xref: /freebsd/crypto/openssl/ssl/t1_lib.c (revision e7be843b4a162e68651d3911f0357ed464915629)
1 /*
2  * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3  *
4  * Licensed under the Apache License 2.0 (the "License").  You may not use
5  * this file except in compliance with the License.  You can obtain a copy
6  * in the file LICENSE in the source distribution or at
7  * https://www.openssl.org/source/license.html
8  */
9 
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <ctype.h>
13 #include <openssl/objects.h>
14 #include <openssl/evp.h>
15 #include <openssl/hmac.h>
16 #include <openssl/core_names.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/conf.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/dh.h>
21 #include <openssl/bn.h>
22 #include <openssl/provider.h>
23 #include <openssl/param_build.h>
24 #include "internal/nelem.h"
25 #include "internal/sizes.h"
26 #include "internal/tlsgroups.h"
27 #include "internal/ssl_unwrap.h"
28 #include "ssl_local.h"
29 #include "quic/quic_local.h"
30 #include <openssl/ct.h>
31 
32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34 
35 SSL3_ENC_METHOD const TLSv1_enc_data = {
36     tls1_setup_key_block,
37     tls1_generate_master_secret,
38     tls1_change_cipher_state,
39     tls1_final_finish_mac,
40     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42     tls1_alert_code,
43     tls1_export_keying_material,
44     0,
45     ssl3_set_handshake_header,
46     tls_close_construct_packet,
47     ssl3_handshake_write
48 };
49 
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51     tls1_setup_key_block,
52     tls1_generate_master_secret,
53     tls1_change_cipher_state,
54     tls1_final_finish_mac,
55     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57     tls1_alert_code,
58     tls1_export_keying_material,
59     0,
60     ssl3_set_handshake_header,
61     tls_close_construct_packet,
62     ssl3_handshake_write
63 };
64 
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66     tls1_setup_key_block,
67     tls1_generate_master_secret,
68     tls1_change_cipher_state,
69     tls1_final_finish_mac,
70     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72     tls1_alert_code,
73     tls1_export_keying_material,
74     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75         | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76     ssl3_set_handshake_header,
77     tls_close_construct_packet,
78     ssl3_handshake_write
79 };
80 
81 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82     tls13_setup_key_block,
83     tls13_generate_master_secret,
84     tls13_change_cipher_state,
85     tls13_final_finish_mac,
86     TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87     TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88     tls13_alert_code,
89     tls13_export_keying_material,
90     SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91     ssl3_set_handshake_header,
92     tls_close_construct_packet,
93     ssl3_handshake_write
94 };
95 
tls1_default_timeout(void)96 OSSL_TIME tls1_default_timeout(void)
97 {
98     /*
99      * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100      * http, the cache would over fill
101      */
102     return ossl_seconds2time(60 * 60 * 2);
103 }
104 
tls1_new(SSL * s)105 int tls1_new(SSL *s)
106 {
107     if (!ssl3_new(s))
108         return 0;
109     if (!s->method->ssl_clear(s))
110         return 0;
111 
112     return 1;
113 }
114 
tls1_free(SSL * s)115 void tls1_free(SSL *s)
116 {
117     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118 
119     if (sc == NULL)
120         return;
121 
122     OPENSSL_free(sc->ext.session_ticket);
123     ssl3_free(s);
124 }
125 
tls1_clear(SSL * s)126 int tls1_clear(SSL *s)
127 {
128     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129 
130     if (sc == NULL)
131         return 0;
132 
133     if (!ssl3_clear(s))
134         return 0;
135 
136     if (s->method->version == TLS_ANY_VERSION)
137         sc->version = TLS_MAX_VERSION_INTERNAL;
138     else
139         sc->version = s->method->version;
140 
141     return 1;
142 }
143 
144 /* Legacy NID to group_id mapping. Only works for groups we know about */
145 static const struct {
146     int nid;
147     uint16_t group_id;
148 } nid_to_group[] = {
149     {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150     {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151     {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152     {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153     {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154     {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155     {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156     {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157     {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158     {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159     {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160     {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161     {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162     {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163     {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164     {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165     {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166     {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167     {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168     {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169     {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170     {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171     {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172     {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173     {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174     {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175     {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176     {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177     {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178     {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179     {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180     {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181     {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182     {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183     {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184     {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185     {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186     {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187     {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188     {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189     {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190     {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191     {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192     {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193     {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194 };
195 
196 static const unsigned char ecformats_default[] = {
197     TLSEXT_ECPOINTFORMAT_uncompressed,
198     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199     TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200 };
201 
202 /* Group list string of the built-in pseudo group DEFAULT */
203 #define DEFAULT_GROUP_NAME "DEFAULT"
204 #define TLS_DEFAULT_GROUP_LIST \
205     "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206 
207 static const uint16_t suiteb_curves[] = {
208     OSSL_TLS_GROUP_ID_secp256r1,
209     OSSL_TLS_GROUP_ID_secp384r1,
210 };
211 
212 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215 
216 struct provider_ctx_data_st {
217     SSL_CTX *ctx;
218     OSSL_PROVIDER *provider;
219 };
220 
221 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE        10
222 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)223 static int add_provider_groups(const OSSL_PARAM params[], void *data)
224 {
225     struct provider_ctx_data_st *pgd = data;
226     SSL_CTX *ctx = pgd->ctx;
227     const OSSL_PARAM *p;
228     TLS_GROUP_INFO *ginf = NULL;
229     EVP_KEYMGMT *keymgmt;
230     unsigned int gid;
231     unsigned int is_kem = 0;
232     int ret = 0;
233 
234     if (ctx->group_list_max_len == ctx->group_list_len) {
235         TLS_GROUP_INFO *tmp = NULL;
236 
237         if (ctx->group_list_max_len == 0)
238             tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239                                  * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240         else
241             tmp = OPENSSL_realloc(ctx->group_list,
242                                   (ctx->group_list_max_len
243                                    + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244                                   * sizeof(TLS_GROUP_INFO));
245         if (tmp == NULL)
246             return 0;
247         ctx->group_list = tmp;
248         memset(tmp + ctx->group_list_max_len,
249                0,
250                sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251         ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252     }
253 
254     ginf = &ctx->group_list[ctx->group_list_len];
255 
256     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259         goto err;
260     }
261     ginf->tlsname = OPENSSL_strdup(p->data);
262     if (ginf->tlsname == NULL)
263         goto err;
264 
265     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268         goto err;
269     }
270     ginf->realname = OPENSSL_strdup(p->data);
271     if (ginf->realname == NULL)
272         goto err;
273 
274     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275     if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277         goto err;
278     }
279     ginf->group_id = (uint16_t)gid;
280 
281     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284         goto err;
285     }
286     ginf->algorithm = OPENSSL_strdup(p->data);
287     if (ginf->algorithm == NULL)
288         goto err;
289 
290     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291     if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293         goto err;
294     }
295 
296     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297     if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299         goto err;
300     }
301     ginf->is_kem = 1 & is_kem;
302 
303     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306         goto err;
307     }
308 
309     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312         goto err;
313     }
314 
315     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318         goto err;
319     }
320 
321     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322     if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324         goto err;
325     }
326     /*
327      * Now check that the algorithm is actually usable for our property query
328      * string. Regardless of the result we still return success because we have
329      * successfully processed this group, even though we may decide not to use
330      * it.
331      */
332     ret = 1;
333     ERR_set_mark();
334     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335     if (keymgmt != NULL) {
336         /* We have successfully fetched the algorithm, we can use the group. */
337         ctx->group_list_len++;
338         ginf = NULL;
339         EVP_KEYMGMT_free(keymgmt);
340     }
341     ERR_pop_to_mark();
342  err:
343     if (ginf != NULL) {
344         OPENSSL_free(ginf->tlsname);
345         OPENSSL_free(ginf->realname);
346         OPENSSL_free(ginf->algorithm);
347         ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348     }
349     return ret;
350 }
351 
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)352 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353 {
354     struct provider_ctx_data_st pgd;
355 
356     pgd.ctx = vctx;
357     pgd.provider = provider;
358     return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359                                           add_provider_groups, &pgd);
360 }
361 
ssl_load_groups(SSL_CTX * ctx)362 int ssl_load_groups(SSL_CTX *ctx)
363 {
364     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365         return 0;
366 
367     return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368 }
369 
370 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE        10
371 static OSSL_CALLBACK add_provider_sigalgs;
add_provider_sigalgs(const OSSL_PARAM params[],void * data)372 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
373 {
374     struct provider_ctx_data_st *pgd = data;
375     SSL_CTX *ctx = pgd->ctx;
376     OSSL_PROVIDER *provider = pgd->provider;
377     const OSSL_PARAM *p;
378     TLS_SIGALG_INFO *sinf = NULL;
379     EVP_KEYMGMT *keymgmt;
380     const char *keytype;
381     unsigned int code_point = 0;
382     int ret = 0;
383 
384     if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
385         TLS_SIGALG_INFO *tmp = NULL;
386 
387         if (ctx->sigalg_list_max_len == 0)
388             tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
389                                  * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
390         else
391             tmp = OPENSSL_realloc(ctx->sigalg_list,
392                                   (ctx->sigalg_list_max_len
393                                    + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
394                                   * sizeof(TLS_SIGALG_INFO));
395         if (tmp == NULL)
396             return 0;
397         ctx->sigalg_list = tmp;
398         memset(tmp + ctx->sigalg_list_max_len, 0,
399                sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
400         ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
401     }
402 
403     sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
404 
405     /* First, mandatory parameters */
406     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
407     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
408         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
409         goto err;
410     }
411     OPENSSL_free(sinf->sigalg_name);
412     sinf->sigalg_name = OPENSSL_strdup(p->data);
413     if (sinf->sigalg_name == NULL)
414         goto err;
415 
416     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
417     if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
418         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
419         goto err;
420     }
421     OPENSSL_free(sinf->name);
422     sinf->name = OPENSSL_strdup(p->data);
423     if (sinf->name == NULL)
424         goto err;
425 
426     p = OSSL_PARAM_locate_const(params,
427                                 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
428     if (p == NULL
429         || !OSSL_PARAM_get_uint(p, &code_point)
430         || code_point > UINT16_MAX) {
431         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432         goto err;
433     }
434     sinf->code_point = (uint16_t)code_point;
435 
436     p = OSSL_PARAM_locate_const(params,
437                                 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
438     if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
439         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
440         goto err;
441     }
442 
443     /* Now, optional parameters */
444     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
445     if (p == NULL) {
446         sinf->sigalg_oid = NULL;
447     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
448         goto err;
449     } else {
450         OPENSSL_free(sinf->sigalg_oid);
451         sinf->sigalg_oid = OPENSSL_strdup(p->data);
452         if (sinf->sigalg_oid == NULL)
453             goto err;
454     }
455 
456     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
457     if (p == NULL) {
458         sinf->sig_name = NULL;
459     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
460         goto err;
461     } else {
462         OPENSSL_free(sinf->sig_name);
463         sinf->sig_name = OPENSSL_strdup(p->data);
464         if (sinf->sig_name == NULL)
465             goto err;
466     }
467 
468     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
469     if (p == NULL) {
470         sinf->sig_oid = NULL;
471     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
472         goto err;
473     } else {
474         OPENSSL_free(sinf->sig_oid);
475         sinf->sig_oid = OPENSSL_strdup(p->data);
476         if (sinf->sig_oid == NULL)
477             goto err;
478     }
479 
480     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
481     if (p == NULL) {
482         sinf->hash_name = NULL;
483     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
484         goto err;
485     } else {
486         OPENSSL_free(sinf->hash_name);
487         sinf->hash_name = OPENSSL_strdup(p->data);
488         if (sinf->hash_name == NULL)
489             goto err;
490     }
491 
492     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
493     if (p == NULL) {
494         sinf->hash_oid = NULL;
495     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
496         goto err;
497     } else {
498         OPENSSL_free(sinf->hash_oid);
499         sinf->hash_oid = OPENSSL_strdup(p->data);
500         if (sinf->hash_oid == NULL)
501             goto err;
502     }
503 
504     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
505     if (p == NULL) {
506         sinf->keytype = NULL;
507     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508         goto err;
509     } else {
510         OPENSSL_free(sinf->keytype);
511         sinf->keytype = OPENSSL_strdup(p->data);
512         if (sinf->keytype == NULL)
513             goto err;
514     }
515 
516     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
517     if (p == NULL) {
518         sinf->keytype_oid = NULL;
519     } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520         goto err;
521     } else {
522         OPENSSL_free(sinf->keytype_oid);
523         sinf->keytype_oid = OPENSSL_strdup(p->data);
524         if (sinf->keytype_oid == NULL)
525             goto err;
526     }
527 
528     /* Optional, not documented prior to 3.5 */
529     sinf->mindtls = sinf->maxdtls = -1;
530     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
531     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
532         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
533         goto err;
534     }
535     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
536     if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
537         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
538         goto err;
539     }
540     /* DTLS version numbers grow downward */
541     if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
542         ((sinf->maxdtls > sinf->mindtls))) {
543         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
544         goto err;
545     }
546     /* No provider sigalgs are supported in DTLS, reset after checking. */
547     sinf->mindtls = sinf->maxdtls = -1;
548 
549     /* The remaining parameters below are mandatory again */
550     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
551     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
552         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
553         goto err;
554     }
555     p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
556     if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
557         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
558         goto err;
559     }
560     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
561         ((sinf->maxtls < sinf->mintls))) {
562         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
563         goto err;
564     }
565     if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
566         ((sinf->mintls > TLS1_3_VERSION)))
567         sinf->mintls = sinf->maxtls = -1;
568     if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
569         ((sinf->maxtls < TLS1_3_VERSION)))
570         sinf->mintls = sinf->maxtls = -1;
571 
572     /* Ignore unusable sigalgs */
573     if (sinf->mintls == -1 && sinf->mindtls == -1) {
574         ret = 1;
575         goto err;
576     }
577 
578     /*
579      * Now check that the algorithm is actually usable for our property query
580      * string. Regardless of the result we still return success because we have
581      * successfully processed this signature, even though we may decide not to
582      * use it.
583      */
584     ret = 1;
585     ERR_set_mark();
586     keytype = (sinf->keytype != NULL
587                ? sinf->keytype
588                : (sinf->sig_name != NULL
589                   ? sinf->sig_name
590                   : sinf->sigalg_name));
591     keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
592     if (keymgmt != NULL) {
593         /*
594          * We have successfully fetched the algorithm - however if the provider
595          * doesn't match this one then we ignore it.
596          *
597          * Note: We're cheating a little here. Technically if the same algorithm
598          * is available from more than one provider then it is undefined which
599          * implementation you will get back. Theoretically this could be
600          * different every time...we assume here that you'll always get the
601          * same one back if you repeat the exact same fetch. Is this a reasonable
602          * assumption to make (in which case perhaps we should document this
603          * behaviour)?
604          */
605         if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
606             /*
607              * We have a match - so we could use this signature;
608              * Check proper object registration first, though.
609              * Don't care about return value as this may have been
610              * done within providers or previous calls to
611              * add_provider_sigalgs.
612              */
613             OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
614             /* sanity check: Without successful registration don't use alg */
615             if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
616                 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617                     ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618                     goto err;
619             }
620             if (sinf->sig_name != NULL)
621                 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622             if (sinf->keytype != NULL)
623                 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624             if (sinf->hash_name != NULL)
625                 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626             OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627                           (sinf->hash_name != NULL
628                            ? OBJ_txt2nid(sinf->hash_name)
629                            : NID_undef),
630                           OBJ_txt2nid(keytype));
631             ctx->sigalg_list_len++;
632             sinf = NULL;
633         }
634         EVP_KEYMGMT_free(keymgmt);
635     }
636     ERR_pop_to_mark();
637  err:
638     if (sinf != NULL) {
639         OPENSSL_free(sinf->name);
640         sinf->name = NULL;
641         OPENSSL_free(sinf->sigalg_name);
642         sinf->sigalg_name = NULL;
643         OPENSSL_free(sinf->sigalg_oid);
644         sinf->sigalg_oid = NULL;
645         OPENSSL_free(sinf->sig_name);
646         sinf->sig_name = NULL;
647         OPENSSL_free(sinf->sig_oid);
648         sinf->sig_oid = NULL;
649         OPENSSL_free(sinf->hash_name);
650         sinf->hash_name = NULL;
651         OPENSSL_free(sinf->hash_oid);
652         sinf->hash_oid = NULL;
653         OPENSSL_free(sinf->keytype);
654         sinf->keytype = NULL;
655         OPENSSL_free(sinf->keytype_oid);
656         sinf->keytype_oid = NULL;
657     }
658     return ret;
659 }
660 
discover_provider_sigalgs(OSSL_PROVIDER * provider,void * vctx)661 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662 {
663     struct provider_ctx_data_st pgd;
664 
665     pgd.ctx = vctx;
666     pgd.provider = provider;
667     OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668                                    add_provider_sigalgs, &pgd);
669     /*
670      * Always OK, even if provider doesn't support the capability:
671      * Reconsider testing retval when legacy sigalgs are also loaded this way.
672      */
673     return 1;
674 }
675 
ssl_load_sigalgs(SSL_CTX * ctx)676 int ssl_load_sigalgs(SSL_CTX *ctx)
677 {
678     size_t i;
679     SSL_CERT_LOOKUP lu;
680 
681     if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682         return 0;
683 
684     /* now populate ctx->ssl_cert_info */
685     if (ctx->sigalg_list_len > 0) {
686         OPENSSL_free(ctx->ssl_cert_info);
687         ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688         if (ctx->ssl_cert_info == NULL)
689             return 0;
690         for(i = 0; i < ctx->sigalg_list_len; i++) {
691             ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
692             ctx->ssl_cert_info[i].amask = SSL_aANY;
693         }
694     }
695 
696     /*
697      * For now, leave it at this: legacy sigalgs stay in their own
698      * data structures until "legacy cleanup" occurs.
699      */
700 
701     return 1;
702 }
703 
tls1_group_name2id(SSL_CTX * ctx,const char * name)704 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
705 {
706     size_t i;
707 
708     for (i = 0; i < ctx->group_list_len; i++) {
709         if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
710                 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
711             return ctx->group_list[i].group_id;
712     }
713 
714     return 0;
715 }
716 
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)717 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
718 {
719     size_t i;
720 
721     for (i = 0; i < ctx->group_list_len; i++) {
722         if (ctx->group_list[i].group_id == group_id)
723             return &ctx->group_list[i];
724     }
725 
726     return NULL;
727 }
728 
tls1_group_id2name(SSL_CTX * ctx,uint16_t group_id)729 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
730 {
731     const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
732 
733     if (tls_group_info == NULL)
734         return NULL;
735 
736     return tls_group_info->tlsname;
737 }
738 
tls1_group_id2nid(uint16_t group_id,int include_unknown)739 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
740 {
741     size_t i;
742 
743     if (group_id == 0)
744         return NID_undef;
745 
746     /*
747      * Return well known Group NIDs - for backwards compatibility. This won't
748      * work for groups we don't know about.
749      */
750     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
751     {
752         if (nid_to_group[i].group_id == group_id)
753             return nid_to_group[i].nid;
754     }
755     if (!include_unknown)
756         return NID_undef;
757     return TLSEXT_nid_unknown | (int)group_id;
758 }
759 
tls1_nid2group_id(int nid)760 uint16_t tls1_nid2group_id(int nid)
761 {
762     size_t i;
763 
764     /*
765      * Return well known Group ids - for backwards compatibility. This won't
766      * work for groups we don't know about.
767      */
768     for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
769     {
770         if (nid_to_group[i].nid == nid)
771             return nid_to_group[i].group_id;
772     }
773 
774     return 0;
775 }
776 
777 /*
778  * Set *pgroups to the supported groups list and *pgroupslen to
779  * the number of groups supported.
780  */
tls1_get_supported_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)781 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
782                                size_t *pgroupslen)
783 {
784     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
785 
786     /* For Suite B mode only include P-256, P-384 */
787     switch (tls1_suiteb(s)) {
788     case SSL_CERT_FLAG_SUITEB_128_LOS:
789         *pgroups = suiteb_curves;
790         *pgroupslen = OSSL_NELEM(suiteb_curves);
791         break;
792 
793     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
794         *pgroups = suiteb_curves;
795         *pgroupslen = 1;
796         break;
797 
798     case SSL_CERT_FLAG_SUITEB_192_LOS:
799         *pgroups = suiteb_curves + 1;
800         *pgroupslen = 1;
801         break;
802 
803     default:
804         if (s->ext.supportedgroups == NULL) {
805             *pgroups = sctx->ext.supportedgroups;
806             *pgroupslen = sctx->ext.supportedgroups_len;
807         } else {
808             *pgroups = s->ext.supportedgroups;
809             *pgroupslen = s->ext.supportedgroups_len;
810         }
811         break;
812     }
813 }
814 
815 /*
816  * Some comments for the function below:
817  * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
818  * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
819  * eligible group from the legacy list. Therefore, we provide the entire list of supported
820  * groups in this case.
821  *
822  * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
823  * but the groupID to 0.
824  * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
825  * the "list of requested key share groups" is used, or the "list of supported groups" in
826  * combination with setting add_only_one = 1 is applied.
827  */
tls1_get_requested_keyshare_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)828 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
829                                         size_t *pgroupslen)
830 {
831     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
832 
833     if (s->ext.supportedgroups == NULL) {
834         *pgroups = sctx->ext.supportedgroups;
835         *pgroupslen = sctx->ext.supportedgroups_len;
836     } else {
837         *pgroups = s->ext.keyshares;
838         *pgroupslen = s->ext.keyshares_len;
839     }
840 }
841 
tls1_get_group_tuples(SSL_CONNECTION * s,const size_t ** ptuples,size_t * ptupleslen)842 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
843                            size_t *ptupleslen)
844 {
845     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
846 
847     if (s->ext.supportedgroups == NULL) {
848         *ptuples = sctx->ext.tuples;
849         *ptupleslen = sctx->ext.tuples_len;
850     } else {
851         *ptuples = s->ext.tuples;
852         *ptupleslen = s->ext.tuples_len;
853     }
854 }
855 
tls_valid_group(SSL_CONNECTION * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)856 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
857                     int minversion, int maxversion,
858                     int isec, int *okfortls13)
859 {
860     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
861                                                        group_id);
862     int ret;
863     int group_minversion, group_maxversion;
864 
865     if (okfortls13 != NULL)
866         *okfortls13 = 0;
867 
868     if (ginfo == NULL)
869         return 0;
870 
871     group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
872     group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
873 
874     if (group_minversion < 0 || group_maxversion < 0)
875         return 0;
876     if (group_maxversion == 0)
877         ret = 1;
878     else
879         ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
880     if (group_minversion > 0)
881         ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
882 
883     if (!SSL_CONNECTION_IS_DTLS(s)) {
884         if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
885             *okfortls13 = (group_maxversion == 0)
886                           || (group_maxversion >= TLS1_3_VERSION);
887     }
888     ret &= !isec
889            || strcmp(ginfo->algorithm, "EC") == 0
890            || strcmp(ginfo->algorithm, "X25519") == 0
891            || strcmp(ginfo->algorithm, "X448") == 0;
892 
893     return ret;
894 }
895 
896 /* See if group is allowed by security callback */
tls_group_allowed(SSL_CONNECTION * s,uint16_t group,int op)897 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
898 {
899     const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
900                                                        group);
901     unsigned char gtmp[2];
902 
903     if (ginfo == NULL)
904         return 0;
905 
906     gtmp[0] = group >> 8;
907     gtmp[1] = group & 0xff;
908     return ssl_security(s, op, ginfo->secbits,
909                         tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
910 }
911 
912 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)913 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
914 {
915     size_t i;
916     for (i = 0; i < listlen; i++)
917         if (list[i] == id)
918             return 1;
919     return 0;
920 }
921 
922 typedef struct {
923     TLS_GROUP_INFO *grp;
924     size_t ix;
925 } TLS_GROUP_IX;
926 
DEFINE_STACK_OF(TLS_GROUP_IX)927 DEFINE_STACK_OF(TLS_GROUP_IX)
928 
929 static void free_wrapper(TLS_GROUP_IX *a)
930 {
931     OPENSSL_free(a);
932 }
933 
tls_group_ix_cmp(const TLS_GROUP_IX * const * a,const TLS_GROUP_IX * const * b)934 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
935                             const TLS_GROUP_IX *const *b)
936 {
937     int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
938     int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
939     int ixcmpab = (*a)->ix < (*b)->ix;
940     int ixcmpba = (*b)->ix < (*a)->ix;
941 
942     /* Ascending by group id */
943     if (idcmpab != idcmpba)
944         return (idcmpba - idcmpab);
945     /* Ascending by original appearance index */
946     return ixcmpba - ixcmpab;
947 }
948 
tls1_get0_implemented_groups(int min_proto_version,int max_proto_version,TLS_GROUP_INFO * grps,size_t num,long all,STACK_OF (OPENSSL_CSTRING)* out)949 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
950                                  TLS_GROUP_INFO *grps, size_t num, long all,
951                                  STACK_OF(OPENSSL_CSTRING) *out)
952 {
953     STACK_OF(TLS_GROUP_IX) *collect = NULL;
954     TLS_GROUP_IX *gix;
955     uint16_t id = 0;
956     int ret = 0;
957     size_t ix;
958 
959     if (grps == NULL || out == NULL)
960         return 0;
961     if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
962         return 0;
963     for (ix = 0; ix < num; ++ix, ++grps) {
964         if (grps->mintls > 0 && max_proto_version > 0
965              && grps->mintls > max_proto_version)
966             continue;
967         if (grps->maxtls > 0 && min_proto_version > 0
968             && grps->maxtls < min_proto_version)
969             continue;
970 
971         if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
972             goto end;
973         gix->grp = grps;
974         gix->ix = ix;
975         if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
976             OPENSSL_free(gix);
977             goto end;
978         }
979     }
980 
981     sk_TLS_GROUP_IX_sort(collect);
982     num = sk_TLS_GROUP_IX_num(collect);
983     for (ix = 0; ix < num; ++ix) {
984         gix = sk_TLS_GROUP_IX_value(collect, ix);
985         if (!all && gix->grp->group_id == id)
986             continue;
987         id = gix->grp->group_id;
988         if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
989             goto end;
990     }
991     ret = 1;
992 
993  end:
994     sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
995     return ret;
996 }
997 
998 /*-
999  * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1000  * if there is no match.
1001  * For nmatch == -1, return number of matches
1002  * For nmatch == -2, return the id of the group to use for
1003  * a tmp key, or 0 if there is no match.
1004  */
tls1_shared_group(SSL_CONNECTION * s,int nmatch)1005 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1006 {
1007     const uint16_t *pref, *supp;
1008     size_t num_pref, num_supp, i;
1009     int k;
1010     SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1011 
1012     /* Can't do anything on client side */
1013     if (s->server == 0)
1014         return 0;
1015     if (nmatch == -2) {
1016         if (tls1_suiteb(s)) {
1017             /*
1018              * For Suite B ciphersuite determines curve: we already know
1019              * these are acceptable due to previous checks.
1020              */
1021             unsigned long cid = s->s3.tmp.new_cipher->id;
1022 
1023             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1024                 return OSSL_TLS_GROUP_ID_secp256r1;
1025             if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1026                 return OSSL_TLS_GROUP_ID_secp384r1;
1027             /* Should never happen */
1028             return 0;
1029         }
1030         /* If not Suite B just return first preference shared curve */
1031         nmatch = 0;
1032     }
1033     /*
1034      * If server preference set, our groups are the preference order
1035      * otherwise peer decides.
1036      */
1037     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1038         tls1_get_supported_groups(s, &pref, &num_pref);
1039         tls1_get_peer_groups(s, &supp, &num_supp);
1040     } else {
1041         tls1_get_peer_groups(s, &pref, &num_pref);
1042         tls1_get_supported_groups(s, &supp, &num_supp);
1043     }
1044 
1045     for (k = 0, i = 0; i < num_pref; i++) {
1046         uint16_t id = pref[i];
1047         const TLS_GROUP_INFO *inf;
1048         int minversion, maxversion;
1049 
1050         if (!tls1_in_list(id, supp, num_supp)
1051                 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1052             continue;
1053         inf = tls1_group_id_lookup(ctx, id);
1054         if (!ossl_assert(inf != NULL))
1055             return 0;
1056 
1057         minversion = SSL_CONNECTION_IS_DTLS(s)
1058                          ? inf->mindtls : inf->mintls;
1059         maxversion = SSL_CONNECTION_IS_DTLS(s)
1060                          ? inf->maxdtls : inf->maxtls;
1061         if (maxversion == -1)
1062             continue;
1063         if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1064             || (maxversion != 0
1065                 && ssl_version_cmp(s, s->version, maxversion) > 0))
1066             continue;
1067 
1068         if (nmatch == k)
1069             return id;
1070          k++;
1071     }
1072     if (nmatch == -1)
1073         return k;
1074     /* Out of range (nmatch > k). */
1075     return 0;
1076 }
1077 
tls1_set_groups(uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,int * groups,size_t ngroups)1078 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1079                     uint16_t **ksext, size_t *ksextlen,
1080                     size_t **tplext, size_t *tplextlen,
1081                     int *groups, size_t ngroups)
1082 {
1083     uint16_t *glist = NULL, *kslist = NULL;
1084     size_t *tpllist = NULL;
1085     size_t i;
1086     /*
1087      * Bitmap of groups included to detect duplicates: two variables are added
1088      * to detect duplicates as some values are more than 32.
1089      */
1090     unsigned long *dup_list = NULL;
1091     unsigned long dup_list_egrp = 0;
1092     unsigned long dup_list_dhgrp = 0;
1093 
1094     if (ngroups == 0) {
1095         ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1096         return 0;
1097     }
1098     if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1099         goto err;
1100     if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1101         goto err;
1102     if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1103         goto err;
1104     for (i = 0; i < ngroups; i++) {
1105         unsigned long idmask;
1106         uint16_t id;
1107         id = tls1_nid2group_id(groups[i]);
1108         if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1109             goto err;
1110         idmask = 1L << (id & 0x00FF);
1111         dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1112         if (!id || ((*dup_list) & idmask))
1113             goto err;
1114         *dup_list |= idmask;
1115         glist[i] = id;
1116     }
1117     OPENSSL_free(*grpext);
1118     OPENSSL_free(*ksext);
1119     OPENSSL_free(*tplext);
1120     *grpext = glist;
1121     *grpextlen = ngroups;
1122     kslist[0] = glist[0];
1123     *ksext = kslist;
1124     *ksextlen = 1;
1125     tpllist[0] = ngroups;
1126     *tplext = tpllist;
1127     *tplextlen = 1;
1128     return 1;
1129 err:
1130     OPENSSL_free(glist);
1131     OPENSSL_free(kslist);
1132     OPENSSL_free(tpllist);
1133     return 0;
1134 }
1135 
1136 /*
1137  * Definition of DEFAULT[_XYZ] pseudo group names.
1138  * A pseudo group name is actually a full list of groups, including prefixes
1139  * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1140  * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1141  * groups not backed by a provider will always silently be ignored, even without '?' prefix
1142  */
1143 typedef struct {
1144     const char *list_name; /* The name of this pseudo group */
1145     const char *group_string; /* The group string of this pseudo group */
1146 } default_group_string_st;    /* (can include '?', '*'. '-', '/' as needed) */
1147 
1148 /* Built-in pseudo group-names must start with a (D or d) */
1149 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1150 
1151 /* The list of all built-in pseudo-group-name structures */
1152 static const default_group_string_st default_group_strings[] = {
1153     {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1154     {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1155 };
1156 
1157 /*
1158  * Some GOST names are not resolved by tls1_group_name2id,
1159  * hence we'll check for those manually
1160  */
1161 typedef struct {
1162     const char *group_name;
1163     uint16_t groupID;
1164 } name2id_st;
1165 static const name2id_st name2id_arr[] = {
1166     {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1167     {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1168     {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1169     {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1170     {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1171     {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1172     {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1173 };
1174 
1175 /*
1176  * Group list management:
1177  * We establish three lists along with their related size counters:
1178  * 1) List of (unique) groups
1179  * 2) List of number of groups per group-priority-tuple
1180  * 3) List of (unique) key share groups
1181  */
1182 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1183 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1184 
1185 /*
1186  * Preparation of the prefix used to indicate the desire to send a key share,
1187  * the characters used as separators between groups or tuples of groups, the
1188  * character to indicate that an unknown group should be ignored, and the
1189  * character to indicate that a group should be deleted from a list
1190  */
1191 #ifndef TUPLE_DELIMITER_CHARACTER
1192 /* The prefix characters to indicate group tuple boundaries */
1193 # define TUPLE_DELIMITER_CHARACTER '/'
1194 #endif
1195 #ifndef GROUP_DELIMITER_CHARACTER
1196 /* The prefix characters to indicate group tuple boundaries */
1197 # define GROUP_DELIMITER_CHARACTER ':'
1198 #endif
1199 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1200 /* The prefix character to ignore unknown groups */
1201 # define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1202 #endif
1203 #ifndef KEY_SHARE_INDICATOR_CHARACTER
1204 /* The prefix character to trigger a key share addition */
1205 # define KEY_SHARE_INDICATOR_CHARACTER '*'
1206 #endif
1207 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1208 /* The prefix character to trigger a key share removal */
1209 # define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1210 #endif
1211 static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1212                                 GROUP_DELIMITER_CHARACTER,
1213                                 IGNORE_UNKNOWN_GROUP_CHARACTER,
1214                                 KEY_SHARE_INDICATOR_CHARACTER,
1215                                 REMOVE_GROUP_INDICATOR_CHARACTER,
1216                                 '\0'};
1217 
1218 /*
1219  * High-level description of how group strings are analyzed:
1220  * A first call back function (tuple_cb) is used to process group tuples, and a
1221  * second callback function (gid_cb) is used to process the groups inside a tuple.
1222  * Those callback functions are (indirectly) called by CONF_parse_list with
1223  * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1224  * is used to keep track of the parsing results between the various calls
1225  */
1226 
1227 typedef struct {
1228     SSL_CTX *ctx;
1229     /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1230     size_t gidmax; /* The memory allocation chunk size for the group IDs */
1231     size_t gidcnt; /* Number of groups */
1232     uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1233     size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1234     size_t tplcnt; /* Number of tuples */
1235     size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1236     size_t ksidmax; /* The memory allocation chunk size */
1237     size_t ksidcnt; /* Number of key shares */
1238     uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1239     /* Variable to keep state between execution of callback or helper functions */
1240     size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1241     int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1242 } gid_cb_st;
1243 
1244 /* Forward declaration of tuple callback function */
1245 static int tuple_cb(const char *tuple, int len, void *arg);
1246 
1247 /*
1248  * Extract and process the individual groups (and their prefixes if present)
1249  * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1250  * and must be appended by a \0 if used as \0-terminated string
1251  */
gid_cb(const char * elem,int len,void * arg)1252 static int gid_cb(const char *elem, int len, void *arg)
1253 {
1254     gid_cb_st *garg = arg;
1255     size_t i, j, k;
1256     uint16_t gid = 0;
1257     int found_group = 0;
1258     char etmp[GROUP_NAME_BUFFER_LENGTH];
1259     int retval = 1; /* We assume success */
1260     char *current_prefix;
1261     int ignore_unknown = 0;
1262     int add_keyshare = 0;
1263     int remove_group = 0;
1264     size_t restored_prefix_index = 0;
1265     char *restored_default_group_string;
1266     int continue_while_loop = 1;
1267 
1268     /* Sanity checks */
1269     if (garg == NULL || elem == NULL || len <= 0) {
1270         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1271         return 0;
1272     }
1273 
1274     /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1275     while (continue_while_loop && len > 0
1276            && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1277                || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1278 
1279         switch (*current_prefix) {
1280         case TUPLE_DELIMITER_CHARACTER:
1281             /* tuple delimiter not allowed here -> syntax error */
1282             return -1;
1283             break;
1284         case GROUP_DELIMITER_CHARACTER:
1285             return -1; /* Not a valid prefix for a single group name-> syntax error */
1286             break;
1287         case KEY_SHARE_INDICATOR_CHARACTER:
1288             if (add_keyshare)
1289                 return -1; /* Only single key share prefix allowed -> syntax error */
1290             add_keyshare = 1;
1291             ++elem;
1292             --len;
1293             break;
1294         case REMOVE_GROUP_INDICATOR_CHARACTER:
1295             if (remove_group)
1296                 return -1; /* Only single remove group prefix allowed -> syntax error */
1297             remove_group = 1;
1298             ++elem;
1299             --len;
1300             break;
1301         case IGNORE_UNKNOWN_GROUP_CHARACTER:
1302             if (ignore_unknown)
1303                 return -1; /* Only single ? allowed -> syntax error */
1304             ignore_unknown = 1;
1305             ++elem;
1306             --len;
1307             break;
1308         default:
1309             /*
1310              * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1311              * list of groups) should be added
1312              */
1313             for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1314                 if ((size_t)len == (strlen(default_group_strings[i].list_name))
1315                     && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1316                     /*
1317                      * We're asked to insert an entire list of groups from a
1318                      * DEFAULT[_XYZ] 'pseudo group' which we do by
1319                      * recursively calling this function (indirectly via
1320                      * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1321                      * group string like a tuple which is appended to the current tuple
1322                      * rather then starting a new tuple. Variable tuple_mode is the flag which
1323                      * controls append tuple vs start new tuple.
1324                      */
1325 
1326                     if (ignore_unknown || remove_group)
1327                         return -1; /* removal or ignore not allowed here -> syntax error */
1328 
1329                     /*
1330                      * First, we restore any keyshare prefix in a new zero-terminated string
1331                      * (if not already present)
1332                      */
1333                     restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1334                                                                     strlen(default_group_strings[i].group_string) +
1335                                                                     1 /* \0 */) * sizeof(char));
1336                     if (restored_default_group_string == NULL)
1337                         return 0;
1338                     if (add_keyshare
1339                         /* Remark: we tolerate a duplicated keyshare indicator here */
1340                         && default_group_strings[i].group_string[0]
1341                         != KEY_SHARE_INDICATOR_CHARACTER)
1342                         restored_default_group_string[restored_prefix_index++] =
1343                             KEY_SHARE_INDICATOR_CHARACTER;
1344 
1345                     memcpy(restored_default_group_string + restored_prefix_index,
1346                            default_group_strings[i].group_string,
1347                            strlen(default_group_strings[i].group_string));
1348                     restored_default_group_string[strlen(default_group_strings[i].group_string) +
1349                                                   restored_prefix_index] = '\0';
1350                     /* We execute the recursive call */
1351                     garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1352                     /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1353                     garg->tuple_mode = 0;
1354                     /* We use the tuple_cb callback to process the pseudo group tuple */
1355                     retval = CONF_parse_list(restored_default_group_string,
1356                                              TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1357                     garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1358                     garg->ignore_unknown_default = 0; /* reset to original value */
1359                     /* We don't need the \0-terminated string anymore */
1360                     OPENSSL_free(restored_default_group_string);
1361 
1362                     return retval;
1363                 }
1364             }
1365             /*
1366              * If we reached this point, a group name started with a 'd' or 'D', but no request
1367              * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1368              * name can continue as usual (= the while loop checking prefixes can end)
1369              */
1370             continue_while_loop = 0;
1371             break;
1372         }
1373     }
1374 
1375     if (len == 0)
1376         return -1; /* Seems we have prefxes without a group name -> syntax error */
1377 
1378     if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1379         ignore_unknown = 1;
1380 
1381     /* Memory management in case more groups are present compared to initial allocation */
1382     if (garg->gidcnt == garg->gidmax) {
1383         uint16_t *tmp =
1384             OPENSSL_realloc(garg->gid_arr,
1385                             (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1386 
1387         if (tmp == NULL)
1388             return 0;
1389 
1390         garg->gidmax += GROUPLIST_INCREMENT;
1391         garg->gid_arr = tmp;
1392     }
1393     /* Memory management for key share groups */
1394     if (garg->ksidcnt == garg->ksidmax) {
1395         uint16_t *tmp =
1396             OPENSSL_realloc(garg->ksid_arr,
1397                             (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1398 
1399         if (tmp == NULL)
1400             return 0;
1401         garg->ksidmax += GROUPLIST_INCREMENT;
1402         garg->ksid_arr = tmp;
1403     }
1404 
1405     if (len > (int)(sizeof(etmp) - 1))
1406         return -1; /* group name to long  -> syntax error */
1407 
1408     /*
1409      * Prepare addition or removal of a single group by converting
1410      * a group name into its groupID equivalent
1411      */
1412 
1413     /* Create a \0-terminated string and get the gid for this group if possible */
1414     memcpy(etmp, elem, len);
1415     etmp[len] = 0;
1416 
1417     /* Get the groupID */
1418     gid = tls1_group_name2id(garg->ctx, etmp);
1419     /*
1420      * Handle the case where no valid groupID was returned
1421      * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1422      */
1423     if (gid == 0) {
1424         /* Is it one of the GOST groups ? */
1425         for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1426             if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1427                 gid = name2id_arr[i].groupID;
1428                 break;
1429             }
1430         }
1431         if (gid == 0) { /* still not found */
1432             /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1433             retval = ignore_unknown;
1434             goto done;
1435         }
1436     }
1437 
1438     /* Make sure that at least one provider is supporting this groupID */
1439     found_group = 0;
1440     for (j = 0; j < garg->ctx->group_list_len; j++)
1441         if (garg->ctx->group_list[j].group_id == gid) {
1442             found_group = 1;
1443             break;
1444         }
1445 
1446     /*
1447      * No provider supports this group - ignore if
1448      * ignore_unknown; trigger error otherwise
1449      */
1450     if (found_group == 0) {
1451         retval = ignore_unknown;
1452         goto done;
1453     }
1454     /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1455     if (remove_group) {
1456         /* Is the current group specified anywhere in the entire list so far? */
1457         found_group = 0;
1458         for (i = 0; i < garg->gidcnt; i++)
1459             if (garg->gid_arr[i] == gid) {
1460                 found_group = 1;
1461                 break;
1462             }
1463         /* The group to remove is at position i in the list of (zero indexed) groups */
1464         if (found_group) {
1465             /* We remove that group from its position (which is at i)... */
1466             for (j = i; j < (garg->gidcnt - 1); j++)
1467                 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1468             garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1469 
1470             /*
1471              * We also must update the number of groups either in a previous tuple (which we
1472              * must identify and check whether it becomes empty due to the deletion) or in
1473              * the current tuple, pending where the deleted group resides
1474              */
1475             k = 0;
1476             for (j = 0; j < garg->tplcnt; j++) {
1477                 k += garg->tuplcnt_arr[j];
1478                 /* Remark: i is zero-indexed, k is one-indexed */
1479                 if (k > i) { /* remove from one of the previous tuples */
1480                     garg->tuplcnt_arr[j]--;
1481                     break; /* We took care not to have group duplicates, hence we can stop here */
1482                 }
1483             }
1484             if (k <= i) /* remove from current tuple */
1485                 garg->tuplcnt_arr[j]--;
1486 
1487             /* We also remove the group from the list of keyshares (if present) */
1488             found_group = 0;
1489             for (i = 0; i < garg->ksidcnt; i++)
1490                 if (garg->ksid_arr[i] == gid) {
1491                     found_group = 1;
1492                     break;
1493                 }
1494             if (found_group) {
1495                 /* Found, hence we remove that keyshare from its position (which is at i)... */
1496                 for (j = i; j < (garg->ksidcnt - 1); j++)
1497                     garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1498                 /* ... and update the book keeping */
1499                 garg->ksidcnt--;
1500             }
1501         }
1502     } else { /* Processing addition of a single new group */
1503 
1504         /* Check for duplicates */
1505         for (i = 0; i < garg->gidcnt; i++)
1506             if (garg->gid_arr[i] == gid) {
1507                 /* Duplicate group anywhere in the list of groups - ignore */
1508                 goto done;
1509             }
1510 
1511         /* Add the current group to the 'flat' list of groups */
1512         garg->gid_arr[garg->gidcnt++] = gid;
1513         /* and update the book keeping for the number of groups in current tuple */
1514         garg->tuplcnt_arr[garg->tplcnt]++;
1515 
1516         /* We memorize if needed that we want to add a key share for the current group */
1517         if (add_keyshare)
1518             garg->ksid_arr[garg->ksidcnt++] = gid;
1519     }
1520 
1521 done:
1522     return retval;
1523 }
1524 
1525 /* Extract and process a tuple of groups */
tuple_cb(const char * tuple,int len,void * arg)1526 static int tuple_cb(const char *tuple, int len, void *arg)
1527 {
1528     gid_cb_st *garg = arg;
1529     int retval = 1; /* We assume success */
1530     char *restored_tuple_string;
1531 
1532     /* Sanity checks */
1533     if (garg == NULL || tuple == NULL || len <= 0) {
1534         ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1535         return 0;
1536     }
1537 
1538     /* Memory management for tuples */
1539     if (garg->tplcnt == garg->tplmax) {
1540         size_t *tmp =
1541             OPENSSL_realloc(garg->tuplcnt_arr,
1542                             (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543 
1544         if (tmp == NULL)
1545             return 0;
1546         garg->tplmax += GROUPLIST_INCREMENT;
1547         garg->tuplcnt_arr = tmp;
1548     }
1549 
1550     /* Convert to \0-terminated string */
1551     restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552     if (restored_tuple_string == NULL)
1553         return 0;
1554     memcpy(restored_tuple_string, tuple, len);
1555     restored_tuple_string[len] = '\0';
1556 
1557     /* Analyze group list of this tuple */
1558     retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559 
1560     /* We don't need the \o-terminated string anymore */
1561     OPENSSL_free(restored_tuple_string);
1562 
1563     if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564         if (garg->tuple_mode) {
1565             /* We 'close' the tuple */
1566             garg->tplcnt++;
1567             garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568             garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569         }
1570     }
1571 
1572     return retval;
1573 }
1574 
1575 /*
1576  * Set groups and prepare generation of keyshares based on a string of groupnames,
1577  * names separated by the group or the tuple delimiter, with per-group prefixes to
1578  * (1) add a key share for this group, (2) ignore the group if unkown to the current
1579  * context, (3) delete a previous occurrence of the group in the current tuple.
1580  *
1581  * The list parsing is done in two hierachical steps: The top-level step extracts the
1582  * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583  * parse and process the groups inside a tuple
1584  */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,const char * str)1585 int tls1_set_groups_list(SSL_CTX *ctx,
1586                          uint16_t **grpext, size_t *grpextlen,
1587                          uint16_t **ksext, size_t *ksextlen,
1588                          size_t **tplext, size_t *tplextlen,
1589                          const char *str)
1590 {
1591     size_t i = 0, j;
1592     int ret = 0, parse_ret = 0;
1593     gid_cb_st gcb;
1594 
1595     /* Sanity check */
1596     if (ctx == NULL) {
1597         ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598         return 0;
1599     }
1600 
1601     memset(&gcb, 0, sizeof(gcb));
1602     gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603     gcb.ignore_unknown_default = 0;
1604     gcb.gidmax = GROUPLIST_INCREMENT;
1605     gcb.tplmax = GROUPLIST_INCREMENT;
1606     gcb.ksidmax = GROUPLIST_INCREMENT;
1607     gcb.ctx = ctx;
1608 
1609     /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610     gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611     if (gcb.gid_arr == NULL)
1612         goto end;
1613     gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614     if (gcb.tuplcnt_arr == NULL)
1615         goto end;
1616     gcb.tuplcnt_arr[0] = 0;
1617     gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618     if (gcb.ksid_arr == NULL)
1619         goto end;
1620 
1621     while (str[0] != '\0' && isspace((unsigned char)*str))
1622         str++;
1623     if (str[0] == '\0')
1624         goto empty_list;
1625 
1626     /*
1627      * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628      * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629      */
1630     parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631 
1632     if (parse_ret == 0)
1633         goto end;
1634     if (parse_ret == -1) {
1635         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636                        "Syntax error in '%s'", str);
1637         goto end;
1638     }
1639 
1640     /*
1641      * We check whether a tuple was completly emptied by using "-" prefix
1642      * excessively, in which case we remove the tuple
1643      */
1644     for (i = j = 0; j < gcb.tplcnt; j++) {
1645         if (gcb.tuplcnt_arr[j] == 0)
1646             continue;
1647         /* If there's a gap, move to first unfilled slot */
1648         if (j == i)
1649             ++i;
1650         else
1651             gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652     }
1653     gcb.tplcnt = i;
1654 
1655     if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657                        "To many keyshares requested in '%s' (max = %d)",
1658                        str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659         goto end;
1660     }
1661 
1662     /*
1663      * For backward compatibility we let the rest of the code know that a key share
1664      * for the first valid group should be added if no "*" prefix was used anywhere
1665      */
1666     if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667         /*
1668          * No key share group prefix character was used, hence we indicate that a single
1669          * key share should be sent and flag that it should come from the supported_groups list
1670          */
1671         gcb.ksidcnt = 1;
1672         gcb.ksid_arr[0] = 0;
1673     }
1674 
1675  empty_list:
1676     /*
1677      * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678      * to NULL only does a syntax check, hence we're done here and report success
1679      */
1680     if (grpext == NULL || ksext == NULL || tplext == NULL ||
1681         grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1682         ret = 1;
1683         goto end;
1684     }
1685 
1686     /*
1687      * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1688      * can just go ahead and set the results (after diposing the existing)
1689      */
1690     OPENSSL_free(*grpext);
1691     *grpext = gcb.gid_arr;
1692     *grpextlen = gcb.gidcnt;
1693     OPENSSL_free(*ksext);
1694     *ksext = gcb.ksid_arr;
1695     *ksextlen = gcb.ksidcnt;
1696     OPENSSL_free(*tplext);
1697     *tplext = gcb.tuplcnt_arr;
1698     *tplextlen = gcb.tplcnt;
1699 
1700     return 1;
1701 
1702  end:
1703     OPENSSL_free(gcb.gid_arr);
1704     OPENSSL_free(gcb.tuplcnt_arr);
1705     OPENSSL_free(gcb.ksid_arr);
1706     return ret;
1707 }
1708 
1709 /* Check a group id matches preferences */
tls1_check_group_id(SSL_CONNECTION * s,uint16_t group_id,int check_own_groups)1710 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1711                         int check_own_groups)
1712     {
1713     const uint16_t *groups;
1714     size_t groups_len;
1715 
1716     if (group_id == 0)
1717         return 0;
1718 
1719     /* Check for Suite B compliance */
1720     if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1721         unsigned long cid = s->s3.tmp.new_cipher->id;
1722 
1723         if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1724             if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1725                 return 0;
1726         } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1727             if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1728                 return 0;
1729         } else {
1730             /* Should never happen */
1731             return 0;
1732         }
1733     }
1734 
1735     if (check_own_groups) {
1736         /* Check group is one of our preferences */
1737         tls1_get_supported_groups(s, &groups, &groups_len);
1738         if (!tls1_in_list(group_id, groups, groups_len))
1739             return 0;
1740     }
1741 
1742     if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1743         return 0;
1744 
1745     /* For clients, nothing more to check */
1746     if (!s->server)
1747         return 1;
1748 
1749     /* Check group is one of peers preferences */
1750     tls1_get_peer_groups(s, &groups, &groups_len);
1751 
1752     /*
1753      * RFC 4492 does not require the supported elliptic curves extension
1754      * so if it is not sent we can just choose any curve.
1755      * It is invalid to send an empty list in the supported groups
1756      * extension, so groups_len == 0 always means no extension.
1757      */
1758     if (groups_len == 0)
1759             return 1;
1760     return tls1_in_list(group_id, groups, groups_len);
1761 }
1762 
tls1_get_formatlist(SSL_CONNECTION * s,const unsigned char ** pformats,size_t * num_formats)1763 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1764                          size_t *num_formats)
1765 {
1766     /*
1767      * If we have a custom point format list use it otherwise use default
1768      */
1769     if (s->ext.ecpointformats) {
1770         *pformats = s->ext.ecpointformats;
1771         *num_formats = s->ext.ecpointformats_len;
1772     } else {
1773         *pformats = ecformats_default;
1774         /* For Suite B we don't support char2 fields */
1775         if (tls1_suiteb(s))
1776             *num_formats = sizeof(ecformats_default) - 1;
1777         else
1778             *num_formats = sizeof(ecformats_default);
1779     }
1780 }
1781 
1782 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL_CONNECTION * s,EVP_PKEY * pkey)1783 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1784 {
1785     unsigned char comp_id;
1786     size_t i;
1787     int point_conv;
1788 
1789     /* If not an EC key nothing to check */
1790     if (!EVP_PKEY_is_a(pkey, "EC"))
1791         return 1;
1792 
1793 
1794     /* Get required compression id */
1795     point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1796     if (point_conv == 0)
1797         return 0;
1798     if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1799             comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1800     } else if (SSL_CONNECTION_IS_TLS13(s)) {
1801         /*
1802          * ec_point_formats extension is not used in TLSv1.3 so we ignore
1803          * this check.
1804          */
1805         return 1;
1806     } else {
1807         int field_type = EVP_PKEY_get_field_type(pkey);
1808 
1809         if (field_type == NID_X9_62_prime_field)
1810             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1811         else if (field_type == NID_X9_62_characteristic_two_field)
1812             comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1813         else
1814             return 0;
1815     }
1816     /*
1817      * If point formats extension present check it, otherwise everything is
1818      * supported (see RFC4492).
1819      */
1820     if (s->ext.peer_ecpointformats == NULL)
1821         return 1;
1822 
1823     for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1824         if (s->ext.peer_ecpointformats[i] == comp_id)
1825             return 1;
1826     }
1827     return 0;
1828 }
1829 
1830 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)1831 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1832 {
1833     int curve_nid = ssl_get_EC_curve_nid(pkey);
1834 
1835     if (curve_nid == NID_undef)
1836         return 0;
1837     return tls1_nid2group_id(curve_nid);
1838 }
1839 
1840 /*
1841  * Check cert parameters compatible with extensions: currently just checks EC
1842  * certificates have compatible curves and compression.
1843  */
tls1_check_cert_param(SSL_CONNECTION * s,X509 * x,int check_ee_md)1844 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1845 {
1846     uint16_t group_id;
1847     EVP_PKEY *pkey;
1848     pkey = X509_get0_pubkey(x);
1849     if (pkey == NULL)
1850         return 0;
1851     /* If not EC nothing to do */
1852     if (!EVP_PKEY_is_a(pkey, "EC"))
1853         return 1;
1854     /* Check compression */
1855     if (!tls1_check_pkey_comp(s, pkey))
1856         return 0;
1857     group_id = tls1_get_group_id(pkey);
1858     /*
1859      * For a server we allow the certificate to not be in our list of supported
1860      * groups.
1861      */
1862     if (!tls1_check_group_id(s, group_id, !s->server))
1863         return 0;
1864     /*
1865      * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1866      * SHA384+P-384.
1867      */
1868     if (check_ee_md && tls1_suiteb(s)) {
1869         int check_md;
1870         size_t i;
1871 
1872         /* Check to see we have necessary signing algorithm */
1873         if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1874             check_md = NID_ecdsa_with_SHA256;
1875         else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1876             check_md = NID_ecdsa_with_SHA384;
1877         else
1878             return 0;           /* Should never happen */
1879         for (i = 0; i < s->shared_sigalgslen; i++) {
1880             if (check_md == s->shared_sigalgs[i]->sigandhash)
1881                 return 1;
1882         }
1883         return 0;
1884     }
1885     return 1;
1886 }
1887 
1888 /*
1889  * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1890  * @s: SSL connection
1891  * @cid: Cipher ID we're considering using
1892  *
1893  * Checks that the kECDHE cipher suite we're considering using
1894  * is compatible with the client extensions.
1895  *
1896  * Returns 0 when the cipher can't be used or 1 when it can.
1897  */
tls1_check_ec_tmp_key(SSL_CONNECTION * s,unsigned long cid)1898 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1899 {
1900     /* If not Suite B just need a shared group */
1901     if (!tls1_suiteb(s))
1902         return tls1_shared_group(s, 0) != 0;
1903     /*
1904      * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1905      * curves permitted.
1906      */
1907     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1908         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1909     if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1910         return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1911 
1912     return 0;
1913 }
1914 
1915 /* Default sigalg schemes */
1916 static const uint16_t tls12_sigalgs[] = {
1917     TLSEXT_SIGALG_mldsa65,
1918     TLSEXT_SIGALG_mldsa87,
1919     TLSEXT_SIGALG_mldsa44,
1920     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1921     TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1922     TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1923     TLSEXT_SIGALG_ed25519,
1924     TLSEXT_SIGALG_ed448,
1925     TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1926     TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1927     TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1928 
1929     TLSEXT_SIGALG_rsa_pss_pss_sha256,
1930     TLSEXT_SIGALG_rsa_pss_pss_sha384,
1931     TLSEXT_SIGALG_rsa_pss_pss_sha512,
1932     TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1933     TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1934     TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1935 
1936     TLSEXT_SIGALG_rsa_pkcs1_sha256,
1937     TLSEXT_SIGALG_rsa_pkcs1_sha384,
1938     TLSEXT_SIGALG_rsa_pkcs1_sha512,
1939 
1940     TLSEXT_SIGALG_ecdsa_sha224,
1941     TLSEXT_SIGALG_ecdsa_sha1,
1942 
1943     TLSEXT_SIGALG_rsa_pkcs1_sha224,
1944     TLSEXT_SIGALG_rsa_pkcs1_sha1,
1945 
1946     TLSEXT_SIGALG_dsa_sha224,
1947     TLSEXT_SIGALG_dsa_sha1,
1948 
1949     TLSEXT_SIGALG_dsa_sha256,
1950     TLSEXT_SIGALG_dsa_sha384,
1951     TLSEXT_SIGALG_dsa_sha512,
1952 
1953 #ifndef OPENSSL_NO_GOST
1954     TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1955     TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1956     TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1957     TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1958     TLSEXT_SIGALG_gostr34102001_gostr3411,
1959 #endif
1960 };
1961 
1962 
1963 static const uint16_t suiteb_sigalgs[] = {
1964     TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1965     TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1966 };
1967 
1968 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1969     {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1970      "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1971      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1972      NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1973      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1974     {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1975      "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1976      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1977      NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1978      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1979     {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1980      "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1981      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1982      NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1983      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1984 
1985     {TLSEXT_SIGALG_ed25519_name,
1986      NULL, TLSEXT_SIGALG_ed25519,
1987      NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1988      NID_undef, NID_undef, 1, 0,
1989      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1990     {TLSEXT_SIGALG_ed448_name,
1991      NULL, TLSEXT_SIGALG_ed448,
1992      NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1993      NID_undef, NID_undef, 1, 0,
1994      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1995 
1996     {TLSEXT_SIGALG_ecdsa_sha224_name,
1997      "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1998      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1999      NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2000      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2001     {TLSEXT_SIGALG_ecdsa_sha1_name,
2002      "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2003      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2004      NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2005      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2006 
2007     {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2008      TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2009      TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2010      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011      NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2012      TLS1_3_VERSION, 0, -1, -1},
2013     {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2014      TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2015      TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2016      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2017      NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2018      TLS1_3_VERSION, 0, -1, -1},
2019     {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2020      TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2021      TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2022      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2023      NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2024      TLS1_3_VERSION, 0, -1, -1},
2025 
2026     {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2027      "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2028      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2029      NID_undef, NID_undef, 1, 0,
2030      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2031     {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2032      "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2033      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2034      NID_undef, NID_undef, 1, 0,
2035      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2036     {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2037      "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2038      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2039      NID_undef, NID_undef, 1, 0,
2040      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2041 
2042     {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2043      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2044      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2045      NID_undef, NID_undef, 1, 0,
2046      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2047     {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2048      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2049      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2050      NID_undef, NID_undef, 1, 0,
2051      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2052     {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2053      NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2054      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2055      NID_undef, NID_undef, 1, 0,
2056      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2057 
2058     {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2059      "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2060      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2061      NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2062      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2063     {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2064      "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2065      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2066      NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2067      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2068     {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2069      "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2070      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2071      NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2072      TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2073 
2074     {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2075      "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2076      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2077      NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2078      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2079     {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2080      "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2081      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2082      NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2083      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2084 
2085     {TLSEXT_SIGALG_dsa_sha256_name,
2086      "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2087      NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2088      NID_dsa_with_SHA256, NID_undef, 1, 0,
2089      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2090     {TLSEXT_SIGALG_dsa_sha384_name,
2091      "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2092      NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2093      NID_undef, NID_undef, 1, 0,
2094      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2095     {TLSEXT_SIGALG_dsa_sha512_name,
2096      "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2097      NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2098      NID_undef, NID_undef, 1, 0,
2099      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2100     {TLSEXT_SIGALG_dsa_sha224_name,
2101      "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2102      NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2103      NID_undef, NID_undef, 1, 0,
2104      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2105     {TLSEXT_SIGALG_dsa_sha1_name,
2106      "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2107      NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2108      NID_dsaWithSHA1, NID_undef, 1, 0,
2109      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2110 
2111 #ifndef OPENSSL_NO_GOST
2112     {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2113      TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2114      TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2115      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2116      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2117      NID_undef, NID_undef, 1, 0,
2118      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2119     {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120      TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121      TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2122      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2123      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2124      NID_undef, NID_undef, 1, 0,
2125      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126 
2127     {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2128      NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2129      NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2130      NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2131      NID_undef, NID_undef, 1, 0,
2132      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133     {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2134      NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2135      NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2136      NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2137      NID_undef, NID_undef, 1, 0,
2138      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2139     {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2140      NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2141      NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2142      NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2143      NID_undef, NID_undef, 1, 0,
2144      TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2145 #endif
2146 };
2147 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2148 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2149     "rsa_pkcs1_md5_sha1", NULL, 0,
2150      NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2151      EVP_PKEY_RSA, SSL_PKEY_RSA,
2152      NID_undef, NID_undef, 1, 0,
2153      TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2154 };
2155 
2156 /*
2157  * Default signature algorithm values used if signature algorithms not present.
2158  * From RFC5246. Note: order must match certificate index order.
2159  */
2160 static const uint16_t tls_default_sigalg[] = {
2161     TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2162     0, /* SSL_PKEY_RSA_PSS_SIGN */
2163     TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2164     TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2165     TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2166     TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2167     TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2168     0, /* SSL_PKEY_ED25519 */
2169     0, /* SSL_PKEY_ED448 */
2170 };
2171 
ssl_setup_sigalgs(SSL_CTX * ctx)2172 int ssl_setup_sigalgs(SSL_CTX *ctx)
2173 {
2174     size_t i, cache_idx, sigalgs_len, enabled;
2175     const SIGALG_LOOKUP *lu;
2176     SIGALG_LOOKUP *cache = NULL;
2177     uint16_t *tls12_sigalgs_list = NULL;
2178     EVP_PKEY *tmpkey = EVP_PKEY_new();
2179     int istls;
2180     int ret = 0;
2181 
2182     if (ctx == NULL)
2183         goto err;
2184 
2185     istls = !SSL_CTX_IS_DTLS(ctx);
2186 
2187     sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2188 
2189     cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2190     if (cache == NULL || tmpkey == NULL)
2191         goto err;
2192 
2193     tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2194     if (tls12_sigalgs_list == NULL)
2195         goto err;
2196 
2197     ERR_set_mark();
2198     /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2199     for (i = 0, lu = sigalg_lookup_tbl;
2200          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2201         EVP_PKEY_CTX *pctx;
2202 
2203         cache[i] = *lu;
2204 
2205         /*
2206          * Check hash is available.
2207          * This test is not perfect. A provider could have support
2208          * for a signature scheme, but not a particular hash. However the hash
2209          * could be available from some other loaded provider. In that case it
2210          * could be that the signature is available, and the hash is available
2211          * independently - but not as a combination. We ignore this for now.
2212          */
2213         if (lu->hash != NID_undef
2214                 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2215             cache[i].available = 0;
2216             continue;
2217         }
2218 
2219         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2220             cache[i].available = 0;
2221             continue;
2222         }
2223         pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2224         /* If unable to create pctx we assume the sig algorithm is unavailable */
2225         if (pctx == NULL)
2226             cache[i].available = 0;
2227         EVP_PKEY_CTX_free(pctx);
2228     }
2229 
2230     /* Now complete cache and tls12_sigalgs list with provider sig information */
2231     cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2232     for (i = 0; i < ctx->sigalg_list_len; i++) {
2233         TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2234         cache[cache_idx].name = si.name;
2235         cache[cache_idx].name12 = si.sigalg_name;
2236         cache[cache_idx].sigalg = si.code_point;
2237         tls12_sigalgs_list[cache_idx] = si.code_point;
2238         cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2239         cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2240         cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2241         cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2242         cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2243         cache[cache_idx].curve = NID_undef;
2244         cache[cache_idx].mintls = TLS1_3_VERSION;
2245         cache[cache_idx].maxtls = TLS1_3_VERSION;
2246         cache[cache_idx].mindtls = -1;
2247         cache[cache_idx].maxdtls = -1;
2248         /* Compatibility with TLS 1.3 is checked on load */
2249         cache[cache_idx].available = istls;
2250         cache[cache_idx].advertise = 0;
2251         cache_idx++;
2252     }
2253     ERR_pop_to_mark();
2254 
2255     enabled = 0;
2256     for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2257         SIGALG_LOOKUP *ent = cache;
2258         size_t j;
2259 
2260         for (j = 0; j < sigalgs_len; ent++, j++) {
2261             if (ent->sigalg != tls12_sigalgs[i])
2262                 continue;
2263             /* Dedup by marking cache entry as default enabled. */
2264             if (ent->available && !ent->advertise) {
2265                 ent->advertise = 1;
2266                 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2267             }
2268             break;
2269         }
2270     }
2271 
2272     /* Append any provider sigalgs not yet handled */
2273     for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2274         SIGALG_LOOKUP *ent = &cache[i];
2275 
2276         if (ent->available && !ent->advertise)
2277             tls12_sigalgs_list[enabled++] = ent->sigalg;
2278     }
2279 
2280     ctx->sigalg_lookup_cache = cache;
2281     ctx->sigalg_lookup_cache_len = sigalgs_len;
2282     ctx->tls12_sigalgs = tls12_sigalgs_list;
2283     ctx->tls12_sigalgs_len = enabled;
2284     cache = NULL;
2285     tls12_sigalgs_list = NULL;
2286 
2287     ret = 1;
2288  err:
2289     OPENSSL_free(cache);
2290     OPENSSL_free(tls12_sigalgs_list);
2291     EVP_PKEY_free(tmpkey);
2292     return ret;
2293 }
2294 
2295 #define SIGLEN_BUF_INCREMENT 100
2296 
SSL_get1_builtin_sigalgs(OSSL_LIB_CTX * libctx)2297 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2298 {
2299     size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2300     const SIGALG_LOOKUP *lu;
2301     EVP_PKEY *tmpkey = EVP_PKEY_new();
2302     char *retval = OPENSSL_malloc(maxretlen);
2303 
2304     if (retval == NULL)
2305         return NULL;
2306 
2307     /* ensure retval string is NUL terminated */
2308     retval[0] = (char)0;
2309 
2310     for (i = 0, lu = sigalg_lookup_tbl;
2311          i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2312         EVP_PKEY_CTX *pctx;
2313         int enabled = 1;
2314 
2315         ERR_set_mark();
2316         /* Check hash is available in some provider. */
2317         if (lu->hash != NID_undef) {
2318             EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2319 
2320             /* If unable to create we assume the hash algorithm is unavailable */
2321             if (hash == NULL) {
2322                 enabled = 0;
2323                 ERR_pop_to_mark();
2324                 continue;
2325             }
2326             EVP_MD_free(hash);
2327         }
2328 
2329         if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2330             enabled = 0;
2331             ERR_pop_to_mark();
2332             continue;
2333         }
2334         pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2335         /* If unable to create pctx we assume the sig algorithm is unavailable */
2336         if (pctx == NULL)
2337             enabled = 0;
2338         ERR_pop_to_mark();
2339         EVP_PKEY_CTX_free(pctx);
2340 
2341         if (enabled) {
2342             const char *sa = lu->name;
2343 
2344             if (sa != NULL) {
2345                 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2346                     char *tmp;
2347 
2348                     maxretlen += SIGLEN_BUF_INCREMENT;
2349                     tmp = OPENSSL_realloc(retval, maxretlen);
2350                     if (tmp == NULL) {
2351                         OPENSSL_free(retval);
2352                         return NULL;
2353                     }
2354                     retval = tmp;
2355                 }
2356                 if (strlen(retval) > 0)
2357                     OPENSSL_strlcat(retval, ":", maxretlen);
2358                 OPENSSL_strlcat(retval, sa, maxretlen);
2359             } else {
2360                 /* lu->name must not be NULL */
2361                 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2362             }
2363         }
2364     }
2365 
2366     EVP_PKEY_free(tmpkey);
2367     return retval;
2368 }
2369 
2370 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL_CTX * ctx,uint16_t sigalg)2371 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2372                                                uint16_t sigalg)
2373 {
2374     size_t i;
2375     const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2376 
2377     for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2378         if (lu->sigalg == sigalg) {
2379             if (!lu->available)
2380                 return NULL;
2381             return lu;
2382         }
2383     }
2384     return NULL;
2385 }
2386 
2387 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)2388 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2389 {
2390     const EVP_MD *md;
2391 
2392     if (lu == NULL)
2393         return 0;
2394     /* lu->hash == NID_undef means no associated digest */
2395     if (lu->hash == NID_undef) {
2396         md = NULL;
2397     } else {
2398         md = ssl_md(ctx, lu->hash_idx);
2399         if (md == NULL)
2400             return 0;
2401     }
2402     if (pmd)
2403         *pmd = md;
2404     return 1;
2405 }
2406 
2407 /*
2408  * Check if key is large enough to generate RSA-PSS signature.
2409  *
2410  * The key must greater than or equal to 2 * hash length + 2.
2411  * SHA512 has a hash length of 64 bytes, which is incompatible
2412  * with a 128 byte (1024 bit) key.
2413  */
2414 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)2415 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2416                                       const SIGALG_LOOKUP *lu)
2417 {
2418     const EVP_MD *md;
2419 
2420     if (pkey == NULL)
2421         return 0;
2422     if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2423         return 0;
2424     if (EVP_MD_get_size(md) <= 0)
2425         return 0;
2426     if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2427         return 0;
2428     return 1;
2429 }
2430 
2431 /*
2432  * Returns a signature algorithm when the peer did not send a list of supported
2433  * signature algorithms. The signature algorithm is fixed for the certificate
2434  * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2435  * certificate type from |s| will be used.
2436  * Returns the signature algorithm to use, or NULL on error.
2437  */
tls1_get_legacy_sigalg(const SSL_CONNECTION * s,int idx)2438 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2439                                                    int idx)
2440 {
2441     if (idx == -1) {
2442         if (s->server) {
2443             size_t i;
2444 
2445             /* Work out index corresponding to ciphersuite */
2446             for (i = 0; i < s->ssl_pkey_num; i++) {
2447                 const SSL_CERT_LOOKUP *clu
2448                     = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2449 
2450                 if (clu == NULL)
2451                     continue;
2452                 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2453                     idx = i;
2454                     break;
2455                 }
2456             }
2457 
2458             /*
2459              * Some GOST ciphersuites allow more than one signature algorithms
2460              * */
2461             if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2462                 int real_idx;
2463 
2464                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2465                      real_idx--) {
2466                     if (s->cert->pkeys[real_idx].privatekey != NULL) {
2467                         idx = real_idx;
2468                         break;
2469                     }
2470                 }
2471             }
2472             /*
2473              * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2474              * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2475              */
2476             else if (idx == SSL_PKEY_GOST12_256) {
2477                 int real_idx;
2478 
2479                 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2480                      real_idx--) {
2481                      if (s->cert->pkeys[real_idx].privatekey != NULL) {
2482                          idx = real_idx;
2483                          break;
2484                      }
2485                 }
2486             }
2487         } else {
2488             idx = s->cert->key - s->cert->pkeys;
2489         }
2490     }
2491     if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2492         return NULL;
2493 
2494     if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2495         const SIGALG_LOOKUP *lu =
2496             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2497                                tls_default_sigalg[idx]);
2498 
2499         if (lu == NULL)
2500             return NULL;
2501         if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2502             return NULL;
2503         if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2504             return NULL;
2505         return lu;
2506     }
2507     if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2508         return NULL;
2509     return &legacy_rsa_sigalg;
2510 }
2511 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL_CONNECTION * s,const EVP_PKEY * pkey)2512 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2513 {
2514     size_t idx;
2515     const SIGALG_LOOKUP *lu;
2516 
2517     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2518         return 0;
2519     lu = tls1_get_legacy_sigalg(s, idx);
2520     if (lu == NULL)
2521         return 0;
2522     s->s3.tmp.peer_sigalg = lu;
2523     return 1;
2524 }
2525 
tls12_get_psigalgs(SSL_CONNECTION * s,int sent,const uint16_t ** psigs)2526 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2527 {
2528     /*
2529      * If Suite B mode use Suite B sigalgs only, ignore any other
2530      * preferences.
2531      */
2532     switch (tls1_suiteb(s)) {
2533     case SSL_CERT_FLAG_SUITEB_128_LOS:
2534         *psigs = suiteb_sigalgs;
2535         return OSSL_NELEM(suiteb_sigalgs);
2536 
2537     case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2538         *psigs = suiteb_sigalgs;
2539         return 1;
2540 
2541     case SSL_CERT_FLAG_SUITEB_192_LOS:
2542         *psigs = suiteb_sigalgs + 1;
2543         return 1;
2544     }
2545     /*
2546      *  We use client_sigalgs (if not NULL) if we're a server
2547      *  and sending a certificate request or if we're a client and
2548      *  determining which shared algorithm to use.
2549      */
2550     if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2551         *psigs = s->cert->client_sigalgs;
2552         return s->cert->client_sigalgslen;
2553     } else if (s->cert->conf_sigalgs) {
2554         *psigs = s->cert->conf_sigalgs;
2555         return s->cert->conf_sigalgslen;
2556     } else {
2557         *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2558         return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2559     }
2560 }
2561 
2562 /*
2563  * Called by servers only. Checks that we have a sig alg that supports the
2564  * specified EC curve.
2565  */
tls_check_sigalg_curve(const SSL_CONNECTION * s,int curve)2566 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2567 {
2568    const uint16_t *sigs;
2569    size_t siglen, i;
2570 
2571     if (s->cert->conf_sigalgs) {
2572         sigs = s->cert->conf_sigalgs;
2573         siglen = s->cert->conf_sigalgslen;
2574     } else {
2575         sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2576         siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2577     }
2578 
2579     for (i = 0; i < siglen; i++) {
2580         const SIGALG_LOOKUP *lu =
2581             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2582 
2583         if (lu == NULL)
2584             continue;
2585         if (lu->sig == EVP_PKEY_EC
2586                 && lu->curve != NID_undef
2587                 && curve == lu->curve)
2588             return 1;
2589     }
2590 
2591     return 0;
2592 }
2593 
2594 /*
2595  * Return the number of security bits for the signature algorithm, or 0 on
2596  * error.
2597  */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)2598 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2599 {
2600     const EVP_MD *md = NULL;
2601     int secbits = 0;
2602 
2603     if (!tls1_lookup_md(ctx, lu, &md))
2604         return 0;
2605     if (md != NULL)
2606     {
2607         int md_type = EVP_MD_get_type(md);
2608 
2609         /* Security bits: half digest bits */
2610         secbits = EVP_MD_get_size(md) * 4;
2611         if (secbits <= 0)
2612             return 0;
2613         /*
2614          * SHA1 and MD5 are known to be broken. Reduce security bits so that
2615          * they're no longer accepted at security level 1. The real values don't
2616          * really matter as long as they're lower than 80, which is our
2617          * security level 1.
2618          * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2619          * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2620          * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2621          * puts a chosen-prefix attack for MD5 at 2^39.
2622          */
2623         if (md_type == NID_sha1)
2624             secbits = 64;
2625         else if (md_type == NID_md5_sha1)
2626             secbits = 67;
2627         else if (md_type == NID_md5)
2628             secbits = 39;
2629     } else {
2630         /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2631         if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2632             secbits = 128;
2633         else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2634             secbits = 224;
2635     }
2636     /*
2637      * For provider-based sigalgs we have secbits information available
2638      * in the (provider-loaded) sigalg_list structure
2639      */
2640     if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2641                && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2642         secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2643     }
2644     return secbits;
2645 }
2646 
tls_sigalg_compat(SSL_CONNECTION * sc,const SIGALG_LOOKUP * lu)2647 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2648 {
2649     int minversion, maxversion;
2650     int minproto, maxproto;
2651 
2652     if (!lu->available)
2653         return 0;
2654 
2655     if (SSL_CONNECTION_IS_DTLS(sc)) {
2656         if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2657             minproto = sc->min_proto_version;
2658             maxproto = sc->max_proto_version;
2659         } else {
2660             maxproto = minproto = sc->version;
2661         }
2662         minversion = lu->mindtls;
2663         maxversion = lu->maxdtls;
2664     } else {
2665         if (sc->ssl.method->version == TLS_ANY_VERSION) {
2666             minproto = sc->min_proto_version;
2667             maxproto = sc->max_proto_version;
2668         } else {
2669             maxproto = minproto = sc->version;
2670         }
2671         minversion = lu->mintls;
2672         maxversion = lu->maxtls;
2673     }
2674     if (minversion == -1 || maxversion == -1
2675         || (minversion != 0 && maxproto != 0
2676             && ssl_version_cmp(sc, minversion, maxproto) > 0)
2677         || (maxversion != 0 && minproto != 0
2678             && ssl_version_cmp(sc, maxversion, minproto) < 0)
2679         || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2680         return 0;
2681     return 1;
2682 }
2683 
2684 /*
2685  * Check signature algorithm is consistent with sent supported signature
2686  * algorithms and if so set relevant digest and signature scheme in
2687  * s.
2688  */
tls12_check_peer_sigalg(SSL_CONNECTION * s,uint16_t sig,EVP_PKEY * pkey)2689 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2690 {
2691     const uint16_t *sent_sigs;
2692     const EVP_MD *md = NULL;
2693     char sigalgstr[2];
2694     size_t sent_sigslen, i, cidx;
2695     int pkeyid = -1;
2696     const SIGALG_LOOKUP *lu;
2697     int secbits = 0;
2698 
2699     pkeyid = EVP_PKEY_get_id(pkey);
2700 
2701     if (SSL_CONNECTION_IS_TLS13(s)) {
2702         /* Disallow DSA for TLS 1.3 */
2703         if (pkeyid == EVP_PKEY_DSA) {
2704             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2705             return 0;
2706         }
2707         /* Only allow PSS for TLS 1.3 */
2708         if (pkeyid == EVP_PKEY_RSA)
2709             pkeyid = EVP_PKEY_RSA_PSS;
2710     }
2711 
2712     /* Is this code point available and compatible with the protocol */
2713     lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2714     if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2715         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2716         return 0;
2717     }
2718 
2719     /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2720     if (pkeyid == EVP_PKEY_KEYMGMT)
2721         pkeyid = lu->sig;
2722 
2723     /* Should never happen */
2724     if (pkeyid == -1) {
2725         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2726         return -1;
2727     }
2728 
2729     /*
2730      * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2731      * is consistent with signature: RSA keys can be used for RSA-PSS
2732      */
2733     if ((SSL_CONNECTION_IS_TLS13(s)
2734             && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2735         || (pkeyid != lu->sig
2736         && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2737         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2738         return 0;
2739     }
2740     /* Check the sigalg is consistent with the key OID */
2741     if (!ssl_cert_lookup_by_nid(
2742                  (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2743                  &cidx, SSL_CONNECTION_GET_CTX(s))
2744             || lu->sig_idx != (int)cidx) {
2745         SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2746         return 0;
2747     }
2748 
2749     if (pkeyid == EVP_PKEY_EC) {
2750 
2751         /* Check point compression is permitted */
2752         if (!tls1_check_pkey_comp(s, pkey)) {
2753             SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2754                      SSL_R_ILLEGAL_POINT_COMPRESSION);
2755             return 0;
2756         }
2757 
2758         /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2759         if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2760             int curve = ssl_get_EC_curve_nid(pkey);
2761 
2762             if (lu->curve != NID_undef && curve != lu->curve) {
2763                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2764                 return 0;
2765             }
2766         }
2767         if (!SSL_CONNECTION_IS_TLS13(s)) {
2768             /* Check curve matches extensions */
2769             if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2770                 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771                 return 0;
2772             }
2773             if (tls1_suiteb(s)) {
2774                 /* Check sigalg matches a permissible Suite B value */
2775                 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2776                     && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2777                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2778                              SSL_R_WRONG_SIGNATURE_TYPE);
2779                     return 0;
2780                 }
2781             }
2782         }
2783     } else if (tls1_suiteb(s)) {
2784         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2785         return 0;
2786     }
2787 
2788     /* Check signature matches a type we sent */
2789     sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2790     for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2791         if (sig == *sent_sigs)
2792             break;
2793     }
2794     /* Allow fallback to SHA1 if not strict mode */
2795     if (i == sent_sigslen && (lu->hash != NID_sha1
2796         || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798         return 0;
2799     }
2800     if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802         return 0;
2803     }
2804     /*
2805      * Make sure security callback allows algorithm. For historical
2806      * reasons we have to pass the sigalg as a two byte char array.
2807      */
2808     sigalgstr[0] = (sig >> 8) & 0xff;
2809     sigalgstr[1] = sig & 0xff;
2810     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811     if (secbits == 0 ||
2812         !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2813                       md != NULL ? EVP_MD_get_type(md) : NID_undef,
2814                       (void *)sigalgstr)) {
2815         SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2816         return 0;
2817     }
2818     /* Store the sigalg the peer uses */
2819     s->s3.tmp.peer_sigalg = lu;
2820     return 1;
2821 }
2822 
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)2823 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2824 {
2825     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2826 
2827     if (sc == NULL)
2828         return 0;
2829 
2830     if (sc->s3.tmp.peer_sigalg == NULL)
2831         return 0;
2832     *pnid = sc->s3.tmp.peer_sigalg->sig;
2833     return 1;
2834 }
2835 
SSL_get_signature_type_nid(const SSL * s,int * pnid)2836 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2837 {
2838     const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2839 
2840     if (sc == NULL)
2841         return 0;
2842 
2843     if (sc->s3.tmp.sigalg == NULL)
2844         return 0;
2845     *pnid = sc->s3.tmp.sigalg->sig;
2846     return 1;
2847 }
2848 
2849 /*
2850  * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2851  * supported, doesn't appear in supported signature algorithms, isn't supported
2852  * by the enabled protocol versions or by the security level.
2853  *
2854  * This function should only be used for checking which ciphers are supported
2855  * by the client.
2856  *
2857  * Call ssl_cipher_disabled() to check that it's enabled or not.
2858  */
ssl_set_client_disabled(SSL_CONNECTION * s)2859 int ssl_set_client_disabled(SSL_CONNECTION *s)
2860 {
2861     s->s3.tmp.mask_a = 0;
2862     s->s3.tmp.mask_k = 0;
2863     ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2864     if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2865                                 &s->s3.tmp.max_ver, NULL) != 0)
2866         return 0;
2867 #ifndef OPENSSL_NO_PSK
2868     /* with PSK there must be client callback set */
2869     if (!s->psk_client_callback) {
2870         s->s3.tmp.mask_a |= SSL_aPSK;
2871         s->s3.tmp.mask_k |= SSL_PSK;
2872     }
2873 #endif                          /* OPENSSL_NO_PSK */
2874 #ifndef OPENSSL_NO_SRP
2875     if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2876         s->s3.tmp.mask_a |= SSL_aSRP;
2877         s->s3.tmp.mask_k |= SSL_kSRP;
2878     }
2879 #endif
2880     return 1;
2881 }
2882 
2883 /*
2884  * ssl_cipher_disabled - check that a cipher is disabled or not
2885  * @s: SSL connection that you want to use the cipher on
2886  * @c: cipher to check
2887  * @op: Security check that you want to do
2888  * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2889  *
2890  * Returns 1 when it's disabled, 0 when enabled.
2891  */
ssl_cipher_disabled(const SSL_CONNECTION * s,const SSL_CIPHER * c,int op,int ecdhe)2892 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2893                         int op, int ecdhe)
2894 {
2895     int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2896     int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2897 
2898     if (c->algorithm_mkey & s->s3.tmp.mask_k
2899         || c->algorithm_auth & s->s3.tmp.mask_a)
2900         return 1;
2901     if (s->s3.tmp.max_ver == 0)
2902         return 1;
2903 
2904     if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2905         /* For QUIC, only allow these ciphersuites. */
2906         switch (SSL_CIPHER_get_id(c)) {
2907         case TLS1_3_CK_AES_128_GCM_SHA256:
2908         case TLS1_3_CK_AES_256_GCM_SHA384:
2909         case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2910             break;
2911         default:
2912             return 1;
2913         }
2914 
2915     /*
2916      * For historical reasons we will allow ECHDE to be selected by a server
2917      * in SSLv3 if we are a client
2918      */
2919     if (minversion == TLS1_VERSION
2920             && ecdhe
2921             && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2922         minversion = SSL3_VERSION;
2923 
2924     if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2925         || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2926         return 1;
2927 
2928     return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2929 }
2930 
tls_use_ticket(SSL_CONNECTION * s)2931 int tls_use_ticket(SSL_CONNECTION *s)
2932 {
2933     if ((s->options & SSL_OP_NO_TICKET))
2934         return 0;
2935     return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2936 }
2937 
tls1_set_server_sigalgs(SSL_CONNECTION * s)2938 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2939 {
2940     size_t i;
2941 
2942     /* Clear any shared signature algorithms */
2943     OPENSSL_free(s->shared_sigalgs);
2944     s->shared_sigalgs = NULL;
2945     s->shared_sigalgslen = 0;
2946 
2947     /* Clear certificate validity flags */
2948     if (s->s3.tmp.valid_flags)
2949         memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2950     else
2951         s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2952     if (s->s3.tmp.valid_flags == NULL)
2953         return 0;
2954     /*
2955      * If peer sent no signature algorithms check to see if we support
2956      * the default algorithm for each certificate type
2957      */
2958     if (s->s3.tmp.peer_cert_sigalgs == NULL
2959             && s->s3.tmp.peer_sigalgs == NULL) {
2960         const uint16_t *sent_sigs;
2961         size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2962 
2963         for (i = 0; i < s->ssl_pkey_num; i++) {
2964             const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2965             size_t j;
2966 
2967             if (lu == NULL)
2968                 continue;
2969             /* Check default matches a type we sent */
2970             for (j = 0; j < sent_sigslen; j++) {
2971                 if (lu->sigalg == sent_sigs[j]) {
2972                         s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2973                         break;
2974                 }
2975             }
2976         }
2977         return 1;
2978     }
2979 
2980     if (!tls1_process_sigalgs(s)) {
2981         SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2982         return 0;
2983     }
2984     if (s->shared_sigalgs != NULL)
2985         return 1;
2986 
2987     /* Fatal error if no shared signature algorithms */
2988     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2989              SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2990     return 0;
2991 }
2992 
2993 /*-
2994  * Gets the ticket information supplied by the client if any.
2995  *
2996  *   hello: The parsed ClientHello data
2997  *   ret: (output) on return, if a ticket was decrypted, then this is set to
2998  *       point to the resulting session.
2999  */
tls_get_ticket_from_client(SSL_CONNECTION * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)3000 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3001                                              CLIENTHELLO_MSG *hello,
3002                                              SSL_SESSION **ret)
3003 {
3004     size_t size;
3005     RAW_EXTENSION *ticketext;
3006 
3007     *ret = NULL;
3008     s->ext.ticket_expected = 0;
3009 
3010     /*
3011      * If tickets disabled or not supported by the protocol version
3012      * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3013      * resumption.
3014      */
3015     if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3016         return SSL_TICKET_NONE;
3017 
3018     ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3019     if (!ticketext->present)
3020         return SSL_TICKET_NONE;
3021 
3022     size = PACKET_remaining(&ticketext->data);
3023 
3024     return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3025                               hello->session_id, hello->session_id_len, ret);
3026 }
3027 
3028 /*-
3029  * tls_decrypt_ticket attempts to decrypt a session ticket.
3030  *
3031  * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3032  * expecting a pre-shared key ciphersuite, in which case we have no use for
3033  * session tickets and one will never be decrypted, nor will
3034  * s->ext.ticket_expected be set to 1.
3035  *
3036  * Side effects:
3037  *   Sets s->ext.ticket_expected to 1 if the server will have to issue
3038  *   a new session ticket to the client because the client indicated support
3039  *   (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3040  *   a session ticket or we couldn't use the one it gave us, or if
3041  *   s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3042  *   Otherwise, s->ext.ticket_expected is set to 0.
3043  *
3044  *   etick: points to the body of the session ticket extension.
3045  *   eticklen: the length of the session tickets extension.
3046  *   sess_id: points at the session ID.
3047  *   sesslen: the length of the session ID.
3048  *   psess: (output) on return, if a ticket was decrypted, then this is set to
3049  *       point to the resulting session.
3050  */
tls_decrypt_ticket(SSL_CONNECTION * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)3051 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3052                                      const unsigned char *etick,
3053                                      size_t eticklen,
3054                                      const unsigned char *sess_id,
3055                                      size_t sesslen, SSL_SESSION **psess)
3056 {
3057     SSL_SESSION *sess = NULL;
3058     unsigned char *sdec;
3059     const unsigned char *p;
3060     int slen, ivlen, renew_ticket = 0, declen;
3061     SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3062     size_t mlen;
3063     unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3064     SSL_HMAC *hctx = NULL;
3065     EVP_CIPHER_CTX *ctx = NULL;
3066     SSL_CTX *tctx = s->session_ctx;
3067     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3068 
3069     if (eticklen == 0) {
3070         /*
3071          * The client will accept a ticket but doesn't currently have
3072          * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3073          */
3074         ret = SSL_TICKET_EMPTY;
3075         goto end;
3076     }
3077     if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3078         /*
3079          * Indicate that the ticket couldn't be decrypted rather than
3080          * generating the session from ticket now, trigger
3081          * abbreviated handshake based on external mechanism to
3082          * calculate the master secret later.
3083          */
3084         ret = SSL_TICKET_NO_DECRYPT;
3085         goto end;
3086     }
3087 
3088     /* Need at least keyname + iv */
3089     if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3090         ret = SSL_TICKET_NO_DECRYPT;
3091         goto end;
3092     }
3093 
3094     /* Initialize session ticket encryption and HMAC contexts */
3095     hctx = ssl_hmac_new(tctx);
3096     if (hctx == NULL) {
3097         ret = SSL_TICKET_FATAL_ERR_MALLOC;
3098         goto end;
3099     }
3100     ctx = EVP_CIPHER_CTX_new();
3101     if (ctx == NULL) {
3102         ret = SSL_TICKET_FATAL_ERR_MALLOC;
3103         goto end;
3104     }
3105 #ifndef OPENSSL_NO_DEPRECATED_3_0
3106     if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3107 #else
3108     if (tctx->ext.ticket_key_evp_cb != NULL)
3109 #endif
3110     {
3111         unsigned char *nctick = (unsigned char *)etick;
3112         int rv = 0;
3113 
3114         if (tctx->ext.ticket_key_evp_cb != NULL)
3115             rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3116                                              nctick,
3117                                              nctick + TLSEXT_KEYNAME_LENGTH,
3118                                              ctx,
3119                                              ssl_hmac_get0_EVP_MAC_CTX(hctx),
3120                                              0);
3121 #ifndef OPENSSL_NO_DEPRECATED_3_0
3122         else if (tctx->ext.ticket_key_cb != NULL)
3123             /* if 0 is returned, write an empty ticket */
3124             rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3125                                          nctick + TLSEXT_KEYNAME_LENGTH,
3126                                          ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3127 #endif
3128         if (rv < 0) {
3129             ret = SSL_TICKET_FATAL_ERR_OTHER;
3130             goto end;
3131         }
3132         if (rv == 0) {
3133             ret = SSL_TICKET_NO_DECRYPT;
3134             goto end;
3135         }
3136         if (rv == 2)
3137             renew_ticket = 1;
3138     } else {
3139         EVP_CIPHER *aes256cbc = NULL;
3140 
3141         /* Check key name matches */
3142         if (memcmp(etick, tctx->ext.tick_key_name,
3143                    TLSEXT_KEYNAME_LENGTH) != 0) {
3144             ret = SSL_TICKET_NO_DECRYPT;
3145             goto end;
3146         }
3147 
3148         aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3149                                      sctx->propq);
3150         if (aes256cbc == NULL
3151             || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3152                              sizeof(tctx->ext.secure->tick_hmac_key),
3153                              "SHA256") <= 0
3154             || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155                                   tctx->ext.secure->tick_aes_key,
3156                                   etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3157             EVP_CIPHER_free(aes256cbc);
3158             ret = SSL_TICKET_FATAL_ERR_OTHER;
3159             goto end;
3160         }
3161         EVP_CIPHER_free(aes256cbc);
3162         if (SSL_CONNECTION_IS_TLS13(s))
3163             renew_ticket = 1;
3164     }
3165     /*
3166      * Attempt to process session ticket, first conduct sanity and integrity
3167      * checks on ticket.
3168      */
3169     mlen = ssl_hmac_size(hctx);
3170     if (mlen == 0) {
3171         ret = SSL_TICKET_FATAL_ERR_OTHER;
3172         goto end;
3173     }
3174 
3175     ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3176     if (ivlen < 0) {
3177         ret = SSL_TICKET_FATAL_ERR_OTHER;
3178         goto end;
3179     }
3180 
3181     /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3182     if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3183         ret = SSL_TICKET_NO_DECRYPT;
3184         goto end;
3185     }
3186     eticklen -= mlen;
3187     /* Check HMAC of encrypted ticket */
3188     if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3189         || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3190         ret = SSL_TICKET_FATAL_ERR_OTHER;
3191         goto end;
3192     }
3193 
3194     if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3195         ret = SSL_TICKET_NO_DECRYPT;
3196         goto end;
3197     }
3198     /* Attempt to decrypt session data */
3199     /* Move p after IV to start of encrypted ticket, update length */
3200     p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3201     eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3202     sdec = OPENSSL_malloc(eticklen);
3203     if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3204                                           (int)eticklen) <= 0) {
3205         OPENSSL_free(sdec);
3206         ret = SSL_TICKET_FATAL_ERR_OTHER;
3207         goto end;
3208     }
3209     if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210         OPENSSL_free(sdec);
3211         ret = SSL_TICKET_NO_DECRYPT;
3212         goto end;
3213     }
3214     slen += declen;
3215     p = sdec;
3216 
3217     sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218     slen -= p - sdec;
3219     OPENSSL_free(sdec);
3220     if (sess) {
3221         /* Some additional consistency checks */
3222         if (slen != 0) {
3223             SSL_SESSION_free(sess);
3224             sess = NULL;
3225             ret = SSL_TICKET_NO_DECRYPT;
3226             goto end;
3227         }
3228         /*
3229          * The session ID, if non-empty, is used by some clients to detect
3230          * that the ticket has been accepted. So we copy it to the session
3231          * structure. If it is empty set length to zero as required by
3232          * standard.
3233          */
3234         if (sesslen) {
3235             memcpy(sess->session_id, sess_id, sesslen);
3236             sess->session_id_length = sesslen;
3237         }
3238         if (renew_ticket)
3239             ret = SSL_TICKET_SUCCESS_RENEW;
3240         else
3241             ret = SSL_TICKET_SUCCESS;
3242         goto end;
3243     }
3244     ERR_clear_error();
3245     /*
3246      * For session parse failure, indicate that we need to send a new ticket.
3247      */
3248     ret = SSL_TICKET_NO_DECRYPT;
3249 
3250  end:
3251     EVP_CIPHER_CTX_free(ctx);
3252     ssl_hmac_free(hctx);
3253 
3254     /*
3255      * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256      * detected above. The callback is responsible for checking |ret| before it
3257      * performs any action
3258      */
3259     if (s->session_ctx->decrypt_ticket_cb != NULL
3260             && (ret == SSL_TICKET_EMPTY
3261                 || ret == SSL_TICKET_NO_DECRYPT
3262                 || ret == SSL_TICKET_SUCCESS
3263                 || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264         size_t keyname_len = eticklen;
3265         int retcb;
3266 
3267         if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268             keyname_len = TLSEXT_KEYNAME_LENGTH;
3269         retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270                                                   sess, etick, keyname_len,
3271                                                   ret,
3272                                                   s->session_ctx->ticket_cb_data);
3273         switch (retcb) {
3274         case SSL_TICKET_RETURN_ABORT:
3275             ret = SSL_TICKET_FATAL_ERR_OTHER;
3276             break;
3277 
3278         case SSL_TICKET_RETURN_IGNORE:
3279             ret = SSL_TICKET_NONE;
3280             SSL_SESSION_free(sess);
3281             sess = NULL;
3282             break;
3283 
3284         case SSL_TICKET_RETURN_IGNORE_RENEW:
3285             if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286                 ret = SSL_TICKET_NO_DECRYPT;
3287             /* else the value of |ret| will already do the right thing */
3288             SSL_SESSION_free(sess);
3289             sess = NULL;
3290             break;
3291 
3292         case SSL_TICKET_RETURN_USE:
3293         case SSL_TICKET_RETURN_USE_RENEW:
3294             if (ret != SSL_TICKET_SUCCESS
3295                     && ret != SSL_TICKET_SUCCESS_RENEW)
3296                 ret = SSL_TICKET_FATAL_ERR_OTHER;
3297             else if (retcb == SSL_TICKET_RETURN_USE)
3298                 ret = SSL_TICKET_SUCCESS;
3299             else
3300                 ret = SSL_TICKET_SUCCESS_RENEW;
3301             break;
3302 
3303         default:
3304             ret = SSL_TICKET_FATAL_ERR_OTHER;
3305         }
3306     }
3307 
3308     if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309         switch (ret) {
3310         case SSL_TICKET_NO_DECRYPT:
3311         case SSL_TICKET_SUCCESS_RENEW:
3312         case SSL_TICKET_EMPTY:
3313             s->ext.ticket_expected = 1;
3314         }
3315     }
3316 
3317     *psess = sess;
3318 
3319     return ret;
3320 }
3321 
3322 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL_CONNECTION * s,int op,const SIGALG_LOOKUP * lu)3323 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324                                 const SIGALG_LOOKUP *lu)
3325 {
3326     unsigned char sigalgstr[2];
3327     int secbits;
3328 
3329     if (lu == NULL || !lu->available)
3330         return 0;
3331     /* DSA is not allowed in TLS 1.3 */
3332     if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333         return 0;
3334     /*
3335      * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336      * spec
3337      */
3338     if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339         && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340         && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341             || lu->hash_idx == SSL_MD_MD5_IDX
3342             || lu->hash_idx == SSL_MD_SHA224_IDX))
3343         return 0;
3344 
3345     /* See if public key algorithm allowed */
3346     if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347         return 0;
3348 
3349     if (lu->sig == NID_id_GostR3410_2012_256
3350             || lu->sig == NID_id_GostR3410_2012_512
3351             || lu->sig == NID_id_GostR3410_2001) {
3352         /* We never allow GOST sig algs on the server with TLSv1.3 */
3353         if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354             return 0;
3355         if (!s->server
3356                 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357                 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358             int i, num;
3359             STACK_OF(SSL_CIPHER) *sk;
3360 
3361             /*
3362              * We're a client that could negotiate TLSv1.3. We only allow GOST
3363              * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364              * ciphersuites enabled.
3365              */
3366 
3367             if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368                 return 0;
3369 
3370             sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371             num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372             for (i = 0; i < num; i++) {
3373                 const SSL_CIPHER *c;
3374 
3375                 c = sk_SSL_CIPHER_value(sk, i);
3376                 /* Skip disabled ciphers */
3377                 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378                     continue;
3379 
3380                 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381                     break;
3382             }
3383             if (i == num)
3384                 return 0;
3385         }
3386     }
3387 
3388     /* Finally see if security callback allows it */
3389     secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390     sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391     sigalgstr[1] = lu->sigalg & 0xff;
3392     return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393 }
3394 
3395 /*
3396  * Get a mask of disabled public key algorithms based on supported signature
3397  * algorithms. For example if no signature algorithm supports RSA then RSA is
3398  * disabled.
3399  */
3400 
ssl_set_sig_mask(uint32_t * pmask_a,SSL_CONNECTION * s,int op)3401 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402 {
3403     const uint16_t *sigalgs;
3404     size_t i, sigalgslen;
3405     uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406     /*
3407      * Go through all signature algorithms seeing if we support any
3408      * in disabled_mask.
3409      */
3410     sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411     for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412         const SIGALG_LOOKUP *lu =
3413             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3414         const SSL_CERT_LOOKUP *clu;
3415 
3416         if (lu == NULL)
3417             continue;
3418 
3419         clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3420                                      SSL_CONNECTION_GET_CTX(s));
3421         if (clu == NULL)
3422                 continue;
3423 
3424         /* If algorithm is disabled see if we can enable it */
3425         if ((clu->amask & disabled_mask) != 0
3426                 && tls12_sigalg_allowed(s, op, lu))
3427             disabled_mask &= ~clu->amask;
3428     }
3429     *pmask_a |= disabled_mask;
3430 }
3431 
tls12_copy_sigalgs(SSL_CONNECTION * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)3432 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3433                        const uint16_t *psig, size_t psiglen)
3434 {
3435     size_t i;
3436     int rv = 0;
3437 
3438     for (i = 0; i < psiglen; i++, psig++) {
3439         const SIGALG_LOOKUP *lu =
3440             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3441 
3442         if (lu == NULL || !tls_sigalg_compat(s, lu))
3443             continue;
3444         if (!WPACKET_put_bytes_u16(pkt, *psig))
3445             return 0;
3446         /*
3447          * If TLS 1.3 must have at least one valid TLS 1.3 message
3448          * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3449          */
3450         if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3451             || (lu->sig != EVP_PKEY_RSA
3452                 && lu->hash != NID_sha1
3453                 && lu->hash != NID_sha224)))
3454             rv = 1;
3455     }
3456     if (rv == 0)
3457         ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3458     return rv;
3459 }
3460 
3461 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL_CONNECTION * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)3462 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3463                                    const SIGALG_LOOKUP **shsig,
3464                                    const uint16_t *pref, size_t preflen,
3465                                    const uint16_t *allow, size_t allowlen)
3466 {
3467     const uint16_t *ptmp, *atmp;
3468     size_t i, j, nmatch = 0;
3469     for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3470         const SIGALG_LOOKUP *lu =
3471             tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3472 
3473         /* Skip disabled hashes or signature algorithms */
3474         if (lu == NULL
3475                 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3476             continue;
3477         for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3478             if (*ptmp == *atmp) {
3479                 nmatch++;
3480                 if (shsig)
3481                     *shsig++ = lu;
3482                 break;
3483             }
3484         }
3485     }
3486     return nmatch;
3487 }
3488 
3489 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL_CONNECTION * s)3490 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3491 {
3492     const uint16_t *pref, *allow, *conf;
3493     size_t preflen, allowlen, conflen;
3494     size_t nmatch;
3495     const SIGALG_LOOKUP **salgs = NULL;
3496     CERT *c = s->cert;
3497     unsigned int is_suiteb = tls1_suiteb(s);
3498 
3499     OPENSSL_free(s->shared_sigalgs);
3500     s->shared_sigalgs = NULL;
3501     s->shared_sigalgslen = 0;
3502     /* If client use client signature algorithms if not NULL */
3503     if (!s->server && c->client_sigalgs && !is_suiteb) {
3504         conf = c->client_sigalgs;
3505         conflen = c->client_sigalgslen;
3506     } else if (c->conf_sigalgs && !is_suiteb) {
3507         conf = c->conf_sigalgs;
3508         conflen = c->conf_sigalgslen;
3509     } else
3510         conflen = tls12_get_psigalgs(s, 0, &conf);
3511     if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3512         pref = conf;
3513         preflen = conflen;
3514         allow = s->s3.tmp.peer_sigalgs;
3515         allowlen = s->s3.tmp.peer_sigalgslen;
3516     } else {
3517         allow = conf;
3518         allowlen = conflen;
3519         pref = s->s3.tmp.peer_sigalgs;
3520         preflen = s->s3.tmp.peer_sigalgslen;
3521     }
3522     nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3523     if (nmatch) {
3524         if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3525             return 0;
3526         nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3527     } else {
3528         salgs = NULL;
3529     }
3530     s->shared_sigalgs = salgs;
3531     s->shared_sigalgslen = nmatch;
3532     return 1;
3533 }
3534 
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)3535 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3536 {
3537     unsigned int stmp;
3538     size_t size, i;
3539     uint16_t *buf;
3540 
3541     size = PACKET_remaining(pkt);
3542 
3543     /* Invalid data length */
3544     if (size == 0 || (size & 1) != 0)
3545         return 0;
3546 
3547     size >>= 1;
3548 
3549     if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3550         return 0;
3551     for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3552         buf[i] = stmp;
3553 
3554     if (i != size) {
3555         OPENSSL_free(buf);
3556         return 0;
3557     }
3558 
3559     OPENSSL_free(*pdest);
3560     *pdest = buf;
3561     *pdestlen = size;
3562 
3563     return 1;
3564 }
3565 
tls1_save_sigalgs(SSL_CONNECTION * s,PACKET * pkt,int cert)3566 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3567 {
3568     /* Extension ignored for inappropriate versions */
3569     if (!SSL_USE_SIGALGS(s))
3570         return 1;
3571     /* Should never happen */
3572     if (s->cert == NULL)
3573         return 0;
3574 
3575     if (cert)
3576         return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3577                              &s->s3.tmp.peer_cert_sigalgslen);
3578     else
3579         return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3580                              &s->s3.tmp.peer_sigalgslen);
3581 
3582 }
3583 
3584 /* Set preferred digest for each key type */
3585 
tls1_process_sigalgs(SSL_CONNECTION * s)3586 int tls1_process_sigalgs(SSL_CONNECTION *s)
3587 {
3588     size_t i;
3589     uint32_t *pvalid = s->s3.tmp.valid_flags;
3590 
3591     if (!tls1_set_shared_sigalgs(s))
3592         return 0;
3593 
3594     for (i = 0; i < s->ssl_pkey_num; i++)
3595         pvalid[i] = 0;
3596 
3597     for (i = 0; i < s->shared_sigalgslen; i++) {
3598         const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3599         int idx = sigptr->sig_idx;
3600 
3601         /* Ignore PKCS1 based sig algs in TLSv1.3 */
3602         if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3603             continue;
3604         /* If not disabled indicate we can explicitly sign */
3605         if (pvalid[idx] == 0
3606             && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3607             pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3608     }
3609     return 1;
3610 }
3611 
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3612 int SSL_get_sigalgs(SSL *s, int idx,
3613                     int *psign, int *phash, int *psignhash,
3614                     unsigned char *rsig, unsigned char *rhash)
3615 {
3616     uint16_t *psig;
3617     size_t numsigalgs;
3618     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3619 
3620     if (sc == NULL)
3621         return 0;
3622 
3623     psig = sc->s3.tmp.peer_sigalgs;
3624     numsigalgs = sc->s3.tmp.peer_sigalgslen;
3625 
3626     if (psig == NULL || numsigalgs > INT_MAX)
3627         return 0;
3628     if (idx >= 0) {
3629         const SIGALG_LOOKUP *lu;
3630 
3631         if (idx >= (int)numsigalgs)
3632             return 0;
3633         psig += idx;
3634         if (rhash != NULL)
3635             *rhash = (unsigned char)((*psig >> 8) & 0xff);
3636         if (rsig != NULL)
3637             *rsig = (unsigned char)(*psig & 0xff);
3638         lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3639         if (psign != NULL)
3640             *psign = lu != NULL ? lu->sig : NID_undef;
3641         if (phash != NULL)
3642             *phash = lu != NULL ? lu->hash : NID_undef;
3643         if (psignhash != NULL)
3644             *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3645     }
3646     return (int)numsigalgs;
3647 }
3648 
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3649 int SSL_get_shared_sigalgs(SSL *s, int idx,
3650                            int *psign, int *phash, int *psignhash,
3651                            unsigned char *rsig, unsigned char *rhash)
3652 {
3653     const SIGALG_LOOKUP *shsigalgs;
3654     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3655 
3656     if (sc == NULL)
3657         return 0;
3658 
3659     if (sc->shared_sigalgs == NULL
3660         || idx < 0
3661         || idx >= (int)sc->shared_sigalgslen
3662         || sc->shared_sigalgslen > INT_MAX)
3663         return 0;
3664     shsigalgs = sc->shared_sigalgs[idx];
3665     if (phash != NULL)
3666         *phash = shsigalgs->hash;
3667     if (psign != NULL)
3668         *psign = shsigalgs->sig;
3669     if (psignhash != NULL)
3670         *psignhash = shsigalgs->sigandhash;
3671     if (rsig != NULL)
3672         *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3673     if (rhash != NULL)
3674         *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3675     return (int)sc->shared_sigalgslen;
3676 }
3677 
3678 /* Maximum possible number of unique entries in sigalgs array */
3679 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3680 
3681 typedef struct {
3682     size_t sigalgcnt;
3683     /* TLSEXT_SIGALG_XXX values */
3684     uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3685     SSL_CTX *ctx;
3686 } sig_cb_st;
3687 
get_sigorhash(int * psig,int * phash,const char * str)3688 static void get_sigorhash(int *psig, int *phash, const char *str)
3689 {
3690     if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3691         *psig = EVP_PKEY_RSA;
3692     } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3693                || OPENSSL_strcasecmp(str, "PSS") == 0) {
3694         *psig = EVP_PKEY_RSA_PSS;
3695     } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3696         *psig = EVP_PKEY_DSA;
3697     } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3698         *psig = EVP_PKEY_EC;
3699     } else {
3700         *phash = OBJ_sn2nid(str);
3701         if (*phash == NID_undef)
3702             *phash = OBJ_ln2nid(str);
3703     }
3704 }
3705 /* Maximum length of a signature algorithm string component */
3706 #define TLS_MAX_SIGSTRING_LEN   40
3707 
sig_cb(const char * elem,int len,void * arg)3708 static int sig_cb(const char *elem, int len, void *arg)
3709 {
3710     sig_cb_st *sarg = arg;
3711     size_t i = 0;
3712     const SIGALG_LOOKUP *s;
3713     char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3714     const char *iana, *alias;
3715     int sig_alg = NID_undef, hash_alg = NID_undef;
3716     int ignore_unknown = 0;
3717 
3718     if (elem == NULL)
3719         return 0;
3720     if (elem[0] == '?') {
3721         ignore_unknown = 1;
3722         ++elem;
3723         --len;
3724     }
3725     if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3726         return 0;
3727     if (len > (int)(sizeof(etmp) - 1))
3728         return 0;
3729     memcpy(etmp, elem, len);
3730     etmp[len] = 0;
3731     p = strchr(etmp, '+');
3732     /*
3733      * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3734      * if there's no '+' in the provided name, look for the new-style combined
3735      * name.  If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3736      * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3737      * rsa_pss_rsae_* that differ only by public key OID; in such cases
3738      * we will pick the _rsae_ variant, by virtue of them appearing earlier
3739      * in the table.
3740      */
3741     if (p == NULL) {
3742         if (sarg->ctx != NULL) {
3743             for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3744                 iana = sarg->ctx->sigalg_lookup_cache[i].name;
3745                 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3746                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3747                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
3748                     /* Ignore known, but unavailable sigalgs. */
3749                     if (!sarg->ctx->sigalg_lookup_cache[i].available)
3750                         return 1;
3751                     sarg->sigalgs[sarg->sigalgcnt++] =
3752                         sarg->ctx->sigalg_lookup_cache[i].sigalg;
3753                     goto found;
3754                 }
3755             }
3756         } else {
3757             /* Syntax checks use the built-in sigalgs */
3758             for (i = 0, s = sigalg_lookup_tbl;
3759                  i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3760                 iana = s->name;
3761                 alias = s->name12;
3762                 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3763                     || OPENSSL_strcasecmp(etmp, iana) == 0) {
3764                     sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3765                     goto found;
3766                 }
3767             }
3768         }
3769     } else {
3770         *p = 0;
3771         p++;
3772         if (*p == 0)
3773             return 0;
3774         get_sigorhash(&sig_alg, &hash_alg, etmp);
3775         get_sigorhash(&sig_alg, &hash_alg, p);
3776         if (sig_alg != NID_undef && hash_alg != NID_undef) {
3777             if (sarg->ctx != NULL) {
3778                 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3779                     s = &sarg->ctx->sigalg_lookup_cache[i];
3780                     if (s->hash == hash_alg && s->sig == sig_alg) {
3781                         /* Ignore known, but unavailable sigalgs. */
3782                         if (!sarg->ctx->sigalg_lookup_cache[i].available)
3783                             return 1;
3784                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785                         goto found;
3786                     }
3787                 }
3788             } else {
3789                 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3790                     s = &sigalg_lookup_tbl[i];
3791                     if (s->hash == hash_alg && s->sig == sig_alg) {
3792                         sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3793                         goto found;
3794                     }
3795                 }
3796             }
3797         }
3798     }
3799     /* Ignore unknown algorithms if ignore_unknown */
3800     return ignore_unknown;
3801 
3802  found:
3803     /* Ignore duplicates */
3804     for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3805         if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3806             sarg->sigalgcnt--;
3807             return 1;
3808         }
3809     }
3810     return 1;
3811 }
3812 
3813 /*
3814  * Set supported signature algorithms based on a colon separated list of the
3815  * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3816  */
tls1_set_sigalgs_list(SSL_CTX * ctx,CERT * c,const char * str,int client)3817 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3818 {
3819     sig_cb_st sig;
3820     sig.sigalgcnt = 0;
3821 
3822     if (ctx != NULL)
3823         sig.ctx = ctx;
3824     if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3825         return 0;
3826     if (sig.sigalgcnt == 0) {
3827         ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3828                        "No valid signature algorithms in '%s'", str);
3829         return 0;
3830     }
3831     if (c == NULL)
3832         return 1;
3833     return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3834 }
3835 
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)3836 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3837                      int client)
3838 {
3839     uint16_t *sigalgs;
3840 
3841     if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3842         return 0;
3843     memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3844 
3845     if (client) {
3846         OPENSSL_free(c->client_sigalgs);
3847         c->client_sigalgs = sigalgs;
3848         c->client_sigalgslen = salglen;
3849     } else {
3850         OPENSSL_free(c->conf_sigalgs);
3851         c->conf_sigalgs = sigalgs;
3852         c->conf_sigalgslen = salglen;
3853     }
3854 
3855     return 1;
3856 }
3857 
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)3858 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3859 {
3860     uint16_t *sigalgs, *sptr;
3861     size_t i;
3862 
3863     if (salglen & 1)
3864         return 0;
3865     if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3866         return 0;
3867     for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3868         size_t j;
3869         const SIGALG_LOOKUP *curr;
3870         int md_id = *psig_nids++;
3871         int sig_id = *psig_nids++;
3872 
3873         for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3874              j++, curr++) {
3875             if (curr->hash == md_id && curr->sig == sig_id) {
3876                 *sptr++ = curr->sigalg;
3877                 break;
3878             }
3879         }
3880 
3881         if (j == OSSL_NELEM(sigalg_lookup_tbl))
3882             goto err;
3883     }
3884 
3885     if (client) {
3886         OPENSSL_free(c->client_sigalgs);
3887         c->client_sigalgs = sigalgs;
3888         c->client_sigalgslen = salglen / 2;
3889     } else {
3890         OPENSSL_free(c->conf_sigalgs);
3891         c->conf_sigalgs = sigalgs;
3892         c->conf_sigalgslen = salglen / 2;
3893     }
3894 
3895     return 1;
3896 
3897  err:
3898     OPENSSL_free(sigalgs);
3899     return 0;
3900 }
3901 
tls1_check_sig_alg(SSL_CONNECTION * s,X509 * x,int default_nid)3902 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3903 {
3904     int sig_nid, use_pc_sigalgs = 0;
3905     size_t i;
3906     const SIGALG_LOOKUP *sigalg;
3907     size_t sigalgslen;
3908 
3909     /*-
3910      * RFC 8446, section 4.2.3:
3911      *
3912      * The signatures on certificates that are self-signed or certificates
3913      * that are trust anchors are not validated, since they begin a
3914      * certification path (see [RFC5280], Section 3.2).  A certificate that
3915      * begins a certification path MAY use a signature algorithm that is not
3916      * advertised as being supported in the "signature_algorithms"
3917      * extension.
3918      */
3919     if (default_nid == -1 || X509_self_signed(x, 0))
3920         return 1;
3921     sig_nid = X509_get_signature_nid(x);
3922     if (default_nid)
3923         return sig_nid == default_nid ? 1 : 0;
3924 
3925     if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3926         /*
3927          * If we're in TLSv1.3 then we only get here if we're checking the
3928          * chain. If the peer has specified peer_cert_sigalgs then we use them
3929          * otherwise we default to normal sigalgs.
3930          */
3931         sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3932         use_pc_sigalgs = 1;
3933     } else {
3934         sigalgslen = s->shared_sigalgslen;
3935     }
3936     for (i = 0; i < sigalgslen; i++) {
3937         int mdnid, pknid;
3938 
3939         sigalg = use_pc_sigalgs
3940                  ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3941                                       s->s3.tmp.peer_cert_sigalgs[i])
3942                  : s->shared_sigalgs[i];
3943         if (sigalg == NULL)
3944             continue;
3945         if (sig_nid == sigalg->sigandhash)
3946             return 1;
3947         if (sigalg->sig != EVP_PKEY_RSA_PSS)
3948             continue;
3949         /*
3950          * Accept RSA PKCS#1 signatures in certificates when the signature
3951          * algorithms include RSA-PSS with a matching digest algorithm.
3952          *
3953          * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3954          * points, and we're doing strict checking of the certificate chain (in
3955          * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3956          * certificates in the chain, but the TLS requirement on PSS should not
3957          * extend to certificates.  Though the peer can in fact list the legacy
3958          * sigalgs for just this purpose, it is not likely that a better chain
3959          * signed with RSA-PSS is available.
3960          */
3961         if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3962             continue;
3963         if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3964             return 1;
3965     }
3966     return 0;
3967 }
3968 
3969 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)3970 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3971 {
3972     const X509_NAME *nm;
3973     int i;
3974     nm = X509_get_issuer_name(x);
3975     for (i = 0; i < sk_X509_NAME_num(names); i++) {
3976         if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3977             return 1;
3978     }
3979     return 0;
3980 }
3981 
3982 /*
3983  * Check certificate chain is consistent with TLS extensions and is usable by
3984  * server. This servers two purposes: it allows users to check chains before
3985  * passing them to the server and it allows the server to check chains before
3986  * attempting to use them.
3987  */
3988 
3989 /* Flags which need to be set for a certificate when strict mode not set */
3990 
3991 #define CERT_PKEY_VALID_FLAGS \
3992         (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3993 /* Strict mode flags */
3994 #define CERT_PKEY_STRICT_FLAGS \
3995          (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3996          | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3997 
tls1_check_chain(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)3998 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3999                      STACK_OF(X509) *chain, int idx)
4000 {
4001     int i;
4002     int rv = 0;
4003     int check_flags = 0, strict_mode;
4004     CERT_PKEY *cpk = NULL;
4005     CERT *c = s->cert;
4006     uint32_t *pvalid;
4007     unsigned int suiteb_flags = tls1_suiteb(s);
4008 
4009     /*
4010      * Meaning of idx:
4011      * idx == -1 means SSL_check_chain() invocation
4012      * idx == -2 means checking client certificate chains
4013      * idx >= 0 means checking SSL_PKEY index
4014      *
4015      * For RPK, where there may be no cert, we ignore -1
4016      */
4017     if (idx != -1) {
4018         if (idx == -2) {
4019             cpk = c->key;
4020             idx = (int)(cpk - c->pkeys);
4021         } else
4022             cpk = c->pkeys + idx;
4023         pvalid = s->s3.tmp.valid_flags + idx;
4024         x = cpk->x509;
4025         pk = cpk->privatekey;
4026         chain = cpk->chain;
4027         strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4028         if (tls12_rpk_and_privkey(s, idx)) {
4029             if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4030                 return 0;
4031             *pvalid = rv = CERT_PKEY_RPK;
4032             return rv;
4033         }
4034         /* If no cert or key, forget it */
4035         if (x == NULL || pk == NULL)
4036             goto end;
4037     } else {
4038         size_t certidx;
4039 
4040         if (x == NULL || pk == NULL)
4041             return 0;
4042 
4043         if (ssl_cert_lookup_by_pkey(pk, &certidx,
4044                                     SSL_CONNECTION_GET_CTX(s)) == NULL)
4045             return 0;
4046         idx = certidx;
4047         pvalid = s->s3.tmp.valid_flags + idx;
4048 
4049         if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4050             check_flags = CERT_PKEY_STRICT_FLAGS;
4051         else
4052             check_flags = CERT_PKEY_VALID_FLAGS;
4053         strict_mode = 1;
4054     }
4055 
4056     if (suiteb_flags) {
4057         int ok;
4058         if (check_flags)
4059             check_flags |= CERT_PKEY_SUITEB;
4060         ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4061         if (ok == X509_V_OK)
4062             rv |= CERT_PKEY_SUITEB;
4063         else if (!check_flags)
4064             goto end;
4065     }
4066 
4067     /*
4068      * Check all signature algorithms are consistent with signature
4069      * algorithms extension if TLS 1.2 or later and strict mode.
4070      */
4071     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4072         && strict_mode) {
4073         int default_nid;
4074         int rsign = 0;
4075 
4076         if (s->s3.tmp.peer_cert_sigalgs != NULL
4077                 || s->s3.tmp.peer_sigalgs != NULL) {
4078             default_nid = 0;
4079         /* If no sigalgs extension use defaults from RFC5246 */
4080         } else {
4081             switch (idx) {
4082             case SSL_PKEY_RSA:
4083                 rsign = EVP_PKEY_RSA;
4084                 default_nid = NID_sha1WithRSAEncryption;
4085                 break;
4086 
4087             case SSL_PKEY_DSA_SIGN:
4088                 rsign = EVP_PKEY_DSA;
4089                 default_nid = NID_dsaWithSHA1;
4090                 break;
4091 
4092             case SSL_PKEY_ECC:
4093                 rsign = EVP_PKEY_EC;
4094                 default_nid = NID_ecdsa_with_SHA1;
4095                 break;
4096 
4097             case SSL_PKEY_GOST01:
4098                 rsign = NID_id_GostR3410_2001;
4099                 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4100                 break;
4101 
4102             case SSL_PKEY_GOST12_256:
4103                 rsign = NID_id_GostR3410_2012_256;
4104                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4105                 break;
4106 
4107             case SSL_PKEY_GOST12_512:
4108                 rsign = NID_id_GostR3410_2012_512;
4109                 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4110                 break;
4111 
4112             default:
4113                 default_nid = -1;
4114                 break;
4115             }
4116         }
4117         /*
4118          * If peer sent no signature algorithms extension and we have set
4119          * preferred signature algorithms check we support sha1.
4120          */
4121         if (default_nid > 0 && c->conf_sigalgs) {
4122             size_t j;
4123             const uint16_t *p = c->conf_sigalgs;
4124             for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4125                 const SIGALG_LOOKUP *lu =
4126                     tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4127 
4128                 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4129                     break;
4130             }
4131             if (j == c->conf_sigalgslen) {
4132                 if (check_flags)
4133                     goto skip_sigs;
4134                 else
4135                     goto end;
4136             }
4137         }
4138         /* Check signature algorithm of each cert in chain */
4139         if (SSL_CONNECTION_IS_TLS13(s)) {
4140             /*
4141              * We only get here if the application has called SSL_check_chain(),
4142              * so check_flags is always set.
4143              */
4144             if (find_sig_alg(s, x, pk) != NULL)
4145                 rv |= CERT_PKEY_EE_SIGNATURE;
4146         } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4147             if (!check_flags)
4148                 goto end;
4149         } else
4150             rv |= CERT_PKEY_EE_SIGNATURE;
4151         rv |= CERT_PKEY_CA_SIGNATURE;
4152         for (i = 0; i < sk_X509_num(chain); i++) {
4153             if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4154                 if (check_flags) {
4155                     rv &= ~CERT_PKEY_CA_SIGNATURE;
4156                     break;
4157                 } else
4158                     goto end;
4159             }
4160         }
4161     }
4162     /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4163     else if (check_flags)
4164         rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4165  skip_sigs:
4166     /* Check cert parameters are consistent */
4167     if (tls1_check_cert_param(s, x, 1))
4168         rv |= CERT_PKEY_EE_PARAM;
4169     else if (!check_flags)
4170         goto end;
4171     if (!s->server)
4172         rv |= CERT_PKEY_CA_PARAM;
4173     /* In strict mode check rest of chain too */
4174     else if (strict_mode) {
4175         rv |= CERT_PKEY_CA_PARAM;
4176         for (i = 0; i < sk_X509_num(chain); i++) {
4177             X509 *ca = sk_X509_value(chain, i);
4178             if (!tls1_check_cert_param(s, ca, 0)) {
4179                 if (check_flags) {
4180                     rv &= ~CERT_PKEY_CA_PARAM;
4181                     break;
4182                 } else
4183                     goto end;
4184             }
4185         }
4186     }
4187     if (!s->server && strict_mode) {
4188         STACK_OF(X509_NAME) *ca_dn;
4189         int check_type = 0;
4190 
4191         if (EVP_PKEY_is_a(pk, "RSA"))
4192             check_type = TLS_CT_RSA_SIGN;
4193         else if (EVP_PKEY_is_a(pk, "DSA"))
4194             check_type = TLS_CT_DSS_SIGN;
4195         else if (EVP_PKEY_is_a(pk, "EC"))
4196             check_type = TLS_CT_ECDSA_SIGN;
4197 
4198         if (check_type) {
4199             const uint8_t *ctypes = s->s3.tmp.ctype;
4200             size_t j;
4201 
4202             for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4203                 if (*ctypes == check_type) {
4204                     rv |= CERT_PKEY_CERT_TYPE;
4205                     break;
4206                 }
4207             }
4208             if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4209                 goto end;
4210         } else {
4211             rv |= CERT_PKEY_CERT_TYPE;
4212         }
4213 
4214         ca_dn = s->s3.tmp.peer_ca_names;
4215 
4216         if (ca_dn == NULL
4217             || sk_X509_NAME_num(ca_dn) == 0
4218             || ssl_check_ca_name(ca_dn, x))
4219             rv |= CERT_PKEY_ISSUER_NAME;
4220         else
4221             for (i = 0; i < sk_X509_num(chain); i++) {
4222                 X509 *xtmp = sk_X509_value(chain, i);
4223 
4224                 if (ssl_check_ca_name(ca_dn, xtmp)) {
4225                     rv |= CERT_PKEY_ISSUER_NAME;
4226                     break;
4227                 }
4228             }
4229 
4230         if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4231             goto end;
4232     } else
4233         rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4234 
4235     if (!check_flags || (rv & check_flags) == check_flags)
4236         rv |= CERT_PKEY_VALID;
4237 
4238  end:
4239 
4240     if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4241         rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4242     else
4243         rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4244 
4245     /*
4246      * When checking a CERT_PKEY structure all flags are irrelevant if the
4247      * chain is invalid.
4248      */
4249     if (!check_flags) {
4250         if (rv & CERT_PKEY_VALID) {
4251             *pvalid = rv;
4252         } else {
4253             /* Preserve sign and explicit sign flag, clear rest */
4254             *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4255             return 0;
4256         }
4257     }
4258     return rv;
4259 }
4260 
4261 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL_CONNECTION * s)4262 void tls1_set_cert_validity(SSL_CONNECTION *s)
4263 {
4264     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4265     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4266     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4267     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4268     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4269     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4270     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4271     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4272     tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4273 }
4274 
4275 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)4276 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4277 {
4278     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4279 
4280     if (sc == NULL)
4281         return 0;
4282 
4283     return tls1_check_chain(sc, x, pk, chain, -1);
4284 }
4285 
ssl_get_auto_dh(SSL_CONNECTION * s)4286 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4287 {
4288     EVP_PKEY *dhp = NULL;
4289     BIGNUM *p;
4290     int dh_secbits = 80, sec_level_bits;
4291     EVP_PKEY_CTX *pctx = NULL;
4292     OSSL_PARAM_BLD *tmpl = NULL;
4293     OSSL_PARAM *params = NULL;
4294     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4295 
4296     if (s->cert->dh_tmp_auto != 2) {
4297         if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4298             if (s->s3.tmp.new_cipher->strength_bits == 256)
4299                 dh_secbits = 128;
4300             else
4301                 dh_secbits = 80;
4302         } else {
4303             if (s->s3.tmp.cert == NULL)
4304                 return NULL;
4305             dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4306         }
4307     }
4308 
4309     /* Do not pick a prime that is too weak for the current security level */
4310     sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4311                                                  NULL, NULL);
4312     if (dh_secbits < sec_level_bits)
4313         dh_secbits = sec_level_bits;
4314 
4315     if (dh_secbits >= 192)
4316         p = BN_get_rfc3526_prime_8192(NULL);
4317     else if (dh_secbits >= 152)
4318         p = BN_get_rfc3526_prime_4096(NULL);
4319     else if (dh_secbits >= 128)
4320         p = BN_get_rfc3526_prime_3072(NULL);
4321     else if (dh_secbits >= 112)
4322         p = BN_get_rfc3526_prime_2048(NULL);
4323     else
4324         p = BN_get_rfc2409_prime_1024(NULL);
4325     if (p == NULL)
4326         goto err;
4327 
4328     pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4329     if (pctx == NULL
4330             || EVP_PKEY_fromdata_init(pctx) != 1)
4331         goto err;
4332 
4333     tmpl = OSSL_PARAM_BLD_new();
4334     if (tmpl == NULL
4335             || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4336             || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4337         goto err;
4338 
4339     params = OSSL_PARAM_BLD_to_param(tmpl);
4340     if (params == NULL
4341             || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4342         goto err;
4343 
4344 err:
4345     OSSL_PARAM_free(params);
4346     OSSL_PARAM_BLD_free(tmpl);
4347     EVP_PKEY_CTX_free(pctx);
4348     BN_free(p);
4349     return dhp;
4350 }
4351 
ssl_security_cert_key(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4352 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4353                                  int op)
4354 {
4355     int secbits = -1;
4356     EVP_PKEY *pkey = X509_get0_pubkey(x);
4357 
4358     if (pkey) {
4359         /*
4360          * If no parameters this will return -1 and fail using the default
4361          * security callback for any non-zero security level. This will
4362          * reject keys which omit parameters but this only affects DSA and
4363          * omission of parameters is never (?) done in practice.
4364          */
4365         secbits = EVP_PKEY_get_security_bits(pkey);
4366     }
4367     if (s != NULL)
4368         return ssl_security(s, op, secbits, 0, x);
4369     else
4370         return ssl_ctx_security(ctx, op, secbits, 0, x);
4371 }
4372 
ssl_security_cert_sig(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4373 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4374                                  int op)
4375 {
4376     /* Lookup signature algorithm digest */
4377     int secbits, nid, pknid;
4378 
4379     /* Don't check signature if self signed */
4380     if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4381         return 1;
4382     if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4383         secbits = -1;
4384     /* If digest NID not defined use signature NID */
4385     if (nid == NID_undef)
4386         nid = pknid;
4387     if (s != NULL)
4388         return ssl_security(s, op, secbits, nid, x);
4389     else
4390         return ssl_ctx_security(ctx, op, secbits, nid, x);
4391 }
4392 
ssl_security_cert(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)4393 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4394                       int is_ee)
4395 {
4396     if (vfy)
4397         vfy = SSL_SECOP_PEER;
4398     if (is_ee) {
4399         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4400             return SSL_R_EE_KEY_TOO_SMALL;
4401     } else {
4402         if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4403             return SSL_R_CA_KEY_TOO_SMALL;
4404     }
4405     if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4406         return SSL_R_CA_MD_TOO_WEAK;
4407     return 1;
4408 }
4409 
4410 /*
4411  * Check security of a chain, if |sk| includes the end entity certificate then
4412  * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4413  * one to the peer. Return values: 1 if ok otherwise error code to use
4414  */
4415 
ssl_security_cert_chain(SSL_CONNECTION * s,STACK_OF (X509)* sk,X509 * x,int vfy)4416 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4417                             X509 *x, int vfy)
4418 {
4419     int rv, start_idx, i;
4420 
4421     if (x == NULL) {
4422         x = sk_X509_value(sk, 0);
4423         if (x == NULL)
4424             return ERR_R_INTERNAL_ERROR;
4425         start_idx = 1;
4426     } else
4427         start_idx = 0;
4428 
4429     rv = ssl_security_cert(s, NULL, x, vfy, 1);
4430     if (rv != 1)
4431         return rv;
4432 
4433     for (i = start_idx; i < sk_X509_num(sk); i++) {
4434         x = sk_X509_value(sk, i);
4435         rv = ssl_security_cert(s, NULL, x, vfy, 0);
4436         if (rv != 1)
4437             return rv;
4438     }
4439     return 1;
4440 }
4441 
4442 /*
4443  * For TLS 1.2 servers check if we have a certificate which can be used
4444  * with the signature algorithm "lu" and return index of certificate.
4445  */
4446 
tls12_get_cert_sigalg_idx(const SSL_CONNECTION * s,const SIGALG_LOOKUP * lu)4447 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4448                                      const SIGALG_LOOKUP *lu)
4449 {
4450     int sig_idx = lu->sig_idx;
4451     const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4452                                                         SSL_CONNECTION_GET_CTX(s));
4453 
4454     /* If not recognised or not supported by cipher mask it is not suitable */
4455     if (clu == NULL
4456             || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4457             || (clu->nid == EVP_PKEY_RSA_PSS
4458                 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4459         return -1;
4460 
4461     /* If doing RPK, the CERT_PKEY won't be "valid" */
4462     if (tls12_rpk_and_privkey(s, sig_idx))
4463         return  s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4464 
4465     return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4466 }
4467 
4468 /*
4469  * Checks the given cert against signature_algorithm_cert restrictions sent by
4470  * the peer (if any) as well as whether the hash from the sigalg is usable with
4471  * the key.
4472  * Returns true if the cert is usable and false otherwise.
4473  */
check_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4474 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4475                              X509 *x, EVP_PKEY *pkey)
4476 {
4477     const SIGALG_LOOKUP *lu;
4478     int mdnid, pknid, supported;
4479     size_t i;
4480     const char *mdname = NULL;
4481     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4482 
4483     /*
4484      * If the given EVP_PKEY cannot support signing with this digest,
4485      * the answer is simply 'no'.
4486      */
4487     if (sig->hash != NID_undef)
4488         mdname = OBJ_nid2sn(sig->hash);
4489     supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4490                                                     mdname,
4491                                                     sctx->propq);
4492     if (supported <= 0)
4493         return 0;
4494 
4495     /*
4496      * The TLS 1.3 signature_algorithms_cert extension places restrictions
4497      * on the sigalg with which the certificate was signed (by its issuer).
4498      */
4499     if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4500         if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4501             return 0;
4502         for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4503             lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4504                                     s->s3.tmp.peer_cert_sigalgs[i]);
4505             if (lu == NULL)
4506                 continue;
4507 
4508             /*
4509              * This does not differentiate between the
4510              * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4511              * have a chain here that lets us look at the key OID in the
4512              * signing certificate.
4513              */
4514             if (mdnid == lu->hash && pknid == lu->sig)
4515                 return 1;
4516         }
4517         return 0;
4518     }
4519 
4520     /*
4521      * Without signat_algorithms_cert, any certificate for which we have
4522      * a viable public key is permitted.
4523      */
4524     return 1;
4525 }
4526 
4527 /*
4528  * Returns true if |s| has a usable certificate configured for use
4529  * with signature scheme |sig|.
4530  * "Usable" includes a check for presence as well as applying
4531  * the signature_algorithm_cert restrictions sent by the peer (if any).
4532  * Returns false if no usable certificate is found.
4533  */
has_usable_cert(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,int idx)4534 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4535 {
4536     /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4537     if (idx == -1)
4538         idx = sig->sig_idx;
4539     if (!ssl_has_cert(s, idx))
4540         return 0;
4541 
4542     return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4543                              s->cert->pkeys[idx].privatekey);
4544 }
4545 
4546 /*
4547  * Returns true if the supplied cert |x| and key |pkey| is usable with the
4548  * specified signature scheme |sig|, or false otherwise.
4549  */
is_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4550 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4551                           EVP_PKEY *pkey)
4552 {
4553     size_t idx;
4554 
4555     if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4556         return 0;
4557 
4558     /* Check the key is consistent with the sig alg */
4559     if ((int)idx != sig->sig_idx)
4560         return 0;
4561 
4562     return check_cert_usable(s, sig, x, pkey);
4563 }
4564 
4565 /*
4566  * Find a signature scheme that works with the supplied certificate |x| and key
4567  * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4568  * available certs/keys to find one that works.
4569  */
find_sig_alg(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pkey)4570 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4571                                          EVP_PKEY *pkey)
4572 {
4573     const SIGALG_LOOKUP *lu = NULL;
4574     size_t i;
4575     int curve = -1;
4576     EVP_PKEY *tmppkey;
4577     SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4578 
4579     /* Look for a shared sigalgs matching possible certificates */
4580     for (i = 0; i < s->shared_sigalgslen; i++) {
4581         /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4582         lu = s->shared_sigalgs[i];
4583         if (lu->hash == NID_sha1
4584             || lu->hash == NID_sha224
4585             || lu->sig == EVP_PKEY_DSA
4586             || lu->sig == EVP_PKEY_RSA
4587             || !tls_sigalg_compat(s, lu))
4588             continue;
4589 
4590         /* Check that we have a cert, and signature_algorithms_cert */
4591         if (!tls1_lookup_md(sctx, lu, NULL))
4592             continue;
4593         if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4594                 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4595             continue;
4596 
4597         tmppkey = (pkey != NULL) ? pkey
4598                                  : s->cert->pkeys[lu->sig_idx].privatekey;
4599 
4600         if (lu->sig == EVP_PKEY_EC) {
4601             if (curve == -1)
4602                 curve = ssl_get_EC_curve_nid(tmppkey);
4603             if (lu->curve != NID_undef && curve != lu->curve)
4604                 continue;
4605         } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4606             /* validate that key is large enough for the signature algorithm */
4607             if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4608                 continue;
4609         }
4610         break;
4611     }
4612 
4613     if (i == s->shared_sigalgslen)
4614         return NULL;
4615 
4616     return lu;
4617 }
4618 
4619 /*
4620  * Choose an appropriate signature algorithm based on available certificates
4621  * Sets chosen certificate and signature algorithm.
4622  *
4623  * For servers if we fail to find a required certificate it is a fatal error,
4624  * an appropriate error code is set and a TLS alert is sent.
4625  *
4626  * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4627  * a fatal error: we will either try another certificate or not present one
4628  * to the server. In this case no error is set.
4629  */
tls_choose_sigalg(SSL_CONNECTION * s,int fatalerrs)4630 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4631 {
4632     const SIGALG_LOOKUP *lu = NULL;
4633     int sig_idx = -1;
4634 
4635     s->s3.tmp.cert = NULL;
4636     s->s3.tmp.sigalg = NULL;
4637 
4638     if (SSL_CONNECTION_IS_TLS13(s)) {
4639         lu = find_sig_alg(s, NULL, NULL);
4640         if (lu == NULL) {
4641             if (!fatalerrs)
4642                 return 1;
4643             SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4644                      SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4645             return 0;
4646         }
4647     } else {
4648         /* If ciphersuite doesn't require a cert nothing to do */
4649         if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4650             return 1;
4651         if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4652                 return 1;
4653 
4654         if (SSL_USE_SIGALGS(s)) {
4655             size_t i;
4656             if (s->s3.tmp.peer_sigalgs != NULL) {
4657                 int curve = -1;
4658                 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4659 
4660                 /* For Suite B need to match signature algorithm to curve */
4661                 if (tls1_suiteb(s))
4662                     curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4663                                                  .privatekey);
4664 
4665                 /*
4666                  * Find highest preference signature algorithm matching
4667                  * cert type
4668                  */
4669                 for (i = 0; i < s->shared_sigalgslen; i++) {
4670                     /* Check the sigalg version bounds */
4671                     lu = s->shared_sigalgs[i];
4672                     if (!tls_sigalg_compat(s, lu))
4673                         continue;
4674                     if (s->server) {
4675                         if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4676                             continue;
4677                     } else {
4678                         int cc_idx = s->cert->key - s->cert->pkeys;
4679 
4680                         sig_idx = lu->sig_idx;
4681                         if (cc_idx != sig_idx)
4682                             continue;
4683                     }
4684                     /* Check that we have a cert, and sig_algs_cert */
4685                     if (!has_usable_cert(s, lu, sig_idx))
4686                         continue;
4687                     if (lu->sig == EVP_PKEY_RSA_PSS) {
4688                         /* validate that key is large enough for the signature algorithm */
4689                         EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4690 
4691                         if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4692                             continue;
4693                     }
4694                     if (curve == -1 || lu->curve == curve)
4695                         break;
4696                 }
4697 #ifndef OPENSSL_NO_GOST
4698                 /*
4699                  * Some Windows-based implementations do not send GOST algorithms indication
4700                  * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4701                  * we have to assume GOST support.
4702                  */
4703                 if (i == s->shared_sigalgslen
4704                     && (s->s3.tmp.new_cipher->algorithm_auth
4705                         & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4706                   if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4707                     if (!fatalerrs)
4708                       return 1;
4709                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4710                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4711                     return 0;
4712                   } else {
4713                     i = 0;
4714                     sig_idx = lu->sig_idx;
4715                   }
4716                 }
4717 #endif
4718                 if (i == s->shared_sigalgslen) {
4719                     if (!fatalerrs)
4720                         return 1;
4721                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4722                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4723                     return 0;
4724                 }
4725             } else {
4726                 /*
4727                  * If we have no sigalg use defaults
4728                  */
4729                 const uint16_t *sent_sigs;
4730                 size_t sent_sigslen;
4731 
4732                 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4733                     if (!fatalerrs)
4734                         return 1;
4735                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4736                              SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4737                     return 0;
4738                 }
4739 
4740                 /* Check signature matches a type we sent */
4741                 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4742                 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4743                     if (lu->sigalg == *sent_sigs
4744                             && has_usable_cert(s, lu, lu->sig_idx))
4745                         break;
4746                 }
4747                 if (i == sent_sigslen) {
4748                     if (!fatalerrs)
4749                         return 1;
4750                     SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4751                              SSL_R_WRONG_SIGNATURE_TYPE);
4752                     return 0;
4753                 }
4754             }
4755         } else {
4756             if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4757                 if (!fatalerrs)
4758                     return 1;
4759                 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4760                          SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4761                 return 0;
4762             }
4763         }
4764     }
4765     if (sig_idx == -1)
4766         sig_idx = lu->sig_idx;
4767     s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4768     s->cert->key = s->s3.tmp.cert;
4769     s->s3.tmp.sigalg = lu;
4770     return 1;
4771 }
4772 
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)4773 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4774 {
4775     if (mode != TLSEXT_max_fragment_length_DISABLED
4776             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4777         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4778         return 0;
4779     }
4780 
4781     ctx->ext.max_fragment_len_mode = mode;
4782     return 1;
4783 }
4784 
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)4785 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4786 {
4787     SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4788 
4789     if (sc == NULL
4790         || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4791         return 0;
4792 
4793     if (mode != TLSEXT_max_fragment_length_DISABLED
4794             && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4795         ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4796         return 0;
4797     }
4798 
4799     sc->ext.max_fragment_len_mode = mode;
4800     return 1;
4801 }
4802 
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)4803 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4804 {
4805     if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4806         return TLSEXT_max_fragment_length_DISABLED;
4807     return session->ext.max_fragment_len_mode;
4808 }
4809 
4810 /*
4811  * Helper functions for HMAC access with legacy support included.
4812  */
ssl_hmac_new(const SSL_CTX * ctx)4813 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4814 {
4815     SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4816     EVP_MAC *mac = NULL;
4817 
4818     if (ret == NULL)
4819         return NULL;
4820 #ifndef OPENSSL_NO_DEPRECATED_3_0
4821     if (ctx->ext.ticket_key_evp_cb == NULL
4822             && ctx->ext.ticket_key_cb != NULL) {
4823         if (!ssl_hmac_old_new(ret))
4824             goto err;
4825         return ret;
4826     }
4827 #endif
4828     mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4829     if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4830         goto err;
4831     EVP_MAC_free(mac);
4832     return ret;
4833  err:
4834     EVP_MAC_CTX_free(ret->ctx);
4835     EVP_MAC_free(mac);
4836     OPENSSL_free(ret);
4837     return NULL;
4838 }
4839 
ssl_hmac_free(SSL_HMAC * ctx)4840 void ssl_hmac_free(SSL_HMAC *ctx)
4841 {
4842     if (ctx != NULL) {
4843         EVP_MAC_CTX_free(ctx->ctx);
4844 #ifndef OPENSSL_NO_DEPRECATED_3_0
4845         ssl_hmac_old_free(ctx);
4846 #endif
4847         OPENSSL_free(ctx);
4848     }
4849 }
4850 
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)4851 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4852 {
4853     return ctx->ctx;
4854 }
4855 
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)4856 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4857 {
4858     OSSL_PARAM params[2], *p = params;
4859 
4860     if (ctx->ctx != NULL) {
4861         *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4862         *p = OSSL_PARAM_construct_end();
4863         if (EVP_MAC_init(ctx->ctx, key, len, params))
4864             return 1;
4865     }
4866 #ifndef OPENSSL_NO_DEPRECATED_3_0
4867     if (ctx->old_ctx != NULL)
4868         return ssl_hmac_old_init(ctx, key, len, md);
4869 #endif
4870     return 0;
4871 }
4872 
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)4873 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4874 {
4875     if (ctx->ctx != NULL)
4876         return EVP_MAC_update(ctx->ctx, data, len);
4877 #ifndef OPENSSL_NO_DEPRECATED_3_0
4878     if (ctx->old_ctx != NULL)
4879         return ssl_hmac_old_update(ctx, data, len);
4880 #endif
4881     return 0;
4882 }
4883 
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)4884 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4885                    size_t max_size)
4886 {
4887     if (ctx->ctx != NULL)
4888         return EVP_MAC_final(ctx->ctx, md, len, max_size);
4889 #ifndef OPENSSL_NO_DEPRECATED_3_0
4890     if (ctx->old_ctx != NULL)
4891         return ssl_hmac_old_final(ctx, md, len);
4892 #endif
4893     return 0;
4894 }
4895 
ssl_hmac_size(const SSL_HMAC * ctx)4896 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4897 {
4898     if (ctx->ctx != NULL)
4899         return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4900 #ifndef OPENSSL_NO_DEPRECATED_3_0
4901     if (ctx->old_ctx != NULL)
4902         return ssl_hmac_old_size(ctx);
4903 #endif
4904     return 0;
4905 }
4906 
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)4907 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4908 {
4909     char gname[OSSL_MAX_NAME_SIZE];
4910 
4911     if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4912         return OBJ_txt2nid(gname);
4913 
4914     return NID_undef;
4915 }
4916 
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)4917 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4918                                      const unsigned char *enckey,
4919                                      size_t enckeylen)
4920 {
4921     if (EVP_PKEY_is_a(pkey, "DH")) {
4922         int bits = EVP_PKEY_get_bits(pkey);
4923 
4924         if (bits <= 0 || enckeylen != (size_t)bits / 8)
4925             /* the encoded key must be padded to the length of the p */
4926             return 0;
4927     } else if (EVP_PKEY_is_a(pkey, "EC")) {
4928         if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4929             || enckey[0] != 0x04)
4930             return 0;
4931     }
4932 
4933     return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4934 }
4935