1 /******************************************************************************
2
3 Copyright (c) 2001-2015, Intel Corporation
4 All rights reserved.
5
6 Redistribution and use in source and binary forms, with or without
7 modification, are permitted provided that the following conditions are met:
8
9 1. Redistributions of source code must retain the above copyright notice,
10 this list of conditions and the following disclaimer.
11
12 2. Redistributions in binary form must reproduce the above copyright
13 notice, this list of conditions and the following disclaimer in the
14 documentation and/or other materials provided with the distribution.
15
16 3. Neither the name of the Intel Corporation nor the names of its
17 contributors may be used to endorse or promote products derived from
18 this software without specific prior written permission.
19
20 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 POSSIBILITY OF SUCH DAMAGE.
31
32 ******************************************************************************/
33 /*$FreeBSD$*/
34
35 #include "e1000_api.h"
36
37 /**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
e1000_init_mac_params(struct e1000_hw * hw)44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59 out:
60 return ret_val;
61 }
62
63 /**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
e1000_init_nvm_params(struct e1000_hw * hw)70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85 out:
86 return ret_val;
87 }
88
89 /**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
e1000_init_phy_params(struct e1000_hw * hw)96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111 out:
112 return ret_val;
113 }
114
115 /**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
e1000_init_mbx_params(struct e1000_hw * hw)122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137 out:
138 return ret_val;
139 }
140
141 /**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
e1000_set_mac_type(struct e1000_hw * hw)150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_PCH_SPT_I219_LM:
303 case E1000_DEV_ID_PCH_SPT_I219_V:
304 case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 case E1000_DEV_ID_PCH_SPT_I219_V2:
306 case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 case E1000_DEV_ID_PCH_SPT_I219_LM4:
308 case E1000_DEV_ID_PCH_SPT_I219_V4:
309 case E1000_DEV_ID_PCH_SPT_I219_LM5:
310 case E1000_DEV_ID_PCH_SPT_I219_V5:
311 mac->type = e1000_pch_spt;
312 break;
313 case E1000_DEV_ID_PCH_CNP_I219_LM6:
314 case E1000_DEV_ID_PCH_CNP_I219_V6:
315 case E1000_DEV_ID_PCH_CNP_I219_LM7:
316 case E1000_DEV_ID_PCH_CNP_I219_V7:
317 case E1000_DEV_ID_PCH_ICP_I219_LM8:
318 case E1000_DEV_ID_PCH_ICP_I219_V8:
319 case E1000_DEV_ID_PCH_ICP_I219_LM9:
320 case E1000_DEV_ID_PCH_ICP_I219_V9:
321 case E1000_DEV_ID_PCH_CMP_I219_LM10:
322 case E1000_DEV_ID_PCH_CMP_I219_V10:
323 case E1000_DEV_ID_PCH_CMP_I219_LM11:
324 case E1000_DEV_ID_PCH_CMP_I219_V11:
325 case E1000_DEV_ID_PCH_CMP_I219_LM12:
326 case E1000_DEV_ID_PCH_CMP_I219_V12:
327 mac->type = e1000_pch_cnp;
328 break;
329 case E1000_DEV_ID_PCH_TGP_I219_LM13:
330 case E1000_DEV_ID_PCH_TGP_I219_V13:
331 case E1000_DEV_ID_PCH_TGP_I219_LM14:
332 case E1000_DEV_ID_PCH_TGP_I219_V14:
333 case E1000_DEV_ID_PCH_TGP_I219_LM15:
334 case E1000_DEV_ID_PCH_TGP_I219_V15:
335 mac->type = e1000_pch_tgp;
336 break;
337 case E1000_DEV_ID_PCH_ADP_I219_LM16:
338 case E1000_DEV_ID_PCH_ADP_I219_V16:
339 case E1000_DEV_ID_PCH_ADP_I219_LM17:
340 case E1000_DEV_ID_PCH_ADP_I219_V17:
341 mac->type = e1000_pch_adp;
342 break;
343 case E1000_DEV_ID_PCH_MTP_I219_LM18:
344 case E1000_DEV_ID_PCH_MTP_I219_V18:
345 case E1000_DEV_ID_PCH_MTP_I219_LM19:
346 case E1000_DEV_ID_PCH_MTP_I219_V19:
347 mac->type = e1000_pch_mtp;
348 break;
349 case E1000_DEV_ID_PCH_LNP_I219_LM20:
350 case E1000_DEV_ID_PCH_LNP_I219_V20:
351 case E1000_DEV_ID_PCH_LNP_I219_LM21:
352 case E1000_DEV_ID_PCH_LNP_I219_V21:
353 mac->type = e1000_pch_lnp;
354 break;
355 case E1000_DEV_ID_PCH_RPL_I219_LM22:
356 case E1000_DEV_ID_PCH_RPL_I219_V22:
357 case E1000_DEV_ID_PCH_RPL_I219_LM23:
358 case E1000_DEV_ID_PCH_RPL_I219_V23:
359 mac->type = e1000_pch_rpl;
360 break;
361 case E1000_DEV_ID_PCH_ARL_I219_LM24:
362 case E1000_DEV_ID_PCH_ARL_I219_V24:
363 mac->type = e1000_pch_arl;
364 break;
365 case E1000_DEV_ID_PCH_PTP_I219_LM25:
366 case E1000_DEV_ID_PCH_PTP_I219_V25:
367 case E1000_DEV_ID_PCH_PTP_I219_LM26:
368 case E1000_DEV_ID_PCH_PTP_I219_V26:
369 case E1000_DEV_ID_PCH_PTP_I219_LM27:
370 case E1000_DEV_ID_PCH_PTP_I219_V27:
371 mac->type = e1000_pch_ptp;
372 break;
373 case E1000_DEV_ID_PCH_NVL_I219_LM29:
374 case E1000_DEV_ID_PCH_NVL_I219_V29:
375 mac->type = e1000_pch_nvl;
376 break;
377 case E1000_DEV_ID_82575EB_COPPER:
378 case E1000_DEV_ID_82575EB_FIBER_SERDES:
379 case E1000_DEV_ID_82575GB_QUAD_COPPER:
380 mac->type = e1000_82575;
381 break;
382 case E1000_DEV_ID_82576:
383 case E1000_DEV_ID_82576_FIBER:
384 case E1000_DEV_ID_82576_SERDES:
385 case E1000_DEV_ID_82576_QUAD_COPPER:
386 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
387 case E1000_DEV_ID_82576_NS:
388 case E1000_DEV_ID_82576_NS_SERDES:
389 case E1000_DEV_ID_82576_SERDES_QUAD:
390 mac->type = e1000_82576;
391 break;
392 case E1000_DEV_ID_82580_COPPER:
393 case E1000_DEV_ID_82580_FIBER:
394 case E1000_DEV_ID_82580_SERDES:
395 case E1000_DEV_ID_82580_SGMII:
396 case E1000_DEV_ID_82580_COPPER_DUAL:
397 case E1000_DEV_ID_82580_QUAD_FIBER:
398 case E1000_DEV_ID_DH89XXCC_SGMII:
399 case E1000_DEV_ID_DH89XXCC_SERDES:
400 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
401 case E1000_DEV_ID_DH89XXCC_SFP:
402 mac->type = e1000_82580;
403 break;
404 case E1000_DEV_ID_I350_COPPER:
405 case E1000_DEV_ID_I350_FIBER:
406 case E1000_DEV_ID_I350_SERDES:
407 case E1000_DEV_ID_I350_SGMII:
408 case E1000_DEV_ID_I350_DA4:
409 mac->type = e1000_i350;
410 break;
411 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
412 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
413 case E1000_DEV_ID_I210_COPPER:
414 case E1000_DEV_ID_I210_COPPER_OEM1:
415 case E1000_DEV_ID_I210_COPPER_IT:
416 case E1000_DEV_ID_I210_FIBER:
417 case E1000_DEV_ID_I210_SERDES:
418 case E1000_DEV_ID_I210_SGMII:
419 mac->type = e1000_i210;
420 break;
421 case E1000_DEV_ID_I211_COPPER:
422 mac->type = e1000_i211;
423 break;
424 case E1000_DEV_ID_82576_VF:
425 case E1000_DEV_ID_82576_VF_HV:
426 mac->type = e1000_vfadapt;
427 break;
428 case E1000_DEV_ID_I350_VF:
429 case E1000_DEV_ID_I350_VF_HV:
430 mac->type = e1000_vfadapt_i350;
431 break;
432
433 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
434 case E1000_DEV_ID_I354_SGMII:
435 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
436 mac->type = e1000_i354;
437 break;
438 default:
439 /* Should never have loaded on this device */
440 ret_val = -E1000_ERR_MAC_INIT;
441 break;
442 }
443
444 return ret_val;
445 }
446
447 /**
448 * e1000_setup_init_funcs - Initializes function pointers
449 * @hw: pointer to the HW structure
450 * @init_device: TRUE will initialize the rest of the function pointers
451 * getting the device ready for use. FALSE will only set
452 * MAC type and the function pointers for the other init
453 * functions. Passing FALSE will not generate any hardware
454 * reads or writes.
455 *
456 * This function must be called by a driver in order to use the rest
457 * of the 'shared' code files. Called by drivers only.
458 **/
e1000_setup_init_funcs(struct e1000_hw * hw,bool init_device)459 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
460 {
461 s32 ret_val;
462
463 /* Can't do much good without knowing the MAC type. */
464 ret_val = e1000_set_mac_type(hw);
465 if (ret_val) {
466 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
467 goto out;
468 }
469
470 if (!hw->hw_addr) {
471 DEBUGOUT("ERROR: Registers not mapped\n");
472 ret_val = -E1000_ERR_CONFIG;
473 goto out;
474 }
475
476 /*
477 * Init function pointers to generic implementations. We do this first
478 * allowing a driver module to override it afterward.
479 */
480 e1000_init_mac_ops_generic(hw);
481 e1000_init_phy_ops_generic(hw);
482 e1000_init_nvm_ops_generic(hw);
483 e1000_init_mbx_ops_generic(hw);
484
485 /*
486 * Set up the init function pointers. These are functions within the
487 * adapter family file that sets up function pointers for the rest of
488 * the functions in that family.
489 */
490 switch (hw->mac.type) {
491 case e1000_82542:
492 e1000_init_function_pointers_82542(hw);
493 break;
494 case e1000_82543:
495 case e1000_82544:
496 e1000_init_function_pointers_82543(hw);
497 break;
498 case e1000_82540:
499 case e1000_82545:
500 case e1000_82545_rev_3:
501 case e1000_82546:
502 case e1000_82546_rev_3:
503 e1000_init_function_pointers_82540(hw);
504 break;
505 case e1000_82541:
506 case e1000_82541_rev_2:
507 case e1000_82547:
508 case e1000_82547_rev_2:
509 e1000_init_function_pointers_82541(hw);
510 break;
511 case e1000_82571:
512 case e1000_82572:
513 case e1000_82573:
514 case e1000_82574:
515 case e1000_82583:
516 e1000_init_function_pointers_82571(hw);
517 break;
518 case e1000_80003es2lan:
519 e1000_init_function_pointers_80003es2lan(hw);
520 break;
521 case e1000_ich8lan:
522 case e1000_ich9lan:
523 case e1000_ich10lan:
524 case e1000_pchlan:
525 case e1000_pch2lan:
526 case e1000_pch_lpt:
527 case e1000_pch_spt:
528 case e1000_pch_cnp:
529 case e1000_pch_tgp:
530 case e1000_pch_adp:
531 case e1000_pch_mtp:
532 case e1000_pch_lnp:
533 case e1000_pch_rpl:
534 case e1000_pch_arl:
535 case e1000_pch_ptp:
536 case e1000_pch_nvl:
537 e1000_init_function_pointers_ich8lan(hw);
538 break;
539 case e1000_82575:
540 case e1000_82576:
541 case e1000_82580:
542 case e1000_i350:
543 case e1000_i354:
544 e1000_init_function_pointers_82575(hw);
545 break;
546 case e1000_i210:
547 case e1000_i211:
548 e1000_init_function_pointers_i210(hw);
549 break;
550 case e1000_vfadapt:
551 e1000_init_function_pointers_vf(hw);
552 break;
553 case e1000_vfadapt_i350:
554 e1000_init_function_pointers_vf(hw);
555 break;
556 default:
557 DEBUGOUT("Hardware not supported\n");
558 ret_val = -E1000_ERR_CONFIG;
559 break;
560 }
561
562 /*
563 * Initialize the rest of the function pointers. These require some
564 * register reads/writes in some cases.
565 */
566 if (!(ret_val) && init_device) {
567 ret_val = e1000_init_mac_params(hw);
568 if (ret_val)
569 goto out;
570
571 ret_val = e1000_init_nvm_params(hw);
572 if (ret_val)
573 goto out;
574
575 ret_val = e1000_init_phy_params(hw);
576 if (ret_val)
577 goto out;
578
579 ret_val = e1000_init_mbx_params(hw);
580 if (ret_val)
581 goto out;
582 }
583
584 out:
585 return ret_val;
586 }
587
588 /**
589 * e1000_get_bus_info - Obtain bus information for adapter
590 * @hw: pointer to the HW structure
591 *
592 * This will obtain information about the HW bus for which the
593 * adapter is attached and stores it in the hw structure. This is a
594 * function pointer entry point called by drivers.
595 **/
e1000_get_bus_info(struct e1000_hw * hw)596 s32 e1000_get_bus_info(struct e1000_hw *hw)
597 {
598 if (hw->mac.ops.get_bus_info)
599 return hw->mac.ops.get_bus_info(hw);
600
601 return E1000_SUCCESS;
602 }
603
604 /**
605 * e1000_clear_vfta - Clear VLAN filter table
606 * @hw: pointer to the HW structure
607 *
608 * This clears the VLAN filter table on the adapter. This is a function
609 * pointer entry point called by drivers.
610 **/
e1000_clear_vfta(struct e1000_hw * hw)611 void e1000_clear_vfta(struct e1000_hw *hw)
612 {
613 if (hw->mac.ops.clear_vfta)
614 hw->mac.ops.clear_vfta(hw);
615 }
616
617 /**
618 * e1000_write_vfta - Write value to VLAN filter table
619 * @hw: pointer to the HW structure
620 * @offset: the 32-bit offset in which to write the value to.
621 * @value: the 32-bit value to write at location offset.
622 *
623 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
624 * table. This is a function pointer entry point called by drivers.
625 **/
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)626 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
627 {
628 if (hw->mac.ops.write_vfta)
629 hw->mac.ops.write_vfta(hw, offset, value);
630 }
631
632 /**
633 * e1000_update_mc_addr_list - Update Multicast addresses
634 * @hw: pointer to the HW structure
635 * @mc_addr_list: array of multicast addresses to program
636 * @mc_addr_count: number of multicast addresses to program
637 *
638 * Updates the Multicast Table Array.
639 * The caller must have a packed mc_addr_list of multicast addresses.
640 **/
e1000_update_mc_addr_list(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)641 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
642 u32 mc_addr_count)
643 {
644 if (hw->mac.ops.update_mc_addr_list)
645 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
646 mc_addr_count);
647 }
648
649 /**
650 * e1000_force_mac_fc - Force MAC flow control
651 * @hw: pointer to the HW structure
652 *
653 * Force the MAC's flow control settings. Currently no func pointer exists
654 * and all implementations are handled in the generic version of this
655 * function.
656 **/
e1000_force_mac_fc(struct e1000_hw * hw)657 s32 e1000_force_mac_fc(struct e1000_hw *hw)
658 {
659 return e1000_force_mac_fc_generic(hw);
660 }
661
662 /**
663 * e1000_check_for_link - Check/Store link connection
664 * @hw: pointer to the HW structure
665 *
666 * This checks the link condition of the adapter and stores the
667 * results in the hw->mac structure. This is a function pointer entry
668 * point called by drivers.
669 **/
e1000_check_for_link(struct e1000_hw * hw)670 s32 e1000_check_for_link(struct e1000_hw *hw)
671 {
672 if (hw->mac.ops.check_for_link)
673 return hw->mac.ops.check_for_link(hw);
674
675 return -E1000_ERR_CONFIG;
676 }
677
678 /**
679 * e1000_check_mng_mode - Check management mode
680 * @hw: pointer to the HW structure
681 *
682 * This checks if the adapter has manageability enabled.
683 * This is a function pointer entry point called by drivers.
684 **/
e1000_check_mng_mode(struct e1000_hw * hw)685 bool e1000_check_mng_mode(struct e1000_hw *hw)
686 {
687 if (hw->mac.ops.check_mng_mode)
688 return hw->mac.ops.check_mng_mode(hw);
689
690 return FALSE;
691 }
692
693 /**
694 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
695 * @hw: pointer to the HW structure
696 * @buffer: pointer to the host interface
697 * @length: size of the buffer
698 *
699 * Writes the DHCP information to the host interface.
700 **/
e1000_mng_write_dhcp_info(struct e1000_hw * hw,u8 * buffer,u16 length)701 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
702 {
703 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
704 }
705
706 /**
707 * e1000_reset_hw - Reset hardware
708 * @hw: pointer to the HW structure
709 *
710 * This resets the hardware into a known state. This is a function pointer
711 * entry point called by drivers.
712 **/
e1000_reset_hw(struct e1000_hw * hw)713 s32 e1000_reset_hw(struct e1000_hw *hw)
714 {
715 if (hw->mac.ops.reset_hw)
716 return hw->mac.ops.reset_hw(hw);
717
718 return -E1000_ERR_CONFIG;
719 }
720
721 /**
722 * e1000_init_hw - Initialize hardware
723 * @hw: pointer to the HW structure
724 *
725 * This inits the hardware readying it for operation. This is a function
726 * pointer entry point called by drivers.
727 **/
e1000_init_hw(struct e1000_hw * hw)728 s32 e1000_init_hw(struct e1000_hw *hw)
729 {
730 if (hw->mac.ops.init_hw)
731 return hw->mac.ops.init_hw(hw);
732
733 return -E1000_ERR_CONFIG;
734 }
735
736 /**
737 * e1000_setup_link - Configures link and flow control
738 * @hw: pointer to the HW structure
739 *
740 * This configures link and flow control settings for the adapter. This
741 * is a function pointer entry point called by drivers. While modules can
742 * also call this, they probably call their own version of this function.
743 **/
e1000_setup_link(struct e1000_hw * hw)744 s32 e1000_setup_link(struct e1000_hw *hw)
745 {
746 if (hw->mac.ops.setup_link)
747 return hw->mac.ops.setup_link(hw);
748
749 return -E1000_ERR_CONFIG;
750 }
751
752 /**
753 * e1000_get_speed_and_duplex - Returns current speed and duplex
754 * @hw: pointer to the HW structure
755 * @speed: pointer to a 16-bit value to store the speed
756 * @duplex: pointer to a 16-bit value to store the duplex.
757 *
758 * This returns the speed and duplex of the adapter in the two 'out'
759 * variables passed in. This is a function pointer entry point called
760 * by drivers.
761 **/
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)762 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
763 {
764 if (hw->mac.ops.get_link_up_info)
765 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
766
767 return -E1000_ERR_CONFIG;
768 }
769
770 /**
771 * e1000_setup_led - Configures SW controllable LED
772 * @hw: pointer to the HW structure
773 *
774 * This prepares the SW controllable LED for use and saves the current state
775 * of the LED so it can be later restored. This is a function pointer entry
776 * point called by drivers.
777 **/
e1000_setup_led(struct e1000_hw * hw)778 s32 e1000_setup_led(struct e1000_hw *hw)
779 {
780 if (hw->mac.ops.setup_led)
781 return hw->mac.ops.setup_led(hw);
782
783 return E1000_SUCCESS;
784 }
785
786 /**
787 * e1000_cleanup_led - Restores SW controllable LED
788 * @hw: pointer to the HW structure
789 *
790 * This restores the SW controllable LED to the value saved off by
791 * e1000_setup_led. This is a function pointer entry point called by drivers.
792 **/
e1000_cleanup_led(struct e1000_hw * hw)793 s32 e1000_cleanup_led(struct e1000_hw *hw)
794 {
795 if (hw->mac.ops.cleanup_led)
796 return hw->mac.ops.cleanup_led(hw);
797
798 return E1000_SUCCESS;
799 }
800
801 /**
802 * e1000_blink_led - Blink SW controllable LED
803 * @hw: pointer to the HW structure
804 *
805 * This starts the adapter LED blinking. Request the LED to be setup first
806 * and cleaned up after. This is a function pointer entry point called by
807 * drivers.
808 **/
e1000_blink_led(struct e1000_hw * hw)809 s32 e1000_blink_led(struct e1000_hw *hw)
810 {
811 if (hw->mac.ops.blink_led)
812 return hw->mac.ops.blink_led(hw);
813
814 return E1000_SUCCESS;
815 }
816
817 /**
818 * e1000_id_led_init - store LED configurations in SW
819 * @hw: pointer to the HW structure
820 *
821 * Initializes the LED config in SW. This is a function pointer entry point
822 * called by drivers.
823 **/
e1000_id_led_init(struct e1000_hw * hw)824 s32 e1000_id_led_init(struct e1000_hw *hw)
825 {
826 if (hw->mac.ops.id_led_init)
827 return hw->mac.ops.id_led_init(hw);
828
829 return E1000_SUCCESS;
830 }
831
832 /**
833 * e1000_led_on - Turn on SW controllable LED
834 * @hw: pointer to the HW structure
835 *
836 * Turns the SW defined LED on. This is a function pointer entry point
837 * called by drivers.
838 **/
e1000_led_on(struct e1000_hw * hw)839 s32 e1000_led_on(struct e1000_hw *hw)
840 {
841 if (hw->mac.ops.led_on)
842 return hw->mac.ops.led_on(hw);
843
844 return E1000_SUCCESS;
845 }
846
847 /**
848 * e1000_led_off - Turn off SW controllable LED
849 * @hw: pointer to the HW structure
850 *
851 * Turns the SW defined LED off. This is a function pointer entry point
852 * called by drivers.
853 **/
e1000_led_off(struct e1000_hw * hw)854 s32 e1000_led_off(struct e1000_hw *hw)
855 {
856 if (hw->mac.ops.led_off)
857 return hw->mac.ops.led_off(hw);
858
859 return E1000_SUCCESS;
860 }
861
862 /**
863 * e1000_reset_adaptive - Reset adaptive IFS
864 * @hw: pointer to the HW structure
865 *
866 * Resets the adaptive IFS. Currently no func pointer exists and all
867 * implementations are handled in the generic version of this function.
868 **/
e1000_reset_adaptive(struct e1000_hw * hw)869 void e1000_reset_adaptive(struct e1000_hw *hw)
870 {
871 e1000_reset_adaptive_generic(hw);
872 }
873
874 /**
875 * e1000_update_adaptive - Update adaptive IFS
876 * @hw: pointer to the HW structure
877 *
878 * Updates adapter IFS. Currently no func pointer exists and all
879 * implementations are handled in the generic version of this function.
880 **/
e1000_update_adaptive(struct e1000_hw * hw)881 void e1000_update_adaptive(struct e1000_hw *hw)
882 {
883 e1000_update_adaptive_generic(hw);
884 }
885
886 /**
887 * e1000_disable_pcie_master - Disable PCI-Express master access
888 * @hw: pointer to the HW structure
889 *
890 * Disables PCI-Express master access and verifies there are no pending
891 * requests. Currently no func pointer exists and all implementations are
892 * handled in the generic version of this function.
893 **/
e1000_disable_pcie_master(struct e1000_hw * hw)894 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
895 {
896 return e1000_disable_pcie_master_generic(hw);
897 }
898
899 /**
900 * e1000_config_collision_dist - Configure collision distance
901 * @hw: pointer to the HW structure
902 *
903 * Configures the collision distance to the default value and is used
904 * during link setup.
905 **/
e1000_config_collision_dist(struct e1000_hw * hw)906 void e1000_config_collision_dist(struct e1000_hw *hw)
907 {
908 if (hw->mac.ops.config_collision_dist)
909 hw->mac.ops.config_collision_dist(hw);
910 }
911
912 /**
913 * e1000_rar_set - Sets a receive address register
914 * @hw: pointer to the HW structure
915 * @addr: address to set the RAR to
916 * @index: the RAR to set
917 *
918 * Sets a Receive Address Register (RAR) to the specified address.
919 **/
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)920 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
921 {
922 if (hw->mac.ops.rar_set)
923 return hw->mac.ops.rar_set(hw, addr, index);
924
925 return E1000_SUCCESS;
926 }
927
928 /**
929 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
930 * @hw: pointer to the HW structure
931 *
932 * Ensures that the MDI/MDIX SW state is valid.
933 **/
e1000_validate_mdi_setting(struct e1000_hw * hw)934 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
935 {
936 if (hw->mac.ops.validate_mdi_setting)
937 return hw->mac.ops.validate_mdi_setting(hw);
938
939 return E1000_SUCCESS;
940 }
941
942 /**
943 * e1000_hash_mc_addr - Determines address location in multicast table
944 * @hw: pointer to the HW structure
945 * @mc_addr: Multicast address to hash.
946 *
947 * This hashes an address to determine its location in the multicast
948 * table. Currently no func pointer exists and all implementations
949 * are handled in the generic version of this function.
950 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)951 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
952 {
953 return e1000_hash_mc_addr_generic(hw, mc_addr);
954 }
955
956 /**
957 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
958 * @hw: pointer to the HW structure
959 *
960 * Enables packet filtering on transmit packets if manageability is enabled
961 * and host interface is enabled.
962 * Currently no func pointer exists and all implementations are handled in the
963 * generic version of this function.
964 **/
e1000_enable_tx_pkt_filtering(struct e1000_hw * hw)965 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
966 {
967 return e1000_enable_tx_pkt_filtering_generic(hw);
968 }
969
970 /**
971 * e1000_mng_host_if_write - Writes to the manageability host interface
972 * @hw: pointer to the HW structure
973 * @buffer: pointer to the host interface buffer
974 * @length: size of the buffer
975 * @offset: location in the buffer to write to
976 * @sum: sum of the data (not checksum)
977 *
978 * This function writes the buffer content at the offset given on the host if.
979 * It also does alignment considerations to do the writes in most efficient
980 * way. Also fills up the sum of the buffer in *buffer parameter.
981 **/
e1000_mng_host_if_write(struct e1000_hw * hw,u8 * buffer,u16 length,u16 offset,u8 * sum)982 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
983 u16 offset, u8 *sum)
984 {
985 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
986 }
987
988 /**
989 * e1000_mng_write_cmd_header - Writes manageability command header
990 * @hw: pointer to the HW structure
991 * @hdr: pointer to the host interface command header
992 *
993 * Writes the command header after does the checksum calculation.
994 **/
e1000_mng_write_cmd_header(struct e1000_hw * hw,struct e1000_host_mng_command_header * hdr)995 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
996 struct e1000_host_mng_command_header *hdr)
997 {
998 return e1000_mng_write_cmd_header_generic(hw, hdr);
999 }
1000
1001 /**
1002 * e1000_mng_enable_host_if - Checks host interface is enabled
1003 * @hw: pointer to the HW structure
1004 *
1005 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
1006 *
1007 * This function checks whether the HOST IF is enabled for command operation
1008 * and also checks whether the previous command is completed. It busy waits
1009 * in case of previous command is not completed.
1010 **/
e1000_mng_enable_host_if(struct e1000_hw * hw)1011 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
1012 {
1013 return e1000_mng_enable_host_if_generic(hw);
1014 }
1015
1016 /**
1017 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
1018 * @hw: pointer to the HW structure
1019 * @itr: u32 indicating itr value
1020 *
1021 * Set the OBFF timer based on the given interrupt rate.
1022 **/
e1000_set_obff_timer(struct e1000_hw * hw,u32 itr)1023 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1024 {
1025 if (hw->mac.ops.set_obff_timer)
1026 return hw->mac.ops.set_obff_timer(hw, itr);
1027
1028 return E1000_SUCCESS;
1029 }
1030
1031 /**
1032 * e1000_check_reset_block - Verifies PHY can be reset
1033 * @hw: pointer to the HW structure
1034 *
1035 * Checks if the PHY is in a state that can be reset or if manageability
1036 * has it tied up. This is a function pointer entry point called by drivers.
1037 **/
e1000_check_reset_block(struct e1000_hw * hw)1038 s32 e1000_check_reset_block(struct e1000_hw *hw)
1039 {
1040 if (hw->phy.ops.check_reset_block)
1041 return hw->phy.ops.check_reset_block(hw);
1042
1043 return E1000_SUCCESS;
1044 }
1045
1046 /**
1047 * e1000_read_phy_reg - Reads PHY register
1048 * @hw: pointer to the HW structure
1049 * @offset: the register to read
1050 * @data: the buffer to store the 16-bit read.
1051 *
1052 * Reads the PHY register and returns the value in data.
1053 * This is a function pointer entry point called by drivers.
1054 **/
e1000_read_phy_reg(struct e1000_hw * hw,u32 offset,u16 * data)1055 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1056 {
1057 if (hw->phy.ops.read_reg)
1058 return hw->phy.ops.read_reg(hw, offset, data);
1059
1060 return E1000_SUCCESS;
1061 }
1062
1063 /**
1064 * e1000_write_phy_reg - Writes PHY register
1065 * @hw: pointer to the HW structure
1066 * @offset: the register to write
1067 * @data: the value to write.
1068 *
1069 * Writes the PHY register at offset with the value in data.
1070 * This is a function pointer entry point called by drivers.
1071 **/
e1000_write_phy_reg(struct e1000_hw * hw,u32 offset,u16 data)1072 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1073 {
1074 if (hw->phy.ops.write_reg)
1075 return hw->phy.ops.write_reg(hw, offset, data);
1076
1077 return E1000_SUCCESS;
1078 }
1079
1080 /**
1081 * e1000_release_phy - Generic release PHY
1082 * @hw: pointer to the HW structure
1083 *
1084 * Return if silicon family does not require a semaphore when accessing the
1085 * PHY.
1086 **/
e1000_release_phy(struct e1000_hw * hw)1087 void e1000_release_phy(struct e1000_hw *hw)
1088 {
1089 if (hw->phy.ops.release)
1090 hw->phy.ops.release(hw);
1091 }
1092
1093 /**
1094 * e1000_acquire_phy - Generic acquire PHY
1095 * @hw: pointer to the HW structure
1096 *
1097 * Return success if silicon family does not require a semaphore when
1098 * accessing the PHY.
1099 **/
e1000_acquire_phy(struct e1000_hw * hw)1100 s32 e1000_acquire_phy(struct e1000_hw *hw)
1101 {
1102 if (hw->phy.ops.acquire)
1103 return hw->phy.ops.acquire(hw);
1104
1105 return E1000_SUCCESS;
1106 }
1107
1108 /**
1109 * e1000_cfg_on_link_up - Configure PHY upon link up
1110 * @hw: pointer to the HW structure
1111 **/
e1000_cfg_on_link_up(struct e1000_hw * hw)1112 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1113 {
1114 if (hw->phy.ops.cfg_on_link_up)
1115 return hw->phy.ops.cfg_on_link_up(hw);
1116
1117 return E1000_SUCCESS;
1118 }
1119
1120 /**
1121 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1122 * @hw: pointer to the HW structure
1123 * @offset: the register to read
1124 * @data: the location to store the 16-bit value read.
1125 *
1126 * Reads a register out of the Kumeran interface. Currently no func pointer
1127 * exists and all implementations are handled in the generic version of
1128 * this function.
1129 **/
e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data)1130 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1131 {
1132 return e1000_read_kmrn_reg_generic(hw, offset, data);
1133 }
1134
1135 /**
1136 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1137 * @hw: pointer to the HW structure
1138 * @offset: the register to write
1139 * @data: the value to write.
1140 *
1141 * Writes a register to the Kumeran interface. Currently no func pointer
1142 * exists and all implementations are handled in the generic version of
1143 * this function.
1144 **/
e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data)1145 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1146 {
1147 return e1000_write_kmrn_reg_generic(hw, offset, data);
1148 }
1149
1150 /**
1151 * e1000_get_cable_length - Retrieves cable length estimation
1152 * @hw: pointer to the HW structure
1153 *
1154 * This function estimates the cable length and stores them in
1155 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1156 * entry point called by drivers.
1157 **/
e1000_get_cable_length(struct e1000_hw * hw)1158 s32 e1000_get_cable_length(struct e1000_hw *hw)
1159 {
1160 if (hw->phy.ops.get_cable_length)
1161 return hw->phy.ops.get_cable_length(hw);
1162
1163 return E1000_SUCCESS;
1164 }
1165
1166 /**
1167 * e1000_get_phy_info - Retrieves PHY information from registers
1168 * @hw: pointer to the HW structure
1169 *
1170 * This function gets some information from various PHY registers and
1171 * populates hw->phy values with it. This is a function pointer entry
1172 * point called by drivers.
1173 **/
e1000_get_phy_info(struct e1000_hw * hw)1174 s32 e1000_get_phy_info(struct e1000_hw *hw)
1175 {
1176 if (hw->phy.ops.get_info)
1177 return hw->phy.ops.get_info(hw);
1178
1179 return E1000_SUCCESS;
1180 }
1181
1182 /**
1183 * e1000_phy_hw_reset - Hard PHY reset
1184 * @hw: pointer to the HW structure
1185 *
1186 * Performs a hard PHY reset. This is a function pointer entry point called
1187 * by drivers.
1188 **/
e1000_phy_hw_reset(struct e1000_hw * hw)1189 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1190 {
1191 if (hw->phy.ops.reset)
1192 return hw->phy.ops.reset(hw);
1193
1194 return E1000_SUCCESS;
1195 }
1196
1197 /**
1198 * e1000_phy_commit - Soft PHY reset
1199 * @hw: pointer to the HW structure
1200 *
1201 * Performs a soft PHY reset on those that apply. This is a function pointer
1202 * entry point called by drivers.
1203 **/
e1000_phy_commit(struct e1000_hw * hw)1204 s32 e1000_phy_commit(struct e1000_hw *hw)
1205 {
1206 if (hw->phy.ops.commit)
1207 return hw->phy.ops.commit(hw);
1208
1209 return E1000_SUCCESS;
1210 }
1211
1212 /**
1213 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1214 * @hw: pointer to the HW structure
1215 * @active: boolean used to enable/disable lplu
1216 *
1217 * Success returns 0, Failure returns 1
1218 *
1219 * The low power link up (lplu) state is set to the power management level D0
1220 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D0
1221 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1222 * is used during Dx states where the power conservation is most important.
1223 * During driver activity, SmartSpeed should be enabled so performance is
1224 * maintained. This is a function pointer entry point called by drivers.
1225 **/
e1000_set_d0_lplu_state(struct e1000_hw * hw,bool active)1226 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1227 {
1228 if (hw->phy.ops.set_d0_lplu_state)
1229 return hw->phy.ops.set_d0_lplu_state(hw, active);
1230
1231 return E1000_SUCCESS;
1232 }
1233
1234 /**
1235 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1236 * @hw: pointer to the HW structure
1237 * @active: boolean used to enable/disable lplu
1238 *
1239 * Success returns 0, Failure returns 1
1240 *
1241 * The low power link up (lplu) state is set to the power management level D3
1242 * and SmartSpeed is disabled when active is TRUE, else clear lplu for D3
1243 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1244 * is used during Dx states where the power conservation is most important.
1245 * During driver activity, SmartSpeed should be enabled so performance is
1246 * maintained. This is a function pointer entry point called by drivers.
1247 **/
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)1248 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1249 {
1250 if (hw->phy.ops.set_d3_lplu_state)
1251 return hw->phy.ops.set_d3_lplu_state(hw, active);
1252
1253 return E1000_SUCCESS;
1254 }
1255
1256 /**
1257 * e1000_read_mac_addr - Reads MAC address
1258 * @hw: pointer to the HW structure
1259 *
1260 * Reads the MAC address out of the adapter and stores it in the HW structure.
1261 * Currently no func pointer exists and all implementations are handled in the
1262 * generic version of this function.
1263 **/
e1000_read_mac_addr(struct e1000_hw * hw)1264 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1265 {
1266 if (hw->mac.ops.read_mac_addr)
1267 return hw->mac.ops.read_mac_addr(hw);
1268
1269 return e1000_read_mac_addr_generic(hw);
1270 }
1271
1272 /**
1273 * e1000_read_pba_string - Read device part number string
1274 * @hw: pointer to the HW structure
1275 * @pba_num: pointer to device part number
1276 * @pba_num_size: size of part number buffer
1277 *
1278 * Reads the product board assembly (PBA) number from the EEPROM and stores
1279 * the value in pba_num.
1280 * Currently no func pointer exists and all implementations are handled in the
1281 * generic version of this function.
1282 **/
e1000_read_pba_string(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)1283 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1284 {
1285 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1286 }
1287
1288 /**
1289 * e1000_read_pba_length - Read device part number string length
1290 * @hw: pointer to the HW structure
1291 * @pba_num_size: size of part number buffer
1292 *
1293 * Reads the product board assembly (PBA) number length from the EEPROM and
1294 * stores the value in pba_num.
1295 * Currently no func pointer exists and all implementations are handled in the
1296 * generic version of this function.
1297 **/
e1000_read_pba_length(struct e1000_hw * hw,u32 * pba_num_size)1298 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1299 {
1300 return e1000_read_pba_length_generic(hw, pba_num_size);
1301 }
1302
1303 /**
1304 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1305 * @hw: pointer to the HW structure
1306 *
1307 * Validates the NVM checksum is correct. This is a function pointer entry
1308 * point called by drivers.
1309 **/
e1000_validate_nvm_checksum(struct e1000_hw * hw)1310 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1311 {
1312 if (hw->nvm.ops.validate)
1313 return hw->nvm.ops.validate(hw);
1314
1315 return -E1000_ERR_CONFIG;
1316 }
1317
1318 /**
1319 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1320 * @hw: pointer to the HW structure
1321 *
1322 * Updates the NVM checksum. Currently no func pointer exists and all
1323 * implementations are handled in the generic version of this function.
1324 **/
e1000_update_nvm_checksum(struct e1000_hw * hw)1325 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1326 {
1327 if (hw->nvm.ops.update)
1328 return hw->nvm.ops.update(hw);
1329
1330 return -E1000_ERR_CONFIG;
1331 }
1332
1333 /**
1334 * e1000_reload_nvm - Reloads EEPROM
1335 * @hw: pointer to the HW structure
1336 *
1337 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1338 * extended control register.
1339 **/
e1000_reload_nvm(struct e1000_hw * hw)1340 void e1000_reload_nvm(struct e1000_hw *hw)
1341 {
1342 if (hw->nvm.ops.reload)
1343 hw->nvm.ops.reload(hw);
1344 }
1345
1346 /**
1347 * e1000_read_nvm - Reads NVM (EEPROM)
1348 * @hw: pointer to the HW structure
1349 * @offset: the word offset to read
1350 * @words: number of 16-bit words to read
1351 * @data: pointer to the properly sized buffer for the data.
1352 *
1353 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1354 * pointer entry point called by drivers.
1355 **/
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1356 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1357 {
1358 if (hw->nvm.ops.read)
1359 return hw->nvm.ops.read(hw, offset, words, data);
1360
1361 return -E1000_ERR_CONFIG;
1362 }
1363
1364 /**
1365 * e1000_write_nvm - Writes to NVM (EEPROM)
1366 * @hw: pointer to the HW structure
1367 * @offset: the word offset to read
1368 * @words: number of 16-bit words to write
1369 * @data: pointer to the properly sized buffer for the data.
1370 *
1371 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1372 * pointer entry point called by drivers.
1373 **/
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1374 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1375 {
1376 if (hw->nvm.ops.write)
1377 return hw->nvm.ops.write(hw, offset, words, data);
1378
1379 return E1000_SUCCESS;
1380 }
1381
1382 /**
1383 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1384 * @hw: pointer to the HW structure
1385 * @reg: 32bit register offset
1386 * @offset: the register to write
1387 * @data: the value to write.
1388 *
1389 * Writes the PHY register at offset with the value in data.
1390 * This is a function pointer entry point called by drivers.
1391 **/
e1000_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1392 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1393 u8 data)
1394 {
1395 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1396 }
1397
1398 /**
1399 * e1000_power_up_phy - Restores link in case of PHY power down
1400 * @hw: pointer to the HW structure
1401 *
1402 * The phy may be powered down to save power, to turn off link when the
1403 * driver is unloaded, or wake on lan is not enabled (among others).
1404 **/
e1000_power_up_phy(struct e1000_hw * hw)1405 void e1000_power_up_phy(struct e1000_hw *hw)
1406 {
1407 if (hw->phy.ops.power_up)
1408 hw->phy.ops.power_up(hw);
1409
1410 e1000_setup_link(hw);
1411 }
1412
1413 /**
1414 * e1000_power_down_phy - Power down PHY
1415 * @hw: pointer to the HW structure
1416 *
1417 * The phy may be powered down to save power, to turn off link when the
1418 * driver is unloaded, or wake on lan is not enabled (among others).
1419 **/
e1000_power_down_phy(struct e1000_hw * hw)1420 void e1000_power_down_phy(struct e1000_hw *hw)
1421 {
1422 if (hw->phy.ops.power_down)
1423 hw->phy.ops.power_down(hw);
1424 }
1425
1426 /**
1427 * e1000_power_up_fiber_serdes_link - Power up serdes link
1428 * @hw: pointer to the HW structure
1429 *
1430 * Power on the optics and PCS.
1431 **/
e1000_power_up_fiber_serdes_link(struct e1000_hw * hw)1432 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1433 {
1434 if (hw->mac.ops.power_up_serdes)
1435 hw->mac.ops.power_up_serdes(hw);
1436 }
1437
1438 /**
1439 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1440 * @hw: pointer to the HW structure
1441 *
1442 * Shutdown the optics and PCS on driver unload.
1443 **/
e1000_shutdown_fiber_serdes_link(struct e1000_hw * hw)1444 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1445 {
1446 if (hw->mac.ops.shutdown_serdes)
1447 hw->mac.ops.shutdown_serdes(hw);
1448 }
1449
1450