1 /******************************************************************************
2 SPDX-License-Identifier: BSD-3-Clause
3
4 Copyright (c) 2001-2020, Intel Corporation
5 All rights reserved.
6
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions are met:
9
10 1. Redistributions of source code must retain the above copyright notice,
11 this list of conditions and the following disclaimer.
12
13 2. Redistributions in binary form must reproduce the above copyright
14 notice, this list of conditions and the following disclaimer in the
15 documentation and/or other materials provided with the distribution.
16
17 3. Neither the name of the Intel Corporation nor the names of its
18 contributors may be used to endorse or promote products derived from
19 this software without specific prior written permission.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34
35
36 #include "e1000_api.h"
37
38
39 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw);
40 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw);
41 static void e1000_release_vf(struct e1000_hw *hw);
42 static s32 e1000_acquire_vf(struct e1000_hw *hw);
43 static s32 e1000_setup_link_vf(struct e1000_hw *hw);
44 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw);
45 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw);
46 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
47 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
48 u16 *duplex);
49 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
50 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
51 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *, u32);
52 static int e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
53 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
54
55 /**
56 * e1000_init_phy_params_vf - Inits PHY params
57 * @hw: pointer to the HW structure
58 *
59 * Doesn't do much - there's no PHY available to the VF.
60 **/
e1000_init_phy_params_vf(struct e1000_hw * hw)61 static s32 e1000_init_phy_params_vf(struct e1000_hw *hw)
62 {
63 DEBUGFUNC("e1000_init_phy_params_vf");
64 hw->phy.type = e1000_phy_vf;
65 hw->phy.ops.acquire = e1000_acquire_vf;
66 hw->phy.ops.release = e1000_release_vf;
67
68 return E1000_SUCCESS;
69 }
70
71 /**
72 * e1000_init_nvm_params_vf - Inits NVM params
73 * @hw: pointer to the HW structure
74 *
75 * Doesn't do much - there's no NVM available to the VF.
76 **/
e1000_init_nvm_params_vf(struct e1000_hw * hw)77 static s32 e1000_init_nvm_params_vf(struct e1000_hw *hw)
78 {
79 DEBUGFUNC("e1000_init_nvm_params_vf");
80 hw->nvm.type = e1000_nvm_none;
81 hw->nvm.ops.acquire = e1000_acquire_vf;
82 hw->nvm.ops.release = e1000_release_vf;
83
84 return E1000_SUCCESS;
85 }
86
87 /**
88 * e1000_init_mac_params_vf - Inits MAC params
89 * @hw: pointer to the HW structure
90 **/
e1000_init_mac_params_vf(struct e1000_hw * hw)91 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
92 {
93 struct e1000_mac_info *mac = &hw->mac;
94
95 DEBUGFUNC("e1000_init_mac_params_vf");
96
97 /* Set media type */
98 /*
99 * Virtual functions don't care what they're media type is as they
100 * have no direct access to the PHY, or the media. That is handled
101 * by the physical function driver.
102 */
103 hw->phy.media_type = e1000_media_type_unknown;
104
105 /* No ASF features for the VF driver */
106 mac->asf_firmware_present = false;
107 /* ARC subsystem not supported */
108 mac->arc_subsystem_valid = false;
109 /* Disable adaptive IFS mode so the generic funcs don't do anything */
110 mac->adaptive_ifs = false;
111 /* VF's have no MTA Registers - PF feature only */
112 mac->mta_reg_count = 128;
113 /* VF's have no access to RAR entries */
114 mac->rar_entry_count = 1;
115
116 /* Function pointers */
117 /* link setup */
118 mac->ops.setup_link = e1000_setup_link_vf;
119 /* bus type/speed/width */
120 mac->ops.get_bus_info = e1000_get_bus_info_pcie_vf;
121 /* reset */
122 mac->ops.reset_hw = e1000_reset_hw_vf;
123 /* hw initialization */
124 mac->ops.init_hw = e1000_init_hw_vf;
125 /* check for link */
126 mac->ops.check_for_link = e1000_check_for_link_vf;
127 /* link info */
128 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
129 /* multicast address update */
130 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
131 /* set mac address */
132 mac->ops.rar_set = e1000_rar_set_vf;
133 /* read mac address */
134 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
135
136
137 return E1000_SUCCESS;
138 }
139
140 /**
141 * e1000_init_function_pointers_vf - Inits function pointers
142 * @hw: pointer to the HW structure
143 **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)144 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
145 {
146 DEBUGFUNC("e1000_init_function_pointers_vf");
147
148 hw->mac.ops.init_params = e1000_init_mac_params_vf;
149 hw->nvm.ops.init_params = e1000_init_nvm_params_vf;
150 hw->phy.ops.init_params = e1000_init_phy_params_vf;
151 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
152 }
153
154 /**
155 * e1000_acquire_vf - Acquire rights to access PHY or NVM.
156 * @hw: pointer to the HW structure
157 *
158 * There is no PHY or NVM so we want all attempts to acquire these to fail.
159 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
160 * even want any SW to attempt to use them.
161 **/
e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG * hw)162 static s32 e1000_acquire_vf(struct e1000_hw E1000_UNUSEDARG *hw)
163 {
164 return -E1000_ERR_PHY;
165 }
166
167 /**
168 * e1000_release_vf - Release PHY or NVM
169 * @hw: pointer to the HW structure
170 *
171 * There is no PHY or NVM so we want all attempts to acquire these to fail.
172 * In addition, the MAC registers to access PHY/NVM don't exist so we don't
173 * even want any SW to attempt to use them.
174 **/
e1000_release_vf(struct e1000_hw E1000_UNUSEDARG * hw)175 static void e1000_release_vf(struct e1000_hw E1000_UNUSEDARG *hw)
176 {
177 return;
178 }
179
180 /**
181 * e1000_setup_link_vf - Sets up link.
182 * @hw: pointer to the HW structure
183 *
184 * Virtual functions cannot change link.
185 **/
e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG * hw)186 static s32 e1000_setup_link_vf(struct e1000_hw E1000_UNUSEDARG *hw)
187 {
188 DEBUGFUNC("e1000_setup_link_vf");
189
190 return E1000_SUCCESS;
191 }
192
193 /**
194 * e1000_get_bus_info_pcie_vf - Gets the bus info.
195 * @hw: pointer to the HW structure
196 *
197 * Virtual functions are not really on their own bus.
198 **/
e1000_get_bus_info_pcie_vf(struct e1000_hw * hw)199 static s32 e1000_get_bus_info_pcie_vf(struct e1000_hw *hw)
200 {
201 struct e1000_bus_info *bus = &hw->bus;
202
203 DEBUGFUNC("e1000_get_bus_info_pcie_vf");
204
205 /* Do not set type PCI-E because we don't want disable master to run */
206 bus->type = e1000_bus_type_reserved;
207 bus->speed = e1000_bus_speed_2500;
208
209 return 0;
210 }
211
212 /**
213 * e1000_get_link_up_info_vf - Gets link info.
214 * @hw: pointer to the HW structure
215 * @speed: pointer to 16 bit value to store link speed.
216 * @duplex: pointer to 16 bit value to store duplex.
217 *
218 * Since we cannot read the PHY and get accurate link info, we must rely upon
219 * the status register's data which is often stale and inaccurate.
220 **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)221 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
222 u16 *duplex)
223 {
224 s32 status;
225
226 DEBUGFUNC("e1000_get_link_up_info_vf");
227
228 status = E1000_READ_REG(hw, E1000_STATUS);
229 if (status & E1000_STATUS_SPEED_1000) {
230 *speed = SPEED_1000;
231 DEBUGOUT("1000 Mbs, ");
232 } else if (status & E1000_STATUS_SPEED_100) {
233 *speed = SPEED_100;
234 DEBUGOUT("100 Mbs, ");
235 } else {
236 *speed = SPEED_10;
237 DEBUGOUT("10 Mbs, ");
238 }
239
240 if (status & E1000_STATUS_FD) {
241 *duplex = FULL_DUPLEX;
242 DEBUGOUT("Full Duplex\n");
243 } else {
244 *duplex = HALF_DUPLEX;
245 DEBUGOUT("Half Duplex\n");
246 }
247
248 return E1000_SUCCESS;
249 }
250
251 /**
252 * e1000_reset_hw_vf - Resets the HW
253 * @hw: pointer to the HW structure
254 *
255 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
256 * This is all the reset we can perform on a VF.
257 **/
e1000_reset_hw_vf(struct e1000_hw * hw)258 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
259 {
260 struct e1000_mbx_info *mbx = &hw->mbx;
261 u32 timeout = E1000_VF_INIT_TIMEOUT;
262 s32 ret_val = -E1000_ERR_MAC_INIT;
263 u32 ctrl, msgbuf[3];
264 u8 *addr = (u8 *)(&msgbuf[1]);
265
266 DEBUGFUNC("e1000_reset_hw_vf");
267
268 DEBUGOUT("Issuing a function level reset to MAC\n");
269 ctrl = E1000_READ_REG(hw, E1000_CTRL);
270 E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
271
272 /* we cannot reset while the RSTI / RSTD bits are asserted */
273 while (!mbx->ops.check_for_rst(hw, 0) && timeout) {
274 timeout--;
275 usec_delay(5);
276 }
277
278 if (timeout) {
279 /* mailbox timeout can now become active */
280 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
281
282 msgbuf[0] = E1000_VF_RESET;
283 mbx->ops.write_posted(hw, msgbuf, 1, 0);
284
285 msec_delay(10);
286
287 /* set our "perm_addr" based on info provided by PF */
288 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
289 if (!ret_val) {
290 if (msgbuf[0] == (E1000_VF_RESET |
291 E1000_VT_MSGTYPE_ACK))
292 memcpy(hw->mac.perm_addr, addr, 6);
293 else
294 ret_val = -E1000_ERR_MAC_INIT;
295 }
296 }
297
298 return ret_val;
299 }
300
301 /**
302 * e1000_init_hw_vf - Inits the HW
303 * @hw: pointer to the HW structure
304 *
305 * Not much to do here except clear the PF Reset indication if there is one.
306 **/
e1000_init_hw_vf(struct e1000_hw * hw)307 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
308 {
309 DEBUGFUNC("e1000_init_hw_vf");
310
311 /* attempt to set and restore our mac address */
312 e1000_rar_set_vf(hw, hw->mac.addr, 0);
313
314 return E1000_SUCCESS;
315 }
316
317 /**
318 * e1000_rar_set_vf - set device MAC address
319 * @hw: pointer to the HW structure
320 * @addr: pointer to the receive address
321 * @index receive address array register
322 **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 E1000_UNUSEDARG index)323 static int e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr,
324 u32 E1000_UNUSEDARG index)
325 {
326 struct e1000_mbx_info *mbx = &hw->mbx;
327 u32 msgbuf[3];
328 u8 *msg_addr = (u8 *)(&msgbuf[1]);
329 s32 ret_val;
330
331 memset(msgbuf, 0, 12);
332 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
333 memcpy(msg_addr, addr, 6);
334 ret_val = mbx->ops.write_posted(hw, msgbuf, 3, 0);
335
336 if (!ret_val)
337 ret_val = mbx->ops.read_posted(hw, msgbuf, 3, 0);
338
339 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
340
341 /* if nacked the address was rejected, use "perm_addr" */
342 if (!ret_val &&
343 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
344 e1000_read_mac_addr_vf(hw);
345
346 return E1000_SUCCESS;
347 }
348
349 /**
350 * e1000_hash_mc_addr_vf - Generate a multicast hash value
351 * @hw: pointer to the HW structure
352 * @mc_addr: pointer to a multicast address
353 *
354 * Generates a multicast address hash value which is used to determine
355 * the multicast filter table array address and new table value.
356 **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)357 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
358 {
359 u32 hash_value, hash_mask;
360 u8 bit_shift = 0;
361
362 DEBUGFUNC("e1000_hash_mc_addr_generic");
363
364 /* Register count multiplied by bits per register */
365 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
366
367 /*
368 * The bit_shift is the number of left-shifts
369 * where 0xFF would still fall within the hash mask.
370 */
371 while (hash_mask >> bit_shift != 0xFF)
372 bit_shift++;
373
374 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
375 (((u16) mc_addr[5]) << bit_shift)));
376
377 return hash_value;
378 }
379
e1000_write_msg_read_ack(struct e1000_hw * hw,u32 * msg,u16 size)380 static void e1000_write_msg_read_ack(struct e1000_hw *hw,
381 u32 *msg, u16 size)
382 {
383 struct e1000_mbx_info *mbx = &hw->mbx;
384 u32 retmsg[E1000_VFMAILBOX_SIZE];
385 s32 retval = mbx->ops.write_posted(hw, msg, size, 0);
386
387 if (!retval)
388 mbx->ops.read_posted(hw, retmsg, E1000_VFMAILBOX_SIZE, 0);
389 }
390
391 /**
392 * e1000_update_mc_addr_list_vf - Update Multicast addresses
393 * @hw: pointer to the HW structure
394 * @mc_addr_list: array of multicast addresses to program
395 * @mc_addr_count: number of multicast addresses to program
396 *
397 * Updates the Multicast Table Array.
398 * The caller must have a packed mc_addr_list of multicast addresses.
399 **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)400 void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
401 u8 *mc_addr_list, u32 mc_addr_count)
402 {
403 u32 msgbuf[E1000_VFMAILBOX_SIZE];
404 u16 *hash_list = (u16 *)&msgbuf[1];
405 u32 hash_value;
406 u32 i;
407
408 DEBUGFUNC("e1000_update_mc_addr_list_vf");
409
410 /* Each entry in the list uses 1 16 bit word. We have 30
411 * 16 bit words available in our HW msg buffer (minus 1 for the
412 * msg type). That's 30 hash values if we pack 'em right. If
413 * there are more than 30 MC addresses to add then punt the
414 * extras for now and then add code to handle more than 30 later.
415 * It would be unusual for a server to request that many multi-cast
416 * addresses except for in large enterprise network environments.
417 */
418
419 DEBUGOUT1("MC Addr Count = %d\n", mc_addr_count);
420
421 msgbuf[0] = E1000_VF_SET_MULTICAST;
422
423 if (mc_addr_count > 30) {
424 msgbuf[0] |= E1000_VF_SET_MULTICAST_OVERFLOW;
425 mc_addr_count = 30;
426 }
427
428 msgbuf[0] |= mc_addr_count << E1000_VT_MSGINFO_SHIFT;
429
430 for (i = 0; i < mc_addr_count; i++) {
431 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
432 DEBUGOUT1("Hash value = 0x%03X\n", hash_value);
433 hash_list[i] = hash_value & 0x0FFF;
434 mc_addr_list += ETHER_ADDR_LEN;
435 }
436
437 e1000_write_msg_read_ack(hw, msgbuf, E1000_VFMAILBOX_SIZE);
438 }
439
440 /**
441 * e1000_vfta_set_vf - Set/Unset vlan filter table address
442 * @hw: pointer to the HW structure
443 * @vid: determines the vfta register and bit to set/unset
444 * @set: if true then set bit, else clear bit
445 **/
e1000_vfta_set_vf(struct e1000_hw * hw,u16 vid,bool set)446 void e1000_vfta_set_vf(struct e1000_hw *hw, u16 vid, bool set)
447 {
448 u32 msgbuf[2];
449
450 msgbuf[0] = E1000_VF_SET_VLAN;
451 msgbuf[1] = vid;
452 /* Setting the 8 bit field MSG INFO to true indicates "add" */
453 if (set)
454 msgbuf[0] |= E1000_VF_SET_VLAN_ADD;
455
456 e1000_write_msg_read_ack(hw, msgbuf, 2);
457 }
458
459 /** e1000_rlpml_set_vf - Set the maximum receive packet length
460 * @hw: pointer to the HW structure
461 * @max_size: value to assign to max frame size
462 **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)463 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
464 {
465 u32 msgbuf[2];
466
467 msgbuf[0] = E1000_VF_SET_LPE;
468 msgbuf[1] = max_size;
469
470 e1000_write_msg_read_ack(hw, msgbuf, 2);
471 }
472
473 /**
474 * e1000_promisc_set_vf - Set flags for Unicast or Multicast promisc
475 * @hw: pointer to the HW structure
476 * @uni: boolean indicating unicast promisc status
477 * @multi: boolean indicating multicast promisc status
478 **/
e1000_promisc_set_vf(struct e1000_hw * hw,enum e1000_promisc_type type)479 s32 e1000_promisc_set_vf(struct e1000_hw *hw, enum e1000_promisc_type type)
480 {
481 struct e1000_mbx_info *mbx = &hw->mbx;
482 u32 msgbuf = E1000_VF_SET_PROMISC;
483 s32 ret_val;
484
485 switch (type) {
486 case e1000_promisc_multicast:
487 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
488 break;
489 case e1000_promisc_enabled:
490 msgbuf |= E1000_VF_SET_PROMISC_MULTICAST;
491 /* FALLTHROUGH */
492 case e1000_promisc_unicast:
493 msgbuf |= E1000_VF_SET_PROMISC_UNICAST;
494 /* FALLTHROUGH */
495 case e1000_promisc_disabled:
496 break;
497 default:
498 return -E1000_ERR_MAC_INIT;
499 }
500
501 ret_val = mbx->ops.write_posted(hw, &msgbuf, 1, 0);
502
503 if (!ret_val)
504 ret_val = mbx->ops.read_posted(hw, &msgbuf, 1, 0);
505
506 if (!ret_val && !(msgbuf & E1000_VT_MSGTYPE_ACK))
507 ret_val = -E1000_ERR_MAC_INIT;
508
509 return ret_val;
510 }
511
512 /**
513 * e1000_read_mac_addr_vf - Read device MAC address
514 * @hw: pointer to the HW structure
515 **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)516 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
517 {
518 int i;
519
520 for (i = 0; i < ETHER_ADDR_LEN; i++)
521 hw->mac.addr[i] = hw->mac.perm_addr[i];
522
523 return E1000_SUCCESS;
524 }
525
526 /**
527 * e1000_check_for_link_vf - Check for link for a virtual interface
528 * @hw: pointer to the HW structure
529 *
530 * Checks to see if the underlying PF is still talking to the VF and
531 * if it is then it reports the link state to the hardware, otherwise
532 * it reports link down and returns an error.
533 **/
e1000_check_for_link_vf(struct e1000_hw * hw)534 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
535 {
536 struct e1000_mbx_info *mbx = &hw->mbx;
537 struct e1000_mac_info *mac = &hw->mac;
538 s32 ret_val = E1000_SUCCESS;
539 u32 in_msg = 0;
540
541 DEBUGFUNC("e1000_check_for_link_vf");
542
543 /*
544 * We only want to run this if there has been a rst asserted.
545 * in this case that could mean a link change, device reset,
546 * or a virtual function reset
547 */
548
549 /* If we were hit with a reset or timeout drop the link */
550 if (!mbx->ops.check_for_rst(hw, 0) || !mbx->timeout)
551 mac->get_link_status = true;
552
553 if (!mac->get_link_status)
554 goto out;
555
556 /* if link status is down no point in checking to see if pf is up */
557 if (!(E1000_READ_REG(hw, E1000_STATUS) & E1000_STATUS_LU))
558 goto out;
559
560 /* if the read failed it could just be a mailbox collision, best wait
561 * until we are called again and don't report an error */
562 if (mbx->ops.read(hw, &in_msg, 1, 0))
563 goto out;
564
565 /* if incoming message isn't clear to send we are waiting on response */
566 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
567 /* message is not CTS and is NACK we have lost CTS status */
568 if (in_msg & E1000_VT_MSGTYPE_NACK)
569 ret_val = -E1000_ERR_MAC_INIT;
570 goto out;
571 }
572
573 /* at this point we know the PF is talking to us, check and see if
574 * we are still accepting timeout or if we had a timeout failure.
575 * if we failed then we will need to reinit */
576 if (!mbx->timeout) {
577 ret_val = -E1000_ERR_MAC_INIT;
578 goto out;
579 }
580
581 /* if we passed all the tests above then the link is up and we no
582 * longer need to check for link */
583 mac->get_link_status = false;
584
585 out:
586 return ret_val;
587 }
588
589