xref: /freebsd/crypto/libecc/src/sig/fuzzing_ecgdsa.c (revision f0865ec9906d5a18fa2a3b61381f22ce16e606ad)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/lib_ecc_config.h>
17 #if defined(WITH_SIG_ECGDSA) && defined(USE_CRYPTOFUZZ)
18 
19 #include <libecc/nn/nn_rand.h>
20 #include <libecc/nn/nn_mul.h>
21 #include <libecc/nn/nn_logical.h>
22 
23 #include <libecc/sig/sig_algs_internal.h>
24 #include <libecc/sig/ec_key.h>
25 #include <libecc/utils/utils.h>
26 #ifdef VERBOSE_INNER_VALUES
27 #define EC_SIG_ALG "ECGDSA"
28 #endif
29 #include <libecc/utils/dbg_sig.h>
30 
31 /* NOTE: the following versions of ECGDSA are "raw" with
32  * no hash functions and nonce override. They are DANGEROUS and
33  * should NOT be used in production mode! They are however useful
34  * for corner cases tests and fuzzing.
35  */
36 #define ECGDSA_SIGN_MAGIC ((word_t)(0xe2f60ea3353ecc9eULL))
37 #define ECGDSA_SIGN_CHECK_INITIALIZED(A, ret, err) \
38         MUST_HAVE((((const void *)(A)) != NULL) && \
39                   ((A)->magic == ECGDSA_SIGN_MAGIC), ret, err)
40 
ecgdsa_sign_raw(struct ec_sign_context * ctx,const u8 * input,u8 inputlen,u8 * sig,u8 siglen,const u8 * nonce,u8 noncelen)41 int ecgdsa_sign_raw(struct ec_sign_context *ctx, const u8 *input, u8 inputlen, u8 *sig, u8 siglen, const u8 *nonce, u8 noncelen)
42 {
43         nn_src_t q, x;
44 	/* NOTE: hash here is not really a hash ... */
45 	u8 e_buf[LOCAL_MIN(255, BIT_LEN_WORDS(NN_MAX_BIT_LEN) * (WORDSIZE / 8))];
46         const ec_priv_key *priv_key;
47         prj_pt_src_t G;
48         u8 hsize, r_len, s_len;
49         bitcnt_t q_bit_len, p_bit_len, rshift;
50         prj_pt kG;
51         int ret, iszero;
52         nn tmp, tmp2, s, e, kr, k, r;
53 #ifdef USE_SIG_BLINDING
54         /* b is the blinding mask */
55         nn b, binv;
56 	b.magic = binv.magic = WORD(0);
57 #endif
58 	tmp.magic = tmp2.magic = s.magic = e.magic = WORD(0);
59 	kr.magic = k.magic = r.magic = WORD(0);
60 	kG.magic = WORD(0);
61 
62 	/*
63 	 * First, verify context has been initialized and private
64 	 * part too. This guarantees the context is an EC-GDSA
65 	 * signature one and we do not finalize() before init().
66 	 */
67 	ret = sig_sign_check_initialized(ctx); EG(ret, err);
68 	ECGDSA_SIGN_CHECK_INITIALIZED(&(ctx->sign_data.ecgdsa), ret, err);
69 	MUST_HAVE((sig != NULL) && (input != NULL), ret, err);
70 
71         /* Zero init points */
72         ret = local_memset(&kG, 0, sizeof(prj_pt)); EG(ret, err);
73 
74 	/* Make things more readable */
75 	priv_key = &(ctx->key_pair->priv_key);
76 	G = &(priv_key->params->ec_gen);
77 	q = &(priv_key->params->ec_gen_order);
78 	x = &(priv_key->x);
79 	q_bit_len = priv_key->params->ec_gen_order_bitlen;
80 	p_bit_len = priv_key->params->ec_fp.p_bitlen;
81 	MUST_HAVE(((u32)BYTECEIL(p_bit_len) <= NN_MAX_BYTE_LEN), ret, err);
82 	r_len = (u8)ECGDSA_R_LEN(q_bit_len);
83 	s_len = (u8)ECGDSA_S_LEN(q_bit_len);
84 	hsize = inputlen;
85 
86 	MUST_HAVE((siglen == ECGDSA_SIGLEN(q_bit_len)), ret, err);
87 
88 	dbg_nn_print("p", &(priv_key->params->ec_fp.p));
89 	dbg_nn_print("q", q);
90 	dbg_priv_key_print("x", priv_key);
91 	dbg_ec_point_print("G", G);
92 	dbg_pub_key_print("Y", &(ctx->key_pair->pub_key));
93 
94 	/* 1. Compute h = H(m) */
95         /* NOTE: here we have raw ECGDSA, this is the raw input */
96 	/* NOTE: the MUST_HAVE is protected by a preprocessing check
97 	 * to avoid -Werror=type-limits errors:
98 	 * "error: comparison is always true due to limited range of data type"
99 	 */
100 #if LOCAL_MIN(255, BIT_LEN_WORDS(NN_MAX_BIT_LEN) * (WORDSIZE / 8)) < 255
101 	MUST_HAVE(((u32)inputlen <= sizeof(e_buf)), ret, err);
102 #endif
103         ret = local_memset(e_buf, 0, sizeof(e_buf)); EG(ret, err);
104         ret = local_memcpy(e_buf, input, hsize); EG(ret, err);
105 	dbg_buf_print("H(m)", e_buf, hsize);
106 
107         /*
108          * If |h| > bitlen(q), set h to bitlen(q)
109          * leftmost bits of h.
110          *
111          */
112         rshift = 0;
113         if ((hsize * 8) > q_bit_len) {
114                 rshift = (bitcnt_t)((hsize * 8) - q_bit_len);
115         }
116         ret = nn_init_from_buf(&tmp, e_buf, hsize); EG(ret, err);
117         ret = local_memset(e_buf, 0, hsize); EG(ret, err);
118         if (rshift) {
119 		ret = nn_rshift_fixedlen(&tmp, &tmp, rshift); EG(ret, err);
120         }
121         dbg_nn_print("H(m) truncated as nn", &tmp);
122 
123 	/*
124 	 * 2. Convert h to an integer and then compute e = -h mod q,
125 	 *    i.e. compute e = - OS2I(h) mod q
126 	 *
127 	 * Because we only support positive integers, we compute
128 	 * e = q - (h mod q) (except when h is 0).
129 	 */
130 	ret = nn_mod(&tmp2, &tmp, q); EG(ret, err);
131 	ret = nn_mod_neg(&e, &tmp2, q); EG(ret, err);
132 
133 /*
134      NOTE: the restart label is removed in CRYPTOFUZZ mode as
135      we trigger MUST_HAVE instead of restarting in this mode.
136  restart:
137 */
138 	/* 3. Get a random value k in ]0,q[ */
139         /* NOTE: copy our input nonce if not NULL */
140         if(nonce != NULL){
141 		MUST_HAVE((noncelen <= (u8)(BYTECEIL(q_bit_len))), ret, err);
142 		ret = nn_init_from_buf(&k, nonce, noncelen); EG(ret, err);
143         }
144         else{
145                 ret = ctx->rand(&k, q); EG(ret, err);
146         }
147 
148 #ifdef USE_SIG_BLINDING
149         /* Note: if we use blinding, e and e are multiplied by
150          * a random value b in ]0,q[ */
151         ret = nn_get_random_mod(&b, q); EG(ret, err);
152         dbg_nn_print("b", &b);
153 #endif /* USE_SIG_BLINDING */
154 
155 
156 	/* 4. Compute W = kG = (Wx, Wy) */
157 #ifdef USE_SIG_BLINDING
158         /* We use blinding for the scalar multiplication */
159         ret = prj_pt_mul_blind(&kG, &k, G); EG(ret, err);
160 #else
161 	ret = prj_pt_mul(&kG, &k, G); EG(ret, err);
162 #endif /* USE_SIG_BLINDING */
163 	ret = prj_pt_unique(&kG, &kG); EG(ret, err);
164 
165 	dbg_nn_print("W_x", &(kG.X.fp_val));
166 	dbg_nn_print("W_y", &(kG.Y.fp_val));
167 
168 	/* 5. Compute r = Wx mod q */
169 	ret = nn_mod(&r, &(kG.X.fp_val), q); EG(ret, err);
170 	dbg_nn_print("r", &r);
171 
172 	/* 6. If r is 0, restart the process at step 4. */
173         /* NOTE: for the CRYPTOFUZZ mode, we do not restart
174          * the procedure but throw an assert exception instead.
175          */
176 	ret = nn_iszero(&r, &iszero); EG(ret, err);
177         MUST_HAVE((!iszero), ret, err);
178 
179 	/* Export r */
180 	ret = nn_export_to_buf(sig, r_len, &r); EG(ret, err);
181 
182 #ifdef USE_SIG_BLINDING
183 	/* Blind e and r with b */
184 	ret = nn_mod_mul(&e, &e, &b, q); EG(ret, err);
185 	ret = nn_mod_mul(&r, &r, &b, q); EG(ret, err);
186 #endif /* USE_SIG_BLINDING */
187 	/* 7. Compute s = x(kr + e) mod q */
188 	ret = nn_mod_mul(&kr, &k, &r, q); EG(ret, err);
189 	ret = nn_mod_add(&tmp2, &kr, &e, q); EG(ret, err);
190 	ret = nn_mod_mul(&s, x, &tmp2, q); EG(ret, err);
191 #ifdef USE_SIG_BLINDING
192 	/* Unblind s */
193         /* NOTE: we use Fermat's little theorem inversion for
194          * constant time here. This is possible since q is prime.
195          */
196 	ret = nn_modinv_fermat(&binv, &b, q); EG(ret, err);
197 	ret = nn_mod_mul(&s, &s, &binv, q); EG(ret, err);
198 #endif
199 	dbg_nn_print("s", &s);
200 
201 	/* 8. If s is 0, restart the process at step 4. */
202         /* NOTE: for the CRYPTOFUZZ mode, we do not restart
203          * the procedure but throw an assert exception instead.
204          */
205 	ret = nn_iszero(&s, &iszero); EG(ret, err);
206         MUST_HAVE((!iszero), ret, err);
207 
208 	/* 9. Return (r,s) */
209 	ret = nn_export_to_buf(sig + r_len, s_len, &s);
210 
211  err:
212 	nn_uninit(&r);
213 	nn_uninit(&s);
214 	nn_uninit(&tmp2);
215 	nn_uninit(&tmp);
216 	nn_uninit(&e);
217 	nn_uninit(&kr);
218 	nn_uninit(&k);
219 
220 	prj_pt_uninit(&kG);
221 
222 	/*
223 	 * We can now clear data part of the context. This will clear
224 	 * magic and avoid further reuse of the whole context.
225 	 */
226 	if(ctx != NULL){
227 		IGNORE_RET_VAL(local_memset(&(ctx->sign_data.ecgdsa), 0, sizeof(ecgdsa_sign_data)));
228 	}
229 
230 	/* Clean what remains on the stack */
231 	VAR_ZEROIFY(q_bit_len);
232 	VAR_ZEROIFY(p_bit_len);
233 	VAR_ZEROIFY(r_len);
234 	VAR_ZEROIFY(s_len);
235 	VAR_ZEROIFY(hsize);
236 	PTR_NULLIFY(q);
237 	PTR_NULLIFY(x);
238 	PTR_NULLIFY(priv_key);
239 	PTR_NULLIFY(G);
240 
241 #ifdef USE_SIG_BLINDING
242 	nn_uninit(&b);
243 	nn_uninit(&binv);
244 #endif /* USE_SIG_BLINDING */
245 
246 	return ret;
247 }
248 
249 /******************************/
250 #define ECGDSA_VERIFY_MAGIC ((word_t)(0xd4da37527288d1b6ULL))
251 #define ECGDSA_VERIFY_CHECK_INITIALIZED(A, ret, err) \
252         MUST_HAVE((((const void *)(A)) != NULL) && \
253                   ((A)->magic == ECGDSA_VERIFY_MAGIC), ret, err)
254 
ecgdsa_verify_raw(struct ec_verify_context * ctx,const u8 * input,u8 inputlen)255 int ecgdsa_verify_raw(struct ec_verify_context *ctx, const u8 *input, u8 inputlen)
256 {
257 	nn tmp, e, r_prime, rinv, uv, *r, *s;
258 	prj_pt uG, vY;
259 	prj_pt_t Wprime;
260 	prj_pt_src_t G, Y;
261         /* NOTE: hash here is not really a hash ... */
262         u8 e_buf[LOCAL_MIN(255, BIT_LEN_WORDS(NN_MAX_BIT_LEN) * (WORDSIZE / 8))];
263 	nn_src_t q;
264 	u8 hsize;
265         bitcnt_t q_bit_len, rshift;
266 	int ret, cmp;
267 
268 	tmp.magic = e.magic = r_prime.magic = rinv.magic = uv.magic = WORD(0);
269 	uG.magic = vY.magic = WORD(0);
270 
271 	/* NOTE: we reuse uG for Wprime to optimize local variables */
272 	Wprime = &uG;
273 
274 	/*
275 	 * First, verify context has been initialized and public
276 	 * part too. This guarantees the context is an EC-GDSA
277 	 * verification one and we do not finalize() before init().
278 	 */
279 	ret = sig_verify_check_initialized(ctx); EG(ret, err);
280 	ECGDSA_VERIFY_CHECK_INITIALIZED(&(ctx->verify_data.ecgdsa), ret, err);
281 	MUST_HAVE((input != NULL), ret, err);
282 
283         /* Zero init points */
284         ret = local_memset(&uG, 0, sizeof(prj_pt)); EG(ret, err);
285 	ret = local_memset(&vY, 0, sizeof(prj_pt)); EG(ret, err);
286 
287 	/* Make things more readable */
288 	G = &(ctx->pub_key->params->ec_gen);
289 	Y = &(ctx->pub_key->y);
290 	q = &(ctx->pub_key->params->ec_gen_order);
291 	r = &(ctx->verify_data.ecgdsa.r);
292 	s = &(ctx->verify_data.ecgdsa.s);
293         q_bit_len = ctx->pub_key->params->ec_gen_order_bitlen;
294 	hsize = inputlen;
295 
296 	/* 2. Compute h = H(m) */
297         /* NOTE: here we have raw ECGDSA, this is the raw input */
298 	MUST_HAVE((input != NULL), ret, err);
299 	/* NOTE: the MUST_HAVE is protected by a preprocessing check
300 	 * to avoid -Werror=type-limits errors:
301 	 * "error: comparison is always true due to limited range of data type"
302 	 */
303 #if LOCAL_MIN(255, BIT_LEN_WORDS(NN_MAX_BIT_LEN) * (WORDSIZE / 8)) < 255
304 	MUST_HAVE(((u32)inputlen <= sizeof(e_buf)), ret, err);
305 #endif
306 
307         ret = local_memset(e_buf, 0, sizeof(e_buf)); EG(ret, err);
308         ret = local_memcpy(e_buf, input, hsize); EG(ret, err);
309 	dbg_buf_print("H(m)", e_buf, hsize);
310 
311         /*
312          * If |h| > bitlen(q), set h to bitlen(q)
313          * leftmost bits of h.
314          *
315          */
316         rshift = 0;
317         if ((hsize * 8) > q_bit_len) {
318                 rshift = (bitcnt_t)((hsize * 8) - q_bit_len);
319         }
320         ret = nn_init_from_buf(&tmp, e_buf, hsize); EG(ret, err);
321         ret = local_memset(e_buf, 0, hsize); EG(ret, err);
322         if (rshift) {
323 		ret = nn_rshift_fixedlen(&tmp, &tmp, rshift); EG(ret, err);
324         }
325         dbg_nn_print("H(m) truncated as nn", &tmp);
326 
327 	/* 3. Compute e by converting h to an integer and reducing it mod q */
328 	ret = nn_mod(&e, &tmp, q); EG(ret, err);
329 
330 	/* 4. Compute u = (r^-1)e mod q */
331 	ret = nn_modinv(&rinv, r, q); EG(ret, err); /* r^-1 */
332 	ret = nn_mul(&tmp, &rinv, &e); EG(ret, err); /* r^-1 * e */
333 	ret = nn_mod(&uv, &tmp, q); EG(ret, err); /* (r^-1 * e) mod q */
334 	ret = prj_pt_mul(&uG, &uv, G); EG(ret, err);
335 
336 	/* 5. Compute v = (r^-1)s mod q */
337 	ret = nn_mul(&tmp, &rinv, s); EG(ret, err); /*  r^-1 * s */
338 	ret = nn_mod(&uv, &tmp, q); EG(ret, err); /* (r^-1 * s) mod q */
339 	ret = prj_pt_mul(&vY, &uv, Y); EG(ret, err);
340 
341 	/* 6. Compute W' = uG + vY */
342 	ret = prj_pt_add(Wprime, &uG, &vY); EG(ret, err);
343 
344 	/* 7. Compute r' = W'_x mod q */
345 	ret = prj_pt_unique(Wprime, Wprime); EG(ret, err);
346 	dbg_nn_print("W'_x", &(Wprime->X.fp_val));
347 	dbg_nn_print("W'_y", &(Wprime->Y.fp_val));
348 	ret = nn_mod(&r_prime, &(Wprime->X.fp_val), q); EG(ret, err);
349 
350 	/* 8. Accept the signature if and only if r equals r' */
351 	ret = nn_cmp(r, &r_prime, &cmp); EG(ret, err);
352 	ret = (cmp != 0) ? -1 : 0;
353 
354 err:
355 	nn_uninit(&r_prime);
356 	nn_uninit(&e);
357 	nn_uninit(&uv);
358 	nn_uninit(&tmp);
359 	nn_uninit(&rinv);
360 
361 	prj_pt_uninit(&uG);
362 	prj_pt_uninit(&vY);
363 
364 	/*
365 	 * We can now clear data part of the context. This will clear
366 	 * magic and avoid further reuse of the whole context.
367 	 */
368 	if(ctx != NULL){
369 		IGNORE_RET_VAL(local_memset(&(ctx->verify_data.ecgdsa), 0,
370 			     sizeof(ecgdsa_verify_data)));
371 	}
372 
373 	PTR_NULLIFY(Wprime);
374 	PTR_NULLIFY(r);
375 	PTR_NULLIFY(s);
376 	PTR_NULLIFY(G);
377 	PTR_NULLIFY(Y);
378 	PTR_NULLIFY(q);
379 	VAR_ZEROIFY(hsize);
380 
381 	return ret;
382 }
383 
384 
385 #else /* WITH_SIG_ECGDSA && USE_CRYPTOFUZZ */
386 
387 /*
388  * Dummy definition to avoid the empty translation unit ISO C warning
389  */
390 typedef int dummy;
391 #endif /* WITH_SIG_ECGDSA */
392