1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34 #include <linux/of.h>
35 #include <linux/of_fdt.h>
36
37 #include <asm/asm-prototypes.h>
38 #include <asm/kvm_guest.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/processor.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/paca.h>
46 #include <asm/time.h>
47 #include <asm/cputable.h>
48 #include <asm/dt_cpu_ftrs.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/rtas.h>
54 #include <asm/iommu.h>
55 #include <asm/serial.h>
56 #include <asm/cache.h>
57 #include <asm/page.h>
58 #include <asm/mmu.h>
59 #include <asm/firmware.h>
60 #include <asm/xmon.h>
61 #include <asm/udbg.h>
62 #include <asm/kexec.h>
63 #include <asm/text-patching.h>
64 #include <asm/ftrace.h>
65 #include <asm/opal.h>
66 #include <asm/cputhreads.h>
67 #include <asm/hw_irq.h>
68 #include <asm/feature-fixups.h>
69 #include <asm/kup.h>
70 #include <asm/early_ioremap.h>
71 #include <asm/pgalloc.h>
72
73 #include "setup.h"
74
75 int spinning_secondaries;
76 u64 ppc64_pft_size;
77
78 struct ppc64_caches ppc64_caches = {
79 .l1d = {
80 .block_size = 0x40,
81 .log_block_size = 6,
82 },
83 .l1i = {
84 .block_size = 0x40,
85 .log_block_size = 6
86 },
87 };
88 EXPORT_SYMBOL_GPL(ppc64_caches);
89
90 #if defined(CONFIG_PPC_BOOK3E_64) && defined(CONFIG_SMP)
setup_tlb_core_data(void)91 void __init setup_tlb_core_data(void)
92 {
93 int cpu;
94
95 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
96
97 for_each_possible_cpu(cpu) {
98 int first = cpu_first_thread_sibling(cpu);
99
100 /*
101 * If we boot via kdump on a non-primary thread,
102 * make sure we point at the thread that actually
103 * set up this TLB.
104 */
105 if (cpu_first_thread_sibling(boot_cpuid) == first)
106 first = boot_cpuid;
107
108 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
109
110 /*
111 * If we have threads, we need either tlbsrx.
112 * or e6500 tablewalk mode, or else TLB handlers
113 * will be racy and could produce duplicate entries.
114 * Should we panic instead?
115 */
116 WARN_ONCE(smt_enabled_at_boot >= 2 &&
117 book3e_htw_mode != PPC_HTW_E6500,
118 "%s: unsupported MMU configuration\n", __func__);
119 }
120 }
121 #endif
122
123 #ifdef CONFIG_SMP
124
125 static char *smt_enabled_cmdline;
126
127 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)128 void __init check_smt_enabled(void)
129 {
130 struct device_node *dn;
131 const char *smt_option;
132
133 /* Default to enabling all threads */
134 smt_enabled_at_boot = threads_per_core;
135
136 /* Allow the command line to overrule the OF option */
137 if (smt_enabled_cmdline) {
138 if (!strcmp(smt_enabled_cmdline, "on"))
139 smt_enabled_at_boot = threads_per_core;
140 else if (!strcmp(smt_enabled_cmdline, "off"))
141 smt_enabled_at_boot = 0;
142 else {
143 int smt;
144 if (!kstrtoint(smt_enabled_cmdline, 10, &smt))
145 smt_enabled_at_boot =
146 min(threads_per_core, smt);
147 }
148 } else {
149 dn = of_find_node_by_path("/options");
150 if (dn) {
151 smt_option = of_get_property(dn, "ibm,smt-enabled",
152 NULL);
153
154 if (smt_option) {
155 if (!strcmp(smt_option, "on"))
156 smt_enabled_at_boot = threads_per_core;
157 else if (!strcmp(smt_option, "off"))
158 smt_enabled_at_boot = 0;
159 }
160
161 of_node_put(dn);
162 }
163 }
164 }
165
166 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)167 static int __init early_smt_enabled(char *p)
168 {
169 smt_enabled_cmdline = p;
170 return 0;
171 }
172 early_param("smt-enabled", early_smt_enabled);
173
174 #endif /* CONFIG_SMP */
175
176 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(struct paca_struct * boot_paca)177 static void __init fixup_boot_paca(struct paca_struct *boot_paca)
178 {
179 /* The boot cpu is started */
180 boot_paca->cpu_start = 1;
181 #ifdef CONFIG_PPC_BOOK3S_64
182 /*
183 * Give the early boot machine check stack somewhere to use, use
184 * half of the init stack. This is a bit hacky but there should not be
185 * deep stack usage in early init so shouldn't overflow it or overwrite
186 * things.
187 */
188 boot_paca->mc_emergency_sp = (void *)&init_thread_union +
189 (THREAD_SIZE/2);
190 #endif
191 /* Allow percpu accesses to work until we setup percpu data */
192 boot_paca->data_offset = 0;
193 /* Mark interrupts soft and hard disabled in PACA */
194 boot_paca->irq_soft_mask = IRQS_DISABLED;
195 boot_paca->irq_happened = PACA_IRQ_HARD_DIS;
196 WARN_ON(mfmsr() & MSR_EE);
197 }
198
configure_exceptions(void)199 static void __init configure_exceptions(void)
200 {
201 /*
202 * Setup the trampolines from the lowmem exception vectors
203 * to the kdump kernel when not using a relocatable kernel.
204 */
205 setup_kdump_trampoline();
206
207 /* Under a PAPR hypervisor, we need hypercalls */
208 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
209 /*
210 * - PR KVM does not support AIL mode interrupts in the host
211 * while a PR guest is running.
212 *
213 * - SCV system call interrupt vectors are only implemented for
214 * AIL mode interrupts.
215 *
216 * - On pseries, AIL mode can only be enabled and disabled
217 * system-wide so when a PR VM is created on a pseries host,
218 * all CPUs of the host are set to AIL=0 mode.
219 *
220 * - Therefore host CPUs must not execute scv while a PR VM
221 * exists.
222 *
223 * - SCV support can not be disabled dynamically because the
224 * feature is advertised to host userspace. Disabling the
225 * facility and emulating it would be possible but is not
226 * implemented.
227 *
228 * - So SCV support is blanket disabled if PR KVM could possibly
229 * run. That is, PR support compiled in, booting on pseries
230 * with hash MMU.
231 */
232 if (IS_ENABLED(CONFIG_KVM_BOOK3S_PR_POSSIBLE) && !radix_enabled()) {
233 init_task.thread.fscr &= ~FSCR_SCV;
234 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
235 }
236
237 /* Enable AIL if possible */
238 if (!pseries_enable_reloc_on_exc()) {
239 init_task.thread.fscr &= ~FSCR_SCV;
240 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
241 }
242
243 /*
244 * Tell the hypervisor that we want our exceptions to
245 * be taken in little endian mode.
246 *
247 * We don't call this for big endian as our calling convention
248 * makes us always enter in BE, and the call may fail under
249 * some circumstances with kdump.
250 */
251 #ifdef __LITTLE_ENDIAN__
252 pseries_little_endian_exceptions();
253 #endif
254 } else {
255 /* Set endian mode using OPAL */
256 if (firmware_has_feature(FW_FEATURE_OPAL))
257 opal_configure_cores();
258
259 /* AIL on native is done in cpu_ready_for_interrupts() */
260 }
261 }
262
cpu_ready_for_interrupts(void)263 static void cpu_ready_for_interrupts(void)
264 {
265 /*
266 * Enable AIL if supported, and we are in hypervisor mode. This
267 * is called once for every processor.
268 *
269 * If we are not in hypervisor mode the job is done once for
270 * the whole partition in configure_exceptions().
271 */
272 if (cpu_has_feature(CPU_FTR_HVMODE)) {
273 unsigned long lpcr = mfspr(SPRN_LPCR);
274 unsigned long new_lpcr = lpcr;
275
276 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
277 /* P10 DD1 does not have HAIL */
278 if (pvr_version_is(PVR_POWER10) &&
279 (mfspr(SPRN_PVR) & 0xf00) == 0x100)
280 new_lpcr |= LPCR_AIL_3;
281 else
282 new_lpcr |= LPCR_HAIL;
283 } else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
284 new_lpcr |= LPCR_AIL_3;
285 }
286
287 if (new_lpcr != lpcr)
288 mtspr(SPRN_LPCR, new_lpcr);
289 }
290
291 /*
292 * Set HFSCR:TM based on CPU features:
293 * In the special case of TM no suspend (P9N DD2.1), Linux is
294 * told TM is off via the dt-ftrs but told to (partially) use
295 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
296 * will be off from dt-ftrs but we need to turn it on for the
297 * no suspend case.
298 */
299 if (cpu_has_feature(CPU_FTR_HVMODE)) {
300 if (cpu_has_feature(CPU_FTR_TM_COMP))
301 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
302 else
303 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
304 }
305
306 /* Set IR and DR in PACA MSR */
307 get_paca()->kernel_msr = MSR_KERNEL;
308 }
309
310 unsigned long spr_default_dscr = 0;
311
record_spr_defaults(void)312 static void __init record_spr_defaults(void)
313 {
314 if (early_cpu_has_feature(CPU_FTR_DSCR))
315 spr_default_dscr = mfspr(SPRN_DSCR);
316 }
317
318 /*
319 * Early initialization entry point. This is called by head.S
320 * with MMU translation disabled. We rely on the "feature" of
321 * the CPU that ignores the top 2 bits of the address in real
322 * mode so we can access kernel globals normally provided we
323 * only toy with things in the RMO region. From here, we do
324 * some early parsing of the device-tree to setup out MEMBLOCK
325 * data structures, and allocate & initialize the hash table
326 * and segment tables so we can start running with translation
327 * enabled.
328 *
329 * It is this function which will call the probe() callback of
330 * the various platform types and copy the matching one to the
331 * global ppc_md structure. Your platform can eventually do
332 * some very early initializations from the probe() routine, but
333 * this is not recommended, be very careful as, for example, the
334 * device-tree is not accessible via normal means at this point.
335 */
336
early_setup(unsigned long dt_ptr)337 void __init early_setup(unsigned long dt_ptr)
338 {
339 static __initdata struct paca_struct boot_paca;
340
341 /* -------- printk is _NOT_ safe to use here ! ------- */
342
343 /*
344 * Assume we're on cpu 0 for now.
345 *
346 * We need to load a PACA very early for a few reasons.
347 *
348 * The stack protector canary is stored in the paca, so as soon as we
349 * call any stack protected code we need r13 pointing somewhere valid.
350 *
351 * If we are using kcov it will call in_task() in its instrumentation,
352 * which relies on the current task from the PACA.
353 *
354 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
355 * printk(), which can trigger both stack protector and kcov.
356 *
357 * percpu variables and spin locks also use the paca.
358 *
359 * So set up a temporary paca. It will be replaced below once we know
360 * what CPU we are on.
361 */
362 initialise_paca(&boot_paca, 0);
363 fixup_boot_paca(&boot_paca);
364 WARN_ON(local_paca);
365 setup_paca(&boot_paca); /* install the paca into registers */
366
367 /* -------- printk is now safe to use ------- */
368
369 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && (mfmsr() & MSR_HV))
370 enable_machine_check();
371
372 /* Try new device tree based feature discovery ... */
373 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
374 /* Otherwise use the old style CPU table */
375 identify_cpu(0, mfspr(SPRN_PVR));
376
377 /* Enable early debugging if any specified (see udbg.h) */
378 udbg_early_init();
379
380 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
381
382 /*
383 * Do early initialization using the flattened device
384 * tree, such as retrieving the physical memory map or
385 * calculating/retrieving the hash table size, discover
386 * boot_cpuid and boot_cpu_hwid.
387 */
388 early_init_devtree(__va(dt_ptr));
389
390 allocate_paca_ptrs();
391 allocate_paca(boot_cpuid);
392 set_hard_smp_processor_id(boot_cpuid, boot_cpu_hwid);
393 fixup_boot_paca(paca_ptrs[boot_cpuid]);
394 setup_paca(paca_ptrs[boot_cpuid]); /* install the paca into registers */
395 // smp_processor_id() now reports boot_cpuid
396
397 #ifdef CONFIG_SMP
398 task_thread_info(current)->cpu = boot_cpuid; // fix task_cpu(current)
399 #endif
400
401 /*
402 * Configure exception handlers. This include setting up trampolines
403 * if needed, setting exception endian mode, etc...
404 */
405 configure_exceptions();
406
407 /*
408 * Configure Kernel Userspace Protection. This needs to happen before
409 * feature fixups for platforms that implement this using features.
410 */
411 setup_kup();
412
413 /* Apply all the dynamic patching */
414 apply_feature_fixups();
415 setup_feature_keys();
416
417 /* Initialize the hash table or TLB handling */
418 early_init_mmu();
419
420 early_ioremap_setup();
421
422 /*
423 * After firmware and early platform setup code has set things up,
424 * we note the SPR values for configurable control/performance
425 * registers, and use those as initial defaults.
426 */
427 record_spr_defaults();
428
429 /*
430 * At this point, we can let interrupts switch to virtual mode
431 * (the MMU has been setup), so adjust the MSR in the PACA to
432 * have IR and DR set and enable AIL if it exists
433 */
434 cpu_ready_for_interrupts();
435
436 /*
437 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
438 * will only actually get enabled on the boot cpu much later once
439 * ftrace itself has been initialized.
440 */
441 this_cpu_enable_ftrace();
442
443 udbg_printf(" <- %s()\n", __func__);
444
445 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
446 /*
447 * This needs to be done *last* (after the above udbg_printf() even)
448 *
449 * Right after we return from this function, we turn on the MMU
450 * which means the real-mode access trick that btext does will
451 * no longer work, it needs to switch to using a real MMU
452 * mapping. This call will ensure that it does
453 */
454 btext_map();
455 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
456 }
457
458 #ifdef CONFIG_SMP
early_setup_secondary(void)459 void early_setup_secondary(void)
460 {
461 /* Mark interrupts disabled in PACA */
462 irq_soft_mask_set(IRQS_DISABLED);
463
464 /* Initialize the hash table or TLB handling */
465 early_init_mmu_secondary();
466
467 /* Perform any KUP setup that is per-cpu */
468 setup_kup();
469
470 /*
471 * At this point, we can let interrupts switch to virtual mode
472 * (the MMU has been setup), so adjust the MSR in the PACA to
473 * have IR and DR set.
474 */
475 cpu_ready_for_interrupts();
476 }
477
478 #endif /* CONFIG_SMP */
479
panic_smp_self_stop(void)480 void __noreturn panic_smp_self_stop(void)
481 {
482 hard_irq_disable();
483 spin_begin();
484 while (1)
485 spin_cpu_relax();
486 }
487
488 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)489 static bool use_spinloop(void)
490 {
491 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
492 /*
493 * See comments in head_64.S -- not all platforms insert
494 * secondaries at __secondary_hold and wait at the spin
495 * loop.
496 */
497 if (firmware_has_feature(FW_FEATURE_OPAL))
498 return false;
499 return true;
500 }
501
502 /*
503 * When book3e boots from kexec, the ePAPR spin table does
504 * not get used.
505 */
506 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
507 }
508
smp_release_cpus(void)509 void smp_release_cpus(void)
510 {
511 unsigned long *ptr;
512 int i;
513
514 if (!use_spinloop())
515 return;
516
517 /* All secondary cpus are spinning on a common spinloop, release them
518 * all now so they can start to spin on their individual paca
519 * spinloops. For non SMP kernels, the secondary cpus never get out
520 * of the common spinloop.
521 */
522
523 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
524 - PHYSICAL_START);
525 *ptr = ppc_function_entry(generic_secondary_smp_init);
526
527 /* And wait a bit for them to catch up */
528 for (i = 0; i < 100000; i++) {
529 mb();
530 HMT_low();
531 if (spinning_secondaries == 0)
532 break;
533 udelay(1);
534 }
535 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
536 }
537 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
538
539 /*
540 * Initialize some remaining members of the ppc64_caches and systemcfg
541 * structures
542 * (at least until we get rid of them completely). This is mostly some
543 * cache informations about the CPU that will be used by cache flush
544 * routines and/or provided to userland
545 */
546
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)547 static void __init init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
548 u32 bsize, u32 sets)
549 {
550 info->size = size;
551 info->sets = sets;
552 info->line_size = lsize;
553 info->block_size = bsize;
554 info->log_block_size = __ilog2(bsize);
555 if (bsize)
556 info->blocks_per_page = PAGE_SIZE / bsize;
557 else
558 info->blocks_per_page = 0;
559
560 if (sets == 0)
561 info->assoc = 0xffff;
562 else
563 info->assoc = size / (sets * lsize);
564 }
565
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)566 static bool __init parse_cache_info(struct device_node *np,
567 bool icache,
568 struct ppc_cache_info *info)
569 {
570 static const char *ipropnames[] __initdata = {
571 "i-cache-size",
572 "i-cache-sets",
573 "i-cache-block-size",
574 "i-cache-line-size",
575 };
576 static const char *dpropnames[] __initdata = {
577 "d-cache-size",
578 "d-cache-sets",
579 "d-cache-block-size",
580 "d-cache-line-size",
581 };
582 const char **propnames = icache ? ipropnames : dpropnames;
583 const __be32 *sizep, *lsizep, *bsizep, *setsp;
584 u32 size, lsize, bsize, sets;
585 bool success = true;
586
587 size = 0;
588 sets = -1u;
589 lsize = bsize = cur_cpu_spec->dcache_bsize;
590 sizep = of_get_property(np, propnames[0], NULL);
591 if (sizep != NULL)
592 size = be32_to_cpu(*sizep);
593 setsp = of_get_property(np, propnames[1], NULL);
594 if (setsp != NULL)
595 sets = be32_to_cpu(*setsp);
596 bsizep = of_get_property(np, propnames[2], NULL);
597 lsizep = of_get_property(np, propnames[3], NULL);
598 if (bsizep == NULL)
599 bsizep = lsizep;
600 if (lsizep == NULL)
601 lsizep = bsizep;
602 if (lsizep != NULL)
603 lsize = be32_to_cpu(*lsizep);
604 if (bsizep != NULL)
605 bsize = be32_to_cpu(*bsizep);
606 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
607 success = false;
608
609 /*
610 * OF is weird .. it represents fully associative caches
611 * as "1 way" which doesn't make much sense and doesn't
612 * leave room for direct mapped. We'll assume that 0
613 * in OF means direct mapped for that reason.
614 */
615 if (sets == 1)
616 sets = 0;
617 else if (sets == 0)
618 sets = 1;
619
620 init_cache_info(info, size, lsize, bsize, sets);
621
622 return success;
623 }
624
initialize_cache_info(void)625 void __init initialize_cache_info(void)
626 {
627 struct device_node *cpu = NULL, *l2, *l3 = NULL;
628 u32 pvr;
629
630 /*
631 * All shipping POWER8 machines have a firmware bug that
632 * puts incorrect information in the device-tree. This will
633 * be (hopefully) fixed for future chips but for now hard
634 * code the values if we are running on one of these
635 */
636 pvr = PVR_VER(mfspr(SPRN_PVR));
637 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
638 pvr == PVR_POWER8NVL) {
639 /* size lsize blk sets */
640 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
641 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
642 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
643 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
644 } else
645 cpu = of_find_node_by_type(NULL, "cpu");
646
647 /*
648 * We're assuming *all* of the CPUs have the same
649 * d-cache and i-cache sizes... -Peter
650 */
651 if (cpu) {
652 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
653 pr_warn("Argh, can't find dcache properties !\n");
654
655 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
656 pr_warn("Argh, can't find icache properties !\n");
657
658 /*
659 * Try to find the L2 and L3 if any. Assume they are
660 * unified and use the D-side properties.
661 */
662 l2 = of_find_next_cache_node(cpu);
663 of_node_put(cpu);
664 if (l2) {
665 parse_cache_info(l2, false, &ppc64_caches.l2);
666 l3 = of_find_next_cache_node(l2);
667 of_node_put(l2);
668 }
669 if (l3) {
670 parse_cache_info(l3, false, &ppc64_caches.l3);
671 of_node_put(l3);
672 }
673 }
674
675 /* For use by binfmt_elf */
676 dcache_bsize = ppc64_caches.l1d.block_size;
677 icache_bsize = ppc64_caches.l1i.block_size;
678
679 cur_cpu_spec->dcache_bsize = dcache_bsize;
680 cur_cpu_spec->icache_bsize = icache_bsize;
681 }
682
683 /*
684 * This returns the limit below which memory accesses to the linear
685 * mapping are guarnateed not to cause an architectural exception (e.g.,
686 * TLB or SLB miss fault).
687 *
688 * This is used to allocate PACAs and various interrupt stacks that
689 * that are accessed early in interrupt handlers that must not cause
690 * re-entrant interrupts.
691 */
ppc64_bolted_size(void)692 __init u64 ppc64_bolted_size(void)
693 {
694 #ifdef CONFIG_PPC_BOOK3E_64
695 /* Freescale BookE bolts the entire linear mapping */
696 return linear_map_top;
697 #else
698 /* BookS radix, does not take faults on linear mapping */
699 if (early_radix_enabled())
700 return ULONG_MAX;
701
702 /* BookS hash, the first segment is bolted */
703 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
704 return 1UL << SID_SHIFT_1T;
705 return 1UL << SID_SHIFT;
706 #endif
707 }
708
alloc_stack(unsigned long limit,int cpu)709 static void *__init alloc_stack(unsigned long limit, int cpu)
710 {
711 void *ptr;
712
713 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
714
715 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
716 MEMBLOCK_LOW_LIMIT, limit,
717 early_cpu_to_node(cpu));
718 if (!ptr)
719 panic("cannot allocate stacks");
720
721 return ptr;
722 }
723
irqstack_early_init(void)724 void __init irqstack_early_init(void)
725 {
726 u64 limit = ppc64_bolted_size();
727 unsigned int i;
728
729 /*
730 * Interrupt stacks must be in the first segment since we
731 * cannot afford to take SLB misses on them. They are not
732 * accessed in realmode.
733 */
734 for_each_possible_cpu(i) {
735 softirq_ctx[i] = alloc_stack(limit, i);
736 hardirq_ctx[i] = alloc_stack(limit, i);
737 }
738 }
739
740 #ifdef CONFIG_PPC_BOOK3E_64
exc_lvl_early_init(void)741 void __init exc_lvl_early_init(void)
742 {
743 unsigned int i;
744
745 for_each_possible_cpu(i) {
746 void *sp;
747
748 sp = alloc_stack(ULONG_MAX, i);
749 critirq_ctx[i] = sp;
750 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
751
752 sp = alloc_stack(ULONG_MAX, i);
753 dbgirq_ctx[i] = sp;
754 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
755
756 sp = alloc_stack(ULONG_MAX, i);
757 mcheckirq_ctx[i] = sp;
758 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
759 }
760
761 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
762 patch_exception(0x040, exc_debug_debug_book3e);
763 }
764 #endif
765
766 /*
767 * Stack space used when we detect a bad kernel stack pointer, and
768 * early in SMP boots before relocation is enabled. Exclusive emergency
769 * stack for machine checks.
770 */
emergency_stack_init(void)771 void __init emergency_stack_init(void)
772 {
773 u64 limit, mce_limit;
774 unsigned int i;
775
776 /*
777 * Emergency stacks must be under 256MB, we cannot afford to take
778 * SLB misses on them. The ABI also requires them to be 128-byte
779 * aligned.
780 *
781 * Since we use these as temporary stacks during secondary CPU
782 * bringup, machine check, system reset, and HMI, we need to get
783 * at them in real mode. This means they must also be within the RMO
784 * region.
785 *
786 * The IRQ stacks allocated elsewhere in this file are zeroed and
787 * initialized in kernel/irq.c. These are initialized here in order
788 * to have emergency stacks available as early as possible.
789 */
790 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
791
792 /*
793 * Machine check on pseries calls rtas, but can't use the static
794 * rtas_args due to a machine check hitting while the lock is held.
795 * rtas args have to be under 4GB, so the machine check stack is
796 * limited to 4GB so args can be put on stack.
797 */
798 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
799 mce_limit = SZ_4G;
800
801 for_each_possible_cpu(i) {
802 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
803
804 #ifdef CONFIG_PPC_BOOK3S_64
805 /* emergency stack for NMI exception handling. */
806 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
807
808 /* emergency stack for machine check exception handling. */
809 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
810 #endif
811 }
812 }
813
814 #ifdef CONFIG_SMP
pcpu_cpu_distance(unsigned int from,unsigned int to)815 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
816 {
817 if (early_cpu_to_node(from) == early_cpu_to_node(to))
818 return LOCAL_DISTANCE;
819 else
820 return REMOTE_DISTANCE;
821 }
822
pcpu_cpu_to_node(int cpu)823 static __init int pcpu_cpu_to_node(int cpu)
824 {
825 return early_cpu_to_node(cpu);
826 }
827
828 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
829 EXPORT_SYMBOL(__per_cpu_offset);
830 DEFINE_STATIC_KEY_FALSE(__percpu_first_chunk_is_paged);
831
setup_per_cpu_areas(void)832 void __init setup_per_cpu_areas(void)
833 {
834 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
835 size_t atom_size;
836 unsigned long delta;
837 unsigned int cpu;
838 int rc = -EINVAL;
839
840 /*
841 * BookE and BookS radix are historical values and should be revisited.
842 */
843 if (IS_ENABLED(CONFIG_PPC_BOOK3E_64)) {
844 atom_size = SZ_1M;
845 } else if (radix_enabled()) {
846 atom_size = PAGE_SIZE;
847 } else if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU)) {
848 /*
849 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
850 * to group units. For larger mappings, use 1M atom which
851 * should be large enough to contain a number of units.
852 */
853 if (mmu_linear_psize == MMU_PAGE_4K)
854 atom_size = PAGE_SIZE;
855 else
856 atom_size = SZ_1M;
857 }
858
859 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
860 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
861 pcpu_cpu_to_node);
862 if (rc)
863 pr_warn("PERCPU: %s allocator failed (%d), "
864 "falling back to page size\n",
865 pcpu_fc_names[pcpu_chosen_fc], rc);
866 }
867
868 if (rc < 0)
869 rc = pcpu_page_first_chunk(0, pcpu_cpu_to_node);
870 if (rc < 0)
871 panic("cannot initialize percpu area (err=%d)", rc);
872
873 static_key_enable(&__percpu_first_chunk_is_paged.key);
874 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
875 for_each_possible_cpu(cpu) {
876 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
877 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
878 }
879 }
880 #endif
881
882 #ifdef CONFIG_MEMORY_HOTPLUG
memory_block_size_bytes(void)883 unsigned long memory_block_size_bytes(void)
884 {
885 if (ppc_md.memory_block_size)
886 return ppc_md.memory_block_size();
887
888 return MIN_MEMORY_BLOCK_SIZE;
889 }
890 #endif
891
892 #ifdef CONFIG_PPC_INDIRECT_PIO
893 struct ppc_pci_io ppc_pci_io;
894 EXPORT_SYMBOL(ppc_pci_io);
895 #endif
896
897 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)898 u64 hw_nmi_get_sample_period(int watchdog_thresh)
899 {
900 return ppc_proc_freq * watchdog_thresh;
901 }
902 #endif
903
904 /*
905 * The perf based hardlockup detector breaks PMU event based branches, so
906 * disable it by default. Book3S has a soft-nmi hardlockup detector based
907 * on the decrementer interrupt, so it does not suffer from this problem.
908 *
909 * It is likely to get false positives in KVM guests, so disable it there
910 * by default too. PowerVM will not stop or arbitrarily oversubscribe
911 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
912 * the detector for non-KVM guests, assume PowerVM.
913 */
disable_hardlockup_detector(void)914 static int __init disable_hardlockup_detector(void)
915 {
916 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
917 hardlockup_detector_disable();
918 #else
919 if (firmware_has_feature(FW_FEATURE_LPAR)) {
920 check_kvm_guest();
921 if (is_kvm_guest())
922 hardlockup_detector_disable();
923 }
924 #endif
925
926 return 0;
927 }
928 early_initcall(disable_hardlockup_detector);
929