 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
361 iids->pf_tids[j] += segs[j].count;
362
363 /* The last array elelment is for the VFs. As for PF
364 * segments there can be only one protocol for
365 * which this value is not 0.
366 */
367 iids->per_vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
368 }
369 }
370
371 iids->pf_cids = ROUNDUP(iids->pf_cids, TM_ALIGN);
372 iids->per_vf_cids = ROUNDUP(iids->per_vf_cids, TM_ALIGN);
373 iids->per_vf_tids = ROUNDUP(iids->per_vf_tids, TM_ALIGN);
374
375 for (iids->pf_tids_total = 0, j = 0; j < NUM_TASK_PF_SEGMENTS; j++) {
376 iids->pf_tids[j] = ROUNDUP(iids->pf_tids[j], TM_ALIGN);
377 iids->pf_tids_total += iids->pf_tids[j];
378 }
379 }
380
ecore_cxt_qm_iids(struct ecore_hwfn * p_hwfn,struct ecore_qm_iids * iids)381 static void ecore_cxt_qm_iids(struct ecore_hwfn *p_hwfn,
382 struct ecore_qm_iids *iids)
383 {
384 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
385 struct ecore_tid_seg *segs;
386 u32 vf_cids = 0, type, j;
387 u32 vf_tids = 0;
388
389 for (type = 0; type < MAX_CONN_TYPES; type++) {
390 iids->cids += p_mngr->conn_cfg[type].cid_count;
391 vf_cids += p_mngr->conn_cfg[type].cids_per_vf;
392
393 segs = p_mngr->conn_cfg[type].tid_seg;
394 /* for each segment there is at most one
395 * protocol for which count is not 0.
396 */
397 for (j = 0; j < NUM_TASK_PF_SEGMENTS; j++)
398 iids->tids += segs[j].count;
399
400 /* The last array elelment is for the VFs. As for PF
401 * segments there can be only one protocol for
402 * which this value is not 0.
403 */
404 vf_tids += segs[NUM_TASK_PF_SEGMENTS].count;
405 }
406
407 iids->vf_cids += vf_cids * p_mngr->vf_count;
408 iids->tids += vf_tids * p_mngr->vf_count;
409
410 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
411 "iids: CIDS %08x vf_cids %08x tids %08x vf_tids %08x\n",
412 iids->cids, iids->vf_cids, iids->tids, vf_tids);
413 }
414
ecore_cxt_tid_seg_info(struct ecore_hwfn * p_hwfn,u32 seg)415 static struct ecore_tid_seg *ecore_cxt_tid_seg_info(struct ecore_hwfn *p_hwfn,
416 u32 seg)
417 {
418 struct ecore_cxt_mngr *p_cfg = p_hwfn->p_cxt_mngr;
419 u32 i;
420
421 /* Find the protocol with tid count > 0 for this segment.
422 Note: there can only be one and this is already validated.
423 */
424 for (i = 0; i < MAX_CONN_TYPES; i++) {
425 if (p_cfg->conn_cfg[i].tid_seg[seg].count)
426 return &p_cfg->conn_cfg[i].tid_seg[seg];
427 }
428 return OSAL_NULL;
429 }
430
ecore_cxt_set_srq_count(struct ecore_hwfn * p_hwfn,u32 num_srqs,u32 num_xrc_srqs)431 static void ecore_cxt_set_srq_count(struct ecore_hwfn *p_hwfn,
432 u32 num_srqs, u32 num_xrc_srqs)
433 {
434 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
435
436 p_mgr->srq_count = num_srqs;
437 p_mgr->xrc_srq_count = num_xrc_srqs;
438 }
439
ecore_cxt_get_srq_count(struct ecore_hwfn * p_hwfn)440 u32 ecore_cxt_get_srq_count(struct ecore_hwfn *p_hwfn)
441 {
442 return p_hwfn->p_cxt_mngr->srq_count;
443 }
444
ecore_cxt_get_xrc_srq_count(struct ecore_hwfn * p_hwfn)445 u32 ecore_cxt_get_xrc_srq_count(struct ecore_hwfn *p_hwfn)
446 {
447 return p_hwfn->p_cxt_mngr->xrc_srq_count;
448 }
449
ecore_cxt_get_ilt_page_size(struct ecore_hwfn * p_hwfn,enum ilt_clients ilt_client)450 u32 ecore_cxt_get_ilt_page_size(struct ecore_hwfn *p_hwfn,
451 enum ilt_clients ilt_client)
452 {
453 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
454 struct ecore_ilt_client_cfg *p_cli = &p_mngr->clients[ilt_client];
455
456 return ILT_PAGE_IN_BYTES(p_cli->p_size.val);
457 }
458
ecore_cxt_srqs_per_page(struct ecore_hwfn * p_hwfn)459 static u32 ecore_cxt_srqs_per_page(struct ecore_hwfn *p_hwfn)
460 {
461 u32 page_size;
462
463 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
464 return page_size / SRQ_CXT_SIZE;
465 }
466
ecore_cxt_get_total_srq_count(struct ecore_hwfn * p_hwfn)467 u32 ecore_cxt_get_total_srq_count(struct ecore_hwfn *p_hwfn)
468 {
469 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
470 u32 total_srqs;
471
472 total_srqs = p_mgr->srq_count;
473
474 /* XRC SRQs use the first and only the first SRQ ILT page. So if XRC
475 * SRQs are requested we need to allocate an extra SRQ ILT page for
476 * them. For that We increase the number of regular SRQs to cause the
477 * allocation of that extra page.
478 */
479 if (p_mgr->xrc_srq_count)
480 total_srqs += ecore_cxt_srqs_per_page(p_hwfn);
481
482 return total_srqs;
483 }
484
485 /* set the iids (cid/tid) count per protocol */
ecore_cxt_set_proto_cid_count(struct ecore_hwfn * p_hwfn,enum protocol_type type,u32 cid_count,u32 vf_cid_cnt)486 static void ecore_cxt_set_proto_cid_count(struct ecore_hwfn *p_hwfn,
487 enum protocol_type type,
488 u32 cid_count, u32 vf_cid_cnt)
489 {
490 struct ecore_cxt_mngr *p_mgr = p_hwfn->p_cxt_mngr;
491 struct ecore_conn_type_cfg *p_conn = &p_mgr->conn_cfg[type];
492
493 p_conn->cid_count = ROUNDUP(cid_count, DQ_RANGE_ALIGN);
494 p_conn->cids_per_vf = ROUNDUP(vf_cid_cnt, DQ_RANGE_ALIGN);
495
496 if (type == PROTOCOLID_ROCE) {
497 u32 page_sz = p_mgr->clients[ILT_CLI_CDUC].p_size.val;
498 u32 cxt_size = CONN_CXT_SIZE(p_hwfn);
499 u32 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
500 u32 align = elems_per_page * DQ_RANGE_ALIGN;
501
502 p_conn->cid_count = ROUNDUP(p_conn->cid_count, align);
503 }
504 }
505
ecore_cxt_get_proto_cid_count(struct ecore_hwfn * p_hwfn,enum protocol_type type,u32 * vf_cid)506 u32 ecore_cxt_get_proto_cid_count(struct ecore_hwfn *p_hwfn,
507 enum protocol_type type,
508 u32 *vf_cid)
509 {
510 if (vf_cid)
511 *vf_cid = p_hwfn->p_cxt_mngr->conn_cfg[type].cids_per_vf;
512
513 return p_hwfn->p_cxt_mngr->conn_cfg[type].cid_count;
514 }
515
ecore_cxt_get_proto_cid_start(struct ecore_hwfn * p_hwfn,enum protocol_type type)516 u32 ecore_cxt_get_proto_cid_start(struct ecore_hwfn *p_hwfn,
517 enum protocol_type type)
518 {
519 return p_hwfn->p_cxt_mngr->acquired[type].start_cid;
520 }
521
ecore_cxt_get_proto_tid_count(struct ecore_hwfn * p_hwfn,enum protocol_type type)522 u32 ecore_cxt_get_proto_tid_count(struct ecore_hwfn *p_hwfn,
523 enum protocol_type type)
524 {
525 u32 cnt = 0;
526 int i;
527
528 for (i = 0; i < TASK_SEGMENTS; i++)
529 cnt += p_hwfn->p_cxt_mngr->conn_cfg[type].tid_seg[i].count;
530
531 return cnt;
532 }
533
ecore_cxt_set_proto_tid_count(struct ecore_hwfn * p_hwfn,enum protocol_type proto,u8 seg,u8 seg_type,u32 count,bool has_fl)534 static void ecore_cxt_set_proto_tid_count(struct ecore_hwfn *p_hwfn,
535 enum protocol_type proto,
536 u8 seg,
537 u8 seg_type,
538 u32 count,
539 bool has_fl)
540 {
541 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
542 struct ecore_tid_seg *p_seg = &p_mngr->conn_cfg[proto].tid_seg[seg];
543
544 p_seg->count = count;
545 p_seg->has_fl_mem = has_fl;
546 p_seg->type = seg_type;
547 }
548
549 /* the *p_line parameter must be either 0 for the first invocation or the
550 value returned in the previous invocation.
551 */
ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg * p_cli,struct ecore_ilt_cli_blk * p_blk,u32 start_line,u32 total_size,u32 elem_size)552 static void ecore_ilt_cli_blk_fill(struct ecore_ilt_client_cfg *p_cli,
553 struct ecore_ilt_cli_blk *p_blk,
554 u32 start_line,
555 u32 total_size,
556 u32 elem_size)
557 {
558 u32 ilt_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
559
560 /* verify that it's called once for each block */
561 if (p_blk->total_size)
562 return;
563
564 p_blk->total_size = total_size;
565 p_blk->real_size_in_page = 0;
566 if (elem_size)
567 p_blk->real_size_in_page = (ilt_size / elem_size) * elem_size;
568 p_blk->start_line = start_line;
569 }
570
ecore_ilt_cli_adv_line(struct ecore_hwfn * p_hwfn,struct ecore_ilt_client_cfg * p_cli,struct ecore_ilt_cli_blk * p_blk,u32 * p_line,enum ilt_clients client_id)571 static void ecore_ilt_cli_adv_line(struct ecore_hwfn *p_hwfn,
572 struct ecore_ilt_client_cfg *p_cli,
573 struct ecore_ilt_cli_blk *p_blk,
574 u32 *p_line,
575 enum ilt_clients client_id)
576 {
577 if (!p_blk->total_size)
578 return;
579
580 if (!p_cli->active)
581 p_cli->first.val = *p_line;
582
583 p_cli->active = true;
584 *p_line += DIV_ROUND_UP(p_blk->total_size, p_blk->real_size_in_page);
585 p_cli->last.val = *p_line-1;
586
587 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
588 "ILT[Client %d] - Lines: [%08x - %08x]. Block - Size %08x [Real %08x] Start line %d\n",
589 client_id, p_cli->first.val, p_cli->last.val,
590 p_blk->total_size, p_blk->real_size_in_page,
591 p_blk->start_line);
592 }
593
ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn * p_hwfn,enum ilt_clients ilt_client)594 static u32 ecore_ilt_get_dynamic_line_cnt(struct ecore_hwfn *p_hwfn,
595 enum ilt_clients ilt_client)
596 {
597 u32 cid_count = p_hwfn->p_cxt_mngr->conn_cfg[PROTOCOLID_ROCE].cid_count;
598 struct ecore_ilt_client_cfg *p_cli;
599 u32 lines_to_skip = 0;
600 u32 cxts_per_p;
601
602 /* TBD MK: ILT code should be simplified once PROTO enum is changed */
603
604 if (ilt_client == ILT_CLI_CDUC) {
605 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
606
607 cxts_per_p = ILT_PAGE_IN_BYTES(p_cli->p_size.val) /
608 (u32)CONN_CXT_SIZE(p_hwfn);
609
610 lines_to_skip = cid_count / cxts_per_p;
611 }
612
613 return lines_to_skip;
614 }
615
616 static struct ecore_ilt_client_cfg *
ecore_cxt_set_cli(struct ecore_ilt_client_cfg * p_cli)617 ecore_cxt_set_cli(struct ecore_ilt_client_cfg *p_cli)
618 {
619 p_cli->active = false;
620 p_cli->first.val = 0;
621 p_cli->last.val = 0;
622 return p_cli;
623 }
624
625 static struct ecore_ilt_cli_blk *
ecore_cxt_set_blk(struct ecore_ilt_cli_blk * p_blk)626 ecore_cxt_set_blk(struct ecore_ilt_cli_blk *p_blk)
627 {
628 p_blk->total_size = 0;
629 return p_blk;
630 }
631
ecore_cxt_cfg_ilt_compute(struct ecore_hwfn * p_hwfn,u32 * line_count)632 enum _ecore_status_t ecore_cxt_cfg_ilt_compute(struct ecore_hwfn *p_hwfn,
633 u32 *line_count)
634 {
635 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
636 u32 curr_line, total, i, task_size, line;
637 struct ecore_ilt_client_cfg *p_cli;
638 struct ecore_ilt_cli_blk *p_blk;
639 struct ecore_cdu_iids cdu_iids;
640 struct ecore_src_iids src_iids;
641 struct ecore_qm_iids qm_iids;
642 struct ecore_tm_iids tm_iids;
643 struct ecore_tid_seg *p_seg;
644
645 OSAL_MEM_ZERO(&qm_iids, sizeof(qm_iids));
646 OSAL_MEM_ZERO(&cdu_iids, sizeof(cdu_iids));
647 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
648 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
649
650 p_mngr->pf_start_line = RESC_START(p_hwfn, ECORE_ILT);
651
652 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
653 "hwfn [%d] - Set context manager starting line to be 0x%08x\n",
654 p_hwfn->my_id, p_hwfn->p_cxt_mngr->pf_start_line);
655
656 /* CDUC */
657 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUC]);
658
659 curr_line = p_mngr->pf_start_line;
660
661 /* CDUC PF */
662 p_cli->pf_total_lines = 0;
663
664 /* get the counters for the CDUC,CDUC and QM clients */
665 ecore_cxt_cdu_iids(p_mngr, &cdu_iids);
666
667 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUC_BLK]);
668
669 total = cdu_iids.pf_cids * CONN_CXT_SIZE(p_hwfn);
670
671 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
672 total, CONN_CXT_SIZE(p_hwfn));
673
674 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
675 p_cli->pf_total_lines = curr_line - p_blk->start_line;
676
677 p_blk->dynamic_line_cnt = ecore_ilt_get_dynamic_line_cnt(p_hwfn,
678 ILT_CLI_CDUC);
679
680 /* CDUC VF */
681 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUC_BLK]);
682 total = cdu_iids.per_vf_cids * CONN_CXT_SIZE(p_hwfn);
683
684 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
685 total, CONN_CXT_SIZE(p_hwfn));
686
687 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_CDUC);
688 p_cli->vf_total_lines = curr_line - p_blk->start_line;
689
690 for (i = 1; i < p_mngr->vf_count; i++)
691 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
692 ILT_CLI_CDUC);
693
694 /* CDUT PF */
695 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_CDUT]);
696 p_cli->first.val = curr_line;
697
698 /* first the 'working' task memory */
699 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
700 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
701 if (!p_seg || p_seg->count == 0)
702 continue;
703
704 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[CDUT_SEG_BLK(i)]);
705 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
706 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total,
707 p_mngr->task_type_size[p_seg->type]);
708
709 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
710 ILT_CLI_CDUT);
711 }
712
713 /* next the 'init' task memory (forced load memory) */
714 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
715 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
716 if (!p_seg || p_seg->count == 0)
717 continue;
718
719 p_blk = ecore_cxt_set_blk(
720 &p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)]);
721
722 if (!p_seg->has_fl_mem) {
723 /* The segment is active (total size pf 'working'
724 * memory is > 0) but has no FL (forced-load, Init)
725 * memory. Thus:
726 *
727 * 1. The total-size in the corrsponding FL block of
728 * the ILT client is set to 0 - No ILT line are
729 * provisioned and no ILT memory allocated.
730 *
731 * 2. The start-line of said block is set to the
732 * start line of the matching working memory
733 * block in the ILT client. This is later used to
734 * configure the CDU segment offset registers and
735 * results in an FL command for TIDs of this
736 * segement behaves as regular load commands
737 * (loading TIDs from the working memory).
738 */
739 line = p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line;
740
741 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
742 continue;
743 }
744 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
745
746 ecore_ilt_cli_blk_fill(p_cli, p_blk,
747 curr_line, total,
748 p_mngr->task_type_size[p_seg->type]);
749
750 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
751 ILT_CLI_CDUT);
752 }
753 p_cli->pf_total_lines = curr_line - p_cli->pf_blks[0].start_line;
754
755 /* CDUT VF */
756 p_seg = ecore_cxt_tid_seg_info(p_hwfn, TASK_SEGMENT_VF);
757 if (p_seg && p_seg->count) {
758 /* Stricly speaking we need to iterate over all VF
759 * task segment types, but a VF has only 1 segment
760 */
761
762 /* 'working' memory */
763 total = p_seg->count * p_mngr->task_type_size[p_seg->type];
764
765 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[CDUT_SEG_BLK(0)]);
766 ecore_ilt_cli_blk_fill(p_cli, p_blk,
767 curr_line, total,
768 p_mngr->task_type_size[p_seg->type]);
769
770 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
771 ILT_CLI_CDUT);
772
773 /* 'init' memory */
774 p_blk = ecore_cxt_set_blk(
775 &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)]);
776 if (!p_seg->has_fl_mem) {
777 /* see comment above */
778 line = p_cli->vf_blks[CDUT_SEG_BLK(0)].start_line;
779 ecore_ilt_cli_blk_fill(p_cli, p_blk, line, 0, 0);
780 } else {
781 task_size = p_mngr->task_type_size[p_seg->type];
782 ecore_ilt_cli_blk_fill(p_cli, p_blk,
783 curr_line, total,
784 task_size);
785 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
786 ILT_CLI_CDUT);
787 }
788 p_cli->vf_total_lines = curr_line -
789 p_cli->vf_blks[0].start_line;
790
791 /* Now for the rest of the VFs */
792 for (i = 1; i < p_mngr->vf_count; i++) {
793 /* don't set p_blk i.e. don't clear total_size */
794 p_blk = &p_cli->vf_blks[CDUT_SEG_BLK(0)];
795 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
796 ILT_CLI_CDUT);
797
798 /* don't set p_blk i.e. don't clear total_size */
799 p_blk = &p_cli->vf_blks[CDUT_FL_SEG_BLK(0, VF)];
800 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
801 ILT_CLI_CDUT);
802 }
803 }
804
805 /* QM */
806 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_QM]);
807 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
808
809 ecore_cxt_qm_iids(p_hwfn, &qm_iids);
810 total = ecore_qm_pf_mem_size(qm_iids.cids,
811 qm_iids.vf_cids, qm_iids.tids,
812 p_hwfn->qm_info.num_pqs,
813 p_hwfn->qm_info.num_vf_pqs);
814
815 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
816 "QM ILT Info, (cids=%d, vf_cids=%d, tids=%d, num_pqs=%d, num_vf_pqs=%d, memory_size=%d)\n",
817 qm_iids.cids, qm_iids.vf_cids, qm_iids.tids,
818 p_hwfn->qm_info.num_pqs, p_hwfn->qm_info.num_vf_pqs, total);
819
820 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line, total * 0x1000,
821 QM_PQ_ELEMENT_SIZE);
822
823 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line, ILT_CLI_QM);
824 p_cli->pf_total_lines = curr_line - p_blk->start_line;
825
826 /* SRC */
827 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_SRC]);
828 ecore_cxt_src_iids(p_mngr, &src_iids);
829
830 /* Both the PF and VFs searcher connections are stored in the per PF
831 * database. Thus sum the PF searcher cids and all the VFs searcher
832 * cids.
833 */
834 total = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
835 if (total) {
836 u32 local_max = OSAL_MAX_T(u32, total,
837 SRC_MIN_NUM_ELEMS);
838
839 total = OSAL_ROUNDUP_POW_OF_TWO(local_max);
840
841 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
842 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
843 total * sizeof(struct src_ent),
844 sizeof(struct src_ent));
845
846 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
847 ILT_CLI_SRC);
848 p_cli->pf_total_lines = curr_line - p_blk->start_line;
849 }
850
851 /* TM PF */
852 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TM]);
853 ecore_cxt_tm_iids(p_mngr, &tm_iids);
854 total = tm_iids.pf_cids + tm_iids.pf_tids_total;
855 if (total) {
856 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[0]);
857 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
858 total * TM_ELEM_SIZE,
859 TM_ELEM_SIZE);
860
861 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
862 ILT_CLI_TM);
863 p_cli->pf_total_lines = curr_line - p_blk->start_line;
864 }
865
866 /* TM VF */
867 total = tm_iids.per_vf_cids + tm_iids.per_vf_tids;
868 if (total) {
869 p_blk = ecore_cxt_set_blk(&p_cli->vf_blks[0]);
870 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
871 total * TM_ELEM_SIZE,
872 TM_ELEM_SIZE);
873
874 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
875 ILT_CLI_TM);
876
877 p_cli->vf_total_lines = curr_line - p_blk->start_line;
878 for (i = 1; i < p_mngr->vf_count; i++) {
879 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
880 ILT_CLI_TM);
881 }
882 }
883
884 /* TSDM (SRQ CONTEXT) */
885 total = ecore_cxt_get_total_srq_count(p_hwfn);
886 if (total) {
887 p_cli = ecore_cxt_set_cli(&p_mngr->clients[ILT_CLI_TSDM]);
888 p_blk = ecore_cxt_set_blk(&p_cli->pf_blks[SRQ_BLK]);
889 ecore_ilt_cli_blk_fill(p_cli, p_blk, curr_line,
890 total * SRQ_CXT_SIZE, SRQ_CXT_SIZE);
891
892 ecore_ilt_cli_adv_line(p_hwfn, p_cli, p_blk, &curr_line,
893 ILT_CLI_TSDM);
894 p_cli->pf_total_lines = curr_line - p_blk->start_line;
895 }
896
897 *line_count = curr_line - p_hwfn->p_cxt_mngr->pf_start_line;
898
899 if (curr_line - p_hwfn->p_cxt_mngr->pf_start_line >
900 RESC_NUM(p_hwfn, ECORE_ILT)) {
901 return ECORE_INVAL;
902 }
903
904 return ECORE_SUCCESS;
905 }
906
ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn * p_hwfn,u32 used_lines)907 u32 ecore_cxt_cfg_ilt_compute_excess(struct ecore_hwfn *p_hwfn, u32 used_lines)
908 {
909 struct ecore_ilt_client_cfg *p_cli;
910 u32 excess_lines, available_lines;
911 struct ecore_cxt_mngr *p_mngr;
912 u32 ilt_page_size, elem_size;
913 struct ecore_tid_seg *p_seg;
914 int i;
915
916 available_lines = RESC_NUM(p_hwfn, ECORE_ILT);
917 excess_lines = used_lines - available_lines;
918
919 if (!excess_lines)
920 return 0;
921
922 if (!ECORE_IS_RDMA_PERSONALITY(p_hwfn))
923 return 0;
924
925 p_mngr = p_hwfn->p_cxt_mngr;
926 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
927 ilt_page_size = ILT_PAGE_IN_BYTES(p_cli->p_size.val);
928
929 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
930 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
931 if (!p_seg || p_seg->count == 0)
932 continue;
933
934 elem_size = p_mngr->task_type_size[p_seg->type];
935 if (!elem_size)
936 continue;
937
938 return (ilt_page_size / elem_size) * excess_lines;
939 }
940
941 DP_ERR(p_hwfn, "failed computing excess ILT lines\n");
942 return 0;
943 }
944
ecore_cxt_src_t2_free(struct ecore_hwfn * p_hwfn)945 static void ecore_cxt_src_t2_free(struct ecore_hwfn *p_hwfn)
946 {
947 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
948 u32 i;
949
950 if (!p_mngr->t2)
951 return;
952
953 for (i = 0; i < p_mngr->t2_num_pages; i++)
954 if (p_mngr->t2[i].p_virt)
955 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
956 p_mngr->t2[i].p_virt,
957 p_mngr->t2[i].p_phys,
958 p_mngr->t2[i].size);
959
960 OSAL_FREE(p_hwfn->p_dev, p_mngr->t2);
961 p_mngr->t2 = OSAL_NULL;
962 }
963
ecore_cxt_src_t2_alloc(struct ecore_hwfn * p_hwfn)964 static enum _ecore_status_t ecore_cxt_src_t2_alloc(struct ecore_hwfn *p_hwfn)
965 {
966 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
967 u32 conn_num, total_size, ent_per_page, psz, i;
968 struct ecore_ilt_client_cfg *p_src;
969 struct ecore_src_iids src_iids;
970 struct ecore_dma_mem *p_t2;
971 enum _ecore_status_t rc;
972
973 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
974
975 /* if the SRC ILT client is inactive - there are no connection
976 * requiring the searcer, leave.
977 */
978 p_src = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_SRC];
979 if (!p_src->active)
980 return ECORE_SUCCESS;
981
982 ecore_cxt_src_iids(p_mngr, &src_iids);
983 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
984 total_size = conn_num * sizeof(struct src_ent);
985
986 /* use the same page size as the SRC ILT client */
987 psz = ILT_PAGE_IN_BYTES(p_src->p_size.val);
988 p_mngr->t2_num_pages = DIV_ROUND_UP(total_size, psz);
989
990 /* allocate t2 */
991 p_mngr->t2 = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
992 p_mngr->t2_num_pages *
993 sizeof(struct ecore_dma_mem));
994 if (!p_mngr->t2) {
995 DP_NOTICE(p_hwfn, false, "Failed to allocate t2 table\n");
996 rc = ECORE_NOMEM;
997 goto t2_fail;
998 }
999
1000 /* allocate t2 pages */
1001 for (i = 0; i < p_mngr->t2_num_pages; i++) {
1002 u32 size = OSAL_MIN_T(u32, total_size, psz);
1003 void **p_virt = &p_mngr->t2[i].p_virt;
1004
1005 *p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1006 &p_mngr->t2[i].p_phys,
1007 size);
1008 if (!p_mngr->t2[i].p_virt) {
1009 rc = ECORE_NOMEM;
1010 goto t2_fail;
1011 }
1012 OSAL_MEM_ZERO(*p_virt, size);
1013 p_mngr->t2[i].size = size;
1014 total_size -= size;
1015 }
1016
1017 /* Set the t2 pointers */
1018
1019 /* entries per page - must be a power of two */
1020 ent_per_page = psz / sizeof(struct src_ent);
1021
1022 p_mngr->first_free = (u64)p_mngr->t2[0].p_phys;
1023
1024 p_t2 = &p_mngr->t2[(conn_num - 1) / ent_per_page];
1025 p_mngr->last_free = (u64)p_t2->p_phys +
1026 ((conn_num - 1) & (ent_per_page - 1)) *
1027 sizeof(struct src_ent);
1028
1029 for (i = 0; i < p_mngr->t2_num_pages; i++) {
1030 u32 ent_num = OSAL_MIN_T(u32, ent_per_page, conn_num);
1031 struct src_ent *entries = p_mngr->t2[i].p_virt;
1032 u64 p_ent_phys = (u64)p_mngr->t2[i].p_phys, val;
1033 u32 j;
1034
1035 for (j = 0; j < ent_num - 1; j++) {
1036 val = p_ent_phys +
1037 (j + 1) * sizeof(struct src_ent);
1038 entries[j].next = OSAL_CPU_TO_BE64(val);
1039 }
1040
1041 if (i < p_mngr->t2_num_pages - 1)
1042 val = (u64)p_mngr->t2[i + 1].p_phys;
1043 else
1044 val = 0;
1045 entries[j].next = OSAL_CPU_TO_BE64(val);
1046
1047 conn_num -= ent_num;
1048 }
1049
1050 return ECORE_SUCCESS;
1051
1052 t2_fail:
1053 ecore_cxt_src_t2_free(p_hwfn);
1054 return rc;
1055 }
1056
1057 #define for_each_ilt_valid_client(pos, clients) \
1058 for (pos = 0; pos < ILT_CLI_MAX; pos++) \
1059 if (!clients[pos].active) { \
1060 continue; \
1061 } else \
1062
1063 /* Total number of ILT lines used by this PF */
ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg * ilt_clients)1064 static u32 ecore_cxt_ilt_shadow_size(struct ecore_ilt_client_cfg *ilt_clients)
1065 {
1066 u32 size = 0;
1067 u32 i;
1068
1069 for_each_ilt_valid_client(i, ilt_clients)
1070 size += (ilt_clients[i].last.val -
1071 ilt_clients[i].first.val + 1);
1072
1073 return size;
1074 }
1075
ecore_ilt_shadow_free(struct ecore_hwfn * p_hwfn)1076 static void ecore_ilt_shadow_free(struct ecore_hwfn *p_hwfn)
1077 {
1078 struct ecore_ilt_client_cfg *p_cli = p_hwfn->p_cxt_mngr->clients;
1079 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1080 u32 ilt_size, i;
1081
1082 if (p_mngr->ilt_shadow == OSAL_NULL)
1083 return;
1084
1085 ilt_size = ecore_cxt_ilt_shadow_size(p_cli);
1086
1087 for (i = 0; p_mngr->ilt_shadow && i < ilt_size; i++) {
1088 struct ecore_dma_mem *p_dma = &p_mngr->ilt_shadow[i];
1089
1090 if (p_dma->p_virt)
1091 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
1092 p_dma->p_virt,
1093 p_dma->p_phys,
1094 p_dma->size);
1095 p_dma->p_virt = OSAL_NULL;
1096 }
1097 OSAL_FREE(p_hwfn->p_dev, p_mngr->ilt_shadow);
1098 p_mngr->ilt_shadow = OSAL_NULL;
1099 }
1100
ecore_ilt_blk_alloc(struct ecore_hwfn * p_hwfn,struct ecore_ilt_cli_blk * p_blk,enum ilt_clients ilt_client,u32 start_line_offset)1101 static enum _ecore_status_t ecore_ilt_blk_alloc(struct ecore_hwfn *p_hwfn,
1102 struct ecore_ilt_cli_blk *p_blk,
1103 enum ilt_clients ilt_client,
1104 u32 start_line_offset)
1105 {
1106 struct ecore_dma_mem *ilt_shadow = p_hwfn->p_cxt_mngr->ilt_shadow;
1107 u32 lines, line, sz_left, lines_to_skip = 0;
1108
1109 /* Special handling for RoCE that supports dynamic allocation */
1110 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn) &&
1111 ((ilt_client == ILT_CLI_CDUT) || ilt_client == ILT_CLI_TSDM))
1112 return ECORE_SUCCESS;
1113
1114 lines_to_skip = p_blk->dynamic_line_cnt;
1115
1116 if (!p_blk->total_size)
1117 return ECORE_SUCCESS;
1118
1119 sz_left = p_blk->total_size;
1120 lines = DIV_ROUND_UP(sz_left, p_blk->real_size_in_page) -
1121 lines_to_skip;
1122 line = p_blk->start_line + start_line_offset -
1123 p_hwfn->p_cxt_mngr->pf_start_line + lines_to_skip;
1124
1125 for (; lines; lines--) {
1126 dma_addr_t p_phys;
1127 void *p_virt;
1128 u32 size;
1129
1130 size = OSAL_MIN_T(u32, sz_left, p_blk->real_size_in_page);
1131 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
1132 &p_phys, size);
1133 if (!p_virt)
1134 return ECORE_NOMEM;
1135 OSAL_MEM_ZERO(p_virt, size);
1136
1137 ilt_shadow[line].p_phys = p_phys;
1138 ilt_shadow[line].p_virt = p_virt;
1139 ilt_shadow[line].size = size;
1140
1141 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1142 "ILT shadow: Line [%d] Physical 0x%llx Virtual %p Size %d\n",
1143 line, (unsigned long long)p_phys, p_virt, size);
1144
1145 sz_left -= size;
1146 line++;
1147 }
1148
1149 return ECORE_SUCCESS;
1150 }
1151
ecore_ilt_shadow_alloc(struct ecore_hwfn * p_hwfn)1152 static enum _ecore_status_t ecore_ilt_shadow_alloc(struct ecore_hwfn *p_hwfn)
1153 {
1154 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1155 struct ecore_ilt_client_cfg *clients = p_mngr->clients;
1156 struct ecore_ilt_cli_blk *p_blk;
1157 u32 size, i, j, k;
1158 enum _ecore_status_t rc;
1159
1160 size = ecore_cxt_ilt_shadow_size(clients);
1161 p_mngr->ilt_shadow = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL,
1162 size * sizeof(struct ecore_dma_mem));
1163
1164 if (p_mngr->ilt_shadow == OSAL_NULL) {
1165 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt shadow table\n");
1166 rc = ECORE_NOMEM;
1167 goto ilt_shadow_fail;
1168 }
1169
1170 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1171 "Allocated 0x%x bytes for ilt shadow\n",
1172 (u32)(size * sizeof(struct ecore_dma_mem)));
1173
1174 for_each_ilt_valid_client(i, clients) {
1175 for (j = 0; j < ILT_CLI_PF_BLOCKS; j++) {
1176 p_blk = &clients[i].pf_blks[j];
1177 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk, i, 0);
1178 if (rc != ECORE_SUCCESS)
1179 goto ilt_shadow_fail;
1180 }
1181 for (k = 0; k < p_mngr->vf_count; k++) {
1182 for (j = 0; j < ILT_CLI_VF_BLOCKS; j++) {
1183 u32 lines = clients[i].vf_total_lines * k;
1184
1185 p_blk = &clients[i].vf_blks[j];
1186 rc = ecore_ilt_blk_alloc(p_hwfn, p_blk,
1187 i, lines);
1188 if (rc != ECORE_SUCCESS)
1189 goto ilt_shadow_fail;
1190 }
1191 }
1192 }
1193
1194 return ECORE_SUCCESS;
1195
1196 ilt_shadow_fail:
1197 ecore_ilt_shadow_free(p_hwfn);
1198 return rc;
1199 }
1200
ecore_cid_map_free(struct ecore_hwfn * p_hwfn)1201 static void ecore_cid_map_free(struct ecore_hwfn *p_hwfn)
1202 {
1203 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1204 u32 type, vf;
1205
1206 for (type = 0; type < MAX_CONN_TYPES; type++) {
1207 OSAL_FREE(p_hwfn->p_dev, p_mngr->acquired[type].cid_map);
1208 p_mngr->acquired[type].cid_map = OSAL_NULL;
1209 p_mngr->acquired[type].max_count = 0;
1210 p_mngr->acquired[type].start_cid = 0;
1211
1212 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1213 OSAL_FREE(p_hwfn->p_dev,
1214 p_mngr->acquired_vf[type][vf].cid_map);
1215 p_mngr->acquired_vf[type][vf].cid_map = OSAL_NULL;
1216 p_mngr->acquired_vf[type][vf].max_count = 0;
1217 p_mngr->acquired_vf[type][vf].start_cid = 0;
1218 }
1219 }
1220 }
1221
1222 static enum _ecore_status_t
ecore_cid_map_alloc_single(struct ecore_hwfn * p_hwfn,u32 type,u32 cid_start,u32 cid_count,struct ecore_cid_acquired_map * p_map)1223 ecore_cid_map_alloc_single(struct ecore_hwfn *p_hwfn, u32 type,
1224 u32 cid_start, u32 cid_count,
1225 struct ecore_cid_acquired_map *p_map)
1226 {
1227 u32 size;
1228
1229 if (!cid_count)
1230 return ECORE_SUCCESS;
1231
1232 size = MAP_WORD_SIZE * DIV_ROUND_UP(cid_count, BITS_PER_MAP_WORD);
1233 p_map->cid_map = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, size);
1234 if (p_map->cid_map == OSAL_NULL)
1235 return ECORE_NOMEM;
1236
1237 p_map->max_count = cid_count;
1238 p_map->start_cid = cid_start;
1239
1240 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
1241 "Type %08x start: %08x count %08x\n",
1242 type, p_map->start_cid, p_map->max_count);
1243
1244 return ECORE_SUCCESS;
1245 }
1246
ecore_cid_map_alloc(struct ecore_hwfn * p_hwfn)1247 static enum _ecore_status_t ecore_cid_map_alloc(struct ecore_hwfn *p_hwfn)
1248 {
1249 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1250 u32 start_cid = 0, vf_start_cid = 0;
1251 u32 type, vf;
1252
1253 for (type = 0; type < MAX_CONN_TYPES; type++) {
1254 struct ecore_conn_type_cfg *p_cfg = &p_mngr->conn_cfg[type];
1255 struct ecore_cid_acquired_map *p_map;
1256
1257 /* Handle PF maps */
1258 p_map = &p_mngr->acquired[type];
1259 if (ecore_cid_map_alloc_single(p_hwfn, type, start_cid,
1260 p_cfg->cid_count, p_map))
1261 goto cid_map_fail;
1262
1263 /* Handle VF maps */
1264 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1265 p_map = &p_mngr->acquired_vf[type][vf];
1266 if (ecore_cid_map_alloc_single(p_hwfn, type,
1267 vf_start_cid,
1268 p_cfg->cids_per_vf,
1269 p_map))
1270 goto cid_map_fail;
1271 }
1272
1273 start_cid += p_cfg->cid_count;
1274 vf_start_cid += p_cfg->cids_per_vf;
1275 }
1276
1277 return ECORE_SUCCESS;
1278
1279 cid_map_fail:
1280 ecore_cid_map_free(p_hwfn);
1281 return ECORE_NOMEM;
1282 }
1283
ecore_cxt_mngr_alloc(struct ecore_hwfn * p_hwfn)1284 enum _ecore_status_t ecore_cxt_mngr_alloc(struct ecore_hwfn *p_hwfn)
1285 {
1286 struct ecore_ilt_client_cfg *clients;
1287 struct ecore_cxt_mngr *p_mngr;
1288 u32 i;
1289
1290 p_mngr = OSAL_ZALLOC(p_hwfn->p_dev, GFP_KERNEL, sizeof(*p_mngr));
1291 if (!p_mngr) {
1292 DP_NOTICE(p_hwfn, false, "Failed to allocate `struct ecore_cxt_mngr'\n");
1293 return ECORE_NOMEM;
1294 }
1295
1296 /* Initialize ILT client registers */
1297 clients = p_mngr->clients;
1298 clients[ILT_CLI_CDUC].first.reg = ILT_CFG_REG(CDUC, FIRST_ILT);
1299 clients[ILT_CLI_CDUC].last.reg = ILT_CFG_REG(CDUC, LAST_ILT);
1300 clients[ILT_CLI_CDUC].p_size.reg = ILT_CFG_REG(CDUC, P_SIZE);
1301
1302 clients[ILT_CLI_QM].first.reg = ILT_CFG_REG(QM, FIRST_ILT);
1303 clients[ILT_CLI_QM].last.reg = ILT_CFG_REG(QM, LAST_ILT);
1304 clients[ILT_CLI_QM].p_size.reg = ILT_CFG_REG(QM, P_SIZE);
1305
1306 clients[ILT_CLI_TM].first.reg = ILT_CFG_REG(TM, FIRST_ILT);
1307 clients[ILT_CLI_TM].last.reg = ILT_CFG_REG(TM, LAST_ILT);
1308 clients[ILT_CLI_TM].p_size.reg = ILT_CFG_REG(TM, P_SIZE);
1309
1310 clients[ILT_CLI_SRC].first.reg = ILT_CFG_REG(SRC, FIRST_ILT);
1311 clients[ILT_CLI_SRC].last.reg = ILT_CFG_REG(SRC, LAST_ILT);
1312 clients[ILT_CLI_SRC].p_size.reg = ILT_CFG_REG(SRC, P_SIZE);
1313
1314 clients[ILT_CLI_CDUT].first.reg = ILT_CFG_REG(CDUT, FIRST_ILT);
1315 clients[ILT_CLI_CDUT].last.reg = ILT_CFG_REG(CDUT, LAST_ILT);
1316 clients[ILT_CLI_CDUT].p_size.reg = ILT_CFG_REG(CDUT, P_SIZE);
1317
1318 clients[ILT_CLI_TSDM].first.reg = ILT_CFG_REG(TSDM, FIRST_ILT);
1319 clients[ILT_CLI_TSDM].last.reg = ILT_CFG_REG(TSDM, LAST_ILT);
1320 clients[ILT_CLI_TSDM].p_size.reg = ILT_CFG_REG(TSDM, P_SIZE);
1321
1322 /* default ILT page size for all clients is 64K */
1323 for (i = 0; i < ILT_CLI_MAX; i++)
1324 p_mngr->clients[i].p_size.val = p_hwfn->p_dev->ilt_page_size;
1325
1326 /* Initialize task sizes */
1327 p_mngr->task_type_size[0] = TYPE0_TASK_CXT_SIZE(p_hwfn);
1328 p_mngr->task_type_size[1] = TYPE1_TASK_CXT_SIZE(p_hwfn);
1329
1330 if (p_hwfn->p_dev->p_iov_info)
1331 p_mngr->vf_count = p_hwfn->p_dev->p_iov_info->total_vfs;
1332
1333 /* Initialize the dynamic ILT allocation mutex */
1334 #ifdef CONFIG_ECORE_LOCK_ALLOC
1335 OSAL_MUTEX_ALLOC(p_hwfn, &p_mngr->mutex);
1336 #endif
1337 OSAL_MUTEX_INIT(&p_mngr->mutex);
1338
1339 /* Set the cxt mangr pointer priori to further allocations */
1340 p_hwfn->p_cxt_mngr = p_mngr;
1341
1342 return ECORE_SUCCESS;
1343 }
1344
ecore_cxt_tables_alloc(struct ecore_hwfn * p_hwfn)1345 enum _ecore_status_t ecore_cxt_tables_alloc(struct ecore_hwfn *p_hwfn)
1346 {
1347 enum _ecore_status_t rc;
1348
1349 /* Allocate the ILT shadow table */
1350 rc = ecore_ilt_shadow_alloc(p_hwfn);
1351 if (rc) {
1352 DP_NOTICE(p_hwfn, false, "Failed to allocate ilt memory\n");
1353 goto tables_alloc_fail;
1354 }
1355
1356 /* Allocate the T2 table */
1357 rc = ecore_cxt_src_t2_alloc(p_hwfn);
1358 if (rc) {
1359 DP_NOTICE(p_hwfn, false, "Failed to allocate T2 memory\n");
1360 goto tables_alloc_fail;
1361 }
1362
1363 /* Allocate and initialize the acquired cids bitmaps */
1364 rc = ecore_cid_map_alloc(p_hwfn);
1365 if (rc) {
1366 DP_NOTICE(p_hwfn, false, "Failed to allocate cid maps\n");
1367 goto tables_alloc_fail;
1368 }
1369
1370 return ECORE_SUCCESS;
1371
1372 tables_alloc_fail:
1373 ecore_cxt_mngr_free(p_hwfn);
1374 return rc;
1375 }
ecore_cxt_mngr_free(struct ecore_hwfn * p_hwfn)1376 void ecore_cxt_mngr_free(struct ecore_hwfn *p_hwfn)
1377 {
1378 if (!p_hwfn->p_cxt_mngr)
1379 return;
1380
1381 ecore_cid_map_free(p_hwfn);
1382 ecore_cxt_src_t2_free(p_hwfn);
1383 ecore_ilt_shadow_free(p_hwfn);
1384 #ifdef CONFIG_ECORE_LOCK_ALLOC
1385 OSAL_MUTEX_DEALLOC(&p_hwfn->p_cxt_mngr->mutex);
1386 #endif
1387 OSAL_FREE(p_hwfn->p_dev, p_hwfn->p_cxt_mngr);
1388
1389 p_hwfn->p_cxt_mngr = OSAL_NULL;
1390 }
1391
ecore_cxt_mngr_setup(struct ecore_hwfn * p_hwfn)1392 void ecore_cxt_mngr_setup(struct ecore_hwfn *p_hwfn)
1393 {
1394 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1395 struct ecore_cid_acquired_map *p_map;
1396 struct ecore_conn_type_cfg *p_cfg;
1397 int type;
1398 u32 len;
1399
1400 /* Reset acquired cids */
1401 for (type = 0; type < MAX_CONN_TYPES; type++) {
1402 u32 vf;
1403
1404 p_cfg = &p_mngr->conn_cfg[type];
1405 if (p_cfg->cid_count) {
1406 p_map = &p_mngr->acquired[type];
1407 len = DIV_ROUND_UP(p_map->max_count,
1408 BITS_PER_MAP_WORD) *
1409 MAP_WORD_SIZE;
1410 OSAL_MEM_ZERO(p_map->cid_map, len);
1411 }
1412
1413 if (!p_cfg->cids_per_vf)
1414 continue;
1415
1416 for (vf = 0; vf < COMMON_MAX_NUM_VFS; vf++) {
1417 p_map = &p_mngr->acquired_vf[type][vf];
1418 len = DIV_ROUND_UP(p_map->max_count,
1419 BITS_PER_MAP_WORD) *
1420 MAP_WORD_SIZE;
1421 OSAL_MEM_ZERO(p_map->cid_map, len);
1422 }
1423 }
1424 }
1425
1426 /* HW initialization helper (per Block, per phase) */
1427
1428 /* CDU Common */
1429 #define CDUC_CXT_SIZE_SHIFT \
1430 CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE_SHIFT
1431
1432 #define CDUC_CXT_SIZE_MASK \
1433 (CDU_REG_CID_ADDR_PARAMS_CONTEXT_SIZE >> CDUC_CXT_SIZE_SHIFT)
1434
1435 #define CDUC_BLOCK_WASTE_SHIFT \
1436 CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE_SHIFT
1437
1438 #define CDUC_BLOCK_WASTE_MASK \
1439 (CDU_REG_CID_ADDR_PARAMS_BLOCK_WASTE >> CDUC_BLOCK_WASTE_SHIFT)
1440
1441 #define CDUC_NCIB_SHIFT \
1442 CDU_REG_CID_ADDR_PARAMS_NCIB_SHIFT
1443
1444 #define CDUC_NCIB_MASK \
1445 (CDU_REG_CID_ADDR_PARAMS_NCIB >> CDUC_NCIB_SHIFT)
1446
1447 #define CDUT_TYPE0_CXT_SIZE_SHIFT \
1448 CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE_SHIFT
1449
1450 #define CDUT_TYPE0_CXT_SIZE_MASK \
1451 (CDU_REG_SEGMENT0_PARAMS_T0_TID_SIZE >> \
1452 CDUT_TYPE0_CXT_SIZE_SHIFT)
1453
1454 #define CDUT_TYPE0_BLOCK_WASTE_SHIFT \
1455 CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE_SHIFT
1456
1457 #define CDUT_TYPE0_BLOCK_WASTE_MASK \
1458 (CDU_REG_SEGMENT0_PARAMS_T0_TID_BLOCK_WASTE >> \
1459 CDUT_TYPE0_BLOCK_WASTE_SHIFT)
1460
1461 #define CDUT_TYPE0_NCIB_SHIFT \
1462 CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK_SHIFT
1463
1464 #define CDUT_TYPE0_NCIB_MASK \
1465 (CDU_REG_SEGMENT0_PARAMS_T0_NUM_TIDS_IN_BLOCK >> \
1466 CDUT_TYPE0_NCIB_SHIFT)
1467
1468 #define CDUT_TYPE1_CXT_SIZE_SHIFT \
1469 CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE_SHIFT
1470
1471 #define CDUT_TYPE1_CXT_SIZE_MASK \
1472 (CDU_REG_SEGMENT1_PARAMS_T1_TID_SIZE >> \
1473 CDUT_TYPE1_CXT_SIZE_SHIFT)
1474
1475 #define CDUT_TYPE1_BLOCK_WASTE_SHIFT \
1476 CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE_SHIFT
1477
1478 #define CDUT_TYPE1_BLOCK_WASTE_MASK \
1479 (CDU_REG_SEGMENT1_PARAMS_T1_TID_BLOCK_WASTE >> \
1480 CDUT_TYPE1_BLOCK_WASTE_SHIFT)
1481
1482 #define CDUT_TYPE1_NCIB_SHIFT \
1483 CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK_SHIFT
1484
1485 #define CDUT_TYPE1_NCIB_MASK \
1486 (CDU_REG_SEGMENT1_PARAMS_T1_NUM_TIDS_IN_BLOCK >> \
1487 CDUT_TYPE1_NCIB_SHIFT)
1488
ecore_cdu_init_common(struct ecore_hwfn * p_hwfn)1489 static void ecore_cdu_init_common(struct ecore_hwfn *p_hwfn)
1490 {
1491 u32 page_sz, elems_per_page, block_waste, cxt_size, cdu_params = 0;
1492
1493 /* CDUC - connection configuration */
1494 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
1495 cxt_size = CONN_CXT_SIZE(p_hwfn);
1496 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1497 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1498
1499 SET_FIELD(cdu_params, CDUC_CXT_SIZE, cxt_size);
1500 SET_FIELD(cdu_params, CDUC_BLOCK_WASTE, block_waste);
1501 SET_FIELD(cdu_params, (u32)CDUC_NCIB, elems_per_page);
1502 STORE_RT_REG(p_hwfn, CDU_REG_CID_ADDR_PARAMS_RT_OFFSET, cdu_params);
1503
1504 /* CDUT - type-0 tasks configuration */
1505 page_sz = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT].p_size.val;
1506 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[0];
1507 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1508 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1509
1510 /* cxt size and block-waste are multipes of 8 */
1511 cdu_params = 0;
1512 SET_FIELD(cdu_params, (u32)CDUT_TYPE0_CXT_SIZE, (cxt_size >> 3));
1513 SET_FIELD(cdu_params, CDUT_TYPE0_BLOCK_WASTE, (block_waste >> 3));
1514 SET_FIELD(cdu_params, CDUT_TYPE0_NCIB, elems_per_page);
1515 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT0_PARAMS_RT_OFFSET, cdu_params);
1516
1517 /* CDUT - type-1 tasks configuration */
1518 cxt_size = p_hwfn->p_cxt_mngr->task_type_size[1];
1519 elems_per_page = ILT_PAGE_IN_BYTES(page_sz) / cxt_size;
1520 block_waste = ILT_PAGE_IN_BYTES(page_sz) - elems_per_page * cxt_size;
1521
1522 /* cxt size and block-waste are multipes of 8 */
1523 cdu_params = 0;
1524 SET_FIELD(cdu_params, (u32)CDUT_TYPE1_CXT_SIZE, (cxt_size >> 3));
1525 SET_FIELD(cdu_params, CDUT_TYPE1_BLOCK_WASTE, (block_waste >> 3));
1526 SET_FIELD(cdu_params, CDUT_TYPE1_NCIB, elems_per_page);
1527 STORE_RT_REG(p_hwfn, CDU_REG_SEGMENT1_PARAMS_RT_OFFSET, cdu_params);
1528 }
1529
1530 /* CDU PF */
1531 #define CDU_SEG_REG_TYPE_SHIFT CDU_SEG_TYPE_OFFSET_REG_TYPE_SHIFT
1532 #define CDU_SEG_REG_TYPE_MASK 0x1
1533 #define CDU_SEG_REG_OFFSET_SHIFT 0
1534 #define CDU_SEG_REG_OFFSET_MASK CDU_SEG_TYPE_OFFSET_REG_OFFSET_MASK
1535
ecore_cdu_init_pf(struct ecore_hwfn * p_hwfn)1536 static void ecore_cdu_init_pf(struct ecore_hwfn *p_hwfn)
1537 {
1538 struct ecore_ilt_client_cfg *p_cli;
1539 struct ecore_tid_seg *p_seg;
1540 u32 cdu_seg_params, offset;
1541 int i;
1542
1543 static const u32 rt_type_offset_arr[] = {
1544 CDU_REG_PF_SEG0_TYPE_OFFSET_RT_OFFSET,
1545 CDU_REG_PF_SEG1_TYPE_OFFSET_RT_OFFSET,
1546 CDU_REG_PF_SEG2_TYPE_OFFSET_RT_OFFSET,
1547 CDU_REG_PF_SEG3_TYPE_OFFSET_RT_OFFSET
1548 };
1549
1550 static const u32 rt_type_offset_fl_arr[] = {
1551 CDU_REG_PF_FL_SEG0_TYPE_OFFSET_RT_OFFSET,
1552 CDU_REG_PF_FL_SEG1_TYPE_OFFSET_RT_OFFSET,
1553 CDU_REG_PF_FL_SEG2_TYPE_OFFSET_RT_OFFSET,
1554 CDU_REG_PF_FL_SEG3_TYPE_OFFSET_RT_OFFSET
1555 };
1556
1557 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1558
1559 /* There are initializations only for CDUT during pf Phase */
1560 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1561 /* Segment 0*/
1562 p_seg = ecore_cxt_tid_seg_info(p_hwfn, i);
1563 if (!p_seg)
1564 continue;
1565
1566 /* Note: start_line is already adjusted for the CDU
1567 * segment register granularity, so we just need to
1568 * divide. Adjustment is implicit as we assume ILT
1569 * Page size is larger than 32K!
1570 */
1571 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1572 (p_cli->pf_blks[CDUT_SEG_BLK(i)].start_line -
1573 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1574
1575 cdu_seg_params = 0;
1576 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1577 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1578 STORE_RT_REG(p_hwfn, rt_type_offset_arr[i],
1579 cdu_seg_params);
1580
1581 offset = (ILT_PAGE_IN_BYTES(p_cli->p_size.val) *
1582 (p_cli->pf_blks[CDUT_FL_SEG_BLK(i, PF)].start_line -
1583 p_cli->first.val)) / CDUT_SEG_ALIGNMET_IN_BYTES;
1584
1585 cdu_seg_params = 0;
1586 SET_FIELD(cdu_seg_params, CDU_SEG_REG_TYPE, p_seg->type);
1587 SET_FIELD(cdu_seg_params, CDU_SEG_REG_OFFSET, offset);
1588 STORE_RT_REG(p_hwfn, rt_type_offset_fl_arr[i],
1589 cdu_seg_params);
1590 }
1591 }
1592
ecore_qm_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt,bool is_pf_loading)1593 void ecore_qm_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt,
1594 bool is_pf_loading)
1595 {
1596 struct ecore_qm_info *qm_info = &p_hwfn->qm_info;
1597 struct ecore_mcp_link_state *p_link;
1598 struct ecore_qm_iids iids;
1599
1600 OSAL_MEM_ZERO(&iids, sizeof(iids));
1601 ecore_cxt_qm_iids(p_hwfn, &iids);
1602
1603 p_link = &ECORE_LEADING_HWFN(p_hwfn->p_dev)->mcp_info->link_output;
1604
1605 ecore_qm_pf_rt_init(p_hwfn, p_ptt, p_hwfn->port_id,
1606 p_hwfn->rel_pf_id, qm_info->max_phys_tcs_per_port,
1607 is_pf_loading,
1608 iids.cids, iids.vf_cids, iids.tids,
1609 qm_info->start_pq,
1610 qm_info->num_pqs - qm_info->num_vf_pqs,
1611 qm_info->num_vf_pqs,
1612 qm_info->start_vport,
1613 qm_info->num_vports, qm_info->pf_wfq,
1614 qm_info->pf_rl, p_link->speed,
1615 p_hwfn->qm_info.qm_pq_params,
1616 p_hwfn->qm_info.qm_vport_params);
1617 }
1618
1619 /* CM PF */
ecore_cm_init_pf(struct ecore_hwfn * p_hwfn)1620 static void ecore_cm_init_pf(struct ecore_hwfn *p_hwfn)
1621 {
1622 STORE_RT_REG(p_hwfn, XCM_REG_CON_PHY_Q3_RT_OFFSET, ecore_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB));
1623 }
1624
1625 /* DQ PF */
ecore_dq_init_pf(struct ecore_hwfn * p_hwfn)1626 static void ecore_dq_init_pf(struct ecore_hwfn *p_hwfn)
1627 {
1628 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1629 u32 dq_pf_max_cid = 0, dq_vf_max_cid = 0;
1630
1631 dq_pf_max_cid += (p_mngr->conn_cfg[0].cid_count >> DQ_RANGE_SHIFT);
1632 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_0_RT_OFFSET, dq_pf_max_cid);
1633
1634 dq_vf_max_cid += (p_mngr->conn_cfg[0].cids_per_vf >> DQ_RANGE_SHIFT);
1635 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_0_RT_OFFSET, dq_vf_max_cid);
1636
1637 dq_pf_max_cid += (p_mngr->conn_cfg[1].cid_count >> DQ_RANGE_SHIFT);
1638 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_1_RT_OFFSET, dq_pf_max_cid);
1639
1640 dq_vf_max_cid += (p_mngr->conn_cfg[1].cids_per_vf >> DQ_RANGE_SHIFT);
1641 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_1_RT_OFFSET, dq_vf_max_cid);
1642
1643 dq_pf_max_cid += (p_mngr->conn_cfg[2].cid_count >> DQ_RANGE_SHIFT);
1644 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_2_RT_OFFSET, dq_pf_max_cid);
1645
1646 dq_vf_max_cid += (p_mngr->conn_cfg[2].cids_per_vf >> DQ_RANGE_SHIFT);
1647 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_2_RT_OFFSET, dq_vf_max_cid);
1648
1649 dq_pf_max_cid += (p_mngr->conn_cfg[3].cid_count >> DQ_RANGE_SHIFT);
1650 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_3_RT_OFFSET, dq_pf_max_cid);
1651
1652 dq_vf_max_cid += (p_mngr->conn_cfg[3].cids_per_vf >> DQ_RANGE_SHIFT);
1653 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_3_RT_OFFSET, dq_vf_max_cid);
1654
1655 dq_pf_max_cid += (p_mngr->conn_cfg[4].cid_count >> DQ_RANGE_SHIFT);
1656 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_4_RT_OFFSET, dq_pf_max_cid);
1657
1658 dq_vf_max_cid += (p_mngr->conn_cfg[4].cids_per_vf >> DQ_RANGE_SHIFT);
1659 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_4_RT_OFFSET, dq_vf_max_cid);
1660
1661 dq_pf_max_cid += (p_mngr->conn_cfg[5].cid_count >> DQ_RANGE_SHIFT);
1662 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_5_RT_OFFSET, dq_pf_max_cid);
1663
1664 dq_vf_max_cid += (p_mngr->conn_cfg[5].cids_per_vf >> DQ_RANGE_SHIFT);
1665 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_5_RT_OFFSET, dq_vf_max_cid);
1666
1667 /* Connection types 6 & 7 are not in use, yet they must be configured
1668 * as the highest possible connection. Not configuring them means the
1669 * defaults will be used, and with a large number of cids a bug may
1670 * occur, if the defaults will be smaller than dq_pf_max_cid /
1671 * dq_vf_max_cid.
1672 */
1673 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_6_RT_OFFSET, dq_pf_max_cid);
1674 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_6_RT_OFFSET, dq_vf_max_cid);
1675
1676 STORE_RT_REG(p_hwfn, DORQ_REG_PF_MAX_ICID_7_RT_OFFSET, dq_pf_max_cid);
1677 STORE_RT_REG(p_hwfn, DORQ_REG_VF_MAX_ICID_7_RT_OFFSET, dq_vf_max_cid);
1678 }
1679
ecore_ilt_bounds_init(struct ecore_hwfn * p_hwfn)1680 static void ecore_ilt_bounds_init(struct ecore_hwfn *p_hwfn)
1681 {
1682 struct ecore_ilt_client_cfg *ilt_clients;
1683 int i;
1684
1685 ilt_clients = p_hwfn->p_cxt_mngr->clients;
1686 for_each_ilt_valid_client(i, ilt_clients) {
1687 STORE_RT_REG(p_hwfn,
1688 ilt_clients[i].first.reg,
1689 ilt_clients[i].first.val);
1690 STORE_RT_REG(p_hwfn,
1691 ilt_clients[i].last.reg,
1692 ilt_clients[i].last.val);
1693 STORE_RT_REG(p_hwfn,
1694 ilt_clients[i].p_size.reg,
1695 ilt_clients[i].p_size.val);
1696 }
1697 }
1698
ecore_ilt_vf_bounds_init(struct ecore_hwfn * p_hwfn)1699 static void ecore_ilt_vf_bounds_init(struct ecore_hwfn *p_hwfn)
1700 {
1701 struct ecore_ilt_client_cfg *p_cli;
1702 u32 blk_factor;
1703
1704 /* For simplicty we set the 'block' to be an ILT page */
1705 if (p_hwfn->p_dev->p_iov_info) {
1706 struct ecore_hw_sriov_info *p_iov = p_hwfn->p_dev->p_iov_info;
1707
1708 STORE_RT_REG(p_hwfn,
1709 PSWRQ2_REG_VF_BASE_RT_OFFSET,
1710 p_iov->first_vf_in_pf);
1711 STORE_RT_REG(p_hwfn,
1712 PSWRQ2_REG_VF_LAST_ILT_RT_OFFSET,
1713 p_iov->first_vf_in_pf + p_iov->total_vfs);
1714 }
1715
1716 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
1717 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1718 if (p_cli->active) {
1719 STORE_RT_REG(p_hwfn,
1720 PSWRQ2_REG_CDUC_BLOCKS_FACTOR_RT_OFFSET,
1721 blk_factor);
1722 STORE_RT_REG(p_hwfn,
1723 PSWRQ2_REG_CDUC_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1724 p_cli->pf_total_lines);
1725 STORE_RT_REG(p_hwfn,
1726 PSWRQ2_REG_CDUC_VF_BLOCKS_RT_OFFSET,
1727 p_cli->vf_total_lines);
1728 }
1729
1730 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
1731 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1732 if (p_cli->active) {
1733 STORE_RT_REG(p_hwfn,
1734 PSWRQ2_REG_CDUT_BLOCKS_FACTOR_RT_OFFSET,
1735 blk_factor);
1736 STORE_RT_REG(p_hwfn,
1737 PSWRQ2_REG_CDUT_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1738 p_cli->pf_total_lines);
1739 STORE_RT_REG(p_hwfn,
1740 PSWRQ2_REG_CDUT_VF_BLOCKS_RT_OFFSET,
1741 p_cli->vf_total_lines);
1742 }
1743
1744 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TM];
1745 blk_factor = OSAL_LOG2(ILT_PAGE_IN_BYTES(p_cli->p_size.val) >> 10);
1746 if (p_cli->active) {
1747 STORE_RT_REG(p_hwfn,
1748 PSWRQ2_REG_TM_BLOCKS_FACTOR_RT_OFFSET,
1749 blk_factor);
1750 STORE_RT_REG(p_hwfn,
1751 PSWRQ2_REG_TM_NUMBER_OF_PF_BLOCKS_RT_OFFSET,
1752 p_cli->pf_total_lines);
1753 STORE_RT_REG(p_hwfn,
1754 PSWRQ2_REG_TM_VF_BLOCKS_RT_OFFSET,
1755 p_cli->vf_total_lines);
1756 }
1757 }
1758
1759 /* ILT (PSWRQ2) PF */
ecore_ilt_init_pf(struct ecore_hwfn * p_hwfn)1760 static void ecore_ilt_init_pf(struct ecore_hwfn *p_hwfn)
1761 {
1762 struct ecore_ilt_client_cfg *clients;
1763 struct ecore_cxt_mngr *p_mngr;
1764 struct ecore_dma_mem *p_shdw;
1765 u32 line, rt_offst, i;
1766
1767 ecore_ilt_bounds_init(p_hwfn);
1768 ecore_ilt_vf_bounds_init(p_hwfn);
1769
1770 p_mngr = p_hwfn->p_cxt_mngr;
1771 p_shdw = p_mngr->ilt_shadow;
1772 clients = p_hwfn->p_cxt_mngr->clients;
1773
1774 for_each_ilt_valid_client(i, clients) {
1775 /* Client's 1st val and RT array are absolute, ILT shadows'
1776 * lines are relative.
1777 */
1778 line = clients[i].first.val - p_mngr->pf_start_line;
1779 rt_offst = PSWRQ2_REG_ILT_MEMORY_RT_OFFSET +
1780 clients[i].first.val * ILT_ENTRY_IN_REGS;
1781
1782 for (; line <= clients[i].last.val - p_mngr->pf_start_line;
1783 line++, rt_offst += ILT_ENTRY_IN_REGS) {
1784 u64 ilt_hw_entry = 0;
1785
1786 /** p_virt could be OSAL_NULL incase of dynamic
1787 * allocation
1788 */
1789 if (p_shdw[line].p_virt != OSAL_NULL) {
1790 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
1791 SET_FIELD(ilt_hw_entry, ILT_ENTRY_PHY_ADDR,
1792 (unsigned long long)(p_shdw[line].p_phys >> 12));
1793
1794 DP_VERBOSE(
1795 p_hwfn, ECORE_MSG_ILT,
1796 "Setting RT[0x%08x] from ILT[0x%08x] [Client is %d] to Physical addr: 0x%llx\n",
1797 rt_offst, line, i,
1798 (unsigned long long)(p_shdw[line].p_phys >> 12));
1799 }
1800
1801 STORE_RT_REG_AGG(p_hwfn, rt_offst, ilt_hw_entry);
1802 }
1803 }
1804 }
1805
1806 /* SRC (Searcher) PF */
ecore_src_init_pf(struct ecore_hwfn * p_hwfn)1807 static void ecore_src_init_pf(struct ecore_hwfn *p_hwfn)
1808 {
1809 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1810 u32 rounded_conn_num, conn_num, conn_max;
1811 struct ecore_src_iids src_iids;
1812
1813 OSAL_MEM_ZERO(&src_iids, sizeof(src_iids));
1814 ecore_cxt_src_iids(p_mngr, &src_iids);
1815 conn_num = src_iids.pf_cids + src_iids.per_vf_cids * p_mngr->vf_count;
1816 if (!conn_num)
1817 return;
1818
1819 conn_max = OSAL_MAX_T(u32, conn_num, SRC_MIN_NUM_ELEMS);
1820 rounded_conn_num = OSAL_ROUNDUP_POW_OF_TWO(conn_max);
1821
1822 STORE_RT_REG(p_hwfn, SRC_REG_COUNTFREE_RT_OFFSET, conn_num);
1823 STORE_RT_REG(p_hwfn, SRC_REG_NUMBER_HASH_BITS_RT_OFFSET,
1824 OSAL_LOG2(rounded_conn_num));
1825
1826 STORE_RT_REG_AGG(p_hwfn, SRC_REG_FIRSTFREE_RT_OFFSET,
1827 p_hwfn->p_cxt_mngr->first_free);
1828 STORE_RT_REG_AGG(p_hwfn, SRC_REG_LASTFREE_RT_OFFSET,
1829 p_hwfn->p_cxt_mngr->last_free);
1830 DP_VERBOSE(p_hwfn, ECORE_MSG_ILT,
1831 "Configured SEARCHER for 0x%08x connections\n",
1832 conn_num);
1833 }
1834
1835 /* Timers PF */
1836 #define TM_CFG_NUM_IDS_SHIFT 0
1837 #define TM_CFG_NUM_IDS_MASK 0xFFFFULL
1838 #define TM_CFG_PRE_SCAN_OFFSET_SHIFT 16
1839 #define TM_CFG_PRE_SCAN_OFFSET_MASK 0x1FFULL
1840 #define TM_CFG_PARENT_PF_SHIFT 25
1841 #define TM_CFG_PARENT_PF_MASK 0x7ULL
1842
1843 #define TM_CFG_CID_PRE_SCAN_ROWS_SHIFT 30
1844 #define TM_CFG_CID_PRE_SCAN_ROWS_MASK 0x1FFULL
1845
1846 #define TM_CFG_TID_OFFSET_SHIFT 30
1847 #define TM_CFG_TID_OFFSET_MASK 0x7FFFFULL
1848 #define TM_CFG_TID_PRE_SCAN_ROWS_SHIFT 49
1849 #define TM_CFG_TID_PRE_SCAN_ROWS_MASK 0x1FFULL
1850
ecore_tm_init_pf(struct ecore_hwfn * p_hwfn)1851 static void ecore_tm_init_pf(struct ecore_hwfn *p_hwfn)
1852 {
1853 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1854 u32 active_seg_mask = 0, tm_offset, rt_reg;
1855 struct ecore_tm_iids tm_iids;
1856 u64 cfg_word;
1857 u8 i;
1858
1859 OSAL_MEM_ZERO(&tm_iids, sizeof(tm_iids));
1860 ecore_cxt_tm_iids(p_mngr, &tm_iids);
1861
1862 /* @@@TBD No pre-scan for now */
1863
1864 /* Note: We assume consecutive VFs for a PF */
1865 for (i = 0; i < p_mngr->vf_count; i++) {
1866 cfg_word = 0;
1867 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_cids);
1868 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1869 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1870 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1871
1872 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1873 (sizeof(cfg_word) / sizeof(u32)) *
1874 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1875 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1876 }
1877
1878 cfg_word = 0;
1879 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_cids);
1880 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1881 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0); /* n/a for PF */
1882 SET_FIELD(cfg_word, TM_CFG_CID_PRE_SCAN_ROWS, 0); /* scan all */
1883
1884 rt_reg = TM_REG_CONFIG_CONN_MEM_RT_OFFSET +
1885 (sizeof(cfg_word) / sizeof(u32)) *
1886 (NUM_OF_VFS(p_hwfn->p_dev) + p_hwfn->rel_pf_id);
1887 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1888
1889 /* enale scan */
1890 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_CONN_RT_OFFSET,
1891 tm_iids.pf_cids ? 0x1 : 0x0);
1892
1893 /* @@@TBD how to enable the scan for the VFs */
1894
1895 tm_offset = tm_iids.per_vf_cids;
1896
1897 /* Note: We assume consecutive VFs for a PF */
1898 for (i = 0; i < p_mngr->vf_count; i++) {
1899 cfg_word = 0;
1900 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.per_vf_tids);
1901 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1902 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, p_hwfn->rel_pf_id);
1903 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1904 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1905
1906 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1907 (sizeof(cfg_word) / sizeof(u32)) *
1908 (p_hwfn->p_dev->p_iov_info->first_vf_in_pf + i);
1909
1910 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1911 }
1912
1913 tm_offset = tm_iids.pf_cids;
1914 for (i = 0; i < NUM_TASK_PF_SEGMENTS; i++) {
1915 cfg_word = 0;
1916 SET_FIELD(cfg_word, TM_CFG_NUM_IDS, tm_iids.pf_tids[i]);
1917 SET_FIELD(cfg_word, TM_CFG_PRE_SCAN_OFFSET, 0);
1918 SET_FIELD(cfg_word, TM_CFG_PARENT_PF, 0);
1919 SET_FIELD(cfg_word, TM_CFG_TID_OFFSET, tm_offset);
1920 SET_FIELD(cfg_word, TM_CFG_TID_PRE_SCAN_ROWS, (u64)0);
1921
1922 rt_reg = TM_REG_CONFIG_TASK_MEM_RT_OFFSET +
1923 (sizeof(cfg_word) / sizeof(u32)) *
1924 (NUM_OF_VFS(p_hwfn->p_dev) +
1925 p_hwfn->rel_pf_id * NUM_TASK_PF_SEGMENTS + i);
1926
1927 STORE_RT_REG_AGG(p_hwfn, rt_reg, cfg_word);
1928 active_seg_mask |= (tm_iids.pf_tids[i] ? (1 << i) : 0);
1929
1930 tm_offset += tm_iids.pf_tids[i];
1931 }
1932
1933 if (ECORE_IS_RDMA_PERSONALITY(p_hwfn))
1934 active_seg_mask = 0;
1935
1936 STORE_RT_REG(p_hwfn, TM_REG_PF_ENABLE_TASK_RT_OFFSET, active_seg_mask);
1937
1938 /* @@@TBD how to enable the scan for the VFs */
1939 }
1940
ecore_prs_init_common(struct ecore_hwfn * p_hwfn)1941 static void ecore_prs_init_common(struct ecore_hwfn *p_hwfn)
1942 {
1943 if ((p_hwfn->hw_info.personality == ECORE_PCI_FCOE) &&
1944 p_hwfn->pf_params.fcoe_pf_params.is_target)
1945 STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_RESP_INITIATOR_TYPE_RT_OFFSET, 0);
1946 }
1947
ecore_prs_init_pf(struct ecore_hwfn * p_hwfn)1948 static void ecore_prs_init_pf(struct ecore_hwfn *p_hwfn)
1949 {
1950 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1951 struct ecore_conn_type_cfg *p_fcoe;
1952 struct ecore_tid_seg *p_tid;
1953
1954 p_fcoe = &p_mngr->conn_cfg[PROTOCOLID_FCOE];
1955
1956 /* If FCoE is active set the MAX OX_ID (tid) in the Parser */
1957 if (!p_fcoe->cid_count)
1958 return;
1959
1960 p_tid = &p_fcoe->tid_seg[ECORE_CXT_FCOE_TID_SEG];
1961 if (p_hwfn->pf_params.fcoe_pf_params.is_target) {
1962 STORE_RT_REG_AGG(p_hwfn,
1963 PRS_REG_TASK_ID_MAX_TARGET_PF_RT_OFFSET,
1964 p_tid->count);
1965 } else {
1966 STORE_RT_REG_AGG(p_hwfn,
1967 PRS_REG_TASK_ID_MAX_INITIATOR_PF_RT_OFFSET,
1968 p_tid->count);
1969 }
1970 }
1971
ecore_cxt_hw_init_common(struct ecore_hwfn * p_hwfn)1972 void ecore_cxt_hw_init_common(struct ecore_hwfn *p_hwfn)
1973 {
1974 /* CDU configuration */
1975 ecore_cdu_init_common(p_hwfn);
1976 ecore_prs_init_common(p_hwfn);
1977 }
1978
ecore_cxt_hw_init_pf(struct ecore_hwfn * p_hwfn,struct ecore_ptt * p_ptt)1979 void ecore_cxt_hw_init_pf(struct ecore_hwfn *p_hwfn, struct ecore_ptt *p_ptt)
1980 {
1981 ecore_qm_init_pf(p_hwfn, p_ptt, true);
1982 ecore_cm_init_pf(p_hwfn);
1983 ecore_dq_init_pf(p_hwfn);
1984 ecore_cdu_init_pf(p_hwfn);
1985 ecore_ilt_init_pf(p_hwfn);
1986 ecore_src_init_pf(p_hwfn);
1987 ecore_tm_init_pf(p_hwfn);
1988 ecore_prs_init_pf(p_hwfn);
1989 }
1990
_ecore_cxt_acquire_cid(struct ecore_hwfn * p_hwfn,enum protocol_type type,u32 * p_cid,u8 vfid)1991 enum _ecore_status_t _ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
1992 enum protocol_type type,
1993 u32 *p_cid, u8 vfid)
1994 {
1995 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
1996 struct ecore_cid_acquired_map *p_map;
1997 u32 rel_cid;
1998
1999 if (type >= MAX_CONN_TYPES) {
2000 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2001 return ECORE_INVAL;
2002 }
2003
2004 if (vfid >= COMMON_MAX_NUM_VFS && vfid != ECORE_CXT_PF_CID) {
2005 DP_NOTICE(p_hwfn, true, "VF [%02x] is out of range\n", vfid);
2006 return ECORE_INVAL;
2007 }
2008
2009 /* Determine the right map to take this CID from */
2010 if (vfid == ECORE_CXT_PF_CID)
2011 p_map = &p_mngr->acquired[type];
2012 else
2013 p_map = &p_mngr->acquired_vf[type][vfid];
2014
2015 if (p_map->cid_map == OSAL_NULL) {
2016 DP_NOTICE(p_hwfn, true, "Invalid protocol type %d", type);
2017 return ECORE_INVAL;
2018 }
2019
2020 rel_cid = OSAL_FIND_FIRST_ZERO_BIT(p_map->cid_map,
2021 p_map->max_count);
2022
2023 if (rel_cid >= p_map->max_count) {
2024 DP_NOTICE(p_hwfn, false, "no CID available for protocol %d\n",
2025 type);
2026 return ECORE_NORESOURCES;
2027 }
2028
2029 OSAL_SET_BIT(rel_cid, p_map->cid_map);
2030
2031 *p_cid = rel_cid + p_map->start_cid;
2032
2033 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2034 "Acquired cid 0x%08x [rel. %08x] vfid %02x type %d\n",
2035 *p_cid, rel_cid, vfid, type);
2036
2037 return ECORE_SUCCESS;
2038 }
2039
ecore_cxt_acquire_cid(struct ecore_hwfn * p_hwfn,enum protocol_type type,u32 * p_cid)2040 enum _ecore_status_t ecore_cxt_acquire_cid(struct ecore_hwfn *p_hwfn,
2041 enum protocol_type type,
2042 u32 *p_cid)
2043 {
2044 return _ecore_cxt_acquire_cid(p_hwfn, type, p_cid, ECORE_CXT_PF_CID);
2045 }
2046
ecore_cxt_test_cid_acquired(struct ecore_hwfn * p_hwfn,u32 cid,u8 vfid,enum protocol_type * p_type,struct ecore_cid_acquired_map ** pp_map)2047 static bool ecore_cxt_test_cid_acquired(struct ecore_hwfn *p_hwfn,
2048 u32 cid, u8 vfid,
2049 enum protocol_type *p_type,
2050 struct ecore_cid_acquired_map **pp_map)
2051 {
2052 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2053 u32 rel_cid;
2054
2055 /* Iterate over protocols and find matching cid range */
2056 for (*p_type = 0; *p_type < MAX_CONN_TYPES; (*p_type)++) {
2057 if (vfid == ECORE_CXT_PF_CID)
2058 *pp_map = &p_mngr->acquired[*p_type];
2059 else
2060 *pp_map = &p_mngr->acquired_vf[*p_type][vfid];
2061
2062 if (!((*pp_map)->cid_map))
2063 continue;
2064 if (cid >= (*pp_map)->start_cid &&
2065 cid < (*pp_map)->start_cid + (*pp_map)->max_count) {
2066 break;
2067 }
2068 }
2069
2070 if (*p_type == MAX_CONN_TYPES) {
2071 DP_NOTICE(p_hwfn, true, "Invalid CID %d vfid %02x", cid, vfid);
2072 goto fail;
2073 }
2074
2075 rel_cid = cid - (*pp_map)->start_cid;
2076 if (!OSAL_TEST_BIT(rel_cid, (*pp_map)->cid_map)) {
2077 DP_NOTICE(p_hwfn, true,
2078 "CID %d [vifd %02x] not acquired", cid, vfid);
2079 goto fail;
2080 }
2081
2082 return true;
2083 fail:
2084 *p_type = MAX_CONN_TYPES;
2085 *pp_map = OSAL_NULL;
2086 return false;
2087 }
2088
_ecore_cxt_release_cid(struct ecore_hwfn * p_hwfn,u32 cid,u8 vfid)2089 void _ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid, u8 vfid)
2090 {
2091 struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2092 enum protocol_type type;
2093 bool b_acquired;
2094 u32 rel_cid;
2095
2096 if (vfid != ECORE_CXT_PF_CID && vfid > COMMON_MAX_NUM_VFS) {
2097 DP_NOTICE(p_hwfn, true,
2098 "Trying to return incorrect CID belonging to VF %02x\n",
2099 vfid);
2100 return;
2101 }
2102
2103 /* Test acquired and find matching per-protocol map */
2104 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, cid, vfid,
2105 &type, &p_map);
2106
2107 if (!b_acquired)
2108 return;
2109
2110 rel_cid = cid - p_map->start_cid;
2111 OSAL_CLEAR_BIT(rel_cid, p_map->cid_map);
2112
2113 DP_VERBOSE(p_hwfn, ECORE_MSG_CXT,
2114 "Released CID 0x%08x [rel. %08x] vfid %02x type %d\n",
2115 cid, rel_cid, vfid, type);
2116 }
2117
ecore_cxt_release_cid(struct ecore_hwfn * p_hwfn,u32 cid)2118 void ecore_cxt_release_cid(struct ecore_hwfn *p_hwfn, u32 cid)
2119 {
2120 _ecore_cxt_release_cid(p_hwfn, cid, ECORE_CXT_PF_CID);
2121 }
2122
ecore_cxt_get_cid_info(struct ecore_hwfn * p_hwfn,struct ecore_cxt_info * p_info)2123 enum _ecore_status_t ecore_cxt_get_cid_info(struct ecore_hwfn *p_hwfn,
2124 struct ecore_cxt_info *p_info)
2125 {
2126 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2127 struct ecore_cid_acquired_map *p_map = OSAL_NULL;
2128 u32 conn_cxt_size, hw_p_size, cxts_per_p, line;
2129 enum protocol_type type;
2130 bool b_acquired;
2131
2132 /* Test acquired and find matching per-protocol map */
2133 b_acquired = ecore_cxt_test_cid_acquired(p_hwfn, p_info->iid,
2134 ECORE_CXT_PF_CID,
2135 &type, &p_map);
2136
2137 if (!b_acquired)
2138 return ECORE_INVAL;
2139
2140 /* set the protocl type */
2141 p_info->type = type;
2142
2143 /* compute context virtual pointer */
2144 hw_p_size = p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC].p_size.val;
2145
2146 conn_cxt_size = CONN_CXT_SIZE(p_hwfn);
2147 cxts_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / conn_cxt_size;
2148 line = p_info->iid / cxts_per_p;
2149
2150 /* Make sure context is allocated (dynamic allocation) */
2151 if (!p_mngr->ilt_shadow[line].p_virt)
2152 return ECORE_INVAL;
2153
2154 p_info->p_cxt = (u8 *)p_mngr->ilt_shadow[line].p_virt +
2155 p_info->iid % cxts_per_p * conn_cxt_size;
2156
2157 DP_VERBOSE(p_hwfn, (ECORE_MSG_ILT | ECORE_MSG_CXT),
2158 "Accessing ILT shadow[%d]: CXT pointer is at %p (for iid %d)\n",
2159 (p_info->iid / cxts_per_p), p_info->p_cxt, p_info->iid);
2160
2161 return ECORE_SUCCESS;
2162 }
2163
ecore_rdma_set_pf_params(struct ecore_hwfn * p_hwfn,struct ecore_rdma_pf_params * p_params,u32 num_tasks)2164 static void ecore_rdma_set_pf_params(struct ecore_hwfn *p_hwfn,
2165 struct ecore_rdma_pf_params *p_params,
2166 u32 num_tasks)
2167 {
2168 u32 num_cons, num_qps;
2169 enum protocol_type proto;
2170
2171 /* The only case RDMA personality can be overriden is if NVRAM is
2172 * configured with ETH_RDMA or if no rdma protocol was requested
2173 */
2174 switch (p_params->rdma_protocol) {
2175 case ECORE_RDMA_PROTOCOL_DEFAULT:
2176 if (p_hwfn->mcp_info->func_info.protocol ==
2177 ECORE_PCI_ETH_RDMA) {
2178 DP_NOTICE(p_hwfn, false,
2179 "Current day drivers don't support RoCE & iWARP. Default to RoCE-only\n");
2180 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2181 }
2182 break;
2183 case ECORE_RDMA_PROTOCOL_NONE:
2184 p_hwfn->hw_info.personality = ECORE_PCI_ETH;
2185 return; /* intentional... nothing left to do... */
2186 case ECORE_RDMA_PROTOCOL_ROCE:
2187 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2188 p_hwfn->hw_info.personality = ECORE_PCI_ETH_ROCE;
2189 break;
2190 case ECORE_RDMA_PROTOCOL_IWARP:
2191 if (p_hwfn->mcp_info->func_info.protocol == ECORE_PCI_ETH_RDMA)
2192 p_hwfn->hw_info.personality = ECORE_PCI_ETH_IWARP;
2193 break;
2194 }
2195
2196 switch (p_hwfn->hw_info.personality) {
2197 case ECORE_PCI_ETH_IWARP:
2198 /* Each QP requires one connection */
2199 num_cons = OSAL_MIN_T(u32, IWARP_MAX_QPS, p_params->num_qps);
2200 #ifdef CONFIG_ECORE_IWARP /* required for the define */
2201 /* additional connections required for passive tcp handling */
2202 num_cons += ECORE_IWARP_PREALLOC_CNT;
2203 #endif
2204 proto = PROTOCOLID_IWARP;
2205 break;
2206 case ECORE_PCI_ETH_ROCE:
2207 num_qps = OSAL_MIN_T(u32, ROCE_MAX_QPS, p_params->num_qps);
2208 num_cons = num_qps * 2; /* each QP requires two connections */
2209 proto = PROTOCOLID_ROCE;
2210 break;
2211 default:
2212 return;
2213 }
2214
2215 if (num_cons && num_tasks) {
2216 u32 num_srqs, num_xrc_srqs, max_xrc_srqs, page_size;
2217
2218 ecore_cxt_set_proto_cid_count(p_hwfn, proto,
2219 num_cons, 0);
2220
2221 /* Deliberatly passing ROCE for tasks id. This is because
2222 * iWARP / RoCE share the task id.
2223 */
2224 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ROCE,
2225 ECORE_CXT_ROCE_TID_SEG,
2226 1, /* RoCE segment type */
2227 num_tasks,
2228 false); /* !force load */
2229
2230 num_srqs = OSAL_MIN_T(u32, ECORE_RDMA_MAX_SRQS,
2231 p_params->num_srqs);
2232
2233 /* XRC SRQs populate a single ILT page */
2234 page_size = ecore_cxt_get_ilt_page_size(p_hwfn, ILT_CLI_TSDM);
2235 max_xrc_srqs = page_size / XRC_SRQ_CXT_SIZE;
2236 max_xrc_srqs = OSAL_MIN_T(u32, max_xrc_srqs, ECORE_RDMA_MAX_XRC_SRQS);
2237
2238 num_xrc_srqs = OSAL_MIN_T(u32, p_params->num_xrc_srqs,
2239 max_xrc_srqs);
2240 ecore_cxt_set_srq_count(p_hwfn, num_srqs, num_xrc_srqs);
2241
2242 } else {
2243 DP_INFO(p_hwfn->p_dev,
2244 "RDMA personality used without setting params!\n");
2245 }
2246 }
2247
ecore_cxt_set_pf_params(struct ecore_hwfn * p_hwfn,u32 rdma_tasks)2248 enum _ecore_status_t ecore_cxt_set_pf_params(struct ecore_hwfn *p_hwfn,
2249 u32 rdma_tasks)
2250 {
2251 /* Set the number of required CORE connections */
2252 u32 core_cids = 1; /* SPQ */
2253
2254 if (p_hwfn->using_ll2)
2255 core_cids += 4; /* @@@TBD Use the proper #define */
2256
2257 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_CORE, core_cids, 0);
2258
2259 switch (p_hwfn->hw_info.personality) {
2260 case ECORE_PCI_ETH_RDMA:
2261 case ECORE_PCI_ETH_IWARP:
2262 case ECORE_PCI_ETH_ROCE:
2263 {
2264 ecore_rdma_set_pf_params(p_hwfn,
2265 &p_hwfn->pf_params.rdma_pf_params,
2266 rdma_tasks);
2267
2268 /* no need for break since RoCE coexist with Ethernet */
2269 }
2270 case ECORE_PCI_ETH:
2271 {
2272 u32 count = 0;
2273
2274 struct ecore_eth_pf_params *p_params =
2275 &p_hwfn->pf_params.eth_pf_params;
2276
2277 if (!p_params->num_vf_cons)
2278 p_params->num_vf_cons = ETH_PF_PARAMS_VF_CONS_DEFAULT;
2279 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2280 p_params->num_cons,
2281 p_params->num_vf_cons);
2282
2283 count = p_params->num_arfs_filters;
2284
2285 if (!OSAL_TEST_BIT(ECORE_MF_DISABLE_ARFS,
2286 &p_hwfn->p_dev->mf_bits))
2287 p_hwfn->p_cxt_mngr->arfs_count = count;
2288
2289 break;
2290 }
2291 case ECORE_PCI_FCOE:
2292 {
2293 struct ecore_fcoe_pf_params *p_params;
2294
2295 p_params = &p_hwfn->pf_params.fcoe_pf_params;
2296
2297 if (p_params->num_cons && p_params->num_tasks) {
2298 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_FCOE,
2299 p_params->num_cons, 0);
2300
2301 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_FCOE,
2302 ECORE_CXT_FCOE_TID_SEG,
2303 0, /* segment type */
2304 p_params->num_tasks,
2305 true);
2306 } else {
2307 DP_INFO(p_hwfn->p_dev,
2308 "Fcoe personality used without setting params!\n");
2309 }
2310 break;
2311 }
2312 case ECORE_PCI_ISCSI:
2313 {
2314 struct ecore_iscsi_pf_params *p_params;
2315
2316 p_params = &p_hwfn->pf_params.iscsi_pf_params;
2317
2318 if (p_params->num_cons && p_params->num_tasks) {
2319 ecore_cxt_set_proto_cid_count(p_hwfn, PROTOCOLID_ISCSI,
2320 p_params->num_cons, 0);
2321
2322 ecore_cxt_set_proto_tid_count(p_hwfn, PROTOCOLID_ISCSI,
2323 ECORE_CXT_ISCSI_TID_SEG,
2324 0, /* segment type */
2325 p_params->num_tasks,
2326 true);
2327 } else {
2328 DP_INFO(p_hwfn->p_dev,
2329 "Iscsi personality used without setting params!\n");
2330 }
2331 break;
2332 }
2333 default:
2334 return ECORE_INVAL;
2335 }
2336
2337 return ECORE_SUCCESS;
2338 }
2339
ecore_cxt_get_tid_mem_info(struct ecore_hwfn * p_hwfn,struct ecore_tid_mem * p_info)2340 enum _ecore_status_t ecore_cxt_get_tid_mem_info(struct ecore_hwfn *p_hwfn,
2341 struct ecore_tid_mem *p_info)
2342 {
2343 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2344 u32 proto, seg, total_lines, i, shadow_line;
2345 struct ecore_ilt_client_cfg *p_cli;
2346 struct ecore_ilt_cli_blk *p_fl_seg;
2347 struct ecore_tid_seg *p_seg_info;
2348
2349 /* Verify the personality */
2350 switch (p_hwfn->hw_info.personality) {
2351 case ECORE_PCI_FCOE:
2352 proto = PROTOCOLID_FCOE;
2353 seg = ECORE_CXT_FCOE_TID_SEG;
2354 break;
2355 case ECORE_PCI_ISCSI:
2356 proto = PROTOCOLID_ISCSI;
2357 seg = ECORE_CXT_ISCSI_TID_SEG;
2358 break;
2359 default:
2360 return ECORE_INVAL;
2361 }
2362
2363 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2364 if (!p_cli->active) {
2365 return ECORE_INVAL;
2366 }
2367
2368 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2369 if (!p_seg_info->has_fl_mem)
2370 return ECORE_INVAL;
2371
2372 p_fl_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2373 total_lines = DIV_ROUND_UP(p_fl_seg->total_size,
2374 p_fl_seg->real_size_in_page);
2375
2376 for (i = 0; i < total_lines; i++) {
2377 shadow_line = i + p_fl_seg->start_line -
2378 p_hwfn->p_cxt_mngr->pf_start_line;
2379 p_info->blocks[i] = p_mngr->ilt_shadow[shadow_line].p_virt;
2380 }
2381 p_info->waste = ILT_PAGE_IN_BYTES(p_cli->p_size.val) -
2382 p_fl_seg->real_size_in_page;
2383 p_info->tid_size = p_mngr->task_type_size[p_seg_info->type];
2384 p_info->num_tids_per_block = p_fl_seg->real_size_in_page /
2385 p_info->tid_size;
2386
2387 return ECORE_SUCCESS;
2388 }
2389
2390 /* This function is very RoCE oriented, if another protocol in the future
2391 * will want this feature we'll need to modify the function to be more generic
2392 */
2393 enum _ecore_status_t
ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn * p_hwfn,enum ecore_cxt_elem_type elem_type,u32 iid)2394 ecore_cxt_dynamic_ilt_alloc(struct ecore_hwfn *p_hwfn,
2395 enum ecore_cxt_elem_type elem_type,
2396 u32 iid)
2397 {
2398 u32 reg_offset, shadow_line, elem_size, hw_p_size, elems_per_p, line;
2399 struct ecore_ilt_client_cfg *p_cli;
2400 struct ecore_ilt_cli_blk *p_blk;
2401 struct ecore_ptt *p_ptt;
2402 dma_addr_t p_phys;
2403 u64 ilt_hw_entry;
2404 void *p_virt;
2405 enum _ecore_status_t rc = ECORE_SUCCESS;
2406
2407 switch (elem_type) {
2408 case ECORE_ELEM_CXT:
2409 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2410 elem_size = CONN_CXT_SIZE(p_hwfn);
2411 p_blk = &p_cli->pf_blks[CDUC_BLK];
2412 break;
2413 case ECORE_ELEM_SRQ:
2414 /* The first ILT page is not used for regular SRQs. Skip it. */
2415 iid += ecore_cxt_srqs_per_page(p_hwfn);
2416 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2417 elem_size = SRQ_CXT_SIZE;
2418 p_blk = &p_cli->pf_blks[SRQ_BLK];
2419 break;
2420 case ECORE_ELEM_XRC_SRQ:
2421 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2422 elem_size = XRC_SRQ_CXT_SIZE;
2423 p_blk = &p_cli->pf_blks[SRQ_BLK];
2424 break;
2425 case ECORE_ELEM_TASK:
2426 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2427 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2428 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2429 break;
2430 default:
2431 DP_NOTICE(p_hwfn, false,
2432 "ECORE_INVALID elem type = %d", elem_type);
2433 return ECORE_INVAL;
2434 }
2435
2436 /* Calculate line in ilt */
2437 hw_p_size = p_cli->p_size.val;
2438 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2439 line = p_blk->start_line + (iid / elems_per_p);
2440 shadow_line = line - p_hwfn->p_cxt_mngr->pf_start_line;
2441
2442 /* If line is already allocated, do nothing, otherwise allocate it and
2443 * write it to the PSWRQ2 registers.
2444 * This section can be run in parallel from different contexts and thus
2445 * a mutex protection is needed.
2446 */
2447 #ifdef _NTDDK_
2448 #pragma warning(suppress : 28121)
2449 #endif
2450 OSAL_MUTEX_ACQUIRE(&p_hwfn->p_cxt_mngr->mutex);
2451
2452 if (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt)
2453 goto out0;
2454
2455 p_ptt = ecore_ptt_acquire(p_hwfn);
2456 if (!p_ptt) {
2457 DP_NOTICE(p_hwfn, false,
2458 "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2459 rc = ECORE_TIMEOUT;
2460 goto out0;
2461 }
2462
2463 p_virt = OSAL_DMA_ALLOC_COHERENT(p_hwfn->p_dev,
2464 &p_phys,
2465 p_blk->real_size_in_page);
2466 if (!p_virt) {
2467 rc = ECORE_NOMEM;
2468 goto out1;
2469 }
2470 OSAL_MEM_ZERO(p_virt, p_blk->real_size_in_page);
2471
2472 /* configuration of refTagMask to 0xF is required for RoCE DIF MR only,
2473 * to compensate for a HW bug, but it is configured even if DIF is not
2474 * enabled. This is harmless and allows us to avoid a dedicated API. We
2475 * configure the field for all of the contexts on the newly allocated
2476 * page.
2477 */
2478 if (elem_type == ECORE_ELEM_TASK) {
2479 u32 elem_i;
2480 u8 *elem_start = (u8 *)p_virt;
2481 union type1_task_context *elem;
2482
2483 for (elem_i = 0; elem_i < elems_per_p; elem_i++) {
2484 elem = (union type1_task_context *)elem_start;
2485 SET_FIELD(elem->roce_ctx.tdif_context.flags1,
2486 TDIF_TASK_CONTEXT_REF_TAG_MASK , 0xf);
2487 elem_start += TYPE1_TASK_CXT_SIZE(p_hwfn);
2488 }
2489 }
2490
2491 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_virt = p_virt;
2492 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys = p_phys;
2493 p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].size =
2494 p_blk->real_size_in_page;
2495
2496 /* compute absolute offset */
2497 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2498 (line * ILT_REG_SIZE_IN_BYTES * ILT_ENTRY_IN_REGS);
2499
2500 ilt_hw_entry = 0;
2501 SET_FIELD(ilt_hw_entry, ILT_ENTRY_VALID, 1ULL);
2502 SET_FIELD(ilt_hw_entry,
2503 ILT_ENTRY_PHY_ADDR,
2504 (p_hwfn->p_cxt_mngr->ilt_shadow[shadow_line].p_phys >> 12));
2505
2506 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a wide-bus */
2507 ecore_dmae_host2grc(p_hwfn, p_ptt, (u64)(osal_uintptr_t)&ilt_hw_entry,
2508 reg_offset, sizeof(ilt_hw_entry) / sizeof(u32),
2509 OSAL_NULL /* default parameters */);
2510
2511 if (elem_type == ECORE_ELEM_CXT) {
2512 u32 last_cid_allocated = (1 + (iid / elems_per_p)) *
2513 elems_per_p;
2514
2515 /* Update the relevant register in the parser */
2516 ecore_wr(p_hwfn, p_ptt, PRS_REG_ROCE_DEST_QP_MAX_PF,
2517 last_cid_allocated - 1);
2518
2519 /* RoCE w/a -> we don't write to the prs search reg until first
2520 * cid is allocated. This is because the prs checks
2521 * last_cid-1 >=0 making 0 a valid value... this will cause
2522 * the a context load to occur on a RoCE packet received with
2523 * cid=0 even before context was initialized, can happen with a
2524 * stray packet from switch or a packet with crc-error
2525 */
2526
2527 if (!p_hwfn->b_rdma_enabled_in_prs) {
2528 /* Enable Rdma search */
2529 ecore_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 1);
2530 p_hwfn->b_rdma_enabled_in_prs = true;
2531 }
2532 }
2533
2534 out1:
2535 ecore_ptt_release(p_hwfn, p_ptt);
2536 out0:
2537 OSAL_MUTEX_RELEASE(&p_hwfn->p_cxt_mngr->mutex);
2538
2539 return rc;
2540 }
2541
2542 /* This function is very RoCE oriented, if another protocol in the future
2543 * will want this feature we'll need to modify the function to be more generic
2544 */
2545 enum _ecore_status_t
ecore_cxt_free_ilt_range(struct ecore_hwfn * p_hwfn,enum ecore_cxt_elem_type elem_type,u32 start_iid,u32 count)2546 ecore_cxt_free_ilt_range(struct ecore_hwfn *p_hwfn,
2547 enum ecore_cxt_elem_type elem_type,
2548 u32 start_iid, u32 count)
2549 {
2550 u32 start_line, end_line, shadow_start_line, shadow_end_line;
2551 u32 reg_offset, elem_size, hw_p_size, elems_per_p;
2552 struct ecore_ilt_client_cfg *p_cli;
2553 struct ecore_ilt_cli_blk *p_blk;
2554 u32 end_iid = start_iid + count;
2555 struct ecore_ptt *p_ptt;
2556 u64 ilt_hw_entry = 0;
2557 u32 i;
2558
2559 switch (elem_type) {
2560 case ECORE_ELEM_CXT:
2561 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUC];
2562 elem_size = CONN_CXT_SIZE(p_hwfn);
2563 p_blk = &p_cli->pf_blks[CDUC_BLK];
2564 break;
2565 case ECORE_ELEM_SRQ:
2566 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_TSDM];
2567 elem_size = SRQ_CXT_SIZE;
2568 p_blk = &p_cli->pf_blks[SRQ_BLK];
2569 break;
2570 case ECORE_ELEM_TASK:
2571 p_cli = &p_hwfn->p_cxt_mngr->clients[ILT_CLI_CDUT];
2572 elem_size = TYPE1_TASK_CXT_SIZE(p_hwfn);
2573 p_blk = &p_cli->pf_blks[CDUT_SEG_BLK(ECORE_CXT_ROCE_TID_SEG)];
2574 break;
2575 default:
2576 DP_NOTICE(p_hwfn, false,
2577 "ECORE_INVALID elem type = %d", elem_type);
2578 return ECORE_INVAL;
2579 }
2580
2581 /* Calculate line in ilt */
2582 hw_p_size = p_cli->p_size.val;
2583 elems_per_p = ILT_PAGE_IN_BYTES(hw_p_size) / elem_size;
2584 start_line = p_blk->start_line + (start_iid / elems_per_p);
2585 end_line = p_blk->start_line + (end_iid / elems_per_p);
2586 if (((end_iid + 1) / elems_per_p) != (end_iid / elems_per_p))
2587 end_line--;
2588
2589 shadow_start_line = start_line - p_hwfn->p_cxt_mngr->pf_start_line;
2590 shadow_end_line = end_line - p_hwfn->p_cxt_mngr->pf_start_line;
2591
2592 p_ptt = ecore_ptt_acquire(p_hwfn);
2593 if (!p_ptt) {
2594 DP_NOTICE(p_hwfn, false, "ECORE_TIME_OUT on ptt acquire - dynamic allocation");
2595 return ECORE_TIMEOUT;
2596 }
2597
2598 for (i = shadow_start_line; i < shadow_end_line; i++) {
2599 if (!p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt)
2600 continue;
2601
2602 OSAL_DMA_FREE_COHERENT(p_hwfn->p_dev,
2603 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt,
2604 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys,
2605 p_hwfn->p_cxt_mngr->ilt_shadow[i].size);
2606
2607 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_virt = OSAL_NULL;
2608 p_hwfn->p_cxt_mngr->ilt_shadow[i].p_phys = 0;
2609 p_hwfn->p_cxt_mngr->ilt_shadow[i].size = 0;
2610
2611 /* compute absolute offset */
2612 reg_offset = PSWRQ2_REG_ILT_MEMORY +
2613 ((start_line++) * ILT_REG_SIZE_IN_BYTES *
2614 ILT_ENTRY_IN_REGS);
2615
2616 /* Write via DMAE since the PSWRQ2_REG_ILT_MEMORY line is a
2617 * wide-bus.
2618 */
2619 ecore_dmae_host2grc(p_hwfn, p_ptt,
2620 (u64)(osal_uintptr_t)&ilt_hw_entry,
2621 reg_offset,
2622 sizeof(ilt_hw_entry) / sizeof(u32),
2623 OSAL_NULL /* default parameters */);
2624 }
2625
2626 ecore_ptt_release(p_hwfn, p_ptt);
2627
2628 return ECORE_SUCCESS;
2629 }
2630
ecore_cxt_get_task_ctx(struct ecore_hwfn * p_hwfn,u32 tid,u8 ctx_type,void ** pp_task_ctx)2631 enum _ecore_status_t ecore_cxt_get_task_ctx(struct ecore_hwfn *p_hwfn,
2632 u32 tid,
2633 u8 ctx_type,
2634 void **pp_task_ctx)
2635 {
2636 struct ecore_cxt_mngr *p_mngr = p_hwfn->p_cxt_mngr;
2637 struct ecore_ilt_client_cfg *p_cli;
2638 struct ecore_tid_seg *p_seg_info;
2639 struct ecore_ilt_cli_blk *p_seg;
2640 u32 num_tids_per_block;
2641 u32 tid_size, ilt_idx;
2642 u32 total_lines;
2643 u32 proto, seg;
2644
2645 /* Verify the personality */
2646 switch (p_hwfn->hw_info.personality) {
2647 case ECORE_PCI_FCOE:
2648 proto = PROTOCOLID_FCOE;
2649 seg = ECORE_CXT_FCOE_TID_SEG;
2650 break;
2651 case ECORE_PCI_ISCSI:
2652 proto = PROTOCOLID_ISCSI;
2653 seg = ECORE_CXT_ISCSI_TID_SEG;
2654 break;
2655 default:
2656 return ECORE_INVAL;
2657 }
2658
2659 p_cli = &p_mngr->clients[ILT_CLI_CDUT];
2660 if (!p_cli->active) {
2661 return ECORE_INVAL;
2662 }
2663
2664 p_seg_info = &p_mngr->conn_cfg[proto].tid_seg[seg];
2665
2666 if (ctx_type == ECORE_CTX_WORKING_MEM) {
2667 p_seg = &p_cli->pf_blks[CDUT_SEG_BLK(seg)];
2668 } else if (ctx_type == ECORE_CTX_FL_MEM) {
2669 if (!p_seg_info->has_fl_mem) {
2670 return ECORE_INVAL;
2671 }
2672 p_seg = &p_cli->pf_blks[CDUT_FL_SEG_BLK(seg, PF)];
2673 } else {
2674 return ECORE_INVAL;
2675 }
2676 total_lines = DIV_ROUND_UP(p_seg->total_size,
2677 p_seg->real_size_in_page);
2678 tid_size = p_mngr->task_type_size[p_seg_info->type];
2679 num_tids_per_block = p_seg->real_size_in_page / tid_size;
2680
2681 if (total_lines < tid/num_tids_per_block)
2682 return ECORE_INVAL;
2683
2684 ilt_idx = tid / num_tids_per_block + p_seg->start_line -
2685 p_mngr->pf_start_line;
2686 *pp_task_ctx = (u8 *)p_mngr->ilt_shadow[ilt_idx].p_virt +
2687 (tid % num_tids_per_block) * tid_size;
2688
2689 return ECORE_SUCCESS;
2690 }
2691