xref: /freebsd/sys/dev/dwc/dwc1000_core.c (revision 1f469a9fc498c3d406ef7c4e347232678f49da0a)
1 /*-
2  * Copyright (c) 2014 Ruslan Bukin <br@bsdpad.com>
3  *
4  * This software was developed by SRI International and the University of
5  * Cambridge Computer Laboratory under DARPA/AFRL contract (FA8750-10-C-0237)
6  * ("CTSRD"), as part of the DARPA CRASH research programme.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  * Ethernet media access controller (EMAC)
32  * Chapter 17, Altera Cyclone V Device Handbook (CV-5V2 2014.07.22)
33  *
34  * EMAC is an instance of the Synopsys DesignWare 3504-0
35  * Universal 10/100/1000 Ethernet MAC (DWC_gmac).
36  */
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/bus.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/module.h>
46 #include <sys/mutex.h>
47 #include <sys/rman.h>
48 #include <sys/socket.h>
49 
50 #include <net/if.h>
51 #include <net/ethernet.h>
52 #include <net/if_dl.h>
53 #include <net/if_media.h>
54 
55 #include <machine/bus.h>
56 
57 #include <dev/clk/clk.h>
58 #include <dev/hwreset/hwreset.h>
59 
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62 #include <dev/ofw/ofw_bus.h>
63 #include <dev/ofw/ofw_bus_subr.h>
64 #include <dev/mii/mii_fdt.h>
65 
66 #include <dev/dwc/if_dwcvar.h>
67 #include <dev/dwc/dwc1000_reg.h>
68 #include <dev/dwc/dwc1000_core.h>
69 #include <dev/dwc/dwc1000_dma.h>
70 
71 #include "if_dwc_if.h"
72 
73 struct dwc_hash_maddr_ctx {
74 	struct dwc_softc *sc;
75 	uint32_t hash[8];
76 };
77 
78 #define	STATS_HARVEST_INTERVAL	2
79 
80 /* Pause time field in the transmitted control frame */
81 static int dwc_pause_time = 0xffff;
82 TUNABLE_INT("hw.dwc.pause_time", &dwc_pause_time);
83 
84 /*
85  * MIIBUS functions
86  */
87 
88 int
dwc1000_miibus_read_reg(device_t dev,int phy,int reg)89 dwc1000_miibus_read_reg(device_t dev, int phy, int reg)
90 {
91 	struct dwc_softc *sc;
92 	uint16_t mii;
93 	size_t cnt;
94 	int rv = 0;
95 
96 	sc = device_get_softc(dev);
97 
98 	mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT)
99 	    | ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT)
100 	    | (sc->mii_clk << GMII_ADDRESS_CR_SHIFT)
101 	    | GMII_ADDRESS_GB; /* Busy flag */
102 
103 	WRITE4(sc, GMII_ADDRESS, mii);
104 
105 	for (cnt = 0; cnt < 1000; cnt++) {
106 		if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) {
107 			rv = READ4(sc, GMII_DATA);
108 			break;
109 		}
110 		DELAY(10);
111 	}
112 
113 	return rv;
114 }
115 
116 int
dwc1000_miibus_write_reg(device_t dev,int phy,int reg,int val)117 dwc1000_miibus_write_reg(device_t dev, int phy, int reg, int val)
118 {
119 	struct dwc_softc *sc;
120 	uint16_t mii;
121 	size_t cnt;
122 
123 	sc = device_get_softc(dev);
124 
125 	mii = ((phy & GMII_ADDRESS_PA_MASK) << GMII_ADDRESS_PA_SHIFT)
126 	    | ((reg & GMII_ADDRESS_GR_MASK) << GMII_ADDRESS_GR_SHIFT)
127 	    | (sc->mii_clk << GMII_ADDRESS_CR_SHIFT)
128 	    | GMII_ADDRESS_GB | GMII_ADDRESS_GW;
129 
130 	WRITE4(sc, GMII_DATA, val);
131 	WRITE4(sc, GMII_ADDRESS, mii);
132 
133 	for (cnt = 0; cnt < 1000; cnt++) {
134 		if (!(READ4(sc, GMII_ADDRESS) & GMII_ADDRESS_GB)) {
135 			break;
136                 }
137 		DELAY(10);
138 	}
139 
140 	return (0);
141 }
142 
143 void
dwc1000_miibus_statchg(device_t dev)144 dwc1000_miibus_statchg(device_t dev)
145 {
146 	struct dwc_softc *sc;
147 	struct mii_data *mii;
148 	uint32_t reg;
149 
150 	/*
151 	 * Called by the MII bus driver when the PHY establishes
152 	 * link to set the MAC interface registers.
153 	 */
154 
155 	sc = device_get_softc(dev);
156 
157 	DWC_ASSERT_LOCKED(sc);
158 
159 	mii = sc->mii_softc;
160 
161 	if (mii->mii_media_status & IFM_ACTIVE)
162 		sc->link_is_up = true;
163 	else
164 		sc->link_is_up = false;
165 
166 	reg = READ4(sc, MAC_CONFIGURATION);
167 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
168 	case IFM_1000_T:
169 	case IFM_1000_SX:
170 		reg &= ~(CONF_FES | CONF_PS);
171 		break;
172 	case IFM_100_TX:
173 		reg |= (CONF_FES | CONF_PS);
174 		break;
175 	case IFM_10_T:
176 		reg &= ~(CONF_FES);
177 		reg |= (CONF_PS);
178 		break;
179 	case IFM_NONE:
180 		sc->link_is_up = false;
181 		return;
182 	default:
183 		sc->link_is_up = false;
184 		device_printf(dev, "Unsupported media %u\n",
185 		    IFM_SUBTYPE(mii->mii_media_active));
186 		return;
187 	}
188 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
189 		reg |= (CONF_DM);
190 	else
191 		reg &= ~(CONF_DM);
192 	WRITE4(sc, MAC_CONFIGURATION, reg);
193 
194 	reg = FLOW_CONTROL_UP;
195 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
196 		reg |= FLOW_CONTROL_TX;
197 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
198 		reg |= FLOW_CONTROL_RX;
199 	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
200 		reg |= dwc_pause_time << FLOW_CONTROL_PT_SHIFT;
201 	WRITE4(sc, FLOW_CONTROL, reg);
202 
203 	IF_DWC_SET_SPEED(dev, IFM_SUBTYPE(mii->mii_media_active));
204 
205 }
206 
207 void
dwc1000_core_setup(struct dwc_softc * sc)208 dwc1000_core_setup(struct dwc_softc *sc)
209 {
210 	uint32_t reg;
211 
212 	DWC_ASSERT_LOCKED(sc);
213 
214 	/* Enable core */
215 	reg = READ4(sc, MAC_CONFIGURATION);
216 	reg |= (CONF_JD | CONF_ACS | CONF_BE);
217 	WRITE4(sc, MAC_CONFIGURATION, reg);
218 }
219 
220 void
dwc1000_enable_mac(struct dwc_softc * sc,bool enable)221 dwc1000_enable_mac(struct dwc_softc *sc, bool enable)
222 {
223 	uint32_t reg;
224 
225 	DWC_ASSERT_LOCKED(sc);
226 	reg = READ4(sc, MAC_CONFIGURATION);
227 	if (enable)
228 		reg |= CONF_TE | CONF_RE;
229 	else
230 		reg &= ~(CONF_TE | CONF_RE);
231 	WRITE4(sc, MAC_CONFIGURATION, reg);
232 }
233 
234 void
dwc1000_enable_csum_offload(struct dwc_softc * sc)235 dwc1000_enable_csum_offload(struct dwc_softc *sc)
236 {
237 	uint32_t reg;
238 
239 	DWC_ASSERT_LOCKED(sc);
240 	reg = READ4(sc, MAC_CONFIGURATION);
241 	if ((if_getcapenable(sc->ifp) & IFCAP_RXCSUM) != 0)
242 		reg |= CONF_IPC;
243 	else
244 		reg &= ~CONF_IPC;
245 	WRITE4(sc, MAC_CONFIGURATION, reg);
246 }
247 
248 static const uint8_t nibbletab[] = {
249 	/* 0x0 0000 -> 0000 */  0x0,
250 	/* 0x1 0001 -> 1000 */  0x8,
251 	/* 0x2 0010 -> 0100 */  0x4,
252 	/* 0x3 0011 -> 1100 */  0xc,
253 	/* 0x4 0100 -> 0010 */  0x2,
254 	/* 0x5 0101 -> 1010 */  0xa,
255 	/* 0x6 0110 -> 0110 */  0x6,
256 	/* 0x7 0111 -> 1110 */  0xe,
257 	/* 0x8 1000 -> 0001 */  0x1,
258 	/* 0x9 1001 -> 1001 */  0x9,
259 	/* 0xa 1010 -> 0101 */  0x5,
260 	/* 0xb 1011 -> 1101 */  0xd,
261 	/* 0xc 1100 -> 0011 */  0x3,
262 	/* 0xd 1101 -> 1011 */  0xb,
263 	/* 0xe 1110 -> 0111 */  0x7,
264 	/* 0xf 1111 -> 1111 */  0xf, };
265 
266 static uint8_t
bitreverse(uint8_t x)267 bitreverse(uint8_t x)
268 {
269 
270 	return (nibbletab[x & 0xf] << 4) | nibbletab[x >> 4];
271 }
272 
273 static u_int
dwc_hash_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)274 dwc_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
275 {
276 	struct dwc_hash_maddr_ctx *ctx = arg;
277 	uint32_t crc, hashbit, hashreg;
278 	uint8_t val;
279 
280 	crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
281 	/* Take lower 8 bits and reverse it */
282 	val = bitreverse(~crc & 0xff);
283 	/*
284 	 * TODO: There is probably a HW_FEATURES bit which isn't
285 	 * related to the extended descriptors that describe this
286 	 */
287 	if (!ctx->sc->dma_ext_desc)
288 		val >>= 2; /* Only need lower 6 bits */
289 	hashreg = (val >> 5);
290 	hashbit = (val & 31);
291 	ctx->hash[hashreg] |= (1 << hashbit);
292 
293 	return (1);
294 }
295 
296 void
dwc1000_setup_rxfilter(struct dwc_softc * sc)297 dwc1000_setup_rxfilter(struct dwc_softc *sc)
298 {
299 	struct dwc_hash_maddr_ctx ctx;
300 	if_t ifp;
301 	uint8_t *eaddr;
302 	uint32_t ffval, hi, lo;
303 	int nhash, i;
304 
305 	DWC_ASSERT_LOCKED(sc);
306 
307 	ifp = sc->ifp;
308 	/*
309 	 * TODO: There is probably a HW_FEATURES bit which isn't
310 	 * related to the extended descriptors that describe this
311 	 */
312 	nhash = sc->dma_ext_desc == false ? 2 : 8;
313 
314 	/*
315 	 * Set the multicast (group) filter hash.
316 	 */
317 	if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
318 		ffval = (FRAME_FILTER_PM);
319 		for (i = 0; i < nhash; i++)
320 			ctx.hash[i] = ~0;
321 	} else {
322 		ffval = (FRAME_FILTER_HMC);
323 		for (i = 0; i < nhash; i++)
324 			ctx.hash[i] = 0;
325 		ctx.sc = sc;
326 		if_foreach_llmaddr(ifp, dwc_hash_maddr, &ctx);
327 	}
328 
329 	/*
330 	 * Set the individual address filter hash.
331 	 */
332 	if ((if_getflags(ifp) & IFF_PROMISC) != 0)
333 		ffval |= (FRAME_FILTER_PR);
334 
335 	/*
336 	 * Set the primary address.
337 	 */
338 	eaddr = if_getlladdr(ifp);
339 	lo = eaddr[0] | (eaddr[1] << 8) | (eaddr[2] << 16) |
340 	    (eaddr[3] << 24);
341 	hi = eaddr[4] | (eaddr[5] << 8);
342 	WRITE4(sc, MAC_ADDRESS_LOW(0), lo);
343 	WRITE4(sc, MAC_ADDRESS_HIGH(0), hi);
344 	WRITE4(sc, MAC_FRAME_FILTER, ffval);
345 	if (!sc->dma_ext_desc) {
346 		WRITE4(sc, GMAC_MAC_HTLOW, ctx.hash[0]);
347 		WRITE4(sc, GMAC_MAC_HTHIGH, ctx.hash[1]);
348 	} else {
349 		for (i = 0; i < nhash; i++)
350 			WRITE4(sc, HASH_TABLE_REG(i), ctx.hash[i]);
351 	}
352 }
353 
354 void
dwc1000_get_hwaddr(struct dwc_softc * sc,uint8_t * hwaddr)355 dwc1000_get_hwaddr(struct dwc_softc *sc, uint8_t *hwaddr)
356 {
357 	uint32_t hi, lo, rnd;
358 
359 	/*
360 	 * Try to recover a MAC address from the running hardware. If there's
361 	 * something non-zero there, assume the bootloader did the right thing
362 	 * and just use it.
363 	 *
364 	 * Otherwise, set the address to a convenient locally assigned address,
365 	 * 'bsd' + random 24 low-order bits.  'b' is 0x62, which has the locally
366 	 * assigned bit set, and the broadcast/multicast bit clear.
367 	 */
368 	lo = READ4(sc, MAC_ADDRESS_LOW(0));
369 	hi = READ4(sc, MAC_ADDRESS_HIGH(0)) & 0xffff;
370 	if ((lo != 0xffffffff) || (hi != 0xffff)) {
371 		hwaddr[0] = (lo >>  0) & 0xff;
372 		hwaddr[1] = (lo >>  8) & 0xff;
373 		hwaddr[2] = (lo >> 16) & 0xff;
374 		hwaddr[3] = (lo >> 24) & 0xff;
375 		hwaddr[4] = (hi >>  0) & 0xff;
376 		hwaddr[5] = (hi >>  8) & 0xff;
377 	} else {
378 		rnd = arc4random() & 0x00ffffff;
379 		hwaddr[0] = 'b';
380 		hwaddr[1] = 's';
381 		hwaddr[2] = 'd';
382 		hwaddr[3] = rnd >> 16;
383 		hwaddr[4] = rnd >>  8;
384 		hwaddr[5] = rnd >>  0;
385 	}
386 }
387 
388 /*
389  * Stats
390  */
391 
392 static void
dwc1000_clear_stats(struct dwc_softc * sc)393 dwc1000_clear_stats(struct dwc_softc *sc)
394 {
395 	uint32_t reg;
396 
397 	reg = READ4(sc, MMC_CONTROL);
398 	reg |= (MMC_CONTROL_CNTRST);
399 	WRITE4(sc, MMC_CONTROL, reg);
400 }
401 
402 void
dwc1000_harvest_stats(struct dwc_softc * sc)403 dwc1000_harvest_stats(struct dwc_softc *sc)
404 {
405 	if_t ifp;
406 
407 	/* We don't need to harvest too often. */
408 	if (++sc->stats_harvest_count < STATS_HARVEST_INTERVAL)
409 		return;
410 
411 	sc->stats_harvest_count = 0;
412 	ifp = sc->ifp;
413 
414 	if_inc_counter(ifp, IFCOUNTER_IERRORS,
415 	    READ4(sc, RXOVERSIZE_G) + READ4(sc, RXUNDERSIZE_G) +
416 	    READ4(sc, RXCRCERROR) + READ4(sc, RXALIGNMENTERROR) +
417 	    READ4(sc, RXRUNTERROR) + READ4(sc, RXJABBERERROR) +
418 	    READ4(sc, RXLENGTHERROR));
419 
420 	if_inc_counter(ifp, IFCOUNTER_OERRORS,
421 	    READ4(sc, TXOVERSIZE_G) + READ4(sc, TXEXCESSDEF) +
422 	    READ4(sc, TXCARRIERERR) + READ4(sc, TXUNDERFLOWERROR));
423 
424 	if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
425 	    READ4(sc, TXEXESSCOL) + READ4(sc, TXLATECOL));
426 
427 	dwc1000_clear_stats(sc);
428 }
429 
430 void
dwc1000_intr(struct dwc_softc * sc)431 dwc1000_intr(struct dwc_softc *sc)
432 {
433 	uint32_t reg;
434 
435 	DWC_ASSERT_LOCKED(sc);
436 
437 	reg = READ4(sc, INTERRUPT_STATUS);
438 	if (reg)
439 		READ4(sc, SGMII_RGMII_SMII_CTRL_STATUS);
440 }
441 
442 void
dwc1000_intr_disable(struct dwc_softc * sc)443 dwc1000_intr_disable(struct dwc_softc *sc)
444 {
445 
446 	WRITE4(sc, INTERRUPT_ENABLE, 0);
447 }
448