xref: /linux/drivers/mtd/nand/raw/qcom_nandc.c (revision a3daad8215143340c0870c5489e599fd059037e9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/bitops.h>
6 #include <linux/clk.h>
7 #include <linux/delay.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dma/qcom_adm.h>
11 #include <linux/dma/qcom_bam_dma.h>
12 #include <linux/module.h>
13 #include <linux/mtd/partitions.h>
14 #include <linux/mtd/rawnand.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/nand-qpic-common.h>
19 
20 /*
21  * NAND special boot partitions
22  *
23  * @page_offset:		offset of the partition where spare data is not protected
24  *				by ECC (value in pages)
25  * @page_offset:		size of the partition where spare data is not protected
26  *				by ECC (value in pages)
27  */
28 struct qcom_nand_boot_partition {
29 	u32 page_offset;
30 	u32 page_size;
31 };
32 
33 /*
34  * Qcom op for each exec_op transfer
35  *
36  * @data_instr:			data instruction pointer
37  * @data_instr_idx:		data instruction index
38  * @rdy_timeout_ms:		wait ready timeout in ms
39  * @rdy_delay_ns:		Additional delay in ns
40  * @addr1_reg:			Address1 register value
41  * @addr2_reg:			Address2 register value
42  * @cmd_reg:			CMD register value
43  * @flag:			flag for misc instruction
44  */
45 struct qcom_op {
46 	const struct nand_op_instr *data_instr;
47 	unsigned int data_instr_idx;
48 	unsigned int rdy_timeout_ms;
49 	unsigned int rdy_delay_ns;
50 	__le32 addr1_reg;
51 	__le32 addr2_reg;
52 	__le32 cmd_reg;
53 	u8 flag;
54 };
55 
56 /*
57  * NAND chip structure
58  *
59  * @boot_partitions:		array of boot partitions where offset and size of the
60  *				boot partitions are stored
61  *
62  * @chip:			base NAND chip structure
63  * @node:			list node to add itself to host_list in
64  *				qcom_nand_controller
65  *
66  * @nr_boot_partitions:		count of the boot partitions where spare data is not
67  *				protected by ECC
68  *
69  * @cs:				chip select value for this chip
70  * @cw_size:			the number of bytes in a single step/codeword
71  *				of a page, consisting of all data, ecc, spare
72  *				and reserved bytes
73  * @cw_data:			the number of bytes within a codeword protected
74  *				by ECC
75  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
76  *				chip
77  *
78  * @last_command:		keeps track of last command on this chip. used
79  *				for reading correct status
80  *
81  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
82  *				ecc/non-ecc mode for the current nand flash
83  *				device
84  *
85  * @status:			value to be returned if NAND_CMD_STATUS command
86  *				is executed
87  * @codeword_fixup:		keep track of the current layout used by
88  *				the driver for read/write operation.
89  * @use_ecc:			request the controller to use ECC for the
90  *				upcoming read/write
91  * @bch_enabled:		flag to tell whether BCH ECC mode is used
92  */
93 struct qcom_nand_host {
94 	struct qcom_nand_boot_partition *boot_partitions;
95 
96 	struct nand_chip chip;
97 	struct list_head node;
98 
99 	int nr_boot_partitions;
100 
101 	int cs;
102 	int cw_size;
103 	int cw_data;
104 	int ecc_bytes_hw;
105 	int spare_bytes;
106 	int bbm_size;
107 
108 	int last_command;
109 
110 	u32 cfg0, cfg1;
111 	u32 cfg0_raw, cfg1_raw;
112 	u32 ecc_buf_cfg;
113 	u32 ecc_bch_cfg;
114 	u32 clrflashstatus;
115 	u32 clrreadstatus;
116 
117 	u8 status;
118 	bool codeword_fixup;
119 	bool use_ecc;
120 	bool bch_enabled;
121 };
122 
to_qcom_nand_host(struct nand_chip * chip)123 static struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
124 {
125 	return container_of(chip, struct qcom_nand_host, chip);
126 }
127 
128 static struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)129 get_qcom_nand_controller(struct nand_chip *chip)
130 {
131 	return (struct qcom_nand_controller *)
132 		((u8 *)chip->controller - sizeof(struct qcom_nand_controller));
133 }
134 
nandc_read(struct qcom_nand_controller * nandc,int offset)135 static u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
136 {
137 	return ioread32(nandc->base + offset);
138 }
139 
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)140 static void nandc_write(struct qcom_nand_controller *nandc, int offset,
141 			u32 val)
142 {
143 	iowrite32(val, nandc->base + offset);
144 }
145 
146 /* Helper to check whether this is the last CW or not */
qcom_nandc_is_last_cw(struct nand_ecc_ctrl * ecc,int cw)147 static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
148 {
149 	return cw == (ecc->steps - 1);
150 }
151 
152 /**
153  * nandc_set_read_loc_first() - to set read location first register
154  * @chip:		NAND Private Flash Chip Data
155  * @reg_base:		location register base
156  * @cw_offset:		code word offset
157  * @read_size:		code word read length
158  * @is_last_read_loc:	is this the last read location
159  *
160  * This function will set location register value
161  */
nandc_set_read_loc_first(struct nand_chip * chip,int reg_base,u32 cw_offset,u32 read_size,u32 is_last_read_loc)162 static void nandc_set_read_loc_first(struct nand_chip *chip,
163 				     int reg_base, u32 cw_offset,
164 				     u32 read_size, u32 is_last_read_loc)
165 {
166 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
167 	__le32 locreg_val;
168 	u32 val = (((cw_offset) << READ_LOCATION_OFFSET) |
169 		  ((read_size) << READ_LOCATION_SIZE) |
170 		  ((is_last_read_loc) << READ_LOCATION_LAST));
171 
172 	locreg_val = cpu_to_le32(val);
173 
174 	if (reg_base == NAND_READ_LOCATION_0)
175 		nandc->regs->read_location0 = locreg_val;
176 	else if (reg_base == NAND_READ_LOCATION_1)
177 		nandc->regs->read_location1 = locreg_val;
178 	else if (reg_base == NAND_READ_LOCATION_2)
179 		nandc->regs->read_location2 = locreg_val;
180 	else if (reg_base == NAND_READ_LOCATION_3)
181 		nandc->regs->read_location3 = locreg_val;
182 }
183 
184 /**
185  * nandc_set_read_loc_last - to set read location last register
186  * @chip:		NAND Private Flash Chip Data
187  * @reg_base:		location register base
188  * @cw_offset:		code word offset
189  * @read_size:		code word read length
190  * @is_last_read_loc:	is this the last read location
191  *
192  * This function will set location last register value
193  */
nandc_set_read_loc_last(struct nand_chip * chip,int reg_base,u32 cw_offset,u32 read_size,u32 is_last_read_loc)194 static void nandc_set_read_loc_last(struct nand_chip *chip,
195 				    int reg_base, u32 cw_offset,
196 				    u32 read_size, u32 is_last_read_loc)
197 {
198 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
199 	__le32 locreg_val;
200 	u32 val = (((cw_offset) << READ_LOCATION_OFFSET) |
201 		  ((read_size) << READ_LOCATION_SIZE) |
202 		  ((is_last_read_loc) << READ_LOCATION_LAST));
203 
204 	locreg_val = cpu_to_le32(val);
205 
206 	if (reg_base == NAND_READ_LOCATION_LAST_CW_0)
207 		nandc->regs->read_location_last0 = locreg_val;
208 	else if (reg_base == NAND_READ_LOCATION_LAST_CW_1)
209 		nandc->regs->read_location_last1 = locreg_val;
210 	else if (reg_base == NAND_READ_LOCATION_LAST_CW_2)
211 		nandc->regs->read_location_last2 = locreg_val;
212 	else if (reg_base == NAND_READ_LOCATION_LAST_CW_3)
213 		nandc->regs->read_location_last3 = locreg_val;
214 }
215 
216 /* helper to configure location register values */
nandc_set_read_loc(struct nand_chip * chip,int cw,int reg,u32 cw_offset,u32 read_size,u32 is_last_read_loc)217 static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg,
218 			       u32 cw_offset, u32 read_size, u32 is_last_read_loc)
219 {
220 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
221 	struct nand_ecc_ctrl *ecc = &chip->ecc;
222 	int reg_base = NAND_READ_LOCATION_0;
223 
224 	if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
225 		reg_base = NAND_READ_LOCATION_LAST_CW_0;
226 
227 	reg_base += reg * 4;
228 
229 	if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
230 		return nandc_set_read_loc_last(chip, reg_base, cw_offset,
231 				read_size, is_last_read_loc);
232 	else
233 		return nandc_set_read_loc_first(chip, reg_base, cw_offset,
234 				read_size, is_last_read_loc);
235 }
236 
237 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)238 static void set_address(struct qcom_nand_host *host, u16 column, int page)
239 {
240 	struct nand_chip *chip = &host->chip;
241 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
242 
243 	if (chip->options & NAND_BUSWIDTH_16)
244 		column >>= 1;
245 
246 	nandc->regs->addr0 = cpu_to_le32(page << 16 | column);
247 	nandc->regs->addr1 = cpu_to_le32(page >> 16 & 0xff);
248 }
249 
250 /*
251  * update_rw_regs:	set up read/write register values, these will be
252  *			written to the NAND controller registers via DMA
253  *
254  * @num_cw:		number of steps for the read/write operation
255  * @read:		read or write operation
256  * @cw	:		which code word
257  */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read,int cw)258 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw)
259 {
260 	struct nand_chip *chip = &host->chip;
261 	__le32 cmd, cfg0, cfg1, ecc_bch_cfg;
262 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
263 
264 	if (read) {
265 		if (host->use_ecc)
266 			cmd = cpu_to_le32(OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE);
267 		else
268 			cmd = cpu_to_le32(OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
269 	} else {
270 		cmd = cpu_to_le32(OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE);
271 	}
272 
273 	if (host->use_ecc) {
274 		cfg0 = cpu_to_le32((host->cfg0 & ~(7U << CW_PER_PAGE)) |
275 				(num_cw - 1) << CW_PER_PAGE);
276 
277 		cfg1 = cpu_to_le32(host->cfg1);
278 		ecc_bch_cfg = cpu_to_le32(host->ecc_bch_cfg);
279 	} else {
280 		cfg0 = cpu_to_le32((host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
281 				(num_cw - 1) << CW_PER_PAGE);
282 
283 		cfg1 = cpu_to_le32(host->cfg1_raw);
284 		ecc_bch_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE);
285 	}
286 
287 	nandc->regs->cmd = cmd;
288 	nandc->regs->cfg0 = cfg0;
289 	nandc->regs->cfg1 = cfg1;
290 	nandc->regs->ecc_bch_cfg = ecc_bch_cfg;
291 
292 	if (!nandc->props->qpic_version2)
293 		nandc->regs->ecc_buf_cfg = cpu_to_le32(host->ecc_buf_cfg);
294 
295 	nandc->regs->clrflashstatus = cpu_to_le32(host->clrflashstatus);
296 	nandc->regs->clrreadstatus = cpu_to_le32(host->clrreadstatus);
297 	nandc->regs->exec = cpu_to_le32(1);
298 
299 	if (read)
300 		nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ?
301 				   host->cw_data : host->cw_size, 1);
302 }
303 
304 /*
305  * Helper to prepare DMA descriptors for configuring registers
306  * before reading a NAND page.
307  */
config_nand_page_read(struct nand_chip * chip)308 static void config_nand_page_read(struct nand_chip *chip)
309 {
310 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
311 
312 	qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0);
313 	qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
314 	if (!nandc->props->qpic_version2)
315 		qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1, 0);
316 	qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_clr,
317 			   NAND_ERASED_CW_DETECT_CFG, 1, 0);
318 	qcom_write_reg_dma(nandc, &nandc->regs->erased_cw_detect_cfg_set,
319 			   NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
320 }
321 
322 /*
323  * Helper to prepare DMA descriptors for configuring registers
324  * before reading each codeword in NAND page.
325  */
326 static void
config_nand_cw_read(struct nand_chip * chip,bool use_ecc,int cw)327 config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw)
328 {
329 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
330 	struct nand_ecc_ctrl *ecc = &chip->ecc;
331 
332 	__le32 *reg = &nandc->regs->read_location0;
333 
334 	if (nandc->props->qpic_version2 && qcom_nandc_is_last_cw(ecc, cw))
335 		reg = &nandc->regs->read_location_last0;
336 
337 	if (nandc->props->supports_bam)
338 		qcom_write_reg_dma(nandc, reg, NAND_READ_LOCATION_0, 4, NAND_BAM_NEXT_SGL);
339 
340 	qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
341 	qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
342 
343 	if (use_ecc) {
344 		qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
345 		qcom_read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
346 				  NAND_BAM_NEXT_SGL);
347 	} else {
348 		qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
349 	}
350 }
351 
352 /*
353  * Helper to prepare dma descriptors to configure registers needed for reading a
354  * single codeword in page
355  */
356 static void
config_nand_single_cw_page_read(struct nand_chip * chip,bool use_ecc,int cw)357 config_nand_single_cw_page_read(struct nand_chip *chip,
358 				bool use_ecc, int cw)
359 {
360 	config_nand_page_read(chip);
361 	config_nand_cw_read(chip, use_ecc, cw);
362 }
363 
364 /*
365  * Helper to prepare DMA descriptors used to configure registers needed for
366  * before writing a NAND page.
367  */
config_nand_page_write(struct nand_chip * chip)368 static void config_nand_page_write(struct nand_chip *chip)
369 {
370 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
371 
372 	qcom_write_reg_dma(nandc, &nandc->regs->addr0, NAND_ADDR0, 2, 0);
373 	qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 3, 0);
374 	if (!nandc->props->qpic_version2)
375 		qcom_write_reg_dma(nandc, &nandc->regs->ecc_buf_cfg, NAND_EBI2_ECC_BUF_CFG, 1,
376 				   NAND_BAM_NEXT_SGL);
377 }
378 
379 /*
380  * Helper to prepare DMA descriptors for configuring registers
381  * before writing each codeword in NAND page.
382  */
config_nand_cw_write(struct nand_chip * chip)383 static void config_nand_cw_write(struct nand_chip *chip)
384 {
385 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
386 
387 	qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
388 	qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
389 
390 	qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
391 
392 	qcom_write_reg_dma(nandc, &nandc->regs->clrflashstatus, NAND_FLASH_STATUS, 1, 0);
393 	qcom_write_reg_dma(nandc, &nandc->regs->clrreadstatus, NAND_READ_STATUS, 1,
394 			   NAND_BAM_NEXT_SGL);
395 }
396 
397 /*
398  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
399  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
400  *
401  * when using RS ECC, the HW reports the same erros when reading an erased CW,
402  * but it notifies that it is an erased CW by placing special characters at
403  * certain offsets in the buffer.
404  *
405  * verify if the page is erased or not, and fix up the page for RS ECC by
406  * replacing the special characters with 0xff.
407  */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)408 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
409 {
410 	u8 empty1, empty2;
411 
412 	/*
413 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
414 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
415 	 * beginning of each codeword
416 	 */
417 
418 	empty1 = data_buf[3];
419 	empty2 = data_buf[175];
420 
421 	/*
422 	 * if the erased codework markers, if they exist override them with
423 	 * 0xffs
424 	 */
425 	if ((empty1 == 0x54 && empty2 == 0xff) ||
426 	    (empty1 == 0xff && empty2 == 0x54)) {
427 		data_buf[3] = 0xff;
428 		data_buf[175] = 0xff;
429 	}
430 
431 	/*
432 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
433 	 * restore the original values at the special offsets
434 	 */
435 	if (memchr_inv(data_buf, 0xff, data_len)) {
436 		data_buf[3] = empty1;
437 		data_buf[175] = empty2;
438 
439 		return false;
440 	}
441 
442 	return true;
443 }
444 
445 struct read_stats {
446 	__le32 flash;
447 	__le32 buffer;
448 	__le32 erased_cw;
449 };
450 
451 /* reads back FLASH_STATUS register set by the controller */
check_flash_errors(struct qcom_nand_host * host,int cw_cnt)452 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
453 {
454 	struct nand_chip *chip = &host->chip;
455 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
456 	int i;
457 
458 	qcom_nandc_dev_to_mem(nandc, true);
459 
460 	for (i = 0; i < cw_cnt; i++) {
461 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
462 
463 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
464 			return -EIO;
465 	}
466 
467 	return 0;
468 }
469 
470 /* performs raw read for one codeword */
471 static int
qcom_nandc_read_cw_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,int page,int cw)472 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
473 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
474 {
475 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
476 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
477 	struct nand_ecc_ctrl *ecc = &chip->ecc;
478 	int data_size1, data_size2, oob_size1, oob_size2;
479 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
480 	int raw_cw = cw;
481 
482 	nand_read_page_op(chip, page, 0, NULL, 0);
483 	nandc->buf_count = 0;
484 	nandc->buf_start = 0;
485 	qcom_clear_read_regs(nandc);
486 	host->use_ecc = false;
487 
488 	if (nandc->props->qpic_version2)
489 		raw_cw = ecc->steps - 1;
490 
491 	qcom_clear_bam_transaction(nandc);
492 	set_address(host, host->cw_size * cw, page);
493 	update_rw_regs(host, 1, true, raw_cw);
494 	config_nand_page_read(chip);
495 
496 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
497 	oob_size1 = host->bbm_size;
498 
499 	if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
500 		data_size2 = ecc->size - data_size1 -
501 			     ((ecc->steps - 1) * 4);
502 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
503 			    host->spare_bytes;
504 	} else {
505 		data_size2 = host->cw_data - data_size1;
506 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
507 	}
508 
509 	if (nandc->props->supports_bam) {
510 		nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0);
511 		read_loc += data_size1;
512 
513 		nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0);
514 		read_loc += oob_size1;
515 
516 		nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0);
517 		read_loc += data_size2;
518 
519 		nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1);
520 	}
521 
522 	config_nand_cw_read(chip, false, raw_cw);
523 
524 	qcom_read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
525 	reg_off += data_size1;
526 
527 	qcom_read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
528 	reg_off += oob_size1;
529 
530 	qcom_read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
531 	reg_off += data_size2;
532 
533 	qcom_read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
534 
535 	ret = qcom_submit_descs(nandc);
536 	if (ret) {
537 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
538 		return ret;
539 	}
540 
541 	return check_flash_errors(host, 1);
542 }
543 
544 /*
545  * Bitflips can happen in erased codewords also so this function counts the
546  * number of 0 in each CW for which ECC engine returns the uncorrectable
547  * error. The page will be assumed as erased if this count is less than or
548  * equal to the ecc->strength for each CW.
549  *
550  * 1. Both DATA and OOB need to be checked for number of 0. The
551  *    top-level API can be called with only data buf or OOB buf so use
552  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
553  *    is null for copying the raw bytes.
554  * 2. Perform raw read for all the CW which has uncorrectable errors.
555  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
556  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
557  *    the number of bitflips in this area.
558  */
559 static int
check_for_erased_page(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,unsigned long uncorrectable_cws,int page,unsigned int max_bitflips)560 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
561 		      u8 *oob_buf, unsigned long uncorrectable_cws,
562 		      int page, unsigned int max_bitflips)
563 {
564 	struct nand_chip *chip = &host->chip;
565 	struct mtd_info *mtd = nand_to_mtd(chip);
566 	struct nand_ecc_ctrl *ecc = &chip->ecc;
567 	u8 *cw_data_buf, *cw_oob_buf;
568 	int cw, data_size, oob_size, ret;
569 
570 	if (!data_buf)
571 		data_buf = nand_get_data_buf(chip);
572 
573 	if (!oob_buf) {
574 		nand_get_data_buf(chip);
575 		oob_buf = chip->oob_poi;
576 	}
577 
578 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
579 		if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) {
580 			data_size = ecc->size - ((ecc->steps - 1) * 4);
581 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
582 		} else {
583 			data_size = host->cw_data;
584 			oob_size = host->ecc_bytes_hw;
585 		}
586 
587 		/* determine starting buffer address for current CW */
588 		cw_data_buf = data_buf + (cw * host->cw_data);
589 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
590 
591 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
592 					     cw_oob_buf, page, cw);
593 		if (ret)
594 			return ret;
595 
596 		/*
597 		 * make sure it isn't an erased page reported
598 		 * as not-erased by HW because of a few bitflips
599 		 */
600 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
601 						  cw_oob_buf + host->bbm_size,
602 						  oob_size, NULL,
603 						  0, ecc->strength);
604 		if (ret < 0) {
605 			mtd->ecc_stats.failed++;
606 		} else {
607 			mtd->ecc_stats.corrected += ret;
608 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
609 		}
610 	}
611 
612 	return max_bitflips;
613 }
614 
615 /*
616  * reads back status registers set by the controller to notify page read
617  * errors. this is equivalent to what 'ecc->correct()' would do.
618  */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)619 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
620 			     u8 *oob_buf, int page)
621 {
622 	struct nand_chip *chip = &host->chip;
623 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
624 	struct mtd_info *mtd = nand_to_mtd(chip);
625 	struct nand_ecc_ctrl *ecc = &chip->ecc;
626 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
627 	struct read_stats *buf;
628 	bool flash_op_err = false, erased;
629 	int i;
630 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
631 
632 	buf = (struct read_stats *)nandc->reg_read_buf;
633 	qcom_nandc_dev_to_mem(nandc, true);
634 
635 	for (i = 0; i < ecc->steps; i++, buf++) {
636 		u32 flash, buffer, erased_cw;
637 		int data_len, oob_len;
638 
639 		if (qcom_nandc_is_last_cw(ecc, i)) {
640 			data_len = ecc->size - ((ecc->steps - 1) << 2);
641 			oob_len = ecc->steps << 2;
642 		} else {
643 			data_len = host->cw_data;
644 			oob_len = 0;
645 		}
646 
647 		flash = le32_to_cpu(buf->flash);
648 		buffer = le32_to_cpu(buf->buffer);
649 		erased_cw = le32_to_cpu(buf->erased_cw);
650 
651 		/*
652 		 * Check ECC failure for each codeword. ECC failure can
653 		 * happen in either of the following conditions
654 		 * 1. If number of bitflips are greater than ECC engine
655 		 *    capability.
656 		 * 2. If this codeword contains all 0xff for which erased
657 		 *    codeword detection check will be done.
658 		 */
659 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
660 			/*
661 			 * For BCH ECC, ignore erased codeword errors, if
662 			 * ERASED_CW bits are set.
663 			 */
664 			if (host->bch_enabled) {
665 				erased = (erased_cw & ERASED_CW) == ERASED_CW;
666 			/*
667 			 * For RS ECC, HW reports the erased CW by placing
668 			 * special characters at certain offsets in the buffer.
669 			 * These special characters will be valid only if
670 			 * complete page is read i.e. data_buf is not NULL.
671 			 */
672 			} else if (data_buf) {
673 				erased = erased_chunk_check_and_fixup(data_buf,
674 								      data_len);
675 			} else {
676 				erased = false;
677 			}
678 
679 			if (!erased)
680 				uncorrectable_cws |= BIT(i);
681 		/*
682 		 * Check if MPU or any other operational error (timeout,
683 		 * device failure, etc.) happened for this codeword and
684 		 * make flash_op_err true. If flash_op_err is set, then
685 		 * EIO will be returned for page read.
686 		 */
687 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
688 			flash_op_err = true;
689 		/*
690 		 * No ECC or operational errors happened. Check the number of
691 		 * bits corrected and update the ecc_stats.corrected.
692 		 */
693 		} else {
694 			unsigned int stat;
695 
696 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
697 			mtd->ecc_stats.corrected += stat;
698 			max_bitflips = max(max_bitflips, stat);
699 		}
700 
701 		if (data_buf)
702 			data_buf += data_len;
703 		if (oob_buf)
704 			oob_buf += oob_len + ecc->bytes;
705 	}
706 
707 	if (flash_op_err)
708 		return -EIO;
709 
710 	if (!uncorrectable_cws)
711 		return max_bitflips;
712 
713 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
714 				     uncorrectable_cws, page,
715 				     max_bitflips);
716 }
717 
718 /*
719  * helper to perform the actual page read operation, used by ecc->read_page(),
720  * ecc->read_oob()
721  */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)722 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
723 			 u8 *oob_buf, int page)
724 {
725 	struct nand_chip *chip = &host->chip;
726 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
727 	struct nand_ecc_ctrl *ecc = &chip->ecc;
728 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
729 	int i, ret;
730 
731 	config_nand_page_read(chip);
732 
733 	/* queue cmd descs for each codeword */
734 	for (i = 0; i < ecc->steps; i++) {
735 		int data_size, oob_size;
736 
737 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
738 			data_size = ecc->size - ((ecc->steps - 1) << 2);
739 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
740 				   host->spare_bytes;
741 		} else {
742 			data_size = host->cw_data;
743 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
744 		}
745 
746 		if (nandc->props->supports_bam) {
747 			if (data_buf && oob_buf) {
748 				nandc_set_read_loc(chip, i, 0, 0, data_size, 0);
749 				nandc_set_read_loc(chip, i, 1, data_size,
750 						   oob_size, 1);
751 			} else if (data_buf) {
752 				nandc_set_read_loc(chip, i, 0, 0, data_size, 1);
753 			} else {
754 				nandc_set_read_loc(chip, i, 0, data_size,
755 						   oob_size, 1);
756 			}
757 		}
758 
759 		config_nand_cw_read(chip, true, i);
760 
761 		if (data_buf)
762 			qcom_read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
763 					   data_size, 0);
764 
765 		/*
766 		 * when ecc is enabled, the controller doesn't read the real
767 		 * or dummy bad block markers in each chunk. To maintain a
768 		 * consistent layout across RAW and ECC reads, we just
769 		 * leave the real/dummy BBM offsets empty (i.e, filled with
770 		 * 0xffs)
771 		 */
772 		if (oob_buf) {
773 			int j;
774 
775 			for (j = 0; j < host->bbm_size; j++)
776 				*oob_buf++ = 0xff;
777 
778 			qcom_read_data_dma(nandc, FLASH_BUF_ACC + data_size,
779 					   oob_buf, oob_size, 0);
780 		}
781 
782 		if (data_buf)
783 			data_buf += data_size;
784 		if (oob_buf)
785 			oob_buf += oob_size;
786 	}
787 
788 	ret = qcom_submit_descs(nandc);
789 	if (ret) {
790 		dev_err(nandc->dev, "failure to read page/oob\n");
791 		return ret;
792 	}
793 
794 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
795 }
796 
797 /*
798  * a helper that copies the last step/codeword of a page (containing free oob)
799  * into our local buffer
800  */
copy_last_cw(struct qcom_nand_host * host,int page)801 static int copy_last_cw(struct qcom_nand_host *host, int page)
802 {
803 	struct nand_chip *chip = &host->chip;
804 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
805 	struct nand_ecc_ctrl *ecc = &chip->ecc;
806 	int size;
807 	int ret;
808 
809 	qcom_clear_read_regs(nandc);
810 
811 	size = host->use_ecc ? host->cw_data : host->cw_size;
812 
813 	/* prepare a clean read buffer */
814 	memset(nandc->data_buffer, 0xff, size);
815 
816 	set_address(host, host->cw_size * (ecc->steps - 1), page);
817 	update_rw_regs(host, 1, true, ecc->steps - 1);
818 
819 	config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1);
820 
821 	qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
822 
823 	ret = qcom_submit_descs(nandc);
824 	if (ret)
825 		dev_err(nandc->dev, "failed to copy last codeword\n");
826 
827 	return ret;
828 }
829 
qcom_nandc_is_boot_partition(struct qcom_nand_host * host,int page)830 static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page)
831 {
832 	struct qcom_nand_boot_partition *boot_partition;
833 	u32 start, end;
834 	int i;
835 
836 	/*
837 	 * Since the frequent access will be to the non-boot partitions like rootfs,
838 	 * optimize the page check by:
839 	 *
840 	 * 1. Checking if the page lies after the last boot partition.
841 	 * 2. Checking from the boot partition end.
842 	 */
843 
844 	/* First check the last boot partition */
845 	boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1];
846 	start = boot_partition->page_offset;
847 	end = start + boot_partition->page_size;
848 
849 	/* Page is after the last boot partition end. This is NOT a boot partition */
850 	if (page > end)
851 		return false;
852 
853 	/* Actually check if it's a boot partition */
854 	if (page < end && page >= start)
855 		return true;
856 
857 	/* Check the other boot partitions starting from the second-last partition */
858 	for (i = host->nr_boot_partitions - 2; i >= 0; i--) {
859 		boot_partition = &host->boot_partitions[i];
860 		start = boot_partition->page_offset;
861 		end = start + boot_partition->page_size;
862 
863 		if (page < end && page >= start)
864 			return true;
865 	}
866 
867 	return false;
868 }
869 
qcom_nandc_codeword_fixup(struct qcom_nand_host * host,int page)870 static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page)
871 {
872 	bool codeword_fixup = qcom_nandc_is_boot_partition(host, page);
873 
874 	/* Skip conf write if we are already in the correct mode */
875 	if (codeword_fixup == host->codeword_fixup)
876 		return;
877 
878 	host->codeword_fixup = codeword_fixup;
879 
880 	host->cw_data = codeword_fixup ? 512 : 516;
881 	host->spare_bytes = host->cw_size - host->ecc_bytes_hw -
882 			    host->bbm_size - host->cw_data;
883 
884 	host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK);
885 	host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES |
886 		      host->cw_data << UD_SIZE_BYTES;
887 
888 	host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK;
889 	host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES;
890 	host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS;
891 }
892 
893 /* implements ecc->read_page() */
qcom_nandc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)894 static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf,
895 				int oob_required, int page)
896 {
897 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
898 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
899 	struct nand_ecc_ctrl *ecc = &chip->ecc;
900 	u8 *data_buf, *oob_buf = NULL;
901 
902 	if (host->nr_boot_partitions)
903 		qcom_nandc_codeword_fixup(host, page);
904 
905 	nand_read_page_op(chip, page, 0, NULL, 0);
906 	nandc->buf_count = 0;
907 	nandc->buf_start = 0;
908 	host->use_ecc = true;
909 	qcom_clear_read_regs(nandc);
910 	set_address(host, 0, page);
911 	update_rw_regs(host, ecc->steps, true, 0);
912 
913 	data_buf = buf;
914 	oob_buf = oob_required ? chip->oob_poi : NULL;
915 
916 	qcom_clear_bam_transaction(nandc);
917 
918 	return read_page_ecc(host, data_buf, oob_buf, page);
919 }
920 
921 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)922 static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf,
923 				    int oob_required, int page)
924 {
925 	struct mtd_info *mtd = nand_to_mtd(chip);
926 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
927 	struct nand_ecc_ctrl *ecc = &chip->ecc;
928 	int cw, ret;
929 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
930 
931 	if (host->nr_boot_partitions)
932 		qcom_nandc_codeword_fixup(host, page);
933 
934 	for (cw = 0; cw < ecc->steps; cw++) {
935 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
936 					     page, cw);
937 		if (ret)
938 			return ret;
939 
940 		data_buf += host->cw_data;
941 		oob_buf += ecc->bytes;
942 	}
943 
944 	return 0;
945 }
946 
947 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct nand_chip * chip,int page)948 static int qcom_nandc_read_oob(struct nand_chip *chip, int page)
949 {
950 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
951 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
952 	struct nand_ecc_ctrl *ecc = &chip->ecc;
953 
954 	if (host->nr_boot_partitions)
955 		qcom_nandc_codeword_fixup(host, page);
956 
957 	qcom_clear_read_regs(nandc);
958 	qcom_clear_bam_transaction(nandc);
959 
960 	host->use_ecc = true;
961 	set_address(host, 0, page);
962 	update_rw_regs(host, ecc->steps, true, 0);
963 
964 	return read_page_ecc(host, NULL, chip->oob_poi, page);
965 }
966 
967 /* implements ecc->write_page() */
qcom_nandc_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)968 static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf,
969 				 int oob_required, int page)
970 {
971 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
972 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
973 	struct nand_ecc_ctrl *ecc = &chip->ecc;
974 	u8 *data_buf, *oob_buf;
975 	int i, ret;
976 
977 	if (host->nr_boot_partitions)
978 		qcom_nandc_codeword_fixup(host, page);
979 
980 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
981 
982 	set_address(host, 0, page);
983 	nandc->buf_count = 0;
984 	nandc->buf_start = 0;
985 	qcom_clear_read_regs(nandc);
986 	qcom_clear_bam_transaction(nandc);
987 
988 	data_buf = (u8 *)buf;
989 	oob_buf = chip->oob_poi;
990 
991 	host->use_ecc = true;
992 	update_rw_regs(host, ecc->steps, false, 0);
993 	config_nand_page_write(chip);
994 
995 	for (i = 0; i < ecc->steps; i++) {
996 		int data_size, oob_size;
997 
998 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
999 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1000 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1001 				   host->spare_bytes;
1002 		} else {
1003 			data_size = host->cw_data;
1004 			oob_size = ecc->bytes;
1005 		}
1006 
1007 		qcom_write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
1008 				    i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
1009 
1010 		/*
1011 		 * when ECC is enabled, we don't really need to write anything
1012 		 * to oob for the first n - 1 codewords since these oob regions
1013 		 * just contain ECC bytes that's written by the controller
1014 		 * itself. For the last codeword, we skip the bbm positions and
1015 		 * write to the free oob area.
1016 		 */
1017 		if (qcom_nandc_is_last_cw(ecc, i)) {
1018 			oob_buf += host->bbm_size;
1019 
1020 			qcom_write_data_dma(nandc, FLASH_BUF_ACC + data_size,
1021 					    oob_buf, oob_size, 0);
1022 		}
1023 
1024 		config_nand_cw_write(chip);
1025 
1026 		data_buf += data_size;
1027 		oob_buf += oob_size;
1028 	}
1029 
1030 	ret = qcom_submit_descs(nandc);
1031 	if (ret) {
1032 		dev_err(nandc->dev, "failure to write page\n");
1033 		return ret;
1034 	}
1035 
1036 	return nand_prog_page_end_op(chip);
1037 }
1038 
1039 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1040 static int qcom_nandc_write_page_raw(struct nand_chip *chip,
1041 				     const u8 *buf, int oob_required,
1042 				     int page)
1043 {
1044 	struct mtd_info *mtd = nand_to_mtd(chip);
1045 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1046 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1047 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1048 	u8 *data_buf, *oob_buf;
1049 	int i, ret;
1050 
1051 	if (host->nr_boot_partitions)
1052 		qcom_nandc_codeword_fixup(host, page);
1053 
1054 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
1055 	qcom_clear_read_regs(nandc);
1056 	qcom_clear_bam_transaction(nandc);
1057 
1058 	data_buf = (u8 *)buf;
1059 	oob_buf = chip->oob_poi;
1060 
1061 	host->use_ecc = false;
1062 	update_rw_regs(host, ecc->steps, false, 0);
1063 	config_nand_page_write(chip);
1064 
1065 	for (i = 0; i < ecc->steps; i++) {
1066 		int data_size1, data_size2, oob_size1, oob_size2;
1067 		int reg_off = FLASH_BUF_ACC;
1068 
1069 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1070 		oob_size1 = host->bbm_size;
1071 
1072 		if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) {
1073 			data_size2 = ecc->size - data_size1 -
1074 				     ((ecc->steps - 1) << 2);
1075 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
1076 				    host->spare_bytes;
1077 		} else {
1078 			data_size2 = host->cw_data - data_size1;
1079 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1080 		}
1081 
1082 		qcom_write_data_dma(nandc, reg_off, data_buf, data_size1,
1083 				    NAND_BAM_NO_EOT);
1084 		reg_off += data_size1;
1085 		data_buf += data_size1;
1086 
1087 		qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size1,
1088 				    NAND_BAM_NO_EOT);
1089 		reg_off += oob_size1;
1090 		oob_buf += oob_size1;
1091 
1092 		qcom_write_data_dma(nandc, reg_off, data_buf, data_size2,
1093 				    NAND_BAM_NO_EOT);
1094 		reg_off += data_size2;
1095 		data_buf += data_size2;
1096 
1097 		qcom_write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
1098 		oob_buf += oob_size2;
1099 
1100 		config_nand_cw_write(chip);
1101 	}
1102 
1103 	ret = qcom_submit_descs(nandc);
1104 	if (ret) {
1105 		dev_err(nandc->dev, "failure to write raw page\n");
1106 		return ret;
1107 	}
1108 
1109 	return nand_prog_page_end_op(chip);
1110 }
1111 
1112 /*
1113  * implements ecc->write_oob()
1114  *
1115  * the NAND controller cannot write only data or only OOB within a codeword
1116  * since ECC is calculated for the combined codeword. So update the OOB from
1117  * chip->oob_poi, and pad the data area with OxFF before writing.
1118  */
qcom_nandc_write_oob(struct nand_chip * chip,int page)1119 static int qcom_nandc_write_oob(struct nand_chip *chip, int page)
1120 {
1121 	struct mtd_info *mtd = nand_to_mtd(chip);
1122 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1123 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1124 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1125 	u8 *oob = chip->oob_poi;
1126 	int data_size, oob_size;
1127 	int ret;
1128 
1129 	if (host->nr_boot_partitions)
1130 		qcom_nandc_codeword_fixup(host, page);
1131 
1132 	host->use_ecc = true;
1133 	qcom_clear_bam_transaction(nandc);
1134 
1135 	/* calculate the data and oob size for the last codeword/step */
1136 	data_size = ecc->size - ((ecc->steps - 1) << 2);
1137 	oob_size = mtd->oobavail;
1138 
1139 	memset(nandc->data_buffer, 0xff, host->cw_data);
1140 	/* override new oob content to last codeword */
1141 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
1142 				    0, mtd->oobavail);
1143 
1144 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1145 	update_rw_regs(host, 1, false, 0);
1146 
1147 	config_nand_page_write(chip);
1148 	qcom_write_data_dma(nandc, FLASH_BUF_ACC,
1149 			    nandc->data_buffer, data_size + oob_size, 0);
1150 	config_nand_cw_write(chip);
1151 
1152 	ret = qcom_submit_descs(nandc);
1153 	if (ret) {
1154 		dev_err(nandc->dev, "failure to write oob\n");
1155 		return ret;
1156 	}
1157 
1158 	return nand_prog_page_end_op(chip);
1159 }
1160 
qcom_nandc_block_bad(struct nand_chip * chip,loff_t ofs)1161 static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs)
1162 {
1163 	struct mtd_info *mtd = nand_to_mtd(chip);
1164 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1165 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1166 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1167 	int page, ret, bbpos, bad = 0;
1168 
1169 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1170 
1171 	/*
1172 	 * configure registers for a raw sub page read, the address is set to
1173 	 * the beginning of the last codeword, we don't care about reading ecc
1174 	 * portion of oob. we just want the first few bytes from this codeword
1175 	 * that contains the BBM
1176 	 */
1177 	host->use_ecc = false;
1178 
1179 	qcom_clear_bam_transaction(nandc);
1180 	ret = copy_last_cw(host, page);
1181 	if (ret)
1182 		goto err;
1183 
1184 	if (check_flash_errors(host, 1)) {
1185 		dev_warn(nandc->dev, "error when trying to read BBM\n");
1186 		goto err;
1187 	}
1188 
1189 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
1190 
1191 	bad = nandc->data_buffer[bbpos] != 0xff;
1192 
1193 	if (chip->options & NAND_BUSWIDTH_16)
1194 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
1195 err:
1196 	return bad;
1197 }
1198 
qcom_nandc_block_markbad(struct nand_chip * chip,loff_t ofs)1199 static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs)
1200 {
1201 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1202 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1203 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1204 	int page, ret;
1205 
1206 	qcom_clear_read_regs(nandc);
1207 	qcom_clear_bam_transaction(nandc);
1208 
1209 	/*
1210 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
1211 	 * we don't care about the rest of the content in the codeword since
1212 	 * we aren't going to use this block again
1213 	 */
1214 	memset(nandc->data_buffer, 0x00, host->cw_size);
1215 
1216 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
1217 
1218 	/* prepare write */
1219 	host->use_ecc = false;
1220 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1221 	update_rw_regs(host, 1, false, ecc->steps - 1);
1222 
1223 	config_nand_page_write(chip);
1224 	qcom_write_data_dma(nandc, FLASH_BUF_ACC,
1225 			    nandc->data_buffer, host->cw_size, 0);
1226 	config_nand_cw_write(chip);
1227 
1228 	ret = qcom_submit_descs(nandc);
1229 	if (ret) {
1230 		dev_err(nandc->dev, "failure to update BBM\n");
1231 		return ret;
1232 	}
1233 
1234 	return nand_prog_page_end_op(chip);
1235 }
1236 
1237 /*
1238  * NAND controller page layout info
1239  *
1240  * Layout with ECC enabled:
1241  *
1242  * |----------------------|  |---------------------------------|
1243  * |           xx.......yy|  |             *********xx.......yy|
1244  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
1245  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
1246  * |           xx.......yy|  |             *********xx.......yy|
1247  * |----------------------|  |---------------------------------|
1248  *     codeword 1,2..n-1                  codeword n
1249  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
1250  *
1251  * n = Number of codewords in the page
1252  * . = ECC bytes
1253  * * = Spare/free bytes
1254  * x = Unused byte(s)
1255  * y = Reserved byte(s)
1256  *
1257  * 2K page: n = 4, spare = 16 bytes
1258  * 4K page: n = 8, spare = 32 bytes
1259  * 8K page: n = 16, spare = 64 bytes
1260  *
1261  * the qcom nand controller operates at a sub page/codeword level. each
1262  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
1263  * the number of ECC bytes vary based on the ECC strength and the bus width.
1264  *
1265  * the first n - 1 codewords contains 516 bytes of user data, the remaining
1266  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
1267  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
1268  *
1269  * When we access a page with ECC enabled, the reserved bytes(s) are not
1270  * accessible at all. When reading, we fill up these unreadable positions
1271  * with 0xffs. When writing, the controller skips writing the inaccessible
1272  * bytes.
1273  *
1274  * Layout with ECC disabled:
1275  *
1276  * |------------------------------|  |---------------------------------------|
1277  * |         yy          xx.......|  |         bb          *********xx.......|
1278  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
1279  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
1280  * |         yy          xx.......|  |         bb          *********xx.......|
1281  * |------------------------------|  |---------------------------------------|
1282  *         codeword 1,2..n-1                        codeword n
1283  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
1284  *
1285  * n = Number of codewords in the page
1286  * . = ECC bytes
1287  * * = Spare/free bytes
1288  * x = Unused byte(s)
1289  * y = Dummy Bad Bock byte(s)
1290  * b = Real Bad Block byte(s)
1291  * size1/size2 = function of codeword size and 'n'
1292  *
1293  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
1294  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
1295  * Block Markers. In the last codeword, this position contains the real BBM
1296  *
1297  * In order to have a consistent layout between RAW and ECC modes, we assume
1298  * the following OOB layout arrangement:
1299  *
1300  * |-----------|  |--------------------|
1301  * |yyxx.......|  |bb*********xx.......|
1302  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
1303  * |yyxx.......|  |bb*********xx.......|
1304  * |yyxx.......|  |bb*********xx.......|
1305  * |-----------|  |--------------------|
1306  *  first n - 1       nth OOB region
1307  *  OOB regions
1308  *
1309  * n = Number of codewords in the page
1310  * . = ECC bytes
1311  * * = FREE OOB bytes
1312  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
1313  * x = Unused byte(s)
1314  * b = Real bad block byte(s) (inaccessible when ECC enabled)
1315  *
1316  * This layout is read as is when ECC is disabled. When ECC is enabled, the
1317  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
1318  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
1319  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
1320  * the sum of the three).
1321  */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1322 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
1323 				   struct mtd_oob_region *oobregion)
1324 {
1325 	struct nand_chip *chip = mtd_to_nand(mtd);
1326 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1327 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1328 
1329 	if (section > 1)
1330 		return -ERANGE;
1331 
1332 	if (!section) {
1333 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
1334 				    host->bbm_size;
1335 		oobregion->offset = 0;
1336 	} else {
1337 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
1338 		oobregion->offset = mtd->oobsize - oobregion->length;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1344 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
1345 				    struct mtd_oob_region *oobregion)
1346 {
1347 	struct nand_chip *chip = mtd_to_nand(mtd);
1348 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1349 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1350 
1351 	if (section)
1352 		return -ERANGE;
1353 
1354 	oobregion->length = ecc->steps * 4;
1355 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
1356 
1357 	return 0;
1358 }
1359 
1360 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
1361 	.ecc = qcom_nand_ooblayout_ecc,
1362 	.free = qcom_nand_ooblayout_free,
1363 };
1364 
1365 static int
qcom_nandc_calc_ecc_bytes(int step_size,int strength)1366 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
1367 {
1368 	return strength == 4 ? 12 : 16;
1369 }
1370 
1371 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
1372 		     NANDC_STEP_SIZE, 4, 8);
1373 
qcom_nand_attach_chip(struct nand_chip * chip)1374 static int qcom_nand_attach_chip(struct nand_chip *chip)
1375 {
1376 	struct mtd_info *mtd = nand_to_mtd(chip);
1377 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1378 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1379 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1380 	int cwperpage, bad_block_byte, ret;
1381 	bool wide_bus;
1382 	int ecc_mode = 1;
1383 
1384 	/* controller only supports 512 bytes data steps */
1385 	ecc->size = NANDC_STEP_SIZE;
1386 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
1387 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
1388 
1389 	/*
1390 	 * Each CW has 4 available OOB bytes which will be protected with ECC
1391 	 * so remaining bytes can be used for ECC.
1392 	 */
1393 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
1394 				   mtd->oobsize - (cwperpage * 4));
1395 	if (ret) {
1396 		dev_err(nandc->dev, "No valid ECC settings possible\n");
1397 		return ret;
1398 	}
1399 
1400 	if (ecc->strength >= 8) {
1401 		/* 8 bit ECC defaults to BCH ECC on all platforms */
1402 		host->bch_enabled = true;
1403 		ecc_mode = 1;
1404 
1405 		if (wide_bus) {
1406 			host->ecc_bytes_hw = 14;
1407 			host->spare_bytes = 0;
1408 			host->bbm_size = 2;
1409 		} else {
1410 			host->ecc_bytes_hw = 13;
1411 			host->spare_bytes = 2;
1412 			host->bbm_size = 1;
1413 		}
1414 	} else {
1415 		/*
1416 		 * if the controller supports BCH for 4 bit ECC, the controller
1417 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
1418 		 * always 10 bytes
1419 		 */
1420 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
1421 			/* BCH */
1422 			host->bch_enabled = true;
1423 			ecc_mode = 0;
1424 
1425 			if (wide_bus) {
1426 				host->ecc_bytes_hw = 8;
1427 				host->spare_bytes = 2;
1428 				host->bbm_size = 2;
1429 			} else {
1430 				host->ecc_bytes_hw = 7;
1431 				host->spare_bytes = 4;
1432 				host->bbm_size = 1;
1433 			}
1434 		} else {
1435 			/* RS */
1436 			host->ecc_bytes_hw = 10;
1437 
1438 			if (wide_bus) {
1439 				host->spare_bytes = 0;
1440 				host->bbm_size = 2;
1441 			} else {
1442 				host->spare_bytes = 1;
1443 				host->bbm_size = 1;
1444 			}
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * we consider ecc->bytes as the sum of all the non-data content in a
1450 	 * step. It gives us a clean representation of the oob area (even if
1451 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
1452 	 * ECC and 12 bytes for 4 bit ECC
1453 	 */
1454 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
1455 
1456 	ecc->read_page		= qcom_nandc_read_page;
1457 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
1458 	ecc->read_oob		= qcom_nandc_read_oob;
1459 	ecc->write_page		= qcom_nandc_write_page;
1460 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
1461 	ecc->write_oob		= qcom_nandc_write_oob;
1462 
1463 	ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
1464 
1465 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
1466 	/* Free the initially allocated BAM transaction for reading the ONFI params */
1467 	if (nandc->props->supports_bam)
1468 		qcom_free_bam_transaction(nandc);
1469 
1470 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
1471 				     cwperpage);
1472 
1473 	/* Now allocate the BAM transaction based on updated max_cwperpage */
1474 	if (nandc->props->supports_bam) {
1475 		nandc->bam_txn = qcom_alloc_bam_transaction(nandc);
1476 		if (!nandc->bam_txn) {
1477 			dev_err(nandc->dev,
1478 				"failed to allocate bam transaction\n");
1479 			return -ENOMEM;
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * DATA_UD_BYTES varies based on whether the read/write command protects
1485 	 * spare data with ECC too. We protect spare data by default, so we set
1486 	 * it to main + spare data, which are 512 and 4 bytes respectively.
1487 	 */
1488 	host->cw_data = 516;
1489 
1490 	/*
1491 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
1492 	 * for 8 bit ECC
1493 	 */
1494 	host->cw_size = host->cw_data + ecc->bytes;
1495 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
1496 
1497 	host->cfg0 = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
1498 		     FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_data) |
1499 		     FIELD_PREP(DISABLE_STATUS_AFTER_WRITE, 0) |
1500 		     FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
1501 		     FIELD_PREP(ECC_PARITY_SIZE_BYTES_RS, host->ecc_bytes_hw) |
1502 		     FIELD_PREP(STATUS_BFR_READ, 0) |
1503 		     FIELD_PREP(SET_RD_MODE_AFTER_STATUS, 1) |
1504 		     FIELD_PREP(SPARE_SIZE_BYTES_MASK, host->spare_bytes);
1505 
1506 	host->cfg1 = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
1507 		     FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, bad_block_byte) |
1508 		     FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 0) |
1509 		     FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
1510 		     FIELD_PREP(WIDE_FLASH, wide_bus) |
1511 		     FIELD_PREP(ENABLE_BCH_ECC, host->bch_enabled);
1512 
1513 	host->cfg0_raw = FIELD_PREP(CW_PER_PAGE_MASK, (cwperpage - 1)) |
1514 			 FIELD_PREP(UD_SIZE_BYTES_MASK, host->cw_size) |
1515 			 FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
1516 			 FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0);
1517 
1518 	host->cfg1_raw = FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
1519 			 FIELD_PREP(CS_ACTIVE_BSY, 0) |
1520 			 FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) |
1521 			 FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) |
1522 			 FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
1523 			 FIELD_PREP(WIDE_FLASH, wide_bus) |
1524 			 FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1);
1525 
1526 	host->ecc_bch_cfg = FIELD_PREP(ECC_CFG_ECC_DISABLE, !host->bch_enabled) |
1527 			    FIELD_PREP(ECC_SW_RESET, 0) |
1528 			    FIELD_PREP(ECC_NUM_DATA_BYTES_MASK, host->cw_data) |
1529 			    FIELD_PREP(ECC_FORCE_CLK_OPEN, 1) |
1530 			    FIELD_PREP(ECC_MODE_MASK, ecc_mode) |
1531 			    FIELD_PREP(ECC_PARITY_SIZE_BYTES_BCH_MASK, host->ecc_bytes_hw);
1532 
1533 	if (!nandc->props->qpic_version2)
1534 		host->ecc_buf_cfg = 0x203 << NUM_STEPS;
1535 
1536 	host->clrflashstatus = FS_READY_BSY_N;
1537 	host->clrreadstatus = 0xc0;
1538 	nandc->regs->erased_cw_detect_cfg_clr =
1539 		cpu_to_le32(CLR_ERASED_PAGE_DET);
1540 	nandc->regs->erased_cw_detect_cfg_set =
1541 		cpu_to_le32(SET_ERASED_PAGE_DET);
1542 
1543 	dev_dbg(nandc->dev,
1544 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
1545 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
1546 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
1547 		cwperpage);
1548 
1549 	return 0;
1550 }
1551 
qcom_op_cmd_mapping(struct nand_chip * chip,u8 opcode,struct qcom_op * q_op)1552 static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode,
1553 			       struct qcom_op *q_op)
1554 {
1555 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1556 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1557 	int cmd;
1558 
1559 	switch (opcode) {
1560 	case NAND_CMD_RESET:
1561 		cmd = OP_RESET_DEVICE;
1562 		break;
1563 	case NAND_CMD_READID:
1564 		cmd = OP_FETCH_ID;
1565 		break;
1566 	case NAND_CMD_PARAM:
1567 		if (nandc->props->qpic_version2)
1568 			cmd = OP_PAGE_READ_ONFI_READ;
1569 		else
1570 			cmd = OP_PAGE_READ;
1571 		break;
1572 	case NAND_CMD_ERASE1:
1573 	case NAND_CMD_ERASE2:
1574 		cmd = OP_BLOCK_ERASE;
1575 		break;
1576 	case NAND_CMD_STATUS:
1577 		cmd = OP_CHECK_STATUS;
1578 		break;
1579 	case NAND_CMD_PAGEPROG:
1580 		cmd = OP_PROGRAM_PAGE;
1581 		q_op->flag = OP_PROGRAM_PAGE;
1582 		nandc->exec_opwrite = true;
1583 		break;
1584 	case NAND_CMD_READ0:
1585 	case NAND_CMD_READSTART:
1586 		if (host->use_ecc)
1587 			cmd = OP_PAGE_READ_WITH_ECC;
1588 		else
1589 			cmd = OP_PAGE_READ;
1590 		break;
1591 	default:
1592 		dev_err(nandc->dev, "Opcode not supported: %u\n", opcode);
1593 		return -EOPNOTSUPP;
1594 	}
1595 
1596 	return cmd;
1597 }
1598 
1599 /* NAND framework ->exec_op() hooks and related helpers */
qcom_parse_instructions(struct nand_chip * chip,const struct nand_subop * subop,struct qcom_op * q_op)1600 static int qcom_parse_instructions(struct nand_chip *chip,
1601 				    const struct nand_subop *subop,
1602 				    struct qcom_op *q_op)
1603 {
1604 	const struct nand_op_instr *instr = NULL;
1605 	unsigned int op_id;
1606 	int i, ret;
1607 
1608 	for (op_id = 0; op_id < subop->ninstrs; op_id++) {
1609 		unsigned int offset, naddrs;
1610 		const u8 *addrs;
1611 
1612 		instr = &subop->instrs[op_id];
1613 
1614 		switch (instr->type) {
1615 		case NAND_OP_CMD_INSTR:
1616 			ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op);
1617 			if (ret < 0)
1618 				return ret;
1619 
1620 			q_op->cmd_reg = cpu_to_le32(ret);
1621 			q_op->rdy_delay_ns = instr->delay_ns;
1622 			break;
1623 
1624 		case NAND_OP_ADDR_INSTR:
1625 			offset = nand_subop_get_addr_start_off(subop, op_id);
1626 			naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
1627 			addrs = &instr->ctx.addr.addrs[offset];
1628 
1629 			for (i = 0; i < min_t(unsigned int, 4, naddrs); i++)
1630 				q_op->addr1_reg |= cpu_to_le32(addrs[i] << (i * 8));
1631 
1632 			if (naddrs > 4)
1633 				q_op->addr2_reg |= cpu_to_le32(addrs[4]);
1634 
1635 			q_op->rdy_delay_ns = instr->delay_ns;
1636 			break;
1637 
1638 		case NAND_OP_DATA_IN_INSTR:
1639 			q_op->data_instr = instr;
1640 			q_op->data_instr_idx = op_id;
1641 			q_op->rdy_delay_ns = instr->delay_ns;
1642 			fallthrough;
1643 		case NAND_OP_DATA_OUT_INSTR:
1644 			q_op->rdy_delay_ns = instr->delay_ns;
1645 			break;
1646 
1647 		case NAND_OP_WAITRDY_INSTR:
1648 			q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms;
1649 			q_op->rdy_delay_ns = instr->delay_ns;
1650 			break;
1651 		}
1652 	}
1653 
1654 	return 0;
1655 }
1656 
qcom_delay_ns(unsigned int ns)1657 static void qcom_delay_ns(unsigned int ns)
1658 {
1659 	if (!ns)
1660 		return;
1661 
1662 	if (ns < 10000)
1663 		ndelay(ns);
1664 	else
1665 		udelay(DIV_ROUND_UP(ns, 1000));
1666 }
1667 
qcom_wait_rdy_poll(struct nand_chip * chip,unsigned int time_ms)1668 static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms)
1669 {
1670 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1671 	unsigned long start = jiffies + msecs_to_jiffies(time_ms);
1672 	u32 flash;
1673 
1674 	qcom_nandc_dev_to_mem(nandc, true);
1675 
1676 	do {
1677 		flash = le32_to_cpu(nandc->reg_read_buf[0]);
1678 		if (flash & FS_READY_BSY_N)
1679 			return 0;
1680 		cpu_relax();
1681 	} while (time_after(start, jiffies));
1682 
1683 	dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash);
1684 
1685 	return -ETIMEDOUT;
1686 }
1687 
qcom_read_status_exec(struct nand_chip * chip,const struct nand_subop * subop)1688 static int qcom_read_status_exec(struct nand_chip *chip,
1689 				 const struct nand_subop *subop)
1690 {
1691 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1692 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1693 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1694 	struct qcom_op q_op = {};
1695 	const struct nand_op_instr *instr = NULL;
1696 	unsigned int op_id = 0;
1697 	unsigned int len = 0;
1698 	int ret, num_cw, i;
1699 	u32 flash_status;
1700 
1701 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
1702 
1703 	ret = qcom_parse_instructions(chip, subop, &q_op);
1704 	if (ret)
1705 		return ret;
1706 
1707 	num_cw = nandc->exec_opwrite ? ecc->steps : 1;
1708 	nandc->exec_opwrite = false;
1709 
1710 	nandc->buf_count = 0;
1711 	nandc->buf_start = 0;
1712 	host->use_ecc = false;
1713 
1714 	qcom_clear_read_regs(nandc);
1715 	qcom_clear_bam_transaction(nandc);
1716 
1717 	nandc->regs->cmd = q_op.cmd_reg;
1718 	nandc->regs->exec = cpu_to_le32(1);
1719 
1720 	qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1721 	qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1722 	qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1723 
1724 	ret = qcom_submit_descs(nandc);
1725 	if (ret) {
1726 		dev_err(nandc->dev, "failure in submitting status descriptor\n");
1727 		goto err_out;
1728 	}
1729 
1730 	qcom_nandc_dev_to_mem(nandc, true);
1731 
1732 	for (i = 0; i < num_cw; i++) {
1733 		flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1734 
1735 		if (flash_status & FS_MPU_ERR)
1736 			host->status &= ~NAND_STATUS_WP;
1737 
1738 		if (flash_status & FS_OP_ERR ||
1739 		    (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR)))
1740 			host->status |= NAND_STATUS_FAIL;
1741 	}
1742 
1743 	flash_status = host->status;
1744 	instr = q_op.data_instr;
1745 	op_id = q_op.data_instr_idx;
1746 	len = nand_subop_get_data_len(subop, op_id);
1747 	memcpy(instr->ctx.data.buf.in, &flash_status, len);
1748 
1749 err_out:
1750 	return ret;
1751 }
1752 
qcom_read_id_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1753 static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
1754 {
1755 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1756 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1757 	struct qcom_op q_op = {};
1758 	const struct nand_op_instr *instr = NULL;
1759 	unsigned int op_id = 0;
1760 	unsigned int len = 0;
1761 	int ret;
1762 
1763 	ret = qcom_parse_instructions(chip, subop, &q_op);
1764 	if (ret)
1765 		return ret;
1766 
1767 	nandc->buf_count = 0;
1768 	nandc->buf_start = 0;
1769 	host->use_ecc = false;
1770 
1771 	qcom_clear_read_regs(nandc);
1772 	qcom_clear_bam_transaction(nandc);
1773 
1774 	nandc->regs->cmd = q_op.cmd_reg;
1775 	nandc->regs->addr0 = q_op.addr1_reg;
1776 	nandc->regs->addr1 = q_op.addr2_reg;
1777 	nandc->regs->chip_sel = cpu_to_le32(nandc->props->supports_bam ? 0 : DM_EN);
1778 	nandc->regs->exec = cpu_to_le32(1);
1779 
1780 	qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1781 	qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1782 
1783 	qcom_read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1784 
1785 	ret = qcom_submit_descs(nandc);
1786 	if (ret) {
1787 		dev_err(nandc->dev, "failure in submitting read id descriptor\n");
1788 		goto err_out;
1789 	}
1790 
1791 	instr = q_op.data_instr;
1792 	op_id = q_op.data_instr_idx;
1793 	len = nand_subop_get_data_len(subop, op_id);
1794 
1795 	qcom_nandc_dev_to_mem(nandc, true);
1796 	memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len);
1797 
1798 err_out:
1799 	return ret;
1800 }
1801 
qcom_misc_cmd_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1802 static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop)
1803 {
1804 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1805 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1806 	struct qcom_op q_op = {};
1807 	int ret;
1808 	int instrs = 1;
1809 
1810 	ret = qcom_parse_instructions(chip, subop, &q_op);
1811 	if (ret)
1812 		return ret;
1813 
1814 	if (q_op.flag == OP_PROGRAM_PAGE) {
1815 		goto wait_rdy;
1816 	} else if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE)) {
1817 		q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE);
1818 		nandc->regs->addr0 = q_op.addr1_reg;
1819 		nandc->regs->addr1 = q_op.addr2_reg;
1820 		nandc->regs->cfg0 = cpu_to_le32(host->cfg0_raw & ~(7 << CW_PER_PAGE));
1821 		nandc->regs->cfg1 = cpu_to_le32(host->cfg1_raw);
1822 		instrs = 3;
1823 	} else if (q_op.cmd_reg != cpu_to_le32(OP_RESET_DEVICE)) {
1824 		return 0;
1825 	}
1826 
1827 	nandc->buf_count = 0;
1828 	nandc->buf_start = 0;
1829 	host->use_ecc = false;
1830 
1831 	qcom_clear_read_regs(nandc);
1832 	qcom_clear_bam_transaction(nandc);
1833 
1834 	nandc->regs->cmd = q_op.cmd_reg;
1835 	nandc->regs->exec = cpu_to_le32(1);
1836 
1837 	qcom_write_reg_dma(nandc, &nandc->regs->cmd, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL);
1838 	if (q_op.cmd_reg == cpu_to_le32(OP_BLOCK_ERASE))
1839 		qcom_write_reg_dma(nandc, &nandc->regs->cfg0, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1840 
1841 	qcom_write_reg_dma(nandc, &nandc->regs->exec, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1842 	qcom_read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1843 
1844 	ret = qcom_submit_descs(nandc);
1845 	if (ret) {
1846 		dev_err(nandc->dev, "failure in submitting misc descriptor\n");
1847 		goto err_out;
1848 	}
1849 
1850 wait_rdy:
1851 	qcom_delay_ns(q_op.rdy_delay_ns);
1852 	ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
1853 
1854 err_out:
1855 	return ret;
1856 }
1857 
qcom_param_page_type_exec(struct nand_chip * chip,const struct nand_subop * subop)1858 static int qcom_param_page_type_exec(struct nand_chip *chip,  const struct nand_subop *subop)
1859 {
1860 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1861 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1862 	struct qcom_op q_op = {};
1863 	const struct nand_op_instr *instr = NULL;
1864 	unsigned int op_id = 0;
1865 	unsigned int len = 0;
1866 	int ret;
1867 
1868 	ret = qcom_parse_instructions(chip, subop, &q_op);
1869 	if (ret)
1870 		return ret;
1871 
1872 	q_op.cmd_reg |= cpu_to_le32(PAGE_ACC | LAST_PAGE);
1873 
1874 	nandc->buf_count = 0;
1875 	nandc->buf_start = 0;
1876 	host->use_ecc = false;
1877 	qcom_clear_read_regs(nandc);
1878 	qcom_clear_bam_transaction(nandc);
1879 
1880 	nandc->regs->cmd = q_op.cmd_reg;
1881 	nandc->regs->addr0 = 0;
1882 	nandc->regs->addr1 = 0;
1883 
1884 	nandc->regs->cfg0 = cpu_to_le32(FIELD_PREP(CW_PER_PAGE_MASK, 0) |
1885 					FIELD_PREP(UD_SIZE_BYTES_MASK, 512) |
1886 					FIELD_PREP(NUM_ADDR_CYCLES_MASK, 5) |
1887 					FIELD_PREP(SPARE_SIZE_BYTES_MASK, 0));
1888 
1889 	nandc->regs->cfg1 = cpu_to_le32(FIELD_PREP(NAND_RECOVERY_CYCLES_MASK, 7) |
1890 					FIELD_PREP(BAD_BLOCK_BYTE_NUM_MASK, 17) |
1891 					FIELD_PREP(CS_ACTIVE_BSY, 0) |
1892 					FIELD_PREP(BAD_BLOCK_IN_SPARE_AREA, 1) |
1893 					FIELD_PREP(WR_RD_BSY_GAP_MASK, 2) |
1894 					FIELD_PREP(WIDE_FLASH, 0) |
1895 					FIELD_PREP(DEV0_CFG1_ECC_DISABLE, 1));
1896 
1897 	if (!nandc->props->qpic_version2)
1898 		nandc->regs->ecc_buf_cfg = cpu_to_le32(ECC_CFG_ECC_DISABLE);
1899 
1900 	/* configure CMD1 and VLD for ONFI param probing in QPIC v1 */
1901 	if (!nandc->props->qpic_version2) {
1902 		nandc->regs->vld = cpu_to_le32((nandc->vld & ~READ_START_VLD));
1903 		nandc->regs->cmd1 = cpu_to_le32((nandc->cmd1 & ~(0xFF << READ_ADDR))
1904 				    | NAND_CMD_PARAM << READ_ADDR);
1905 	}
1906 
1907 	nandc->regs->exec = cpu_to_le32(1);
1908 
1909 	if (!nandc->props->qpic_version2) {
1910 		nandc->regs->orig_cmd1 = cpu_to_le32(nandc->cmd1);
1911 		nandc->regs->orig_vld = cpu_to_le32(nandc->vld);
1912 	}
1913 
1914 	instr = q_op.data_instr;
1915 	op_id = q_op.data_instr_idx;
1916 	len = nand_subop_get_data_len(subop, op_id);
1917 
1918 	nandc_set_read_loc(chip, 0, 0, 0, len, 1);
1919 
1920 	if (!nandc->props->qpic_version2) {
1921 		qcom_write_reg_dma(nandc, &nandc->regs->vld, NAND_DEV_CMD_VLD, 1, 0);
1922 		qcom_write_reg_dma(nandc, &nandc->regs->cmd1, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1923 	}
1924 
1925 	nandc->buf_count = len;
1926 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1927 
1928 	config_nand_single_cw_page_read(chip, false, 0);
1929 
1930 	qcom_read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1931 			   nandc->buf_count, 0);
1932 
1933 	/* restore CMD1 and VLD regs */
1934 	if (!nandc->props->qpic_version2) {
1935 		qcom_write_reg_dma(nandc, &nandc->regs->orig_cmd1, NAND_DEV_CMD1_RESTORE, 1, 0);
1936 		qcom_write_reg_dma(nandc, &nandc->regs->orig_vld, NAND_DEV_CMD_VLD_RESTORE, 1,
1937 				   NAND_BAM_NEXT_SGL);
1938 	}
1939 
1940 	ret = qcom_submit_descs(nandc);
1941 	if (ret) {
1942 		dev_err(nandc->dev, "failure in submitting param page descriptor\n");
1943 		goto err_out;
1944 	}
1945 
1946 	ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms);
1947 	if (ret)
1948 		goto err_out;
1949 
1950 	memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len);
1951 
1952 err_out:
1953 	return ret;
1954 }
1955 
1956 static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER(
1957 		NAND_OP_PARSER_PATTERN(
1958 			qcom_read_id_type_exec,
1959 			NAND_OP_PARSER_PAT_CMD_ELEM(false),
1960 			NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
1961 			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)),
1962 		NAND_OP_PARSER_PATTERN(
1963 			qcom_read_status_exec,
1964 			NAND_OP_PARSER_PAT_CMD_ELEM(false),
1965 			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)),
1966 		NAND_OP_PARSER_PATTERN(
1967 			qcom_param_page_type_exec,
1968 			NAND_OP_PARSER_PAT_CMD_ELEM(false),
1969 			NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE),
1970 			NAND_OP_PARSER_PAT_WAITRDY_ELEM(true),
1971 			NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)),
1972 		NAND_OP_PARSER_PATTERN(
1973 			qcom_misc_cmd_type_exec,
1974 			NAND_OP_PARSER_PAT_CMD_ELEM(false),
1975 			NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE),
1976 			NAND_OP_PARSER_PAT_CMD_ELEM(true),
1977 			NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
1978 		);
1979 
qcom_check_op(struct nand_chip * chip,const struct nand_operation * op)1980 static int qcom_check_op(struct nand_chip *chip,
1981 			 const struct nand_operation *op)
1982 {
1983 	const struct nand_op_instr *instr;
1984 	int op_id;
1985 
1986 	for (op_id = 0; op_id < op->ninstrs; op_id++) {
1987 		instr = &op->instrs[op_id];
1988 
1989 		switch (instr->type) {
1990 		case NAND_OP_CMD_INSTR:
1991 			if (instr->ctx.cmd.opcode != NAND_CMD_RESET  &&
1992 			    instr->ctx.cmd.opcode != NAND_CMD_READID &&
1993 			    instr->ctx.cmd.opcode != NAND_CMD_PARAM  &&
1994 			    instr->ctx.cmd.opcode != NAND_CMD_ERASE1 &&
1995 			    instr->ctx.cmd.opcode != NAND_CMD_ERASE2 &&
1996 			    instr->ctx.cmd.opcode != NAND_CMD_STATUS &&
1997 			    instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG &&
1998 			    instr->ctx.cmd.opcode != NAND_CMD_READ0 &&
1999 			    instr->ctx.cmd.opcode != NAND_CMD_READSTART)
2000 				return -EOPNOTSUPP;
2001 			break;
2002 		default:
2003 			break;
2004 		}
2005 	}
2006 
2007 	return 0;
2008 }
2009 
qcom_nand_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)2010 static int qcom_nand_exec_op(struct nand_chip *chip,
2011 			     const struct nand_operation *op, bool check_only)
2012 {
2013 	if (check_only)
2014 		return qcom_check_op(chip, op);
2015 
2016 	return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only);
2017 }
2018 
2019 static const struct nand_controller_ops qcom_nandc_ops = {
2020 	.attach_chip = qcom_nand_attach_chip,
2021 	.exec_op = qcom_nand_exec_op,
2022 };
2023 
2024 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2025 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2026 {
2027 	u32 nand_ctrl;
2028 
2029 	nand_controller_init(nandc->controller);
2030 	nandc->controller->ops = &qcom_nandc_ops;
2031 
2032 	/* kill onenand */
2033 	if (!nandc->props->nandc_part_of_qpic)
2034 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2035 
2036 	if (!nandc->props->qpic_version2)
2037 		nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2038 			    NAND_DEV_CMD_VLD_VAL);
2039 
2040 	/* enable ADM or BAM DMA */
2041 	if (nandc->props->supports_bam) {
2042 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2043 
2044 		/*
2045 		 *NAND_CTRL is an operational registers, and CPU
2046 		 * access to operational registers are read only
2047 		 * in BAM mode. So update the NAND_CTRL register
2048 		 * only if it is not in BAM mode. In most cases BAM
2049 		 * mode will be enabled in bootloader
2050 		 */
2051 		if (!(nand_ctrl & BAM_MODE_EN))
2052 			nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2053 	} else {
2054 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2055 	}
2056 
2057 	/* save the original values of these registers */
2058 	if (!nandc->props->qpic_version2) {
2059 		nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2060 		nandc->vld = NAND_DEV_CMD_VLD_VAL;
2061 	}
2062 
2063 	return 0;
2064 }
2065 
2066 static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL };
2067 
qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2068 static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc,
2069 						struct qcom_nand_host *host,
2070 						struct device_node *dn)
2071 {
2072 	struct nand_chip *chip = &host->chip;
2073 	struct mtd_info *mtd = nand_to_mtd(chip);
2074 	struct qcom_nand_boot_partition *boot_partition;
2075 	struct device *dev = nandc->dev;
2076 	int partitions_count, i, j, ret;
2077 
2078 	if (!of_property_present(dn, "qcom,boot-partitions"))
2079 		return 0;
2080 
2081 	partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions");
2082 	if (partitions_count <= 0) {
2083 		dev_err(dev, "Error parsing boot partition\n");
2084 		return partitions_count ? partitions_count : -EINVAL;
2085 	}
2086 
2087 	host->nr_boot_partitions = partitions_count / 2;
2088 	host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions,
2089 					     sizeof(*host->boot_partitions), GFP_KERNEL);
2090 	if (!host->boot_partitions) {
2091 		host->nr_boot_partitions = 0;
2092 		return -ENOMEM;
2093 	}
2094 
2095 	for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) {
2096 		boot_partition = &host->boot_partitions[i];
2097 
2098 		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j,
2099 						 &boot_partition->page_offset);
2100 		if (ret) {
2101 			dev_err(dev, "Error parsing boot partition offset at index %d\n", i);
2102 			host->nr_boot_partitions = 0;
2103 			return ret;
2104 		}
2105 
2106 		if (boot_partition->page_offset % mtd->writesize) {
2107 			dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n",
2108 				i);
2109 			host->nr_boot_partitions = 0;
2110 			return -EINVAL;
2111 		}
2112 		/* Convert offset to nand pages */
2113 		boot_partition->page_offset /= mtd->writesize;
2114 
2115 		ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1,
2116 						 &boot_partition->page_size);
2117 		if (ret) {
2118 			dev_err(dev, "Error parsing boot partition size at index %d\n", i);
2119 			host->nr_boot_partitions = 0;
2120 			return ret;
2121 		}
2122 
2123 		if (boot_partition->page_size % mtd->writesize) {
2124 			dev_err(dev, "Boot partition size not multiple of writesize at index %i\n",
2125 				i);
2126 			host->nr_boot_partitions = 0;
2127 			return -EINVAL;
2128 		}
2129 		/* Convert size to nand pages */
2130 		boot_partition->page_size /= mtd->writesize;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
qcom_nand_host_init_and_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2136 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2137 					    struct qcom_nand_host *host,
2138 					    struct device_node *dn)
2139 {
2140 	struct nand_chip *chip = &host->chip;
2141 	struct mtd_info *mtd = nand_to_mtd(chip);
2142 	struct device *dev = nandc->dev;
2143 	int ret;
2144 
2145 	ret = of_property_read_u32(dn, "reg", &host->cs);
2146 	if (ret) {
2147 		dev_err(dev, "can't get chip-select\n");
2148 		return -ENXIO;
2149 	}
2150 
2151 	nand_set_flash_node(chip, dn);
2152 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2153 	if (!mtd->name)
2154 		return -ENOMEM;
2155 
2156 	mtd->owner = THIS_MODULE;
2157 	mtd->dev.parent = dev;
2158 
2159 	/*
2160 	 * the bad block marker is readable only when we read the last codeword
2161 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2162 	 * helpers don't allow us to read BB from a nand chip with ECC
2163 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2164 	 * and block_markbad helpers until we permanently switch to using
2165 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2166 	 */
2167 	chip->legacy.block_bad		= qcom_nandc_block_bad;
2168 	chip->legacy.block_markbad	= qcom_nandc_block_markbad;
2169 
2170 	chip->controller = nandc->controller;
2171 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA |
2172 			 NAND_SKIP_BBTSCAN;
2173 
2174 	/* set up initial status value */
2175 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2176 
2177 	ret = nand_scan(chip, 1);
2178 	if (ret)
2179 		return ret;
2180 
2181 	ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0);
2182 	if (ret)
2183 		goto err;
2184 
2185 	if (nandc->props->use_codeword_fixup) {
2186 		ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn);
2187 		if (ret)
2188 			goto err;
2189 	}
2190 
2191 	return 0;
2192 
2193 err:
2194 	nand_cleanup(chip);
2195 	return ret;
2196 }
2197 
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2198 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2199 {
2200 	struct device *dev = nandc->dev;
2201 	struct device_node *dn = dev->of_node, *child;
2202 	struct qcom_nand_host *host;
2203 	int ret = -ENODEV;
2204 
2205 	for_each_available_child_of_node(dn, child) {
2206 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2207 		if (!host) {
2208 			of_node_put(child);
2209 			return -ENOMEM;
2210 		}
2211 
2212 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2213 		if (ret) {
2214 			devm_kfree(dev, host);
2215 			continue;
2216 		}
2217 
2218 		list_add_tail(&host->node, &nandc->host_list);
2219 	}
2220 
2221 	return ret;
2222 }
2223 
2224 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2225 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2226 {
2227 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2228 	struct device_node *np = nandc->dev->of_node;
2229 	int ret;
2230 
2231 	if (!nandc->props->supports_bam) {
2232 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2233 					   &nandc->cmd_crci);
2234 		if (ret) {
2235 			dev_err(nandc->dev, "command CRCI unspecified\n");
2236 			return ret;
2237 		}
2238 
2239 		ret = of_property_read_u32(np, "qcom,data-crci",
2240 					   &nandc->data_crci);
2241 		if (ret) {
2242 			dev_err(nandc->dev, "data CRCI unspecified\n");
2243 			return ret;
2244 		}
2245 	}
2246 
2247 	return 0;
2248 }
2249 
qcom_nandc_probe(struct platform_device * pdev)2250 static int qcom_nandc_probe(struct platform_device *pdev)
2251 {
2252 	struct qcom_nand_controller *nandc;
2253 	struct nand_controller *controller;
2254 	const void *dev_data;
2255 	struct device *dev = &pdev->dev;
2256 	struct resource *res;
2257 	int ret;
2258 
2259 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc) + sizeof(*controller),
2260 			     GFP_KERNEL);
2261 	if (!nandc)
2262 		return -ENOMEM;
2263 	controller = (struct nand_controller *)&nandc[1];
2264 
2265 	platform_set_drvdata(pdev, nandc);
2266 	nandc->dev = dev;
2267 	nandc->controller = controller;
2268 
2269 	dev_data = of_device_get_match_data(dev);
2270 	if (!dev_data) {
2271 		dev_err(&pdev->dev, "failed to get device data\n");
2272 		return -ENODEV;
2273 	}
2274 
2275 	nandc->props = dev_data;
2276 
2277 	nandc->core_clk = devm_clk_get(dev, "core");
2278 	if (IS_ERR(nandc->core_clk))
2279 		return PTR_ERR(nandc->core_clk);
2280 
2281 	nandc->aon_clk = devm_clk_get(dev, "aon");
2282 	if (IS_ERR(nandc->aon_clk))
2283 		return PTR_ERR(nandc->aon_clk);
2284 
2285 	ret = qcom_nandc_parse_dt(pdev);
2286 	if (ret)
2287 		return ret;
2288 
2289 	nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2290 	if (IS_ERR(nandc->base))
2291 		return PTR_ERR(nandc->base);
2292 
2293 	nandc->base_phys = res->start;
2294 	nandc->base_dma = dma_map_resource(dev, res->start,
2295 					   resource_size(res),
2296 					   DMA_BIDIRECTIONAL, 0);
2297 	if (dma_mapping_error(dev, nandc->base_dma))
2298 		return -ENXIO;
2299 
2300 	ret = clk_prepare_enable(nandc->core_clk);
2301 	if (ret)
2302 		goto err_core_clk;
2303 
2304 	ret = clk_prepare_enable(nandc->aon_clk);
2305 	if (ret)
2306 		goto err_aon_clk;
2307 
2308 	ret = qcom_nandc_alloc(nandc);
2309 	if (ret)
2310 		goto err_nandc_alloc;
2311 
2312 	ret = qcom_nandc_setup(nandc);
2313 	if (ret)
2314 		goto err_setup;
2315 
2316 	ret = qcom_probe_nand_devices(nandc);
2317 	if (ret)
2318 		goto err_setup;
2319 
2320 	return 0;
2321 
2322 err_setup:
2323 	qcom_nandc_unalloc(nandc);
2324 err_nandc_alloc:
2325 	clk_disable_unprepare(nandc->aon_clk);
2326 err_aon_clk:
2327 	clk_disable_unprepare(nandc->core_clk);
2328 err_core_clk:
2329 	dma_unmap_resource(dev, nandc->base_dma, resource_size(res),
2330 			   DMA_BIDIRECTIONAL, 0);
2331 	return ret;
2332 }
2333 
qcom_nandc_remove(struct platform_device * pdev)2334 static void qcom_nandc_remove(struct platform_device *pdev)
2335 {
2336 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2337 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2338 	struct qcom_nand_host *host;
2339 	struct nand_chip *chip;
2340 	int ret;
2341 
2342 	list_for_each_entry(host, &nandc->host_list, node) {
2343 		chip = &host->chip;
2344 		ret = mtd_device_unregister(nand_to_mtd(chip));
2345 		WARN_ON(ret);
2346 		nand_cleanup(chip);
2347 	}
2348 
2349 	qcom_nandc_unalloc(nandc);
2350 
2351 	clk_disable_unprepare(nandc->aon_clk);
2352 	clk_disable_unprepare(nandc->core_clk);
2353 
2354 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
2355 			   DMA_BIDIRECTIONAL, 0);
2356 }
2357 
2358 static const struct qcom_nandc_props ipq806x_nandc_props = {
2359 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
2360 	.supports_bam = false,
2361 	.use_codeword_fixup = true,
2362 	.dev_cmd_reg_start = 0x0,
2363 };
2364 
2365 static const struct qcom_nandc_props ipq4019_nandc_props = {
2366 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2367 	.supports_bam = true,
2368 	.nandc_part_of_qpic = true,
2369 	.dev_cmd_reg_start = 0x0,
2370 };
2371 
2372 static const struct qcom_nandc_props ipq8074_nandc_props = {
2373 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2374 	.supports_bam = true,
2375 	.nandc_part_of_qpic = true,
2376 	.dev_cmd_reg_start = 0x7000,
2377 };
2378 
2379 static const struct qcom_nandc_props sdx55_nandc_props = {
2380 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
2381 	.supports_bam = true,
2382 	.nandc_part_of_qpic = true,
2383 	.qpic_version2 = true,
2384 	.dev_cmd_reg_start = 0x7000,
2385 };
2386 
2387 /*
2388  * data will hold a struct pointer containing more differences once we support
2389  * more controller variants
2390  */
2391 static const struct of_device_id qcom_nandc_of_match[] = {
2392 	{
2393 		.compatible = "qcom,ipq806x-nand",
2394 		.data = &ipq806x_nandc_props,
2395 	},
2396 	{
2397 		.compatible = "qcom,ipq4019-nand",
2398 		.data = &ipq4019_nandc_props,
2399 	},
2400 	{
2401 		.compatible = "qcom,ipq6018-nand",
2402 		.data = &ipq8074_nandc_props,
2403 	},
2404 	{
2405 		.compatible = "qcom,ipq8074-nand",
2406 		.data = &ipq8074_nandc_props,
2407 	},
2408 	{
2409 		.compatible = "qcom,sdx55-nand",
2410 		.data = &sdx55_nandc_props,
2411 	},
2412 	{}
2413 };
2414 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
2415 
2416 static struct platform_driver qcom_nandc_driver = {
2417 	.driver = {
2418 		.name = "qcom-nandc",
2419 		.of_match_table = qcom_nandc_of_match,
2420 	},
2421 	.probe = qcom_nandc_probe,
2422 	.remove = qcom_nandc_remove,
2423 };
2424 module_platform_driver(qcom_nandc_driver);
2425 
2426 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
2427 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
2428 MODULE_LICENSE("GPL v2");
2429