1 /*
2 * This file is provided under a CDDLv1 license. When using or
3 * redistributing this file, you may do so under this license.
4 * In redistributing this file this license must be included
5 * and no other modification of this header file is permitted.
6 *
7 * CDDL LICENSE SUMMARY
8 *
9 * Copyright(c) 1999 - 2009 Intel Corporation. All rights reserved.
10 *
11 * The contents of this file are subject to the terms of Version
12 * 1.0 of the Common Development and Distribution License (the "License").
13 *
14 * You should have received a copy of the License with this software.
15 * You can obtain a copy of the License at
16 * http://www.opensolaris.org/os/licensing.
17 * See the License for the specific language governing permissions
18 * and limitations under the License.
19 */
20
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * Copyright 2012 DEY Storage Systems, Inc. All rights reserved.
27 * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
28 * Copyright (c) 2018, Joyent, Inc.
29 * Copyright 2024 Oxide Computer Company
30 */
31
32 /*
33 * **********************************************************************
34 * *
35 * Module Name: *
36 * e1000g_main.c *
37 * *
38 * Abstract: *
39 * This file contains the interface routines for the solaris OS. *
40 * It has all DDI entry point routines and GLD entry point routines. *
41 * *
42 * This file also contains routines that take care of initialization *
43 * uninit routine and interrupt routine. *
44 * *
45 * **********************************************************************
46 */
47
48 #include <sys/dlpi.h>
49 #include <sys/mac.h>
50 #include "e1000g_sw.h"
51 #include "e1000g_debug.h"
52
53 static char ident[] = "Intel PRO/1000 Ethernet";
54 /* LINTED E_STATIC_UNUSED */
55 static char e1000g_version[] = "Driver Ver. 5.4.00";
56
57 /*
58 * Proto types for DDI entry points
59 */
60 static int e1000g_attach(dev_info_t *, ddi_attach_cmd_t);
61 static int e1000g_detach(dev_info_t *, ddi_detach_cmd_t);
62 static int e1000g_quiesce(dev_info_t *);
63
64 /*
65 * init and intr routines prototype
66 */
67 static int e1000g_resume(dev_info_t *);
68 static int e1000g_suspend(dev_info_t *);
69 static uint_t e1000g_intr_pciexpress(caddr_t, caddr_t);
70 static uint_t e1000g_intr(caddr_t, caddr_t);
71 static void e1000g_intr_work(struct e1000g *, uint32_t);
72 #pragma inline(e1000g_intr_work)
73 static int e1000g_init(struct e1000g *);
74 static int e1000g_start(struct e1000g *, boolean_t);
75 static void e1000g_stop(struct e1000g *, boolean_t);
76 static int e1000g_m_start(void *);
77 static void e1000g_m_stop(void *);
78 static int e1000g_m_promisc(void *, boolean_t);
79 static boolean_t e1000g_m_getcapab(void *, mac_capab_t, void *);
80 static int e1000g_m_multicst(void *, boolean_t, const uint8_t *);
81 static void e1000g_m_ioctl(void *, queue_t *, mblk_t *);
82 static int e1000g_m_setprop(void *, const char *, mac_prop_id_t,
83 uint_t, const void *);
84 static int e1000g_m_getprop(void *, const char *, mac_prop_id_t,
85 uint_t, void *);
86 static void e1000g_m_propinfo(void *, const char *, mac_prop_id_t,
87 mac_prop_info_handle_t);
88 static int e1000g_set_priv_prop(struct e1000g *, const char *, uint_t,
89 const void *);
90 static int e1000g_get_priv_prop(struct e1000g *, const char *, uint_t, void *);
91 static void e1000g_init_locks(struct e1000g *);
92 static void e1000g_destroy_locks(struct e1000g *);
93 static int e1000g_identify_hardware(struct e1000g *);
94 static int e1000g_regs_map(struct e1000g *);
95 static int e1000g_set_driver_params(struct e1000g *);
96 static void e1000g_set_bufsize(struct e1000g *);
97 static int e1000g_register_mac(struct e1000g *);
98 static boolean_t e1000g_rx_drain(struct e1000g *);
99 static boolean_t e1000g_tx_drain(struct e1000g *);
100 static void e1000g_init_unicst(struct e1000g *);
101 static int e1000g_unicst_set(struct e1000g *, const uint8_t *, int);
102 static int e1000g_alloc_rx_data(struct e1000g *);
103 static void e1000g_release_multicast(struct e1000g *);
104 static void e1000g_pch_limits(struct e1000g *);
105 static uint32_t e1000g_mtu2maxframe(uint32_t);
106
107 /*
108 * Local routines
109 */
110 static boolean_t e1000g_reset_adapter(struct e1000g *);
111 static void e1000g_tx_clean(struct e1000g *);
112 static void e1000g_rx_clean(struct e1000g *);
113 static void e1000g_link_timer(void *);
114 static void e1000g_local_timer(void *);
115 static boolean_t e1000g_link_check(struct e1000g *);
116 static boolean_t e1000g_stall_check(struct e1000g *);
117 static void e1000g_smartspeed(struct e1000g *);
118 static void e1000g_get_conf(struct e1000g *);
119 static boolean_t e1000g_get_prop(struct e1000g *, char *, int, int, int,
120 int *);
121 static void enable_watchdog_timer(struct e1000g *);
122 static void disable_watchdog_timer(struct e1000g *);
123 static void start_watchdog_timer(struct e1000g *);
124 static void restart_watchdog_timer(struct e1000g *);
125 static void stop_watchdog_timer(struct e1000g *);
126 static void stop_link_timer(struct e1000g *);
127 static void stop_82547_timer(e1000g_tx_ring_t *);
128 static void e1000g_force_speed_duplex(struct e1000g *);
129 static void e1000g_setup_max_mtu(struct e1000g *);
130 static void e1000g_get_max_frame_size(struct e1000g *);
131 static boolean_t is_valid_mac_addr(uint8_t *);
132 static void e1000g_unattach(dev_info_t *, struct e1000g *);
133 static int e1000g_get_bar_info(dev_info_t *, int, bar_info_t *);
134 #ifdef E1000G_DEBUG
135 static void e1000g_ioc_peek_reg(struct e1000g *, e1000g_peekpoke_t *);
136 static void e1000g_ioc_poke_reg(struct e1000g *, e1000g_peekpoke_t *);
137 static void e1000g_ioc_peek_mem(struct e1000g *, e1000g_peekpoke_t *);
138 static void e1000g_ioc_poke_mem(struct e1000g *, e1000g_peekpoke_t *);
139 static enum ioc_reply e1000g_pp_ioctl(struct e1000g *,
140 struct iocblk *, mblk_t *);
141 #endif
142 static enum ioc_reply e1000g_loopback_ioctl(struct e1000g *,
143 struct iocblk *, mblk_t *);
144 static boolean_t e1000g_check_loopback_support(struct e1000_hw *);
145 static boolean_t e1000g_set_loopback_mode(struct e1000g *, uint32_t);
146 static void e1000g_set_internal_loopback(struct e1000g *);
147 static void e1000g_set_external_loopback_1000(struct e1000g *);
148 static void e1000g_set_external_loopback_100(struct e1000g *);
149 static void e1000g_set_external_loopback_10(struct e1000g *);
150 static int e1000g_add_intrs(struct e1000g *);
151 static int e1000g_intr_add(struct e1000g *, int);
152 static int e1000g_rem_intrs(struct e1000g *);
153 static int e1000g_enable_intrs(struct e1000g *);
154 static int e1000g_disable_intrs(struct e1000g *);
155 static boolean_t e1000g_link_up(struct e1000g *);
156 #ifdef __sparc
157 static boolean_t e1000g_find_mac_address(struct e1000g *);
158 #endif
159 static void e1000g_get_phy_state(struct e1000g *);
160 static int e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err,
161 const void *impl_data);
162 static void e1000g_fm_init(struct e1000g *Adapter);
163 static void e1000g_fm_fini(struct e1000g *Adapter);
164 static void e1000g_param_sync(struct e1000g *);
165 static void e1000g_get_driver_control(struct e1000_hw *);
166 static void e1000g_release_driver_control(struct e1000_hw *);
167 static void e1000g_restore_promisc(struct e1000g *Adapter);
168
169 char *e1000g_priv_props[] = {
170 "_tx_bcopy_threshold",
171 "_tx_interrupt_enable",
172 "_tx_intr_delay",
173 "_tx_intr_abs_delay",
174 "_rx_bcopy_threshold",
175 "_max_num_rcv_packets",
176 "_rx_intr_delay",
177 "_rx_intr_abs_delay",
178 "_intr_throttling_rate",
179 "_intr_adaptive",
180 "_adv_pause_cap",
181 "_adv_asym_pause_cap",
182 NULL
183 };
184
185 static struct cb_ops cb_ws_ops = {
186 nulldev, /* cb_open */
187 nulldev, /* cb_close */
188 nodev, /* cb_strategy */
189 nodev, /* cb_print */
190 nodev, /* cb_dump */
191 nodev, /* cb_read */
192 nodev, /* cb_write */
193 nodev, /* cb_ioctl */
194 nodev, /* cb_devmap */
195 nodev, /* cb_mmap */
196 nodev, /* cb_segmap */
197 nochpoll, /* cb_chpoll */
198 ddi_prop_op, /* cb_prop_op */
199 NULL, /* cb_stream */
200 D_MP | D_HOTPLUG, /* cb_flag */
201 CB_REV, /* cb_rev */
202 nodev, /* cb_aread */
203 nodev /* cb_awrite */
204 };
205
206 static struct dev_ops ws_ops = {
207 DEVO_REV, /* devo_rev */
208 0, /* devo_refcnt */
209 NULL, /* devo_getinfo */
210 nulldev, /* devo_identify */
211 nulldev, /* devo_probe */
212 e1000g_attach, /* devo_attach */
213 e1000g_detach, /* devo_detach */
214 nodev, /* devo_reset */
215 &cb_ws_ops, /* devo_cb_ops */
216 NULL, /* devo_bus_ops */
217 ddi_power, /* devo_power */
218 e1000g_quiesce /* devo_quiesce */
219 };
220
221 static struct modldrv modldrv = {
222 &mod_driverops, /* Type of module. This one is a driver */
223 ident, /* Discription string */
224 &ws_ops, /* driver ops */
225 };
226
227 static struct modlinkage modlinkage = {
228 MODREV_1, &modldrv, NULL
229 };
230
231 /* Access attributes for register mapping */
232 static ddi_device_acc_attr_t e1000g_regs_acc_attr = {
233 DDI_DEVICE_ATTR_V1,
234 DDI_STRUCTURE_LE_ACC,
235 DDI_STRICTORDER_ACC,
236 DDI_FLAGERR_ACC
237 };
238
239 #define E1000G_M_CALLBACK_FLAGS \
240 (MC_IOCTL | MC_GETCAPAB | MC_SETPROP | MC_GETPROP | MC_PROPINFO)
241
242 static mac_callbacks_t e1000g_m_callbacks = {
243 E1000G_M_CALLBACK_FLAGS,
244 e1000g_m_stat,
245 e1000g_m_start,
246 e1000g_m_stop,
247 e1000g_m_promisc,
248 e1000g_m_multicst,
249 NULL,
250 e1000g_m_tx,
251 NULL,
252 e1000g_m_ioctl,
253 e1000g_m_getcapab,
254 NULL,
255 NULL,
256 e1000g_m_setprop,
257 e1000g_m_getprop,
258 e1000g_m_propinfo
259 };
260
261 /*
262 * Global variables
263 */
264 uint32_t e1000g_jumbo_mtu = MAXIMUM_MTU_9K;
265 uint32_t e1000g_mblks_pending = 0;
266 /*
267 * Workaround for Dynamic Reconfiguration support, for x86 platform only.
268 * Here we maintain a private dev_info list if e1000g_force_detach is
269 * enabled. If we force the driver to detach while there are still some
270 * rx buffers retained in the upper layer, we have to keep a copy of the
271 * dev_info. In some cases (Dynamic Reconfiguration), the dev_info data
272 * structure will be freed after the driver is detached. However when we
273 * finally free those rx buffers released by the upper layer, we need to
274 * refer to the dev_info to free the dma buffers. So we save a copy of
275 * the dev_info for this purpose. On x86 platform, we assume this copy
276 * of dev_info is always valid, but on SPARC platform, it could be invalid
277 * after the system board level DR operation. For this reason, the global
278 * variable e1000g_force_detach must be B_FALSE on SPARC platform.
279 */
280 #ifdef __sparc
281 boolean_t e1000g_force_detach = B_FALSE;
282 #else
283 boolean_t e1000g_force_detach = B_TRUE;
284 #endif
285 private_devi_list_t *e1000g_private_devi_list = NULL;
286
287 /*
288 * The mutex e1000g_rx_detach_lock is defined to protect the processing of
289 * the private dev_info list, and to serialize the processing of rx buffer
290 * freeing and rx buffer recycling.
291 */
292 kmutex_t e1000g_rx_detach_lock;
293 /*
294 * The rwlock e1000g_dma_type_lock is defined to protect the global flag
295 * e1000g_dma_type. For SPARC, the initial value of the flag is "USE_DVMA".
296 * If there are many e1000g instances, the system may run out of DVMA
297 * resources during the initialization of the instances, then the flag will
298 * be changed to "USE_DMA". Because different e1000g instances are initialized
299 * in parallel, we need to use this lock to protect the flag.
300 */
301 krwlock_t e1000g_dma_type_lock;
302
303 /*
304 * The 82546 chipset is a dual-port device, both the ports share one eeprom.
305 * Based on the information from Intel, the 82546 chipset has some hardware
306 * problem. When one port is being reset and the other port is trying to
307 * access the eeprom, it could cause system hang or panic. To workaround this
308 * hardware problem, we use a global mutex to prevent such operations from
309 * happening simultaneously on different instances. This workaround is applied
310 * to all the devices supported by this driver.
311 */
312 kmutex_t e1000g_nvm_lock;
313
314 /*
315 * Loadable module configuration entry points for the driver
316 */
317
318 /*
319 * _init - module initialization
320 */
321 int
_init(void)322 _init(void)
323 {
324 int status;
325
326 mac_init_ops(&ws_ops, WSNAME);
327 status = mod_install(&modlinkage);
328 if (status != DDI_SUCCESS)
329 mac_fini_ops(&ws_ops);
330 else {
331 mutex_init(&e1000g_rx_detach_lock, NULL, MUTEX_DRIVER, NULL);
332 rw_init(&e1000g_dma_type_lock, NULL, RW_DRIVER, NULL);
333 mutex_init(&e1000g_nvm_lock, NULL, MUTEX_DRIVER, NULL);
334 }
335
336 return (status);
337 }
338
339 /*
340 * _fini - module finalization
341 */
342 int
_fini(void)343 _fini(void)
344 {
345 int status;
346
347 if (e1000g_mblks_pending != 0)
348 return (EBUSY);
349
350 status = mod_remove(&modlinkage);
351 if (status == DDI_SUCCESS) {
352 mac_fini_ops(&ws_ops);
353
354 if (e1000g_force_detach) {
355 private_devi_list_t *devi_node;
356
357 mutex_enter(&e1000g_rx_detach_lock);
358 while (e1000g_private_devi_list != NULL) {
359 devi_node = e1000g_private_devi_list;
360 e1000g_private_devi_list =
361 e1000g_private_devi_list->next;
362
363 kmem_free(devi_node->priv_dip,
364 sizeof (struct dev_info));
365 kmem_free(devi_node,
366 sizeof (private_devi_list_t));
367 }
368 mutex_exit(&e1000g_rx_detach_lock);
369 }
370
371 mutex_destroy(&e1000g_rx_detach_lock);
372 rw_destroy(&e1000g_dma_type_lock);
373 mutex_destroy(&e1000g_nvm_lock);
374 }
375
376 return (status);
377 }
378
379 /*
380 * _info - module information
381 */
382 int
_info(struct modinfo * modinfop)383 _info(struct modinfo *modinfop)
384 {
385 return (mod_info(&modlinkage, modinfop));
386 }
387
388 /*
389 * e1000g_attach - driver attach
390 *
391 * This function is the device-specific initialization entry
392 * point. This entry point is required and must be written.
393 * The DDI_ATTACH command must be provided in the attach entry
394 * point. When attach() is called with cmd set to DDI_ATTACH,
395 * all normal kernel services (such as kmem_alloc(9F)) are
396 * available for use by the driver.
397 *
398 * The attach() function will be called once for each instance
399 * of the device on the system with cmd set to DDI_ATTACH.
400 * Until attach() succeeds, the only driver entry points which
401 * may be called are open(9E) and getinfo(9E).
402 */
403 static int
e1000g_attach(dev_info_t * devinfo,ddi_attach_cmd_t cmd)404 e1000g_attach(dev_info_t *devinfo, ddi_attach_cmd_t cmd)
405 {
406 struct e1000g *Adapter;
407 struct e1000_hw *hw;
408 struct e1000g_osdep *osdep;
409 int instance;
410
411 switch (cmd) {
412 default:
413 e1000g_log(NULL, CE_WARN,
414 "Unsupported command send to e1000g_attach... ");
415 return (DDI_FAILURE);
416
417 case DDI_RESUME:
418 return (e1000g_resume(devinfo));
419
420 case DDI_ATTACH:
421 break;
422 }
423
424 /*
425 * get device instance number
426 */
427 instance = ddi_get_instance(devinfo);
428
429 /*
430 * Allocate soft data structure
431 */
432 Adapter =
433 (struct e1000g *)kmem_zalloc(sizeof (*Adapter), KM_SLEEP);
434
435 Adapter->dip = devinfo;
436 Adapter->instance = instance;
437 Adapter->tx_ring->adapter = Adapter;
438 Adapter->rx_ring->adapter = Adapter;
439
440 hw = &Adapter->shared;
441 osdep = &Adapter->osdep;
442 hw->back = osdep;
443 osdep->adapter = Adapter;
444
445 ddi_set_driver_private(devinfo, (caddr_t)Adapter);
446
447 /*
448 * Initialize for fma support
449 */
450 (void) e1000g_get_prop(Adapter, "fm-capable",
451 0, 0x0f,
452 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE |
453 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE,
454 &Adapter->fm_capabilities);
455 e1000g_fm_init(Adapter);
456 Adapter->attach_progress |= ATTACH_PROGRESS_FMINIT;
457
458 /*
459 * PCI Configure
460 */
461 if (pci_config_setup(devinfo, &osdep->cfg_handle) != DDI_SUCCESS) {
462 e1000g_log(Adapter, CE_WARN, "PCI configuration failed");
463 goto attach_fail;
464 }
465 Adapter->attach_progress |= ATTACH_PROGRESS_PCI_CONFIG;
466
467 /*
468 * Setup hardware
469 */
470 if (e1000g_identify_hardware(Adapter) != DDI_SUCCESS) {
471 e1000g_log(Adapter, CE_WARN, "Identify hardware failed");
472 goto attach_fail;
473 }
474
475 /*
476 * Map in the device registers.
477 */
478 if (e1000g_regs_map(Adapter) != DDI_SUCCESS) {
479 e1000g_log(Adapter, CE_WARN, "Mapping registers failed");
480 goto attach_fail;
481 }
482 Adapter->attach_progress |= ATTACH_PROGRESS_REGS_MAP;
483
484 /*
485 * Initialize driver parameters
486 */
487 if (e1000g_set_driver_params(Adapter) != DDI_SUCCESS) {
488 goto attach_fail;
489 }
490 Adapter->attach_progress |= ATTACH_PROGRESS_SETUP;
491
492 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
493 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
494 goto attach_fail;
495 }
496
497 /*
498 * Disable ULP support
499 */
500 (void) e1000_disable_ulp_lpt_lp(hw, TRUE);
501
502 /*
503 * Initialize interrupts
504 */
505 if (e1000g_add_intrs(Adapter) != DDI_SUCCESS) {
506 e1000g_log(Adapter, CE_WARN, "Add interrupts failed");
507 goto attach_fail;
508 }
509 Adapter->attach_progress |= ATTACH_PROGRESS_ADD_INTR;
510
511 /*
512 * Initialize mutex's for this device.
513 * Do this before enabling the interrupt handler and
514 * register the softint to avoid the condition where
515 * interrupt handler can try using uninitialized mutex
516 */
517 e1000g_init_locks(Adapter);
518 Adapter->attach_progress |= ATTACH_PROGRESS_LOCKS;
519
520 /*
521 * Initialize Driver Counters
522 */
523 if (e1000g_init_stats(Adapter) != DDI_SUCCESS) {
524 e1000g_log(Adapter, CE_WARN, "Init stats failed");
525 goto attach_fail;
526 }
527 Adapter->attach_progress |= ATTACH_PROGRESS_KSTATS;
528
529 /*
530 * Initialize chip hardware and software structures
531 */
532 rw_enter(&Adapter->chip_lock, RW_WRITER);
533 if (e1000g_init(Adapter) != DDI_SUCCESS) {
534 rw_exit(&Adapter->chip_lock);
535 e1000g_log(Adapter, CE_WARN, "Adapter initialization failed");
536 goto attach_fail;
537 }
538 rw_exit(&Adapter->chip_lock);
539 Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
540
541 /*
542 * Register the driver to the MAC
543 */
544 if (e1000g_register_mac(Adapter) != DDI_SUCCESS) {
545 e1000g_log(Adapter, CE_WARN, "Register MAC failed");
546 goto attach_fail;
547 }
548 Adapter->attach_progress |= ATTACH_PROGRESS_MAC;
549
550 /*
551 * Now that mutex locks are initialized, and the chip is also
552 * initialized, enable interrupts.
553 */
554 if (e1000g_enable_intrs(Adapter) != DDI_SUCCESS) {
555 e1000g_log(Adapter, CE_WARN, "Enable DDI interrupts failed");
556 goto attach_fail;
557 }
558 Adapter->attach_progress |= ATTACH_PROGRESS_ENABLE_INTR;
559
560 /*
561 * If e1000g_force_detach is enabled, in global private dip list,
562 * we will create a new entry, which maintains the priv_dip for DR
563 * supports after driver detached.
564 */
565 if (e1000g_force_detach) {
566 private_devi_list_t *devi_node;
567
568 Adapter->priv_dip =
569 kmem_zalloc(sizeof (struct dev_info), KM_SLEEP);
570 bcopy(DEVI(devinfo), DEVI(Adapter->priv_dip),
571 sizeof (struct dev_info));
572
573 devi_node =
574 kmem_zalloc(sizeof (private_devi_list_t), KM_SLEEP);
575
576 mutex_enter(&e1000g_rx_detach_lock);
577 devi_node->priv_dip = Adapter->priv_dip;
578 devi_node->flag = E1000G_PRIV_DEVI_ATTACH;
579 devi_node->pending_rx_count = 0;
580
581 Adapter->priv_devi_node = devi_node;
582
583 if (e1000g_private_devi_list == NULL) {
584 devi_node->prev = NULL;
585 devi_node->next = NULL;
586 e1000g_private_devi_list = devi_node;
587 } else {
588 devi_node->prev = NULL;
589 devi_node->next = e1000g_private_devi_list;
590 e1000g_private_devi_list->prev = devi_node;
591 e1000g_private_devi_list = devi_node;
592 }
593 mutex_exit(&e1000g_rx_detach_lock);
594 }
595
596 Adapter->e1000g_state = E1000G_INITIALIZED;
597 return (DDI_SUCCESS);
598
599 attach_fail:
600 e1000g_unattach(devinfo, Adapter);
601 return (DDI_FAILURE);
602 }
603
604 static int
e1000g_register_mac(struct e1000g * Adapter)605 e1000g_register_mac(struct e1000g *Adapter)
606 {
607 struct e1000_hw *hw = &Adapter->shared;
608 mac_register_t *mac;
609 int err;
610
611 if ((mac = mac_alloc(MAC_VERSION)) == NULL)
612 return (DDI_FAILURE);
613
614 mac->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
615 mac->m_driver = Adapter;
616 mac->m_dip = Adapter->dip;
617 mac->m_src_addr = hw->mac.addr;
618 mac->m_callbacks = &e1000g_m_callbacks;
619 mac->m_min_sdu = 0;
620 mac->m_max_sdu = Adapter->default_mtu;
621 mac->m_margin = VLAN_TAGSZ;
622 mac->m_priv_props = e1000g_priv_props;
623 mac->m_v12n = MAC_VIRT_LEVEL1;
624
625 err = mac_register(mac, &Adapter->mh);
626 mac_free(mac);
627
628 return (err == 0 ? DDI_SUCCESS : DDI_FAILURE);
629 }
630
631 static int
e1000g_identify_hardware(struct e1000g * Adapter)632 e1000g_identify_hardware(struct e1000g *Adapter)
633 {
634 struct e1000_hw *hw = &Adapter->shared;
635 struct e1000g_osdep *osdep = &Adapter->osdep;
636
637 /* Get the device id */
638 hw->vendor_id =
639 pci_config_get16(osdep->cfg_handle, PCI_CONF_VENID);
640 hw->device_id =
641 pci_config_get16(osdep->cfg_handle, PCI_CONF_DEVID);
642 hw->revision_id =
643 pci_config_get8(osdep->cfg_handle, PCI_CONF_REVID);
644 hw->subsystem_device_id =
645 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBSYSID);
646 hw->subsystem_vendor_id =
647 pci_config_get16(osdep->cfg_handle, PCI_CONF_SUBVENID);
648
649 if (e1000_set_mac_type(hw) != E1000_SUCCESS) {
650 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
651 "MAC type could not be set properly.");
652 return (DDI_FAILURE);
653 }
654
655 return (DDI_SUCCESS);
656 }
657
658 static int
e1000g_regs_map(struct e1000g * Adapter)659 e1000g_regs_map(struct e1000g *Adapter)
660 {
661 dev_info_t *devinfo = Adapter->dip;
662 struct e1000_hw *hw = &Adapter->shared;
663 struct e1000g_osdep *osdep = &Adapter->osdep;
664 off_t mem_size;
665 bar_info_t bar_info;
666 int offset, rnumber;
667
668 rnumber = ADAPTER_REG_SET;
669 /* Get size of adapter register memory */
670 if (ddi_dev_regsize(devinfo, rnumber, &mem_size) !=
671 DDI_SUCCESS) {
672 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
673 "ddi_dev_regsize for registers failed");
674 return (DDI_FAILURE);
675 }
676
677 /* Map adapter register memory */
678 if ((ddi_regs_map_setup(devinfo, rnumber,
679 (caddr_t *)&hw->hw_addr, 0, mem_size, &e1000g_regs_acc_attr,
680 &osdep->reg_handle)) != DDI_SUCCESS) {
681 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
682 "ddi_regs_map_setup for registers failed");
683 goto regs_map_fail;
684 }
685
686 /* ICH needs to map flash memory */
687 switch (hw->mac.type) {
688 case e1000_ich8lan:
689 case e1000_ich9lan:
690 case e1000_ich10lan:
691 case e1000_pchlan:
692 case e1000_pch2lan:
693 case e1000_pch_lpt:
694 rnumber = ICH_FLASH_REG_SET;
695
696 /* get flash size */
697 if (ddi_dev_regsize(devinfo, rnumber,
698 &mem_size) != DDI_SUCCESS) {
699 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
700 "ddi_dev_regsize for ICH flash failed");
701 goto regs_map_fail;
702 }
703
704 /* map flash in */
705 if (ddi_regs_map_setup(devinfo, rnumber,
706 (caddr_t *)&hw->flash_address, 0,
707 mem_size, &e1000g_regs_acc_attr,
708 &osdep->ich_flash_handle) != DDI_SUCCESS) {
709 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
710 "ddi_regs_map_setup for ICH flash failed");
711 goto regs_map_fail;
712 }
713 break;
714 case e1000_pch_spt:
715 case e1000_pch_cnp:
716 case e1000_pch_tgp:
717 case e1000_pch_adp:
718 case e1000_pch_mtp:
719 case e1000_pch_lnp:
720 case e1000_pch_rpl:
721 case e1000_pch_arl:
722 case e1000_pch_ptp:
723 case e1000_pch_nvl:
724 /*
725 * On the SPT, the device flash is actually in BAR0, not a
726 * separate BAR. Therefore we end up setting the
727 * ich_flash_handle to be the same as the register handle.
728 * We mark the same to reduce the confusion in the other
729 * functions and macros. Though this does make the set up and
730 * tear-down path slightly more complicated.
731 */
732 osdep->ich_flash_handle = osdep->reg_handle;
733 hw->flash_address = hw->hw_addr;
734 default:
735 break;
736 }
737
738 /* map io space */
739 switch (hw->mac.type) {
740 case e1000_82544:
741 case e1000_82540:
742 case e1000_82545:
743 case e1000_82546:
744 case e1000_82541:
745 case e1000_82541_rev_2:
746 /* find the IO bar */
747 rnumber = -1;
748 for (offset = PCI_CONF_BASE1;
749 offset <= PCI_CONF_BASE5; offset += 4) {
750 if (e1000g_get_bar_info(devinfo, offset, &bar_info)
751 != DDI_SUCCESS)
752 continue;
753 if (bar_info.type == E1000G_BAR_IO) {
754 rnumber = bar_info.rnumber;
755 break;
756 }
757 }
758
759 if (rnumber < 0) {
760 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
761 "No io space is found");
762 goto regs_map_fail;
763 }
764
765 /* get io space size */
766 if (ddi_dev_regsize(devinfo, rnumber,
767 &mem_size) != DDI_SUCCESS) {
768 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
769 "ddi_dev_regsize for io space failed");
770 goto regs_map_fail;
771 }
772
773 /* map io space */
774 if ((ddi_regs_map_setup(devinfo, rnumber,
775 (caddr_t *)&hw->io_base, 0, mem_size,
776 &e1000g_regs_acc_attr,
777 &osdep->io_reg_handle)) != DDI_SUCCESS) {
778 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
779 "ddi_regs_map_setup for io space failed");
780 goto regs_map_fail;
781 }
782 break;
783 default:
784 hw->io_base = 0;
785 break;
786 }
787
788 return (DDI_SUCCESS);
789
790 regs_map_fail:
791 if (osdep->reg_handle != NULL)
792 ddi_regs_map_free(&osdep->reg_handle);
793 if (osdep->ich_flash_handle != NULL && hw->mac.type < e1000_pch_spt)
794 ddi_regs_map_free(&osdep->ich_flash_handle);
795 return (DDI_FAILURE);
796 }
797
798 static int
e1000g_set_driver_params(struct e1000g * Adapter)799 e1000g_set_driver_params(struct e1000g *Adapter)
800 {
801 struct e1000_hw *hw;
802
803 hw = &Adapter->shared;
804
805 /* Set MAC type and initialize hardware functions */
806 if (e1000_setup_init_funcs(hw, B_TRUE) != E1000_SUCCESS) {
807 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
808 "Could not setup hardware functions");
809 return (DDI_FAILURE);
810 }
811
812 /* Get bus information */
813 if (e1000_get_bus_info(hw) != E1000_SUCCESS) {
814 E1000G_DEBUGLOG_0(Adapter, CE_WARN,
815 "Could not get bus information");
816 return (DDI_FAILURE);
817 }
818
819 e1000_read_pci_cfg(hw, PCI_COMMAND_REGISTER, &hw->bus.pci_cmd_word);
820
821 hw->mac.autoneg_failed = B_TRUE;
822
823 /* Set the autoneg_wait_to_complete flag to B_FALSE */
824 hw->phy.autoneg_wait_to_complete = B_FALSE;
825
826 /* Adaptive IFS related changes */
827 hw->mac.adaptive_ifs = B_TRUE;
828
829 /* Enable phy init script for IGP phy of 82541/82547 */
830 if ((hw->mac.type == e1000_82547) ||
831 (hw->mac.type == e1000_82541) ||
832 (hw->mac.type == e1000_82547_rev_2) ||
833 (hw->mac.type == e1000_82541_rev_2))
834 e1000_init_script_state_82541(hw, B_TRUE);
835
836 /* Enable the TTL workaround for 82541/82547 */
837 e1000_set_ttl_workaround_state_82541(hw, B_TRUE);
838
839 #ifdef __sparc
840 Adapter->strip_crc = B_TRUE;
841 #else
842 Adapter->strip_crc = B_FALSE;
843 #endif
844
845 /* setup the maximum MTU size of the chip */
846 e1000g_setup_max_mtu(Adapter);
847
848 /* Get speed/duplex settings in conf file */
849 hw->mac.forced_speed_duplex = ADVERTISE_100_FULL;
850 hw->phy.autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
851 e1000g_force_speed_duplex(Adapter);
852
853 /* Get Jumbo Frames settings in conf file */
854 e1000g_get_max_frame_size(Adapter);
855
856 /* Get conf file properties */
857 e1000g_get_conf(Adapter);
858
859 /* enforce PCH limits */
860 e1000g_pch_limits(Adapter);
861
862 /* Set Rx/Tx buffer size */
863 e1000g_set_bufsize(Adapter);
864
865 /* Master Latency Timer */
866 Adapter->master_latency_timer = DEFAULT_MASTER_LATENCY_TIMER;
867
868 /* copper options */
869 if (hw->phy.media_type == e1000_media_type_copper) {
870 hw->phy.mdix = 0; /* AUTO_ALL_MODES */
871 hw->phy.disable_polarity_correction = B_FALSE;
872 hw->phy.ms_type = e1000_ms_hw_default; /* E1000_MASTER_SLAVE */
873 }
874
875 /* The initial link state should be "unknown" */
876 Adapter->link_state = LINK_STATE_UNKNOWN;
877
878 /* Initialize rx parameters */
879 Adapter->rx_intr_delay = DEFAULT_RX_INTR_DELAY;
880 Adapter->rx_intr_abs_delay = DEFAULT_RX_INTR_ABS_DELAY;
881
882 /* Initialize tx parameters */
883 Adapter->tx_intr_enable = DEFAULT_TX_INTR_ENABLE;
884 Adapter->tx_bcopy_thresh = DEFAULT_TX_BCOPY_THRESHOLD;
885 Adapter->tx_intr_delay = DEFAULT_TX_INTR_DELAY;
886 Adapter->tx_intr_abs_delay = DEFAULT_TX_INTR_ABS_DELAY;
887
888 /* Initialize rx parameters */
889 Adapter->rx_bcopy_thresh = DEFAULT_RX_BCOPY_THRESHOLD;
890
891 return (DDI_SUCCESS);
892 }
893
894 static void
e1000g_setup_max_mtu(struct e1000g * Adapter)895 e1000g_setup_max_mtu(struct e1000g *Adapter)
896 {
897 struct e1000_mac_info *mac = &Adapter->shared.mac;
898 struct e1000_phy_info *phy = &Adapter->shared.phy;
899
900 switch (mac->type) {
901 /* types that do not support jumbo frames */
902 case e1000_ich8lan:
903 case e1000_82573:
904 case e1000_82583:
905 Adapter->max_mtu = ETHERMTU;
906 break;
907 /* ich9 supports jumbo frames except on one phy type */
908 case e1000_ich9lan:
909 if (phy->type == e1000_phy_ife)
910 Adapter->max_mtu = ETHERMTU;
911 else
912 Adapter->max_mtu = MAXIMUM_MTU_9K;
913 break;
914 /* pch can do jumbo frames up to 4K */
915 case e1000_pchlan:
916 Adapter->max_mtu = MAXIMUM_MTU_4K;
917 break;
918 /* pch2 can do jumbo frames up to 9K */
919 case e1000_pch2lan:
920 case e1000_pch_lpt:
921 case e1000_pch_spt:
922 case e1000_pch_cnp:
923 case e1000_pch_tgp:
924 case e1000_pch_adp:
925 case e1000_pch_mtp:
926 case e1000_pch_lnp:
927 case e1000_pch_rpl:
928 case e1000_pch_arl:
929 case e1000_pch_ptp:
930 case e1000_pch_nvl:
931 Adapter->max_mtu = MAXIMUM_MTU_9K;
932 break;
933 /* types with a special limit */
934 case e1000_82571:
935 case e1000_82572:
936 case e1000_82574:
937 case e1000_80003es2lan:
938 case e1000_ich10lan:
939 if (e1000g_jumbo_mtu >= ETHERMTU &&
940 e1000g_jumbo_mtu <= MAXIMUM_MTU_9K) {
941 Adapter->max_mtu = e1000g_jumbo_mtu;
942 } else {
943 Adapter->max_mtu = MAXIMUM_MTU_9K;
944 }
945 break;
946 /* default limit is 16K */
947 default:
948 Adapter->max_mtu = FRAME_SIZE_UPTO_16K -
949 sizeof (struct ether_vlan_header) - ETHERFCSL;
950 break;
951 }
952 }
953
954 static void
e1000g_set_bufsize(struct e1000g * Adapter)955 e1000g_set_bufsize(struct e1000g *Adapter)
956 {
957 struct e1000_mac_info *mac = &Adapter->shared.mac;
958 uint64_t rx_size;
959 uint64_t tx_size;
960
961 dev_info_t *devinfo = Adapter->dip;
962 #ifdef __sparc
963 ulong_t iommu_pagesize;
964 #endif
965 /* Get the system page size */
966 Adapter->sys_page_sz = ddi_ptob(devinfo, (ulong_t)1);
967
968 #ifdef __sparc
969 iommu_pagesize = dvma_pagesize(devinfo);
970 if (iommu_pagesize != 0) {
971 if (Adapter->sys_page_sz == iommu_pagesize) {
972 if (iommu_pagesize > 0x4000)
973 Adapter->sys_page_sz = 0x4000;
974 } else {
975 if (Adapter->sys_page_sz > iommu_pagesize)
976 Adapter->sys_page_sz = iommu_pagesize;
977 }
978 }
979 if (Adapter->lso_enable) {
980 Adapter->dvma_page_num = E1000_LSO_MAXLEN /
981 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
982 } else {
983 Adapter->dvma_page_num = Adapter->max_frame_size /
984 Adapter->sys_page_sz + E1000G_DEFAULT_DVMA_PAGE_NUM;
985 }
986 ASSERT(Adapter->dvma_page_num >= E1000G_DEFAULT_DVMA_PAGE_NUM);
987 #endif
988
989 Adapter->min_frame_size = ETHERMIN + ETHERFCSL;
990
991 if (Adapter->mem_workaround_82546 &&
992 ((mac->type == e1000_82545) ||
993 (mac->type == e1000_82546) ||
994 (mac->type == e1000_82546_rev_3))) {
995 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
996 } else {
997 rx_size = Adapter->max_frame_size;
998 if ((rx_size > FRAME_SIZE_UPTO_2K) &&
999 (rx_size <= FRAME_SIZE_UPTO_4K))
1000 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_4K;
1001 else if ((rx_size > FRAME_SIZE_UPTO_4K) &&
1002 (rx_size <= FRAME_SIZE_UPTO_8K))
1003 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_8K;
1004 else if ((rx_size > FRAME_SIZE_UPTO_8K) &&
1005 (rx_size <= FRAME_SIZE_UPTO_16K))
1006 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_16K;
1007 else
1008 Adapter->rx_buffer_size = E1000_RX_BUFFER_SIZE_2K;
1009 }
1010 Adapter->rx_buffer_size += E1000G_IPALIGNROOM;
1011
1012 tx_size = Adapter->max_frame_size;
1013 if ((tx_size > FRAME_SIZE_UPTO_2K) && (tx_size <= FRAME_SIZE_UPTO_4K))
1014 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_4K;
1015 else if ((tx_size > FRAME_SIZE_UPTO_4K) &&
1016 (tx_size <= FRAME_SIZE_UPTO_8K))
1017 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_8K;
1018 else if ((tx_size > FRAME_SIZE_UPTO_8K) &&
1019 (tx_size <= FRAME_SIZE_UPTO_16K))
1020 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_16K;
1021 else
1022 Adapter->tx_buffer_size = E1000_TX_BUFFER_SIZE_2K;
1023
1024 /*
1025 * For Wiseman adapters we have an requirement of having receive
1026 * buffers aligned at 256 byte boundary. Since Livengood does not
1027 * require this and forcing it for all hardwares will have
1028 * performance implications, I am making it applicable only for
1029 * Wiseman and for Jumbo frames enabled mode as rest of the time,
1030 * it is okay to have normal frames...but it does involve a
1031 * potential risk where we may loose data if buffer is not
1032 * aligned...so all wiseman boards to have 256 byte aligned
1033 * buffers
1034 */
1035 if (mac->type < e1000_82543)
1036 Adapter->rx_buf_align = RECEIVE_BUFFER_ALIGN_SIZE;
1037 else
1038 Adapter->rx_buf_align = 1;
1039 }
1040
1041 /*
1042 * e1000g_detach - driver detach
1043 *
1044 * The detach() function is the complement of the attach routine.
1045 * If cmd is set to DDI_DETACH, detach() is used to remove the
1046 * state associated with a given instance of a device node
1047 * prior to the removal of that instance from the system.
1048 *
1049 * The detach() function will be called once for each instance
1050 * of the device for which there has been a successful attach()
1051 * once there are no longer any opens on the device.
1052 *
1053 * Interrupts routine are disabled, All memory allocated by this
1054 * driver are freed.
1055 */
1056 static int
e1000g_detach(dev_info_t * devinfo,ddi_detach_cmd_t cmd)1057 e1000g_detach(dev_info_t *devinfo, ddi_detach_cmd_t cmd)
1058 {
1059 struct e1000g *Adapter;
1060 boolean_t rx_drain;
1061
1062 switch (cmd) {
1063 default:
1064 return (DDI_FAILURE);
1065
1066 case DDI_SUSPEND:
1067 return (e1000g_suspend(devinfo));
1068
1069 case DDI_DETACH:
1070 break;
1071 }
1072
1073 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1074 if (Adapter == NULL)
1075 return (DDI_FAILURE);
1076
1077 rx_drain = e1000g_rx_drain(Adapter);
1078 if (!rx_drain && !e1000g_force_detach)
1079 return (DDI_FAILURE);
1080
1081 if (mac_unregister(Adapter->mh) != 0) {
1082 e1000g_log(Adapter, CE_WARN, "Unregister MAC failed");
1083 return (DDI_FAILURE);
1084 }
1085 Adapter->attach_progress &= ~ATTACH_PROGRESS_MAC;
1086
1087 ASSERT(!(Adapter->e1000g_state & E1000G_STARTED));
1088
1089 if (!e1000g_force_detach && !rx_drain)
1090 return (DDI_FAILURE);
1091
1092 e1000g_unattach(devinfo, Adapter);
1093
1094 return (DDI_SUCCESS);
1095 }
1096
1097 /*
1098 * e1000g_free_priv_devi_node - free a priv_dip entry for driver instance
1099 */
1100 void
e1000g_free_priv_devi_node(private_devi_list_t * devi_node)1101 e1000g_free_priv_devi_node(private_devi_list_t *devi_node)
1102 {
1103 ASSERT(e1000g_private_devi_list != NULL);
1104 ASSERT(devi_node != NULL);
1105
1106 if (devi_node->prev != NULL)
1107 devi_node->prev->next = devi_node->next;
1108 if (devi_node->next != NULL)
1109 devi_node->next->prev = devi_node->prev;
1110 if (devi_node == e1000g_private_devi_list)
1111 e1000g_private_devi_list = devi_node->next;
1112
1113 kmem_free(devi_node->priv_dip,
1114 sizeof (struct dev_info));
1115 kmem_free(devi_node,
1116 sizeof (private_devi_list_t));
1117 }
1118
1119 static void
e1000g_unattach(dev_info_t * devinfo,struct e1000g * Adapter)1120 e1000g_unattach(dev_info_t *devinfo, struct e1000g *Adapter)
1121 {
1122 private_devi_list_t *devi_node;
1123 int result;
1124
1125 if (Adapter->e1000g_blink != NULL) {
1126 ddi_periodic_delete(Adapter->e1000g_blink);
1127 Adapter->e1000g_blink = NULL;
1128 }
1129
1130 if (Adapter->attach_progress & ATTACH_PROGRESS_ENABLE_INTR) {
1131 (void) e1000g_disable_intrs(Adapter);
1132 }
1133
1134 if (Adapter->attach_progress & ATTACH_PROGRESS_MAC) {
1135 (void) mac_unregister(Adapter->mh);
1136 }
1137
1138 if (Adapter->attach_progress & ATTACH_PROGRESS_ADD_INTR) {
1139 (void) e1000g_rem_intrs(Adapter);
1140 }
1141
1142 if (Adapter->attach_progress & ATTACH_PROGRESS_SETUP) {
1143 (void) ddi_prop_remove_all(devinfo);
1144 }
1145
1146 if (Adapter->attach_progress & ATTACH_PROGRESS_KSTATS) {
1147 kstat_delete((kstat_t *)Adapter->e1000g_ksp);
1148 }
1149
1150 if (Adapter->attach_progress & ATTACH_PROGRESS_INIT) {
1151 stop_link_timer(Adapter);
1152
1153 mutex_enter(&e1000g_nvm_lock);
1154 result = e1000_reset_hw(&Adapter->shared);
1155 mutex_exit(&e1000g_nvm_lock);
1156
1157 if (result != E1000_SUCCESS) {
1158 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1159 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1160 }
1161 }
1162
1163 e1000g_release_multicast(Adapter);
1164
1165 if (Adapter->attach_progress & ATTACH_PROGRESS_REGS_MAP) {
1166 if (Adapter->osdep.reg_handle != NULL)
1167 ddi_regs_map_free(&Adapter->osdep.reg_handle);
1168 if (Adapter->osdep.ich_flash_handle != NULL &&
1169 Adapter->shared.mac.type < e1000_pch_spt)
1170 ddi_regs_map_free(&Adapter->osdep.ich_flash_handle);
1171 if (Adapter->osdep.io_reg_handle != NULL)
1172 ddi_regs_map_free(&Adapter->osdep.io_reg_handle);
1173 }
1174
1175 if (Adapter->attach_progress & ATTACH_PROGRESS_PCI_CONFIG) {
1176 if (Adapter->osdep.cfg_handle != NULL)
1177 pci_config_teardown(&Adapter->osdep.cfg_handle);
1178 }
1179
1180 if (Adapter->attach_progress & ATTACH_PROGRESS_LOCKS) {
1181 e1000g_destroy_locks(Adapter);
1182 }
1183
1184 if (Adapter->attach_progress & ATTACH_PROGRESS_FMINIT) {
1185 e1000g_fm_fini(Adapter);
1186 }
1187
1188 mutex_enter(&e1000g_rx_detach_lock);
1189 if (e1000g_force_detach && (Adapter->priv_devi_node != NULL)) {
1190 devi_node = Adapter->priv_devi_node;
1191 devi_node->flag |= E1000G_PRIV_DEVI_DETACH;
1192
1193 if (devi_node->pending_rx_count == 0) {
1194 e1000g_free_priv_devi_node(devi_node);
1195 }
1196 }
1197 mutex_exit(&e1000g_rx_detach_lock);
1198
1199 kmem_free((caddr_t)Adapter, sizeof (struct e1000g));
1200
1201 /*
1202 * Another hotplug spec requirement,
1203 * run ddi_set_driver_private(devinfo, null);
1204 */
1205 ddi_set_driver_private(devinfo, NULL);
1206 }
1207
1208 /*
1209 * Get the BAR type and rnumber for a given PCI BAR offset
1210 */
1211 static int
e1000g_get_bar_info(dev_info_t * dip,int bar_offset,bar_info_t * bar_info)1212 e1000g_get_bar_info(dev_info_t *dip, int bar_offset, bar_info_t *bar_info)
1213 {
1214 pci_regspec_t *regs;
1215 uint_t regs_length;
1216 int type, rnumber, rcount;
1217
1218 ASSERT((bar_offset >= PCI_CONF_BASE0) &&
1219 (bar_offset <= PCI_CONF_BASE5));
1220
1221 /*
1222 * Get the DDI "reg" property
1223 */
1224 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip,
1225 DDI_PROP_DONTPASS, "reg", (int **)®s,
1226 ®s_length) != DDI_PROP_SUCCESS) {
1227 return (DDI_FAILURE);
1228 }
1229
1230 rcount = regs_length * sizeof (int) / sizeof (pci_regspec_t);
1231 /*
1232 * Check the BAR offset
1233 */
1234 for (rnumber = 0; rnumber < rcount; ++rnumber) {
1235 if (PCI_REG_REG_G(regs[rnumber].pci_phys_hi) == bar_offset) {
1236 type = regs[rnumber].pci_phys_hi & PCI_ADDR_MASK;
1237 break;
1238 }
1239 }
1240
1241 ddi_prop_free(regs);
1242
1243 if (rnumber >= rcount)
1244 return (DDI_FAILURE);
1245
1246 switch (type) {
1247 case PCI_ADDR_CONFIG:
1248 bar_info->type = E1000G_BAR_CONFIG;
1249 break;
1250 case PCI_ADDR_IO:
1251 bar_info->type = E1000G_BAR_IO;
1252 break;
1253 case PCI_ADDR_MEM32:
1254 bar_info->type = E1000G_BAR_MEM32;
1255 break;
1256 case PCI_ADDR_MEM64:
1257 bar_info->type = E1000G_BAR_MEM64;
1258 break;
1259 default:
1260 return (DDI_FAILURE);
1261 }
1262 bar_info->rnumber = rnumber;
1263 return (DDI_SUCCESS);
1264 }
1265
1266 static void
e1000g_init_locks(struct e1000g * Adapter)1267 e1000g_init_locks(struct e1000g *Adapter)
1268 {
1269 e1000g_tx_ring_t *tx_ring;
1270 e1000g_rx_ring_t *rx_ring;
1271
1272 rw_init(&Adapter->chip_lock, NULL,
1273 RW_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1274 mutex_init(&Adapter->link_lock, NULL,
1275 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1276 mutex_init(&Adapter->watchdog_lock, NULL,
1277 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1278
1279 tx_ring = Adapter->tx_ring;
1280
1281 mutex_init(&tx_ring->tx_lock, NULL,
1282 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1283 mutex_init(&tx_ring->usedlist_lock, NULL,
1284 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1285 mutex_init(&tx_ring->freelist_lock, NULL,
1286 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1287
1288 rx_ring = Adapter->rx_ring;
1289
1290 mutex_init(&rx_ring->rx_lock, NULL,
1291 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1292
1293 mutex_init(&Adapter->e1000g_led_lock, NULL,
1294 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1295 }
1296
1297 static void
e1000g_destroy_locks(struct e1000g * Adapter)1298 e1000g_destroy_locks(struct e1000g *Adapter)
1299 {
1300 e1000g_tx_ring_t *tx_ring;
1301 e1000g_rx_ring_t *rx_ring;
1302
1303 mutex_destroy(&Adapter->e1000g_led_lock);
1304
1305 tx_ring = Adapter->tx_ring;
1306 mutex_destroy(&tx_ring->tx_lock);
1307 mutex_destroy(&tx_ring->usedlist_lock);
1308 mutex_destroy(&tx_ring->freelist_lock);
1309
1310 rx_ring = Adapter->rx_ring;
1311 mutex_destroy(&rx_ring->rx_lock);
1312
1313 mutex_destroy(&Adapter->link_lock);
1314 mutex_destroy(&Adapter->watchdog_lock);
1315 rw_destroy(&Adapter->chip_lock);
1316
1317 /* destory mutex initialized in shared code */
1318 e1000_destroy_hw_mutex(&Adapter->shared);
1319 }
1320
1321 static int
e1000g_resume(dev_info_t * devinfo)1322 e1000g_resume(dev_info_t *devinfo)
1323 {
1324 struct e1000g *Adapter;
1325
1326 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1327 if (Adapter == NULL)
1328 e1000g_log(Adapter, CE_PANIC,
1329 "Instance pointer is null\n");
1330
1331 if (Adapter->dip != devinfo)
1332 e1000g_log(Adapter, CE_PANIC,
1333 "Devinfo is not the same as saved devinfo\n");
1334
1335 rw_enter(&Adapter->chip_lock, RW_WRITER);
1336
1337 if (Adapter->e1000g_state & E1000G_STARTED) {
1338 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
1339 rw_exit(&Adapter->chip_lock);
1340 /*
1341 * We note the failure, but return success, as the
1342 * system is still usable without this controller.
1343 */
1344 e1000g_log(Adapter, CE_WARN,
1345 "e1000g_resume: failed to restart controller\n");
1346 return (DDI_SUCCESS);
1347 }
1348 /* Enable and start the watchdog timer */
1349 enable_watchdog_timer(Adapter);
1350 }
1351
1352 Adapter->e1000g_state &= ~E1000G_SUSPENDED;
1353
1354 rw_exit(&Adapter->chip_lock);
1355
1356 return (DDI_SUCCESS);
1357 }
1358
1359 static int
e1000g_suspend(dev_info_t * devinfo)1360 e1000g_suspend(dev_info_t *devinfo)
1361 {
1362 struct e1000g *Adapter;
1363
1364 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
1365 if (Adapter == NULL)
1366 return (DDI_FAILURE);
1367
1368 rw_enter(&Adapter->chip_lock, RW_WRITER);
1369
1370 Adapter->e1000g_state |= E1000G_SUSPENDED;
1371
1372 /* if the port isn't plumbed, we can simply return */
1373 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
1374 rw_exit(&Adapter->chip_lock);
1375 return (DDI_SUCCESS);
1376 }
1377
1378 e1000g_stop(Adapter, B_FALSE);
1379
1380 rw_exit(&Adapter->chip_lock);
1381
1382 /* Disable and stop all the timers */
1383 disable_watchdog_timer(Adapter);
1384 stop_link_timer(Adapter);
1385 stop_82547_timer(Adapter->tx_ring);
1386
1387 return (DDI_SUCCESS);
1388 }
1389
1390 static int
e1000g_init(struct e1000g * Adapter)1391 e1000g_init(struct e1000g *Adapter)
1392 {
1393 uint32_t pba;
1394 uint32_t high_water;
1395 struct e1000_hw *hw;
1396 clock_t link_timeout;
1397 int result;
1398
1399 hw = &Adapter->shared;
1400
1401 /*
1402 * reset to put the hardware in a known state
1403 * before we try to do anything with the eeprom
1404 */
1405 mutex_enter(&e1000g_nvm_lock);
1406 result = e1000_reset_hw(hw);
1407 mutex_exit(&e1000g_nvm_lock);
1408
1409 if (result != E1000_SUCCESS) {
1410 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1411 goto init_fail;
1412 }
1413
1414 mutex_enter(&e1000g_nvm_lock);
1415 result = e1000_validate_nvm_checksum(hw);
1416 if (result < E1000_SUCCESS) {
1417 /*
1418 * Some PCI-E parts fail the first check due to
1419 * the link being in sleep state. Call it again,
1420 * if it fails a second time its a real issue.
1421 */
1422 result = e1000_validate_nvm_checksum(hw);
1423 }
1424 mutex_exit(&e1000g_nvm_lock);
1425
1426 if (result < E1000_SUCCESS) {
1427 e1000g_log(Adapter, CE_WARN,
1428 "Invalid NVM checksum. Please contact "
1429 "the vendor to update the NVM.");
1430 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1431 goto init_fail;
1432 }
1433
1434 result = 0;
1435 #ifdef __sparc
1436 /*
1437 * First, we try to get the local ethernet address from OBP. If
1438 * failed, then we get it from the EEPROM of NIC card.
1439 */
1440 result = e1000g_find_mac_address(Adapter);
1441 #endif
1442 /* Get the local ethernet address. */
1443 if (!result) {
1444 mutex_enter(&e1000g_nvm_lock);
1445 result = e1000_read_mac_addr(hw);
1446 mutex_exit(&e1000g_nvm_lock);
1447 }
1448
1449 if (result < E1000_SUCCESS) {
1450 e1000g_log(Adapter, CE_WARN, "Read mac addr failed");
1451 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1452 goto init_fail;
1453 }
1454
1455 /* check for valid mac address */
1456 if (!is_valid_mac_addr(hw->mac.addr)) {
1457 e1000g_log(Adapter, CE_WARN, "Invalid mac addr");
1458 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1459 goto init_fail;
1460 }
1461
1462 /* Set LAA state for 82571 chipset */
1463 e1000_set_laa_state_82571(hw, B_TRUE);
1464
1465 /* Master Latency Timer implementation */
1466 if (Adapter->master_latency_timer) {
1467 pci_config_put8(Adapter->osdep.cfg_handle,
1468 PCI_CONF_LATENCY_TIMER, Adapter->master_latency_timer);
1469 }
1470
1471 if (hw->mac.type < e1000_82547) {
1472 /*
1473 * Total FIFO is 64K
1474 */
1475 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1476 pba = E1000_PBA_40K; /* 40K for Rx, 24K for Tx */
1477 else
1478 pba = E1000_PBA_48K; /* 48K for Rx, 16K for Tx */
1479 } else if ((hw->mac.type == e1000_82571) ||
1480 (hw->mac.type == e1000_82572) ||
1481 (hw->mac.type == e1000_80003es2lan)) {
1482 /*
1483 * Total FIFO is 48K
1484 */
1485 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1486 pba = E1000_PBA_30K; /* 30K for Rx, 18K for Tx */
1487 else
1488 pba = E1000_PBA_38K; /* 38K for Rx, 10K for Tx */
1489 } else if (hw->mac.type == e1000_82573) {
1490 pba = E1000_PBA_20K; /* 20K for Rx, 12K for Tx */
1491 } else if (hw->mac.type == e1000_82574) {
1492 /* Keep adapter default: 20K for Rx, 20K for Tx */
1493 pba = E1000_READ_REG(hw, E1000_PBA);
1494 } else if (hw->mac.type == e1000_ich8lan) {
1495 pba = E1000_PBA_8K; /* 8K for Rx, 12K for Tx */
1496 } else if (hw->mac.type == e1000_ich9lan) {
1497 pba = E1000_PBA_10K;
1498 } else if (hw->mac.type == e1000_ich10lan) {
1499 pba = E1000_PBA_10K;
1500 } else if (hw->mac.type == e1000_pchlan) {
1501 pba = E1000_PBA_26K;
1502 } else if (hw->mac.type == e1000_pch2lan) {
1503 pba = E1000_PBA_26K;
1504 } else if (hw->mac.type == e1000_pch_lpt) {
1505 pba = E1000_PBA_26K;
1506 } else if (hw->mac.type == e1000_pch_spt) {
1507 pba = E1000_PBA_26K;
1508 } else if (hw->mac.type == e1000_pch_cnp) {
1509 pba = E1000_PBA_26K;
1510 } else if (hw->mac.type == e1000_pch_tgp) {
1511 pba = E1000_PBA_26K;
1512 } else if (hw->mac.type == e1000_pch_adp) {
1513 pba = E1000_PBA_26K;
1514 } else if (hw->mac.type == e1000_pch_mtp) {
1515 pba = E1000_PBA_26K;
1516 } else if (hw->mac.type == e1000_pch_lnp) {
1517 pba = E1000_PBA_26K;
1518 } else if (hw->mac.type == e1000_pch_rpl) {
1519 pba = E1000_PBA_26K;
1520 } else if (hw->mac.type == e1000_pch_arl) {
1521 pba = E1000_PBA_26K;
1522 } else if (hw->mac.type == e1000_pch_ptp) {
1523 pba = E1000_PBA_26K;
1524 } else if (hw->mac.type == e1000_pch_nvl) {
1525 pba = E1000_PBA_26K;
1526 } else {
1527 /*
1528 * Total FIFO is 40K
1529 */
1530 if (Adapter->max_frame_size > FRAME_SIZE_UPTO_8K)
1531 pba = E1000_PBA_22K; /* 22K for Rx, 18K for Tx */
1532 else
1533 pba = E1000_PBA_30K; /* 30K for Rx, 10K for Tx */
1534 }
1535 E1000_WRITE_REG(hw, E1000_PBA, pba);
1536
1537 /*
1538 * These parameters set thresholds for the adapter's generation(Tx)
1539 * and response(Rx) to Ethernet PAUSE frames. These are just threshold
1540 * settings. Flow control is enabled or disabled in the configuration
1541 * file.
1542 * High-water mark is set down from the top of the rx fifo (not
1543 * sensitive to max_frame_size) and low-water is set just below
1544 * high-water mark.
1545 * The high water mark must be low enough to fit one full frame above
1546 * it in the rx FIFO. Should be the lower of:
1547 * 90% of the Rx FIFO size and the full Rx FIFO size minus the early
1548 * receive size (assuming ERT set to E1000_ERT_2048), or the full
1549 * Rx FIFO size minus one full frame.
1550 */
1551 high_water = min(((pba << 10) * 9 / 10),
1552 ((hw->mac.type == e1000_82573 || hw->mac.type == e1000_82574 ||
1553 hw->mac.type == e1000_ich9lan || hw->mac.type == e1000_ich10lan) ?
1554 ((pba << 10) - (E1000_ERT_2048 << 3)) :
1555 ((pba << 10) - Adapter->max_frame_size)));
1556
1557 hw->fc.high_water = high_water & 0xFFF8;
1558 hw->fc.low_water = hw->fc.high_water - 8;
1559
1560 if (hw->mac.type == e1000_80003es2lan)
1561 hw->fc.pause_time = 0xFFFF;
1562 else
1563 hw->fc.pause_time = E1000_FC_PAUSE_TIME;
1564 hw->fc.send_xon = B_TRUE;
1565
1566 /*
1567 * Reset the adapter hardware the second time.
1568 */
1569 mutex_enter(&e1000g_nvm_lock);
1570 result = e1000_reset_hw(hw);
1571 mutex_exit(&e1000g_nvm_lock);
1572
1573 if (result != E1000_SUCCESS) {
1574 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1575 goto init_fail;
1576 }
1577
1578 /* disable wakeup control by default */
1579 if (hw->mac.type >= e1000_82544)
1580 E1000_WRITE_REG(hw, E1000_WUC, 0);
1581
1582 /*
1583 * MWI should be disabled on 82546.
1584 */
1585 if (hw->mac.type == e1000_82546)
1586 e1000_pci_clear_mwi(hw);
1587 else
1588 e1000_pci_set_mwi(hw);
1589
1590 /*
1591 * Configure/Initialize hardware
1592 */
1593 mutex_enter(&e1000g_nvm_lock);
1594 result = e1000_init_hw(hw);
1595 mutex_exit(&e1000g_nvm_lock);
1596
1597 if (result < E1000_SUCCESS) {
1598 e1000g_log(Adapter, CE_WARN, "Initialize hw failed");
1599 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
1600 goto init_fail;
1601 }
1602
1603 /*
1604 * Restore LED settings to the default from EEPROM
1605 * to meet the standard for Sun platforms.
1606 */
1607 (void) e1000_cleanup_led(hw);
1608
1609 /* Disable Smart Power Down */
1610 phy_spd_state(hw, B_FALSE);
1611
1612 /* Make sure driver has control */
1613 e1000g_get_driver_control(hw);
1614
1615 /*
1616 * Initialize unicast addresses.
1617 */
1618 e1000g_init_unicst(Adapter);
1619
1620 /*
1621 * Setup and initialize the mctable structures. After this routine
1622 * completes Multicast table will be set
1623 */
1624 e1000_update_mc_addr_list(hw,
1625 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
1626 msec_delay(5);
1627
1628 /*
1629 * Implement Adaptive IFS
1630 */
1631 e1000_reset_adaptive(hw);
1632
1633 /* Setup Interrupt Throttling Register */
1634 if (hw->mac.type >= e1000_82540) {
1635 E1000_WRITE_REG(hw, E1000_ITR, Adapter->intr_throttling_rate);
1636 } else
1637 Adapter->intr_adaptive = B_FALSE;
1638
1639 /* Start the timer for link setup */
1640 if (hw->mac.autoneg)
1641 link_timeout = PHY_AUTO_NEG_LIMIT * drv_usectohz(100000);
1642 else
1643 link_timeout = PHY_FORCE_LIMIT * drv_usectohz(100000);
1644
1645 mutex_enter(&Adapter->link_lock);
1646 if (hw->phy.autoneg_wait_to_complete) {
1647 Adapter->link_complete = B_TRUE;
1648 } else {
1649 Adapter->link_complete = B_FALSE;
1650 Adapter->link_tid = timeout(e1000g_link_timer,
1651 (void *)Adapter, link_timeout);
1652 }
1653 mutex_exit(&Adapter->link_lock);
1654
1655 /* Save the state of the phy */
1656 e1000g_get_phy_state(Adapter);
1657
1658 e1000g_param_sync(Adapter);
1659
1660 Adapter->init_count++;
1661
1662 if (e1000g_check_acc_handle(Adapter->osdep.cfg_handle) != DDI_FM_OK) {
1663 goto init_fail;
1664 }
1665 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1666 goto init_fail;
1667 }
1668
1669 Adapter->poll_mode = e1000g_poll_mode;
1670
1671 return (DDI_SUCCESS);
1672
1673 init_fail:
1674 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1675 return (DDI_FAILURE);
1676 }
1677
1678 static int
e1000g_alloc_rx_data(struct e1000g * Adapter)1679 e1000g_alloc_rx_data(struct e1000g *Adapter)
1680 {
1681 e1000g_rx_ring_t *rx_ring;
1682 e1000g_rx_data_t *rx_data;
1683
1684 rx_ring = Adapter->rx_ring;
1685
1686 rx_data = kmem_zalloc(sizeof (e1000g_rx_data_t), KM_NOSLEEP);
1687
1688 if (rx_data == NULL)
1689 return (DDI_FAILURE);
1690
1691 rx_data->priv_devi_node = Adapter->priv_devi_node;
1692 rx_data->rx_ring = rx_ring;
1693
1694 mutex_init(&rx_data->freelist_lock, NULL,
1695 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1696 mutex_init(&rx_data->recycle_lock, NULL,
1697 MUTEX_DRIVER, DDI_INTR_PRI(Adapter->intr_pri));
1698
1699 rx_ring->rx_data = rx_data;
1700
1701 return (DDI_SUCCESS);
1702 }
1703
1704 void
e1000g_free_rx_pending_buffers(e1000g_rx_data_t * rx_data)1705 e1000g_free_rx_pending_buffers(e1000g_rx_data_t *rx_data)
1706 {
1707 rx_sw_packet_t *packet, *next_packet;
1708
1709 if (rx_data == NULL)
1710 return;
1711
1712 packet = rx_data->packet_area;
1713 while (packet != NULL) {
1714 next_packet = packet->next;
1715 e1000g_free_rx_sw_packet(packet, B_TRUE);
1716 packet = next_packet;
1717 }
1718 rx_data->packet_area = NULL;
1719 }
1720
1721 void
e1000g_free_rx_data(e1000g_rx_data_t * rx_data)1722 e1000g_free_rx_data(e1000g_rx_data_t *rx_data)
1723 {
1724 if (rx_data == NULL)
1725 return;
1726
1727 mutex_destroy(&rx_data->freelist_lock);
1728 mutex_destroy(&rx_data->recycle_lock);
1729
1730 kmem_free(rx_data, sizeof (e1000g_rx_data_t));
1731 }
1732
1733 /*
1734 * Check if the link is up
1735 */
1736 static boolean_t
e1000g_link_up(struct e1000g * Adapter)1737 e1000g_link_up(struct e1000g *Adapter)
1738 {
1739 struct e1000_hw *hw = &Adapter->shared;
1740 boolean_t link_up = B_FALSE;
1741
1742 /*
1743 * get_link_status is set in the interrupt handler on link-status-change
1744 * or rx sequence error interrupt. get_link_status will stay
1745 * false until the e1000_check_for_link establishes link only
1746 * for copper adapters.
1747 */
1748 switch (hw->phy.media_type) {
1749 case e1000_media_type_copper:
1750 if (hw->mac.get_link_status) {
1751 /*
1752 * SPT and newer devices need a bit of extra time before
1753 * we ask them.
1754 */
1755 if (hw->mac.type >= e1000_pch_spt)
1756 msec_delay(50);
1757 (void) e1000_check_for_link(hw);
1758 if ((E1000_READ_REG(hw, E1000_STATUS) &
1759 E1000_STATUS_LU)) {
1760 link_up = B_TRUE;
1761 } else {
1762 link_up = !hw->mac.get_link_status;
1763 }
1764 } else {
1765 link_up = B_TRUE;
1766 }
1767 break;
1768 case e1000_media_type_fiber:
1769 (void) e1000_check_for_link(hw);
1770 link_up = (E1000_READ_REG(hw, E1000_STATUS) &
1771 E1000_STATUS_LU);
1772 break;
1773 case e1000_media_type_internal_serdes:
1774 (void) e1000_check_for_link(hw);
1775 link_up = hw->mac.serdes_has_link;
1776 break;
1777 }
1778
1779 return (link_up);
1780 }
1781
1782 static void
e1000g_m_ioctl(void * arg,queue_t * q,mblk_t * mp)1783 e1000g_m_ioctl(void *arg, queue_t *q, mblk_t *mp)
1784 {
1785 struct iocblk *iocp;
1786 struct e1000g *e1000gp;
1787 enum ioc_reply status;
1788
1789 iocp = (struct iocblk *)(uintptr_t)mp->b_rptr;
1790 iocp->ioc_error = 0;
1791 e1000gp = (struct e1000g *)arg;
1792
1793 ASSERT(e1000gp);
1794 if (e1000gp == NULL) {
1795 miocnak(q, mp, 0, EINVAL);
1796 return;
1797 }
1798
1799 rw_enter(&e1000gp->chip_lock, RW_READER);
1800 if (e1000gp->e1000g_state & E1000G_SUSPENDED) {
1801 rw_exit(&e1000gp->chip_lock);
1802 miocnak(q, mp, 0, EINVAL);
1803 return;
1804 }
1805 rw_exit(&e1000gp->chip_lock);
1806
1807 switch (iocp->ioc_cmd) {
1808
1809 case LB_GET_INFO_SIZE:
1810 case LB_GET_INFO:
1811 case LB_GET_MODE:
1812 case LB_SET_MODE:
1813 status = e1000g_loopback_ioctl(e1000gp, iocp, mp);
1814 break;
1815
1816
1817 #ifdef E1000G_DEBUG
1818 case E1000G_IOC_REG_PEEK:
1819 case E1000G_IOC_REG_POKE:
1820 status = e1000g_pp_ioctl(e1000gp, iocp, mp);
1821 break;
1822 case E1000G_IOC_CHIP_RESET:
1823 e1000gp->reset_count++;
1824 if (e1000g_reset_adapter(e1000gp))
1825 status = IOC_ACK;
1826 else
1827 status = IOC_INVAL;
1828 break;
1829 #endif
1830 default:
1831 status = IOC_INVAL;
1832 break;
1833 }
1834
1835 /*
1836 * Decide how to reply
1837 */
1838 switch (status) {
1839 default:
1840 case IOC_INVAL:
1841 /*
1842 * Error, reply with a NAK and EINVAL or the specified error
1843 */
1844 miocnak(q, mp, 0, iocp->ioc_error == 0 ?
1845 EINVAL : iocp->ioc_error);
1846 break;
1847
1848 case IOC_DONE:
1849 /*
1850 * OK, reply already sent
1851 */
1852 break;
1853
1854 case IOC_ACK:
1855 /*
1856 * OK, reply with an ACK
1857 */
1858 miocack(q, mp, 0, 0);
1859 break;
1860
1861 case IOC_REPLY:
1862 /*
1863 * OK, send prepared reply as ACK or NAK
1864 */
1865 mp->b_datap->db_type = iocp->ioc_error == 0 ?
1866 M_IOCACK : M_IOCNAK;
1867 qreply(q, mp);
1868 break;
1869 }
1870 }
1871
1872 /*
1873 * The default value of e1000g_poll_mode == 0 assumes that the NIC is
1874 * capable of supporting only one interrupt and we shouldn't disable
1875 * the physical interrupt. In this case we let the interrupt come and
1876 * we queue the packets in the rx ring itself in case we are in polling
1877 * mode (better latency but slightly lower performance and a very
1878 * high intrrupt count in mpstat which is harmless).
1879 *
1880 * e1000g_poll_mode == 1 assumes that we have per Rx ring interrupt
1881 * which can be disabled in poll mode. This gives better overall
1882 * throughput (compared to the mode above), shows very low interrupt
1883 * count but has slightly higher latency since we pick the packets when
1884 * the poll thread does polling.
1885 *
1886 * Currently, this flag should be enabled only while doing performance
1887 * measurement or when it can be guaranteed that entire NIC going
1888 * in poll mode will not harm any traffic like cluster heartbeat etc.
1889 */
1890 int e1000g_poll_mode = 0;
1891
1892 /*
1893 * Called from the upper layers when driver is in polling mode to
1894 * pick up any queued packets. Care should be taken to not block
1895 * this thread.
1896 */
e1000g_poll_ring(void * arg,int bytes_to_pickup)1897 static mblk_t *e1000g_poll_ring(void *arg, int bytes_to_pickup)
1898 {
1899 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)arg;
1900 mblk_t *mp = NULL;
1901 mblk_t *tail;
1902 struct e1000g *adapter;
1903
1904 adapter = rx_ring->adapter;
1905
1906 rw_enter(&adapter->chip_lock, RW_READER);
1907
1908 if (adapter->e1000g_state & E1000G_SUSPENDED) {
1909 rw_exit(&adapter->chip_lock);
1910 return (NULL);
1911 }
1912
1913 mutex_enter(&rx_ring->rx_lock);
1914 mp = e1000g_receive(rx_ring, &tail, bytes_to_pickup);
1915 mutex_exit(&rx_ring->rx_lock);
1916 rw_exit(&adapter->chip_lock);
1917 return (mp);
1918 }
1919
1920 static int
e1000g_m_start(void * arg)1921 e1000g_m_start(void *arg)
1922 {
1923 struct e1000g *Adapter = (struct e1000g *)arg;
1924
1925 rw_enter(&Adapter->chip_lock, RW_WRITER);
1926
1927 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
1928 rw_exit(&Adapter->chip_lock);
1929 return (ECANCELED);
1930 }
1931
1932 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
1933 rw_exit(&Adapter->chip_lock);
1934 return (ENOTACTIVE);
1935 }
1936
1937 Adapter->e1000g_state |= E1000G_STARTED;
1938
1939 rw_exit(&Adapter->chip_lock);
1940
1941 /* Enable and start the watchdog timer */
1942 enable_watchdog_timer(Adapter);
1943
1944 return (0);
1945 }
1946
1947 static int
e1000g_start(struct e1000g * Adapter,boolean_t global)1948 e1000g_start(struct e1000g *Adapter, boolean_t global)
1949 {
1950 e1000g_rx_data_t *rx_data;
1951
1952 if (global) {
1953 if (e1000g_alloc_rx_data(Adapter) != DDI_SUCCESS) {
1954 e1000g_log(Adapter, CE_WARN, "Allocate rx data failed");
1955 goto start_fail;
1956 }
1957
1958 /* Allocate dma resources for descriptors and buffers */
1959 if (e1000g_alloc_dma_resources(Adapter) != DDI_SUCCESS) {
1960 e1000g_log(Adapter, CE_WARN,
1961 "Alloc DMA resources failed");
1962 goto start_fail;
1963 }
1964 Adapter->rx_buffer_setup = B_FALSE;
1965 }
1966
1967 if (!(Adapter->attach_progress & ATTACH_PROGRESS_INIT)) {
1968 if (e1000g_init(Adapter) != DDI_SUCCESS) {
1969 e1000g_log(Adapter, CE_WARN,
1970 "Adapter initialization failed");
1971 goto start_fail;
1972 }
1973 }
1974
1975 /* Setup and initialize the transmit structures */
1976 e1000g_tx_setup(Adapter);
1977 msec_delay(5);
1978
1979 /* Setup and initialize the receive structures */
1980 e1000g_rx_setup(Adapter);
1981 msec_delay(5);
1982
1983 /* Restore the e1000g promiscuous mode */
1984 e1000g_restore_promisc(Adapter);
1985
1986 e1000g_mask_interrupt(Adapter);
1987
1988 Adapter->attach_progress |= ATTACH_PROGRESS_INIT;
1989
1990 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
1991 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
1992 goto start_fail;
1993 }
1994
1995 return (DDI_SUCCESS);
1996
1997 start_fail:
1998 rx_data = Adapter->rx_ring->rx_data;
1999
2000 if (global) {
2001 e1000g_release_dma_resources(Adapter);
2002 e1000g_free_rx_pending_buffers(rx_data);
2003 e1000g_free_rx_data(rx_data);
2004 }
2005
2006 mutex_enter(&e1000g_nvm_lock);
2007 (void) e1000_reset_hw(&Adapter->shared);
2008 mutex_exit(&e1000g_nvm_lock);
2009
2010 return (DDI_FAILURE);
2011 }
2012
2013 /*
2014 * The I219 has the curious property that if the descriptor rings are not
2015 * emptied before resetting the hardware or before changing the device state
2016 * based on runtime power management, it'll cause the card to hang. This can
2017 * then only be fixed by a PCI reset. As such, for the I219 and it alone, we
2018 * have to flush the rings if we're in this state.
2019 */
2020 static void
e1000g_flush_desc_rings(struct e1000g * Adapter)2021 e1000g_flush_desc_rings(struct e1000g *Adapter)
2022 {
2023 struct e1000_hw *hw = &Adapter->shared;
2024 u16 hang_state;
2025 u32 fext_nvm11, tdlen;
2026
2027 /* First, disable MULR fix in FEXTNVM11 */
2028 fext_nvm11 = E1000_READ_REG(hw, E1000_FEXTNVM11);
2029 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
2030 E1000_WRITE_REG(hw, E1000_FEXTNVM11, fext_nvm11);
2031
2032 /* do nothing if we're not in faulty state, or if the queue is empty */
2033 tdlen = E1000_READ_REG(hw, E1000_TDLEN(0));
2034 hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2035 PCICFG_DESC_RING_STATUS);
2036 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
2037 return;
2038 e1000g_flush_tx_ring(Adapter);
2039
2040 /* recheck, maybe the fault is caused by the rx ring */
2041 hang_state = pci_config_get16(Adapter->osdep.cfg_handle,
2042 PCICFG_DESC_RING_STATUS);
2043 if (hang_state & FLUSH_DESC_REQUIRED)
2044 e1000g_flush_rx_ring(Adapter);
2045
2046 }
2047
2048 static void
e1000g_m_stop(void * arg)2049 e1000g_m_stop(void *arg)
2050 {
2051 struct e1000g *Adapter = (struct e1000g *)arg;
2052
2053 /* Drain tx sessions */
2054 (void) e1000g_tx_drain(Adapter);
2055
2056 rw_enter(&Adapter->chip_lock, RW_WRITER);
2057
2058 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2059 rw_exit(&Adapter->chip_lock);
2060 return;
2061 }
2062 Adapter->e1000g_state &= ~E1000G_STARTED;
2063 e1000g_stop(Adapter, B_TRUE);
2064
2065 rw_exit(&Adapter->chip_lock);
2066
2067 /* Disable and stop all the timers */
2068 disable_watchdog_timer(Adapter);
2069 stop_link_timer(Adapter);
2070 stop_82547_timer(Adapter->tx_ring);
2071 }
2072
2073 static void
e1000g_stop(struct e1000g * Adapter,boolean_t global)2074 e1000g_stop(struct e1000g *Adapter, boolean_t global)
2075 {
2076 private_devi_list_t *devi_node;
2077 e1000g_rx_data_t *rx_data;
2078 int result;
2079
2080 Adapter->attach_progress &= ~ATTACH_PROGRESS_INIT;
2081
2082 /* Stop the chip and release pending resources */
2083
2084 /* Tell firmware driver is no longer in control */
2085 e1000g_release_driver_control(&Adapter->shared);
2086
2087 e1000g_clear_all_interrupts(Adapter);
2088
2089 mutex_enter(&e1000g_nvm_lock);
2090 result = e1000_reset_hw(&Adapter->shared);
2091 mutex_exit(&e1000g_nvm_lock);
2092
2093 if (result != E1000_SUCCESS) {
2094 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_INVAL_STATE);
2095 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2096 }
2097
2098 mutex_enter(&Adapter->link_lock);
2099 Adapter->link_complete = B_FALSE;
2100 mutex_exit(&Adapter->link_lock);
2101
2102 /* Release resources still held by the TX descriptors */
2103 e1000g_tx_clean(Adapter);
2104
2105 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2106 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
2107
2108 /* Clean the pending rx jumbo packet fragment */
2109 e1000g_rx_clean(Adapter);
2110
2111 /*
2112 * The I219, eg. the pch_spt, has bugs such that we must ensure that
2113 * rings are flushed before we do anything else. This must be done
2114 * before we release DMA resources.
2115 */
2116 if (Adapter->shared.mac.type >= e1000_pch_spt)
2117 e1000g_flush_desc_rings(Adapter);
2118
2119 if (global) {
2120 e1000g_release_dma_resources(Adapter);
2121
2122 mutex_enter(&e1000g_rx_detach_lock);
2123 rx_data = Adapter->rx_ring->rx_data;
2124 rx_data->flag |= E1000G_RX_STOPPED;
2125
2126 if (rx_data->pending_count == 0) {
2127 e1000g_free_rx_pending_buffers(rx_data);
2128 e1000g_free_rx_data(rx_data);
2129 } else {
2130 devi_node = rx_data->priv_devi_node;
2131 if (devi_node != NULL)
2132 atomic_inc_32(&devi_node->pending_rx_count);
2133 else
2134 atomic_inc_32(&Adapter->pending_rx_count);
2135 }
2136 mutex_exit(&e1000g_rx_detach_lock);
2137 }
2138
2139 if (Adapter->link_state != LINK_STATE_UNKNOWN) {
2140 Adapter->link_state = LINK_STATE_UNKNOWN;
2141 if (!Adapter->reset_flag)
2142 mac_link_update(Adapter->mh, Adapter->link_state);
2143 }
2144 }
2145
2146 static void
e1000g_rx_clean(struct e1000g * Adapter)2147 e1000g_rx_clean(struct e1000g *Adapter)
2148 {
2149 e1000g_rx_data_t *rx_data = Adapter->rx_ring->rx_data;
2150
2151 if (rx_data == NULL)
2152 return;
2153
2154 if (rx_data->rx_mblk != NULL) {
2155 freemsg(rx_data->rx_mblk);
2156 rx_data->rx_mblk = NULL;
2157 rx_data->rx_mblk_tail = NULL;
2158 rx_data->rx_mblk_len = 0;
2159 }
2160 }
2161
2162 static void
e1000g_tx_clean(struct e1000g * Adapter)2163 e1000g_tx_clean(struct e1000g *Adapter)
2164 {
2165 e1000g_tx_ring_t *tx_ring;
2166 p_tx_sw_packet_t packet;
2167 mblk_t *mp;
2168 mblk_t *nmp;
2169 uint32_t packet_count;
2170
2171 tx_ring = Adapter->tx_ring;
2172
2173 /*
2174 * Here we don't need to protect the lists using
2175 * the usedlist_lock and freelist_lock, for they
2176 * have been protected by the chip_lock.
2177 */
2178 mp = NULL;
2179 nmp = NULL;
2180 packet_count = 0;
2181 packet = (p_tx_sw_packet_t)QUEUE_GET_HEAD(&tx_ring->used_list);
2182 while (packet != NULL) {
2183 if (packet->mp != NULL) {
2184 /* Assemble the message chain */
2185 if (mp == NULL) {
2186 mp = packet->mp;
2187 nmp = packet->mp;
2188 } else {
2189 nmp->b_next = packet->mp;
2190 nmp = packet->mp;
2191 }
2192 /* Disconnect the message from the sw packet */
2193 packet->mp = NULL;
2194 }
2195
2196 e1000g_free_tx_swpkt(packet);
2197 packet_count++;
2198
2199 packet = (p_tx_sw_packet_t)
2200 QUEUE_GET_NEXT(&tx_ring->used_list, &packet->Link);
2201 }
2202
2203 if (mp != NULL)
2204 freemsgchain(mp);
2205
2206 if (packet_count > 0) {
2207 QUEUE_APPEND(&tx_ring->free_list, &tx_ring->used_list);
2208 QUEUE_INIT_LIST(&tx_ring->used_list);
2209
2210 /* Setup TX descriptor pointers */
2211 tx_ring->tbd_next = tx_ring->tbd_first;
2212 tx_ring->tbd_oldest = tx_ring->tbd_first;
2213
2214 /* Setup our HW Tx Head & Tail descriptor pointers */
2215 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
2216 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
2217 }
2218 }
2219
2220 static boolean_t
e1000g_tx_drain(struct e1000g * Adapter)2221 e1000g_tx_drain(struct e1000g *Adapter)
2222 {
2223 int i;
2224 boolean_t done;
2225 e1000g_tx_ring_t *tx_ring;
2226
2227 tx_ring = Adapter->tx_ring;
2228
2229 /* Allow up to 'wsdraintime' for pending xmit's to complete. */
2230 for (i = 0; i < TX_DRAIN_TIME; i++) {
2231 mutex_enter(&tx_ring->usedlist_lock);
2232 done = IS_QUEUE_EMPTY(&tx_ring->used_list);
2233 mutex_exit(&tx_ring->usedlist_lock);
2234
2235 if (done)
2236 break;
2237
2238 msec_delay(1);
2239 }
2240
2241 return (done);
2242 }
2243
2244 static boolean_t
e1000g_rx_drain(struct e1000g * Adapter)2245 e1000g_rx_drain(struct e1000g *Adapter)
2246 {
2247 int i;
2248 boolean_t done;
2249
2250 /*
2251 * Allow up to RX_DRAIN_TIME for pending received packets to complete.
2252 */
2253 for (i = 0; i < RX_DRAIN_TIME; i++) {
2254 done = (Adapter->pending_rx_count == 0);
2255
2256 if (done)
2257 break;
2258
2259 msec_delay(1);
2260 }
2261
2262 return (done);
2263 }
2264
2265 static boolean_t
e1000g_reset_adapter(struct e1000g * Adapter)2266 e1000g_reset_adapter(struct e1000g *Adapter)
2267 {
2268 /* Disable and stop all the timers */
2269 disable_watchdog_timer(Adapter);
2270 stop_link_timer(Adapter);
2271 stop_82547_timer(Adapter->tx_ring);
2272
2273 rw_enter(&Adapter->chip_lock, RW_WRITER);
2274
2275 if (Adapter->stall_flag) {
2276 Adapter->stall_flag = B_FALSE;
2277 Adapter->reset_flag = B_TRUE;
2278 }
2279
2280 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2281 rw_exit(&Adapter->chip_lock);
2282 return (B_TRUE);
2283 }
2284
2285 e1000g_stop(Adapter, B_FALSE);
2286
2287 if (e1000g_start(Adapter, B_FALSE) != DDI_SUCCESS) {
2288 rw_exit(&Adapter->chip_lock);
2289 e1000g_log(Adapter, CE_WARN, "Reset failed");
2290 return (B_FALSE);
2291 }
2292
2293 rw_exit(&Adapter->chip_lock);
2294
2295 /* Enable and start the watchdog timer */
2296 enable_watchdog_timer(Adapter);
2297
2298 return (B_TRUE);
2299 }
2300
2301 boolean_t
e1000g_global_reset(struct e1000g * Adapter)2302 e1000g_global_reset(struct e1000g *Adapter)
2303 {
2304 /* Disable and stop all the timers */
2305 disable_watchdog_timer(Adapter);
2306 stop_link_timer(Adapter);
2307 stop_82547_timer(Adapter->tx_ring);
2308
2309 rw_enter(&Adapter->chip_lock, RW_WRITER);
2310
2311 e1000g_stop(Adapter, B_TRUE);
2312
2313 Adapter->init_count = 0;
2314
2315 if (e1000g_start(Adapter, B_TRUE) != DDI_SUCCESS) {
2316 rw_exit(&Adapter->chip_lock);
2317 e1000g_log(Adapter, CE_WARN, "Reset failed");
2318 return (B_FALSE);
2319 }
2320
2321 rw_exit(&Adapter->chip_lock);
2322
2323 /* Enable and start the watchdog timer */
2324 enable_watchdog_timer(Adapter);
2325
2326 return (B_TRUE);
2327 }
2328
2329 /*
2330 * e1000g_intr_pciexpress - ISR for PCI Express chipsets
2331 *
2332 * This interrupt service routine is for PCI-Express adapters.
2333 * The ICR contents is valid only when the E1000_ICR_INT_ASSERTED
2334 * bit is set.
2335 */
2336 static uint_t
e1000g_intr_pciexpress(caddr_t arg,caddr_t arg1 __unused)2337 e1000g_intr_pciexpress(caddr_t arg, caddr_t arg1 __unused)
2338 {
2339 struct e1000g *Adapter;
2340 uint32_t icr;
2341
2342 Adapter = (struct e1000g *)(uintptr_t)arg;
2343 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2344
2345 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2346 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2347 return (DDI_INTR_CLAIMED);
2348 }
2349
2350 if (icr & E1000_ICR_INT_ASSERTED) {
2351 /*
2352 * E1000_ICR_INT_ASSERTED bit was set:
2353 * Read(Clear) the ICR, claim this interrupt,
2354 * look for work to do.
2355 */
2356 e1000g_intr_work(Adapter, icr);
2357 return (DDI_INTR_CLAIMED);
2358 } else {
2359 /*
2360 * E1000_ICR_INT_ASSERTED bit was not set:
2361 * Don't claim this interrupt, return immediately.
2362 */
2363 return (DDI_INTR_UNCLAIMED);
2364 }
2365 }
2366
2367 /*
2368 * e1000g_intr - ISR for PCI/PCI-X chipsets
2369 *
2370 * This interrupt service routine is for PCI/PCI-X adapters.
2371 * We check the ICR contents no matter the E1000_ICR_INT_ASSERTED
2372 * bit is set or not.
2373 */
2374 static uint_t
e1000g_intr(caddr_t arg,caddr_t arg1 __unused)2375 e1000g_intr(caddr_t arg, caddr_t arg1 __unused)
2376 {
2377 struct e1000g *Adapter;
2378 uint32_t icr;
2379
2380 Adapter = (struct e1000g *)(uintptr_t)arg;
2381 icr = E1000_READ_REG(&Adapter->shared, E1000_ICR);
2382
2383 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2384 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2385 return (DDI_INTR_CLAIMED);
2386 }
2387
2388 if (icr) {
2389 /*
2390 * Any bit was set in ICR:
2391 * Read(Clear) the ICR, claim this interrupt,
2392 * look for work to do.
2393 */
2394 e1000g_intr_work(Adapter, icr);
2395 return (DDI_INTR_CLAIMED);
2396 } else {
2397 /*
2398 * No bit was set in ICR:
2399 * Don't claim this interrupt, return immediately.
2400 */
2401 return (DDI_INTR_UNCLAIMED);
2402 }
2403 }
2404
2405 /*
2406 * e1000g_intr_work - actual processing of ISR
2407 *
2408 * Read(clear) the ICR contents and call appropriate interrupt
2409 * processing routines.
2410 */
2411 static void
e1000g_intr_work(struct e1000g * Adapter,uint32_t icr)2412 e1000g_intr_work(struct e1000g *Adapter, uint32_t icr)
2413 {
2414 struct e1000_hw *hw;
2415 hw = &Adapter->shared;
2416 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
2417
2418 Adapter->rx_pkt_cnt = 0;
2419 Adapter->tx_pkt_cnt = 0;
2420
2421 rw_enter(&Adapter->chip_lock, RW_READER);
2422
2423 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2424 rw_exit(&Adapter->chip_lock);
2425 return;
2426 }
2427 /*
2428 * Here we need to check the "e1000g_state" flag within the chip_lock to
2429 * ensure the receive routine will not execute when the adapter is
2430 * being reset.
2431 */
2432 if (!(Adapter->e1000g_state & E1000G_STARTED)) {
2433 rw_exit(&Adapter->chip_lock);
2434 return;
2435 }
2436
2437 if (icr & E1000_ICR_RXT0) {
2438 mblk_t *mp = NULL;
2439 mblk_t *tail = NULL;
2440 e1000g_rx_ring_t *rx_ring;
2441
2442 rx_ring = Adapter->rx_ring;
2443 mutex_enter(&rx_ring->rx_lock);
2444 /*
2445 * Sometimes with legacy interrupts, it possible that
2446 * there is a single interrupt for Rx/Tx. In which
2447 * case, if poll flag is set, we shouldn't really
2448 * be doing Rx processing.
2449 */
2450 if (!rx_ring->poll_flag)
2451 mp = e1000g_receive(rx_ring, &tail,
2452 E1000G_CHAIN_NO_LIMIT);
2453 mutex_exit(&rx_ring->rx_lock);
2454 rw_exit(&Adapter->chip_lock);
2455 if (mp != NULL)
2456 mac_rx_ring(Adapter->mh, rx_ring->mrh,
2457 mp, rx_ring->ring_gen_num);
2458 } else
2459 rw_exit(&Adapter->chip_lock);
2460
2461 if (icr & E1000_ICR_TXDW) {
2462 if (!Adapter->tx_intr_enable)
2463 e1000g_clear_tx_interrupt(Adapter);
2464
2465 /* Recycle the tx descriptors */
2466 rw_enter(&Adapter->chip_lock, RW_READER);
2467 (void) e1000g_recycle(tx_ring);
2468 E1000G_DEBUG_STAT(tx_ring->stat_recycle_intr);
2469 rw_exit(&Adapter->chip_lock);
2470
2471 if (tx_ring->resched_needed &&
2472 (tx_ring->tbd_avail > DEFAULT_TX_UPDATE_THRESHOLD)) {
2473 tx_ring->resched_needed = B_FALSE;
2474 mac_tx_update(Adapter->mh);
2475 E1000G_STAT(tx_ring->stat_reschedule);
2476 }
2477 }
2478
2479 /*
2480 * The Receive Sequence errors RXSEQ and the link status change LSC
2481 * are checked to detect that the cable has been pulled out. For
2482 * the Wiseman 2.0 silicon, the receive sequence errors interrupt
2483 * are an indication that cable is not connected.
2484 */
2485 if ((icr & E1000_ICR_RXSEQ) ||
2486 (icr & E1000_ICR_LSC) ||
2487 (icr & E1000_ICR_GPI_EN1)) {
2488 boolean_t link_changed;
2489 timeout_id_t tid = 0;
2490
2491 stop_watchdog_timer(Adapter);
2492
2493 rw_enter(&Adapter->chip_lock, RW_WRITER);
2494
2495 /*
2496 * Because we got a link-status-change interrupt, force
2497 * e1000_check_for_link() to look at phy
2498 */
2499 Adapter->shared.mac.get_link_status = B_TRUE;
2500
2501 /* e1000g_link_check takes care of link status change */
2502 link_changed = e1000g_link_check(Adapter);
2503
2504 /* Get new phy state */
2505 e1000g_get_phy_state(Adapter);
2506
2507 /*
2508 * If the link timer has not timed out, we'll not notify
2509 * the upper layer with any link state until the link is up.
2510 */
2511 if (link_changed && !Adapter->link_complete) {
2512 if (Adapter->link_state == LINK_STATE_UP) {
2513 mutex_enter(&Adapter->link_lock);
2514 Adapter->link_complete = B_TRUE;
2515 tid = Adapter->link_tid;
2516 Adapter->link_tid = 0;
2517 mutex_exit(&Adapter->link_lock);
2518 } else {
2519 link_changed = B_FALSE;
2520 }
2521 }
2522 rw_exit(&Adapter->chip_lock);
2523
2524 if (link_changed) {
2525 if (tid != 0)
2526 (void) untimeout(tid);
2527
2528 /*
2529 * Workaround for esb2. Data stuck in fifo on a link
2530 * down event. Stop receiver here and reset in watchdog.
2531 */
2532 if ((Adapter->link_state == LINK_STATE_DOWN) &&
2533 (Adapter->shared.mac.type == e1000_80003es2lan)) {
2534 uint32_t rctl = E1000_READ_REG(hw, E1000_RCTL);
2535 E1000_WRITE_REG(hw, E1000_RCTL,
2536 rctl & ~E1000_RCTL_EN);
2537 e1000g_log(Adapter, CE_WARN,
2538 "ESB2 receiver disabled");
2539 Adapter->esb2_workaround = B_TRUE;
2540 }
2541 if (!Adapter->reset_flag)
2542 mac_link_update(Adapter->mh,
2543 Adapter->link_state);
2544 if (Adapter->link_state == LINK_STATE_UP)
2545 Adapter->reset_flag = B_FALSE;
2546 }
2547
2548 start_watchdog_timer(Adapter);
2549 }
2550 }
2551
2552 static void
e1000g_init_unicst(struct e1000g * Adapter)2553 e1000g_init_unicst(struct e1000g *Adapter)
2554 {
2555 struct e1000_hw *hw;
2556 int slot;
2557
2558 hw = &Adapter->shared;
2559
2560 if (Adapter->init_count == 0) {
2561 /* Initialize the multiple unicast addresses */
2562 Adapter->unicst_total = min(hw->mac.rar_entry_count,
2563 MAX_NUM_UNICAST_ADDRESSES);
2564
2565 /*
2566 * The common code does not correctly calculate the number of
2567 * rar's that could be reserved by firmware for the pch_lpt and
2568 * pch_spt macs. The interface has one primary rar, and 11
2569 * additional ones. Those 11 additional ones are not always
2570 * available. According to the datasheet, we need to check a
2571 * few of the bits set in the FWSM register. If the value is
2572 * zero, everything is available. If the value is 1, none of the
2573 * additional registers are available. If the value is 2-7, only
2574 * that number are available.
2575 */
2576 if (hw->mac.type >= e1000_pch_lpt) {
2577 uint32_t locked, rar;
2578
2579 locked = E1000_READ_REG(hw, E1000_FWSM) &
2580 E1000_FWSM_WLOCK_MAC_MASK;
2581 locked >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2582 rar = 1;
2583 if (locked == 0)
2584 rar += 11;
2585 else if (locked == 1)
2586 rar += 0;
2587 else
2588 rar += locked;
2589 Adapter->unicst_total = min(rar,
2590 MAX_NUM_UNICAST_ADDRESSES);
2591 }
2592
2593 /* Workaround for an erratum of 82571 chipst */
2594 if ((hw->mac.type == e1000_82571) &&
2595 (e1000_get_laa_state_82571(hw) == B_TRUE))
2596 Adapter->unicst_total--;
2597
2598 /* VMware doesn't support multiple mac addresses properly */
2599 if (hw->subsystem_vendor_id == 0x15ad)
2600 Adapter->unicst_total = 1;
2601
2602 Adapter->unicst_avail = Adapter->unicst_total;
2603
2604 for (slot = 0; slot < Adapter->unicst_total; slot++) {
2605 /* Clear both the flag and MAC address */
2606 Adapter->unicst_addr[slot].reg.high = 0;
2607 Adapter->unicst_addr[slot].reg.low = 0;
2608 }
2609 } else {
2610 /* Workaround for an erratum of 82571 chipst */
2611 if ((hw->mac.type == e1000_82571) &&
2612 (e1000_get_laa_state_82571(hw) == B_TRUE))
2613 (void) e1000_rar_set(hw, hw->mac.addr, LAST_RAR_ENTRY);
2614
2615 /* Re-configure the RAR registers */
2616 for (slot = 0; slot < Adapter->unicst_total; slot++)
2617 if (Adapter->unicst_addr[slot].mac.set == 1)
2618 (void) e1000_rar_set(hw,
2619 Adapter->unicst_addr[slot].mac.addr, slot);
2620 }
2621
2622 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
2623 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2624 }
2625
2626 static int
e1000g_unicst_set(struct e1000g * Adapter,const uint8_t * mac_addr,int slot)2627 e1000g_unicst_set(struct e1000g *Adapter, const uint8_t *mac_addr,
2628 int slot)
2629 {
2630 struct e1000_hw *hw;
2631
2632 hw = &Adapter->shared;
2633
2634 /*
2635 * The first revision of Wiseman silicon (rev 2.0) has an errata
2636 * that requires the receiver to be in reset when any of the
2637 * receive address registers (RAR regs) are accessed. The first
2638 * rev of Wiseman silicon also requires MWI to be disabled when
2639 * a global reset or a receive reset is issued. So before we
2640 * initialize the RARs, we check the rev of the Wiseman controller
2641 * and work around any necessary HW errata.
2642 */
2643 if ((hw->mac.type == e1000_82542) &&
2644 (hw->revision_id == E1000_REVISION_2)) {
2645 e1000_pci_clear_mwi(hw);
2646 E1000_WRITE_REG(hw, E1000_RCTL, E1000_RCTL_RST);
2647 msec_delay(5);
2648 }
2649 if (mac_addr == NULL) {
2650 E1000_WRITE_REG_ARRAY(hw, E1000_RA, slot << 1, 0);
2651 E1000_WRITE_FLUSH(hw);
2652 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (slot << 1) + 1, 0);
2653 E1000_WRITE_FLUSH(hw);
2654 /* Clear both the flag and MAC address */
2655 Adapter->unicst_addr[slot].reg.high = 0;
2656 Adapter->unicst_addr[slot].reg.low = 0;
2657 } else {
2658 bcopy(mac_addr, Adapter->unicst_addr[slot].mac.addr,
2659 ETHERADDRL);
2660 (void) e1000_rar_set(hw, (uint8_t *)mac_addr, slot);
2661 Adapter->unicst_addr[slot].mac.set = 1;
2662 }
2663
2664 /* Workaround for an erratum of 82571 chipst */
2665 if (slot == 0) {
2666 if ((hw->mac.type == e1000_82571) &&
2667 (e1000_get_laa_state_82571(hw) == B_TRUE))
2668 if (mac_addr == NULL) {
2669 E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2670 slot << 1, 0);
2671 E1000_WRITE_FLUSH(hw);
2672 E1000_WRITE_REG_ARRAY(hw, E1000_RA,
2673 (slot << 1) + 1, 0);
2674 E1000_WRITE_FLUSH(hw);
2675 } else {
2676 (void) e1000_rar_set(hw, (uint8_t *)mac_addr,
2677 LAST_RAR_ENTRY);
2678 }
2679 }
2680
2681 /*
2682 * If we are using Wiseman rev 2.0 silicon, we will have previously
2683 * put the receive in reset, and disabled MWI, to work around some
2684 * HW errata. Now we should take the receiver out of reset, and
2685 * re-enabled if MWI if it was previously enabled by the PCI BIOS.
2686 */
2687 if ((hw->mac.type == e1000_82542) &&
2688 (hw->revision_id == E1000_REVISION_2)) {
2689 E1000_WRITE_REG(hw, E1000_RCTL, 0);
2690 msec_delay(1);
2691 if (hw->bus.pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
2692 e1000_pci_set_mwi(hw);
2693 e1000g_rx_setup(Adapter);
2694 }
2695
2696 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2697 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2698 return (EIO);
2699 }
2700
2701 return (0);
2702 }
2703
2704 static int
multicst_add(struct e1000g * Adapter,const uint8_t * multiaddr)2705 multicst_add(struct e1000g *Adapter, const uint8_t *multiaddr)
2706 {
2707 struct e1000_hw *hw = &Adapter->shared;
2708 struct ether_addr *newtable;
2709 size_t new_len;
2710 size_t old_len;
2711 int res = 0;
2712
2713 if ((multiaddr[0] & 01) == 0) {
2714 res = EINVAL;
2715 e1000g_log(Adapter, CE_WARN, "Illegal multicast address");
2716 goto done;
2717 }
2718
2719 if (Adapter->mcast_count >= Adapter->mcast_max_num) {
2720 res = ENOENT;
2721 e1000g_log(Adapter, CE_WARN,
2722 "Adapter requested more than %d mcast addresses",
2723 Adapter->mcast_max_num);
2724 goto done;
2725 }
2726
2727
2728 if (Adapter->mcast_count == Adapter->mcast_alloc_count) {
2729 old_len = Adapter->mcast_alloc_count *
2730 sizeof (struct ether_addr);
2731 new_len = (Adapter->mcast_alloc_count + MCAST_ALLOC_SIZE) *
2732 sizeof (struct ether_addr);
2733
2734 newtable = kmem_alloc(new_len, KM_NOSLEEP);
2735 if (newtable == NULL) {
2736 res = ENOMEM;
2737 e1000g_log(Adapter, CE_WARN,
2738 "Not enough memory to alloc mcast table");
2739 goto done;
2740 }
2741
2742 if (Adapter->mcast_table != NULL) {
2743 bcopy(Adapter->mcast_table, newtable, old_len);
2744 kmem_free(Adapter->mcast_table, old_len);
2745 }
2746 Adapter->mcast_alloc_count += MCAST_ALLOC_SIZE;
2747 Adapter->mcast_table = newtable;
2748 }
2749
2750 bcopy(multiaddr,
2751 &Adapter->mcast_table[Adapter->mcast_count], ETHERADDRL);
2752 Adapter->mcast_count++;
2753
2754 /*
2755 * Update the MC table in the hardware
2756 */
2757 e1000g_clear_interrupt(Adapter);
2758
2759 e1000_update_mc_addr_list(hw,
2760 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2761
2762 e1000g_mask_interrupt(Adapter);
2763
2764 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2765 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2766 res = EIO;
2767 }
2768
2769 done:
2770 return (res);
2771 }
2772
2773 static int
multicst_remove(struct e1000g * Adapter,const uint8_t * multiaddr)2774 multicst_remove(struct e1000g *Adapter, const uint8_t *multiaddr)
2775 {
2776 struct e1000_hw *hw = &Adapter->shared;
2777 struct ether_addr *newtable;
2778 size_t new_len;
2779 size_t old_len;
2780 unsigned i;
2781
2782 for (i = 0; i < Adapter->mcast_count; i++) {
2783 if (bcmp(multiaddr, &Adapter->mcast_table[i],
2784 ETHERADDRL) == 0) {
2785 for (i++; i < Adapter->mcast_count; i++) {
2786 Adapter->mcast_table[i - 1] =
2787 Adapter->mcast_table[i];
2788 }
2789 Adapter->mcast_count--;
2790 break;
2791 }
2792 }
2793
2794 if ((Adapter->mcast_alloc_count - Adapter->mcast_count) >
2795 MCAST_ALLOC_SIZE) {
2796 old_len = Adapter->mcast_alloc_count *
2797 sizeof (struct ether_addr);
2798 new_len = (Adapter->mcast_alloc_count - MCAST_ALLOC_SIZE) *
2799 sizeof (struct ether_addr);
2800
2801 newtable = kmem_alloc(new_len, KM_NOSLEEP);
2802 if (newtable != NULL) {
2803 bcopy(Adapter->mcast_table, newtable, new_len);
2804 kmem_free(Adapter->mcast_table, old_len);
2805
2806 Adapter->mcast_alloc_count -= MCAST_ALLOC_SIZE;
2807 Adapter->mcast_table = newtable;
2808 }
2809 }
2810
2811 /*
2812 * Update the MC table in the hardware
2813 */
2814 e1000g_clear_interrupt(Adapter);
2815
2816 e1000_update_mc_addr_list(hw,
2817 (uint8_t *)Adapter->mcast_table, Adapter->mcast_count);
2818
2819 e1000g_mask_interrupt(Adapter);
2820
2821 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2822 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2823 return (EIO);
2824 }
2825
2826 return (0);
2827 }
2828
2829 static void
e1000g_release_multicast(struct e1000g * Adapter)2830 e1000g_release_multicast(struct e1000g *Adapter)
2831 {
2832 if (Adapter->mcast_table != NULL) {
2833 kmem_free(Adapter->mcast_table,
2834 Adapter->mcast_alloc_count * sizeof (struct ether_addr));
2835 Adapter->mcast_table = NULL;
2836 }
2837 }
2838
2839 int
e1000g_m_multicst(void * arg,boolean_t add,const uint8_t * addr)2840 e1000g_m_multicst(void *arg, boolean_t add, const uint8_t *addr)
2841 {
2842 struct e1000g *Adapter = (struct e1000g *)arg;
2843 int result;
2844
2845 rw_enter(&Adapter->chip_lock, RW_WRITER);
2846
2847 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2848 result = ECANCELED;
2849 goto done;
2850 }
2851
2852 result = (add) ? multicst_add(Adapter, addr)
2853 : multicst_remove(Adapter, addr);
2854
2855 done:
2856 rw_exit(&Adapter->chip_lock);
2857 return (result);
2858
2859 }
2860
2861 int
e1000g_m_promisc(void * arg,boolean_t on)2862 e1000g_m_promisc(void *arg, boolean_t on)
2863 {
2864 struct e1000g *Adapter = (struct e1000g *)arg;
2865 uint32_t rctl;
2866
2867 rw_enter(&Adapter->chip_lock, RW_WRITER);
2868
2869 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
2870 rw_exit(&Adapter->chip_lock);
2871 return (ECANCELED);
2872 }
2873
2874 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
2875
2876 if (on)
2877 rctl |=
2878 (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
2879 else
2880 rctl &= (~(E1000_RCTL_UPE | E1000_RCTL_MPE));
2881
2882 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
2883
2884 Adapter->e1000g_promisc = on;
2885
2886 rw_exit(&Adapter->chip_lock);
2887
2888 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
2889 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
2890 return (EIO);
2891 }
2892
2893 return (0);
2894 }
2895
2896 /*
2897 * Entry points to enable and disable interrupts at the granularity of
2898 * a group.
2899 * Turns the poll_mode for the whole adapter on and off to enable or
2900 * override the ring level polling control over the hardware interrupts.
2901 */
2902 static int
e1000g_rx_group_intr_enable(mac_intr_handle_t arg)2903 e1000g_rx_group_intr_enable(mac_intr_handle_t arg)
2904 {
2905 struct e1000g *adapter = (struct e1000g *)arg;
2906 e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2907
2908 /*
2909 * Later interrupts at the granularity of the this ring will
2910 * invoke mac_rx() with NULL, indicating the need for another
2911 * software classification.
2912 * We have a single ring usable per adapter now, so we only need to
2913 * reset the rx handle for that one.
2914 * When more RX rings can be used, we should update each one of them.
2915 */
2916 mutex_enter(&rx_ring->rx_lock);
2917 rx_ring->mrh = NULL;
2918 adapter->poll_mode = B_FALSE;
2919 mutex_exit(&rx_ring->rx_lock);
2920 return (0);
2921 }
2922
2923 static int
e1000g_rx_group_intr_disable(mac_intr_handle_t arg)2924 e1000g_rx_group_intr_disable(mac_intr_handle_t arg)
2925 {
2926 struct e1000g *adapter = (struct e1000g *)arg;
2927 e1000g_rx_ring_t *rx_ring = adapter->rx_ring;
2928
2929 mutex_enter(&rx_ring->rx_lock);
2930
2931 /*
2932 * Later interrupts at the granularity of the this ring will
2933 * invoke mac_rx() with the handle for this ring;
2934 */
2935 adapter->poll_mode = B_TRUE;
2936 rx_ring->mrh = rx_ring->mrh_init;
2937 mutex_exit(&rx_ring->rx_lock);
2938 return (0);
2939 }
2940
2941 /*
2942 * Entry points to enable and disable interrupts at the granularity of
2943 * a ring.
2944 * adapter poll_mode controls whether we actually proceed with hardware
2945 * interrupt toggling.
2946 */
2947 static int
e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)2948 e1000g_rx_ring_intr_enable(mac_intr_handle_t intrh)
2949 {
2950 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh;
2951 struct e1000g *adapter = rx_ring->adapter;
2952 struct e1000_hw *hw = &adapter->shared;
2953 uint32_t intr_mask;
2954
2955 rw_enter(&adapter->chip_lock, RW_READER);
2956
2957 if (adapter->e1000g_state & E1000G_SUSPENDED) {
2958 rw_exit(&adapter->chip_lock);
2959 return (0);
2960 }
2961
2962 mutex_enter(&rx_ring->rx_lock);
2963 rx_ring->poll_flag = 0;
2964 mutex_exit(&rx_ring->rx_lock);
2965
2966 /* Rx interrupt enabling for MSI and legacy */
2967 intr_mask = E1000_READ_REG(hw, E1000_IMS);
2968 intr_mask |= E1000_IMS_RXT0;
2969 E1000_WRITE_REG(hw, E1000_IMS, intr_mask);
2970 E1000_WRITE_FLUSH(hw);
2971
2972 /* Trigger a Rx interrupt to check Rx ring */
2973 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
2974 E1000_WRITE_FLUSH(hw);
2975
2976 rw_exit(&adapter->chip_lock);
2977 return (0);
2978 }
2979
2980 static int
e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)2981 e1000g_rx_ring_intr_disable(mac_intr_handle_t intrh)
2982 {
2983 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)intrh;
2984 struct e1000g *adapter = rx_ring->adapter;
2985 struct e1000_hw *hw = &adapter->shared;
2986
2987 rw_enter(&adapter->chip_lock, RW_READER);
2988
2989 if (adapter->e1000g_state & E1000G_SUSPENDED) {
2990 rw_exit(&adapter->chip_lock);
2991 return (0);
2992 }
2993 mutex_enter(&rx_ring->rx_lock);
2994 rx_ring->poll_flag = 1;
2995 mutex_exit(&rx_ring->rx_lock);
2996
2997 /* Rx interrupt disabling for MSI and legacy */
2998 E1000_WRITE_REG(hw, E1000_IMC, E1000_IMS_RXT0);
2999 E1000_WRITE_FLUSH(hw);
3000
3001 rw_exit(&adapter->chip_lock);
3002 return (0);
3003 }
3004
3005 /*
3006 * e1000g_unicst_find - Find the slot for the specified unicast address
3007 */
3008 static int
e1000g_unicst_find(struct e1000g * Adapter,const uint8_t * mac_addr)3009 e1000g_unicst_find(struct e1000g *Adapter, const uint8_t *mac_addr)
3010 {
3011 int slot;
3012
3013 for (slot = 0; slot < Adapter->unicst_total; slot++) {
3014 if ((Adapter->unicst_addr[slot].mac.set == 1) &&
3015 (bcmp(Adapter->unicst_addr[slot].mac.addr,
3016 mac_addr, ETHERADDRL) == 0))
3017 return (slot);
3018 }
3019
3020 return (-1);
3021 }
3022
3023 /*
3024 * Entry points to add and remove a MAC address to a ring group.
3025 * The caller takes care of adding and removing the MAC addresses
3026 * to the filter via these two routines.
3027 */
3028
3029 static int
e1000g_addmac(void * arg,const uint8_t * mac_addr)3030 e1000g_addmac(void *arg, const uint8_t *mac_addr)
3031 {
3032 struct e1000g *Adapter = (struct e1000g *)arg;
3033 int slot, err;
3034
3035 rw_enter(&Adapter->chip_lock, RW_WRITER);
3036
3037 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3038 rw_exit(&Adapter->chip_lock);
3039 return (ECANCELED);
3040 }
3041
3042 if (e1000g_unicst_find(Adapter, mac_addr) != -1) {
3043 /* The same address is already in slot */
3044 rw_exit(&Adapter->chip_lock);
3045 return (0);
3046 }
3047
3048 if (Adapter->unicst_avail == 0) {
3049 /* no slots available */
3050 rw_exit(&Adapter->chip_lock);
3051 return (ENOSPC);
3052 }
3053
3054 /* Search for a free slot */
3055 for (slot = 0; slot < Adapter->unicst_total; slot++) {
3056 if (Adapter->unicst_addr[slot].mac.set == 0)
3057 break;
3058 }
3059 ASSERT(slot < Adapter->unicst_total);
3060
3061 err = e1000g_unicst_set(Adapter, mac_addr, slot);
3062 if (err == 0)
3063 Adapter->unicst_avail--;
3064
3065 rw_exit(&Adapter->chip_lock);
3066
3067 return (err);
3068 }
3069
3070 static int
e1000g_remmac(void * arg,const uint8_t * mac_addr)3071 e1000g_remmac(void *arg, const uint8_t *mac_addr)
3072 {
3073 struct e1000g *Adapter = (struct e1000g *)arg;
3074 int slot, err;
3075
3076 rw_enter(&Adapter->chip_lock, RW_WRITER);
3077
3078 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3079 rw_exit(&Adapter->chip_lock);
3080 return (ECANCELED);
3081 }
3082
3083 slot = e1000g_unicst_find(Adapter, mac_addr);
3084 if (slot == -1) {
3085 rw_exit(&Adapter->chip_lock);
3086 return (EINVAL);
3087 }
3088
3089 ASSERT(Adapter->unicst_addr[slot].mac.set);
3090
3091 /* Clear this slot */
3092 err = e1000g_unicst_set(Adapter, NULL, slot);
3093 if (err == 0)
3094 Adapter->unicst_avail++;
3095
3096 rw_exit(&Adapter->chip_lock);
3097
3098 return (err);
3099 }
3100
3101 static int
e1000g_ring_start(mac_ring_driver_t rh,uint64_t mr_gen_num)3102 e1000g_ring_start(mac_ring_driver_t rh, uint64_t mr_gen_num)
3103 {
3104 e1000g_rx_ring_t *rx_ring = (e1000g_rx_ring_t *)rh;
3105
3106 mutex_enter(&rx_ring->rx_lock);
3107 rx_ring->ring_gen_num = mr_gen_num;
3108 mutex_exit(&rx_ring->rx_lock);
3109 return (0);
3110 }
3111
3112 /*
3113 * Callback funtion for MAC layer to register all rings.
3114 *
3115 * The hardware supports a single group with currently only one ring
3116 * available.
3117 * Though not offering virtualization ability per se, exposing the
3118 * group/ring still enables the polling and interrupt toggling.
3119 */
3120 /* ARGSUSED */
3121 void
e1000g_fill_ring(void * arg,mac_ring_type_t rtype,const int grp_index,const int ring_index,mac_ring_info_t * infop,mac_ring_handle_t rh)3122 e1000g_fill_ring(void *arg, mac_ring_type_t rtype, const int grp_index,
3123 const int ring_index, mac_ring_info_t *infop, mac_ring_handle_t rh)
3124 {
3125 struct e1000g *Adapter = (struct e1000g *)arg;
3126 e1000g_rx_ring_t *rx_ring = Adapter->rx_ring;
3127 mac_intr_t *mintr;
3128
3129 /*
3130 * We advertised only RX group/rings, so the MAC framework shouldn't
3131 * ask for any thing else.
3132 */
3133 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0 && ring_index == 0);
3134
3135 rx_ring->mrh = rx_ring->mrh_init = rh;
3136 infop->mri_driver = (mac_ring_driver_t)rx_ring;
3137 infop->mri_start = e1000g_ring_start;
3138 infop->mri_stop = NULL;
3139 infop->mri_poll = e1000g_poll_ring;
3140 infop->mri_stat = e1000g_rx_ring_stat;
3141
3142 /* Ring level interrupts */
3143 mintr = &infop->mri_intr;
3144 mintr->mi_handle = (mac_intr_handle_t)rx_ring;
3145 mintr->mi_enable = e1000g_rx_ring_intr_enable;
3146 mintr->mi_disable = e1000g_rx_ring_intr_disable;
3147 if (Adapter->msi_enable)
3148 mintr->mi_ddi_handle = Adapter->htable[0];
3149 }
3150
3151 /* ARGSUSED */
3152 static void
e1000g_fill_group(void * arg,mac_ring_type_t rtype,const int grp_index,mac_group_info_t * infop,mac_group_handle_t gh)3153 e1000g_fill_group(void *arg, mac_ring_type_t rtype, const int grp_index,
3154 mac_group_info_t *infop, mac_group_handle_t gh)
3155 {
3156 struct e1000g *Adapter = (struct e1000g *)arg;
3157 mac_intr_t *mintr;
3158
3159 /*
3160 * We advertised a single RX ring. Getting a request for anything else
3161 * signifies a bug in the MAC framework.
3162 */
3163 ASSERT(rtype == MAC_RING_TYPE_RX && grp_index == 0);
3164
3165 Adapter->rx_group = gh;
3166
3167 infop->mgi_driver = (mac_group_driver_t)Adapter;
3168 infop->mgi_start = NULL;
3169 infop->mgi_stop = NULL;
3170 infop->mgi_addmac = e1000g_addmac;
3171 infop->mgi_remmac = e1000g_remmac;
3172 infop->mgi_count = 1;
3173
3174 /* Group level interrupts */
3175 mintr = &infop->mgi_intr;
3176 mintr->mi_handle = (mac_intr_handle_t)Adapter;
3177 mintr->mi_enable = e1000g_rx_group_intr_enable;
3178 mintr->mi_disable = e1000g_rx_group_intr_disable;
3179 }
3180
3181 static void
e1000g_led_blink(void * arg)3182 e1000g_led_blink(void *arg)
3183 {
3184 e1000g_t *e1000g = arg;
3185
3186 mutex_enter(&e1000g->e1000g_led_lock);
3187 VERIFY(e1000g->e1000g_emul_blink);
3188 if (e1000g->e1000g_emul_state) {
3189 (void) e1000_led_on(&e1000g->shared);
3190 } else {
3191 (void) e1000_led_off(&e1000g->shared);
3192 }
3193 e1000g->e1000g_emul_state = !e1000g->e1000g_emul_state;
3194 mutex_exit(&e1000g->e1000g_led_lock);
3195 }
3196
3197 static int
e1000g_led_set(void * arg,mac_led_mode_t mode,uint_t flags)3198 e1000g_led_set(void *arg, mac_led_mode_t mode, uint_t flags)
3199 {
3200 e1000g_t *e1000g = arg;
3201
3202 if (flags != 0)
3203 return (EINVAL);
3204
3205 if (mode != MAC_LED_DEFAULT &&
3206 mode != MAC_LED_IDENT &&
3207 mode != MAC_LED_OFF &&
3208 mode != MAC_LED_ON)
3209 return (ENOTSUP);
3210
3211 mutex_enter(&e1000g->e1000g_led_lock);
3212
3213 if ((mode == MAC_LED_IDENT || mode == MAC_LED_OFF ||
3214 mode == MAC_LED_ON) &&
3215 !e1000g->e1000g_led_setup) {
3216 if (e1000_setup_led(&e1000g->shared) != E1000_SUCCESS) {
3217 mutex_exit(&e1000g->e1000g_led_lock);
3218 return (EIO);
3219 }
3220
3221 e1000g->e1000g_led_setup = B_TRUE;
3222 }
3223
3224 if (mode != MAC_LED_IDENT && e1000g->e1000g_blink != NULL) {
3225 ddi_periodic_t id = e1000g->e1000g_blink;
3226 e1000g->e1000g_blink = NULL;
3227 mutex_exit(&e1000g->e1000g_led_lock);
3228 ddi_periodic_delete(id);
3229 mutex_enter(&e1000g->e1000g_led_lock);
3230 }
3231
3232 switch (mode) {
3233 case MAC_LED_DEFAULT:
3234 if (e1000g->e1000g_led_setup) {
3235 if (e1000_cleanup_led(&e1000g->shared) !=
3236 E1000_SUCCESS) {
3237 mutex_exit(&e1000g->e1000g_led_lock);
3238 return (EIO);
3239 }
3240 e1000g->e1000g_led_setup = B_FALSE;
3241 }
3242 break;
3243 case MAC_LED_IDENT:
3244 if (e1000g->e1000g_emul_blink) {
3245 if (e1000g->e1000g_blink != NULL)
3246 break;
3247
3248 /*
3249 * Note, we use a 200 ms period here as that's what
3250 * section 10.1.3 8254x Intel Manual (PCI/PCI-X Family
3251 * of Gigabit Ethernet Controllers Software Developer's
3252 * Manual) indicates that the optional blink hardware
3253 * operates at.
3254 */
3255 e1000g->e1000g_blink =
3256 ddi_periodic_add(e1000g_led_blink, e1000g,
3257 200ULL * (NANOSEC / MILLISEC), DDI_IPL_0);
3258 } else if (e1000_blink_led(&e1000g->shared) != E1000_SUCCESS) {
3259 mutex_exit(&e1000g->e1000g_led_lock);
3260 return (EIO);
3261 }
3262 break;
3263 case MAC_LED_OFF:
3264 if (e1000_led_off(&e1000g->shared) != E1000_SUCCESS) {
3265 mutex_exit(&e1000g->e1000g_led_lock);
3266 return (EIO);
3267 }
3268 break;
3269 case MAC_LED_ON:
3270 if (e1000_led_on(&e1000g->shared) != E1000_SUCCESS) {
3271 mutex_exit(&e1000g->e1000g_led_lock);
3272 return (EIO);
3273 }
3274 break;
3275 default:
3276 mutex_exit(&e1000g->e1000g_led_lock);
3277 return (ENOTSUP);
3278 }
3279
3280 mutex_exit(&e1000g->e1000g_led_lock);
3281 return (0);
3282
3283 }
3284
3285 static boolean_t
e1000g_m_getcapab(void * arg,mac_capab_t cap,void * cap_data)3286 e1000g_m_getcapab(void *arg, mac_capab_t cap, void *cap_data)
3287 {
3288 struct e1000g *Adapter = (struct e1000g *)arg;
3289
3290 switch (cap) {
3291 case MAC_CAPAB_HCKSUM: {
3292 uint32_t *txflags = cap_data;
3293
3294 if (Adapter->tx_hcksum_enable)
3295 *txflags = HCKSUM_IPHDRCKSUM |
3296 HCKSUM_INET_PARTIAL;
3297 else
3298 return (B_FALSE);
3299 break;
3300 }
3301
3302 case MAC_CAPAB_LSO: {
3303 mac_capab_lso_t *cap_lso = cap_data;
3304
3305 if (Adapter->lso_enable) {
3306 cap_lso->lso_flags = LSO_TX_BASIC_TCP_IPV4;
3307 cap_lso->lso_basic_tcp_ipv4.lso_max =
3308 E1000_LSO_MAXLEN;
3309 } else
3310 return (B_FALSE);
3311 break;
3312 }
3313 case MAC_CAPAB_RINGS: {
3314 mac_capab_rings_t *cap_rings = cap_data;
3315
3316 /* No TX rings exposed yet */
3317 if (cap_rings->mr_type != MAC_RING_TYPE_RX)
3318 return (B_FALSE);
3319
3320 cap_rings->mr_group_type = MAC_GROUP_TYPE_STATIC;
3321 cap_rings->mr_rnum = 1;
3322 cap_rings->mr_gnum = 1;
3323 cap_rings->mr_rget = e1000g_fill_ring;
3324 cap_rings->mr_gget = e1000g_fill_group;
3325 break;
3326 }
3327 case MAC_CAPAB_LED: {
3328 mac_capab_led_t *cap_led = cap_data;
3329
3330 cap_led->mcl_flags = 0;
3331 cap_led->mcl_modes = MAC_LED_DEFAULT;
3332 if (Adapter->shared.mac.ops.blink_led != NULL &&
3333 Adapter->shared.mac.ops.blink_led !=
3334 e1000_null_ops_generic) {
3335 cap_led->mcl_modes |= MAC_LED_IDENT;
3336 }
3337
3338 if (Adapter->shared.mac.ops.led_off != NULL &&
3339 Adapter->shared.mac.ops.led_off !=
3340 e1000_null_ops_generic) {
3341 cap_led->mcl_modes |= MAC_LED_OFF;
3342 }
3343
3344 if (Adapter->shared.mac.ops.led_on != NULL &&
3345 Adapter->shared.mac.ops.led_on !=
3346 e1000_null_ops_generic) {
3347 cap_led->mcl_modes |= MAC_LED_ON;
3348 }
3349
3350 /*
3351 * Some hardware doesn't support blinking natively as they're
3352 * missing the optional blink circuit. If they have both off and
3353 * on then we'll emulate it ourselves.
3354 */
3355 if (((cap_led->mcl_modes & MAC_LED_IDENT) == 0) &&
3356 ((cap_led->mcl_modes & MAC_LED_OFF) != 0) &&
3357 ((cap_led->mcl_modes & MAC_LED_ON) != 0)) {
3358 cap_led->mcl_modes |= MAC_LED_IDENT;
3359 Adapter->e1000g_emul_blink = B_TRUE;
3360 }
3361
3362 cap_led->mcl_set = e1000g_led_set;
3363 break;
3364 }
3365 default:
3366 return (B_FALSE);
3367 }
3368 return (B_TRUE);
3369 }
3370
3371 static boolean_t
e1000g_param_locked(mac_prop_id_t pr_num)3372 e1000g_param_locked(mac_prop_id_t pr_num)
3373 {
3374 /*
3375 * All en_* parameters are locked (read-only) while
3376 * the device is in any sort of loopback mode ...
3377 */
3378 switch (pr_num) {
3379 case MAC_PROP_EN_1000FDX_CAP:
3380 case MAC_PROP_EN_1000HDX_CAP:
3381 case MAC_PROP_EN_100FDX_CAP:
3382 case MAC_PROP_EN_100HDX_CAP:
3383 case MAC_PROP_EN_10FDX_CAP:
3384 case MAC_PROP_EN_10HDX_CAP:
3385 case MAC_PROP_AUTONEG:
3386 case MAC_PROP_FLOWCTRL:
3387 return (B_TRUE);
3388 }
3389 return (B_FALSE);
3390 }
3391
3392 /*
3393 * callback function for set/get of properties
3394 */
3395 static int
e1000g_m_setprop(void * arg,const char * pr_name,mac_prop_id_t pr_num,uint_t pr_valsize,const void * pr_val)3396 e1000g_m_setprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3397 uint_t pr_valsize, const void *pr_val)
3398 {
3399 struct e1000g *Adapter = arg;
3400 struct e1000_hw *hw = &Adapter->shared;
3401 struct e1000_fc_info *fc = &Adapter->shared.fc;
3402 int err = 0;
3403 link_flowctrl_t flowctrl;
3404 uint32_t cur_mtu, new_mtu;
3405
3406 rw_enter(&Adapter->chip_lock, RW_WRITER);
3407
3408 if (Adapter->e1000g_state & E1000G_SUSPENDED) {
3409 rw_exit(&Adapter->chip_lock);
3410 return (ECANCELED);
3411 }
3412
3413 if (Adapter->loopback_mode != E1000G_LB_NONE &&
3414 e1000g_param_locked(pr_num)) {
3415 /*
3416 * All en_* parameters are locked (read-only)
3417 * while the device is in any sort of loopback mode.
3418 */
3419 rw_exit(&Adapter->chip_lock);
3420 return (EBUSY);
3421 }
3422
3423 switch (pr_num) {
3424 case MAC_PROP_EN_1000FDX_CAP:
3425 if (hw->phy.media_type != e1000_media_type_copper) {
3426 err = ENOTSUP;
3427 break;
3428 }
3429 Adapter->param_en_1000fdx = *(uint8_t *)pr_val;
3430 Adapter->param_adv_1000fdx = *(uint8_t *)pr_val;
3431 goto reset;
3432 case MAC_PROP_EN_100FDX_CAP:
3433 if (hw->phy.media_type != e1000_media_type_copper) {
3434 err = ENOTSUP;
3435 break;
3436 }
3437 Adapter->param_en_100fdx = *(uint8_t *)pr_val;
3438 Adapter->param_adv_100fdx = *(uint8_t *)pr_val;
3439 goto reset;
3440 case MAC_PROP_EN_100HDX_CAP:
3441 if (hw->phy.media_type != e1000_media_type_copper) {
3442 err = ENOTSUP;
3443 break;
3444 }
3445 Adapter->param_en_100hdx = *(uint8_t *)pr_val;
3446 Adapter->param_adv_100hdx = *(uint8_t *)pr_val;
3447 goto reset;
3448 case MAC_PROP_EN_10FDX_CAP:
3449 if (hw->phy.media_type != e1000_media_type_copper) {
3450 err = ENOTSUP;
3451 break;
3452 }
3453 Adapter->param_en_10fdx = *(uint8_t *)pr_val;
3454 Adapter->param_adv_10fdx = *(uint8_t *)pr_val;
3455 goto reset;
3456 case MAC_PROP_EN_10HDX_CAP:
3457 if (hw->phy.media_type != e1000_media_type_copper) {
3458 err = ENOTSUP;
3459 break;
3460 }
3461 Adapter->param_en_10hdx = *(uint8_t *)pr_val;
3462 Adapter->param_adv_10hdx = *(uint8_t *)pr_val;
3463 goto reset;
3464 case MAC_PROP_AUTONEG:
3465 if (hw->phy.media_type != e1000_media_type_copper) {
3466 err = ENOTSUP;
3467 break;
3468 }
3469 Adapter->param_adv_autoneg = *(uint8_t *)pr_val;
3470 goto reset;
3471 case MAC_PROP_FLOWCTRL:
3472 fc->send_xon = B_TRUE;
3473 bcopy(pr_val, &flowctrl, sizeof (flowctrl));
3474
3475 switch (flowctrl) {
3476 default:
3477 err = EINVAL;
3478 break;
3479 case LINK_FLOWCTRL_NONE:
3480 fc->requested_mode = e1000_fc_none;
3481 break;
3482 case LINK_FLOWCTRL_RX:
3483 fc->requested_mode = e1000_fc_rx_pause;
3484 break;
3485 case LINK_FLOWCTRL_TX:
3486 fc->requested_mode = e1000_fc_tx_pause;
3487 break;
3488 case LINK_FLOWCTRL_BI:
3489 fc->requested_mode = e1000_fc_full;
3490 break;
3491 }
3492 reset:
3493 if (err == 0) {
3494 /* check PCH limits & reset the link */
3495 e1000g_pch_limits(Adapter);
3496 if (e1000g_reset_link(Adapter) != DDI_SUCCESS)
3497 err = EINVAL;
3498 }
3499 break;
3500 case MAC_PROP_ADV_1000FDX_CAP:
3501 case MAC_PROP_ADV_1000HDX_CAP:
3502 case MAC_PROP_ADV_100FDX_CAP:
3503 case MAC_PROP_ADV_100HDX_CAP:
3504 case MAC_PROP_ADV_10FDX_CAP:
3505 case MAC_PROP_ADV_10HDX_CAP:
3506 case MAC_PROP_EN_1000HDX_CAP:
3507 case MAC_PROP_STATUS:
3508 case MAC_PROP_SPEED:
3509 case MAC_PROP_DUPLEX:
3510 case MAC_PROP_MEDIA:
3511 err = ENOTSUP; /* read-only prop. Can't set this. */
3512 break;
3513 case MAC_PROP_MTU:
3514 /* adapter must be stopped for an MTU change */
3515 if (Adapter->e1000g_state & E1000G_STARTED) {
3516 err = EBUSY;
3517 break;
3518 }
3519
3520 cur_mtu = Adapter->default_mtu;
3521
3522 /* get new requested MTU */
3523 bcopy(pr_val, &new_mtu, sizeof (new_mtu));
3524 if (new_mtu == cur_mtu) {
3525 err = 0;
3526 break;
3527 }
3528
3529 if ((new_mtu < DEFAULT_MTU) ||
3530 (new_mtu > Adapter->max_mtu)) {
3531 err = EINVAL;
3532 break;
3533 }
3534
3535 /* inform MAC framework of new MTU */
3536 err = mac_maxsdu_update(Adapter->mh, new_mtu);
3537
3538 if (err == 0) {
3539 Adapter->default_mtu = new_mtu;
3540 Adapter->max_frame_size =
3541 e1000g_mtu2maxframe(new_mtu);
3542
3543 /*
3544 * check PCH limits & set buffer sizes to
3545 * match new MTU
3546 */
3547 e1000g_pch_limits(Adapter);
3548 e1000g_set_bufsize(Adapter);
3549
3550 /*
3551 * decrease the number of descriptors and free
3552 * packets for jumbo frames to reduce tx/rx
3553 * resource consumption
3554 */
3555 if (Adapter->max_frame_size >=
3556 (FRAME_SIZE_UPTO_4K)) {
3557 if (Adapter->tx_desc_num_flag == 0)
3558 Adapter->tx_desc_num =
3559 DEFAULT_JUMBO_NUM_TX_DESC;
3560
3561 if (Adapter->rx_desc_num_flag == 0)
3562 Adapter->rx_desc_num =
3563 DEFAULT_JUMBO_NUM_RX_DESC;
3564
3565 if (Adapter->tx_buf_num_flag == 0)
3566 Adapter->tx_freelist_num =
3567 DEFAULT_JUMBO_NUM_TX_BUF;
3568
3569 if (Adapter->rx_buf_num_flag == 0)
3570 Adapter->rx_freelist_limit =
3571 DEFAULT_JUMBO_NUM_RX_BUF;
3572 } else {
3573 if (Adapter->tx_desc_num_flag == 0)
3574 Adapter->tx_desc_num =
3575 DEFAULT_NUM_TX_DESCRIPTOR;
3576
3577 if (Adapter->rx_desc_num_flag == 0)
3578 Adapter->rx_desc_num =
3579 DEFAULT_NUM_RX_DESCRIPTOR;
3580
3581 if (Adapter->tx_buf_num_flag == 0)
3582 Adapter->tx_freelist_num =
3583 DEFAULT_NUM_TX_FREELIST;
3584
3585 if (Adapter->rx_buf_num_flag == 0)
3586 Adapter->rx_freelist_limit =
3587 DEFAULT_NUM_RX_FREELIST;
3588 }
3589 }
3590 break;
3591 case MAC_PROP_PRIVATE:
3592 err = e1000g_set_priv_prop(Adapter, pr_name,
3593 pr_valsize, pr_val);
3594 break;
3595 default:
3596 err = ENOTSUP;
3597 break;
3598 }
3599 rw_exit(&Adapter->chip_lock);
3600 return (err);
3601 }
3602
3603 static int
e1000g_m_getprop(void * arg,const char * pr_name,mac_prop_id_t pr_num,uint_t pr_valsize,void * pr_val)3604 e1000g_m_getprop(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3605 uint_t pr_valsize, void *pr_val)
3606 {
3607 struct e1000g *Adapter = arg;
3608 struct e1000_hw *hw = &Adapter->shared;
3609 struct e1000_fc_info *fc = &Adapter->shared.fc;
3610 int err = 0;
3611 link_flowctrl_t flowctrl;
3612 uint64_t tmp = 0;
3613
3614 switch (pr_num) {
3615 case MAC_PROP_DUPLEX:
3616 ASSERT(pr_valsize >= sizeof (link_duplex_t));
3617 bcopy(&Adapter->link_duplex, pr_val,
3618 sizeof (link_duplex_t));
3619 break;
3620 case MAC_PROP_SPEED:
3621 ASSERT(pr_valsize >= sizeof (uint64_t));
3622 tmp = Adapter->link_speed * 1000000ull;
3623 bcopy(&tmp, pr_val, sizeof (tmp));
3624 break;
3625 case MAC_PROP_AUTONEG:
3626 *(uint8_t *)pr_val = Adapter->param_adv_autoneg;
3627 break;
3628 case MAC_PROP_FLOWCTRL:
3629 ASSERT(pr_valsize >= sizeof (link_flowctrl_t));
3630 switch (fc->current_mode) {
3631 case e1000_fc_none:
3632 flowctrl = LINK_FLOWCTRL_NONE;
3633 break;
3634 case e1000_fc_rx_pause:
3635 flowctrl = LINK_FLOWCTRL_RX;
3636 break;
3637 case e1000_fc_tx_pause:
3638 flowctrl = LINK_FLOWCTRL_TX;
3639 break;
3640 case e1000_fc_full:
3641 flowctrl = LINK_FLOWCTRL_BI;
3642 break;
3643 }
3644 bcopy(&flowctrl, pr_val, sizeof (flowctrl));
3645 break;
3646 case MAC_PROP_ADV_1000FDX_CAP:
3647 *(uint8_t *)pr_val = Adapter->param_adv_1000fdx;
3648 break;
3649 case MAC_PROP_EN_1000FDX_CAP:
3650 *(uint8_t *)pr_val = Adapter->param_en_1000fdx;
3651 break;
3652 case MAC_PROP_ADV_1000HDX_CAP:
3653 *(uint8_t *)pr_val = Adapter->param_adv_1000hdx;
3654 break;
3655 case MAC_PROP_EN_1000HDX_CAP:
3656 *(uint8_t *)pr_val = Adapter->param_en_1000hdx;
3657 break;
3658 case MAC_PROP_ADV_100FDX_CAP:
3659 *(uint8_t *)pr_val = Adapter->param_adv_100fdx;
3660 break;
3661 case MAC_PROP_EN_100FDX_CAP:
3662 *(uint8_t *)pr_val = Adapter->param_en_100fdx;
3663 break;
3664 case MAC_PROP_ADV_100HDX_CAP:
3665 *(uint8_t *)pr_val = Adapter->param_adv_100hdx;
3666 break;
3667 case MAC_PROP_EN_100HDX_CAP:
3668 *(uint8_t *)pr_val = Adapter->param_en_100hdx;
3669 break;
3670 case MAC_PROP_ADV_10FDX_CAP:
3671 *(uint8_t *)pr_val = Adapter->param_adv_10fdx;
3672 break;
3673 case MAC_PROP_EN_10FDX_CAP:
3674 *(uint8_t *)pr_val = Adapter->param_en_10fdx;
3675 break;
3676 case MAC_PROP_ADV_10HDX_CAP:
3677 *(uint8_t *)pr_val = Adapter->param_adv_10hdx;
3678 break;
3679 case MAC_PROP_EN_10HDX_CAP:
3680 *(uint8_t *)pr_val = Adapter->param_en_10hdx;
3681 break;
3682 case MAC_PROP_ADV_100T4_CAP:
3683 case MAC_PROP_EN_100T4_CAP:
3684 *(uint8_t *)pr_val = Adapter->param_adv_100t4;
3685 break;
3686 case MAC_PROP_MEDIA:
3687 *(mac_ether_media_t *)pr_val = e1000_link_to_media(hw,
3688 Adapter->link_speed);
3689 break;
3690 case MAC_PROP_PRIVATE:
3691 err = e1000g_get_priv_prop(Adapter, pr_name,
3692 pr_valsize, pr_val);
3693 break;
3694 default:
3695 err = ENOTSUP;
3696 break;
3697 }
3698
3699 return (err);
3700 }
3701
3702 static void
e1000g_m_propinfo(void * arg,const char * pr_name,mac_prop_id_t pr_num,mac_prop_info_handle_t prh)3703 e1000g_m_propinfo(void *arg, const char *pr_name, mac_prop_id_t pr_num,
3704 mac_prop_info_handle_t prh)
3705 {
3706 struct e1000g *Adapter = arg;
3707 struct e1000_hw *hw = &Adapter->shared;
3708
3709 switch (pr_num) {
3710 case MAC_PROP_DUPLEX:
3711 case MAC_PROP_SPEED:
3712 case MAC_PROP_ADV_1000FDX_CAP:
3713 case MAC_PROP_ADV_1000HDX_CAP:
3714 case MAC_PROP_ADV_100FDX_CAP:
3715 case MAC_PROP_ADV_100HDX_CAP:
3716 case MAC_PROP_ADV_10FDX_CAP:
3717 case MAC_PROP_ADV_10HDX_CAP:
3718 case MAC_PROP_ADV_100T4_CAP:
3719 case MAC_PROP_EN_100T4_CAP:
3720 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3721 break;
3722
3723 case MAC_PROP_EN_1000FDX_CAP:
3724 if (hw->phy.media_type != e1000_media_type_copper) {
3725 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3726 } else {
3727 mac_prop_info_set_default_uint8(prh,
3728 ((Adapter->phy_ext_status &
3729 IEEE_ESR_1000T_FD_CAPS) ||
3730 (Adapter->phy_ext_status &
3731 IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0);
3732 }
3733 break;
3734
3735 case MAC_PROP_EN_100FDX_CAP:
3736 if (hw->phy.media_type != e1000_media_type_copper) {
3737 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3738 } else {
3739 mac_prop_info_set_default_uint8(prh,
3740 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
3741 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
3742 ? 1 : 0);
3743 }
3744 break;
3745
3746 case MAC_PROP_EN_100HDX_CAP:
3747 if (hw->phy.media_type != e1000_media_type_copper) {
3748 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3749 } else {
3750 mac_prop_info_set_default_uint8(prh,
3751 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
3752 (Adapter->phy_status & MII_SR_100T2_HD_CAPS))
3753 ? 1 : 0);
3754 }
3755 break;
3756
3757 case MAC_PROP_EN_10FDX_CAP:
3758 if (hw->phy.media_type != e1000_media_type_copper) {
3759 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3760 } else {
3761 mac_prop_info_set_default_uint8(prh,
3762 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0);
3763 }
3764 break;
3765
3766 case MAC_PROP_EN_10HDX_CAP:
3767 if (hw->phy.media_type != e1000_media_type_copper) {
3768 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3769 } else {
3770 mac_prop_info_set_default_uint8(prh,
3771 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0);
3772 }
3773 break;
3774
3775 case MAC_PROP_EN_1000HDX_CAP:
3776 if (hw->phy.media_type != e1000_media_type_copper)
3777 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3778 break;
3779
3780 case MAC_PROP_AUTONEG:
3781 if (hw->phy.media_type != e1000_media_type_copper) {
3782 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3783 } else {
3784 mac_prop_info_set_default_uint8(prh,
3785 (Adapter->phy_status & MII_SR_AUTONEG_CAPS)
3786 ? 1 : 0);
3787 }
3788 break;
3789
3790 case MAC_PROP_FLOWCTRL:
3791 mac_prop_info_set_default_link_flowctrl(prh, LINK_FLOWCTRL_BI);
3792 break;
3793
3794 case MAC_PROP_MTU: {
3795 struct e1000_mac_info *mac = &Adapter->shared.mac;
3796 struct e1000_phy_info *phy = &Adapter->shared.phy;
3797 uint32_t max;
3798
3799 /* some MAC types do not support jumbo frames */
3800 if ((mac->type == e1000_ich8lan) ||
3801 ((mac->type == e1000_ich9lan) && (phy->type ==
3802 e1000_phy_ife))) {
3803 max = DEFAULT_MTU;
3804 } else {
3805 max = Adapter->max_mtu;
3806 }
3807
3808 mac_prop_info_set_range_uint32(prh, DEFAULT_MTU, max);
3809 break;
3810 }
3811 case MAC_PROP_PRIVATE: {
3812 char valstr[64];
3813 int value;
3814
3815 if (strcmp(pr_name, "_adv_pause_cap") == 0 ||
3816 strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
3817 mac_prop_info_set_perm(prh, MAC_PROP_PERM_READ);
3818 return;
3819 } else if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3820 value = DEFAULT_TX_BCOPY_THRESHOLD;
3821 } else if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3822 value = DEFAULT_TX_INTR_ENABLE;
3823 } else if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3824 value = DEFAULT_TX_INTR_DELAY;
3825 } else if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3826 value = DEFAULT_TX_INTR_ABS_DELAY;
3827 } else if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3828 value = DEFAULT_RX_BCOPY_THRESHOLD;
3829 } else if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3830 value = DEFAULT_RX_LIMIT_ON_INTR;
3831 } else if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3832 value = DEFAULT_RX_INTR_DELAY;
3833 } else if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3834 value = DEFAULT_RX_INTR_ABS_DELAY;
3835 } else if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
3836 value = DEFAULT_INTR_THROTTLING;
3837 } else if (strcmp(pr_name, "_intr_adaptive") == 0) {
3838 value = 1;
3839 } else {
3840 return;
3841 }
3842
3843 (void) snprintf(valstr, sizeof (valstr), "%d", value);
3844 mac_prop_info_set_default_str(prh, valstr);
3845 break;
3846 }
3847 }
3848 }
3849
3850 /* ARGSUSED2 */
3851 static int
e1000g_set_priv_prop(struct e1000g * Adapter,const char * pr_name,uint_t pr_valsize,const void * pr_val)3852 e1000g_set_priv_prop(struct e1000g *Adapter, const char *pr_name,
3853 uint_t pr_valsize, const void *pr_val)
3854 {
3855 int err = 0;
3856 long result;
3857 struct e1000_hw *hw = &Adapter->shared;
3858
3859 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
3860 if (pr_val == NULL) {
3861 err = EINVAL;
3862 return (err);
3863 }
3864 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3865 if (result < MIN_TX_BCOPY_THRESHOLD ||
3866 result > MAX_TX_BCOPY_THRESHOLD)
3867 err = EINVAL;
3868 else {
3869 Adapter->tx_bcopy_thresh = (uint32_t)result;
3870 }
3871 return (err);
3872 }
3873 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
3874 if (pr_val == NULL) {
3875 err = EINVAL;
3876 return (err);
3877 }
3878 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3879 if (result < 0 || result > 1)
3880 err = EINVAL;
3881 else {
3882 Adapter->tx_intr_enable = (result == 1) ?
3883 B_TRUE: B_FALSE;
3884 if (Adapter->tx_intr_enable)
3885 e1000g_mask_tx_interrupt(Adapter);
3886 else
3887 e1000g_clear_tx_interrupt(Adapter);
3888 if (e1000g_check_acc_handle(
3889 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3890 ddi_fm_service_impact(Adapter->dip,
3891 DDI_SERVICE_DEGRADED);
3892 err = EIO;
3893 }
3894 }
3895 return (err);
3896 }
3897 if (strcmp(pr_name, "_tx_intr_delay") == 0) {
3898 if (pr_val == NULL) {
3899 err = EINVAL;
3900 return (err);
3901 }
3902 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3903 if (result < MIN_TX_INTR_DELAY ||
3904 result > MAX_TX_INTR_DELAY)
3905 err = EINVAL;
3906 else {
3907 Adapter->tx_intr_delay = (uint32_t)result;
3908 E1000_WRITE_REG(hw, E1000_TIDV, Adapter->tx_intr_delay);
3909 if (e1000g_check_acc_handle(
3910 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3911 ddi_fm_service_impact(Adapter->dip,
3912 DDI_SERVICE_DEGRADED);
3913 err = EIO;
3914 }
3915 }
3916 return (err);
3917 }
3918 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
3919 if (pr_val == NULL) {
3920 err = EINVAL;
3921 return (err);
3922 }
3923 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3924 if (result < MIN_TX_INTR_ABS_DELAY ||
3925 result > MAX_TX_INTR_ABS_DELAY)
3926 err = EINVAL;
3927 else {
3928 Adapter->tx_intr_abs_delay = (uint32_t)result;
3929 E1000_WRITE_REG(hw, E1000_TADV,
3930 Adapter->tx_intr_abs_delay);
3931 if (e1000g_check_acc_handle(
3932 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3933 ddi_fm_service_impact(Adapter->dip,
3934 DDI_SERVICE_DEGRADED);
3935 err = EIO;
3936 }
3937 }
3938 return (err);
3939 }
3940 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
3941 if (pr_val == NULL) {
3942 err = EINVAL;
3943 return (err);
3944 }
3945 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3946 if (result < MIN_RX_BCOPY_THRESHOLD ||
3947 result > MAX_RX_BCOPY_THRESHOLD)
3948 err = EINVAL;
3949 else
3950 Adapter->rx_bcopy_thresh = (uint32_t)result;
3951 return (err);
3952 }
3953 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
3954 if (pr_val == NULL) {
3955 err = EINVAL;
3956 return (err);
3957 }
3958 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3959 if (result < MIN_RX_LIMIT_ON_INTR ||
3960 result > MAX_RX_LIMIT_ON_INTR)
3961 err = EINVAL;
3962 else
3963 Adapter->rx_limit_onintr = (uint32_t)result;
3964 return (err);
3965 }
3966 if (strcmp(pr_name, "_rx_intr_delay") == 0) {
3967 if (pr_val == NULL) {
3968 err = EINVAL;
3969 return (err);
3970 }
3971 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3972 if (result < MIN_RX_INTR_DELAY ||
3973 result > MAX_RX_INTR_DELAY)
3974 err = EINVAL;
3975 else {
3976 Adapter->rx_intr_delay = (uint32_t)result;
3977 E1000_WRITE_REG(hw, E1000_RDTR, Adapter->rx_intr_delay);
3978 if (e1000g_check_acc_handle(
3979 Adapter->osdep.reg_handle) != DDI_FM_OK) {
3980 ddi_fm_service_impact(Adapter->dip,
3981 DDI_SERVICE_DEGRADED);
3982 err = EIO;
3983 }
3984 }
3985 return (err);
3986 }
3987 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
3988 if (pr_val == NULL) {
3989 err = EINVAL;
3990 return (err);
3991 }
3992 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
3993 if (result < MIN_RX_INTR_ABS_DELAY ||
3994 result > MAX_RX_INTR_ABS_DELAY)
3995 err = EINVAL;
3996 else {
3997 Adapter->rx_intr_abs_delay = (uint32_t)result;
3998 E1000_WRITE_REG(hw, E1000_RADV,
3999 Adapter->rx_intr_abs_delay);
4000 if (e1000g_check_acc_handle(
4001 Adapter->osdep.reg_handle) != DDI_FM_OK) {
4002 ddi_fm_service_impact(Adapter->dip,
4003 DDI_SERVICE_DEGRADED);
4004 err = EIO;
4005 }
4006 }
4007 return (err);
4008 }
4009 if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4010 if (pr_val == NULL) {
4011 err = EINVAL;
4012 return (err);
4013 }
4014 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4015 if (result < MIN_INTR_THROTTLING ||
4016 result > MAX_INTR_THROTTLING)
4017 err = EINVAL;
4018 else {
4019 if (hw->mac.type >= e1000_82540) {
4020 Adapter->intr_throttling_rate =
4021 (uint32_t)result;
4022 E1000_WRITE_REG(hw, E1000_ITR,
4023 Adapter->intr_throttling_rate);
4024 if (e1000g_check_acc_handle(
4025 Adapter->osdep.reg_handle) != DDI_FM_OK) {
4026 ddi_fm_service_impact(Adapter->dip,
4027 DDI_SERVICE_DEGRADED);
4028 err = EIO;
4029 }
4030 } else
4031 err = EINVAL;
4032 }
4033 return (err);
4034 }
4035 if (strcmp(pr_name, "_intr_adaptive") == 0) {
4036 if (pr_val == NULL) {
4037 err = EINVAL;
4038 return (err);
4039 }
4040 (void) ddi_strtol(pr_val, (char **)NULL, 0, &result);
4041 if (result < 0 || result > 1)
4042 err = EINVAL;
4043 else {
4044 if (hw->mac.type >= e1000_82540) {
4045 Adapter->intr_adaptive = (result == 1) ?
4046 B_TRUE : B_FALSE;
4047 } else {
4048 err = EINVAL;
4049 }
4050 }
4051 return (err);
4052 }
4053 return (ENOTSUP);
4054 }
4055
4056 static int
e1000g_get_priv_prop(struct e1000g * Adapter,const char * pr_name,uint_t pr_valsize,void * pr_val)4057 e1000g_get_priv_prop(struct e1000g *Adapter, const char *pr_name,
4058 uint_t pr_valsize, void *pr_val)
4059 {
4060 int err = ENOTSUP;
4061 int value;
4062
4063 if (strcmp(pr_name, "_adv_pause_cap") == 0) {
4064 value = Adapter->param_adv_pause;
4065 err = 0;
4066 goto done;
4067 }
4068 if (strcmp(pr_name, "_adv_asym_pause_cap") == 0) {
4069 value = Adapter->param_adv_asym_pause;
4070 err = 0;
4071 goto done;
4072 }
4073 if (strcmp(pr_name, "_tx_bcopy_threshold") == 0) {
4074 value = Adapter->tx_bcopy_thresh;
4075 err = 0;
4076 goto done;
4077 }
4078 if (strcmp(pr_name, "_tx_interrupt_enable") == 0) {
4079 value = Adapter->tx_intr_enable;
4080 err = 0;
4081 goto done;
4082 }
4083 if (strcmp(pr_name, "_tx_intr_delay") == 0) {
4084 value = Adapter->tx_intr_delay;
4085 err = 0;
4086 goto done;
4087 }
4088 if (strcmp(pr_name, "_tx_intr_abs_delay") == 0) {
4089 value = Adapter->tx_intr_abs_delay;
4090 err = 0;
4091 goto done;
4092 }
4093 if (strcmp(pr_name, "_rx_bcopy_threshold") == 0) {
4094 value = Adapter->rx_bcopy_thresh;
4095 err = 0;
4096 goto done;
4097 }
4098 if (strcmp(pr_name, "_max_num_rcv_packets") == 0) {
4099 value = Adapter->rx_limit_onintr;
4100 err = 0;
4101 goto done;
4102 }
4103 if (strcmp(pr_name, "_rx_intr_delay") == 0) {
4104 value = Adapter->rx_intr_delay;
4105 err = 0;
4106 goto done;
4107 }
4108 if (strcmp(pr_name, "_rx_intr_abs_delay") == 0) {
4109 value = Adapter->rx_intr_abs_delay;
4110 err = 0;
4111 goto done;
4112 }
4113 if (strcmp(pr_name, "_intr_throttling_rate") == 0) {
4114 value = Adapter->intr_throttling_rate;
4115 err = 0;
4116 goto done;
4117 }
4118 if (strcmp(pr_name, "_intr_adaptive") == 0) {
4119 value = Adapter->intr_adaptive;
4120 err = 0;
4121 goto done;
4122 }
4123 done:
4124 if (err == 0) {
4125 (void) snprintf(pr_val, pr_valsize, "%d", value);
4126 }
4127 return (err);
4128 }
4129
4130 /*
4131 * e1000g_get_conf - get configurations set in e1000g.conf
4132 * This routine gets user-configured values out of the configuration
4133 * file e1000g.conf.
4134 *
4135 * For each configurable value, there is a minimum, a maximum, and a
4136 * default.
4137 * If user does not configure a value, use the default.
4138 * If user configures below the minimum, use the minumum.
4139 * If user configures above the maximum, use the maxumum.
4140 */
4141 static void
e1000g_get_conf(struct e1000g * Adapter)4142 e1000g_get_conf(struct e1000g *Adapter)
4143 {
4144 struct e1000_hw *hw = &Adapter->shared;
4145 boolean_t tbi_compatibility = B_FALSE;
4146 boolean_t is_jumbo = B_FALSE;
4147 int propval;
4148 /*
4149 * decrease the number of descriptors and free packets
4150 * for jumbo frames to reduce tx/rx resource consumption
4151 */
4152 if (Adapter->max_frame_size >= FRAME_SIZE_UPTO_4K) {
4153 is_jumbo = B_TRUE;
4154 }
4155
4156 /*
4157 * get each configurable property from e1000g.conf
4158 */
4159
4160 /*
4161 * NumTxDescriptors
4162 */
4163 Adapter->tx_desc_num_flag =
4164 e1000g_get_prop(Adapter, "NumTxDescriptors",
4165 MIN_NUM_TX_DESCRIPTOR, MAX_NUM_TX_DESCRIPTOR,
4166 is_jumbo ? DEFAULT_JUMBO_NUM_TX_DESC
4167 : DEFAULT_NUM_TX_DESCRIPTOR, &propval);
4168 Adapter->tx_desc_num = propval;
4169
4170 /*
4171 * NumRxDescriptors
4172 */
4173 Adapter->rx_desc_num_flag =
4174 e1000g_get_prop(Adapter, "NumRxDescriptors",
4175 MIN_NUM_RX_DESCRIPTOR, MAX_NUM_RX_DESCRIPTOR,
4176 is_jumbo ? DEFAULT_JUMBO_NUM_RX_DESC
4177 : DEFAULT_NUM_RX_DESCRIPTOR, &propval);
4178 Adapter->rx_desc_num = propval;
4179
4180 /*
4181 * NumRxFreeList
4182 */
4183 Adapter->rx_buf_num_flag =
4184 e1000g_get_prop(Adapter, "NumRxFreeList",
4185 MIN_NUM_RX_FREELIST, MAX_NUM_RX_FREELIST,
4186 is_jumbo ? DEFAULT_JUMBO_NUM_RX_BUF
4187 : DEFAULT_NUM_RX_FREELIST, &propval);
4188 Adapter->rx_freelist_limit = propval;
4189
4190 /*
4191 * NumTxPacketList
4192 */
4193 Adapter->tx_buf_num_flag =
4194 e1000g_get_prop(Adapter, "NumTxPacketList",
4195 MIN_NUM_TX_FREELIST, MAX_NUM_TX_FREELIST,
4196 is_jumbo ? DEFAULT_JUMBO_NUM_TX_BUF
4197 : DEFAULT_NUM_TX_FREELIST, &propval);
4198 Adapter->tx_freelist_num = propval;
4199
4200 /*
4201 * FlowControl
4202 */
4203 hw->fc.send_xon = B_TRUE;
4204 (void) e1000g_get_prop(Adapter, "FlowControl",
4205 e1000_fc_none, 4, DEFAULT_FLOW_CONTROL, &propval);
4206 hw->fc.requested_mode = propval;
4207 /* 4 is the setting that says "let the eeprom decide" */
4208 if (hw->fc.requested_mode == 4)
4209 hw->fc.requested_mode = e1000_fc_default;
4210
4211 /*
4212 * Max Num Receive Packets on Interrupt
4213 */
4214 (void) e1000g_get_prop(Adapter, "MaxNumReceivePackets",
4215 MIN_RX_LIMIT_ON_INTR, MAX_RX_LIMIT_ON_INTR,
4216 DEFAULT_RX_LIMIT_ON_INTR, &propval);
4217 Adapter->rx_limit_onintr = propval;
4218
4219 /*
4220 * PHY master slave setting
4221 */
4222 (void) e1000g_get_prop(Adapter, "SetMasterSlave",
4223 e1000_ms_hw_default, e1000_ms_auto,
4224 e1000_ms_hw_default, &propval);
4225 hw->phy.ms_type = propval;
4226
4227 /*
4228 * Parameter which controls TBI mode workaround, which is only
4229 * needed on certain switches such as Cisco 6500/Foundry
4230 */
4231 (void) e1000g_get_prop(Adapter, "TbiCompatibilityEnable",
4232 0, 1, DEFAULT_TBI_COMPAT_ENABLE, &propval);
4233 tbi_compatibility = (propval == 1);
4234 e1000_set_tbi_compatibility_82543(hw, tbi_compatibility);
4235
4236 /*
4237 * MSI Enable
4238 */
4239 (void) e1000g_get_prop(Adapter, "MSIEnable",
4240 0, 1, DEFAULT_MSI_ENABLE, &propval);
4241 Adapter->msi_enable = (propval == 1);
4242
4243 /*
4244 * Interrupt Throttling Rate
4245 */
4246 (void) e1000g_get_prop(Adapter, "intr_throttling_rate",
4247 MIN_INTR_THROTTLING, MAX_INTR_THROTTLING,
4248 DEFAULT_INTR_THROTTLING, &propval);
4249 Adapter->intr_throttling_rate = propval;
4250
4251 /*
4252 * Adaptive Interrupt Blanking Enable/Disable
4253 * It is enabled by default
4254 */
4255 (void) e1000g_get_prop(Adapter, "intr_adaptive", 0, 1, 1,
4256 &propval);
4257 Adapter->intr_adaptive = (propval == 1);
4258
4259 /*
4260 * Hardware checksum enable/disable parameter
4261 */
4262 (void) e1000g_get_prop(Adapter, "tx_hcksum_enable",
4263 0, 1, DEFAULT_TX_HCKSUM_ENABLE, &propval);
4264 Adapter->tx_hcksum_enable = (propval == 1);
4265 /*
4266 * Checksum on/off selection via global parameters.
4267 *
4268 * If the chip is flagged as not capable of (correctly)
4269 * handling checksumming, we don't enable it on either
4270 * Rx or Tx side. Otherwise, we take this chip's settings
4271 * from the patchable global defaults.
4272 *
4273 * We advertise our capabilities only if TX offload is
4274 * enabled. On receive, the stack will accept checksummed
4275 * packets anyway, even if we haven't said we can deliver
4276 * them.
4277 */
4278 switch (hw->mac.type) {
4279 case e1000_82540:
4280 case e1000_82544:
4281 case e1000_82545:
4282 case e1000_82545_rev_3:
4283 case e1000_82546:
4284 case e1000_82546_rev_3:
4285 case e1000_82571:
4286 case e1000_82572:
4287 case e1000_82573:
4288 case e1000_80003es2lan:
4289 break;
4290 /*
4291 * For the following Intel PRO/1000 chipsets, we have not
4292 * tested the hardware checksum offload capability, so we
4293 * disable the capability for them.
4294 * e1000_82542,
4295 * e1000_82543,
4296 * e1000_82541,
4297 * e1000_82541_rev_2,
4298 * e1000_82547,
4299 * e1000_82547_rev_2,
4300 */
4301 default:
4302 Adapter->tx_hcksum_enable = B_FALSE;
4303 }
4304
4305 /*
4306 * Large Send Offloading(LSO) Enable/Disable
4307 * If the tx hardware checksum is not enabled, LSO should be
4308 * disabled.
4309 */
4310 (void) e1000g_get_prop(Adapter, "lso_enable",
4311 0, 1, DEFAULT_LSO_ENABLE, &propval);
4312 Adapter->lso_enable = (propval == 1);
4313
4314 switch (hw->mac.type) {
4315 case e1000_82546:
4316 case e1000_82546_rev_3:
4317 if (Adapter->lso_enable)
4318 Adapter->lso_premature_issue = B_TRUE;
4319 /* FALLTHRU */
4320 case e1000_82571:
4321 case e1000_82572:
4322 case e1000_82573:
4323 case e1000_80003es2lan:
4324 break;
4325 default:
4326 Adapter->lso_enable = B_FALSE;
4327 }
4328
4329 if (!Adapter->tx_hcksum_enable) {
4330 Adapter->lso_premature_issue = B_FALSE;
4331 Adapter->lso_enable = B_FALSE;
4332 }
4333
4334 /*
4335 * If mem_workaround_82546 is enabled, the rx buffer allocated by
4336 * e1000_82545, e1000_82546 and e1000_82546_rev_3
4337 * will not cross 64k boundary.
4338 */
4339 (void) e1000g_get_prop(Adapter, "mem_workaround_82546",
4340 0, 1, DEFAULT_MEM_WORKAROUND_82546, &propval);
4341 Adapter->mem_workaround_82546 = (propval == 1);
4342
4343 /*
4344 * Max number of multicast addresses
4345 */
4346 (void) e1000g_get_prop(Adapter, "mcast_max_num",
4347 MIN_MCAST_NUM, MAX_MCAST_NUM, hw->mac.mta_reg_count * 32,
4348 &propval);
4349 Adapter->mcast_max_num = propval;
4350 }
4351
4352 /*
4353 * e1000g_get_prop - routine to read properties
4354 *
4355 * Get a user-configure property value out of the configuration
4356 * file e1000g.conf.
4357 *
4358 * Caller provides name of the property, a default value, a minimum
4359 * value, a maximum value and a pointer to the returned property
4360 * value.
4361 *
4362 * Return B_TRUE if the configured value of the property is not a default
4363 * value, otherwise return B_FALSE.
4364 */
4365 static boolean_t
e1000g_get_prop(struct e1000g * Adapter,char * propname,int minval,int maxval,int defval,int * propvalue)4366 e1000g_get_prop(struct e1000g *Adapter, /* point to per-adapter structure */
4367 char *propname, /* name of the property */
4368 int minval, /* minimum acceptable value */
4369 int maxval, /* maximim acceptable value */
4370 int defval, /* default value */
4371 int *propvalue) /* property value return to caller */
4372 {
4373 int propval; /* value returned for requested property */
4374 int *props; /* point to array of properties returned */
4375 uint_t nprops; /* number of property value returned */
4376 boolean_t ret = B_TRUE;
4377
4378 /*
4379 * get the array of properties from the config file
4380 */
4381 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, Adapter->dip,
4382 DDI_PROP_DONTPASS, propname, &props, &nprops) == DDI_PROP_SUCCESS) {
4383 /* got some properties, test if we got enough */
4384 if (Adapter->instance < nprops) {
4385 propval = props[Adapter->instance];
4386 } else {
4387 /* not enough properties configured */
4388 propval = defval;
4389 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4390 "Not Enough %s values found in e1000g.conf"
4391 " - set to %d\n",
4392 propname, propval);
4393 ret = B_FALSE;
4394 }
4395
4396 /* free memory allocated for properties */
4397 ddi_prop_free(props);
4398
4399 } else {
4400 propval = defval;
4401 ret = B_FALSE;
4402 }
4403
4404 /*
4405 * enforce limits
4406 */
4407 if (propval > maxval) {
4408 propval = maxval;
4409 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4410 "Too High %s value in e1000g.conf - set to %d\n",
4411 propname, propval);
4412 }
4413
4414 if (propval < minval) {
4415 propval = minval;
4416 E1000G_DEBUGLOG_2(Adapter, E1000G_INFO_LEVEL,
4417 "Too Low %s value in e1000g.conf - set to %d\n",
4418 propname, propval);
4419 }
4420
4421 *propvalue = propval;
4422 return (ret);
4423 }
4424
4425 static boolean_t
e1000g_link_check(struct e1000g * Adapter)4426 e1000g_link_check(struct e1000g *Adapter)
4427 {
4428 uint16_t speed, duplex, phydata;
4429 boolean_t link_changed = B_FALSE;
4430 struct e1000_hw *hw;
4431 uint32_t reg_tarc;
4432
4433 hw = &Adapter->shared;
4434
4435 if (e1000g_link_up(Adapter)) {
4436 /*
4437 * The Link is up, check whether it was marked as down earlier
4438 */
4439 if (Adapter->link_state != LINK_STATE_UP) {
4440 (void) e1000_get_speed_and_duplex(hw, &speed, &duplex);
4441 Adapter->link_speed = speed;
4442 Adapter->link_duplex = duplex;
4443 Adapter->link_state = LINK_STATE_UP;
4444 link_changed = B_TRUE;
4445
4446 if (Adapter->link_speed == SPEED_1000)
4447 Adapter->stall_threshold = TX_STALL_TIME_2S;
4448 else
4449 Adapter->stall_threshold = TX_STALL_TIME_8S;
4450
4451 Adapter->tx_link_down_timeout = 0;
4452
4453 if ((hw->mac.type == e1000_82571) ||
4454 (hw->mac.type == e1000_82572)) {
4455 reg_tarc = E1000_READ_REG(hw, E1000_TARC(0));
4456 if (speed == SPEED_1000)
4457 reg_tarc |= (1 << 21);
4458 else
4459 reg_tarc &= ~(1 << 21);
4460 E1000_WRITE_REG(hw, E1000_TARC(0), reg_tarc);
4461 }
4462 }
4463 Adapter->smartspeed = 0;
4464 } else {
4465 if (Adapter->link_state != LINK_STATE_DOWN) {
4466 Adapter->link_speed = 0;
4467 Adapter->link_duplex = 0;
4468 Adapter->link_state = LINK_STATE_DOWN;
4469 link_changed = B_TRUE;
4470
4471 /*
4472 * SmartSpeed workaround for Tabor/TanaX, When the
4473 * driver loses link disable auto master/slave
4474 * resolution.
4475 */
4476 if (hw->phy.type == e1000_phy_igp) {
4477 (void) e1000_read_phy_reg(hw,
4478 PHY_1000T_CTRL, &phydata);
4479 phydata |= CR_1000T_MS_ENABLE;
4480 (void) e1000_write_phy_reg(hw,
4481 PHY_1000T_CTRL, phydata);
4482 }
4483 } else {
4484 e1000g_smartspeed(Adapter);
4485 }
4486
4487 if (Adapter->e1000g_state & E1000G_STARTED) {
4488 if (Adapter->tx_link_down_timeout <
4489 MAX_TX_LINK_DOWN_TIMEOUT) {
4490 Adapter->tx_link_down_timeout++;
4491 } else if (Adapter->tx_link_down_timeout ==
4492 MAX_TX_LINK_DOWN_TIMEOUT) {
4493 e1000g_tx_clean(Adapter);
4494 Adapter->tx_link_down_timeout++;
4495 }
4496 }
4497 }
4498
4499 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4500 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4501
4502 return (link_changed);
4503 }
4504
4505 /*
4506 * e1000g_reset_link - Using the link properties to setup the link
4507 */
4508 int
e1000g_reset_link(struct e1000g * Adapter)4509 e1000g_reset_link(struct e1000g *Adapter)
4510 {
4511 struct e1000_mac_info *mac;
4512 struct e1000_phy_info *phy;
4513 struct e1000_hw *hw;
4514 boolean_t invalid;
4515
4516 mac = &Adapter->shared.mac;
4517 phy = &Adapter->shared.phy;
4518 hw = &Adapter->shared;
4519 invalid = B_FALSE;
4520
4521 if (hw->phy.media_type != e1000_media_type_copper)
4522 goto out;
4523
4524 if (Adapter->param_adv_autoneg == 1) {
4525 mac->autoneg = B_TRUE;
4526 phy->autoneg_advertised = 0;
4527
4528 /*
4529 * 1000hdx is not supported for autonegotiation
4530 */
4531 if (Adapter->param_adv_1000fdx == 1)
4532 phy->autoneg_advertised |= ADVERTISE_1000_FULL;
4533
4534 if (Adapter->param_adv_100fdx == 1)
4535 phy->autoneg_advertised |= ADVERTISE_100_FULL;
4536
4537 if (Adapter->param_adv_100hdx == 1)
4538 phy->autoneg_advertised |= ADVERTISE_100_HALF;
4539
4540 if (Adapter->param_adv_10fdx == 1)
4541 phy->autoneg_advertised |= ADVERTISE_10_FULL;
4542
4543 if (Adapter->param_adv_10hdx == 1)
4544 phy->autoneg_advertised |= ADVERTISE_10_HALF;
4545
4546 if (phy->autoneg_advertised == 0)
4547 invalid = B_TRUE;
4548 } else {
4549 mac->autoneg = B_FALSE;
4550
4551 /*
4552 * For Intel copper cards, 1000fdx and 1000hdx are not
4553 * supported for forced link
4554 */
4555 if (Adapter->param_adv_100fdx == 1)
4556 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4557 else if (Adapter->param_adv_100hdx == 1)
4558 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4559 else if (Adapter->param_adv_10fdx == 1)
4560 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4561 else if (Adapter->param_adv_10hdx == 1)
4562 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4563 else
4564 invalid = B_TRUE;
4565
4566 }
4567
4568 if (invalid) {
4569 e1000g_log(Adapter, CE_WARN,
4570 "Invalid link settings. Setup link to "
4571 "support autonegotiation with all link capabilities.");
4572 mac->autoneg = B_TRUE;
4573 phy->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
4574 }
4575
4576 out:
4577 return (e1000_setup_link(&Adapter->shared));
4578 }
4579
4580 static void
e1000g_timer_tx_resched(struct e1000g * Adapter)4581 e1000g_timer_tx_resched(struct e1000g *Adapter)
4582 {
4583 e1000g_tx_ring_t *tx_ring = Adapter->tx_ring;
4584
4585 rw_enter(&Adapter->chip_lock, RW_READER);
4586
4587 if (tx_ring->resched_needed &&
4588 ((ddi_get_lbolt() - tx_ring->resched_timestamp) >
4589 drv_usectohz(1000000)) &&
4590 (Adapter->e1000g_state & E1000G_STARTED) &&
4591 (tx_ring->tbd_avail >= DEFAULT_TX_NO_RESOURCE)) {
4592 tx_ring->resched_needed = B_FALSE;
4593 mac_tx_update(Adapter->mh);
4594 E1000G_STAT(tx_ring->stat_reschedule);
4595 E1000G_STAT(tx_ring->stat_timer_reschedule);
4596 }
4597
4598 rw_exit(&Adapter->chip_lock);
4599 }
4600
4601 static void
e1000g_local_timer(void * ws)4602 e1000g_local_timer(void *ws)
4603 {
4604 struct e1000g *Adapter = (struct e1000g *)ws;
4605 struct e1000_hw *hw;
4606 e1000g_ether_addr_t ether_addr;
4607 boolean_t link_changed;
4608
4609 hw = &Adapter->shared;
4610
4611 if (Adapter->e1000g_state & E1000G_ERROR) {
4612 rw_enter(&Adapter->chip_lock, RW_WRITER);
4613 Adapter->e1000g_state &= ~E1000G_ERROR;
4614 rw_exit(&Adapter->chip_lock);
4615
4616 Adapter->reset_count++;
4617 if (e1000g_global_reset(Adapter)) {
4618 ddi_fm_service_impact(Adapter->dip,
4619 DDI_SERVICE_RESTORED);
4620 e1000g_timer_tx_resched(Adapter);
4621 } else
4622 ddi_fm_service_impact(Adapter->dip,
4623 DDI_SERVICE_LOST);
4624 return;
4625 }
4626
4627 if (e1000g_stall_check(Adapter)) {
4628 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
4629 "Tx stall detected. Activate automatic recovery.\n");
4630 e1000g_fm_ereport(Adapter, DDI_FM_DEVICE_STALL);
4631 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_LOST);
4632 Adapter->reset_count++;
4633 if (e1000g_reset_adapter(Adapter)) {
4634 ddi_fm_service_impact(Adapter->dip,
4635 DDI_SERVICE_RESTORED);
4636 e1000g_timer_tx_resched(Adapter);
4637 }
4638 return;
4639 }
4640
4641 link_changed = B_FALSE;
4642 rw_enter(&Adapter->chip_lock, RW_READER);
4643 if (Adapter->link_complete)
4644 link_changed = e1000g_link_check(Adapter);
4645 rw_exit(&Adapter->chip_lock);
4646
4647 if (link_changed) {
4648 if (!Adapter->reset_flag &&
4649 (Adapter->e1000g_state & E1000G_STARTED) &&
4650 !(Adapter->e1000g_state & E1000G_SUSPENDED))
4651 mac_link_update(Adapter->mh, Adapter->link_state);
4652 if (Adapter->link_state == LINK_STATE_UP)
4653 Adapter->reset_flag = B_FALSE;
4654 }
4655 /*
4656 * Workaround for esb2. Data stuck in fifo on a link
4657 * down event. Reset the adapter to recover it.
4658 */
4659 if (Adapter->esb2_workaround) {
4660 Adapter->esb2_workaround = B_FALSE;
4661 (void) e1000g_reset_adapter(Adapter);
4662 return;
4663 }
4664
4665 /*
4666 * With 82571 controllers, any locally administered address will
4667 * be overwritten when there is a reset on the other port.
4668 * Detect this circumstance and correct it.
4669 */
4670 if ((hw->mac.type == e1000_82571) &&
4671 (e1000_get_laa_state_82571(hw) == B_TRUE)) {
4672 ether_addr.reg.low = E1000_READ_REG_ARRAY(hw, E1000_RA, 0);
4673 ether_addr.reg.high = E1000_READ_REG_ARRAY(hw, E1000_RA, 1);
4674
4675 ether_addr.reg.low = ntohl(ether_addr.reg.low);
4676 ether_addr.reg.high = ntohl(ether_addr.reg.high);
4677
4678 if ((ether_addr.mac.addr[5] != hw->mac.addr[0]) ||
4679 (ether_addr.mac.addr[4] != hw->mac.addr[1]) ||
4680 (ether_addr.mac.addr[3] != hw->mac.addr[2]) ||
4681 (ether_addr.mac.addr[2] != hw->mac.addr[3]) ||
4682 (ether_addr.mac.addr[1] != hw->mac.addr[4]) ||
4683 (ether_addr.mac.addr[0] != hw->mac.addr[5])) {
4684 (void) e1000_rar_set(hw, hw->mac.addr, 0);
4685 }
4686 }
4687
4688 /*
4689 * Long TTL workaround for 82541/82547
4690 */
4691 (void) e1000_igp_ttl_workaround_82547(hw);
4692
4693 /*
4694 * Check for Adaptive IFS settings If there are lots of collisions
4695 * change the value in steps...
4696 * These properties should only be set for 10/100
4697 */
4698 if ((hw->phy.media_type == e1000_media_type_copper) &&
4699 ((Adapter->link_speed == SPEED_100) ||
4700 (Adapter->link_speed == SPEED_10))) {
4701 e1000_update_adaptive(hw);
4702 }
4703 /*
4704 * Set Timer Interrupts
4705 */
4706 E1000_WRITE_REG(hw, E1000_ICS, E1000_IMS_RXT0);
4707
4708 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK)
4709 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
4710 else
4711 e1000g_timer_tx_resched(Adapter);
4712
4713 restart_watchdog_timer(Adapter);
4714 }
4715
4716 /*
4717 * The function e1000g_link_timer() is called when the timer for link setup
4718 * is expired, which indicates the completion of the link setup. The link
4719 * state will not be updated until the link setup is completed. And the
4720 * link state will not be sent to the upper layer through mac_link_update()
4721 * in this function. It will be updated in the local timer routine or the
4722 * interrupt service routine after the interface is started (plumbed).
4723 */
4724 static void
e1000g_link_timer(void * arg)4725 e1000g_link_timer(void *arg)
4726 {
4727 struct e1000g *Adapter = (struct e1000g *)arg;
4728
4729 mutex_enter(&Adapter->link_lock);
4730 Adapter->link_complete = B_TRUE;
4731 Adapter->link_tid = 0;
4732 mutex_exit(&Adapter->link_lock);
4733 }
4734
4735 /*
4736 * e1000g_force_speed_duplex - read forced speed/duplex out of e1000g.conf
4737 *
4738 * This function read the forced speed and duplex for 10/100 Mbps speeds
4739 * and also for 1000 Mbps speeds from the e1000g.conf file
4740 */
4741 static void
e1000g_force_speed_duplex(struct e1000g * Adapter)4742 e1000g_force_speed_duplex(struct e1000g *Adapter)
4743 {
4744 int forced;
4745 int propval;
4746 struct e1000_mac_info *mac = &Adapter->shared.mac;
4747 struct e1000_phy_info *phy = &Adapter->shared.phy;
4748
4749 /*
4750 * get value out of config file
4751 */
4752 (void) e1000g_get_prop(Adapter, "ForceSpeedDuplex",
4753 GDIAG_10_HALF, GDIAG_ANY, GDIAG_ANY, &forced);
4754
4755 switch (forced) {
4756 case GDIAG_10_HALF:
4757 /*
4758 * Disable Auto Negotiation
4759 */
4760 mac->autoneg = B_FALSE;
4761 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4762 break;
4763 case GDIAG_10_FULL:
4764 /*
4765 * Disable Auto Negotiation
4766 */
4767 mac->autoneg = B_FALSE;
4768 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4769 break;
4770 case GDIAG_100_HALF:
4771 /*
4772 * Disable Auto Negotiation
4773 */
4774 mac->autoneg = B_FALSE;
4775 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4776 break;
4777 case GDIAG_100_FULL:
4778 /*
4779 * Disable Auto Negotiation
4780 */
4781 mac->autoneg = B_FALSE;
4782 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4783 break;
4784 case GDIAG_1000_FULL:
4785 /*
4786 * The gigabit spec requires autonegotiation. Therefore,
4787 * when the user wants to force the speed to 1000Mbps, we
4788 * enable AutoNeg, but only allow the harware to advertise
4789 * 1000Mbps. This is different from 10/100 operation, where
4790 * we are allowed to link without any negotiation.
4791 */
4792 mac->autoneg = B_TRUE;
4793 phy->autoneg_advertised = ADVERTISE_1000_FULL;
4794 break;
4795 default: /* obey the setting of AutoNegAdvertised */
4796 mac->autoneg = B_TRUE;
4797 (void) e1000g_get_prop(Adapter, "AutoNegAdvertised",
4798 0, AUTONEG_ADVERTISE_SPEED_DEFAULT,
4799 AUTONEG_ADVERTISE_SPEED_DEFAULT, &propval);
4800 phy->autoneg_advertised = (uint16_t)propval;
4801 break;
4802 } /* switch */
4803 }
4804
4805 /*
4806 * e1000g_get_max_frame_size - get jumbo frame setting from e1000g.conf
4807 *
4808 * This function reads MaxFrameSize from e1000g.conf
4809 */
4810 static void
e1000g_get_max_frame_size(struct e1000g * Adapter)4811 e1000g_get_max_frame_size(struct e1000g *Adapter)
4812 {
4813 int max_frame;
4814
4815 /*
4816 * get value out of config file
4817 */
4818 (void) e1000g_get_prop(Adapter, "MaxFrameSize", 0, 3, 0,
4819 &max_frame);
4820
4821 switch (max_frame) {
4822 case 0:
4823 Adapter->default_mtu = ETHERMTU;
4824 break;
4825 case 1:
4826 Adapter->default_mtu = FRAME_SIZE_UPTO_4K -
4827 sizeof (struct ether_vlan_header) - ETHERFCSL;
4828 break;
4829 case 2:
4830 Adapter->default_mtu = FRAME_SIZE_UPTO_8K -
4831 sizeof (struct ether_vlan_header) - ETHERFCSL;
4832 break;
4833 case 3:
4834 Adapter->default_mtu = FRAME_SIZE_UPTO_16K -
4835 sizeof (struct ether_vlan_header) - ETHERFCSL;
4836 break;
4837 default:
4838 Adapter->default_mtu = ETHERMTU;
4839 break;
4840 } /* switch */
4841
4842 /*
4843 * If the user configed MTU is larger than the deivce's maximum MTU,
4844 * the MTU is set to the deivce's maximum value.
4845 */
4846 if (Adapter->default_mtu > Adapter->max_mtu)
4847 Adapter->default_mtu = Adapter->max_mtu;
4848
4849 Adapter->max_frame_size = e1000g_mtu2maxframe(Adapter->default_mtu);
4850 }
4851
4852 /*
4853 * e1000g_pch_limits - Apply limits of the PCH silicon type
4854 *
4855 * At any frame size larger than the ethernet default,
4856 * prevent linking at 10/100 speeds.
4857 */
4858 static void
e1000g_pch_limits(struct e1000g * Adapter)4859 e1000g_pch_limits(struct e1000g *Adapter)
4860 {
4861 struct e1000_hw *hw = &Adapter->shared;
4862
4863 /* only applies to PCH silicon type */
4864 if (hw->mac.type != e1000_pchlan && hw->mac.type != e1000_pch2lan)
4865 return;
4866
4867 /* only applies to frames larger than ethernet default */
4868 if (Adapter->max_frame_size > DEFAULT_FRAME_SIZE) {
4869 hw->mac.autoneg = B_TRUE;
4870 hw->phy.autoneg_advertised = ADVERTISE_1000_FULL;
4871
4872 Adapter->param_adv_autoneg = 1;
4873 Adapter->param_adv_1000fdx = 1;
4874
4875 Adapter->param_adv_100fdx = 0;
4876 Adapter->param_adv_100hdx = 0;
4877 Adapter->param_adv_10fdx = 0;
4878 Adapter->param_adv_10hdx = 0;
4879
4880 e1000g_param_sync(Adapter);
4881 }
4882 }
4883
4884 /*
4885 * e1000g_mtu2maxframe - convert given MTU to maximum frame size
4886 */
4887 static uint32_t
e1000g_mtu2maxframe(uint32_t mtu)4888 e1000g_mtu2maxframe(uint32_t mtu)
4889 {
4890 uint32_t maxframe;
4891
4892 maxframe = mtu + sizeof (struct ether_vlan_header) + ETHERFCSL;
4893
4894 return (maxframe);
4895 }
4896
4897 static void
arm_watchdog_timer(struct e1000g * Adapter)4898 arm_watchdog_timer(struct e1000g *Adapter)
4899 {
4900 Adapter->watchdog_tid =
4901 timeout(e1000g_local_timer,
4902 (void *)Adapter, 1 * drv_usectohz(1000000));
4903 }
4904 #pragma inline(arm_watchdog_timer)
4905
4906 static void
enable_watchdog_timer(struct e1000g * Adapter)4907 enable_watchdog_timer(struct e1000g *Adapter)
4908 {
4909 mutex_enter(&Adapter->watchdog_lock);
4910
4911 if (!Adapter->watchdog_timer_enabled) {
4912 Adapter->watchdog_timer_enabled = B_TRUE;
4913 Adapter->watchdog_timer_started = B_TRUE;
4914 arm_watchdog_timer(Adapter);
4915 }
4916
4917 mutex_exit(&Adapter->watchdog_lock);
4918 }
4919
4920 static void
disable_watchdog_timer(struct e1000g * Adapter)4921 disable_watchdog_timer(struct e1000g *Adapter)
4922 {
4923 timeout_id_t tid;
4924
4925 mutex_enter(&Adapter->watchdog_lock);
4926
4927 Adapter->watchdog_timer_enabled = B_FALSE;
4928 Adapter->watchdog_timer_started = B_FALSE;
4929 tid = Adapter->watchdog_tid;
4930 Adapter->watchdog_tid = 0;
4931
4932 mutex_exit(&Adapter->watchdog_lock);
4933
4934 if (tid != 0)
4935 (void) untimeout(tid);
4936 }
4937
4938 static void
start_watchdog_timer(struct e1000g * Adapter)4939 start_watchdog_timer(struct e1000g *Adapter)
4940 {
4941 mutex_enter(&Adapter->watchdog_lock);
4942
4943 if (Adapter->watchdog_timer_enabled) {
4944 if (!Adapter->watchdog_timer_started) {
4945 Adapter->watchdog_timer_started = B_TRUE;
4946 arm_watchdog_timer(Adapter);
4947 }
4948 }
4949
4950 mutex_exit(&Adapter->watchdog_lock);
4951 }
4952
4953 static void
restart_watchdog_timer(struct e1000g * Adapter)4954 restart_watchdog_timer(struct e1000g *Adapter)
4955 {
4956 mutex_enter(&Adapter->watchdog_lock);
4957
4958 if (Adapter->watchdog_timer_started)
4959 arm_watchdog_timer(Adapter);
4960
4961 mutex_exit(&Adapter->watchdog_lock);
4962 }
4963
4964 static void
stop_watchdog_timer(struct e1000g * Adapter)4965 stop_watchdog_timer(struct e1000g *Adapter)
4966 {
4967 timeout_id_t tid;
4968
4969 mutex_enter(&Adapter->watchdog_lock);
4970
4971 Adapter->watchdog_timer_started = B_FALSE;
4972 tid = Adapter->watchdog_tid;
4973 Adapter->watchdog_tid = 0;
4974
4975 mutex_exit(&Adapter->watchdog_lock);
4976
4977 if (tid != 0)
4978 (void) untimeout(tid);
4979 }
4980
4981 static void
stop_link_timer(struct e1000g * Adapter)4982 stop_link_timer(struct e1000g *Adapter)
4983 {
4984 timeout_id_t tid;
4985
4986 /* Disable the link timer */
4987 mutex_enter(&Adapter->link_lock);
4988
4989 tid = Adapter->link_tid;
4990 Adapter->link_tid = 0;
4991
4992 mutex_exit(&Adapter->link_lock);
4993
4994 if (tid != 0)
4995 (void) untimeout(tid);
4996 }
4997
4998 static void
stop_82547_timer(e1000g_tx_ring_t * tx_ring)4999 stop_82547_timer(e1000g_tx_ring_t *tx_ring)
5000 {
5001 timeout_id_t tid;
5002
5003 /* Disable the tx timer for 82547 chipset */
5004 mutex_enter(&tx_ring->tx_lock);
5005
5006 tx_ring->timer_enable_82547 = B_FALSE;
5007 tid = tx_ring->timer_id_82547;
5008 tx_ring->timer_id_82547 = 0;
5009
5010 mutex_exit(&tx_ring->tx_lock);
5011
5012 if (tid != 0)
5013 (void) untimeout(tid);
5014 }
5015
5016 void
e1000g_clear_interrupt(struct e1000g * Adapter)5017 e1000g_clear_interrupt(struct e1000g *Adapter)
5018 {
5019 E1000_WRITE_REG(&Adapter->shared, E1000_IMC,
5020 0xffffffff & ~E1000_IMS_RXSEQ);
5021 }
5022
5023 void
e1000g_mask_interrupt(struct e1000g * Adapter)5024 e1000g_mask_interrupt(struct e1000g *Adapter)
5025 {
5026 E1000_WRITE_REG(&Adapter->shared, E1000_IMS,
5027 IMS_ENABLE_MASK & ~E1000_IMS_TXDW);
5028
5029 if (Adapter->tx_intr_enable)
5030 e1000g_mask_tx_interrupt(Adapter);
5031 }
5032
5033 /*
5034 * This routine is called by e1000g_quiesce(), therefore must not block.
5035 */
5036 void
e1000g_clear_all_interrupts(struct e1000g * Adapter)5037 e1000g_clear_all_interrupts(struct e1000g *Adapter)
5038 {
5039 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, 0xffffffff);
5040 }
5041
5042 void
e1000g_mask_tx_interrupt(struct e1000g * Adapter)5043 e1000g_mask_tx_interrupt(struct e1000g *Adapter)
5044 {
5045 E1000_WRITE_REG(&Adapter->shared, E1000_IMS, E1000_IMS_TXDW);
5046 }
5047
5048 void
e1000g_clear_tx_interrupt(struct e1000g * Adapter)5049 e1000g_clear_tx_interrupt(struct e1000g *Adapter)
5050 {
5051 E1000_WRITE_REG(&Adapter->shared, E1000_IMC, E1000_IMS_TXDW);
5052 }
5053
5054 static void
e1000g_smartspeed(struct e1000g * Adapter)5055 e1000g_smartspeed(struct e1000g *Adapter)
5056 {
5057 struct e1000_hw *hw = &Adapter->shared;
5058 uint16_t phy_status;
5059 uint16_t phy_ctrl;
5060
5061 /*
5062 * If we're not T-or-T, or we're not autoneg'ing, or we're not
5063 * advertising 1000Full, we don't even use the workaround
5064 */
5065 if ((hw->phy.type != e1000_phy_igp) ||
5066 !hw->mac.autoneg ||
5067 !(hw->phy.autoneg_advertised & ADVERTISE_1000_FULL))
5068 return;
5069
5070 /*
5071 * True if this is the first call of this function or after every
5072 * 30 seconds of not having link
5073 */
5074 if (Adapter->smartspeed == 0) {
5075 /*
5076 * If Master/Slave config fault is asserted twice, we
5077 * assume back-to-back
5078 */
5079 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5080 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5081 return;
5082
5083 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
5084 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
5085 return;
5086 /*
5087 * We're assuming back-2-back because our status register
5088 * insists! there's a fault in the master/slave
5089 * relationship that was "negotiated"
5090 */
5091 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5092 /*
5093 * Is the phy configured for manual configuration of
5094 * master/slave?
5095 */
5096 if (phy_ctrl & CR_1000T_MS_ENABLE) {
5097 /*
5098 * Yes. Then disable manual configuration (enable
5099 * auto configuration) of master/slave
5100 */
5101 phy_ctrl &= ~CR_1000T_MS_ENABLE;
5102 (void) e1000_write_phy_reg(hw,
5103 PHY_1000T_CTRL, phy_ctrl);
5104 /*
5105 * Effectively starting the clock
5106 */
5107 Adapter->smartspeed++;
5108 /*
5109 * Restart autonegotiation
5110 */
5111 if (!e1000_phy_setup_autoneg(hw) &&
5112 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5113 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
5114 MII_CR_RESTART_AUTO_NEG);
5115 (void) e1000_write_phy_reg(hw,
5116 PHY_CONTROL, phy_ctrl);
5117 }
5118 }
5119 return;
5120 /*
5121 * Has 6 seconds transpired still without link? Remember,
5122 * you should reset the smartspeed counter once you obtain
5123 * link
5124 */
5125 } else if (Adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
5126 /*
5127 * Yes. Remember, we did at the start determine that
5128 * there's a master/slave configuration fault, so we're
5129 * still assuming there's someone on the other end, but we
5130 * just haven't yet been able to talk to it. We then
5131 * re-enable auto configuration of master/slave to see if
5132 * we're running 2/3 pair cables.
5133 */
5134 /*
5135 * If still no link, perhaps using 2/3 pair cable
5136 */
5137 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
5138 phy_ctrl |= CR_1000T_MS_ENABLE;
5139 (void) e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
5140 /*
5141 * Restart autoneg with phy enabled for manual
5142 * configuration of master/slave
5143 */
5144 if (!e1000_phy_setup_autoneg(hw) &&
5145 !e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl)) {
5146 phy_ctrl |=
5147 (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
5148 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl);
5149 }
5150 /*
5151 * Hopefully, there are no more faults and we've obtained
5152 * link as a result.
5153 */
5154 }
5155 /*
5156 * Restart process after E1000_SMARTSPEED_MAX iterations (30
5157 * seconds)
5158 */
5159 if (Adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
5160 Adapter->smartspeed = 0;
5161 }
5162
5163 static boolean_t
is_valid_mac_addr(uint8_t * mac_addr)5164 is_valid_mac_addr(uint8_t *mac_addr)
5165 {
5166 const uint8_t addr_test1[6] = { 0, 0, 0, 0, 0, 0 };
5167 const uint8_t addr_test2[6] =
5168 { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
5169
5170 if (!(bcmp(addr_test1, mac_addr, ETHERADDRL)) ||
5171 !(bcmp(addr_test2, mac_addr, ETHERADDRL)))
5172 return (B_FALSE);
5173
5174 return (B_TRUE);
5175 }
5176
5177 /*
5178 * e1000g_stall_check - check for tx stall
5179 *
5180 * This function checks if the adapter is stalled (in transmit).
5181 *
5182 * It is called each time the watchdog timeout is invoked.
5183 * If the transmit descriptor reclaim continuously fails,
5184 * the watchdog value will increment by 1. If the watchdog
5185 * value exceeds the threshold, the adapter is assumed to
5186 * have stalled and need to be reset.
5187 */
5188 static boolean_t
e1000g_stall_check(struct e1000g * Adapter)5189 e1000g_stall_check(struct e1000g *Adapter)
5190 {
5191 e1000g_tx_ring_t *tx_ring;
5192
5193 tx_ring = Adapter->tx_ring;
5194
5195 if (Adapter->link_state != LINK_STATE_UP)
5196 return (B_FALSE);
5197
5198 (void) e1000g_recycle(tx_ring);
5199
5200 if (Adapter->stall_flag)
5201 return (B_TRUE);
5202
5203 return (B_FALSE);
5204 }
5205
5206 #ifdef E1000G_DEBUG
5207 static enum ioc_reply
e1000g_pp_ioctl(struct e1000g * e1000gp,struct iocblk * iocp,mblk_t * mp)5208 e1000g_pp_ioctl(struct e1000g *e1000gp, struct iocblk *iocp, mblk_t *mp)
5209 {
5210 void (*ppfn)(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd);
5211 e1000g_peekpoke_t *ppd;
5212 uint64_t mem_va;
5213 uint64_t maxoff;
5214 boolean_t peek;
5215
5216 switch (iocp->ioc_cmd) {
5217
5218 case E1000G_IOC_REG_PEEK:
5219 peek = B_TRUE;
5220 break;
5221
5222 case E1000G_IOC_REG_POKE:
5223 peek = B_FALSE;
5224 break;
5225
5226 deault:
5227 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5228 "e1000g_diag_ioctl: invalid ioctl command 0x%X\n",
5229 iocp->ioc_cmd);
5230 return (IOC_INVAL);
5231 }
5232
5233 /*
5234 * Validate format of ioctl
5235 */
5236 if (iocp->ioc_count != sizeof (e1000g_peekpoke_t))
5237 return (IOC_INVAL);
5238 if (mp->b_cont == NULL)
5239 return (IOC_INVAL);
5240
5241 ppd = (e1000g_peekpoke_t *)(uintptr_t)mp->b_cont->b_rptr;
5242
5243 /*
5244 * Validate request parameters
5245 */
5246 switch (ppd->pp_acc_space) {
5247
5248 default:
5249 E1000G_DEBUGLOG_1(e1000gp, E1000G_INFO_LEVEL,
5250 "e1000g_diag_ioctl: invalid access space 0x%X\n",
5251 ppd->pp_acc_space);
5252 return (IOC_INVAL);
5253
5254 case E1000G_PP_SPACE_REG:
5255 /*
5256 * Memory-mapped I/O space
5257 */
5258 ASSERT(ppd->pp_acc_size == 4);
5259 if (ppd->pp_acc_size != 4)
5260 return (IOC_INVAL);
5261
5262 if ((ppd->pp_acc_offset % ppd->pp_acc_size) != 0)
5263 return (IOC_INVAL);
5264
5265 mem_va = 0;
5266 maxoff = 0x10000;
5267 ppfn = peek ? e1000g_ioc_peek_reg : e1000g_ioc_poke_reg;
5268 break;
5269
5270 case E1000G_PP_SPACE_E1000G:
5271 /*
5272 * E1000g data structure!
5273 */
5274 mem_va = (uintptr_t)e1000gp;
5275 maxoff = sizeof (struct e1000g);
5276 ppfn = peek ? e1000g_ioc_peek_mem : e1000g_ioc_poke_mem;
5277 break;
5278
5279 }
5280
5281 if (ppd->pp_acc_offset >= maxoff)
5282 return (IOC_INVAL);
5283
5284 if (ppd->pp_acc_offset + ppd->pp_acc_size > maxoff)
5285 return (IOC_INVAL);
5286
5287 /*
5288 * All OK - go!
5289 */
5290 ppd->pp_acc_offset += mem_va;
5291 (*ppfn)(e1000gp, ppd);
5292 return (peek ? IOC_REPLY : IOC_ACK);
5293 }
5294
5295 static void
e1000g_ioc_peek_reg(struct e1000g * e1000gp,e1000g_peekpoke_t * ppd)5296 e1000g_ioc_peek_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5297 {
5298 ddi_acc_handle_t handle;
5299 uint32_t *regaddr;
5300
5301 handle = e1000gp->osdep.reg_handle;
5302 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5303 (uintptr_t)ppd->pp_acc_offset);
5304
5305 ppd->pp_acc_data = ddi_get32(handle, regaddr);
5306 }
5307
5308 static void
e1000g_ioc_poke_reg(struct e1000g * e1000gp,e1000g_peekpoke_t * ppd)5309 e1000g_ioc_poke_reg(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5310 {
5311 ddi_acc_handle_t handle;
5312 uint32_t *regaddr;
5313 uint32_t value;
5314
5315 handle = e1000gp->osdep.reg_handle;
5316 regaddr = (uint32_t *)((uintptr_t)e1000gp->shared.hw_addr +
5317 (uintptr_t)ppd->pp_acc_offset);
5318 value = (uint32_t)ppd->pp_acc_data;
5319
5320 ddi_put32(handle, regaddr, value);
5321 }
5322
5323 static void
e1000g_ioc_peek_mem(struct e1000g * e1000gp,e1000g_peekpoke_t * ppd)5324 e1000g_ioc_peek_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5325 {
5326 uint64_t value;
5327 void *vaddr;
5328
5329 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5330
5331 switch (ppd->pp_acc_size) {
5332 case 1:
5333 value = *(uint8_t *)vaddr;
5334 break;
5335
5336 case 2:
5337 value = *(uint16_t *)vaddr;
5338 break;
5339
5340 case 4:
5341 value = *(uint32_t *)vaddr;
5342 break;
5343
5344 case 8:
5345 value = *(uint64_t *)vaddr;
5346 break;
5347 }
5348
5349 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5350 "e1000g_ioc_peek_mem($%p, $%p) peeked 0x%llx from $%p\n",
5351 (void *)e1000gp, (void *)ppd, value, vaddr);
5352
5353 ppd->pp_acc_data = value;
5354 }
5355
5356 static void
e1000g_ioc_poke_mem(struct e1000g * e1000gp,e1000g_peekpoke_t * ppd)5357 e1000g_ioc_poke_mem(struct e1000g *e1000gp, e1000g_peekpoke_t *ppd)
5358 {
5359 uint64_t value;
5360 void *vaddr;
5361
5362 vaddr = (void *)(uintptr_t)ppd->pp_acc_offset;
5363 value = ppd->pp_acc_data;
5364
5365 E1000G_DEBUGLOG_4(e1000gp, E1000G_INFO_LEVEL,
5366 "e1000g_ioc_poke_mem($%p, $%p) poking 0x%llx at $%p\n",
5367 (void *)e1000gp, (void *)ppd, value, vaddr);
5368
5369 switch (ppd->pp_acc_size) {
5370 case 1:
5371 *(uint8_t *)vaddr = (uint8_t)value;
5372 break;
5373
5374 case 2:
5375 *(uint16_t *)vaddr = (uint16_t)value;
5376 break;
5377
5378 case 4:
5379 *(uint32_t *)vaddr = (uint32_t)value;
5380 break;
5381
5382 case 8:
5383 *(uint64_t *)vaddr = (uint64_t)value;
5384 break;
5385 }
5386 }
5387 #endif
5388
5389 /*
5390 * Loopback Support
5391 */
5392 static lb_property_t lb_normal =
5393 { normal, "normal", E1000G_LB_NONE };
5394 static lb_property_t lb_external1000 =
5395 { external, "1000Mbps", E1000G_LB_EXTERNAL_1000 };
5396 static lb_property_t lb_external100 =
5397 { external, "100Mbps", E1000G_LB_EXTERNAL_100 };
5398 static lb_property_t lb_external10 =
5399 { external, "10Mbps", E1000G_LB_EXTERNAL_10 };
5400 static lb_property_t lb_phy =
5401 { internal, "PHY", E1000G_LB_INTERNAL_PHY };
5402
5403 static enum ioc_reply
e1000g_loopback_ioctl(struct e1000g * Adapter,struct iocblk * iocp,mblk_t * mp)5404 e1000g_loopback_ioctl(struct e1000g *Adapter, struct iocblk *iocp, mblk_t *mp)
5405 {
5406 lb_info_sz_t *lbsp;
5407 lb_property_t *lbpp;
5408 struct e1000_hw *hw;
5409 uint32_t *lbmp;
5410 uint32_t size;
5411 uint32_t value;
5412
5413 hw = &Adapter->shared;
5414
5415 if (mp->b_cont == NULL)
5416 return (IOC_INVAL);
5417
5418 if (!e1000g_check_loopback_support(hw)) {
5419 e1000g_log(NULL, CE_WARN,
5420 "Loopback is not supported on e1000g%d", Adapter->instance);
5421 return (IOC_INVAL);
5422 }
5423
5424 switch (iocp->ioc_cmd) {
5425 default:
5426 return (IOC_INVAL);
5427
5428 case LB_GET_INFO_SIZE:
5429 size = sizeof (lb_info_sz_t);
5430 if (iocp->ioc_count != size)
5431 return (IOC_INVAL);
5432
5433 rw_enter(&Adapter->chip_lock, RW_WRITER);
5434 e1000g_get_phy_state(Adapter);
5435
5436 /*
5437 * Workaround for hardware faults. In order to get a stable
5438 * state of phy, we will wait for a specific interval and
5439 * try again. The time delay is an experiential value based
5440 * on our testing.
5441 */
5442 msec_delay(100);
5443 e1000g_get_phy_state(Adapter);
5444 rw_exit(&Adapter->chip_lock);
5445
5446 value = sizeof (lb_normal);
5447 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5448 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5449 (hw->phy.media_type == e1000_media_type_fiber) ||
5450 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5451 value += sizeof (lb_phy);
5452 switch (hw->mac.type) {
5453 case e1000_82571:
5454 case e1000_82572:
5455 case e1000_80003es2lan:
5456 value += sizeof (lb_external1000);
5457 break;
5458 }
5459 }
5460 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5461 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5462 value += sizeof (lb_external100);
5463 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5464 value += sizeof (lb_external10);
5465
5466 lbsp = (lb_info_sz_t *)(uintptr_t)mp->b_cont->b_rptr;
5467 *lbsp = value;
5468 break;
5469
5470 case LB_GET_INFO:
5471 value = sizeof (lb_normal);
5472 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5473 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5474 (hw->phy.media_type == e1000_media_type_fiber) ||
5475 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5476 value += sizeof (lb_phy);
5477 switch (hw->mac.type) {
5478 case e1000_82571:
5479 case e1000_82572:
5480 case e1000_80003es2lan:
5481 value += sizeof (lb_external1000);
5482 break;
5483 }
5484 }
5485 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5486 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5487 value += sizeof (lb_external100);
5488 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5489 value += sizeof (lb_external10);
5490
5491 size = value;
5492 if (iocp->ioc_count != size)
5493 return (IOC_INVAL);
5494
5495 value = 0;
5496 lbpp = (lb_property_t *)(uintptr_t)mp->b_cont->b_rptr;
5497 lbpp[value++] = lb_normal;
5498 if ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
5499 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS) ||
5500 (hw->phy.media_type == e1000_media_type_fiber) ||
5501 (hw->phy.media_type == e1000_media_type_internal_serdes)) {
5502 lbpp[value++] = lb_phy;
5503 switch (hw->mac.type) {
5504 case e1000_82571:
5505 case e1000_82572:
5506 case e1000_80003es2lan:
5507 lbpp[value++] = lb_external1000;
5508 break;
5509 }
5510 }
5511 if ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
5512 (Adapter->phy_status & MII_SR_100T2_FD_CAPS))
5513 lbpp[value++] = lb_external100;
5514 if (Adapter->phy_status & MII_SR_10T_FD_CAPS)
5515 lbpp[value++] = lb_external10;
5516 break;
5517
5518 case LB_GET_MODE:
5519 size = sizeof (uint32_t);
5520 if (iocp->ioc_count != size)
5521 return (IOC_INVAL);
5522
5523 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5524 *lbmp = Adapter->loopback_mode;
5525 break;
5526
5527 case LB_SET_MODE:
5528 size = 0;
5529 if (iocp->ioc_count != sizeof (uint32_t))
5530 return (IOC_INVAL);
5531
5532 lbmp = (uint32_t *)(uintptr_t)mp->b_cont->b_rptr;
5533 if (!e1000g_set_loopback_mode(Adapter, *lbmp))
5534 return (IOC_INVAL);
5535 break;
5536 }
5537
5538 iocp->ioc_count = size;
5539 iocp->ioc_error = 0;
5540
5541 if (e1000g_check_acc_handle(Adapter->osdep.reg_handle) != DDI_FM_OK) {
5542 ddi_fm_service_impact(Adapter->dip, DDI_SERVICE_DEGRADED);
5543 return (IOC_INVAL);
5544 }
5545
5546 return (IOC_REPLY);
5547 }
5548
5549 static boolean_t
e1000g_check_loopback_support(struct e1000_hw * hw)5550 e1000g_check_loopback_support(struct e1000_hw *hw)
5551 {
5552 switch (hw->mac.type) {
5553 case e1000_82540:
5554 case e1000_82545:
5555 case e1000_82545_rev_3:
5556 case e1000_82546:
5557 case e1000_82546_rev_3:
5558 case e1000_82541:
5559 case e1000_82541_rev_2:
5560 case e1000_82547:
5561 case e1000_82547_rev_2:
5562 case e1000_82571:
5563 case e1000_82572:
5564 case e1000_82573:
5565 case e1000_82574:
5566 case e1000_80003es2lan:
5567 case e1000_ich9lan:
5568 case e1000_ich10lan:
5569 return (B_TRUE);
5570 }
5571 return (B_FALSE);
5572 }
5573
5574 static boolean_t
e1000g_set_loopback_mode(struct e1000g * Adapter,uint32_t mode)5575 e1000g_set_loopback_mode(struct e1000g *Adapter, uint32_t mode)
5576 {
5577 struct e1000_hw *hw;
5578 int i, times;
5579 boolean_t link_up;
5580
5581 if (mode == Adapter->loopback_mode)
5582 return (B_TRUE);
5583
5584 hw = &Adapter->shared;
5585 times = 0;
5586
5587 Adapter->loopback_mode = mode;
5588
5589 if (mode == E1000G_LB_NONE) {
5590 /* Reset the chip */
5591 hw->phy.autoneg_wait_to_complete = B_TRUE;
5592 (void) e1000g_reset_adapter(Adapter);
5593 hw->phy.autoneg_wait_to_complete = B_FALSE;
5594 return (B_TRUE);
5595 }
5596
5597 again:
5598
5599 rw_enter(&Adapter->chip_lock, RW_WRITER);
5600
5601 switch (mode) {
5602 default:
5603 rw_exit(&Adapter->chip_lock);
5604 return (B_FALSE);
5605
5606 case E1000G_LB_EXTERNAL_1000:
5607 e1000g_set_external_loopback_1000(Adapter);
5608 break;
5609
5610 case E1000G_LB_EXTERNAL_100:
5611 e1000g_set_external_loopback_100(Adapter);
5612 break;
5613
5614 case E1000G_LB_EXTERNAL_10:
5615 e1000g_set_external_loopback_10(Adapter);
5616 break;
5617
5618 case E1000G_LB_INTERNAL_PHY:
5619 e1000g_set_internal_loopback(Adapter);
5620 break;
5621 }
5622
5623 times++;
5624
5625 rw_exit(&Adapter->chip_lock);
5626
5627 /* Wait for link up */
5628 for (i = (PHY_FORCE_LIMIT * 2); i > 0; i--)
5629 msec_delay(100);
5630
5631 rw_enter(&Adapter->chip_lock, RW_WRITER);
5632
5633 link_up = e1000g_link_up(Adapter);
5634
5635 rw_exit(&Adapter->chip_lock);
5636
5637 if (!link_up) {
5638 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5639 "Failed to get the link up");
5640 if (times < 2) {
5641 /* Reset the link */
5642 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5643 "Reset the link ...");
5644 (void) e1000g_reset_adapter(Adapter);
5645 goto again;
5646 }
5647
5648 /*
5649 * Reset driver to loopback none when set loopback failed
5650 * for the second time.
5651 */
5652 Adapter->loopback_mode = E1000G_LB_NONE;
5653
5654 /* Reset the chip */
5655 hw->phy.autoneg_wait_to_complete = B_TRUE;
5656 (void) e1000g_reset_adapter(Adapter);
5657 hw->phy.autoneg_wait_to_complete = B_FALSE;
5658
5659 E1000G_DEBUGLOG_0(Adapter, E1000G_INFO_LEVEL,
5660 "Set loopback mode failed, reset to loopback none");
5661
5662 return (B_FALSE);
5663 }
5664
5665 return (B_TRUE);
5666 }
5667
5668 /*
5669 * The following loopback settings are from Intel's technical
5670 * document - "How To Loopback". All the register settings and
5671 * time delay values are directly inherited from the document
5672 * without more explanations available.
5673 */
5674 static void
e1000g_set_internal_loopback(struct e1000g * Adapter)5675 e1000g_set_internal_loopback(struct e1000g *Adapter)
5676 {
5677 struct e1000_hw *hw;
5678 uint32_t ctrl;
5679 uint32_t status;
5680 uint16_t phy_ctrl;
5681 uint16_t phy_reg;
5682 uint32_t txcw;
5683
5684 hw = &Adapter->shared;
5685
5686 /* Disable Smart Power Down */
5687 phy_spd_state(hw, B_FALSE);
5688
5689 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &phy_ctrl);
5690 phy_ctrl &= ~(MII_CR_AUTO_NEG_EN | MII_CR_SPEED_100 | MII_CR_SPEED_10);
5691 phy_ctrl |= MII_CR_FULL_DUPLEX | MII_CR_SPEED_1000;
5692
5693 switch (hw->mac.type) {
5694 case e1000_82540:
5695 case e1000_82545:
5696 case e1000_82545_rev_3:
5697 case e1000_82546:
5698 case e1000_82546_rev_3:
5699 case e1000_82573:
5700 /* Auto-MDI/MDIX off */
5701 (void) e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
5702 /* Reset PHY to update Auto-MDI/MDIX */
5703 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5704 phy_ctrl | MII_CR_RESET | MII_CR_AUTO_NEG_EN);
5705 /* Reset PHY to auto-neg off and force 1000 */
5706 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5707 phy_ctrl | MII_CR_RESET);
5708 /*
5709 * Disable PHY receiver for 82540/545/546 and 82573 Family.
5710 * See comments above e1000g_set_internal_loopback() for the
5711 * background.
5712 */
5713 (void) e1000_write_phy_reg(hw, 29, 0x001F);
5714 (void) e1000_write_phy_reg(hw, 30, 0x8FFC);
5715 (void) e1000_write_phy_reg(hw, 29, 0x001A);
5716 (void) e1000_write_phy_reg(hw, 30, 0x8FF0);
5717 break;
5718 case e1000_80003es2lan:
5719 /* Force Link Up */
5720 (void) e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
5721 0x1CC);
5722 /* Sets PCS loopback at 1Gbs */
5723 (void) e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
5724 0x1046);
5725 break;
5726 }
5727
5728 /*
5729 * The following registers should be set for e1000_phy_bm phy type.
5730 * e1000_82574, e1000_ich10lan and some e1000_ich9lan use this phy.
5731 * For others, we do not need to set these registers.
5732 */
5733 if (hw->phy.type == e1000_phy_bm) {
5734 /* Set Default MAC Interface speed to 1GB */
5735 (void) e1000_read_phy_reg(hw, PHY_REG(2, 21), &phy_reg);
5736 phy_reg &= ~0x0007;
5737 phy_reg |= 0x006;
5738 (void) e1000_write_phy_reg(hw, PHY_REG(2, 21), phy_reg);
5739 /* Assert SW reset for above settings to take effect */
5740 (void) e1000_phy_commit(hw);
5741 msec_delay(1);
5742 /* Force Full Duplex */
5743 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5744 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5745 phy_reg | 0x000C);
5746 /* Set Link Up (in force link) */
5747 (void) e1000_read_phy_reg(hw, PHY_REG(776, 16), &phy_reg);
5748 (void) e1000_write_phy_reg(hw, PHY_REG(776, 16),
5749 phy_reg | 0x0040);
5750 /* Force Link */
5751 (void) e1000_read_phy_reg(hw, PHY_REG(769, 16), &phy_reg);
5752 (void) e1000_write_phy_reg(hw, PHY_REG(769, 16),
5753 phy_reg | 0x0040);
5754 /* Set Early Link Enable */
5755 (void) e1000_read_phy_reg(hw, PHY_REG(769, 20), &phy_reg);
5756 (void) e1000_write_phy_reg(hw, PHY_REG(769, 20),
5757 phy_reg | 0x0400);
5758 }
5759
5760 /* Set loopback */
5761 (void) e1000_write_phy_reg(hw, PHY_CONTROL, phy_ctrl | MII_CR_LOOPBACK);
5762
5763 msec_delay(250);
5764
5765 /* Now set up the MAC to the same speed/duplex as the PHY. */
5766 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5767 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
5768 ctrl |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
5769 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
5770 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
5771 E1000_CTRL_FD); /* Force Duplex to FULL */
5772
5773 switch (hw->mac.type) {
5774 case e1000_82540:
5775 case e1000_82545:
5776 case e1000_82545_rev_3:
5777 case e1000_82546:
5778 case e1000_82546_rev_3:
5779 /*
5780 * For some serdes we'll need to commit the writes now
5781 * so that the status is updated on link
5782 */
5783 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
5784 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5785 msec_delay(100);
5786 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5787 }
5788
5789 if (hw->phy.media_type == e1000_media_type_copper) {
5790 /* Invert Loss of Signal */
5791 ctrl |= E1000_CTRL_ILOS;
5792 } else {
5793 /* Set ILOS on fiber nic if half duplex is detected */
5794 status = E1000_READ_REG(hw, E1000_STATUS);
5795 if ((status & E1000_STATUS_FD) == 0)
5796 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5797 }
5798 break;
5799
5800 case e1000_82571:
5801 case e1000_82572:
5802 /*
5803 * The fiber/SerDes versions of this adapter do not contain an
5804 * accessible PHY. Therefore, loopback beyond MAC must be done
5805 * using SerDes analog loopback.
5806 */
5807 if (hw->phy.media_type != e1000_media_type_copper) {
5808 /* Disable autoneg by setting bit 31 of TXCW to zero */
5809 txcw = E1000_READ_REG(hw, E1000_TXCW);
5810 txcw &= ~((uint32_t)1 << 31);
5811 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5812
5813 /*
5814 * Write 0x410 to Serdes Control register
5815 * to enable Serdes analog loopback
5816 */
5817 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5818 msec_delay(10);
5819 }
5820
5821 status = E1000_READ_REG(hw, E1000_STATUS);
5822 /* Set ILOS on fiber nic if half duplex is detected */
5823 if ((hw->phy.media_type == e1000_media_type_fiber) &&
5824 ((status & E1000_STATUS_FD) == 0 ||
5825 (status & E1000_STATUS_LU) == 0))
5826 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5827 else if (hw->phy.media_type == e1000_media_type_internal_serdes)
5828 ctrl |= E1000_CTRL_SLU;
5829 break;
5830
5831 case e1000_82573:
5832 ctrl |= E1000_CTRL_ILOS;
5833 break;
5834 case e1000_ich9lan:
5835 case e1000_ich10lan:
5836 ctrl |= E1000_CTRL_SLU;
5837 break;
5838 }
5839 if (hw->phy.type == e1000_phy_bm)
5840 ctrl |= E1000_CTRL_SLU | E1000_CTRL_ILOS;
5841
5842 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5843 }
5844
5845 static void
e1000g_set_external_loopback_1000(struct e1000g * Adapter)5846 e1000g_set_external_loopback_1000(struct e1000g *Adapter)
5847 {
5848 struct e1000_hw *hw;
5849 uint32_t rctl;
5850 uint32_t ctrl_ext;
5851 uint32_t ctrl;
5852 uint32_t status;
5853 uint32_t txcw;
5854 uint16_t phydata;
5855
5856 hw = &Adapter->shared;
5857
5858 /* Disable Smart Power Down */
5859 phy_spd_state(hw, B_FALSE);
5860
5861 switch (hw->mac.type) {
5862 case e1000_82571:
5863 case e1000_82572:
5864 switch (hw->phy.media_type) {
5865 case e1000_media_type_copper:
5866 /* Force link up (Must be done before the PHY writes) */
5867 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5868 ctrl |= E1000_CTRL_SLU; /* Force Link Up */
5869 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5870
5871 rctl = E1000_READ_REG(hw, E1000_RCTL);
5872 rctl |= (E1000_RCTL_EN |
5873 E1000_RCTL_SBP |
5874 E1000_RCTL_UPE |
5875 E1000_RCTL_MPE |
5876 E1000_RCTL_LPE |
5877 E1000_RCTL_BAM); /* 0x803E */
5878 E1000_WRITE_REG(hw, E1000_RCTL, rctl);
5879
5880 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
5881 ctrl_ext |= (E1000_CTRL_EXT_SDP4_DATA |
5882 E1000_CTRL_EXT_SDP6_DATA |
5883 E1000_CTRL_EXT_SDP3_DATA |
5884 E1000_CTRL_EXT_SDP4_DIR |
5885 E1000_CTRL_EXT_SDP6_DIR |
5886 E1000_CTRL_EXT_SDP3_DIR); /* 0x0DD0 */
5887 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
5888
5889 /*
5890 * This sequence tunes the PHY's SDP and no customer
5891 * settable values. For background, see comments above
5892 * e1000g_set_internal_loopback().
5893 */
5894 (void) e1000_write_phy_reg(hw, 0x0, 0x140);
5895 msec_delay(10);
5896 (void) e1000_write_phy_reg(hw, 0x9, 0x1A00);
5897 (void) e1000_write_phy_reg(hw, 0x12, 0xC10);
5898 (void) e1000_write_phy_reg(hw, 0x12, 0x1C10);
5899 (void) e1000_write_phy_reg(hw, 0x1F37, 0x76);
5900 (void) e1000_write_phy_reg(hw, 0x1F33, 0x1);
5901 (void) e1000_write_phy_reg(hw, 0x1F33, 0x0);
5902
5903 (void) e1000_write_phy_reg(hw, 0x1F35, 0x65);
5904 (void) e1000_write_phy_reg(hw, 0x1837, 0x3F7C);
5905 (void) e1000_write_phy_reg(hw, 0x1437, 0x3FDC);
5906 (void) e1000_write_phy_reg(hw, 0x1237, 0x3F7C);
5907 (void) e1000_write_phy_reg(hw, 0x1137, 0x3FDC);
5908
5909 msec_delay(50);
5910 break;
5911 case e1000_media_type_fiber:
5912 case e1000_media_type_internal_serdes:
5913 status = E1000_READ_REG(hw, E1000_STATUS);
5914 if (((status & E1000_STATUS_LU) == 0) ||
5915 (hw->phy.media_type ==
5916 e1000_media_type_internal_serdes)) {
5917 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5918 ctrl |= E1000_CTRL_ILOS | E1000_CTRL_SLU;
5919 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5920 }
5921
5922 /* Disable autoneg by setting bit 31 of TXCW to zero */
5923 txcw = E1000_READ_REG(hw, E1000_TXCW);
5924 txcw &= ~((uint32_t)1 << 31);
5925 E1000_WRITE_REG(hw, E1000_TXCW, txcw);
5926
5927 /*
5928 * Write 0x410 to Serdes Control register
5929 * to enable Serdes analog loopback
5930 */
5931 E1000_WRITE_REG(hw, E1000_SCTL, 0x0410);
5932 msec_delay(10);
5933 break;
5934 default:
5935 break;
5936 }
5937 break;
5938 case e1000_82574:
5939 case e1000_80003es2lan:
5940 case e1000_ich9lan:
5941 case e1000_ich10lan:
5942 (void) e1000_read_phy_reg(hw, GG82563_REG(6, 16), &phydata);
5943 (void) e1000_write_phy_reg(hw, GG82563_REG(6, 16),
5944 phydata | (1 << 5));
5945 Adapter->param_adv_autoneg = 1;
5946 Adapter->param_adv_1000fdx = 1;
5947 (void) e1000g_reset_link(Adapter);
5948 break;
5949 }
5950 }
5951
5952 static void
e1000g_set_external_loopback_100(struct e1000g * Adapter)5953 e1000g_set_external_loopback_100(struct e1000g *Adapter)
5954 {
5955 struct e1000_hw *hw;
5956 uint32_t ctrl;
5957 uint16_t phy_ctrl;
5958
5959 hw = &Adapter->shared;
5960
5961 /* Disable Smart Power Down */
5962 phy_spd_state(hw, B_FALSE);
5963
5964 phy_ctrl = (MII_CR_FULL_DUPLEX |
5965 MII_CR_SPEED_100);
5966
5967 /* Force 100/FD, reset PHY */
5968 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5969 phy_ctrl | MII_CR_RESET); /* 0xA100 */
5970 msec_delay(10);
5971
5972 /* Force 100/FD */
5973 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
5974 phy_ctrl); /* 0x2100 */
5975 msec_delay(10);
5976
5977 /* Now setup the MAC to the same speed/duplex as the PHY. */
5978 ctrl = E1000_READ_REG(hw, E1000_CTRL);
5979 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
5980 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */
5981 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
5982 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
5983 E1000_CTRL_SPD_100 | /* Force Speed to 100 */
5984 E1000_CTRL_FD); /* Force Duplex to FULL */
5985
5986 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
5987 }
5988
5989 static void
e1000g_set_external_loopback_10(struct e1000g * Adapter)5990 e1000g_set_external_loopback_10(struct e1000g *Adapter)
5991 {
5992 struct e1000_hw *hw;
5993 uint32_t ctrl;
5994 uint16_t phy_ctrl;
5995
5996 hw = &Adapter->shared;
5997
5998 /* Disable Smart Power Down */
5999 phy_spd_state(hw, B_FALSE);
6000
6001 phy_ctrl = (MII_CR_FULL_DUPLEX |
6002 MII_CR_SPEED_10);
6003
6004 /* Force 10/FD, reset PHY */
6005 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
6006 phy_ctrl | MII_CR_RESET); /* 0x8100 */
6007 msec_delay(10);
6008
6009 /* Force 10/FD */
6010 (void) e1000_write_phy_reg(hw, PHY_CONTROL,
6011 phy_ctrl); /* 0x0100 */
6012 msec_delay(10);
6013
6014 /* Now setup the MAC to the same speed/duplex as the PHY. */
6015 ctrl = E1000_READ_REG(hw, E1000_CTRL);
6016 ctrl &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
6017 ctrl |= (E1000_CTRL_SLU | /* Force Link Up */
6018 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
6019 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
6020 E1000_CTRL_SPD_10 | /* Force Speed to 10 */
6021 E1000_CTRL_FD); /* Force Duplex to FULL */
6022
6023 E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
6024 }
6025
6026 #ifdef __sparc
6027 static boolean_t
e1000g_find_mac_address(struct e1000g * Adapter)6028 e1000g_find_mac_address(struct e1000g *Adapter)
6029 {
6030 struct e1000_hw *hw = &Adapter->shared;
6031 uchar_t *bytes;
6032 struct ether_addr sysaddr;
6033 uint_t nelts;
6034 int err;
6035 boolean_t found = B_FALSE;
6036
6037 /*
6038 * The "vendor's factory-set address" may already have
6039 * been extracted from the chip, but if the property
6040 * "local-mac-address" is set we use that instead.
6041 *
6042 * We check whether it looks like an array of 6
6043 * bytes (which it should, if OBP set it). If we can't
6044 * make sense of it this way, we'll ignore it.
6045 */
6046 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6047 DDI_PROP_DONTPASS, "local-mac-address", &bytes, &nelts);
6048 if (err == DDI_PROP_SUCCESS) {
6049 if (nelts == ETHERADDRL) {
6050 while (nelts--)
6051 hw->mac.addr[nelts] = bytes[nelts];
6052 found = B_TRUE;
6053 }
6054 ddi_prop_free(bytes);
6055 }
6056
6057 /*
6058 * Look up the OBP property "local-mac-address?". If the user has set
6059 * 'local-mac-address? = false', use "the system address" instead.
6060 */
6061 if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip, 0,
6062 "local-mac-address?", &bytes, &nelts) == DDI_PROP_SUCCESS) {
6063 if (strncmp("false", (caddr_t)bytes, (size_t)nelts) == 0) {
6064 if (localetheraddr(NULL, &sysaddr) != 0) {
6065 bcopy(&sysaddr, hw->mac.addr, ETHERADDRL);
6066 found = B_TRUE;
6067 }
6068 }
6069 ddi_prop_free(bytes);
6070 }
6071
6072 /*
6073 * Finally(!), if there's a valid "mac-address" property (created
6074 * if we netbooted from this interface), we must use this instead
6075 * of any of the above to ensure that the NFS/install server doesn't
6076 * get confused by the address changing as Solaris takes over!
6077 */
6078 err = ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, Adapter->dip,
6079 DDI_PROP_DONTPASS, "mac-address", &bytes, &nelts);
6080 if (err == DDI_PROP_SUCCESS) {
6081 if (nelts == ETHERADDRL) {
6082 while (nelts--)
6083 hw->mac.addr[nelts] = bytes[nelts];
6084 found = B_TRUE;
6085 }
6086 ddi_prop_free(bytes);
6087 }
6088
6089 if (found) {
6090 bcopy(hw->mac.addr, hw->mac.perm_addr,
6091 ETHERADDRL);
6092 }
6093
6094 return (found);
6095 }
6096 #endif
6097
6098 static int
e1000g_add_intrs(struct e1000g * Adapter)6099 e1000g_add_intrs(struct e1000g *Adapter)
6100 {
6101 dev_info_t *devinfo;
6102 int intr_types;
6103 int rc;
6104
6105 devinfo = Adapter->dip;
6106
6107 /* Get supported interrupt types */
6108 rc = ddi_intr_get_supported_types(devinfo, &intr_types);
6109
6110 if (rc != DDI_SUCCESS) {
6111 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6112 "Get supported interrupt types failed: %d\n", rc);
6113 return (DDI_FAILURE);
6114 }
6115
6116 /*
6117 * Based on Intel Technical Advisory document (TA-160), there are some
6118 * cases where some older Intel PCI-X NICs may "advertise" to the OS
6119 * that it supports MSI, but in fact has problems.
6120 * So we should only enable MSI for PCI-E NICs and disable MSI for old
6121 * PCI/PCI-X NICs.
6122 */
6123 if (Adapter->shared.mac.type < e1000_82571)
6124 Adapter->msi_enable = B_FALSE;
6125
6126 if ((intr_types & DDI_INTR_TYPE_MSI) && Adapter->msi_enable) {
6127 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_MSI);
6128
6129 if (rc != DDI_SUCCESS) {
6130 /* EMPTY */
6131 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6132 "Add MSI failed, trying Legacy interrupts\n");
6133 } else {
6134 Adapter->intr_type = DDI_INTR_TYPE_MSI;
6135 }
6136 }
6137
6138 if ((Adapter->intr_type == 0) &&
6139 (intr_types & DDI_INTR_TYPE_FIXED)) {
6140 rc = e1000g_intr_add(Adapter, DDI_INTR_TYPE_FIXED);
6141
6142 if (rc != DDI_SUCCESS) {
6143 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6144 "Add Legacy interrupts failed\n");
6145 return (DDI_FAILURE);
6146 }
6147
6148 Adapter->intr_type = DDI_INTR_TYPE_FIXED;
6149 }
6150
6151 if (Adapter->intr_type == 0) {
6152 E1000G_DEBUGLOG_0(Adapter, E1000G_WARN_LEVEL,
6153 "No interrupts registered\n");
6154 return (DDI_FAILURE);
6155 }
6156
6157 return (DDI_SUCCESS);
6158 }
6159
6160 /*
6161 * e1000g_intr_add() handles MSI/Legacy interrupts
6162 */
6163 static int
e1000g_intr_add(struct e1000g * Adapter,int intr_type)6164 e1000g_intr_add(struct e1000g *Adapter, int intr_type)
6165 {
6166 dev_info_t *devinfo;
6167 int count, avail, actual;
6168 int x, y, rc, inum = 0;
6169 int flag;
6170 ddi_intr_handler_t *intr_handler;
6171
6172 devinfo = Adapter->dip;
6173
6174 /* get number of interrupts */
6175 rc = ddi_intr_get_nintrs(devinfo, intr_type, &count);
6176 if ((rc != DDI_SUCCESS) || (count == 0)) {
6177 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6178 "Get interrupt number failed. Return: %d, count: %d\n",
6179 rc, count);
6180 return (DDI_FAILURE);
6181 }
6182
6183 /* get number of available interrupts */
6184 rc = ddi_intr_get_navail(devinfo, intr_type, &avail);
6185 if ((rc != DDI_SUCCESS) || (avail == 0)) {
6186 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6187 "Get interrupt available number failed. "
6188 "Return: %d, available: %d\n", rc, avail);
6189 return (DDI_FAILURE);
6190 }
6191
6192 if (avail < count) {
6193 /* EMPTY */
6194 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6195 "Interrupts count: %d, available: %d\n",
6196 count, avail);
6197 }
6198
6199 /* Allocate an array of interrupt handles */
6200 Adapter->intr_size = count * sizeof (ddi_intr_handle_t);
6201 Adapter->htable = kmem_alloc(Adapter->intr_size, KM_SLEEP);
6202
6203 /* Set NORMAL behavior for both MSI and FIXED interrupt */
6204 flag = DDI_INTR_ALLOC_NORMAL;
6205
6206 /* call ddi_intr_alloc() */
6207 rc = ddi_intr_alloc(devinfo, Adapter->htable, intr_type, inum,
6208 count, &actual, flag);
6209
6210 if ((rc != DDI_SUCCESS) || (actual == 0)) {
6211 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6212 "Allocate interrupts failed: %d\n", rc);
6213
6214 kmem_free(Adapter->htable, Adapter->intr_size);
6215 return (DDI_FAILURE);
6216 }
6217
6218 if (actual < count) {
6219 /* EMPTY */
6220 E1000G_DEBUGLOG_2(Adapter, E1000G_WARN_LEVEL,
6221 "Interrupts requested: %d, received: %d\n",
6222 count, actual);
6223 }
6224
6225 Adapter->intr_cnt = actual;
6226
6227 /* Get priority for first msi, assume remaining are all the same */
6228 rc = ddi_intr_get_pri(Adapter->htable[0], &Adapter->intr_pri);
6229
6230 if (rc != DDI_SUCCESS) {
6231 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6232 "Get interrupt priority failed: %d\n", rc);
6233
6234 /* Free already allocated intr */
6235 for (y = 0; y < actual; y++)
6236 (void) ddi_intr_free(Adapter->htable[y]);
6237
6238 kmem_free(Adapter->htable, Adapter->intr_size);
6239 return (DDI_FAILURE);
6240 }
6241
6242 /*
6243 * In Legacy Interrupt mode, for PCI-Express adapters, we should
6244 * use the interrupt service routine e1000g_intr_pciexpress()
6245 * to avoid interrupt stealing when sharing interrupt with other
6246 * devices.
6247 */
6248 if (Adapter->shared.mac.type < e1000_82571)
6249 intr_handler = e1000g_intr;
6250 else
6251 intr_handler = e1000g_intr_pciexpress;
6252
6253 /* Call ddi_intr_add_handler() */
6254 for (x = 0; x < actual; x++) {
6255 rc = ddi_intr_add_handler(Adapter->htable[x],
6256 intr_handler, (caddr_t)Adapter, NULL);
6257
6258 if (rc != DDI_SUCCESS) {
6259 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6260 "Add interrupt handler failed: %d\n", rc);
6261
6262 /* Remove already added handler */
6263 for (y = 0; y < x; y++)
6264 (void) ddi_intr_remove_handler(
6265 Adapter->htable[y]);
6266
6267 /* Free already allocated intr */
6268 for (y = 0; y < actual; y++)
6269 (void) ddi_intr_free(Adapter->htable[y]);
6270
6271 kmem_free(Adapter->htable, Adapter->intr_size);
6272 return (DDI_FAILURE);
6273 }
6274 }
6275
6276 rc = ddi_intr_get_cap(Adapter->htable[0], &Adapter->intr_cap);
6277
6278 if (rc != DDI_SUCCESS) {
6279 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6280 "Get interrupt cap failed: %d\n", rc);
6281
6282 /* Free already allocated intr */
6283 for (y = 0; y < actual; y++) {
6284 (void) ddi_intr_remove_handler(Adapter->htable[y]);
6285 (void) ddi_intr_free(Adapter->htable[y]);
6286 }
6287
6288 kmem_free(Adapter->htable, Adapter->intr_size);
6289 return (DDI_FAILURE);
6290 }
6291
6292 return (DDI_SUCCESS);
6293 }
6294
6295 static int
e1000g_rem_intrs(struct e1000g * Adapter)6296 e1000g_rem_intrs(struct e1000g *Adapter)
6297 {
6298 int x;
6299 int rc;
6300
6301 for (x = 0; x < Adapter->intr_cnt; x++) {
6302 rc = ddi_intr_remove_handler(Adapter->htable[x]);
6303 if (rc != DDI_SUCCESS) {
6304 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6305 "Remove intr handler failed: %d\n", rc);
6306 return (DDI_FAILURE);
6307 }
6308
6309 rc = ddi_intr_free(Adapter->htable[x]);
6310 if (rc != DDI_SUCCESS) {
6311 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6312 "Free intr failed: %d\n", rc);
6313 return (DDI_FAILURE);
6314 }
6315 }
6316
6317 kmem_free(Adapter->htable, Adapter->intr_size);
6318
6319 return (DDI_SUCCESS);
6320 }
6321
6322 static int
e1000g_enable_intrs(struct e1000g * Adapter)6323 e1000g_enable_intrs(struct e1000g *Adapter)
6324 {
6325 int x;
6326 int rc;
6327
6328 /* Enable interrupts */
6329 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6330 /* Call ddi_intr_block_enable() for MSI */
6331 rc = ddi_intr_block_enable(Adapter->htable,
6332 Adapter->intr_cnt);
6333 if (rc != DDI_SUCCESS) {
6334 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6335 "Enable block intr failed: %d\n", rc);
6336 return (DDI_FAILURE);
6337 }
6338 } else {
6339 /* Call ddi_intr_enable() for Legacy/MSI non block enable */
6340 for (x = 0; x < Adapter->intr_cnt; x++) {
6341 rc = ddi_intr_enable(Adapter->htable[x]);
6342 if (rc != DDI_SUCCESS) {
6343 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6344 "Enable intr failed: %d\n", rc);
6345 return (DDI_FAILURE);
6346 }
6347 }
6348 }
6349
6350 return (DDI_SUCCESS);
6351 }
6352
6353 static int
e1000g_disable_intrs(struct e1000g * Adapter)6354 e1000g_disable_intrs(struct e1000g *Adapter)
6355 {
6356 int x;
6357 int rc;
6358
6359 /* Disable all interrupts */
6360 if (Adapter->intr_cap & DDI_INTR_FLAG_BLOCK) {
6361 rc = ddi_intr_block_disable(Adapter->htable,
6362 Adapter->intr_cnt);
6363 if (rc != DDI_SUCCESS) {
6364 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6365 "Disable block intr failed: %d\n", rc);
6366 return (DDI_FAILURE);
6367 }
6368 } else {
6369 for (x = 0; x < Adapter->intr_cnt; x++) {
6370 rc = ddi_intr_disable(Adapter->htable[x]);
6371 if (rc != DDI_SUCCESS) {
6372 E1000G_DEBUGLOG_1(Adapter, E1000G_WARN_LEVEL,
6373 "Disable intr failed: %d\n", rc);
6374 return (DDI_FAILURE);
6375 }
6376 }
6377 }
6378
6379 return (DDI_SUCCESS);
6380 }
6381
6382 /*
6383 * e1000g_get_phy_state - get the state of PHY registers, save in the adapter
6384 */
6385 static void
e1000g_get_phy_state(struct e1000g * Adapter)6386 e1000g_get_phy_state(struct e1000g *Adapter)
6387 {
6388 struct e1000_hw *hw = &Adapter->shared;
6389
6390 if (hw->phy.media_type == e1000_media_type_copper) {
6391 (void) e1000_read_phy_reg(hw, PHY_CONTROL, &Adapter->phy_ctrl);
6392 (void) e1000_read_phy_reg(hw, PHY_STATUS, &Adapter->phy_status);
6393 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
6394 &Adapter->phy_an_adv);
6395 (void) e1000_read_phy_reg(hw, PHY_AUTONEG_EXP,
6396 &Adapter->phy_an_exp);
6397 (void) e1000_read_phy_reg(hw, PHY_EXT_STATUS,
6398 &Adapter->phy_ext_status);
6399 (void) e1000_read_phy_reg(hw, PHY_1000T_CTRL,
6400 &Adapter->phy_1000t_ctrl);
6401 (void) e1000_read_phy_reg(hw, PHY_1000T_STATUS,
6402 &Adapter->phy_1000t_status);
6403 (void) e1000_read_phy_reg(hw, PHY_LP_ABILITY,
6404 &Adapter->phy_lp_able);
6405
6406 Adapter->param_autoneg_cap =
6407 (Adapter->phy_status & MII_SR_AUTONEG_CAPS) ? 1 : 0;
6408 Adapter->param_pause_cap =
6409 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6410 Adapter->param_asym_pause_cap =
6411 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6412 Adapter->param_1000fdx_cap =
6413 ((Adapter->phy_ext_status & IEEE_ESR_1000T_FD_CAPS) ||
6414 (Adapter->phy_ext_status & IEEE_ESR_1000X_FD_CAPS)) ? 1 : 0;
6415 Adapter->param_1000hdx_cap =
6416 ((Adapter->phy_ext_status & IEEE_ESR_1000T_HD_CAPS) ||
6417 (Adapter->phy_ext_status & IEEE_ESR_1000X_HD_CAPS)) ? 1 : 0;
6418 Adapter->param_100t4_cap =
6419 (Adapter->phy_status & MII_SR_100T4_CAPS) ? 1 : 0;
6420 Adapter->param_100fdx_cap =
6421 ((Adapter->phy_status & MII_SR_100X_FD_CAPS) ||
6422 (Adapter->phy_status & MII_SR_100T2_FD_CAPS)) ? 1 : 0;
6423 Adapter->param_100hdx_cap =
6424 ((Adapter->phy_status & MII_SR_100X_HD_CAPS) ||
6425 (Adapter->phy_status & MII_SR_100T2_HD_CAPS)) ? 1 : 0;
6426 Adapter->param_10fdx_cap =
6427 (Adapter->phy_status & MII_SR_10T_FD_CAPS) ? 1 : 0;
6428 Adapter->param_10hdx_cap =
6429 (Adapter->phy_status & MII_SR_10T_HD_CAPS) ? 1 : 0;
6430
6431 Adapter->param_adv_autoneg = hw->mac.autoneg;
6432 Adapter->param_adv_pause =
6433 (Adapter->phy_an_adv & NWAY_AR_PAUSE) ? 1 : 0;
6434 Adapter->param_adv_asym_pause =
6435 (Adapter->phy_an_adv & NWAY_AR_ASM_DIR) ? 1 : 0;
6436 Adapter->param_adv_1000hdx =
6437 (Adapter->phy_1000t_ctrl & CR_1000T_HD_CAPS) ? 1 : 0;
6438 Adapter->param_adv_100t4 =
6439 (Adapter->phy_an_adv & NWAY_AR_100T4_CAPS) ? 1 : 0;
6440 if (Adapter->param_adv_autoneg == 1) {
6441 Adapter->param_adv_1000fdx =
6442 (Adapter->phy_1000t_ctrl & CR_1000T_FD_CAPS)
6443 ? 1 : 0;
6444 Adapter->param_adv_100fdx =
6445 (Adapter->phy_an_adv & NWAY_AR_100TX_FD_CAPS)
6446 ? 1 : 0;
6447 Adapter->param_adv_100hdx =
6448 (Adapter->phy_an_adv & NWAY_AR_100TX_HD_CAPS)
6449 ? 1 : 0;
6450 Adapter->param_adv_10fdx =
6451 (Adapter->phy_an_adv & NWAY_AR_10T_FD_CAPS) ? 1 : 0;
6452 Adapter->param_adv_10hdx =
6453 (Adapter->phy_an_adv & NWAY_AR_10T_HD_CAPS) ? 1 : 0;
6454 }
6455
6456 Adapter->param_lp_autoneg =
6457 (Adapter->phy_an_exp & NWAY_ER_LP_NWAY_CAPS) ? 1 : 0;
6458 Adapter->param_lp_pause =
6459 (Adapter->phy_lp_able & NWAY_LPAR_PAUSE) ? 1 : 0;
6460 Adapter->param_lp_asym_pause =
6461 (Adapter->phy_lp_able & NWAY_LPAR_ASM_DIR) ? 1 : 0;
6462 Adapter->param_lp_1000fdx =
6463 (Adapter->phy_1000t_status & SR_1000T_LP_FD_CAPS) ? 1 : 0;
6464 Adapter->param_lp_1000hdx =
6465 (Adapter->phy_1000t_status & SR_1000T_LP_HD_CAPS) ? 1 : 0;
6466 Adapter->param_lp_100t4 =
6467 (Adapter->phy_lp_able & NWAY_LPAR_100T4_CAPS) ? 1 : 0;
6468 Adapter->param_lp_100fdx =
6469 (Adapter->phy_lp_able & NWAY_LPAR_100TX_FD_CAPS) ? 1 : 0;
6470 Adapter->param_lp_100hdx =
6471 (Adapter->phy_lp_able & NWAY_LPAR_100TX_HD_CAPS) ? 1 : 0;
6472 Adapter->param_lp_10fdx =
6473 (Adapter->phy_lp_able & NWAY_LPAR_10T_FD_CAPS) ? 1 : 0;
6474 Adapter->param_lp_10hdx =
6475 (Adapter->phy_lp_able & NWAY_LPAR_10T_HD_CAPS) ? 1 : 0;
6476 } else {
6477 /*
6478 * 1Gig Fiber adapter only offers 1Gig Full Duplex. Meaning,
6479 * it can only work with 1Gig Full Duplex Link Partner.
6480 */
6481 Adapter->param_autoneg_cap = 0;
6482 Adapter->param_pause_cap = 1;
6483 Adapter->param_asym_pause_cap = 1;
6484 Adapter->param_1000fdx_cap = 1;
6485 Adapter->param_1000hdx_cap = 0;
6486 Adapter->param_100t4_cap = 0;
6487 Adapter->param_100fdx_cap = 0;
6488 Adapter->param_100hdx_cap = 0;
6489 Adapter->param_10fdx_cap = 0;
6490 Adapter->param_10hdx_cap = 0;
6491
6492 Adapter->param_adv_autoneg = 0;
6493 Adapter->param_adv_pause = 1;
6494 Adapter->param_adv_asym_pause = 1;
6495 Adapter->param_adv_1000fdx = 1;
6496 Adapter->param_adv_1000hdx = 0;
6497 Adapter->param_adv_100t4 = 0;
6498 Adapter->param_adv_100fdx = 0;
6499 Adapter->param_adv_100hdx = 0;
6500 Adapter->param_adv_10fdx = 0;
6501 Adapter->param_adv_10hdx = 0;
6502
6503 Adapter->param_lp_autoneg = 0;
6504 Adapter->param_lp_pause = 0;
6505 Adapter->param_lp_asym_pause = 0;
6506 Adapter->param_lp_1000fdx = 0;
6507 Adapter->param_lp_1000hdx = 0;
6508 Adapter->param_lp_100t4 = 0;
6509 Adapter->param_lp_100fdx = 0;
6510 Adapter->param_lp_100hdx = 0;
6511 Adapter->param_lp_10fdx = 0;
6512 Adapter->param_lp_10hdx = 0;
6513 }
6514 }
6515
6516 /*
6517 * FMA support
6518 */
6519
6520 int
e1000g_check_acc_handle(ddi_acc_handle_t handle)6521 e1000g_check_acc_handle(ddi_acc_handle_t handle)
6522 {
6523 ddi_fm_error_t de;
6524
6525 ddi_fm_acc_err_get(handle, &de, DDI_FME_VERSION);
6526 ddi_fm_acc_err_clear(handle, DDI_FME_VERSION);
6527 return (de.fme_status);
6528 }
6529
6530 int
e1000g_check_dma_handle(ddi_dma_handle_t handle)6531 e1000g_check_dma_handle(ddi_dma_handle_t handle)
6532 {
6533 ddi_fm_error_t de;
6534
6535 ddi_fm_dma_err_get(handle, &de, DDI_FME_VERSION);
6536 return (de.fme_status);
6537 }
6538
6539 /*
6540 * The IO fault service error handling callback function
6541 */
6542 /* ARGSUSED2 */
6543 static int
e1000g_fm_error_cb(dev_info_t * dip,ddi_fm_error_t * err,const void * impl_data)6544 e1000g_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data)
6545 {
6546 /*
6547 * as the driver can always deal with an error in any dma or
6548 * access handle, we can just return the fme_status value.
6549 */
6550 pci_ereport_post(dip, err, NULL);
6551 return (err->fme_status);
6552 }
6553
6554 static void
e1000g_fm_init(struct e1000g * Adapter)6555 e1000g_fm_init(struct e1000g *Adapter)
6556 {
6557 ddi_iblock_cookie_t iblk;
6558 int fma_dma_flag;
6559
6560 /* Only register with IO Fault Services if we have some capability */
6561 if (Adapter->fm_capabilities & DDI_FM_ACCCHK_CAPABLE) {
6562 e1000g_regs_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC;
6563 } else {
6564 e1000g_regs_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC;
6565 }
6566
6567 if (Adapter->fm_capabilities & DDI_FM_DMACHK_CAPABLE) {
6568 fma_dma_flag = 1;
6569 } else {
6570 fma_dma_flag = 0;
6571 }
6572
6573 (void) e1000g_set_fma_flags(fma_dma_flag);
6574
6575 if (Adapter->fm_capabilities) {
6576
6577 /* Register capabilities with IO Fault Services */
6578 ddi_fm_init(Adapter->dip, &Adapter->fm_capabilities, &iblk);
6579
6580 /*
6581 * Initialize pci ereport capabilities if ereport capable
6582 */
6583 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6584 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6585 pci_ereport_setup(Adapter->dip);
6586
6587 /*
6588 * Register error callback if error callback capable
6589 */
6590 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6591 ddi_fm_handler_register(Adapter->dip,
6592 e1000g_fm_error_cb, (void*) Adapter);
6593 }
6594 }
6595
6596 static void
e1000g_fm_fini(struct e1000g * Adapter)6597 e1000g_fm_fini(struct e1000g *Adapter)
6598 {
6599 /* Only unregister FMA capabilities if we registered some */
6600 if (Adapter->fm_capabilities) {
6601
6602 /*
6603 * Release any resources allocated by pci_ereport_setup()
6604 */
6605 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities) ||
6606 DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6607 pci_ereport_teardown(Adapter->dip);
6608
6609 /*
6610 * Un-register error callback if error callback capable
6611 */
6612 if (DDI_FM_ERRCB_CAP(Adapter->fm_capabilities))
6613 ddi_fm_handler_unregister(Adapter->dip);
6614
6615 /* Unregister from IO Fault Services */
6616 mutex_enter(&e1000g_rx_detach_lock);
6617 ddi_fm_fini(Adapter->dip);
6618 if (Adapter->priv_dip != NULL) {
6619 DEVI(Adapter->priv_dip)->devi_fmhdl = NULL;
6620 }
6621 mutex_exit(&e1000g_rx_detach_lock);
6622 }
6623 }
6624
6625 void
e1000g_fm_ereport(struct e1000g * Adapter,char * detail)6626 e1000g_fm_ereport(struct e1000g *Adapter, char *detail)
6627 {
6628 uint64_t ena;
6629 char buf[FM_MAX_CLASS];
6630
6631 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail);
6632 ena = fm_ena_generate(0, FM_ENA_FMT1);
6633 if (DDI_FM_EREPORT_CAP(Adapter->fm_capabilities)) {
6634 ddi_fm_ereport_post(Adapter->dip, buf, ena, DDI_NOSLEEP,
6635 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL);
6636 }
6637 }
6638
6639 /*
6640 * quiesce(9E) entry point.
6641 *
6642 * This function is called when the system is single-threaded at high
6643 * PIL with preemption disabled. Therefore, this function must not be
6644 * blocked.
6645 *
6646 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure.
6647 * DDI_FAILURE indicates an error condition and should almost never happen.
6648 */
6649 static int
e1000g_quiesce(dev_info_t * devinfo)6650 e1000g_quiesce(dev_info_t *devinfo)
6651 {
6652 struct e1000g *Adapter;
6653
6654 Adapter = (struct e1000g *)ddi_get_driver_private(devinfo);
6655
6656 if (Adapter == NULL)
6657 return (DDI_FAILURE);
6658
6659 e1000g_clear_all_interrupts(Adapter);
6660
6661 (void) e1000_reset_hw(&Adapter->shared);
6662
6663 /* Setup our HW Tx Head & Tail descriptor pointers */
6664 E1000_WRITE_REG(&Adapter->shared, E1000_TDH(0), 0);
6665 E1000_WRITE_REG(&Adapter->shared, E1000_TDT(0), 0);
6666
6667 /* Setup our HW Rx Head & Tail descriptor pointers */
6668 E1000_WRITE_REG(&Adapter->shared, E1000_RDH(0), 0);
6669 E1000_WRITE_REG(&Adapter->shared, E1000_RDT(0), 0);
6670
6671 return (DDI_SUCCESS);
6672 }
6673
6674 /*
6675 * synchronize the adv* and en* parameters.
6676 *
6677 * See comments in <sys/dld.h> for details of the *_en_*
6678 * parameters. The usage of ndd for setting adv parameters will
6679 * synchronize all the en parameters with the e1000g parameters,
6680 * implicitly disabling any settings made via dladm.
6681 */
6682 static void
e1000g_param_sync(struct e1000g * Adapter)6683 e1000g_param_sync(struct e1000g *Adapter)
6684 {
6685 Adapter->param_en_1000fdx = Adapter->param_adv_1000fdx;
6686 Adapter->param_en_1000hdx = Adapter->param_adv_1000hdx;
6687 Adapter->param_en_100fdx = Adapter->param_adv_100fdx;
6688 Adapter->param_en_100hdx = Adapter->param_adv_100hdx;
6689 Adapter->param_en_10fdx = Adapter->param_adv_10fdx;
6690 Adapter->param_en_10hdx = Adapter->param_adv_10hdx;
6691 }
6692
6693 /*
6694 * e1000g_get_driver_control - tell manageability firmware that the driver
6695 * has control.
6696 */
6697 static void
e1000g_get_driver_control(struct e1000_hw * hw)6698 e1000g_get_driver_control(struct e1000_hw *hw)
6699 {
6700 uint32_t ctrl_ext;
6701 uint32_t swsm;
6702
6703 /* tell manageability firmware the driver has taken over */
6704 switch (hw->mac.type) {
6705 case e1000_82573:
6706 swsm = E1000_READ_REG(hw, E1000_SWSM);
6707 E1000_WRITE_REG(hw, E1000_SWSM, swsm | E1000_SWSM_DRV_LOAD);
6708 break;
6709 case e1000_82571:
6710 case e1000_82572:
6711 case e1000_82574:
6712 case e1000_80003es2lan:
6713 case e1000_ich8lan:
6714 case e1000_ich9lan:
6715 case e1000_ich10lan:
6716 case e1000_pchlan:
6717 case e1000_pch2lan:
6718 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6719 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6720 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
6721 break;
6722 default:
6723 /* no manageability firmware: do nothing */
6724 break;
6725 }
6726 }
6727
6728 /*
6729 * e1000g_release_driver_control - tell manageability firmware that the driver
6730 * has released control.
6731 */
6732 static void
e1000g_release_driver_control(struct e1000_hw * hw)6733 e1000g_release_driver_control(struct e1000_hw *hw)
6734 {
6735 uint32_t ctrl_ext;
6736 uint32_t swsm;
6737
6738 /* tell manageability firmware the driver has released control */
6739 switch (hw->mac.type) {
6740 case e1000_82573:
6741 swsm = E1000_READ_REG(hw, E1000_SWSM);
6742 E1000_WRITE_REG(hw, E1000_SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
6743 break;
6744 case e1000_82571:
6745 case e1000_82572:
6746 case e1000_82574:
6747 case e1000_80003es2lan:
6748 case e1000_ich8lan:
6749 case e1000_ich9lan:
6750 case e1000_ich10lan:
6751 case e1000_pchlan:
6752 case e1000_pch2lan:
6753 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
6754 E1000_WRITE_REG(hw, E1000_CTRL_EXT,
6755 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
6756 break;
6757 default:
6758 /* no manageability firmware: do nothing */
6759 break;
6760 }
6761 }
6762
6763 /*
6764 * Restore e1000g promiscuous mode.
6765 */
6766 static void
e1000g_restore_promisc(struct e1000g * Adapter)6767 e1000g_restore_promisc(struct e1000g *Adapter)
6768 {
6769 if (Adapter->e1000g_promisc) {
6770 uint32_t rctl;
6771
6772 rctl = E1000_READ_REG(&Adapter->shared, E1000_RCTL);
6773 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_BAM);
6774 E1000_WRITE_REG(&Adapter->shared, E1000_RCTL, rctl);
6775 }
6776 }
6777