1 /******************************************************************************
2 SPDX-License-Identifier: BSD-3-Clause
3
4 Copyright (c) 2001-2020, Intel Corporation
5 All rights reserved.
6
7 Redistribution and use in source and binary forms, with or without
8 modification, are permitted provided that the following conditions are met:
9
10 1. Redistributions of source code must retain the above copyright notice,
11 this list of conditions and the following disclaimer.
12
13 2. Redistributions in binary form must reproduce the above copyright
14 notice, this list of conditions and the following disclaimer in the
15 documentation and/or other materials provided with the distribution.
16
17 3. Neither the name of the Intel Corporation nor the names of its
18 contributors may be used to endorse or promote products derived from
19 this software without specific prior written permission.
20
21 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
22 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
25 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 POSSIBILITY OF SUCH DAMAGE.
32
33 ******************************************************************************/
34
35 #include "e1000_api.h"
36
37 /**
38 * e1000_init_mac_params - Initialize MAC function pointers
39 * @hw: pointer to the HW structure
40 *
41 * This function initializes the function pointers for the MAC
42 * set of functions. Called by drivers or by e1000_setup_init_funcs.
43 **/
e1000_init_mac_params(struct e1000_hw * hw)44 s32 e1000_init_mac_params(struct e1000_hw *hw)
45 {
46 s32 ret_val = E1000_SUCCESS;
47
48 if (hw->mac.ops.init_params) {
49 ret_val = hw->mac.ops.init_params(hw);
50 if (ret_val) {
51 DEBUGOUT("MAC Initialization Error\n");
52 goto out;
53 }
54 } else {
55 DEBUGOUT("mac.init_mac_params was NULL\n");
56 ret_val = -E1000_ERR_CONFIG;
57 }
58
59 out:
60 return ret_val;
61 }
62
63 /**
64 * e1000_init_nvm_params - Initialize NVM function pointers
65 * @hw: pointer to the HW structure
66 *
67 * This function initializes the function pointers for the NVM
68 * set of functions. Called by drivers or by e1000_setup_init_funcs.
69 **/
e1000_init_nvm_params(struct e1000_hw * hw)70 s32 e1000_init_nvm_params(struct e1000_hw *hw)
71 {
72 s32 ret_val = E1000_SUCCESS;
73
74 if (hw->nvm.ops.init_params) {
75 ret_val = hw->nvm.ops.init_params(hw);
76 if (ret_val) {
77 DEBUGOUT("NVM Initialization Error\n");
78 goto out;
79 }
80 } else {
81 DEBUGOUT("nvm.init_nvm_params was NULL\n");
82 ret_val = -E1000_ERR_CONFIG;
83 }
84
85 out:
86 return ret_val;
87 }
88
89 /**
90 * e1000_init_phy_params - Initialize PHY function pointers
91 * @hw: pointer to the HW structure
92 *
93 * This function initializes the function pointers for the PHY
94 * set of functions. Called by drivers or by e1000_setup_init_funcs.
95 **/
e1000_init_phy_params(struct e1000_hw * hw)96 s32 e1000_init_phy_params(struct e1000_hw *hw)
97 {
98 s32 ret_val = E1000_SUCCESS;
99
100 if (hw->phy.ops.init_params) {
101 ret_val = hw->phy.ops.init_params(hw);
102 if (ret_val) {
103 DEBUGOUT("PHY Initialization Error\n");
104 goto out;
105 }
106 } else {
107 DEBUGOUT("phy.init_phy_params was NULL\n");
108 ret_val = -E1000_ERR_CONFIG;
109 }
110
111 out:
112 return ret_val;
113 }
114
115 /**
116 * e1000_init_mbx_params - Initialize mailbox function pointers
117 * @hw: pointer to the HW structure
118 *
119 * This function initializes the function pointers for the PHY
120 * set of functions. Called by drivers or by e1000_setup_init_funcs.
121 **/
e1000_init_mbx_params(struct e1000_hw * hw)122 s32 e1000_init_mbx_params(struct e1000_hw *hw)
123 {
124 s32 ret_val = E1000_SUCCESS;
125
126 if (hw->mbx.ops.init_params) {
127 ret_val = hw->mbx.ops.init_params(hw);
128 if (ret_val) {
129 DEBUGOUT("Mailbox Initialization Error\n");
130 goto out;
131 }
132 } else {
133 DEBUGOUT("mbx.init_mbx_params was NULL\n");
134 ret_val = -E1000_ERR_CONFIG;
135 }
136
137 out:
138 return ret_val;
139 }
140
141 /**
142 * e1000_set_mac_type - Sets MAC type
143 * @hw: pointer to the HW structure
144 *
145 * This function sets the mac type of the adapter based on the
146 * device ID stored in the hw structure.
147 * MUST BE FIRST FUNCTION CALLED (explicitly or through
148 * e1000_setup_init_funcs()).
149 **/
e1000_set_mac_type(struct e1000_hw * hw)150 s32 e1000_set_mac_type(struct e1000_hw *hw)
151 {
152 struct e1000_mac_info *mac = &hw->mac;
153 s32 ret_val = E1000_SUCCESS;
154
155 DEBUGFUNC("e1000_set_mac_type");
156
157 switch (hw->device_id) {
158 case E1000_DEV_ID_82542:
159 mac->type = e1000_82542;
160 break;
161 case E1000_DEV_ID_82543GC_FIBER:
162 case E1000_DEV_ID_82543GC_COPPER:
163 mac->type = e1000_82543;
164 break;
165 case E1000_DEV_ID_82544EI_COPPER:
166 case E1000_DEV_ID_82544EI_FIBER:
167 case E1000_DEV_ID_82544GC_COPPER:
168 case E1000_DEV_ID_82544GC_LOM:
169 mac->type = e1000_82544;
170 break;
171 case E1000_DEV_ID_82540EM:
172 case E1000_DEV_ID_82540EM_LOM:
173 case E1000_DEV_ID_82540EP:
174 case E1000_DEV_ID_82540EP_LOM:
175 case E1000_DEV_ID_82540EP_LP:
176 mac->type = e1000_82540;
177 break;
178 case E1000_DEV_ID_82545EM_COPPER:
179 case E1000_DEV_ID_82545EM_FIBER:
180 mac->type = e1000_82545;
181 break;
182 case E1000_DEV_ID_82545GM_COPPER:
183 case E1000_DEV_ID_82545GM_FIBER:
184 case E1000_DEV_ID_82545GM_SERDES:
185 mac->type = e1000_82545_rev_3;
186 break;
187 case E1000_DEV_ID_82546EB_COPPER:
188 case E1000_DEV_ID_82546EB_FIBER:
189 case E1000_DEV_ID_82546EB_QUAD_COPPER:
190 mac->type = e1000_82546;
191 break;
192 case E1000_DEV_ID_82546GB_COPPER:
193 case E1000_DEV_ID_82546GB_FIBER:
194 case E1000_DEV_ID_82546GB_SERDES:
195 case E1000_DEV_ID_82546GB_PCIE:
196 case E1000_DEV_ID_82546GB_QUAD_COPPER:
197 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
198 mac->type = e1000_82546_rev_3;
199 break;
200 case E1000_DEV_ID_82541EI:
201 case E1000_DEV_ID_82541EI_MOBILE:
202 case E1000_DEV_ID_82541ER_LOM:
203 mac->type = e1000_82541;
204 break;
205 case E1000_DEV_ID_82541ER:
206 case E1000_DEV_ID_82541GI:
207 case E1000_DEV_ID_82541GI_LF:
208 case E1000_DEV_ID_82541GI_MOBILE:
209 mac->type = e1000_82541_rev_2;
210 break;
211 case E1000_DEV_ID_82547EI:
212 case E1000_DEV_ID_82547EI_MOBILE:
213 mac->type = e1000_82547;
214 break;
215 case E1000_DEV_ID_82547GI:
216 mac->type = e1000_82547_rev_2;
217 break;
218 case E1000_DEV_ID_82571EB_COPPER:
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82571EB_SERDES:
221 case E1000_DEV_ID_82571EB_SERDES_DUAL:
222 case E1000_DEV_ID_82571EB_SERDES_QUAD:
223 case E1000_DEV_ID_82571EB_QUAD_COPPER:
224 case E1000_DEV_ID_82571PT_QUAD_COPPER:
225 case E1000_DEV_ID_82571EB_QUAD_FIBER:
226 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
227 mac->type = e1000_82571;
228 break;
229 case E1000_DEV_ID_82572EI:
230 case E1000_DEV_ID_82572EI_COPPER:
231 case E1000_DEV_ID_82572EI_FIBER:
232 case E1000_DEV_ID_82572EI_SERDES:
233 mac->type = e1000_82572;
234 break;
235 case E1000_DEV_ID_82573E:
236 case E1000_DEV_ID_82573E_IAMT:
237 case E1000_DEV_ID_82573L:
238 mac->type = e1000_82573;
239 break;
240 case E1000_DEV_ID_82574L:
241 case E1000_DEV_ID_82574LA:
242 mac->type = e1000_82574;
243 break;
244 case E1000_DEV_ID_82583V:
245 mac->type = e1000_82583;
246 break;
247 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
248 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
249 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
250 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
251 mac->type = e1000_80003es2lan;
252 break;
253 case E1000_DEV_ID_ICH8_IFE:
254 case E1000_DEV_ID_ICH8_IFE_GT:
255 case E1000_DEV_ID_ICH8_IFE_G:
256 case E1000_DEV_ID_ICH8_IGP_M:
257 case E1000_DEV_ID_ICH8_IGP_M_AMT:
258 case E1000_DEV_ID_ICH8_IGP_AMT:
259 case E1000_DEV_ID_ICH8_IGP_C:
260 case E1000_DEV_ID_ICH8_82567V_3:
261 mac->type = e1000_ich8lan;
262 break;
263 case E1000_DEV_ID_ICH9_IFE:
264 case E1000_DEV_ID_ICH9_IFE_GT:
265 case E1000_DEV_ID_ICH9_IFE_G:
266 case E1000_DEV_ID_ICH9_IGP_M:
267 case E1000_DEV_ID_ICH9_IGP_M_AMT:
268 case E1000_DEV_ID_ICH9_IGP_M_V:
269 case E1000_DEV_ID_ICH9_IGP_AMT:
270 case E1000_DEV_ID_ICH9_BM:
271 case E1000_DEV_ID_ICH9_IGP_C:
272 case E1000_DEV_ID_ICH10_R_BM_LM:
273 case E1000_DEV_ID_ICH10_R_BM_LF:
274 case E1000_DEV_ID_ICH10_R_BM_V:
275 mac->type = e1000_ich9lan;
276 break;
277 case E1000_DEV_ID_ICH10_D_BM_LM:
278 case E1000_DEV_ID_ICH10_D_BM_LF:
279 case E1000_DEV_ID_ICH10_D_BM_V:
280 mac->type = e1000_ich10lan;
281 break;
282 case E1000_DEV_ID_PCH_D_HV_DM:
283 case E1000_DEV_ID_PCH_D_HV_DC:
284 case E1000_DEV_ID_PCH_M_HV_LM:
285 case E1000_DEV_ID_PCH_M_HV_LC:
286 mac->type = e1000_pchlan;
287 break;
288 case E1000_DEV_ID_PCH2_LV_LM:
289 case E1000_DEV_ID_PCH2_LV_V:
290 mac->type = e1000_pch2lan;
291 break;
292 case E1000_DEV_ID_PCH_LPT_I217_LM:
293 case E1000_DEV_ID_PCH_LPT_I217_V:
294 case E1000_DEV_ID_PCH_LPTLP_I218_LM:
295 case E1000_DEV_ID_PCH_LPTLP_I218_V:
296 case E1000_DEV_ID_PCH_I218_LM2:
297 case E1000_DEV_ID_PCH_I218_V2:
298 case E1000_DEV_ID_PCH_I218_LM3:
299 case E1000_DEV_ID_PCH_I218_V3:
300 mac->type = e1000_pch_lpt;
301 break;
302 case E1000_DEV_ID_PCH_SPT_I219_LM:
303 case E1000_DEV_ID_PCH_SPT_I219_V:
304 case E1000_DEV_ID_PCH_SPT_I219_LM2:
305 case E1000_DEV_ID_PCH_SPT_I219_V2:
306 case E1000_DEV_ID_PCH_LBG_I219_LM3:
307 case E1000_DEV_ID_PCH_SPT_I219_LM4:
308 case E1000_DEV_ID_PCH_SPT_I219_V4:
309 case E1000_DEV_ID_PCH_SPT_I219_LM5:
310 case E1000_DEV_ID_PCH_SPT_I219_V5:
311 case E1000_DEV_ID_PCH_CMP_I219_LM12:
312 case E1000_DEV_ID_PCH_CMP_I219_V12:
313 mac->type = e1000_pch_spt;
314 break;
315 case E1000_DEV_ID_PCH_CNP_I219_LM6:
316 case E1000_DEV_ID_PCH_CNP_I219_V6:
317 case E1000_DEV_ID_PCH_CNP_I219_LM7:
318 case E1000_DEV_ID_PCH_CNP_I219_V7:
319 case E1000_DEV_ID_PCH_ICP_I219_LM8:
320 case E1000_DEV_ID_PCH_ICP_I219_V8:
321 case E1000_DEV_ID_PCH_ICP_I219_LM9:
322 case E1000_DEV_ID_PCH_ICP_I219_V9:
323 case E1000_DEV_ID_PCH_CMP_I219_LM10:
324 case E1000_DEV_ID_PCH_CMP_I219_V10:
325 case E1000_DEV_ID_PCH_CMP_I219_LM11:
326 case E1000_DEV_ID_PCH_CMP_I219_V11:
327 mac->type = e1000_pch_cnp;
328 break;
329 case E1000_DEV_ID_PCH_TGP_I219_LM13:
330 case E1000_DEV_ID_PCH_TGP_I219_V13:
331 case E1000_DEV_ID_PCH_TGP_I219_LM14:
332 case E1000_DEV_ID_PCH_TGP_I219_V14:
333 case E1000_DEV_ID_PCH_TGP_I219_LM15:
334 case E1000_DEV_ID_PCH_TGP_I219_V15:
335 mac->type = e1000_pch_tgp;
336 break;
337 case E1000_DEV_ID_PCH_ADL_I219_LM16:
338 case E1000_DEV_ID_PCH_ADL_I219_V16:
339 case E1000_DEV_ID_PCH_ADL_I219_LM17:
340 case E1000_DEV_ID_PCH_ADL_I219_V17:
341 case E1000_DEV_ID_PCH_ADL_I219_LM19:
342 case E1000_DEV_ID_PCH_ADL_I219_V19:
343 case E1000_DEV_ID_PCH_RPL_I219_LM22:
344 case E1000_DEV_ID_PCH_RPL_I219_V22:
345 case E1000_DEV_ID_PCH_RPL_I219_LM23:
346 case E1000_DEV_ID_PCH_RPL_I219_V23:
347 mac->type = e1000_pch_adp;
348 break;
349 case E1000_DEV_ID_PCH_MTP_I219_LM18:
350 case E1000_DEV_ID_PCH_MTP_I219_V18:
351 case E1000_DEV_ID_PCH_LNL_I219_LM20:
352 case E1000_DEV_ID_PCH_LNL_I219_V20:
353 case E1000_DEV_ID_PCH_LNL_I219_LM21:
354 case E1000_DEV_ID_PCH_LNL_I219_V21:
355 mac->type = e1000_pch_mtp;
356 break;
357 case E1000_DEV_ID_PCH_ARL_I219_LM24:
358 case E1000_DEV_ID_PCH_ARL_I219_V24:
359 case E1000_DEV_ID_PCH_PTP_I219_LM25:
360 case E1000_DEV_ID_PCH_PTP_I219_V25:
361 case E1000_DEV_ID_PCH_PTP_I219_LM26:
362 case E1000_DEV_ID_PCH_PTP_I219_V26:
363 case E1000_DEV_ID_PCH_PTP_I219_LM27:
364 case E1000_DEV_ID_PCH_PTP_I219_V27:
365 mac->type = e1000_pch_ptp;
366 break;
367 case E1000_DEV_ID_82575EB_COPPER:
368 case E1000_DEV_ID_82575EB_FIBER_SERDES:
369 case E1000_DEV_ID_82575GB_QUAD_COPPER:
370 mac->type = e1000_82575;
371 break;
372 case E1000_DEV_ID_82576:
373 case E1000_DEV_ID_82576_FIBER:
374 case E1000_DEV_ID_82576_SERDES:
375 case E1000_DEV_ID_82576_QUAD_COPPER:
376 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
377 case E1000_DEV_ID_82576_NS:
378 case E1000_DEV_ID_82576_NS_SERDES:
379 case E1000_DEV_ID_82576_SERDES_QUAD:
380 mac->type = e1000_82576;
381 break;
382 case E1000_DEV_ID_82580_COPPER:
383 case E1000_DEV_ID_82580_FIBER:
384 case E1000_DEV_ID_82580_SERDES:
385 case E1000_DEV_ID_82580_SGMII:
386 case E1000_DEV_ID_82580_COPPER_DUAL:
387 case E1000_DEV_ID_82580_QUAD_FIBER:
388 case E1000_DEV_ID_DH89XXCC_SGMII:
389 case E1000_DEV_ID_DH89XXCC_SERDES:
390 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
391 case E1000_DEV_ID_DH89XXCC_SFP:
392 mac->type = e1000_82580;
393 break;
394 case E1000_DEV_ID_I350_COPPER:
395 case E1000_DEV_ID_I350_FIBER:
396 case E1000_DEV_ID_I350_SERDES:
397 case E1000_DEV_ID_I350_SGMII:
398 case E1000_DEV_ID_I350_DA4:
399 mac->type = e1000_i350;
400 break;
401 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
402 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
403 case E1000_DEV_ID_I210_SGMII_FLASHLESS:
404 case E1000_DEV_ID_I210_COPPER:
405 case E1000_DEV_ID_I210_COPPER_OEM1:
406 case E1000_DEV_ID_I210_COPPER_IT:
407 case E1000_DEV_ID_I210_FIBER:
408 case E1000_DEV_ID_I210_SERDES:
409 case E1000_DEV_ID_I210_SGMII:
410 mac->type = e1000_i210;
411 break;
412 case E1000_DEV_ID_I211_COPPER:
413 mac->type = e1000_i211;
414 break;
415 case E1000_DEV_ID_82576_VF:
416 case E1000_DEV_ID_82576_VF_HV:
417 mac->type = e1000_vfadapt;
418 break;
419 case E1000_DEV_ID_I350_VF:
420 case E1000_DEV_ID_I350_VF_HV:
421 mac->type = e1000_vfadapt_i350;
422 break;
423
424 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
425 case E1000_DEV_ID_I354_SGMII:
426 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
427 mac->type = e1000_i354;
428 break;
429 default:
430 /* Should never have loaded on this device */
431 ret_val = -E1000_ERR_MAC_INIT;
432 break;
433 }
434
435 return ret_val;
436 }
437
438 /**
439 * e1000_setup_init_funcs - Initializes function pointers
440 * @hw: pointer to the HW structure
441 * @init_device: true will initialize the rest of the function pointers
442 * getting the device ready for use. false will only set
443 * MAC type and the function pointers for the other init
444 * functions. Passing false will not generate any hardware
445 * reads or writes.
446 *
447 * This function must be called by a driver in order to use the rest
448 * of the 'shared' code files. Called by drivers only.
449 **/
e1000_setup_init_funcs(struct e1000_hw * hw,bool init_device)450 s32 e1000_setup_init_funcs(struct e1000_hw *hw, bool init_device)
451 {
452 s32 ret_val;
453
454 /* Can't do much good without knowing the MAC type. */
455 ret_val = e1000_set_mac_type(hw);
456 if (ret_val) {
457 DEBUGOUT("ERROR: MAC type could not be set properly.\n");
458 goto out;
459 }
460
461 if (!hw->hw_addr) {
462 DEBUGOUT("ERROR: Registers not mapped\n");
463 ret_val = -E1000_ERR_CONFIG;
464 goto out;
465 }
466
467 /*
468 * Init function pointers to generic implementations. We do this first
469 * allowing a driver module to override it afterward.
470 */
471 e1000_init_mac_ops_generic(hw);
472 e1000_init_phy_ops_generic(hw);
473 e1000_init_nvm_ops_generic(hw);
474 e1000_init_mbx_ops_generic(hw);
475
476 /*
477 * Set up the init function pointers. These are functions within the
478 * adapter family file that sets up function pointers for the rest of
479 * the functions in that family.
480 */
481 switch (hw->mac.type) {
482 case e1000_82542:
483 e1000_init_function_pointers_82542(hw);
484 break;
485 case e1000_82543:
486 case e1000_82544:
487 e1000_init_function_pointers_82543(hw);
488 break;
489 case e1000_82540:
490 case e1000_82545:
491 case e1000_82545_rev_3:
492 case e1000_82546:
493 case e1000_82546_rev_3:
494 e1000_init_function_pointers_82540(hw);
495 break;
496 case e1000_82541:
497 case e1000_82541_rev_2:
498 case e1000_82547:
499 case e1000_82547_rev_2:
500 e1000_init_function_pointers_82541(hw);
501 break;
502 case e1000_82571:
503 case e1000_82572:
504 case e1000_82573:
505 case e1000_82574:
506 case e1000_82583:
507 e1000_init_function_pointers_82571(hw);
508 break;
509 case e1000_80003es2lan:
510 e1000_init_function_pointers_80003es2lan(hw);
511 break;
512 case e1000_ich8lan:
513 case e1000_ich9lan:
514 case e1000_ich10lan:
515 case e1000_pchlan:
516 case e1000_pch2lan:
517 case e1000_pch_lpt:
518 case e1000_pch_spt:
519 case e1000_pch_cnp:
520 case e1000_pch_tgp:
521 case e1000_pch_adp:
522 case e1000_pch_mtp:
523 case e1000_pch_ptp:
524 e1000_init_function_pointers_ich8lan(hw);
525 break;
526 case e1000_82575:
527 case e1000_82576:
528 case e1000_82580:
529 case e1000_i350:
530 case e1000_i354:
531 e1000_init_function_pointers_82575(hw);
532 break;
533 case e1000_i210:
534 case e1000_i211:
535 e1000_init_function_pointers_i210(hw);
536 break;
537 case e1000_vfadapt:
538 e1000_init_function_pointers_vf(hw);
539 break;
540 case e1000_vfadapt_i350:
541 e1000_init_function_pointers_vf(hw);
542 break;
543 default:
544 DEBUGOUT("Hardware not supported\n");
545 ret_val = -E1000_ERR_CONFIG;
546 break;
547 }
548
549 /*
550 * Initialize the rest of the function pointers. These require some
551 * register reads/writes in some cases.
552 */
553 if (!(ret_val) && init_device) {
554 ret_val = e1000_init_mac_params(hw);
555 if (ret_val)
556 goto out;
557
558 ret_val = e1000_init_nvm_params(hw);
559 if (ret_val)
560 goto out;
561
562 ret_val = e1000_init_phy_params(hw);
563 if (ret_val)
564 goto out;
565
566 ret_val = e1000_init_mbx_params(hw);
567 if (ret_val)
568 goto out;
569 }
570
571 out:
572 return ret_val;
573 }
574
575 /**
576 * e1000_get_bus_info - Obtain bus information for adapter
577 * @hw: pointer to the HW structure
578 *
579 * This will obtain information about the HW bus for which the
580 * adapter is attached and stores it in the hw structure. This is a
581 * function pointer entry point called by drivers.
582 **/
e1000_get_bus_info(struct e1000_hw * hw)583 s32 e1000_get_bus_info(struct e1000_hw *hw)
584 {
585 if (hw->mac.ops.get_bus_info)
586 return hw->mac.ops.get_bus_info(hw);
587
588 return E1000_SUCCESS;
589 }
590
591 /**
592 * e1000_clear_vfta - Clear VLAN filter table
593 * @hw: pointer to the HW structure
594 *
595 * This clears the VLAN filter table on the adapter. This is a function
596 * pointer entry point called by drivers.
597 **/
e1000_clear_vfta(struct e1000_hw * hw)598 void e1000_clear_vfta(struct e1000_hw *hw)
599 {
600 if (hw->mac.ops.clear_vfta)
601 hw->mac.ops.clear_vfta(hw);
602 }
603
604 /**
605 * e1000_write_vfta - Write value to VLAN filter table
606 * @hw: pointer to the HW structure
607 * @offset: the 32-bit offset in which to write the value to.
608 * @value: the 32-bit value to write at location offset.
609 *
610 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
611 * table. This is a function pointer entry point called by drivers.
612 **/
e1000_write_vfta(struct e1000_hw * hw,u32 offset,u32 value)613 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
614 {
615 if (hw->mac.ops.write_vfta)
616 hw->mac.ops.write_vfta(hw, offset, value);
617 }
618
619 /**
620 * e1000_update_mc_addr_list - Update Multicast addresses
621 * @hw: pointer to the HW structure
622 * @mc_addr_list: array of multicast addresses to program
623 * @mc_addr_count: number of multicast addresses to program
624 *
625 * Updates the Multicast Table Array.
626 * The caller must have a packed mc_addr_list of multicast addresses.
627 **/
e1000_update_mc_addr_list(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)628 void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
629 u32 mc_addr_count)
630 {
631 if (hw->mac.ops.update_mc_addr_list)
632 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list,
633 mc_addr_count);
634 }
635
636 /**
637 * e1000_force_mac_fc - Force MAC flow control
638 * @hw: pointer to the HW structure
639 *
640 * Force the MAC's flow control settings. Currently no func pointer exists
641 * and all implementations are handled in the generic version of this
642 * function.
643 **/
e1000_force_mac_fc(struct e1000_hw * hw)644 s32 e1000_force_mac_fc(struct e1000_hw *hw)
645 {
646 return e1000_force_mac_fc_generic(hw);
647 }
648
649 /**
650 * e1000_check_for_link - Check/Store link connection
651 * @hw: pointer to the HW structure
652 *
653 * This checks the link condition of the adapter and stores the
654 * results in the hw->mac structure. This is a function pointer entry
655 * point called by drivers.
656 **/
e1000_check_for_link(struct e1000_hw * hw)657 s32 e1000_check_for_link(struct e1000_hw *hw)
658 {
659 if (hw->mac.ops.check_for_link)
660 return hw->mac.ops.check_for_link(hw);
661
662 return -E1000_ERR_CONFIG;
663 }
664
665 /**
666 * e1000_check_mng_mode - Check management mode
667 * @hw: pointer to the HW structure
668 *
669 * This checks if the adapter has manageability enabled.
670 * This is a function pointer entry point called by drivers.
671 **/
e1000_check_mng_mode(struct e1000_hw * hw)672 bool e1000_check_mng_mode(struct e1000_hw *hw)
673 {
674 if (hw->mac.ops.check_mng_mode)
675 return hw->mac.ops.check_mng_mode(hw);
676
677 return false;
678 }
679
680 /**
681 * e1000_mng_write_dhcp_info - Writes DHCP info to host interface
682 * @hw: pointer to the HW structure
683 * @buffer: pointer to the host interface
684 * @length: size of the buffer
685 *
686 * Writes the DHCP information to the host interface.
687 **/
e1000_mng_write_dhcp_info(struct e1000_hw * hw,u8 * buffer,u16 length)688 s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
689 {
690 return e1000_mng_write_dhcp_info_generic(hw, buffer, length);
691 }
692
693 /**
694 * e1000_reset_hw - Reset hardware
695 * @hw: pointer to the HW structure
696 *
697 * This resets the hardware into a known state. This is a function pointer
698 * entry point called by drivers.
699 **/
e1000_reset_hw(struct e1000_hw * hw)700 s32 e1000_reset_hw(struct e1000_hw *hw)
701 {
702 if (hw->mac.ops.reset_hw)
703 return hw->mac.ops.reset_hw(hw);
704
705 return -E1000_ERR_CONFIG;
706 }
707
708 /**
709 * e1000_init_hw - Initialize hardware
710 * @hw: pointer to the HW structure
711 *
712 * This inits the hardware readying it for operation. This is a function
713 * pointer entry point called by drivers.
714 **/
e1000_init_hw(struct e1000_hw * hw)715 s32 e1000_init_hw(struct e1000_hw *hw)
716 {
717 if (hw->mac.ops.init_hw)
718 return hw->mac.ops.init_hw(hw);
719
720 return -E1000_ERR_CONFIG;
721 }
722
723 /**
724 * e1000_setup_link - Configures link and flow control
725 * @hw: pointer to the HW structure
726 *
727 * This configures link and flow control settings for the adapter. This
728 * is a function pointer entry point called by drivers. While modules can
729 * also call this, they probably call their own version of this function.
730 **/
e1000_setup_link(struct e1000_hw * hw)731 s32 e1000_setup_link(struct e1000_hw *hw)
732 {
733 if (hw->mac.ops.setup_link)
734 return hw->mac.ops.setup_link(hw);
735
736 return -E1000_ERR_CONFIG;
737 }
738
739 /**
740 * e1000_get_speed_and_duplex - Returns current speed and duplex
741 * @hw: pointer to the HW structure
742 * @speed: pointer to a 16-bit value to store the speed
743 * @duplex: pointer to a 16-bit value to store the duplex.
744 *
745 * This returns the speed and duplex of the adapter in the two 'out'
746 * variables passed in. This is a function pointer entry point called
747 * by drivers.
748 **/
e1000_get_speed_and_duplex(struct e1000_hw * hw,u16 * speed,u16 * duplex)749 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
750 {
751 if (hw->mac.ops.get_link_up_info)
752 return hw->mac.ops.get_link_up_info(hw, speed, duplex);
753
754 return -E1000_ERR_CONFIG;
755 }
756
757 /**
758 * e1000_setup_led - Configures SW controllable LED
759 * @hw: pointer to the HW structure
760 *
761 * This prepares the SW controllable LED for use and saves the current state
762 * of the LED so it can be later restored. This is a function pointer entry
763 * point called by drivers.
764 **/
e1000_setup_led(struct e1000_hw * hw)765 s32 e1000_setup_led(struct e1000_hw *hw)
766 {
767 if (hw->mac.ops.setup_led)
768 return hw->mac.ops.setup_led(hw);
769
770 return E1000_SUCCESS;
771 }
772
773 /**
774 * e1000_cleanup_led - Restores SW controllable LED
775 * @hw: pointer to the HW structure
776 *
777 * This restores the SW controllable LED to the value saved off by
778 * e1000_setup_led. This is a function pointer entry point called by drivers.
779 **/
e1000_cleanup_led(struct e1000_hw * hw)780 s32 e1000_cleanup_led(struct e1000_hw *hw)
781 {
782 if (hw->mac.ops.cleanup_led)
783 return hw->mac.ops.cleanup_led(hw);
784
785 return E1000_SUCCESS;
786 }
787
788 /**
789 * e1000_blink_led - Blink SW controllable LED
790 * @hw: pointer to the HW structure
791 *
792 * This starts the adapter LED blinking. Request the LED to be setup first
793 * and cleaned up after. This is a function pointer entry point called by
794 * drivers.
795 **/
e1000_blink_led(struct e1000_hw * hw)796 s32 e1000_blink_led(struct e1000_hw *hw)
797 {
798 if (hw->mac.ops.blink_led)
799 return hw->mac.ops.blink_led(hw);
800
801 return E1000_SUCCESS;
802 }
803
804 /**
805 * e1000_id_led_init - store LED configurations in SW
806 * @hw: pointer to the HW structure
807 *
808 * Initializes the LED config in SW. This is a function pointer entry point
809 * called by drivers.
810 **/
e1000_id_led_init(struct e1000_hw * hw)811 s32 e1000_id_led_init(struct e1000_hw *hw)
812 {
813 if (hw->mac.ops.id_led_init)
814 return hw->mac.ops.id_led_init(hw);
815
816 return E1000_SUCCESS;
817 }
818
819 /**
820 * e1000_led_on - Turn on SW controllable LED
821 * @hw: pointer to the HW structure
822 *
823 * Turns the SW defined LED on. This is a function pointer entry point
824 * called by drivers.
825 **/
e1000_led_on(struct e1000_hw * hw)826 s32 e1000_led_on(struct e1000_hw *hw)
827 {
828 if (hw->mac.ops.led_on)
829 return hw->mac.ops.led_on(hw);
830
831 return E1000_SUCCESS;
832 }
833
834 /**
835 * e1000_led_off - Turn off SW controllable LED
836 * @hw: pointer to the HW structure
837 *
838 * Turns the SW defined LED off. This is a function pointer entry point
839 * called by drivers.
840 **/
e1000_led_off(struct e1000_hw * hw)841 s32 e1000_led_off(struct e1000_hw *hw)
842 {
843 if (hw->mac.ops.led_off)
844 return hw->mac.ops.led_off(hw);
845
846 return E1000_SUCCESS;
847 }
848
849 /**
850 * e1000_reset_adaptive - Reset adaptive IFS
851 * @hw: pointer to the HW structure
852 *
853 * Resets the adaptive IFS. Currently no func pointer exists and all
854 * implementations are handled in the generic version of this function.
855 **/
e1000_reset_adaptive(struct e1000_hw * hw)856 void e1000_reset_adaptive(struct e1000_hw *hw)
857 {
858 e1000_reset_adaptive_generic(hw);
859 }
860
861 /**
862 * e1000_update_adaptive - Update adaptive IFS
863 * @hw: pointer to the HW structure
864 *
865 * Updates adapter IFS. Currently no func pointer exists and all
866 * implementations are handled in the generic version of this function.
867 **/
e1000_update_adaptive(struct e1000_hw * hw)868 void e1000_update_adaptive(struct e1000_hw *hw)
869 {
870 e1000_update_adaptive_generic(hw);
871 }
872
873 /**
874 * e1000_disable_pcie_master - Disable PCI-Express master access
875 * @hw: pointer to the HW structure
876 *
877 * Disables PCI-Express master access and verifies there are no pending
878 * requests. Currently no func pointer exists and all implementations are
879 * handled in the generic version of this function.
880 **/
e1000_disable_pcie_master(struct e1000_hw * hw)881 s32 e1000_disable_pcie_master(struct e1000_hw *hw)
882 {
883 return e1000_disable_pcie_master_generic(hw);
884 }
885
886 /**
887 * e1000_config_collision_dist - Configure collision distance
888 * @hw: pointer to the HW structure
889 *
890 * Configures the collision distance to the default value and is used
891 * during link setup.
892 **/
e1000_config_collision_dist(struct e1000_hw * hw)893 void e1000_config_collision_dist(struct e1000_hw *hw)
894 {
895 if (hw->mac.ops.config_collision_dist)
896 hw->mac.ops.config_collision_dist(hw);
897 }
898
899 /**
900 * e1000_rar_set - Sets a receive address register
901 * @hw: pointer to the HW structure
902 * @addr: address to set the RAR to
903 * @index: the RAR to set
904 *
905 * Sets a Receive Address Register (RAR) to the specified address.
906 **/
e1000_rar_set(struct e1000_hw * hw,u8 * addr,u32 index)907 int e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
908 {
909 if (hw->mac.ops.rar_set)
910 return hw->mac.ops.rar_set(hw, addr, index);
911
912 return E1000_SUCCESS;
913 }
914
915 /**
916 * e1000_validate_mdi_setting - Ensures valid MDI/MDIX SW state
917 * @hw: pointer to the HW structure
918 *
919 * Ensures that the MDI/MDIX SW state is valid.
920 **/
e1000_validate_mdi_setting(struct e1000_hw * hw)921 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
922 {
923 if (hw->mac.ops.validate_mdi_setting)
924 return hw->mac.ops.validate_mdi_setting(hw);
925
926 return E1000_SUCCESS;
927 }
928
929 /**
930 * e1000_hash_mc_addr - Determines address location in multicast table
931 * @hw: pointer to the HW structure
932 * @mc_addr: Multicast address to hash.
933 *
934 * This hashes an address to determine its location in the multicast
935 * table. Currently no func pointer exists and all implementations
936 * are handled in the generic version of this function.
937 **/
e1000_hash_mc_addr(struct e1000_hw * hw,u8 * mc_addr)938 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
939 {
940 return e1000_hash_mc_addr_generic(hw, mc_addr);
941 }
942
943 /**
944 * e1000_enable_tx_pkt_filtering - Enable packet filtering on TX
945 * @hw: pointer to the HW structure
946 *
947 * Enables packet filtering on transmit packets if manageability is enabled
948 * and host interface is enabled.
949 * Currently no func pointer exists and all implementations are handled in the
950 * generic version of this function.
951 **/
e1000_enable_tx_pkt_filtering(struct e1000_hw * hw)952 bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
953 {
954 return e1000_enable_tx_pkt_filtering_generic(hw);
955 }
956
957 /**
958 * e1000_mng_host_if_write - Writes to the manageability host interface
959 * @hw: pointer to the HW structure
960 * @buffer: pointer to the host interface buffer
961 * @length: size of the buffer
962 * @offset: location in the buffer to write to
963 * @sum: sum of the data (not checksum)
964 *
965 * This function writes the buffer content at the offset given on the host if.
966 * It also does alignment considerations to do the writes in most efficient
967 * way. Also fills up the sum of the buffer in *buffer parameter.
968 **/
e1000_mng_host_if_write(struct e1000_hw * hw,u8 * buffer,u16 length,u16 offset,u8 * sum)969 s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length,
970 u16 offset, u8 *sum)
971 {
972 return e1000_mng_host_if_write_generic(hw, buffer, length, offset, sum);
973 }
974
975 /**
976 * e1000_mng_write_cmd_header - Writes manageability command header
977 * @hw: pointer to the HW structure
978 * @hdr: pointer to the host interface command header
979 *
980 * Writes the command header after does the checksum calculation.
981 **/
e1000_mng_write_cmd_header(struct e1000_hw * hw,struct e1000_host_mng_command_header * hdr)982 s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
983 struct e1000_host_mng_command_header *hdr)
984 {
985 return e1000_mng_write_cmd_header_generic(hw, hdr);
986 }
987
988 /**
989 * e1000_mng_enable_host_if - Checks host interface is enabled
990 * @hw: pointer to the HW structure
991 *
992 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
993 *
994 * This function checks whether the HOST IF is enabled for command operation
995 * and also checks whether the previous command is completed. It busy waits
996 * in case of previous command is not completed.
997 **/
e1000_mng_enable_host_if(struct e1000_hw * hw)998 s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
999 {
1000 return e1000_mng_enable_host_if_generic(hw);
1001 }
1002
1003 /**
1004 * e1000_set_obff_timer - Set Optimized Buffer Flush/Fill timer
1005 * @hw: pointer to the HW structure
1006 * @itr: u32 indicating itr value
1007 *
1008 * Set the OBFF timer based on the given interrupt rate.
1009 **/
e1000_set_obff_timer(struct e1000_hw * hw,u32 itr)1010 s32 e1000_set_obff_timer(struct e1000_hw *hw, u32 itr)
1011 {
1012 if (hw->mac.ops.set_obff_timer)
1013 return hw->mac.ops.set_obff_timer(hw, itr);
1014
1015 return E1000_SUCCESS;
1016 }
1017
1018 /**
1019 * e1000_check_reset_block - Verifies PHY can be reset
1020 * @hw: pointer to the HW structure
1021 *
1022 * Checks if the PHY is in a state that can be reset or if manageability
1023 * has it tied up. This is a function pointer entry point called by drivers.
1024 **/
e1000_check_reset_block(struct e1000_hw * hw)1025 s32 e1000_check_reset_block(struct e1000_hw *hw)
1026 {
1027 if (hw->phy.ops.check_reset_block)
1028 return hw->phy.ops.check_reset_block(hw);
1029
1030 return E1000_SUCCESS;
1031 }
1032
1033 /**
1034 * e1000_read_phy_reg - Reads PHY register
1035 * @hw: pointer to the HW structure
1036 * @offset: the register to read
1037 * @data: the buffer to store the 16-bit read.
1038 *
1039 * Reads the PHY register and returns the value in data.
1040 * This is a function pointer entry point called by drivers.
1041 **/
e1000_read_phy_reg(struct e1000_hw * hw,u32 offset,u16 * data)1042 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1043 {
1044 if (hw->phy.ops.read_reg)
1045 return hw->phy.ops.read_reg(hw, offset, data);
1046
1047 return E1000_SUCCESS;
1048 }
1049
1050 /**
1051 * e1000_write_phy_reg - Writes PHY register
1052 * @hw: pointer to the HW structure
1053 * @offset: the register to write
1054 * @data: the value to write.
1055 *
1056 * Writes the PHY register at offset with the value in data.
1057 * This is a function pointer entry point called by drivers.
1058 **/
e1000_write_phy_reg(struct e1000_hw * hw,u32 offset,u16 data)1059 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data)
1060 {
1061 if (hw->phy.ops.write_reg)
1062 return hw->phy.ops.write_reg(hw, offset, data);
1063
1064 return E1000_SUCCESS;
1065 }
1066
1067 /**
1068 * e1000_release_phy - Generic release PHY
1069 * @hw: pointer to the HW structure
1070 *
1071 * Return if silicon family does not require a semaphore when accessing the
1072 * PHY.
1073 **/
e1000_release_phy(struct e1000_hw * hw)1074 void e1000_release_phy(struct e1000_hw *hw)
1075 {
1076 if (hw->phy.ops.release)
1077 hw->phy.ops.release(hw);
1078 }
1079
1080 /**
1081 * e1000_acquire_phy - Generic acquire PHY
1082 * @hw: pointer to the HW structure
1083 *
1084 * Return success if silicon family does not require a semaphore when
1085 * accessing the PHY.
1086 **/
e1000_acquire_phy(struct e1000_hw * hw)1087 s32 e1000_acquire_phy(struct e1000_hw *hw)
1088 {
1089 if (hw->phy.ops.acquire)
1090 return hw->phy.ops.acquire(hw);
1091
1092 return E1000_SUCCESS;
1093 }
1094
1095 /**
1096 * e1000_cfg_on_link_up - Configure PHY upon link up
1097 * @hw: pointer to the HW structure
1098 **/
e1000_cfg_on_link_up(struct e1000_hw * hw)1099 s32 e1000_cfg_on_link_up(struct e1000_hw *hw)
1100 {
1101 if (hw->phy.ops.cfg_on_link_up)
1102 return hw->phy.ops.cfg_on_link_up(hw);
1103
1104 return E1000_SUCCESS;
1105 }
1106
1107 /**
1108 * e1000_read_kmrn_reg - Reads register using Kumeran interface
1109 * @hw: pointer to the HW structure
1110 * @offset: the register to read
1111 * @data: the location to store the 16-bit value read.
1112 *
1113 * Reads a register out of the Kumeran interface. Currently no func pointer
1114 * exists and all implementations are handled in the generic version of
1115 * this function.
1116 **/
e1000_read_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 * data)1117 s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
1118 {
1119 return e1000_read_kmrn_reg_generic(hw, offset, data);
1120 }
1121
1122 /**
1123 * e1000_write_kmrn_reg - Writes register using Kumeran interface
1124 * @hw: pointer to the HW structure
1125 * @offset: the register to write
1126 * @data: the value to write.
1127 *
1128 * Writes a register to the Kumeran interface. Currently no func pointer
1129 * exists and all implementations are handled in the generic version of
1130 * this function.
1131 **/
e1000_write_kmrn_reg(struct e1000_hw * hw,u32 offset,u16 data)1132 s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
1133 {
1134 return e1000_write_kmrn_reg_generic(hw, offset, data);
1135 }
1136
1137 /**
1138 * e1000_get_cable_length - Retrieves cable length estimation
1139 * @hw: pointer to the HW structure
1140 *
1141 * This function estimates the cable length and stores them in
1142 * hw->phy.min_length and hw->phy.max_length. This is a function pointer
1143 * entry point called by drivers.
1144 **/
e1000_get_cable_length(struct e1000_hw * hw)1145 s32 e1000_get_cable_length(struct e1000_hw *hw)
1146 {
1147 if (hw->phy.ops.get_cable_length)
1148 return hw->phy.ops.get_cable_length(hw);
1149
1150 return E1000_SUCCESS;
1151 }
1152
1153 /**
1154 * e1000_get_phy_info - Retrieves PHY information from registers
1155 * @hw: pointer to the HW structure
1156 *
1157 * This function gets some information from various PHY registers and
1158 * populates hw->phy values with it. This is a function pointer entry
1159 * point called by drivers.
1160 **/
e1000_get_phy_info(struct e1000_hw * hw)1161 s32 e1000_get_phy_info(struct e1000_hw *hw)
1162 {
1163 if (hw->phy.ops.get_info)
1164 return hw->phy.ops.get_info(hw);
1165
1166 return E1000_SUCCESS;
1167 }
1168
1169 /**
1170 * e1000_phy_hw_reset - Hard PHY reset
1171 * @hw: pointer to the HW structure
1172 *
1173 * Performs a hard PHY reset. This is a function pointer entry point called
1174 * by drivers.
1175 **/
e1000_phy_hw_reset(struct e1000_hw * hw)1176 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
1177 {
1178 if (hw->phy.ops.reset)
1179 return hw->phy.ops.reset(hw);
1180
1181 return E1000_SUCCESS;
1182 }
1183
1184 /**
1185 * e1000_phy_commit - Soft PHY reset
1186 * @hw: pointer to the HW structure
1187 *
1188 * Performs a soft PHY reset on those that apply. This is a function pointer
1189 * entry point called by drivers.
1190 **/
e1000_phy_commit(struct e1000_hw * hw)1191 s32 e1000_phy_commit(struct e1000_hw *hw)
1192 {
1193 if (hw->phy.ops.commit)
1194 return hw->phy.ops.commit(hw);
1195
1196 return E1000_SUCCESS;
1197 }
1198
1199 /**
1200 * e1000_set_d0_lplu_state - Sets low power link up state for D0
1201 * @hw: pointer to the HW structure
1202 * @active: boolean used to enable/disable lplu
1203 *
1204 * Success returns 0, Failure returns 1
1205 *
1206 * The low power link up (lplu) state is set to the power management level D0
1207 * and SmartSpeed is disabled when active is true, else clear lplu for D0
1208 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1209 * is used during Dx states where the power conservation is most important.
1210 * During driver activity, SmartSpeed should be enabled so performance is
1211 * maintained. This is a function pointer entry point called by drivers.
1212 **/
e1000_set_d0_lplu_state(struct e1000_hw * hw,bool active)1213 s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
1214 {
1215 if (hw->phy.ops.set_d0_lplu_state)
1216 return hw->phy.ops.set_d0_lplu_state(hw, active);
1217
1218 return E1000_SUCCESS;
1219 }
1220
1221 /**
1222 * e1000_set_d3_lplu_state - Sets low power link up state for D3
1223 * @hw: pointer to the HW structure
1224 * @active: boolean used to enable/disable lplu
1225 *
1226 * Success returns 0, Failure returns 1
1227 *
1228 * The low power link up (lplu) state is set to the power management level D3
1229 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1230 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1231 * is used during Dx states where the power conservation is most important.
1232 * During driver activity, SmartSpeed should be enabled so performance is
1233 * maintained. This is a function pointer entry point called by drivers.
1234 **/
e1000_set_d3_lplu_state(struct e1000_hw * hw,bool active)1235 s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1236 {
1237 if (hw->phy.ops.set_d3_lplu_state)
1238 return hw->phy.ops.set_d3_lplu_state(hw, active);
1239
1240 return E1000_SUCCESS;
1241 }
1242
1243 /**
1244 * e1000_read_mac_addr - Reads MAC address
1245 * @hw: pointer to the HW structure
1246 *
1247 * Reads the MAC address out of the adapter and stores it in the HW structure.
1248 * Currently no func pointer exists and all implementations are handled in the
1249 * generic version of this function.
1250 **/
e1000_read_mac_addr(struct e1000_hw * hw)1251 s32 e1000_read_mac_addr(struct e1000_hw *hw)
1252 {
1253 if (hw->mac.ops.read_mac_addr)
1254 return hw->mac.ops.read_mac_addr(hw);
1255
1256 return e1000_read_mac_addr_generic(hw);
1257 }
1258
1259 /**
1260 * e1000_read_pba_string - Read device part number string
1261 * @hw: pointer to the HW structure
1262 * @pba_num: pointer to device part number
1263 * @pba_num_size: size of part number buffer
1264 *
1265 * Reads the product board assembly (PBA) number from the EEPROM and stores
1266 * the value in pba_num.
1267 * Currently no func pointer exists and all implementations are handled in the
1268 * generic version of this function.
1269 **/
e1000_read_pba_string(struct e1000_hw * hw,u8 * pba_num,u32 pba_num_size)1270 s32 e1000_read_pba_string(struct e1000_hw *hw, u8 *pba_num, u32 pba_num_size)
1271 {
1272 return e1000_read_pba_string_generic(hw, pba_num, pba_num_size);
1273 }
1274
1275 /**
1276 * e1000_read_pba_length - Read device part number string length
1277 * @hw: pointer to the HW structure
1278 * @pba_num_size: size of part number buffer
1279 *
1280 * Reads the product board assembly (PBA) number length from the EEPROM and
1281 * stores the value in pba_num.
1282 * Currently no func pointer exists and all implementations are handled in the
1283 * generic version of this function.
1284 **/
e1000_read_pba_length(struct e1000_hw * hw,u32 * pba_num_size)1285 s32 e1000_read_pba_length(struct e1000_hw *hw, u32 *pba_num_size)
1286 {
1287 return e1000_read_pba_length_generic(hw, pba_num_size);
1288 }
1289
1290 /**
1291 * e1000_read_pba_num - Read device part number
1292 * @hw: pointer to the HW structure
1293 * @pba_num: pointer to device part number
1294 *
1295 * Reads the product board assembly (PBA) number from the EEPROM and stores
1296 * the value in pba_num.
1297 * Currently no func pointer exists and all implementations are handled in the
1298 * generic version of this function.
1299 **/
e1000_read_pba_num(struct e1000_hw * hw,u32 * pba_num)1300 s32 e1000_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
1301 {
1302 return e1000_read_pba_num_generic(hw, pba_num);
1303 }
1304
1305 /**
1306 * e1000_validate_nvm_checksum - Verifies NVM (EEPROM) checksum
1307 * @hw: pointer to the HW structure
1308 *
1309 * Validates the NVM checksum is correct. This is a function pointer entry
1310 * point called by drivers.
1311 **/
e1000_validate_nvm_checksum(struct e1000_hw * hw)1312 s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
1313 {
1314 if (hw->nvm.ops.validate)
1315 return hw->nvm.ops.validate(hw);
1316
1317 return -E1000_ERR_CONFIG;
1318 }
1319
1320 /**
1321 * e1000_update_nvm_checksum - Updates NVM (EEPROM) checksum
1322 * @hw: pointer to the HW structure
1323 *
1324 * Updates the NVM checksum. Currently no func pointer exists and all
1325 * implementations are handled in the generic version of this function.
1326 **/
e1000_update_nvm_checksum(struct e1000_hw * hw)1327 s32 e1000_update_nvm_checksum(struct e1000_hw *hw)
1328 {
1329 if (hw->nvm.ops.update)
1330 return hw->nvm.ops.update(hw);
1331
1332 return -E1000_ERR_CONFIG;
1333 }
1334
1335 /**
1336 * e1000_reload_nvm - Reloads EEPROM
1337 * @hw: pointer to the HW structure
1338 *
1339 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
1340 * extended control register.
1341 **/
e1000_reload_nvm(struct e1000_hw * hw)1342 void e1000_reload_nvm(struct e1000_hw *hw)
1343 {
1344 if (hw->nvm.ops.reload)
1345 hw->nvm.ops.reload(hw);
1346 }
1347
1348 /**
1349 * e1000_read_nvm - Reads NVM (EEPROM)
1350 * @hw: pointer to the HW structure
1351 * @offset: the word offset to read
1352 * @words: number of 16-bit words to read
1353 * @data: pointer to the properly sized buffer for the data.
1354 *
1355 * Reads 16-bit chunks of data from the NVM (EEPROM). This is a function
1356 * pointer entry point called by drivers.
1357 **/
e1000_read_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1358 s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1359 {
1360 if (hw->nvm.ops.read)
1361 return hw->nvm.ops.read(hw, offset, words, data);
1362
1363 return -E1000_ERR_CONFIG;
1364 }
1365
1366 /**
1367 * e1000_write_nvm - Writes to NVM (EEPROM)
1368 * @hw: pointer to the HW structure
1369 * @offset: the word offset to read
1370 * @words: number of 16-bit words to write
1371 * @data: pointer to the properly sized buffer for the data.
1372 *
1373 * Writes 16-bit chunks of data to the NVM (EEPROM). This is a function
1374 * pointer entry point called by drivers.
1375 **/
e1000_write_nvm(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)1376 s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1377 {
1378 if (hw->nvm.ops.write)
1379 return hw->nvm.ops.write(hw, offset, words, data);
1380
1381 return E1000_SUCCESS;
1382 }
1383
1384 /**
1385 * e1000_write_8bit_ctrl_reg - Writes 8bit Control register
1386 * @hw: pointer to the HW structure
1387 * @reg: 32bit register offset
1388 * @offset: the register to write
1389 * @data: the value to write.
1390 *
1391 * Writes the PHY register at offset with the value in data.
1392 * This is a function pointer entry point called by drivers.
1393 **/
e1000_write_8bit_ctrl_reg(struct e1000_hw * hw,u32 reg,u32 offset,u8 data)1394 s32 e1000_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg, u32 offset,
1395 u8 data)
1396 {
1397 return e1000_write_8bit_ctrl_reg_generic(hw, reg, offset, data);
1398 }
1399
1400 /**
1401 * e1000_power_up_phy - Restores link in case of PHY power down
1402 * @hw: pointer to the HW structure
1403 *
1404 * The phy may be powered down to save power, to turn off link when the
1405 * driver is unloaded, or wake on lan is not enabled (among others).
1406 **/
e1000_power_up_phy(struct e1000_hw * hw)1407 void e1000_power_up_phy(struct e1000_hw *hw)
1408 {
1409 if (hw->phy.ops.power_up)
1410 hw->phy.ops.power_up(hw);
1411
1412 e1000_setup_link(hw);
1413 }
1414
1415 /**
1416 * e1000_power_down_phy - Power down PHY
1417 * @hw: pointer to the HW structure
1418 *
1419 * The phy may be powered down to save power, to turn off link when the
1420 * driver is unloaded, or wake on lan is not enabled (among others).
1421 **/
e1000_power_down_phy(struct e1000_hw * hw)1422 void e1000_power_down_phy(struct e1000_hw *hw)
1423 {
1424 if (hw->phy.ops.power_down)
1425 hw->phy.ops.power_down(hw);
1426 }
1427
1428 /**
1429 * e1000_power_up_fiber_serdes_link - Power up serdes link
1430 * @hw: pointer to the HW structure
1431 *
1432 * Power on the optics and PCS.
1433 **/
e1000_power_up_fiber_serdes_link(struct e1000_hw * hw)1434 void e1000_power_up_fiber_serdes_link(struct e1000_hw *hw)
1435 {
1436 if (hw->mac.ops.power_up_serdes)
1437 hw->mac.ops.power_up_serdes(hw);
1438 }
1439
1440 /**
1441 * e1000_shutdown_fiber_serdes_link - Remove link during power down
1442 * @hw: pointer to the HW structure
1443 *
1444 * Shutdown the optics and PCS on driver unload.
1445 **/
e1000_shutdown_fiber_serdes_link(struct e1000_hw * hw)1446 void e1000_shutdown_fiber_serdes_link(struct e1000_hw *hw)
1447 {
1448 if (hw->mac.ops.shutdown_serdes)
1449 hw->mac.ops.shutdown_serdes(hw);
1450 }
1451
1452