xref: /freebsd/crypto/libecc/src/curves/aff_pt.c (revision f0865ec9906d5a18fa2a3b61381f22ce16e606ad)
1 /*
2  *  Copyright (C) 2017 - This file is part of libecc project
3  *
4  *  Authors:
5  *      Ryad BENADJILA <ryadbenadjila@gmail.com>
6  *      Arnaud EBALARD <arnaud.ebalard@ssi.gouv.fr>
7  *      Jean-Pierre FLORI <jean-pierre.flori@ssi.gouv.fr>
8  *
9  *  Contributors:
10  *      Nicolas VIVET <nicolas.vivet@ssi.gouv.fr>
11  *      Karim KHALFALLAH <karim.khalfallah@ssi.gouv.fr>
12  *
13  *  This software is licensed under a dual BSD and GPL v2 license.
14  *  See LICENSE file at the root folder of the project.
15  */
16 #include <libecc/curves/aff_pt.h>
17 
18 #define AFF_PT_MAGIC ((word_t)(0x4c82a9bcd0d9ffabULL))
19 
20 /*
21  * Verify that an affine point has already been initialized. Return 0 on
22  * success, -1 otherwise.
23  */
aff_pt_check_initialized(aff_pt_src_t in)24 int aff_pt_check_initialized(aff_pt_src_t in)
25 {
26 	int ret;
27 
28 	MUST_HAVE(((in != NULL) && (in->magic == AFF_PT_MAGIC)), ret, err);
29 	ret = ec_shortw_crv_check_initialized(in->crv);
30 
31 err:
32 	return ret;
33 }
34 
35 /*
36  * Initialize pointed aff_pt structure to make it usable by library
37  * function on given curve. Return 0 on success, -1 on error.
38  */
aff_pt_init(aff_pt_t in,ec_shortw_crv_src_t curve)39 int aff_pt_init(aff_pt_t in, ec_shortw_crv_src_t curve)
40 {
41 	int ret;
42 
43 	MUST_HAVE((in != NULL), ret, err);
44 	MUST_HAVE((curve != NULL), ret, err);
45 
46 	ret = ec_shortw_crv_check_initialized(curve); EG(ret, err);
47 	ret = fp_init(&(in->x), curve->a.ctx); EG(ret, err);
48 	ret = fp_init(&(in->y), curve->a.ctx); EG(ret, err);
49 
50 	in->crv = curve;
51 	in->magic = AFF_PT_MAGIC;
52 
53 err:
54 	return ret;
55 }
56 
57 /*
58  * Initialize given point 'in' on given curve 'curve' and set its coordinates to
59  * 'xcoord' and 'ycoord'. Return 0 on success, -1 on error.
60  */
aff_pt_init_from_coords(aff_pt_t in,ec_shortw_crv_src_t curve,fp_src_t xcoord,fp_src_t ycoord)61 int aff_pt_init_from_coords(aff_pt_t in,
62 			    ec_shortw_crv_src_t curve,
63 			    fp_src_t xcoord, fp_src_t ycoord)
64 {
65 	int ret;
66 
67 	ret = aff_pt_init(in, curve); EG(ret, err);
68 	ret = fp_copy(&(in->x), xcoord); EG(ret, err);
69 	ret = fp_copy(&(in->y), ycoord);
70 
71 err:
72 	return ret;
73 }
74 
75 /*
76  * Uninitialize pointed affine point 'in' to prevent further use (magic field
77  * in the structure is zeroized) and zeroize associated storage space. Note
78  * that the curve context pointed to by the point element (passed during init)
79  * is left untouched.
80  */
aff_pt_uninit(aff_pt_t in)81 void aff_pt_uninit(aff_pt_t in)
82 {
83 	if((in != NULL) && (in->magic == AFF_PT_MAGIC) && (in->crv != NULL)){
84 		in->crv = NULL;
85 		in->magic = WORD(0);
86 
87 		fp_uninit(&(in->x));
88 		fp_uninit(&(in->y));
89 	}
90 
91 	return;
92 }
93 
94 /*
95  * Recover the two possible y coordinates from one x on a given
96  * curve.
97  * The two outputs y1 and y2 are initialized in the function.
98  *
99  * The function returns -1 on error, 0 on success.
100  *
101  */
aff_pt_y_from_x(fp_t y1,fp_t y2,fp_src_t x,ec_shortw_crv_src_t curve)102 int aff_pt_y_from_x(fp_t y1, fp_t y2, fp_src_t x, ec_shortw_crv_src_t curve)
103 {
104 	int ret;
105 
106 	MUST_HAVE((y1 != NULL) && (y2 != NULL), ret, err);
107 	ret = ec_shortw_crv_check_initialized(curve); EG(ret, err);
108 	ret = fp_check_initialized(x);  EG(ret, err);
109 	/* Aliasing is not supported */
110 	MUST_HAVE((y1 != y2) && (y1 != x), ret, err);
111 
112 
113 	/* Initialize our elements */
114 	ret = fp_copy(y1, x); EG(ret, err);
115 	ret = fp_copy(y2, x); EG(ret, err);
116 
117 	/* Compute x^3 + ax + b */
118 	ret = fp_sqr(y1, y1); EG(ret, err);
119 	ret = fp_mul(y1, y1, x); EG(ret, err);
120 	ret = fp_mul(y2, y2, &(curve->a)); EG(ret, err);
121 	ret = fp_add(y1, y1, y2); EG(ret, err);
122 	ret = fp_add(y1, y1,  &(curve->b)); EG(ret, err);
123 
124 	/* Now compute the two possible square roots
125 	 * realizing y^2 = x^3 + ax + b
126 	 */
127 	ret = fp_sqrt(y1, y2, y1);
128 
129 err:
130 	return ret;
131 }
132 
133 /*
134  * Check if given point of coordinate ('x', 'y') is on given curve 'curve' (i.e.
135  * if it verifies curve equation y^2 = x^3 + ax + b). On success, the verdict is
136  * given using 'on_curve' out parameter (1 if on curve, 0 if not). On error,
137  * the function returns -1 and 'on_curve' is left unmodified.
138  */
is_on_shortw_curve(fp_src_t x,fp_src_t y,ec_shortw_crv_src_t curve,int * on_curve)139 int is_on_shortw_curve(fp_src_t x, fp_src_t y, ec_shortw_crv_src_t curve, int *on_curve)
140 {
141 	fp tmp1, tmp2;
142 	int ret, cmp;
143 	tmp1.magic = tmp2.magic = WORD(0);
144 
145 	ret = ec_shortw_crv_check_initialized(curve); EG(ret, err);
146 	ret = fp_check_initialized(x);  EG(ret, err);
147 	ret = fp_check_initialized(y);  EG(ret, err);
148 	MUST_HAVE((on_curve != NULL), ret, err);
149 
150 	MUST_HAVE((x->ctx == y->ctx), ret, err);
151 	MUST_HAVE((x->ctx == curve->a.ctx), ret, err);
152 
153 	/* Note: to optimize local variables, we instead check that
154 	 * (y^2 - b) = (x^2 + a) * x
155 	 */
156 
157 	/* Compute y^2 - b */
158 	ret = fp_init(&tmp1, x->ctx); EG(ret, err);
159 	ret = fp_sqr(&tmp1, y); EG(ret, err);
160 	ret = fp_sub(&tmp1, &tmp1, &(curve->b)); EG(ret, err);
161 
162 	/* Compute (x^2 + a) * x */
163 	ret = fp_init(&tmp2, x->ctx); EG(ret, err);
164 	ret = fp_sqr(&tmp2, x); EG(ret, err);
165 	ret = fp_add(&tmp2, &tmp2, &(curve->a)); EG(ret, err);
166 	ret = fp_mul(&tmp2, &tmp2, x); EG(ret, err);
167 
168 	/* Now check*/
169 	ret = fp_cmp(&tmp1, &tmp2, &cmp); EG(ret, err);
170 
171 	(*on_curve) = (!cmp);
172 
173 err:
174 	fp_uninit(&tmp1);
175         fp_uninit(&tmp2);
176 
177         return ret;
178 }
179 
180 /*
181  * Same as previous but using an affine point instead of pair of coordinates
182  * and a curve
183  */
aff_pt_is_on_curve(aff_pt_src_t pt,int * on_curve)184 int aff_pt_is_on_curve(aff_pt_src_t pt, int *on_curve)
185 {
186 	int ret;
187 
188 	MUST_HAVE((on_curve != NULL), ret, err);
189 	ret = aff_pt_check_initialized(pt); EG(ret, err);
190 	ret = is_on_shortw_curve(&(pt->x), &(pt->y), pt->crv, on_curve);
191 
192 err:
193 	return ret;
194 }
195 
196 /*
197  * Copy 'in' affine point into 'out'. 'out' is initialized by the function.
198  * 0 is returned on success, -1 on error.
199  */
ec_shortw_aff_copy(aff_pt_t out,aff_pt_src_t in)200 int ec_shortw_aff_copy(aff_pt_t out, aff_pt_src_t in)
201 {
202 	int ret;
203 
204 	ret = aff_pt_check_initialized(in); EG(ret, err);
205 	ret = aff_pt_init(out, in->crv); EG(ret, err);
206 	ret = fp_copy(&(out->x), &(in->x)); EG(ret, err);
207 	ret = fp_copy(&(out->y), &(in->y));
208 
209 err:
210 	return ret;
211 }
212 
213 /*
214  * Compare affine points 'in1' and 'in2'. On success, 0 is returned and
215  * comparison value is given using 'cmp' (0 if equal, a non-zero value
216  * if they are different). -1 is returned on error.
217  */
ec_shortw_aff_cmp(aff_pt_src_t in1,aff_pt_src_t in2,int * cmp)218 int ec_shortw_aff_cmp(aff_pt_src_t in1, aff_pt_src_t in2, int *cmp)
219 {
220 	int ret, cmp_x, cmp_y;
221 
222 	MUST_HAVE((cmp != NULL), ret, err);
223 
224 	ret = aff_pt_check_initialized(in1); EG(ret, err);
225 	ret = aff_pt_check_initialized(in2); EG(ret, err);
226 
227 	MUST_HAVE((in1->crv == in2->crv), ret, err);
228 
229 	ret = fp_cmp(&(in1->x), &(in2->x), &cmp_x); EG(ret, err);
230 	ret = fp_cmp(&(in1->y), &(in2->y), &cmp_y); EG(ret, err);
231 
232 	(*cmp) = (cmp_x | cmp_y);
233 
234 err:
235 	return ret;
236 }
237 
238 /*
239  * Check if given affine points 'in1' and 'in2' on the same curve are equal
240  * or opposite. On success, 0 is returned and 'aff_is_eq_or_opp' contains:
241  *  - 1 if points are equal or opposite
242  *  - 0 if not
243  * The function returns -1 on error, in which case 'aff_is_eq_or_opp'
244  * is left untouched.
245  */
ec_shortw_aff_eq_or_opp(aff_pt_src_t in1,aff_pt_src_t in2,int * aff_is_eq_or_opp)246 int ec_shortw_aff_eq_or_opp(aff_pt_src_t in1, aff_pt_src_t in2,
247 			    int *aff_is_eq_or_opp)
248 {
249 	int ret, cmp, eq_or_opp;
250 
251 	ret = aff_pt_check_initialized(in1); EG(ret, err);
252 	ret = aff_pt_check_initialized(in2); EG(ret, err);
253 	MUST_HAVE((in1->crv == in2->crv), ret, err);
254 	MUST_HAVE((aff_is_eq_or_opp != NULL), ret, err);
255 
256 	ret = fp_cmp(&(in1->x), &(in2->x), &cmp); EG(ret, err);
257 	ret = fp_eq_or_opp(&(in1->y), &(in2->y), &eq_or_opp); EG(ret, err);
258 
259 	(*aff_is_eq_or_opp) = ((cmp == 0) & eq_or_opp);
260 
261 err:
262 	return ret;
263 }
264 
265 /*
266  * Import an affine point from a buffer with the following layout; the 2
267  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
268  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
269  * coordinate is encoded in big endian. Size of buffer must exactly match
270  * 2 * p_len. The function returns 0 on success, -1 on error.
271  */
aff_pt_import_from_buf(aff_pt_t pt,const u8 * pt_buf,u16 pt_buf_len,ec_shortw_crv_src_t crv)272 int aff_pt_import_from_buf(aff_pt_t pt,
273 			   const u8 *pt_buf,
274 			   u16 pt_buf_len, ec_shortw_crv_src_t crv)
275 {
276 	fp_ctx_src_t ctx;
277 	u16 coord_len;
278 	int ret, on_curve;
279 
280 	MUST_HAVE((pt_buf != NULL), ret, err);
281 	MUST_HAVE((pt != NULL), ret, err);
282 	ret = ec_shortw_crv_check_initialized(crv); EG(ret, err);
283 
284 	ctx = crv->a.ctx;
285 	coord_len = (u16)BYTECEIL(ctx->p_bitlen);
286 
287 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
288 
289 	ret = fp_init_from_buf(&(pt->x), ctx, pt_buf, coord_len); EG(ret, err);
290 	ret = fp_init_from_buf(&(pt->y), ctx, pt_buf + coord_len, coord_len); EG(ret, err);
291 
292 	/* Set the curve */
293 	pt->crv = crv;
294 
295 	/* Mark the point as initialized */
296 	pt->magic = AFF_PT_MAGIC;
297 
298 	/*
299 	 * Check that the point is indeed on provided curve, uninitialize it
300 	 * if this is not the case.
301 	 */
302 	ret = aff_pt_is_on_curve(pt, &on_curve); EG(ret, err);
303 
304 	if (!on_curve) {
305 		aff_pt_uninit(pt);
306 		ret = -1;
307 	} else {
308 		ret = 0;
309 	}
310 
311 err:
312 	PTR_NULLIFY(ctx);
313 
314 	return ret;
315 }
316 
317 
318 /*
319  * Export an affine point 'pt' to a buffer with the following layout; the 2
320  * coordinates (elements of Fp) are each encoded on p_len bytes, where p_len
321  * is the size of p in bytes (e.g. 66 for a prime p of 521 bits). Each
322  * coordinate is encoded in big endian. Size of buffer must exactly match
323  * 2 * p_len.
324  */
aff_pt_export_to_buf(aff_pt_src_t pt,u8 * pt_buf,u32 pt_buf_len)325 int aff_pt_export_to_buf(aff_pt_src_t pt, u8 *pt_buf, u32 pt_buf_len)
326 {
327 	u16 coord_len;
328 	int ret, on_curve;
329 
330 	MUST_HAVE((pt_buf != NULL), ret, err);
331 
332 	/* The point to be exported must be on the curve */
333 	ret = aff_pt_is_on_curve(pt, &on_curve); EG(ret, err);
334 	MUST_HAVE((on_curve), ret, err);
335 
336 	/* buffer size must match 2 * p_len */
337 	coord_len = (u16)BYTECEIL(pt->crv->a.ctx->p_bitlen);
338 	MUST_HAVE((pt_buf_len == (2 * coord_len)), ret, err);
339 
340 	/* Export the two coordinates */
341 	ret = fp_export_to_buf(pt_buf, coord_len, &(pt->x)); EG(ret, err);
342 	ret = fp_export_to_buf(pt_buf + coord_len, coord_len, &(pt->y));
343 
344 err:
345 	return ret;
346 }
347