1 /*
2 * Copyright 1995-2025 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <ctype.h>
13 #include <openssl/objects.h>
14 #include <openssl/evp.h>
15 #include <openssl/hmac.h>
16 #include <openssl/core_names.h>
17 #include <openssl/ocsp.h>
18 #include <openssl/conf.h>
19 #include <openssl/x509v3.h>
20 #include <openssl/dh.h>
21 #include <openssl/bn.h>
22 #include <openssl/provider.h>
23 #include <openssl/param_build.h>
24 #include "internal/nelem.h"
25 #include "internal/sizes.h"
26 #include "internal/tlsgroups.h"
27 #include "internal/ssl_unwrap.h"
28 #include "ssl_local.h"
29 #include "quic/quic_local.h"
30 #include <openssl/ct.h>
31
32 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
33 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
34
35 SSL3_ENC_METHOD const TLSv1_enc_data = {
36 tls1_setup_key_block,
37 tls1_generate_master_secret,
38 tls1_change_cipher_state,
39 tls1_final_finish_mac,
40 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
41 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
42 tls1_alert_code,
43 tls1_export_keying_material,
44 0,
45 ssl3_set_handshake_header,
46 tls_close_construct_packet,
47 ssl3_handshake_write
48 };
49
50 SSL3_ENC_METHOD const TLSv1_1_enc_data = {
51 tls1_setup_key_block,
52 tls1_generate_master_secret,
53 tls1_change_cipher_state,
54 tls1_final_finish_mac,
55 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
56 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
57 tls1_alert_code,
58 tls1_export_keying_material,
59 0,
60 ssl3_set_handshake_header,
61 tls_close_construct_packet,
62 ssl3_handshake_write
63 };
64
65 SSL3_ENC_METHOD const TLSv1_2_enc_data = {
66 tls1_setup_key_block,
67 tls1_generate_master_secret,
68 tls1_change_cipher_state,
69 tls1_final_finish_mac,
70 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
71 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
72 tls1_alert_code,
73 tls1_export_keying_material,
74 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
75 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
76 ssl3_set_handshake_header,
77 tls_close_construct_packet,
78 ssl3_handshake_write
79 };
80
81 SSL3_ENC_METHOD const TLSv1_3_enc_data = {
82 tls13_setup_key_block,
83 tls13_generate_master_secret,
84 tls13_change_cipher_state,
85 tls13_final_finish_mac,
86 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
87 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
88 tls13_alert_code,
89 tls13_export_keying_material,
90 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
91 ssl3_set_handshake_header,
92 tls_close_construct_packet,
93 ssl3_handshake_write
94 };
95
tls1_default_timeout(void)96 OSSL_TIME tls1_default_timeout(void)
97 {
98 /*
99 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
100 * http, the cache would over fill
101 */
102 return ossl_seconds2time(60 * 60 * 2);
103 }
104
tls1_new(SSL * s)105 int tls1_new(SSL *s)
106 {
107 if (!ssl3_new(s))
108 return 0;
109 if (!s->method->ssl_clear(s))
110 return 0;
111
112 return 1;
113 }
114
tls1_free(SSL * s)115 void tls1_free(SSL *s)
116 {
117 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
118
119 if (sc == NULL)
120 return;
121
122 OPENSSL_free(sc->ext.session_ticket);
123 ssl3_free(s);
124 }
125
tls1_clear(SSL * s)126 int tls1_clear(SSL *s)
127 {
128 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
129
130 if (sc == NULL)
131 return 0;
132
133 if (!ssl3_clear(s))
134 return 0;
135
136 if (s->method->version == TLS_ANY_VERSION)
137 sc->version = TLS_MAX_VERSION_INTERNAL;
138 else
139 sc->version = s->method->version;
140
141 return 1;
142 }
143
144 /* Legacy NID to group_id mapping. Only works for groups we know about */
145 static const struct {
146 int nid;
147 uint16_t group_id;
148 } nid_to_group[] = {
149 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
150 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
151 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
152 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
153 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
154 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
155 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
156 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
157 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
158 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
159 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
160 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
161 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
162 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
163 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
164 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
165 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
166 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
167 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
168 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
169 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
170 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
171 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
172 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
173 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
174 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
175 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
176 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
177 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
178 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
179 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
180 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
181 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
182 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
183 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
184 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
185 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
186 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
187 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
188 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
189 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
190 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
191 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
192 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
193 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
194 };
195
196 static const unsigned char ecformats_default[] = {
197 TLSEXT_ECPOINTFORMAT_uncompressed,
198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
199 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
200 };
201
202 /* Group list string of the built-in pseudo group DEFAULT */
203 #define DEFAULT_GROUP_NAME "DEFAULT"
204 #define TLS_DEFAULT_GROUP_LIST \
205 "?*X25519MLKEM768 / ?*X25519:?secp256r1 / ?X448:?secp384r1:?secp521r1 / ?ffdhe2048:?ffdhe3072"
206
207 static const uint16_t suiteb_curves[] = {
208 OSSL_TLS_GROUP_ID_secp256r1,
209 OSSL_TLS_GROUP_ID_secp384r1,
210 };
211
212 /* Group list string of the built-in pseudo group DEFAULT_SUITE_B */
213 #define SUITE_B_GROUP_NAME "DEFAULT_SUITE_B"
214 #define SUITE_B_GROUP_LIST "secp256r1:secp384r1",
215
216 struct provider_ctx_data_st {
217 SSL_CTX *ctx;
218 OSSL_PROVIDER *provider;
219 };
220
221 #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
222 static OSSL_CALLBACK add_provider_groups;
add_provider_groups(const OSSL_PARAM params[],void * data)223 static int add_provider_groups(const OSSL_PARAM params[], void *data)
224 {
225 struct provider_ctx_data_st *pgd = data;
226 SSL_CTX *ctx = pgd->ctx;
227 const OSSL_PARAM *p;
228 TLS_GROUP_INFO *ginf = NULL;
229 EVP_KEYMGMT *keymgmt;
230 unsigned int gid;
231 unsigned int is_kem = 0;
232 int ret = 0;
233
234 if (ctx->group_list_max_len == ctx->group_list_len) {
235 TLS_GROUP_INFO *tmp = NULL;
236
237 if (ctx->group_list_max_len == 0)
238 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
239 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
240 else
241 tmp = OPENSSL_realloc(ctx->group_list,
242 (ctx->group_list_max_len
243 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
244 * sizeof(TLS_GROUP_INFO));
245 if (tmp == NULL)
246 return 0;
247 ctx->group_list = tmp;
248 memset(tmp + ctx->group_list_max_len,
249 0,
250 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
251 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
252 }
253
254 ginf = &ctx->group_list[ctx->group_list_len];
255
256 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
257 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
258 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
259 goto err;
260 }
261 ginf->tlsname = OPENSSL_strdup(p->data);
262 if (ginf->tlsname == NULL)
263 goto err;
264
265 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
266 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
267 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
268 goto err;
269 }
270 ginf->realname = OPENSSL_strdup(p->data);
271 if (ginf->realname == NULL)
272 goto err;
273
274 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
275 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
276 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
277 goto err;
278 }
279 ginf->group_id = (uint16_t)gid;
280
281 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
282 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
283 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
284 goto err;
285 }
286 ginf->algorithm = OPENSSL_strdup(p->data);
287 if (ginf->algorithm == NULL)
288 goto err;
289
290 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
291 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
292 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
293 goto err;
294 }
295
296 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
297 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
298 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
299 goto err;
300 }
301 ginf->is_kem = 1 & is_kem;
302
303 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
304 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
305 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
306 goto err;
307 }
308
309 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
310 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
311 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
312 goto err;
313 }
314
315 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
316 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
317 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318 goto err;
319 }
320
321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
322 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
323 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324 goto err;
325 }
326 /*
327 * Now check that the algorithm is actually usable for our property query
328 * string. Regardless of the result we still return success because we have
329 * successfully processed this group, even though we may decide not to use
330 * it.
331 */
332 ret = 1;
333 ERR_set_mark();
334 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
335 if (keymgmt != NULL) {
336 /* We have successfully fetched the algorithm, we can use the group. */
337 ctx->group_list_len++;
338 ginf = NULL;
339 EVP_KEYMGMT_free(keymgmt);
340 }
341 ERR_pop_to_mark();
342 err:
343 if (ginf != NULL) {
344 OPENSSL_free(ginf->tlsname);
345 OPENSSL_free(ginf->realname);
346 OPENSSL_free(ginf->algorithm);
347 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
348 }
349 return ret;
350 }
351
discover_provider_groups(OSSL_PROVIDER * provider,void * vctx)352 static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
353 {
354 struct provider_ctx_data_st pgd;
355
356 pgd.ctx = vctx;
357 pgd.provider = provider;
358 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
359 add_provider_groups, &pgd);
360 }
361
ssl_load_groups(SSL_CTX * ctx)362 int ssl_load_groups(SSL_CTX *ctx)
363 {
364 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
365 return 0;
366
367 return SSL_CTX_set1_groups_list(ctx, TLS_DEFAULT_GROUP_LIST);
368 }
369
370 #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
371 static OSSL_CALLBACK add_provider_sigalgs;
add_provider_sigalgs(const OSSL_PARAM params[],void * data)372 static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
373 {
374 struct provider_ctx_data_st *pgd = data;
375 SSL_CTX *ctx = pgd->ctx;
376 OSSL_PROVIDER *provider = pgd->provider;
377 const OSSL_PARAM *p;
378 TLS_SIGALG_INFO *sinf = NULL;
379 EVP_KEYMGMT *keymgmt;
380 const char *keytype;
381 unsigned int code_point = 0;
382 int ret = 0;
383
384 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
385 TLS_SIGALG_INFO *tmp = NULL;
386
387 if (ctx->sigalg_list_max_len == 0)
388 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
389 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
390 else
391 tmp = OPENSSL_realloc(ctx->sigalg_list,
392 (ctx->sigalg_list_max_len
393 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
394 * sizeof(TLS_SIGALG_INFO));
395 if (tmp == NULL)
396 return 0;
397 ctx->sigalg_list = tmp;
398 memset(tmp + ctx->sigalg_list_max_len, 0,
399 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
400 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
401 }
402
403 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
404
405 /* First, mandatory parameters */
406 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
407 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
408 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
409 goto err;
410 }
411 OPENSSL_free(sinf->sigalg_name);
412 sinf->sigalg_name = OPENSSL_strdup(p->data);
413 if (sinf->sigalg_name == NULL)
414 goto err;
415
416 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
417 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
418 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
419 goto err;
420 }
421 OPENSSL_free(sinf->name);
422 sinf->name = OPENSSL_strdup(p->data);
423 if (sinf->name == NULL)
424 goto err;
425
426 p = OSSL_PARAM_locate_const(params,
427 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
428 if (p == NULL
429 || !OSSL_PARAM_get_uint(p, &code_point)
430 || code_point > UINT16_MAX) {
431 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
432 goto err;
433 }
434 sinf->code_point = (uint16_t)code_point;
435
436 p = OSSL_PARAM_locate_const(params,
437 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
438 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
439 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
440 goto err;
441 }
442
443 /* Now, optional parameters */
444 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
445 if (p == NULL) {
446 sinf->sigalg_oid = NULL;
447 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
448 goto err;
449 } else {
450 OPENSSL_free(sinf->sigalg_oid);
451 sinf->sigalg_oid = OPENSSL_strdup(p->data);
452 if (sinf->sigalg_oid == NULL)
453 goto err;
454 }
455
456 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
457 if (p == NULL) {
458 sinf->sig_name = NULL;
459 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
460 goto err;
461 } else {
462 OPENSSL_free(sinf->sig_name);
463 sinf->sig_name = OPENSSL_strdup(p->data);
464 if (sinf->sig_name == NULL)
465 goto err;
466 }
467
468 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
469 if (p == NULL) {
470 sinf->sig_oid = NULL;
471 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
472 goto err;
473 } else {
474 OPENSSL_free(sinf->sig_oid);
475 sinf->sig_oid = OPENSSL_strdup(p->data);
476 if (sinf->sig_oid == NULL)
477 goto err;
478 }
479
480 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
481 if (p == NULL) {
482 sinf->hash_name = NULL;
483 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
484 goto err;
485 } else {
486 OPENSSL_free(sinf->hash_name);
487 sinf->hash_name = OPENSSL_strdup(p->data);
488 if (sinf->hash_name == NULL)
489 goto err;
490 }
491
492 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
493 if (p == NULL) {
494 sinf->hash_oid = NULL;
495 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
496 goto err;
497 } else {
498 OPENSSL_free(sinf->hash_oid);
499 sinf->hash_oid = OPENSSL_strdup(p->data);
500 if (sinf->hash_oid == NULL)
501 goto err;
502 }
503
504 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
505 if (p == NULL) {
506 sinf->keytype = NULL;
507 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
508 goto err;
509 } else {
510 OPENSSL_free(sinf->keytype);
511 sinf->keytype = OPENSSL_strdup(p->data);
512 if (sinf->keytype == NULL)
513 goto err;
514 }
515
516 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
517 if (p == NULL) {
518 sinf->keytype_oid = NULL;
519 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
520 goto err;
521 } else {
522 OPENSSL_free(sinf->keytype_oid);
523 sinf->keytype_oid = OPENSSL_strdup(p->data);
524 if (sinf->keytype_oid == NULL)
525 goto err;
526 }
527
528 /* Optional, not documented prior to 3.5 */
529 sinf->mindtls = sinf->maxdtls = -1;
530 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_DTLS);
531 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->mindtls)) {
532 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
533 goto err;
534 }
535 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_DTLS);
536 if (p != NULL && !OSSL_PARAM_get_int(p, &sinf->maxdtls)) {
537 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
538 goto err;
539 }
540 /* DTLS version numbers grow downward */
541 if ((sinf->maxdtls != 0) && (sinf->maxdtls != -1) &&
542 ((sinf->maxdtls > sinf->mindtls))) {
543 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
544 goto err;
545 }
546 /* No provider sigalgs are supported in DTLS, reset after checking. */
547 sinf->mindtls = sinf->maxdtls = -1;
548
549 /* The remaining parameters below are mandatory again */
550 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
551 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
552 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
553 goto err;
554 }
555 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
556 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
557 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
558 goto err;
559 }
560 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
561 ((sinf->maxtls < sinf->mintls))) {
562 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
563 goto err;
564 }
565 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
566 ((sinf->mintls > TLS1_3_VERSION)))
567 sinf->mintls = sinf->maxtls = -1;
568 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
569 ((sinf->maxtls < TLS1_3_VERSION)))
570 sinf->mintls = sinf->maxtls = -1;
571
572 /* Ignore unusable sigalgs */
573 if (sinf->mintls == -1 && sinf->mindtls == -1) {
574 ret = 1;
575 goto err;
576 }
577
578 /*
579 * Now check that the algorithm is actually usable for our property query
580 * string. Regardless of the result we still return success because we have
581 * successfully processed this signature, even though we may decide not to
582 * use it.
583 */
584 ret = 1;
585 ERR_set_mark();
586 keytype = (sinf->keytype != NULL
587 ? sinf->keytype
588 : (sinf->sig_name != NULL
589 ? sinf->sig_name
590 : sinf->sigalg_name));
591 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
592 if (keymgmt != NULL) {
593 /*
594 * We have successfully fetched the algorithm - however if the provider
595 * doesn't match this one then we ignore it.
596 *
597 * Note: We're cheating a little here. Technically if the same algorithm
598 * is available from more than one provider then it is undefined which
599 * implementation you will get back. Theoretically this could be
600 * different every time...we assume here that you'll always get the
601 * same one back if you repeat the exact same fetch. Is this a reasonable
602 * assumption to make (in which case perhaps we should document this
603 * behaviour)?
604 */
605 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
606 /*
607 * We have a match - so we could use this signature;
608 * Check proper object registration first, though.
609 * Don't care about return value as this may have been
610 * done within providers or previous calls to
611 * add_provider_sigalgs.
612 */
613 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
614 /* sanity check: Without successful registration don't use alg */
615 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
616 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
617 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
618 goto err;
619 }
620 if (sinf->sig_name != NULL)
621 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
622 if (sinf->keytype != NULL)
623 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
624 if (sinf->hash_name != NULL)
625 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
626 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
627 (sinf->hash_name != NULL
628 ? OBJ_txt2nid(sinf->hash_name)
629 : NID_undef),
630 OBJ_txt2nid(keytype));
631 ctx->sigalg_list_len++;
632 sinf = NULL;
633 }
634 EVP_KEYMGMT_free(keymgmt);
635 }
636 ERR_pop_to_mark();
637 err:
638 if (sinf != NULL) {
639 OPENSSL_free(sinf->name);
640 sinf->name = NULL;
641 OPENSSL_free(sinf->sigalg_name);
642 sinf->sigalg_name = NULL;
643 OPENSSL_free(sinf->sigalg_oid);
644 sinf->sigalg_oid = NULL;
645 OPENSSL_free(sinf->sig_name);
646 sinf->sig_name = NULL;
647 OPENSSL_free(sinf->sig_oid);
648 sinf->sig_oid = NULL;
649 OPENSSL_free(sinf->hash_name);
650 sinf->hash_name = NULL;
651 OPENSSL_free(sinf->hash_oid);
652 sinf->hash_oid = NULL;
653 OPENSSL_free(sinf->keytype);
654 sinf->keytype = NULL;
655 OPENSSL_free(sinf->keytype_oid);
656 sinf->keytype_oid = NULL;
657 }
658 return ret;
659 }
660
discover_provider_sigalgs(OSSL_PROVIDER * provider,void * vctx)661 static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
662 {
663 struct provider_ctx_data_st pgd;
664
665 pgd.ctx = vctx;
666 pgd.provider = provider;
667 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
668 add_provider_sigalgs, &pgd);
669 /*
670 * Always OK, even if provider doesn't support the capability:
671 * Reconsider testing retval when legacy sigalgs are also loaded this way.
672 */
673 return 1;
674 }
675
ssl_load_sigalgs(SSL_CTX * ctx)676 int ssl_load_sigalgs(SSL_CTX *ctx)
677 {
678 size_t i;
679 SSL_CERT_LOOKUP lu;
680
681 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
682 return 0;
683
684 /* now populate ctx->ssl_cert_info */
685 if (ctx->sigalg_list_len > 0) {
686 OPENSSL_free(ctx->ssl_cert_info);
687 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
688 if (ctx->ssl_cert_info == NULL)
689 return 0;
690 for(i = 0; i < ctx->sigalg_list_len; i++) {
691 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
692 ctx->ssl_cert_info[i].amask = SSL_aANY;
693 }
694 }
695
696 /*
697 * For now, leave it at this: legacy sigalgs stay in their own
698 * data structures until "legacy cleanup" occurs.
699 */
700
701 return 1;
702 }
703
tls1_group_name2id(SSL_CTX * ctx,const char * name)704 static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
705 {
706 size_t i;
707
708 for (i = 0; i < ctx->group_list_len; i++) {
709 if (OPENSSL_strcasecmp(ctx->group_list[i].tlsname, name) == 0
710 || OPENSSL_strcasecmp(ctx->group_list[i].realname, name) == 0)
711 return ctx->group_list[i].group_id;
712 }
713
714 return 0;
715 }
716
tls1_group_id_lookup(SSL_CTX * ctx,uint16_t group_id)717 const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
718 {
719 size_t i;
720
721 for (i = 0; i < ctx->group_list_len; i++) {
722 if (ctx->group_list[i].group_id == group_id)
723 return &ctx->group_list[i];
724 }
725
726 return NULL;
727 }
728
tls1_group_id2name(SSL_CTX * ctx,uint16_t group_id)729 const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
730 {
731 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
732
733 if (tls_group_info == NULL)
734 return NULL;
735
736 return tls_group_info->tlsname;
737 }
738
tls1_group_id2nid(uint16_t group_id,int include_unknown)739 int tls1_group_id2nid(uint16_t group_id, int include_unknown)
740 {
741 size_t i;
742
743 if (group_id == 0)
744 return NID_undef;
745
746 /*
747 * Return well known Group NIDs - for backwards compatibility. This won't
748 * work for groups we don't know about.
749 */
750 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
751 {
752 if (nid_to_group[i].group_id == group_id)
753 return nid_to_group[i].nid;
754 }
755 if (!include_unknown)
756 return NID_undef;
757 return TLSEXT_nid_unknown | (int)group_id;
758 }
759
tls1_nid2group_id(int nid)760 uint16_t tls1_nid2group_id(int nid)
761 {
762 size_t i;
763
764 /*
765 * Return well known Group ids - for backwards compatibility. This won't
766 * work for groups we don't know about.
767 */
768 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
769 {
770 if (nid_to_group[i].nid == nid)
771 return nid_to_group[i].group_id;
772 }
773
774 return 0;
775 }
776
777 /*
778 * Set *pgroups to the supported groups list and *pgroupslen to
779 * the number of groups supported.
780 */
tls1_get_supported_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)781 void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
782 size_t *pgroupslen)
783 {
784 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
785
786 /* For Suite B mode only include P-256, P-384 */
787 switch (tls1_suiteb(s)) {
788 case SSL_CERT_FLAG_SUITEB_128_LOS:
789 *pgroups = suiteb_curves;
790 *pgroupslen = OSSL_NELEM(suiteb_curves);
791 break;
792
793 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
794 *pgroups = suiteb_curves;
795 *pgroupslen = 1;
796 break;
797
798 case SSL_CERT_FLAG_SUITEB_192_LOS:
799 *pgroups = suiteb_curves + 1;
800 *pgroupslen = 1;
801 break;
802
803 default:
804 if (s->ext.supportedgroups == NULL) {
805 *pgroups = sctx->ext.supportedgroups;
806 *pgroupslen = sctx->ext.supportedgroups_len;
807 } else {
808 *pgroups = s->ext.supportedgroups;
809 *pgroupslen = s->ext.supportedgroups_len;
810 }
811 break;
812 }
813 }
814
815 /*
816 * Some comments for the function below:
817 * s->ext.supportedgroups == NULL means legacy syntax (no [*,/,-]) from built-in group array.
818 * In this case, we need to send exactly one key share, which MUST be the first (leftmost)
819 * eligible group from the legacy list. Therefore, we provide the entire list of supported
820 * groups in this case.
821 *
822 * A 'flag' to indicate legacy syntax is created by setting the number of key shares to 1,
823 * but the groupID to 0.
824 * The 'flag' is checked right at the beginning in tls_construct_ctos_key_share and either
825 * the "list of requested key share groups" is used, or the "list of supported groups" in
826 * combination with setting add_only_one = 1 is applied.
827 */
tls1_get_requested_keyshare_groups(SSL_CONNECTION * s,const uint16_t ** pgroups,size_t * pgroupslen)828 void tls1_get_requested_keyshare_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
829 size_t *pgroupslen)
830 {
831 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
832
833 if (s->ext.supportedgroups == NULL) {
834 *pgroups = sctx->ext.supportedgroups;
835 *pgroupslen = sctx->ext.supportedgroups_len;
836 } else {
837 *pgroups = s->ext.keyshares;
838 *pgroupslen = s->ext.keyshares_len;
839 }
840 }
841
tls1_get_group_tuples(SSL_CONNECTION * s,const size_t ** ptuples,size_t * ptupleslen)842 void tls1_get_group_tuples(SSL_CONNECTION *s, const size_t **ptuples,
843 size_t *ptupleslen)
844 {
845 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
846
847 if (s->ext.supportedgroups == NULL) {
848 *ptuples = sctx->ext.tuples;
849 *ptupleslen = sctx->ext.tuples_len;
850 } else {
851 *ptuples = s->ext.tuples;
852 *ptupleslen = s->ext.tuples_len;
853 }
854 }
855
tls_valid_group(SSL_CONNECTION * s,uint16_t group_id,int minversion,int maxversion,int isec,int * okfortls13)856 int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
857 int minversion, int maxversion,
858 int isec, int *okfortls13)
859 {
860 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
861 group_id);
862 int ret;
863 int group_minversion, group_maxversion;
864
865 if (okfortls13 != NULL)
866 *okfortls13 = 0;
867
868 if (ginfo == NULL)
869 return 0;
870
871 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
872 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
873
874 if (group_minversion < 0 || group_maxversion < 0)
875 return 0;
876 if (group_maxversion == 0)
877 ret = 1;
878 else
879 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
880 if (group_minversion > 0)
881 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
882
883 if (!SSL_CONNECTION_IS_DTLS(s)) {
884 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
885 *okfortls13 = (group_maxversion == 0)
886 || (group_maxversion >= TLS1_3_VERSION);
887 }
888 ret &= !isec
889 || strcmp(ginfo->algorithm, "EC") == 0
890 || strcmp(ginfo->algorithm, "X25519") == 0
891 || strcmp(ginfo->algorithm, "X448") == 0;
892
893 return ret;
894 }
895
896 /* See if group is allowed by security callback */
tls_group_allowed(SSL_CONNECTION * s,uint16_t group,int op)897 int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
898 {
899 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
900 group);
901 unsigned char gtmp[2];
902
903 if (ginfo == NULL)
904 return 0;
905
906 gtmp[0] = group >> 8;
907 gtmp[1] = group & 0xff;
908 return ssl_security(s, op, ginfo->secbits,
909 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
910 }
911
912 /* Return 1 if "id" is in "list" */
tls1_in_list(uint16_t id,const uint16_t * list,size_t listlen)913 static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
914 {
915 size_t i;
916 for (i = 0; i < listlen; i++)
917 if (list[i] == id)
918 return 1;
919 return 0;
920 }
921
922 typedef struct {
923 TLS_GROUP_INFO *grp;
924 size_t ix;
925 } TLS_GROUP_IX;
926
DEFINE_STACK_OF(TLS_GROUP_IX)927 DEFINE_STACK_OF(TLS_GROUP_IX)
928
929 static void free_wrapper(TLS_GROUP_IX *a)
930 {
931 OPENSSL_free(a);
932 }
933
tls_group_ix_cmp(const TLS_GROUP_IX * const * a,const TLS_GROUP_IX * const * b)934 static int tls_group_ix_cmp(const TLS_GROUP_IX *const *a,
935 const TLS_GROUP_IX *const *b)
936 {
937 int idcmpab = (*a)->grp->group_id < (*b)->grp->group_id;
938 int idcmpba = (*b)->grp->group_id < (*a)->grp->group_id;
939 int ixcmpab = (*a)->ix < (*b)->ix;
940 int ixcmpba = (*b)->ix < (*a)->ix;
941
942 /* Ascending by group id */
943 if (idcmpab != idcmpba)
944 return (idcmpba - idcmpab);
945 /* Ascending by original appearance index */
946 return ixcmpba - ixcmpab;
947 }
948
tls1_get0_implemented_groups(int min_proto_version,int max_proto_version,TLS_GROUP_INFO * grps,size_t num,long all,STACK_OF (OPENSSL_CSTRING)* out)949 int tls1_get0_implemented_groups(int min_proto_version, int max_proto_version,
950 TLS_GROUP_INFO *grps, size_t num, long all,
951 STACK_OF(OPENSSL_CSTRING) *out)
952 {
953 STACK_OF(TLS_GROUP_IX) *collect = NULL;
954 TLS_GROUP_IX *gix;
955 uint16_t id = 0;
956 int ret = 0;
957 size_t ix;
958
959 if (grps == NULL || out == NULL)
960 return 0;
961 if ((collect = sk_TLS_GROUP_IX_new(tls_group_ix_cmp)) == NULL)
962 return 0;
963 for (ix = 0; ix < num; ++ix, ++grps) {
964 if (grps->mintls > 0 && max_proto_version > 0
965 && grps->mintls > max_proto_version)
966 continue;
967 if (grps->maxtls > 0 && min_proto_version > 0
968 && grps->maxtls < min_proto_version)
969 continue;
970
971 if ((gix = OPENSSL_malloc(sizeof(*gix))) == NULL)
972 goto end;
973 gix->grp = grps;
974 gix->ix = ix;
975 if (sk_TLS_GROUP_IX_push(collect, gix) <= 0) {
976 OPENSSL_free(gix);
977 goto end;
978 }
979 }
980
981 sk_TLS_GROUP_IX_sort(collect);
982 num = sk_TLS_GROUP_IX_num(collect);
983 for (ix = 0; ix < num; ++ix) {
984 gix = sk_TLS_GROUP_IX_value(collect, ix);
985 if (!all && gix->grp->group_id == id)
986 continue;
987 id = gix->grp->group_id;
988 if (sk_OPENSSL_CSTRING_push(out, gix->grp->tlsname) <= 0)
989 goto end;
990 }
991 ret = 1;
992
993 end:
994 sk_TLS_GROUP_IX_pop_free(collect, free_wrapper);
995 return ret;
996 }
997
998 /*-
999 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
1000 * if there is no match.
1001 * For nmatch == -1, return number of matches
1002 * For nmatch == -2, return the id of the group to use for
1003 * a tmp key, or 0 if there is no match.
1004 */
tls1_shared_group(SSL_CONNECTION * s,int nmatch)1005 uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
1006 {
1007 const uint16_t *pref, *supp;
1008 size_t num_pref, num_supp, i;
1009 int k;
1010 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
1011
1012 /* Can't do anything on client side */
1013 if (s->server == 0)
1014 return 0;
1015 if (nmatch == -2) {
1016 if (tls1_suiteb(s)) {
1017 /*
1018 * For Suite B ciphersuite determines curve: we already know
1019 * these are acceptable due to previous checks.
1020 */
1021 unsigned long cid = s->s3.tmp.new_cipher->id;
1022
1023 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1024 return OSSL_TLS_GROUP_ID_secp256r1;
1025 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1026 return OSSL_TLS_GROUP_ID_secp384r1;
1027 /* Should never happen */
1028 return 0;
1029 }
1030 /* If not Suite B just return first preference shared curve */
1031 nmatch = 0;
1032 }
1033 /*
1034 * If server preference set, our groups are the preference order
1035 * otherwise peer decides.
1036 */
1037 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
1038 tls1_get_supported_groups(s, &pref, &num_pref);
1039 tls1_get_peer_groups(s, &supp, &num_supp);
1040 } else {
1041 tls1_get_peer_groups(s, &pref, &num_pref);
1042 tls1_get_supported_groups(s, &supp, &num_supp);
1043 }
1044
1045 for (k = 0, i = 0; i < num_pref; i++) {
1046 uint16_t id = pref[i];
1047 const TLS_GROUP_INFO *inf;
1048 int minversion, maxversion;
1049
1050 if (!tls1_in_list(id, supp, num_supp)
1051 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
1052 continue;
1053 inf = tls1_group_id_lookup(ctx, id);
1054 if (!ossl_assert(inf != NULL))
1055 return 0;
1056
1057 minversion = SSL_CONNECTION_IS_DTLS(s)
1058 ? inf->mindtls : inf->mintls;
1059 maxversion = SSL_CONNECTION_IS_DTLS(s)
1060 ? inf->maxdtls : inf->maxtls;
1061 if (maxversion == -1)
1062 continue;
1063 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
1064 || (maxversion != 0
1065 && ssl_version_cmp(s, s->version, maxversion) > 0))
1066 continue;
1067
1068 if (nmatch == k)
1069 return id;
1070 k++;
1071 }
1072 if (nmatch == -1)
1073 return k;
1074 /* Out of range (nmatch > k). */
1075 return 0;
1076 }
1077
tls1_set_groups(uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,int * groups,size_t ngroups)1078 int tls1_set_groups(uint16_t **grpext, size_t *grpextlen,
1079 uint16_t **ksext, size_t *ksextlen,
1080 size_t **tplext, size_t *tplextlen,
1081 int *groups, size_t ngroups)
1082 {
1083 uint16_t *glist = NULL, *kslist = NULL;
1084 size_t *tpllist = NULL;
1085 size_t i;
1086 /*
1087 * Bitmap of groups included to detect duplicates: two variables are added
1088 * to detect duplicates as some values are more than 32.
1089 */
1090 unsigned long *dup_list = NULL;
1091 unsigned long dup_list_egrp = 0;
1092 unsigned long dup_list_dhgrp = 0;
1093
1094 if (ngroups == 0) {
1095 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1096 return 0;
1097 }
1098 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1099 goto err;
1100 if ((kslist = OPENSSL_malloc(1 * sizeof(*kslist))) == NULL)
1101 goto err;
1102 if ((tpllist = OPENSSL_malloc(1 * sizeof(*tpllist))) == NULL)
1103 goto err;
1104 for (i = 0; i < ngroups; i++) {
1105 unsigned long idmask;
1106 uint16_t id;
1107 id = tls1_nid2group_id(groups[i]);
1108 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1109 goto err;
1110 idmask = 1L << (id & 0x00FF);
1111 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1112 if (!id || ((*dup_list) & idmask))
1113 goto err;
1114 *dup_list |= idmask;
1115 glist[i] = id;
1116 }
1117 OPENSSL_free(*grpext);
1118 OPENSSL_free(*ksext);
1119 OPENSSL_free(*tplext);
1120 *grpext = glist;
1121 *grpextlen = ngroups;
1122 kslist[0] = glist[0];
1123 *ksext = kslist;
1124 *ksextlen = 1;
1125 tpllist[0] = ngroups;
1126 *tplext = tpllist;
1127 *tplextlen = 1;
1128 return 1;
1129 err:
1130 OPENSSL_free(glist);
1131 OPENSSL_free(kslist);
1132 OPENSSL_free(tpllist);
1133 return 0;
1134 }
1135
1136 /*
1137 * Definition of DEFAULT[_XYZ] pseudo group names.
1138 * A pseudo group name is actually a full list of groups, including prefixes
1139 * and or tuple delimiters. It can be hierarchically defined (for potential future use).
1140 * IMPORTANT REMARK: For ease of use, in the built-in lists of groups, unknown groups or
1141 * groups not backed by a provider will always silently be ignored, even without '?' prefix
1142 */
1143 typedef struct {
1144 const char *list_name; /* The name of this pseudo group */
1145 const char *group_string; /* The group string of this pseudo group */
1146 } default_group_string_st; /* (can include '?', '*'. '-', '/' as needed) */
1147
1148 /* Built-in pseudo group-names must start with a (D or d) */
1149 static const char *DEFAULT_GROUPNAME_FIRST_CHARACTER = "D";
1150
1151 /* The list of all built-in pseudo-group-name structures */
1152 static const default_group_string_st default_group_strings[] = {
1153 {DEFAULT_GROUP_NAME, TLS_DEFAULT_GROUP_LIST},
1154 {SUITE_B_GROUP_NAME, SUITE_B_GROUP_LIST}
1155 };
1156
1157 /*
1158 * Some GOST names are not resolved by tls1_group_name2id,
1159 * hence we'll check for those manually
1160 */
1161 typedef struct {
1162 const char *group_name;
1163 uint16_t groupID;
1164 } name2id_st;
1165 static const name2id_st name2id_arr[] = {
1166 {"GC256A", OSSL_TLS_GROUP_ID_gc256A },
1167 {"GC256B", OSSL_TLS_GROUP_ID_gc256B },
1168 {"GC256C", OSSL_TLS_GROUP_ID_gc256C },
1169 {"GC256D", OSSL_TLS_GROUP_ID_gc256D },
1170 {"GC512A", OSSL_TLS_GROUP_ID_gc512A },
1171 {"GC512B", OSSL_TLS_GROUP_ID_gc512B },
1172 {"GC512C", OSSL_TLS_GROUP_ID_gc512C },
1173 };
1174
1175 /*
1176 * Group list management:
1177 * We establish three lists along with their related size counters:
1178 * 1) List of (unique) groups
1179 * 2) List of number of groups per group-priority-tuple
1180 * 3) List of (unique) key share groups
1181 */
1182 #define GROUPLIST_INCREMENT 32 /* Memory allocation chunk size (64 Bytes chunks ~= cache line) */
1183 #define GROUP_NAME_BUFFER_LENGTH 64 /* Max length of a group name */
1184
1185 /*
1186 * Preparation of the prefix used to indicate the desire to send a key share,
1187 * the characters used as separators between groups or tuples of groups, the
1188 * character to indicate that an unknown group should be ignored, and the
1189 * character to indicate that a group should be deleted from a list
1190 */
1191 #ifndef TUPLE_DELIMITER_CHARACTER
1192 /* The prefix characters to indicate group tuple boundaries */
1193 # define TUPLE_DELIMITER_CHARACTER '/'
1194 #endif
1195 #ifndef GROUP_DELIMITER_CHARACTER
1196 /* The prefix characters to indicate group tuple boundaries */
1197 # define GROUP_DELIMITER_CHARACTER ':'
1198 #endif
1199 #ifndef IGNORE_UNKNOWN_GROUP_CHARACTER
1200 /* The prefix character to ignore unknown groups */
1201 # define IGNORE_UNKNOWN_GROUP_CHARACTER '?'
1202 #endif
1203 #ifndef KEY_SHARE_INDICATOR_CHARACTER
1204 /* The prefix character to trigger a key share addition */
1205 # define KEY_SHARE_INDICATOR_CHARACTER '*'
1206 #endif
1207 #ifndef REMOVE_GROUP_INDICATOR_CHARACTER
1208 /* The prefix character to trigger a key share removal */
1209 # define REMOVE_GROUP_INDICATOR_CHARACTER '-'
1210 #endif
1211 static const char prefixes[] = {TUPLE_DELIMITER_CHARACTER,
1212 GROUP_DELIMITER_CHARACTER,
1213 IGNORE_UNKNOWN_GROUP_CHARACTER,
1214 KEY_SHARE_INDICATOR_CHARACTER,
1215 REMOVE_GROUP_INDICATOR_CHARACTER,
1216 '\0'};
1217
1218 /*
1219 * High-level description of how group strings are analyzed:
1220 * A first call back function (tuple_cb) is used to process group tuples, and a
1221 * second callback function (gid_cb) is used to process the groups inside a tuple.
1222 * Those callback functions are (indirectly) called by CONF_parse_list with
1223 * different separators (nominally ':' or '/'), a variable based on gid_cb_st
1224 * is used to keep track of the parsing results between the various calls
1225 */
1226
1227 typedef struct {
1228 SSL_CTX *ctx;
1229 /* Variables to hold the three lists (groups, requested keyshares, tuple structure) */
1230 size_t gidmax; /* The memory allocation chunk size for the group IDs */
1231 size_t gidcnt; /* Number of groups */
1232 uint16_t *gid_arr; /* The IDs of the supported groups (flat list) */
1233 size_t tplmax; /* The memory allocation chunk size for the tuple counters */
1234 size_t tplcnt; /* Number of tuples */
1235 size_t *tuplcnt_arr; /* The number of groups inside a tuple */
1236 size_t ksidmax; /* The memory allocation chunk size */
1237 size_t ksidcnt; /* Number of key shares */
1238 uint16_t *ksid_arr; /* The IDs of the key share groups (flat list) */
1239 /* Variable to keep state between execution of callback or helper functions */
1240 size_t tuple_mode; /* Keeps track whether tuple_cb called from 'the top' or from gid_cb */
1241 int ignore_unknown_default; /* Flag such that unknown groups for DEFAULT[_XYZ] are ignored */
1242 } gid_cb_st;
1243
1244 /* Forward declaration of tuple callback function */
1245 static int tuple_cb(const char *tuple, int len, void *arg);
1246
1247 /*
1248 * Extract and process the individual groups (and their prefixes if present)
1249 * present in a tuple. Note: The argument 'elem' is a NON-\0-terminated string
1250 * and must be appended by a \0 if used as \0-terminated string
1251 */
gid_cb(const char * elem,int len,void * arg)1252 static int gid_cb(const char *elem, int len, void *arg)
1253 {
1254 gid_cb_st *garg = arg;
1255 size_t i, j, k;
1256 uint16_t gid = 0;
1257 int found_group = 0;
1258 char etmp[GROUP_NAME_BUFFER_LENGTH];
1259 int retval = 1; /* We assume success */
1260 char *current_prefix;
1261 int ignore_unknown = 0;
1262 int add_keyshare = 0;
1263 int remove_group = 0;
1264 size_t restored_prefix_index = 0;
1265 char *restored_default_group_string;
1266 int continue_while_loop = 1;
1267
1268 /* Sanity checks */
1269 if (garg == NULL || elem == NULL || len <= 0) {
1270 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1271 return 0;
1272 }
1273
1274 /* Check the possible prefixes (remark: Leading and trailing spaces already cleared) */
1275 while (continue_while_loop && len > 0
1276 && ((current_prefix = strchr(prefixes, elem[0])) != NULL
1277 || OPENSSL_strncasecmp(current_prefix = (char *)DEFAULT_GROUPNAME_FIRST_CHARACTER, elem, 1) == 0)) {
1278
1279 switch (*current_prefix) {
1280 case TUPLE_DELIMITER_CHARACTER:
1281 /* tuple delimiter not allowed here -> syntax error */
1282 return -1;
1283 break;
1284 case GROUP_DELIMITER_CHARACTER:
1285 return -1; /* Not a valid prefix for a single group name-> syntax error */
1286 break;
1287 case KEY_SHARE_INDICATOR_CHARACTER:
1288 if (add_keyshare)
1289 return -1; /* Only single key share prefix allowed -> syntax error */
1290 add_keyshare = 1;
1291 ++elem;
1292 --len;
1293 break;
1294 case REMOVE_GROUP_INDICATOR_CHARACTER:
1295 if (remove_group)
1296 return -1; /* Only single remove group prefix allowed -> syntax error */
1297 remove_group = 1;
1298 ++elem;
1299 --len;
1300 break;
1301 case IGNORE_UNKNOWN_GROUP_CHARACTER:
1302 if (ignore_unknown)
1303 return -1; /* Only single ? allowed -> syntax error */
1304 ignore_unknown = 1;
1305 ++elem;
1306 --len;
1307 break;
1308 default:
1309 /*
1310 * Check whether a DEFAULT[_XYZ] 'pseudo group' (= a built-in
1311 * list of groups) should be added
1312 */
1313 for (i = 0; i < OSSL_NELEM(default_group_strings); i++) {
1314 if ((size_t)len == (strlen(default_group_strings[i].list_name))
1315 && OPENSSL_strncasecmp(default_group_strings[i].list_name, elem, len) == 0) {
1316 /*
1317 * We're asked to insert an entire list of groups from a
1318 * DEFAULT[_XYZ] 'pseudo group' which we do by
1319 * recursively calling this function (indirectly via
1320 * CONF_parse_list and tuple_cb); essentially, we treat a DEFAULT
1321 * group string like a tuple which is appended to the current tuple
1322 * rather then starting a new tuple. Variable tuple_mode is the flag which
1323 * controls append tuple vs start new tuple.
1324 */
1325
1326 if (ignore_unknown || remove_group)
1327 return -1; /* removal or ignore not allowed here -> syntax error */
1328
1329 /*
1330 * First, we restore any keyshare prefix in a new zero-terminated string
1331 * (if not already present)
1332 */
1333 restored_default_group_string = OPENSSL_malloc((1 /* max prefix length */ +
1334 strlen(default_group_strings[i].group_string) +
1335 1 /* \0 */) * sizeof(char));
1336 if (restored_default_group_string == NULL)
1337 return 0;
1338 if (add_keyshare
1339 /* Remark: we tolerate a duplicated keyshare indicator here */
1340 && default_group_strings[i].group_string[0]
1341 != KEY_SHARE_INDICATOR_CHARACTER)
1342 restored_default_group_string[restored_prefix_index++] =
1343 KEY_SHARE_INDICATOR_CHARACTER;
1344
1345 memcpy(restored_default_group_string + restored_prefix_index,
1346 default_group_strings[i].group_string,
1347 strlen(default_group_strings[i].group_string));
1348 restored_default_group_string[strlen(default_group_strings[i].group_string) +
1349 restored_prefix_index] = '\0';
1350 /* We execute the recursive call */
1351 garg->ignore_unknown_default = 1; /* We ignore unknown groups for DEFAULT_XYZ */
1352 /* we enforce group mode (= append tuple) for DEFAULT_XYZ group lists */
1353 garg->tuple_mode = 0;
1354 /* We use the tuple_cb callback to process the pseudo group tuple */
1355 retval = CONF_parse_list(restored_default_group_string,
1356 TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, garg);
1357 garg->tuple_mode = 1; /* next call to tuple_cb will again start new tuple */
1358 garg->ignore_unknown_default = 0; /* reset to original value */
1359 /* We don't need the \0-terminated string anymore */
1360 OPENSSL_free(restored_default_group_string);
1361
1362 return retval;
1363 }
1364 }
1365 /*
1366 * If we reached this point, a group name started with a 'd' or 'D', but no request
1367 * for a DEFAULT[_XYZ] 'pseudo group' was detected, hence processing of the group
1368 * name can continue as usual (= the while loop checking prefixes can end)
1369 */
1370 continue_while_loop = 0;
1371 break;
1372 }
1373 }
1374
1375 if (len == 0)
1376 return -1; /* Seems we have prefxes without a group name -> syntax error */
1377
1378 if (garg->ignore_unknown_default == 1) /* Always ignore unknown groups for DEFAULT[_XYZ] */
1379 ignore_unknown = 1;
1380
1381 /* Memory management in case more groups are present compared to initial allocation */
1382 if (garg->gidcnt == garg->gidmax) {
1383 uint16_t *tmp =
1384 OPENSSL_realloc(garg->gid_arr,
1385 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1386
1387 if (tmp == NULL)
1388 return 0;
1389
1390 garg->gidmax += GROUPLIST_INCREMENT;
1391 garg->gid_arr = tmp;
1392 }
1393 /* Memory management for key share groups */
1394 if (garg->ksidcnt == garg->ksidmax) {
1395 uint16_t *tmp =
1396 OPENSSL_realloc(garg->ksid_arr,
1397 (garg->ksidmax + GROUPLIST_INCREMENT) * sizeof(*garg->ksid_arr));
1398
1399 if (tmp == NULL)
1400 return 0;
1401 garg->ksidmax += GROUPLIST_INCREMENT;
1402 garg->ksid_arr = tmp;
1403 }
1404
1405 if (len > (int)(sizeof(etmp) - 1))
1406 return -1; /* group name to long -> syntax error */
1407
1408 /*
1409 * Prepare addition or removal of a single group by converting
1410 * a group name into its groupID equivalent
1411 */
1412
1413 /* Create a \0-terminated string and get the gid for this group if possible */
1414 memcpy(etmp, elem, len);
1415 etmp[len] = 0;
1416
1417 /* Get the groupID */
1418 gid = tls1_group_name2id(garg->ctx, etmp);
1419 /*
1420 * Handle the case where no valid groupID was returned
1421 * e.g. for an unknown group, which we'd ignore (only) if relevant prefix was set
1422 */
1423 if (gid == 0) {
1424 /* Is it one of the GOST groups ? */
1425 for (i = 0; i < OSSL_NELEM(name2id_arr); i++) {
1426 if (OPENSSL_strcasecmp(etmp, name2id_arr[i].group_name) == 0) {
1427 gid = name2id_arr[i].groupID;
1428 break;
1429 }
1430 }
1431 if (gid == 0) { /* still not found */
1432 /* Unknown group - ignore if ignore_unknown; trigger error otherwise */
1433 retval = ignore_unknown;
1434 goto done;
1435 }
1436 }
1437
1438 /* Make sure that at least one provider is supporting this groupID */
1439 found_group = 0;
1440 for (j = 0; j < garg->ctx->group_list_len; j++)
1441 if (garg->ctx->group_list[j].group_id == gid) {
1442 found_group = 1;
1443 break;
1444 }
1445
1446 /*
1447 * No provider supports this group - ignore if
1448 * ignore_unknown; trigger error otherwise
1449 */
1450 if (found_group == 0) {
1451 retval = ignore_unknown;
1452 goto done;
1453 }
1454 /* Remove group (and keyshare) from anywhere in the list if present, ignore if not present */
1455 if (remove_group) {
1456 /* Is the current group specified anywhere in the entire list so far? */
1457 found_group = 0;
1458 for (i = 0; i < garg->gidcnt; i++)
1459 if (garg->gid_arr[i] == gid) {
1460 found_group = 1;
1461 break;
1462 }
1463 /* The group to remove is at position i in the list of (zero indexed) groups */
1464 if (found_group) {
1465 /* We remove that group from its position (which is at i)... */
1466 for (j = i; j < (garg->gidcnt - 1); j++)
1467 garg->gid_arr[j] = garg->gid_arr[j + 1]; /* ...shift remaining groups left ... */
1468 garg->gidcnt--; /* ..and update the book keeping for the number of groups */
1469
1470 /*
1471 * We also must update the number of groups either in a previous tuple (which we
1472 * must identify and check whether it becomes empty due to the deletion) or in
1473 * the current tuple, pending where the deleted group resides
1474 */
1475 k = 0;
1476 for (j = 0; j < garg->tplcnt; j++) {
1477 k += garg->tuplcnt_arr[j];
1478 /* Remark: i is zero-indexed, k is one-indexed */
1479 if (k > i) { /* remove from one of the previous tuples */
1480 garg->tuplcnt_arr[j]--;
1481 break; /* We took care not to have group duplicates, hence we can stop here */
1482 }
1483 }
1484 if (k <= i) /* remove from current tuple */
1485 garg->tuplcnt_arr[j]--;
1486
1487 /* We also remove the group from the list of keyshares (if present) */
1488 found_group = 0;
1489 for (i = 0; i < garg->ksidcnt; i++)
1490 if (garg->ksid_arr[i] == gid) {
1491 found_group = 1;
1492 break;
1493 }
1494 if (found_group) {
1495 /* Found, hence we remove that keyshare from its position (which is at i)... */
1496 for (j = i; j < (garg->ksidcnt - 1); j++)
1497 garg->ksid_arr[j] = garg->ksid_arr[j + 1]; /* shift remaining key shares */
1498 /* ... and update the book keeping */
1499 garg->ksidcnt--;
1500 }
1501 }
1502 } else { /* Processing addition of a single new group */
1503
1504 /* Check for duplicates */
1505 for (i = 0; i < garg->gidcnt; i++)
1506 if (garg->gid_arr[i] == gid) {
1507 /* Duplicate group anywhere in the list of groups - ignore */
1508 goto done;
1509 }
1510
1511 /* Add the current group to the 'flat' list of groups */
1512 garg->gid_arr[garg->gidcnt++] = gid;
1513 /* and update the book keeping for the number of groups in current tuple */
1514 garg->tuplcnt_arr[garg->tplcnt]++;
1515
1516 /* We memorize if needed that we want to add a key share for the current group */
1517 if (add_keyshare)
1518 garg->ksid_arr[garg->ksidcnt++] = gid;
1519 }
1520
1521 done:
1522 return retval;
1523 }
1524
1525 /* Extract and process a tuple of groups */
tuple_cb(const char * tuple,int len,void * arg)1526 static int tuple_cb(const char *tuple, int len, void *arg)
1527 {
1528 gid_cb_st *garg = arg;
1529 int retval = 1; /* We assume success */
1530 char *restored_tuple_string;
1531
1532 /* Sanity checks */
1533 if (garg == NULL || tuple == NULL || len <= 0) {
1534 ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_CONFIG_VALUE);
1535 return 0;
1536 }
1537
1538 /* Memory management for tuples */
1539 if (garg->tplcnt == garg->tplmax) {
1540 size_t *tmp =
1541 OPENSSL_realloc(garg->tuplcnt_arr,
1542 (garg->tplmax + GROUPLIST_INCREMENT) * sizeof(*garg->tuplcnt_arr));
1543
1544 if (tmp == NULL)
1545 return 0;
1546 garg->tplmax += GROUPLIST_INCREMENT;
1547 garg->tuplcnt_arr = tmp;
1548 }
1549
1550 /* Convert to \0-terminated string */
1551 restored_tuple_string = OPENSSL_malloc((len + 1 /* \0 */) * sizeof(char));
1552 if (restored_tuple_string == NULL)
1553 return 0;
1554 memcpy(restored_tuple_string, tuple, len);
1555 restored_tuple_string[len] = '\0';
1556
1557 /* Analyze group list of this tuple */
1558 retval = CONF_parse_list(restored_tuple_string, GROUP_DELIMITER_CHARACTER, 1, gid_cb, arg);
1559
1560 /* We don't need the \o-terminated string anymore */
1561 OPENSSL_free(restored_tuple_string);
1562
1563 if (garg->tuplcnt_arr[garg->tplcnt] > 0) { /* Some valid groups are present in current tuple... */
1564 if (garg->tuple_mode) {
1565 /* We 'close' the tuple */
1566 garg->tplcnt++;
1567 garg->tuplcnt_arr[garg->tplcnt] = 0; /* Next tuple is initialized to be empty */
1568 garg->tuple_mode = 1; /* next call will start a tuple (unless overridden in gid_cb) */
1569 }
1570 }
1571
1572 return retval;
1573 }
1574
1575 /*
1576 * Set groups and prepare generation of keyshares based on a string of groupnames,
1577 * names separated by the group or the tuple delimiter, with per-group prefixes to
1578 * (1) add a key share for this group, (2) ignore the group if unkown to the current
1579 * context, (3) delete a previous occurrence of the group in the current tuple.
1580 *
1581 * The list parsing is done in two hierachical steps: The top-level step extracts the
1582 * string of a tuple using tuple_cb, while the next lower step uses gid_cb to
1583 * parse and process the groups inside a tuple
1584 */
tls1_set_groups_list(SSL_CTX * ctx,uint16_t ** grpext,size_t * grpextlen,uint16_t ** ksext,size_t * ksextlen,size_t ** tplext,size_t * tplextlen,const char * str)1585 int tls1_set_groups_list(SSL_CTX *ctx,
1586 uint16_t **grpext, size_t *grpextlen,
1587 uint16_t **ksext, size_t *ksextlen,
1588 size_t **tplext, size_t *tplextlen,
1589 const char *str)
1590 {
1591 size_t i = 0, j;
1592 int ret = 0, parse_ret = 0;
1593 gid_cb_st gcb;
1594
1595 /* Sanity check */
1596 if (ctx == NULL) {
1597 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER);
1598 return 0;
1599 }
1600
1601 memset(&gcb, 0, sizeof(gcb));
1602 gcb.tuple_mode = 1; /* We prepare to collect the first tuple */
1603 gcb.ignore_unknown_default = 0;
1604 gcb.gidmax = GROUPLIST_INCREMENT;
1605 gcb.tplmax = GROUPLIST_INCREMENT;
1606 gcb.ksidmax = GROUPLIST_INCREMENT;
1607 gcb.ctx = ctx;
1608
1609 /* Prepare initial chunks of memory for groups, tuples and keyshares groupIDs */
1610 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1611 if (gcb.gid_arr == NULL)
1612 goto end;
1613 gcb.tuplcnt_arr = OPENSSL_malloc(gcb.tplmax * sizeof(*gcb.tuplcnt_arr));
1614 if (gcb.tuplcnt_arr == NULL)
1615 goto end;
1616 gcb.tuplcnt_arr[0] = 0;
1617 gcb.ksid_arr = OPENSSL_malloc(gcb.ksidmax * sizeof(*gcb.ksid_arr));
1618 if (gcb.ksid_arr == NULL)
1619 goto end;
1620
1621 while (str[0] != '\0' && isspace((unsigned char)*str))
1622 str++;
1623 if (str[0] == '\0')
1624 goto empty_list;
1625
1626 /*
1627 * Start the (potentially recursive) tuple processing by calling CONF_parse_list
1628 * with the TUPLE_DELIMITER_CHARACTER (which will call tuple_cb after cleaning spaces)
1629 */
1630 parse_ret = CONF_parse_list(str, TUPLE_DELIMITER_CHARACTER, 1, tuple_cb, &gcb);
1631
1632 if (parse_ret == 0)
1633 goto end;
1634 if (parse_ret == -1) {
1635 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1636 "Syntax error in '%s'", str);
1637 goto end;
1638 }
1639
1640 /*
1641 * We check whether a tuple was completly emptied by using "-" prefix
1642 * excessively, in which case we remove the tuple
1643 */
1644 for (i = j = 0; j < gcb.tplcnt; j++) {
1645 if (gcb.tuplcnt_arr[j] == 0)
1646 continue;
1647 /* If there's a gap, move to first unfilled slot */
1648 if (j == i)
1649 ++i;
1650 else
1651 gcb.tuplcnt_arr[i++] = gcb.tuplcnt_arr[j];
1652 }
1653 gcb.tplcnt = i;
1654
1655 if (gcb.ksidcnt > OPENSSL_CLIENT_MAX_KEY_SHARES) {
1656 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1657 "To many keyshares requested in '%s' (max = %d)",
1658 str, OPENSSL_CLIENT_MAX_KEY_SHARES);
1659 goto end;
1660 }
1661
1662 /*
1663 * For backward compatibility we let the rest of the code know that a key share
1664 * for the first valid group should be added if no "*" prefix was used anywhere
1665 */
1666 if (gcb.gidcnt > 0 && gcb.ksidcnt == 0) {
1667 /*
1668 * No key share group prefix character was used, hence we indicate that a single
1669 * key share should be sent and flag that it should come from the supported_groups list
1670 */
1671 gcb.ksidcnt = 1;
1672 gcb.ksid_arr[0] = 0;
1673 }
1674
1675 empty_list:
1676 /*
1677 * A call to tls1_set_groups_list with any of the args (other than ctx) set
1678 * to NULL only does a syntax check, hence we're done here and report success
1679 */
1680 if (grpext == NULL || ksext == NULL || tplext == NULL ||
1681 grpextlen == NULL || ksextlen == NULL || tplextlen == NULL) {
1682 ret = 1;
1683 goto end;
1684 }
1685
1686 /*
1687 * tuple_cb and gid_cb combo ensures there are no duplicates or unknown groups so we
1688 * can just go ahead and set the results (after diposing the existing)
1689 */
1690 OPENSSL_free(*grpext);
1691 *grpext = gcb.gid_arr;
1692 *grpextlen = gcb.gidcnt;
1693 OPENSSL_free(*ksext);
1694 *ksext = gcb.ksid_arr;
1695 *ksextlen = gcb.ksidcnt;
1696 OPENSSL_free(*tplext);
1697 *tplext = gcb.tuplcnt_arr;
1698 *tplextlen = gcb.tplcnt;
1699
1700 return 1;
1701
1702 end:
1703 OPENSSL_free(gcb.gid_arr);
1704 OPENSSL_free(gcb.tuplcnt_arr);
1705 OPENSSL_free(gcb.ksid_arr);
1706 return ret;
1707 }
1708
1709 /* Check a group id matches preferences */
tls1_check_group_id(SSL_CONNECTION * s,uint16_t group_id,int check_own_groups)1710 int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1711 int check_own_groups)
1712 {
1713 const uint16_t *groups;
1714 size_t groups_len;
1715
1716 if (group_id == 0)
1717 return 0;
1718
1719 /* Check for Suite B compliance */
1720 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1721 unsigned long cid = s->s3.tmp.new_cipher->id;
1722
1723 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1724 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1725 return 0;
1726 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1727 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1728 return 0;
1729 } else {
1730 /* Should never happen */
1731 return 0;
1732 }
1733 }
1734
1735 if (check_own_groups) {
1736 /* Check group is one of our preferences */
1737 tls1_get_supported_groups(s, &groups, &groups_len);
1738 if (!tls1_in_list(group_id, groups, groups_len))
1739 return 0;
1740 }
1741
1742 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1743 return 0;
1744
1745 /* For clients, nothing more to check */
1746 if (!s->server)
1747 return 1;
1748
1749 /* Check group is one of peers preferences */
1750 tls1_get_peer_groups(s, &groups, &groups_len);
1751
1752 /*
1753 * RFC 4492 does not require the supported elliptic curves extension
1754 * so if it is not sent we can just choose any curve.
1755 * It is invalid to send an empty list in the supported groups
1756 * extension, so groups_len == 0 always means no extension.
1757 */
1758 if (groups_len == 0)
1759 return 1;
1760 return tls1_in_list(group_id, groups, groups_len);
1761 }
1762
tls1_get_formatlist(SSL_CONNECTION * s,const unsigned char ** pformats,size_t * num_formats)1763 void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1764 size_t *num_formats)
1765 {
1766 /*
1767 * If we have a custom point format list use it otherwise use default
1768 */
1769 if (s->ext.ecpointformats) {
1770 *pformats = s->ext.ecpointformats;
1771 *num_formats = s->ext.ecpointformats_len;
1772 } else {
1773 *pformats = ecformats_default;
1774 /* For Suite B we don't support char2 fields */
1775 if (tls1_suiteb(s))
1776 *num_formats = sizeof(ecformats_default) - 1;
1777 else
1778 *num_formats = sizeof(ecformats_default);
1779 }
1780 }
1781
1782 /* Check a key is compatible with compression extension */
tls1_check_pkey_comp(SSL_CONNECTION * s,EVP_PKEY * pkey)1783 static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1784 {
1785 unsigned char comp_id;
1786 size_t i;
1787 int point_conv;
1788
1789 /* If not an EC key nothing to check */
1790 if (!EVP_PKEY_is_a(pkey, "EC"))
1791 return 1;
1792
1793
1794 /* Get required compression id */
1795 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1796 if (point_conv == 0)
1797 return 0;
1798 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1799 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1800 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1801 /*
1802 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1803 * this check.
1804 */
1805 return 1;
1806 } else {
1807 int field_type = EVP_PKEY_get_field_type(pkey);
1808
1809 if (field_type == NID_X9_62_prime_field)
1810 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1811 else if (field_type == NID_X9_62_characteristic_two_field)
1812 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1813 else
1814 return 0;
1815 }
1816 /*
1817 * If point formats extension present check it, otherwise everything is
1818 * supported (see RFC4492).
1819 */
1820 if (s->ext.peer_ecpointformats == NULL)
1821 return 1;
1822
1823 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1824 if (s->ext.peer_ecpointformats[i] == comp_id)
1825 return 1;
1826 }
1827 return 0;
1828 }
1829
1830 /* Return group id of a key */
tls1_get_group_id(EVP_PKEY * pkey)1831 static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1832 {
1833 int curve_nid = ssl_get_EC_curve_nid(pkey);
1834
1835 if (curve_nid == NID_undef)
1836 return 0;
1837 return tls1_nid2group_id(curve_nid);
1838 }
1839
1840 /*
1841 * Check cert parameters compatible with extensions: currently just checks EC
1842 * certificates have compatible curves and compression.
1843 */
tls1_check_cert_param(SSL_CONNECTION * s,X509 * x,int check_ee_md)1844 static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1845 {
1846 uint16_t group_id;
1847 EVP_PKEY *pkey;
1848 pkey = X509_get0_pubkey(x);
1849 if (pkey == NULL)
1850 return 0;
1851 /* If not EC nothing to do */
1852 if (!EVP_PKEY_is_a(pkey, "EC"))
1853 return 1;
1854 /* Check compression */
1855 if (!tls1_check_pkey_comp(s, pkey))
1856 return 0;
1857 group_id = tls1_get_group_id(pkey);
1858 /*
1859 * For a server we allow the certificate to not be in our list of supported
1860 * groups.
1861 */
1862 if (!tls1_check_group_id(s, group_id, !s->server))
1863 return 0;
1864 /*
1865 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1866 * SHA384+P-384.
1867 */
1868 if (check_ee_md && tls1_suiteb(s)) {
1869 int check_md;
1870 size_t i;
1871
1872 /* Check to see we have necessary signing algorithm */
1873 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1874 check_md = NID_ecdsa_with_SHA256;
1875 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1876 check_md = NID_ecdsa_with_SHA384;
1877 else
1878 return 0; /* Should never happen */
1879 for (i = 0; i < s->shared_sigalgslen; i++) {
1880 if (check_md == s->shared_sigalgs[i]->sigandhash)
1881 return 1;
1882 }
1883 return 0;
1884 }
1885 return 1;
1886 }
1887
1888 /*
1889 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1890 * @s: SSL connection
1891 * @cid: Cipher ID we're considering using
1892 *
1893 * Checks that the kECDHE cipher suite we're considering using
1894 * is compatible with the client extensions.
1895 *
1896 * Returns 0 when the cipher can't be used or 1 when it can.
1897 */
tls1_check_ec_tmp_key(SSL_CONNECTION * s,unsigned long cid)1898 int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1899 {
1900 /* If not Suite B just need a shared group */
1901 if (!tls1_suiteb(s))
1902 return tls1_shared_group(s, 0) != 0;
1903 /*
1904 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1905 * curves permitted.
1906 */
1907 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1908 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1909 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1910 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1911
1912 return 0;
1913 }
1914
1915 /* Default sigalg schemes */
1916 static const uint16_t tls12_sigalgs[] = {
1917 TLSEXT_SIGALG_mldsa65,
1918 TLSEXT_SIGALG_mldsa87,
1919 TLSEXT_SIGALG_mldsa44,
1920 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1921 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1922 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1923 TLSEXT_SIGALG_ed25519,
1924 TLSEXT_SIGALG_ed448,
1925 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1926 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1927 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1928
1929 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1930 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1931 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1932 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1933 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1934 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1935
1936 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1937 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1938 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1939
1940 TLSEXT_SIGALG_ecdsa_sha224,
1941 TLSEXT_SIGALG_ecdsa_sha1,
1942
1943 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1944 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1945
1946 TLSEXT_SIGALG_dsa_sha224,
1947 TLSEXT_SIGALG_dsa_sha1,
1948
1949 TLSEXT_SIGALG_dsa_sha256,
1950 TLSEXT_SIGALG_dsa_sha384,
1951 TLSEXT_SIGALG_dsa_sha512,
1952
1953 #ifndef OPENSSL_NO_GOST
1954 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1955 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1956 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1957 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1958 TLSEXT_SIGALG_gostr34102001_gostr3411,
1959 #endif
1960 };
1961
1962
1963 static const uint16_t suiteb_sigalgs[] = {
1964 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1965 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1966 };
1967
1968 static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1969 {TLSEXT_SIGALG_ecdsa_secp256r1_sha256_name,
1970 "ECDSA+SHA256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1971 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1972 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1, 0,
1973 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1974 {TLSEXT_SIGALG_ecdsa_secp384r1_sha384_name,
1975 "ECDSA+SHA384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1976 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1977 NID_ecdsa_with_SHA384, NID_secp384r1, 1, 0,
1978 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1979 {TLSEXT_SIGALG_ecdsa_secp521r1_sha512_name,
1980 "ECDSA+SHA512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1981 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1982 NID_ecdsa_with_SHA512, NID_secp521r1, 1, 0,
1983 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1984
1985 {TLSEXT_SIGALG_ed25519_name,
1986 NULL, TLSEXT_SIGALG_ed25519,
1987 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1988 NID_undef, NID_undef, 1, 0,
1989 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1990 {TLSEXT_SIGALG_ed448_name,
1991 NULL, TLSEXT_SIGALG_ed448,
1992 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1993 NID_undef, NID_undef, 1, 0,
1994 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
1995
1996 {TLSEXT_SIGALG_ecdsa_sha224_name,
1997 "ECDSA+SHA224", TLSEXT_SIGALG_ecdsa_sha224,
1998 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1999 NID_ecdsa_with_SHA224, NID_undef, 1, 0,
2000 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2001 {TLSEXT_SIGALG_ecdsa_sha1_name,
2002 "ECDSA+SHA1", TLSEXT_SIGALG_ecdsa_sha1,
2003 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2004 NID_ecdsa_with_SHA1, NID_undef, 1, 0,
2005 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2006
2007 {TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_name,
2008 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256_alias,
2009 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
2010 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2011 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1, 0,
2012 TLS1_3_VERSION, 0, -1, -1},
2013 {TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_name,
2014 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384_alias,
2015 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
2016 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2017 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1, 0,
2018 TLS1_3_VERSION, 0, -1, -1},
2019 {TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_name,
2020 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512_alias,
2021 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
2022 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
2023 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1, 0,
2024 TLS1_3_VERSION, 0, -1, -1},
2025
2026 {TLSEXT_SIGALG_rsa_pss_rsae_sha256_name,
2027 "PSS+SHA256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
2028 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2029 NID_undef, NID_undef, 1, 0,
2030 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2031 {TLSEXT_SIGALG_rsa_pss_rsae_sha384_name,
2032 "PSS+SHA384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
2033 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2034 NID_undef, NID_undef, 1, 0,
2035 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2036 {TLSEXT_SIGALG_rsa_pss_rsae_sha512_name,
2037 "PSS+SHA512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
2038 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
2039 NID_undef, NID_undef, 1, 0,
2040 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2041
2042 {TLSEXT_SIGALG_rsa_pss_pss_sha256_name,
2043 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha256,
2044 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2045 NID_undef, NID_undef, 1, 0,
2046 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2047 {TLSEXT_SIGALG_rsa_pss_pss_sha384_name,
2048 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha384,
2049 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2050 NID_undef, NID_undef, 1, 0,
2051 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2052 {TLSEXT_SIGALG_rsa_pss_pss_sha512_name,
2053 NULL, TLSEXT_SIGALG_rsa_pss_pss_sha512,
2054 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
2055 NID_undef, NID_undef, 1, 0,
2056 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2057
2058 {TLSEXT_SIGALG_rsa_pkcs1_sha256_name,
2059 "RSA+SHA256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
2060 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2061 NID_sha256WithRSAEncryption, NID_undef, 1, 0,
2062 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2063 {TLSEXT_SIGALG_rsa_pkcs1_sha384_name,
2064 "RSA+SHA384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
2065 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2066 NID_sha384WithRSAEncryption, NID_undef, 1, 0,
2067 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2068 {TLSEXT_SIGALG_rsa_pkcs1_sha512_name,
2069 "RSA+SHA512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
2070 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2071 NID_sha512WithRSAEncryption, NID_undef, 1, 0,
2072 TLS1_2_VERSION, 0, DTLS1_2_VERSION, 0},
2073
2074 {TLSEXT_SIGALG_rsa_pkcs1_sha224_name,
2075 "RSA+SHA224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
2076 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2077 NID_sha224WithRSAEncryption, NID_undef, 1, 0,
2078 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2079 {TLSEXT_SIGALG_rsa_pkcs1_sha1_name,
2080 "RSA+SHA1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
2081 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
2082 NID_sha1WithRSAEncryption, NID_undef, 1, 0,
2083 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2084
2085 {TLSEXT_SIGALG_dsa_sha256_name,
2086 "DSA+SHA256", TLSEXT_SIGALG_dsa_sha256,
2087 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2088 NID_dsa_with_SHA256, NID_undef, 1, 0,
2089 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2090 {TLSEXT_SIGALG_dsa_sha384_name,
2091 "DSA+SHA384", TLSEXT_SIGALG_dsa_sha384,
2092 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2093 NID_undef, NID_undef, 1, 0,
2094 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2095 {TLSEXT_SIGALG_dsa_sha512_name,
2096 "DSA+SHA512", TLSEXT_SIGALG_dsa_sha512,
2097 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2098 NID_undef, NID_undef, 1, 0,
2099 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2100 {TLSEXT_SIGALG_dsa_sha224_name,
2101 "DSA+SHA224", TLSEXT_SIGALG_dsa_sha224,
2102 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2103 NID_undef, NID_undef, 1, 0,
2104 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2105 {TLSEXT_SIGALG_dsa_sha1_name,
2106 "DSA+SHA1", TLSEXT_SIGALG_dsa_sha1,
2107 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
2108 NID_dsaWithSHA1, NID_undef, 1, 0,
2109 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2110
2111 #ifndef OPENSSL_NO_GOST
2112 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2113 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2114 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
2115 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2116 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2117 NID_undef, NID_undef, 1, 0,
2118 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2119 {TLSEXT_SIGALG_gostr34102012_256_intrinsic_alias, /* RFC9189 */
2120 TLSEXT_SIGALG_gostr34102012_256_intrinsic_name,
2121 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
2122 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2123 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2124 NID_undef, NID_undef, 1, 0,
2125 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2126
2127 {TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256_name,
2128 NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
2129 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
2130 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
2131 NID_undef, NID_undef, 1, 0,
2132 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2133 {TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512_name,
2134 NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
2135 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
2136 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
2137 NID_undef, NID_undef, 1, 0,
2138 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2139 {TLSEXT_SIGALG_gostr34102001_gostr3411_name,
2140 NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
2141 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
2142 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
2143 NID_undef, NID_undef, 1, 0,
2144 TLS1_2_VERSION, TLS1_2_VERSION, DTLS1_2_VERSION, DTLS1_2_VERSION},
2145 #endif
2146 };
2147 /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
2148 static const SIGALG_LOOKUP legacy_rsa_sigalg = {
2149 "rsa_pkcs1_md5_sha1", NULL, 0,
2150 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
2151 EVP_PKEY_RSA, SSL_PKEY_RSA,
2152 NID_undef, NID_undef, 1, 0,
2153 TLS1_VERSION, TLS1_2_VERSION, DTLS1_VERSION, DTLS1_2_VERSION
2154 };
2155
2156 /*
2157 * Default signature algorithm values used if signature algorithms not present.
2158 * From RFC5246. Note: order must match certificate index order.
2159 */
2160 static const uint16_t tls_default_sigalg[] = {
2161 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
2162 0, /* SSL_PKEY_RSA_PSS_SIGN */
2163 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
2164 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
2165 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
2166 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
2167 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
2168 0, /* SSL_PKEY_ED25519 */
2169 0, /* SSL_PKEY_ED448 */
2170 };
2171
ssl_setup_sigalgs(SSL_CTX * ctx)2172 int ssl_setup_sigalgs(SSL_CTX *ctx)
2173 {
2174 size_t i, cache_idx, sigalgs_len, enabled;
2175 const SIGALG_LOOKUP *lu;
2176 SIGALG_LOOKUP *cache = NULL;
2177 uint16_t *tls12_sigalgs_list = NULL;
2178 EVP_PKEY *tmpkey = EVP_PKEY_new();
2179 int istls;
2180 int ret = 0;
2181
2182 if (ctx == NULL)
2183 goto err;
2184
2185 istls = !SSL_CTX_IS_DTLS(ctx);
2186
2187 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
2188
2189 cache = OPENSSL_zalloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
2190 if (cache == NULL || tmpkey == NULL)
2191 goto err;
2192
2193 tls12_sigalgs_list = OPENSSL_zalloc(sizeof(uint16_t) * sigalgs_len);
2194 if (tls12_sigalgs_list == NULL)
2195 goto err;
2196
2197 ERR_set_mark();
2198 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
2199 for (i = 0, lu = sigalg_lookup_tbl;
2200 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2201 EVP_PKEY_CTX *pctx;
2202
2203 cache[i] = *lu;
2204
2205 /*
2206 * Check hash is available.
2207 * This test is not perfect. A provider could have support
2208 * for a signature scheme, but not a particular hash. However the hash
2209 * could be available from some other loaded provider. In that case it
2210 * could be that the signature is available, and the hash is available
2211 * independently - but not as a combination. We ignore this for now.
2212 */
2213 if (lu->hash != NID_undef
2214 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
2215 cache[i].available = 0;
2216 continue;
2217 }
2218
2219 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2220 cache[i].available = 0;
2221 continue;
2222 }
2223 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
2224 /* If unable to create pctx we assume the sig algorithm is unavailable */
2225 if (pctx == NULL)
2226 cache[i].available = 0;
2227 EVP_PKEY_CTX_free(pctx);
2228 }
2229
2230 /* Now complete cache and tls12_sigalgs list with provider sig information */
2231 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
2232 for (i = 0; i < ctx->sigalg_list_len; i++) {
2233 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
2234 cache[cache_idx].name = si.name;
2235 cache[cache_idx].name12 = si.sigalg_name;
2236 cache[cache_idx].sigalg = si.code_point;
2237 tls12_sigalgs_list[cache_idx] = si.code_point;
2238 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
2239 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
2240 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
2241 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
2242 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
2243 cache[cache_idx].curve = NID_undef;
2244 cache[cache_idx].mintls = TLS1_3_VERSION;
2245 cache[cache_idx].maxtls = TLS1_3_VERSION;
2246 cache[cache_idx].mindtls = -1;
2247 cache[cache_idx].maxdtls = -1;
2248 /* Compatibility with TLS 1.3 is checked on load */
2249 cache[cache_idx].available = istls;
2250 cache[cache_idx].advertise = 0;
2251 cache_idx++;
2252 }
2253 ERR_pop_to_mark();
2254
2255 enabled = 0;
2256 for (i = 0; i < OSSL_NELEM(tls12_sigalgs); ++i) {
2257 SIGALG_LOOKUP *ent = cache;
2258 size_t j;
2259
2260 for (j = 0; j < sigalgs_len; ent++, j++) {
2261 if (ent->sigalg != tls12_sigalgs[i])
2262 continue;
2263 /* Dedup by marking cache entry as default enabled. */
2264 if (ent->available && !ent->advertise) {
2265 ent->advertise = 1;
2266 tls12_sigalgs_list[enabled++] = tls12_sigalgs[i];
2267 }
2268 break;
2269 }
2270 }
2271
2272 /* Append any provider sigalgs not yet handled */
2273 for (i = OSSL_NELEM(sigalg_lookup_tbl); i < sigalgs_len; ++i) {
2274 SIGALG_LOOKUP *ent = &cache[i];
2275
2276 if (ent->available && !ent->advertise)
2277 tls12_sigalgs_list[enabled++] = ent->sigalg;
2278 }
2279
2280 ctx->sigalg_lookup_cache = cache;
2281 ctx->sigalg_lookup_cache_len = sigalgs_len;
2282 ctx->tls12_sigalgs = tls12_sigalgs_list;
2283 ctx->tls12_sigalgs_len = enabled;
2284 cache = NULL;
2285 tls12_sigalgs_list = NULL;
2286
2287 ret = 1;
2288 err:
2289 OPENSSL_free(cache);
2290 OPENSSL_free(tls12_sigalgs_list);
2291 EVP_PKEY_free(tmpkey);
2292 return ret;
2293 }
2294
2295 #define SIGLEN_BUF_INCREMENT 100
2296
SSL_get1_builtin_sigalgs(OSSL_LIB_CTX * libctx)2297 char *SSL_get1_builtin_sigalgs(OSSL_LIB_CTX *libctx)
2298 {
2299 size_t i, maxretlen = SIGLEN_BUF_INCREMENT;
2300 const SIGALG_LOOKUP *lu;
2301 EVP_PKEY *tmpkey = EVP_PKEY_new();
2302 char *retval = OPENSSL_malloc(maxretlen);
2303
2304 if (retval == NULL)
2305 return NULL;
2306
2307 /* ensure retval string is NUL terminated */
2308 retval[0] = (char)0;
2309
2310 for (i = 0, lu = sigalg_lookup_tbl;
2311 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
2312 EVP_PKEY_CTX *pctx;
2313 int enabled = 1;
2314
2315 ERR_set_mark();
2316 /* Check hash is available in some provider. */
2317 if (lu->hash != NID_undef) {
2318 EVP_MD *hash = EVP_MD_fetch(libctx, OBJ_nid2ln(lu->hash), NULL);
2319
2320 /* If unable to create we assume the hash algorithm is unavailable */
2321 if (hash == NULL) {
2322 enabled = 0;
2323 ERR_pop_to_mark();
2324 continue;
2325 }
2326 EVP_MD_free(hash);
2327 }
2328
2329 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
2330 enabled = 0;
2331 ERR_pop_to_mark();
2332 continue;
2333 }
2334 pctx = EVP_PKEY_CTX_new_from_pkey(libctx, tmpkey, NULL);
2335 /* If unable to create pctx we assume the sig algorithm is unavailable */
2336 if (pctx == NULL)
2337 enabled = 0;
2338 ERR_pop_to_mark();
2339 EVP_PKEY_CTX_free(pctx);
2340
2341 if (enabled) {
2342 const char *sa = lu->name;
2343
2344 if (sa != NULL) {
2345 if (strlen(sa) + strlen(retval) + 1 >= maxretlen) {
2346 char *tmp;
2347
2348 maxretlen += SIGLEN_BUF_INCREMENT;
2349 tmp = OPENSSL_realloc(retval, maxretlen);
2350 if (tmp == NULL) {
2351 OPENSSL_free(retval);
2352 return NULL;
2353 }
2354 retval = tmp;
2355 }
2356 if (strlen(retval) > 0)
2357 OPENSSL_strlcat(retval, ":", maxretlen);
2358 OPENSSL_strlcat(retval, sa, maxretlen);
2359 } else {
2360 /* lu->name must not be NULL */
2361 ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
2362 }
2363 }
2364 }
2365
2366 EVP_PKEY_free(tmpkey);
2367 return retval;
2368 }
2369
2370 /* Lookup TLS signature algorithm */
tls1_lookup_sigalg(const SSL_CTX * ctx,uint16_t sigalg)2371 static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CTX *ctx,
2372 uint16_t sigalg)
2373 {
2374 size_t i;
2375 const SIGALG_LOOKUP *lu = ctx->sigalg_lookup_cache;
2376
2377 for (i = 0; i < ctx->sigalg_lookup_cache_len; lu++, i++) {
2378 if (lu->sigalg == sigalg) {
2379 if (!lu->available)
2380 return NULL;
2381 return lu;
2382 }
2383 }
2384 return NULL;
2385 }
2386
2387 /* Lookup hash: return 0 if invalid or not enabled */
tls1_lookup_md(SSL_CTX * ctx,const SIGALG_LOOKUP * lu,const EVP_MD ** pmd)2388 int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
2389 {
2390 const EVP_MD *md;
2391
2392 if (lu == NULL)
2393 return 0;
2394 /* lu->hash == NID_undef means no associated digest */
2395 if (lu->hash == NID_undef) {
2396 md = NULL;
2397 } else {
2398 md = ssl_md(ctx, lu->hash_idx);
2399 if (md == NULL)
2400 return 0;
2401 }
2402 if (pmd)
2403 *pmd = md;
2404 return 1;
2405 }
2406
2407 /*
2408 * Check if key is large enough to generate RSA-PSS signature.
2409 *
2410 * The key must greater than or equal to 2 * hash length + 2.
2411 * SHA512 has a hash length of 64 bytes, which is incompatible
2412 * with a 128 byte (1024 bit) key.
2413 */
2414 #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
rsa_pss_check_min_key_size(SSL_CTX * ctx,const EVP_PKEY * pkey,const SIGALG_LOOKUP * lu)2415 static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
2416 const SIGALG_LOOKUP *lu)
2417 {
2418 const EVP_MD *md;
2419
2420 if (pkey == NULL)
2421 return 0;
2422 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
2423 return 0;
2424 if (EVP_MD_get_size(md) <= 0)
2425 return 0;
2426 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
2427 return 0;
2428 return 1;
2429 }
2430
2431 /*
2432 * Returns a signature algorithm when the peer did not send a list of supported
2433 * signature algorithms. The signature algorithm is fixed for the certificate
2434 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
2435 * certificate type from |s| will be used.
2436 * Returns the signature algorithm to use, or NULL on error.
2437 */
tls1_get_legacy_sigalg(const SSL_CONNECTION * s,int idx)2438 static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
2439 int idx)
2440 {
2441 if (idx == -1) {
2442 if (s->server) {
2443 size_t i;
2444
2445 /* Work out index corresponding to ciphersuite */
2446 for (i = 0; i < s->ssl_pkey_num; i++) {
2447 const SSL_CERT_LOOKUP *clu
2448 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
2449
2450 if (clu == NULL)
2451 continue;
2452 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
2453 idx = i;
2454 break;
2455 }
2456 }
2457
2458 /*
2459 * Some GOST ciphersuites allow more than one signature algorithms
2460 * */
2461 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
2462 int real_idx;
2463
2464 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
2465 real_idx--) {
2466 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2467 idx = real_idx;
2468 break;
2469 }
2470 }
2471 }
2472 /*
2473 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
2474 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
2475 */
2476 else if (idx == SSL_PKEY_GOST12_256) {
2477 int real_idx;
2478
2479 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
2480 real_idx--) {
2481 if (s->cert->pkeys[real_idx].privatekey != NULL) {
2482 idx = real_idx;
2483 break;
2484 }
2485 }
2486 }
2487 } else {
2488 idx = s->cert->key - s->cert->pkeys;
2489 }
2490 }
2491 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
2492 return NULL;
2493
2494 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
2495 const SIGALG_LOOKUP *lu =
2496 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
2497 tls_default_sigalg[idx]);
2498
2499 if (lu == NULL)
2500 return NULL;
2501 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
2502 return NULL;
2503 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2504 return NULL;
2505 return lu;
2506 }
2507 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
2508 return NULL;
2509 return &legacy_rsa_sigalg;
2510 }
2511 /* Set peer sigalg based key type */
tls1_set_peer_legacy_sigalg(SSL_CONNECTION * s,const EVP_PKEY * pkey)2512 int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
2513 {
2514 size_t idx;
2515 const SIGALG_LOOKUP *lu;
2516
2517 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
2518 return 0;
2519 lu = tls1_get_legacy_sigalg(s, idx);
2520 if (lu == NULL)
2521 return 0;
2522 s->s3.tmp.peer_sigalg = lu;
2523 return 1;
2524 }
2525
tls12_get_psigalgs(SSL_CONNECTION * s,int sent,const uint16_t ** psigs)2526 size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
2527 {
2528 /*
2529 * If Suite B mode use Suite B sigalgs only, ignore any other
2530 * preferences.
2531 */
2532 switch (tls1_suiteb(s)) {
2533 case SSL_CERT_FLAG_SUITEB_128_LOS:
2534 *psigs = suiteb_sigalgs;
2535 return OSSL_NELEM(suiteb_sigalgs);
2536
2537 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
2538 *psigs = suiteb_sigalgs;
2539 return 1;
2540
2541 case SSL_CERT_FLAG_SUITEB_192_LOS:
2542 *psigs = suiteb_sigalgs + 1;
2543 return 1;
2544 }
2545 /*
2546 * We use client_sigalgs (if not NULL) if we're a server
2547 * and sending a certificate request or if we're a client and
2548 * determining which shared algorithm to use.
2549 */
2550 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
2551 *psigs = s->cert->client_sigalgs;
2552 return s->cert->client_sigalgslen;
2553 } else if (s->cert->conf_sigalgs) {
2554 *psigs = s->cert->conf_sigalgs;
2555 return s->cert->conf_sigalgslen;
2556 } else {
2557 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2558 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2559 }
2560 }
2561
2562 /*
2563 * Called by servers only. Checks that we have a sig alg that supports the
2564 * specified EC curve.
2565 */
tls_check_sigalg_curve(const SSL_CONNECTION * s,int curve)2566 int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
2567 {
2568 const uint16_t *sigs;
2569 size_t siglen, i;
2570
2571 if (s->cert->conf_sigalgs) {
2572 sigs = s->cert->conf_sigalgs;
2573 siglen = s->cert->conf_sigalgslen;
2574 } else {
2575 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
2576 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
2577 }
2578
2579 for (i = 0; i < siglen; i++) {
2580 const SIGALG_LOOKUP *lu =
2581 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sigs[i]);
2582
2583 if (lu == NULL)
2584 continue;
2585 if (lu->sig == EVP_PKEY_EC
2586 && lu->curve != NID_undef
2587 && curve == lu->curve)
2588 return 1;
2589 }
2590
2591 return 0;
2592 }
2593
2594 /*
2595 * Return the number of security bits for the signature algorithm, or 0 on
2596 * error.
2597 */
sigalg_security_bits(SSL_CTX * ctx,const SIGALG_LOOKUP * lu)2598 static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
2599 {
2600 const EVP_MD *md = NULL;
2601 int secbits = 0;
2602
2603 if (!tls1_lookup_md(ctx, lu, &md))
2604 return 0;
2605 if (md != NULL)
2606 {
2607 int md_type = EVP_MD_get_type(md);
2608
2609 /* Security bits: half digest bits */
2610 secbits = EVP_MD_get_size(md) * 4;
2611 if (secbits <= 0)
2612 return 0;
2613 /*
2614 * SHA1 and MD5 are known to be broken. Reduce security bits so that
2615 * they're no longer accepted at security level 1. The real values don't
2616 * really matter as long as they're lower than 80, which is our
2617 * security level 1.
2618 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
2619 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
2620 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
2621 * puts a chosen-prefix attack for MD5 at 2^39.
2622 */
2623 if (md_type == NID_sha1)
2624 secbits = 64;
2625 else if (md_type == NID_md5_sha1)
2626 secbits = 67;
2627 else if (md_type == NID_md5)
2628 secbits = 39;
2629 } else {
2630 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
2631 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
2632 secbits = 128;
2633 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
2634 secbits = 224;
2635 }
2636 /*
2637 * For provider-based sigalgs we have secbits information available
2638 * in the (provider-loaded) sigalg_list structure
2639 */
2640 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
2641 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
2642 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
2643 }
2644 return secbits;
2645 }
2646
tls_sigalg_compat(SSL_CONNECTION * sc,const SIGALG_LOOKUP * lu)2647 static int tls_sigalg_compat(SSL_CONNECTION *sc, const SIGALG_LOOKUP *lu)
2648 {
2649 int minversion, maxversion;
2650 int minproto, maxproto;
2651
2652 if (!lu->available)
2653 return 0;
2654
2655 if (SSL_CONNECTION_IS_DTLS(sc)) {
2656 if (sc->ssl.method->version == DTLS_ANY_VERSION) {
2657 minproto = sc->min_proto_version;
2658 maxproto = sc->max_proto_version;
2659 } else {
2660 maxproto = minproto = sc->version;
2661 }
2662 minversion = lu->mindtls;
2663 maxversion = lu->maxdtls;
2664 } else {
2665 if (sc->ssl.method->version == TLS_ANY_VERSION) {
2666 minproto = sc->min_proto_version;
2667 maxproto = sc->max_proto_version;
2668 } else {
2669 maxproto = minproto = sc->version;
2670 }
2671 minversion = lu->mintls;
2672 maxversion = lu->maxtls;
2673 }
2674 if (minversion == -1 || maxversion == -1
2675 || (minversion != 0 && maxproto != 0
2676 && ssl_version_cmp(sc, minversion, maxproto) > 0)
2677 || (maxversion != 0 && minproto != 0
2678 && ssl_version_cmp(sc, maxversion, minproto) < 0)
2679 || !tls12_sigalg_allowed(sc, SSL_SECOP_SIGALG_SUPPORTED, lu))
2680 return 0;
2681 return 1;
2682 }
2683
2684 /*
2685 * Check signature algorithm is consistent with sent supported signature
2686 * algorithms and if so set relevant digest and signature scheme in
2687 * s.
2688 */
tls12_check_peer_sigalg(SSL_CONNECTION * s,uint16_t sig,EVP_PKEY * pkey)2689 int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
2690 {
2691 const uint16_t *sent_sigs;
2692 const EVP_MD *md = NULL;
2693 char sigalgstr[2];
2694 size_t sent_sigslen, i, cidx;
2695 int pkeyid = -1;
2696 const SIGALG_LOOKUP *lu;
2697 int secbits = 0;
2698
2699 pkeyid = EVP_PKEY_get_id(pkey);
2700
2701 if (SSL_CONNECTION_IS_TLS13(s)) {
2702 /* Disallow DSA for TLS 1.3 */
2703 if (pkeyid == EVP_PKEY_DSA) {
2704 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2705 return 0;
2706 }
2707 /* Only allow PSS for TLS 1.3 */
2708 if (pkeyid == EVP_PKEY_RSA)
2709 pkeyid = EVP_PKEY_RSA_PSS;
2710 }
2711
2712 /* Is this code point available and compatible with the protocol */
2713 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), sig);
2714 if (lu == NULL || !tls_sigalg_compat(s, lu)) {
2715 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2716 return 0;
2717 }
2718
2719 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
2720 if (pkeyid == EVP_PKEY_KEYMGMT)
2721 pkeyid = lu->sig;
2722
2723 /* Should never happen */
2724 if (pkeyid == -1) {
2725 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2726 return -1;
2727 }
2728
2729 /*
2730 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
2731 * is consistent with signature: RSA keys can be used for RSA-PSS
2732 */
2733 if ((SSL_CONNECTION_IS_TLS13(s)
2734 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
2735 || (pkeyid != lu->sig
2736 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
2737 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2738 return 0;
2739 }
2740 /* Check the sigalg is consistent with the key OID */
2741 if (!ssl_cert_lookup_by_nid(
2742 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
2743 &cidx, SSL_CONNECTION_GET_CTX(s))
2744 || lu->sig_idx != (int)cidx) {
2745 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
2746 return 0;
2747 }
2748
2749 if (pkeyid == EVP_PKEY_EC) {
2750
2751 /* Check point compression is permitted */
2752 if (!tls1_check_pkey_comp(s, pkey)) {
2753 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
2754 SSL_R_ILLEGAL_POINT_COMPRESSION);
2755 return 0;
2756 }
2757
2758 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
2759 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
2760 int curve = ssl_get_EC_curve_nid(pkey);
2761
2762 if (lu->curve != NID_undef && curve != lu->curve) {
2763 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2764 return 0;
2765 }
2766 }
2767 if (!SSL_CONNECTION_IS_TLS13(s)) {
2768 /* Check curve matches extensions */
2769 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
2770 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
2771 return 0;
2772 }
2773 if (tls1_suiteb(s)) {
2774 /* Check sigalg matches a permissible Suite B value */
2775 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
2776 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
2777 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2778 SSL_R_WRONG_SIGNATURE_TYPE);
2779 return 0;
2780 }
2781 }
2782 }
2783 } else if (tls1_suiteb(s)) {
2784 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2785 return 0;
2786 }
2787
2788 /* Check signature matches a type we sent */
2789 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2790 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
2791 if (sig == *sent_sigs)
2792 break;
2793 }
2794 /* Allow fallback to SHA1 if not strict mode */
2795 if (i == sent_sigslen && (lu->hash != NID_sha1
2796 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
2797 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2798 return 0;
2799 }
2800 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
2801 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
2802 return 0;
2803 }
2804 /*
2805 * Make sure security callback allows algorithm. For historical
2806 * reasons we have to pass the sigalg as a two byte char array.
2807 */
2808 sigalgstr[0] = (sig >> 8) & 0xff;
2809 sigalgstr[1] = sig & 0xff;
2810 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2811 if (secbits == 0 ||
2812 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
2813 md != NULL ? EVP_MD_get_type(md) : NID_undef,
2814 (void *)sigalgstr)) {
2815 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
2816 return 0;
2817 }
2818 /* Store the sigalg the peer uses */
2819 s->s3.tmp.peer_sigalg = lu;
2820 return 1;
2821 }
2822
SSL_get_peer_signature_type_nid(const SSL * s,int * pnid)2823 int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2824 {
2825 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2826
2827 if (sc == NULL)
2828 return 0;
2829
2830 if (sc->s3.tmp.peer_sigalg == NULL)
2831 return 0;
2832 *pnid = sc->s3.tmp.peer_sigalg->sig;
2833 return 1;
2834 }
2835
SSL_get_signature_type_nid(const SSL * s,int * pnid)2836 int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2837 {
2838 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2839
2840 if (sc == NULL)
2841 return 0;
2842
2843 if (sc->s3.tmp.sigalg == NULL)
2844 return 0;
2845 *pnid = sc->s3.tmp.sigalg->sig;
2846 return 1;
2847 }
2848
2849 /*
2850 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2851 * supported, doesn't appear in supported signature algorithms, isn't supported
2852 * by the enabled protocol versions or by the security level.
2853 *
2854 * This function should only be used for checking which ciphers are supported
2855 * by the client.
2856 *
2857 * Call ssl_cipher_disabled() to check that it's enabled or not.
2858 */
ssl_set_client_disabled(SSL_CONNECTION * s)2859 int ssl_set_client_disabled(SSL_CONNECTION *s)
2860 {
2861 s->s3.tmp.mask_a = 0;
2862 s->s3.tmp.mask_k = 0;
2863 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2864 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2865 &s->s3.tmp.max_ver, NULL) != 0)
2866 return 0;
2867 #ifndef OPENSSL_NO_PSK
2868 /* with PSK there must be client callback set */
2869 if (!s->psk_client_callback) {
2870 s->s3.tmp.mask_a |= SSL_aPSK;
2871 s->s3.tmp.mask_k |= SSL_PSK;
2872 }
2873 #endif /* OPENSSL_NO_PSK */
2874 #ifndef OPENSSL_NO_SRP
2875 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2876 s->s3.tmp.mask_a |= SSL_aSRP;
2877 s->s3.tmp.mask_k |= SSL_kSRP;
2878 }
2879 #endif
2880 return 1;
2881 }
2882
2883 /*
2884 * ssl_cipher_disabled - check that a cipher is disabled or not
2885 * @s: SSL connection that you want to use the cipher on
2886 * @c: cipher to check
2887 * @op: Security check that you want to do
2888 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2889 *
2890 * Returns 1 when it's disabled, 0 when enabled.
2891 */
ssl_cipher_disabled(const SSL_CONNECTION * s,const SSL_CIPHER * c,int op,int ecdhe)2892 int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2893 int op, int ecdhe)
2894 {
2895 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2896 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2897
2898 if (c->algorithm_mkey & s->s3.tmp.mask_k
2899 || c->algorithm_auth & s->s3.tmp.mask_a)
2900 return 1;
2901 if (s->s3.tmp.max_ver == 0)
2902 return 1;
2903
2904 if (SSL_IS_QUIC_INT_HANDSHAKE(s))
2905 /* For QUIC, only allow these ciphersuites. */
2906 switch (SSL_CIPHER_get_id(c)) {
2907 case TLS1_3_CK_AES_128_GCM_SHA256:
2908 case TLS1_3_CK_AES_256_GCM_SHA384:
2909 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2910 break;
2911 default:
2912 return 1;
2913 }
2914
2915 /*
2916 * For historical reasons we will allow ECHDE to be selected by a server
2917 * in SSLv3 if we are a client
2918 */
2919 if (minversion == TLS1_VERSION
2920 && ecdhe
2921 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2922 minversion = SSL3_VERSION;
2923
2924 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2925 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2926 return 1;
2927
2928 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2929 }
2930
tls_use_ticket(SSL_CONNECTION * s)2931 int tls_use_ticket(SSL_CONNECTION *s)
2932 {
2933 if ((s->options & SSL_OP_NO_TICKET))
2934 return 0;
2935 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2936 }
2937
tls1_set_server_sigalgs(SSL_CONNECTION * s)2938 int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2939 {
2940 size_t i;
2941
2942 /* Clear any shared signature algorithms */
2943 OPENSSL_free(s->shared_sigalgs);
2944 s->shared_sigalgs = NULL;
2945 s->shared_sigalgslen = 0;
2946
2947 /* Clear certificate validity flags */
2948 if (s->s3.tmp.valid_flags)
2949 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2950 else
2951 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2952 if (s->s3.tmp.valid_flags == NULL)
2953 return 0;
2954 /*
2955 * If peer sent no signature algorithms check to see if we support
2956 * the default algorithm for each certificate type
2957 */
2958 if (s->s3.tmp.peer_cert_sigalgs == NULL
2959 && s->s3.tmp.peer_sigalgs == NULL) {
2960 const uint16_t *sent_sigs;
2961 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2962
2963 for (i = 0; i < s->ssl_pkey_num; i++) {
2964 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2965 size_t j;
2966
2967 if (lu == NULL)
2968 continue;
2969 /* Check default matches a type we sent */
2970 for (j = 0; j < sent_sigslen; j++) {
2971 if (lu->sigalg == sent_sigs[j]) {
2972 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2973 break;
2974 }
2975 }
2976 }
2977 return 1;
2978 }
2979
2980 if (!tls1_process_sigalgs(s)) {
2981 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2982 return 0;
2983 }
2984 if (s->shared_sigalgs != NULL)
2985 return 1;
2986
2987 /* Fatal error if no shared signature algorithms */
2988 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2989 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2990 return 0;
2991 }
2992
2993 /*-
2994 * Gets the ticket information supplied by the client if any.
2995 *
2996 * hello: The parsed ClientHello data
2997 * ret: (output) on return, if a ticket was decrypted, then this is set to
2998 * point to the resulting session.
2999 */
tls_get_ticket_from_client(SSL_CONNECTION * s,CLIENTHELLO_MSG * hello,SSL_SESSION ** ret)3000 SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
3001 CLIENTHELLO_MSG *hello,
3002 SSL_SESSION **ret)
3003 {
3004 size_t size;
3005 RAW_EXTENSION *ticketext;
3006
3007 *ret = NULL;
3008 s->ext.ticket_expected = 0;
3009
3010 /*
3011 * If tickets disabled or not supported by the protocol version
3012 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
3013 * resumption.
3014 */
3015 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
3016 return SSL_TICKET_NONE;
3017
3018 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
3019 if (!ticketext->present)
3020 return SSL_TICKET_NONE;
3021
3022 size = PACKET_remaining(&ticketext->data);
3023
3024 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
3025 hello->session_id, hello->session_id_len, ret);
3026 }
3027
3028 /*-
3029 * tls_decrypt_ticket attempts to decrypt a session ticket.
3030 *
3031 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
3032 * expecting a pre-shared key ciphersuite, in which case we have no use for
3033 * session tickets and one will never be decrypted, nor will
3034 * s->ext.ticket_expected be set to 1.
3035 *
3036 * Side effects:
3037 * Sets s->ext.ticket_expected to 1 if the server will have to issue
3038 * a new session ticket to the client because the client indicated support
3039 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
3040 * a session ticket or we couldn't use the one it gave us, or if
3041 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
3042 * Otherwise, s->ext.ticket_expected is set to 0.
3043 *
3044 * etick: points to the body of the session ticket extension.
3045 * eticklen: the length of the session tickets extension.
3046 * sess_id: points at the session ID.
3047 * sesslen: the length of the session ID.
3048 * psess: (output) on return, if a ticket was decrypted, then this is set to
3049 * point to the resulting session.
3050 */
tls_decrypt_ticket(SSL_CONNECTION * s,const unsigned char * etick,size_t eticklen,const unsigned char * sess_id,size_t sesslen,SSL_SESSION ** psess)3051 SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
3052 const unsigned char *etick,
3053 size_t eticklen,
3054 const unsigned char *sess_id,
3055 size_t sesslen, SSL_SESSION **psess)
3056 {
3057 SSL_SESSION *sess = NULL;
3058 unsigned char *sdec;
3059 const unsigned char *p;
3060 int slen, ivlen, renew_ticket = 0, declen;
3061 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
3062 size_t mlen;
3063 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
3064 SSL_HMAC *hctx = NULL;
3065 EVP_CIPHER_CTX *ctx = NULL;
3066 SSL_CTX *tctx = s->session_ctx;
3067 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3068
3069 if (eticklen == 0) {
3070 /*
3071 * The client will accept a ticket but doesn't currently have
3072 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
3073 */
3074 ret = SSL_TICKET_EMPTY;
3075 goto end;
3076 }
3077 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
3078 /*
3079 * Indicate that the ticket couldn't be decrypted rather than
3080 * generating the session from ticket now, trigger
3081 * abbreviated handshake based on external mechanism to
3082 * calculate the master secret later.
3083 */
3084 ret = SSL_TICKET_NO_DECRYPT;
3085 goto end;
3086 }
3087
3088 /* Need at least keyname + iv */
3089 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
3090 ret = SSL_TICKET_NO_DECRYPT;
3091 goto end;
3092 }
3093
3094 /* Initialize session ticket encryption and HMAC contexts */
3095 hctx = ssl_hmac_new(tctx);
3096 if (hctx == NULL) {
3097 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3098 goto end;
3099 }
3100 ctx = EVP_CIPHER_CTX_new();
3101 if (ctx == NULL) {
3102 ret = SSL_TICKET_FATAL_ERR_MALLOC;
3103 goto end;
3104 }
3105 #ifndef OPENSSL_NO_DEPRECATED_3_0
3106 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
3107 #else
3108 if (tctx->ext.ticket_key_evp_cb != NULL)
3109 #endif
3110 {
3111 unsigned char *nctick = (unsigned char *)etick;
3112 int rv = 0;
3113
3114 if (tctx->ext.ticket_key_evp_cb != NULL)
3115 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_USER_SSL(s),
3116 nctick,
3117 nctick + TLSEXT_KEYNAME_LENGTH,
3118 ctx,
3119 ssl_hmac_get0_EVP_MAC_CTX(hctx),
3120 0);
3121 #ifndef OPENSSL_NO_DEPRECATED_3_0
3122 else if (tctx->ext.ticket_key_cb != NULL)
3123 /* if 0 is returned, write an empty ticket */
3124 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_USER_SSL(s), nctick,
3125 nctick + TLSEXT_KEYNAME_LENGTH,
3126 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
3127 #endif
3128 if (rv < 0) {
3129 ret = SSL_TICKET_FATAL_ERR_OTHER;
3130 goto end;
3131 }
3132 if (rv == 0) {
3133 ret = SSL_TICKET_NO_DECRYPT;
3134 goto end;
3135 }
3136 if (rv == 2)
3137 renew_ticket = 1;
3138 } else {
3139 EVP_CIPHER *aes256cbc = NULL;
3140
3141 /* Check key name matches */
3142 if (memcmp(etick, tctx->ext.tick_key_name,
3143 TLSEXT_KEYNAME_LENGTH) != 0) {
3144 ret = SSL_TICKET_NO_DECRYPT;
3145 goto end;
3146 }
3147
3148 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
3149 sctx->propq);
3150 if (aes256cbc == NULL
3151 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
3152 sizeof(tctx->ext.secure->tick_hmac_key),
3153 "SHA256") <= 0
3154 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
3155 tctx->ext.secure->tick_aes_key,
3156 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
3157 EVP_CIPHER_free(aes256cbc);
3158 ret = SSL_TICKET_FATAL_ERR_OTHER;
3159 goto end;
3160 }
3161 EVP_CIPHER_free(aes256cbc);
3162 if (SSL_CONNECTION_IS_TLS13(s))
3163 renew_ticket = 1;
3164 }
3165 /*
3166 * Attempt to process session ticket, first conduct sanity and integrity
3167 * checks on ticket.
3168 */
3169 mlen = ssl_hmac_size(hctx);
3170 if (mlen == 0) {
3171 ret = SSL_TICKET_FATAL_ERR_OTHER;
3172 goto end;
3173 }
3174
3175 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
3176 if (ivlen < 0) {
3177 ret = SSL_TICKET_FATAL_ERR_OTHER;
3178 goto end;
3179 }
3180
3181 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
3182 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
3183 ret = SSL_TICKET_NO_DECRYPT;
3184 goto end;
3185 }
3186 eticklen -= mlen;
3187 /* Check HMAC of encrypted ticket */
3188 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
3189 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
3190 ret = SSL_TICKET_FATAL_ERR_OTHER;
3191 goto end;
3192 }
3193
3194 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
3195 ret = SSL_TICKET_NO_DECRYPT;
3196 goto end;
3197 }
3198 /* Attempt to decrypt session data */
3199 /* Move p after IV to start of encrypted ticket, update length */
3200 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
3201 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
3202 sdec = OPENSSL_malloc(eticklen);
3203 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
3204 (int)eticklen) <= 0) {
3205 OPENSSL_free(sdec);
3206 ret = SSL_TICKET_FATAL_ERR_OTHER;
3207 goto end;
3208 }
3209 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
3210 OPENSSL_free(sdec);
3211 ret = SSL_TICKET_NO_DECRYPT;
3212 goto end;
3213 }
3214 slen += declen;
3215 p = sdec;
3216
3217 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
3218 slen -= p - sdec;
3219 OPENSSL_free(sdec);
3220 if (sess) {
3221 /* Some additional consistency checks */
3222 if (slen != 0) {
3223 SSL_SESSION_free(sess);
3224 sess = NULL;
3225 ret = SSL_TICKET_NO_DECRYPT;
3226 goto end;
3227 }
3228 /*
3229 * The session ID, if non-empty, is used by some clients to detect
3230 * that the ticket has been accepted. So we copy it to the session
3231 * structure. If it is empty set length to zero as required by
3232 * standard.
3233 */
3234 if (sesslen) {
3235 memcpy(sess->session_id, sess_id, sesslen);
3236 sess->session_id_length = sesslen;
3237 }
3238 if (renew_ticket)
3239 ret = SSL_TICKET_SUCCESS_RENEW;
3240 else
3241 ret = SSL_TICKET_SUCCESS;
3242 goto end;
3243 }
3244 ERR_clear_error();
3245 /*
3246 * For session parse failure, indicate that we need to send a new ticket.
3247 */
3248 ret = SSL_TICKET_NO_DECRYPT;
3249
3250 end:
3251 EVP_CIPHER_CTX_free(ctx);
3252 ssl_hmac_free(hctx);
3253
3254 /*
3255 * If set, the decrypt_ticket_cb() is called unless a fatal error was
3256 * detected above. The callback is responsible for checking |ret| before it
3257 * performs any action
3258 */
3259 if (s->session_ctx->decrypt_ticket_cb != NULL
3260 && (ret == SSL_TICKET_EMPTY
3261 || ret == SSL_TICKET_NO_DECRYPT
3262 || ret == SSL_TICKET_SUCCESS
3263 || ret == SSL_TICKET_SUCCESS_RENEW)) {
3264 size_t keyname_len = eticklen;
3265 int retcb;
3266
3267 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
3268 keyname_len = TLSEXT_KEYNAME_LENGTH;
3269 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
3270 sess, etick, keyname_len,
3271 ret,
3272 s->session_ctx->ticket_cb_data);
3273 switch (retcb) {
3274 case SSL_TICKET_RETURN_ABORT:
3275 ret = SSL_TICKET_FATAL_ERR_OTHER;
3276 break;
3277
3278 case SSL_TICKET_RETURN_IGNORE:
3279 ret = SSL_TICKET_NONE;
3280 SSL_SESSION_free(sess);
3281 sess = NULL;
3282 break;
3283
3284 case SSL_TICKET_RETURN_IGNORE_RENEW:
3285 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
3286 ret = SSL_TICKET_NO_DECRYPT;
3287 /* else the value of |ret| will already do the right thing */
3288 SSL_SESSION_free(sess);
3289 sess = NULL;
3290 break;
3291
3292 case SSL_TICKET_RETURN_USE:
3293 case SSL_TICKET_RETURN_USE_RENEW:
3294 if (ret != SSL_TICKET_SUCCESS
3295 && ret != SSL_TICKET_SUCCESS_RENEW)
3296 ret = SSL_TICKET_FATAL_ERR_OTHER;
3297 else if (retcb == SSL_TICKET_RETURN_USE)
3298 ret = SSL_TICKET_SUCCESS;
3299 else
3300 ret = SSL_TICKET_SUCCESS_RENEW;
3301 break;
3302
3303 default:
3304 ret = SSL_TICKET_FATAL_ERR_OTHER;
3305 }
3306 }
3307
3308 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
3309 switch (ret) {
3310 case SSL_TICKET_NO_DECRYPT:
3311 case SSL_TICKET_SUCCESS_RENEW:
3312 case SSL_TICKET_EMPTY:
3313 s->ext.ticket_expected = 1;
3314 }
3315 }
3316
3317 *psess = sess;
3318
3319 return ret;
3320 }
3321
3322 /* Check to see if a signature algorithm is allowed */
tls12_sigalg_allowed(const SSL_CONNECTION * s,int op,const SIGALG_LOOKUP * lu)3323 static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
3324 const SIGALG_LOOKUP *lu)
3325 {
3326 unsigned char sigalgstr[2];
3327 int secbits;
3328
3329 if (lu == NULL || !lu->available)
3330 return 0;
3331 /* DSA is not allowed in TLS 1.3 */
3332 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
3333 return 0;
3334 /*
3335 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
3336 * spec
3337 */
3338 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
3339 && s->s3.tmp.min_ver >= TLS1_3_VERSION
3340 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
3341 || lu->hash_idx == SSL_MD_MD5_IDX
3342 || lu->hash_idx == SSL_MD_SHA224_IDX))
3343 return 0;
3344
3345 /* See if public key algorithm allowed */
3346 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
3347 return 0;
3348
3349 if (lu->sig == NID_id_GostR3410_2012_256
3350 || lu->sig == NID_id_GostR3410_2012_512
3351 || lu->sig == NID_id_GostR3410_2001) {
3352 /* We never allow GOST sig algs on the server with TLSv1.3 */
3353 if (s->server && SSL_CONNECTION_IS_TLS13(s))
3354 return 0;
3355 if (!s->server
3356 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
3357 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
3358 int i, num;
3359 STACK_OF(SSL_CIPHER) *sk;
3360
3361 /*
3362 * We're a client that could negotiate TLSv1.3. We only allow GOST
3363 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
3364 * ciphersuites enabled.
3365 */
3366
3367 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
3368 return 0;
3369
3370 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
3371 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
3372 for (i = 0; i < num; i++) {
3373 const SSL_CIPHER *c;
3374
3375 c = sk_SSL_CIPHER_value(sk, i);
3376 /* Skip disabled ciphers */
3377 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
3378 continue;
3379
3380 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
3381 break;
3382 }
3383 if (i == num)
3384 return 0;
3385 }
3386 }
3387
3388 /* Finally see if security callback allows it */
3389 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
3390 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
3391 sigalgstr[1] = lu->sigalg & 0xff;
3392 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
3393 }
3394
3395 /*
3396 * Get a mask of disabled public key algorithms based on supported signature
3397 * algorithms. For example if no signature algorithm supports RSA then RSA is
3398 * disabled.
3399 */
3400
ssl_set_sig_mask(uint32_t * pmask_a,SSL_CONNECTION * s,int op)3401 void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
3402 {
3403 const uint16_t *sigalgs;
3404 size_t i, sigalgslen;
3405 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
3406 /*
3407 * Go through all signature algorithms seeing if we support any
3408 * in disabled_mask.
3409 */
3410 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
3411 for (i = 0; i < sigalgslen; i++, sigalgs++) {
3412 const SIGALG_LOOKUP *lu =
3413 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *sigalgs);
3414 const SSL_CERT_LOOKUP *clu;
3415
3416 if (lu == NULL)
3417 continue;
3418
3419 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
3420 SSL_CONNECTION_GET_CTX(s));
3421 if (clu == NULL)
3422 continue;
3423
3424 /* If algorithm is disabled see if we can enable it */
3425 if ((clu->amask & disabled_mask) != 0
3426 && tls12_sigalg_allowed(s, op, lu))
3427 disabled_mask &= ~clu->amask;
3428 }
3429 *pmask_a |= disabled_mask;
3430 }
3431
tls12_copy_sigalgs(SSL_CONNECTION * s,WPACKET * pkt,const uint16_t * psig,size_t psiglen)3432 int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
3433 const uint16_t *psig, size_t psiglen)
3434 {
3435 size_t i;
3436 int rv = 0;
3437
3438 for (i = 0; i < psiglen; i++, psig++) {
3439 const SIGALG_LOOKUP *lu =
3440 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *psig);
3441
3442 if (lu == NULL || !tls_sigalg_compat(s, lu))
3443 continue;
3444 if (!WPACKET_put_bytes_u16(pkt, *psig))
3445 return 0;
3446 /*
3447 * If TLS 1.3 must have at least one valid TLS 1.3 message
3448 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
3449 */
3450 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
3451 || (lu->sig != EVP_PKEY_RSA
3452 && lu->hash != NID_sha1
3453 && lu->hash != NID_sha224)))
3454 rv = 1;
3455 }
3456 if (rv == 0)
3457 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3458 return rv;
3459 }
3460
3461 /* Given preference and allowed sigalgs set shared sigalgs */
tls12_shared_sigalgs(SSL_CONNECTION * s,const SIGALG_LOOKUP ** shsig,const uint16_t * pref,size_t preflen,const uint16_t * allow,size_t allowlen)3462 static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
3463 const SIGALG_LOOKUP **shsig,
3464 const uint16_t *pref, size_t preflen,
3465 const uint16_t *allow, size_t allowlen)
3466 {
3467 const uint16_t *ptmp, *atmp;
3468 size_t i, j, nmatch = 0;
3469 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
3470 const SIGALG_LOOKUP *lu =
3471 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *ptmp);
3472
3473 /* Skip disabled hashes or signature algorithms */
3474 if (lu == NULL
3475 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
3476 continue;
3477 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
3478 if (*ptmp == *atmp) {
3479 nmatch++;
3480 if (shsig)
3481 *shsig++ = lu;
3482 break;
3483 }
3484 }
3485 }
3486 return nmatch;
3487 }
3488
3489 /* Set shared signature algorithms for SSL structures */
tls1_set_shared_sigalgs(SSL_CONNECTION * s)3490 static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
3491 {
3492 const uint16_t *pref, *allow, *conf;
3493 size_t preflen, allowlen, conflen;
3494 size_t nmatch;
3495 const SIGALG_LOOKUP **salgs = NULL;
3496 CERT *c = s->cert;
3497 unsigned int is_suiteb = tls1_suiteb(s);
3498
3499 OPENSSL_free(s->shared_sigalgs);
3500 s->shared_sigalgs = NULL;
3501 s->shared_sigalgslen = 0;
3502 /* If client use client signature algorithms if not NULL */
3503 if (!s->server && c->client_sigalgs && !is_suiteb) {
3504 conf = c->client_sigalgs;
3505 conflen = c->client_sigalgslen;
3506 } else if (c->conf_sigalgs && !is_suiteb) {
3507 conf = c->conf_sigalgs;
3508 conflen = c->conf_sigalgslen;
3509 } else
3510 conflen = tls12_get_psigalgs(s, 0, &conf);
3511 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
3512 pref = conf;
3513 preflen = conflen;
3514 allow = s->s3.tmp.peer_sigalgs;
3515 allowlen = s->s3.tmp.peer_sigalgslen;
3516 } else {
3517 allow = conf;
3518 allowlen = conflen;
3519 pref = s->s3.tmp.peer_sigalgs;
3520 preflen = s->s3.tmp.peer_sigalgslen;
3521 }
3522 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
3523 if (nmatch) {
3524 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
3525 return 0;
3526 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
3527 } else {
3528 salgs = NULL;
3529 }
3530 s->shared_sigalgs = salgs;
3531 s->shared_sigalgslen = nmatch;
3532 return 1;
3533 }
3534
tls1_save_u16(PACKET * pkt,uint16_t ** pdest,size_t * pdestlen)3535 int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
3536 {
3537 unsigned int stmp;
3538 size_t size, i;
3539 uint16_t *buf;
3540
3541 size = PACKET_remaining(pkt);
3542
3543 /* Invalid data length */
3544 if (size == 0 || (size & 1) != 0)
3545 return 0;
3546
3547 size >>= 1;
3548
3549 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
3550 return 0;
3551 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
3552 buf[i] = stmp;
3553
3554 if (i != size) {
3555 OPENSSL_free(buf);
3556 return 0;
3557 }
3558
3559 OPENSSL_free(*pdest);
3560 *pdest = buf;
3561 *pdestlen = size;
3562
3563 return 1;
3564 }
3565
tls1_save_sigalgs(SSL_CONNECTION * s,PACKET * pkt,int cert)3566 int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
3567 {
3568 /* Extension ignored for inappropriate versions */
3569 if (!SSL_USE_SIGALGS(s))
3570 return 1;
3571 /* Should never happen */
3572 if (s->cert == NULL)
3573 return 0;
3574
3575 if (cert)
3576 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
3577 &s->s3.tmp.peer_cert_sigalgslen);
3578 else
3579 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
3580 &s->s3.tmp.peer_sigalgslen);
3581
3582 }
3583
3584 /* Set preferred digest for each key type */
3585
tls1_process_sigalgs(SSL_CONNECTION * s)3586 int tls1_process_sigalgs(SSL_CONNECTION *s)
3587 {
3588 size_t i;
3589 uint32_t *pvalid = s->s3.tmp.valid_flags;
3590
3591 if (!tls1_set_shared_sigalgs(s))
3592 return 0;
3593
3594 for (i = 0; i < s->ssl_pkey_num; i++)
3595 pvalid[i] = 0;
3596
3597 for (i = 0; i < s->shared_sigalgslen; i++) {
3598 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
3599 int idx = sigptr->sig_idx;
3600
3601 /* Ignore PKCS1 based sig algs in TLSv1.3 */
3602 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
3603 continue;
3604 /* If not disabled indicate we can explicitly sign */
3605 if (pvalid[idx] == 0
3606 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
3607 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3608 }
3609 return 1;
3610 }
3611
SSL_get_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3612 int SSL_get_sigalgs(SSL *s, int idx,
3613 int *psign, int *phash, int *psignhash,
3614 unsigned char *rsig, unsigned char *rhash)
3615 {
3616 uint16_t *psig;
3617 size_t numsigalgs;
3618 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3619
3620 if (sc == NULL)
3621 return 0;
3622
3623 psig = sc->s3.tmp.peer_sigalgs;
3624 numsigalgs = sc->s3.tmp.peer_sigalgslen;
3625
3626 if (psig == NULL || numsigalgs > INT_MAX)
3627 return 0;
3628 if (idx >= 0) {
3629 const SIGALG_LOOKUP *lu;
3630
3631 if (idx >= (int)numsigalgs)
3632 return 0;
3633 psig += idx;
3634 if (rhash != NULL)
3635 *rhash = (unsigned char)((*psig >> 8) & 0xff);
3636 if (rsig != NULL)
3637 *rsig = (unsigned char)(*psig & 0xff);
3638 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(sc), *psig);
3639 if (psign != NULL)
3640 *psign = lu != NULL ? lu->sig : NID_undef;
3641 if (phash != NULL)
3642 *phash = lu != NULL ? lu->hash : NID_undef;
3643 if (psignhash != NULL)
3644 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
3645 }
3646 return (int)numsigalgs;
3647 }
3648
SSL_get_shared_sigalgs(SSL * s,int idx,int * psign,int * phash,int * psignhash,unsigned char * rsig,unsigned char * rhash)3649 int SSL_get_shared_sigalgs(SSL *s, int idx,
3650 int *psign, int *phash, int *psignhash,
3651 unsigned char *rsig, unsigned char *rhash)
3652 {
3653 const SIGALG_LOOKUP *shsigalgs;
3654 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3655
3656 if (sc == NULL)
3657 return 0;
3658
3659 if (sc->shared_sigalgs == NULL
3660 || idx < 0
3661 || idx >= (int)sc->shared_sigalgslen
3662 || sc->shared_sigalgslen > INT_MAX)
3663 return 0;
3664 shsigalgs = sc->shared_sigalgs[idx];
3665 if (phash != NULL)
3666 *phash = shsigalgs->hash;
3667 if (psign != NULL)
3668 *psign = shsigalgs->sig;
3669 if (psignhash != NULL)
3670 *psignhash = shsigalgs->sigandhash;
3671 if (rsig != NULL)
3672 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
3673 if (rhash != NULL)
3674 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
3675 return (int)sc->shared_sigalgslen;
3676 }
3677
3678 /* Maximum possible number of unique entries in sigalgs array */
3679 #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
3680
3681 typedef struct {
3682 size_t sigalgcnt;
3683 /* TLSEXT_SIGALG_XXX values */
3684 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
3685 SSL_CTX *ctx;
3686 } sig_cb_st;
3687
get_sigorhash(int * psig,int * phash,const char * str)3688 static void get_sigorhash(int *psig, int *phash, const char *str)
3689 {
3690 if (OPENSSL_strcasecmp(str, "RSA") == 0) {
3691 *psig = EVP_PKEY_RSA;
3692 } else if (OPENSSL_strcasecmp(str, "RSA-PSS") == 0
3693 || OPENSSL_strcasecmp(str, "PSS") == 0) {
3694 *psig = EVP_PKEY_RSA_PSS;
3695 } else if (OPENSSL_strcasecmp(str, "DSA") == 0) {
3696 *psig = EVP_PKEY_DSA;
3697 } else if (OPENSSL_strcasecmp(str, "ECDSA") == 0) {
3698 *psig = EVP_PKEY_EC;
3699 } else {
3700 *phash = OBJ_sn2nid(str);
3701 if (*phash == NID_undef)
3702 *phash = OBJ_ln2nid(str);
3703 }
3704 }
3705 /* Maximum length of a signature algorithm string component */
3706 #define TLS_MAX_SIGSTRING_LEN 40
3707
sig_cb(const char * elem,int len,void * arg)3708 static int sig_cb(const char *elem, int len, void *arg)
3709 {
3710 sig_cb_st *sarg = arg;
3711 size_t i = 0;
3712 const SIGALG_LOOKUP *s;
3713 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
3714 const char *iana, *alias;
3715 int sig_alg = NID_undef, hash_alg = NID_undef;
3716 int ignore_unknown = 0;
3717
3718 if (elem == NULL)
3719 return 0;
3720 if (elem[0] == '?') {
3721 ignore_unknown = 1;
3722 ++elem;
3723 --len;
3724 }
3725 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
3726 return 0;
3727 if (len > (int)(sizeof(etmp) - 1))
3728 return 0;
3729 memcpy(etmp, elem, len);
3730 etmp[len] = 0;
3731 p = strchr(etmp, '+');
3732 /*
3733 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
3734 * if there's no '+' in the provided name, look for the new-style combined
3735 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
3736 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
3737 * rsa_pss_rsae_* that differ only by public key OID; in such cases
3738 * we will pick the _rsae_ variant, by virtue of them appearing earlier
3739 * in the table.
3740 */
3741 if (p == NULL) {
3742 if (sarg->ctx != NULL) {
3743 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3744 iana = sarg->ctx->sigalg_lookup_cache[i].name;
3745 alias = sarg->ctx->sigalg_lookup_cache[i].name12;
3746 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3747 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3748 /* Ignore known, but unavailable sigalgs. */
3749 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3750 return 1;
3751 sarg->sigalgs[sarg->sigalgcnt++] =
3752 sarg->ctx->sigalg_lookup_cache[i].sigalg;
3753 goto found;
3754 }
3755 }
3756 } else {
3757 /* Syntax checks use the built-in sigalgs */
3758 for (i = 0, s = sigalg_lookup_tbl;
3759 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
3760 iana = s->name;
3761 alias = s->name12;
3762 if ((alias != NULL && OPENSSL_strcasecmp(etmp, alias) == 0)
3763 || OPENSSL_strcasecmp(etmp, iana) == 0) {
3764 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3765 goto found;
3766 }
3767 }
3768 }
3769 } else {
3770 *p = 0;
3771 p++;
3772 if (*p == 0)
3773 return 0;
3774 get_sigorhash(&sig_alg, &hash_alg, etmp);
3775 get_sigorhash(&sig_alg, &hash_alg, p);
3776 if (sig_alg != NID_undef && hash_alg != NID_undef) {
3777 if (sarg->ctx != NULL) {
3778 for (i = 0; i < sarg->ctx->sigalg_lookup_cache_len; i++) {
3779 s = &sarg->ctx->sigalg_lookup_cache[i];
3780 if (s->hash == hash_alg && s->sig == sig_alg) {
3781 /* Ignore known, but unavailable sigalgs. */
3782 if (!sarg->ctx->sigalg_lookup_cache[i].available)
3783 return 1;
3784 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3785 goto found;
3786 }
3787 }
3788 } else {
3789 for (i = 0; i < OSSL_NELEM(sigalg_lookup_tbl); i++) {
3790 s = &sigalg_lookup_tbl[i];
3791 if (s->hash == hash_alg && s->sig == sig_alg) {
3792 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
3793 goto found;
3794 }
3795 }
3796 }
3797 }
3798 }
3799 /* Ignore unknown algorithms if ignore_unknown */
3800 return ignore_unknown;
3801
3802 found:
3803 /* Ignore duplicates */
3804 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
3805 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
3806 sarg->sigalgcnt--;
3807 return 1;
3808 }
3809 }
3810 return 1;
3811 }
3812
3813 /*
3814 * Set supported signature algorithms based on a colon separated list of the
3815 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
3816 */
tls1_set_sigalgs_list(SSL_CTX * ctx,CERT * c,const char * str,int client)3817 int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
3818 {
3819 sig_cb_st sig;
3820 sig.sigalgcnt = 0;
3821
3822 if (ctx != NULL)
3823 sig.ctx = ctx;
3824 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
3825 return 0;
3826 if (sig.sigalgcnt == 0) {
3827 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
3828 "No valid signature algorithms in '%s'", str);
3829 return 0;
3830 }
3831 if (c == NULL)
3832 return 1;
3833 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
3834 }
3835
tls1_set_raw_sigalgs(CERT * c,const uint16_t * psigs,size_t salglen,int client)3836 int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3837 int client)
3838 {
3839 uint16_t *sigalgs;
3840
3841 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3842 return 0;
3843 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3844
3845 if (client) {
3846 OPENSSL_free(c->client_sigalgs);
3847 c->client_sigalgs = sigalgs;
3848 c->client_sigalgslen = salglen;
3849 } else {
3850 OPENSSL_free(c->conf_sigalgs);
3851 c->conf_sigalgs = sigalgs;
3852 c->conf_sigalgslen = salglen;
3853 }
3854
3855 return 1;
3856 }
3857
tls1_set_sigalgs(CERT * c,const int * psig_nids,size_t salglen,int client)3858 int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3859 {
3860 uint16_t *sigalgs, *sptr;
3861 size_t i;
3862
3863 if (salglen & 1)
3864 return 0;
3865 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3866 return 0;
3867 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3868 size_t j;
3869 const SIGALG_LOOKUP *curr;
3870 int md_id = *psig_nids++;
3871 int sig_id = *psig_nids++;
3872
3873 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3874 j++, curr++) {
3875 if (curr->hash == md_id && curr->sig == sig_id) {
3876 *sptr++ = curr->sigalg;
3877 break;
3878 }
3879 }
3880
3881 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3882 goto err;
3883 }
3884
3885 if (client) {
3886 OPENSSL_free(c->client_sigalgs);
3887 c->client_sigalgs = sigalgs;
3888 c->client_sigalgslen = salglen / 2;
3889 } else {
3890 OPENSSL_free(c->conf_sigalgs);
3891 c->conf_sigalgs = sigalgs;
3892 c->conf_sigalgslen = salglen / 2;
3893 }
3894
3895 return 1;
3896
3897 err:
3898 OPENSSL_free(sigalgs);
3899 return 0;
3900 }
3901
tls1_check_sig_alg(SSL_CONNECTION * s,X509 * x,int default_nid)3902 static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3903 {
3904 int sig_nid, use_pc_sigalgs = 0;
3905 size_t i;
3906 const SIGALG_LOOKUP *sigalg;
3907 size_t sigalgslen;
3908
3909 /*-
3910 * RFC 8446, section 4.2.3:
3911 *
3912 * The signatures on certificates that are self-signed or certificates
3913 * that are trust anchors are not validated, since they begin a
3914 * certification path (see [RFC5280], Section 3.2). A certificate that
3915 * begins a certification path MAY use a signature algorithm that is not
3916 * advertised as being supported in the "signature_algorithms"
3917 * extension.
3918 */
3919 if (default_nid == -1 || X509_self_signed(x, 0))
3920 return 1;
3921 sig_nid = X509_get_signature_nid(x);
3922 if (default_nid)
3923 return sig_nid == default_nid ? 1 : 0;
3924
3925 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3926 /*
3927 * If we're in TLSv1.3 then we only get here if we're checking the
3928 * chain. If the peer has specified peer_cert_sigalgs then we use them
3929 * otherwise we default to normal sigalgs.
3930 */
3931 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3932 use_pc_sigalgs = 1;
3933 } else {
3934 sigalgslen = s->shared_sigalgslen;
3935 }
3936 for (i = 0; i < sigalgslen; i++) {
3937 int mdnid, pknid;
3938
3939 sigalg = use_pc_sigalgs
3940 ? tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
3941 s->s3.tmp.peer_cert_sigalgs[i])
3942 : s->shared_sigalgs[i];
3943 if (sigalg == NULL)
3944 continue;
3945 if (sig_nid == sigalg->sigandhash)
3946 return 1;
3947 if (sigalg->sig != EVP_PKEY_RSA_PSS)
3948 continue;
3949 /*
3950 * Accept RSA PKCS#1 signatures in certificates when the signature
3951 * algorithms include RSA-PSS with a matching digest algorithm.
3952 *
3953 * When a TLS 1.3 peer inadvertently omits the legacy RSA PKCS#1 code
3954 * points, and we're doing strict checking of the certificate chain (in
3955 * a cert_cb via SSL_check_chain()) we may then reject RSA signed
3956 * certificates in the chain, but the TLS requirement on PSS should not
3957 * extend to certificates. Though the peer can in fact list the legacy
3958 * sigalgs for just this purpose, it is not likely that a better chain
3959 * signed with RSA-PSS is available.
3960 */
3961 if (!OBJ_find_sigid_algs(sig_nid, &mdnid, &pknid))
3962 continue;
3963 if (pknid == EVP_PKEY_RSA && mdnid == sigalg->hash)
3964 return 1;
3965 }
3966 return 0;
3967 }
3968
3969 /* Check to see if a certificate issuer name matches list of CA names */
ssl_check_ca_name(STACK_OF (X509_NAME)* names,X509 * x)3970 static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3971 {
3972 const X509_NAME *nm;
3973 int i;
3974 nm = X509_get_issuer_name(x);
3975 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3976 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3977 return 1;
3978 }
3979 return 0;
3980 }
3981
3982 /*
3983 * Check certificate chain is consistent with TLS extensions and is usable by
3984 * server. This servers two purposes: it allows users to check chains before
3985 * passing them to the server and it allows the server to check chains before
3986 * attempting to use them.
3987 */
3988
3989 /* Flags which need to be set for a certificate when strict mode not set */
3990
3991 #define CERT_PKEY_VALID_FLAGS \
3992 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3993 /* Strict mode flags */
3994 #define CERT_PKEY_STRICT_FLAGS \
3995 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3996 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3997
tls1_check_chain(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain,int idx)3998 int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3999 STACK_OF(X509) *chain, int idx)
4000 {
4001 int i;
4002 int rv = 0;
4003 int check_flags = 0, strict_mode;
4004 CERT_PKEY *cpk = NULL;
4005 CERT *c = s->cert;
4006 uint32_t *pvalid;
4007 unsigned int suiteb_flags = tls1_suiteb(s);
4008
4009 /*
4010 * Meaning of idx:
4011 * idx == -1 means SSL_check_chain() invocation
4012 * idx == -2 means checking client certificate chains
4013 * idx >= 0 means checking SSL_PKEY index
4014 *
4015 * For RPK, where there may be no cert, we ignore -1
4016 */
4017 if (idx != -1) {
4018 if (idx == -2) {
4019 cpk = c->key;
4020 idx = (int)(cpk - c->pkeys);
4021 } else
4022 cpk = c->pkeys + idx;
4023 pvalid = s->s3.tmp.valid_flags + idx;
4024 x = cpk->x509;
4025 pk = cpk->privatekey;
4026 chain = cpk->chain;
4027 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
4028 if (tls12_rpk_and_privkey(s, idx)) {
4029 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
4030 return 0;
4031 *pvalid = rv = CERT_PKEY_RPK;
4032 return rv;
4033 }
4034 /* If no cert or key, forget it */
4035 if (x == NULL || pk == NULL)
4036 goto end;
4037 } else {
4038 size_t certidx;
4039
4040 if (x == NULL || pk == NULL)
4041 return 0;
4042
4043 if (ssl_cert_lookup_by_pkey(pk, &certidx,
4044 SSL_CONNECTION_GET_CTX(s)) == NULL)
4045 return 0;
4046 idx = certidx;
4047 pvalid = s->s3.tmp.valid_flags + idx;
4048
4049 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
4050 check_flags = CERT_PKEY_STRICT_FLAGS;
4051 else
4052 check_flags = CERT_PKEY_VALID_FLAGS;
4053 strict_mode = 1;
4054 }
4055
4056 if (suiteb_flags) {
4057 int ok;
4058 if (check_flags)
4059 check_flags |= CERT_PKEY_SUITEB;
4060 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
4061 if (ok == X509_V_OK)
4062 rv |= CERT_PKEY_SUITEB;
4063 else if (!check_flags)
4064 goto end;
4065 }
4066
4067 /*
4068 * Check all signature algorithms are consistent with signature
4069 * algorithms extension if TLS 1.2 or later and strict mode.
4070 */
4071 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
4072 && strict_mode) {
4073 int default_nid;
4074 int rsign = 0;
4075
4076 if (s->s3.tmp.peer_cert_sigalgs != NULL
4077 || s->s3.tmp.peer_sigalgs != NULL) {
4078 default_nid = 0;
4079 /* If no sigalgs extension use defaults from RFC5246 */
4080 } else {
4081 switch (idx) {
4082 case SSL_PKEY_RSA:
4083 rsign = EVP_PKEY_RSA;
4084 default_nid = NID_sha1WithRSAEncryption;
4085 break;
4086
4087 case SSL_PKEY_DSA_SIGN:
4088 rsign = EVP_PKEY_DSA;
4089 default_nid = NID_dsaWithSHA1;
4090 break;
4091
4092 case SSL_PKEY_ECC:
4093 rsign = EVP_PKEY_EC;
4094 default_nid = NID_ecdsa_with_SHA1;
4095 break;
4096
4097 case SSL_PKEY_GOST01:
4098 rsign = NID_id_GostR3410_2001;
4099 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
4100 break;
4101
4102 case SSL_PKEY_GOST12_256:
4103 rsign = NID_id_GostR3410_2012_256;
4104 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
4105 break;
4106
4107 case SSL_PKEY_GOST12_512:
4108 rsign = NID_id_GostR3410_2012_512;
4109 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
4110 break;
4111
4112 default:
4113 default_nid = -1;
4114 break;
4115 }
4116 }
4117 /*
4118 * If peer sent no signature algorithms extension and we have set
4119 * preferred signature algorithms check we support sha1.
4120 */
4121 if (default_nid > 0 && c->conf_sigalgs) {
4122 size_t j;
4123 const uint16_t *p = c->conf_sigalgs;
4124 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
4125 const SIGALG_LOOKUP *lu =
4126 tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s), *p);
4127
4128 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
4129 break;
4130 }
4131 if (j == c->conf_sigalgslen) {
4132 if (check_flags)
4133 goto skip_sigs;
4134 else
4135 goto end;
4136 }
4137 }
4138 /* Check signature algorithm of each cert in chain */
4139 if (SSL_CONNECTION_IS_TLS13(s)) {
4140 /*
4141 * We only get here if the application has called SSL_check_chain(),
4142 * so check_flags is always set.
4143 */
4144 if (find_sig_alg(s, x, pk) != NULL)
4145 rv |= CERT_PKEY_EE_SIGNATURE;
4146 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
4147 if (!check_flags)
4148 goto end;
4149 } else
4150 rv |= CERT_PKEY_EE_SIGNATURE;
4151 rv |= CERT_PKEY_CA_SIGNATURE;
4152 for (i = 0; i < sk_X509_num(chain); i++) {
4153 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
4154 if (check_flags) {
4155 rv &= ~CERT_PKEY_CA_SIGNATURE;
4156 break;
4157 } else
4158 goto end;
4159 }
4160 }
4161 }
4162 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
4163 else if (check_flags)
4164 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
4165 skip_sigs:
4166 /* Check cert parameters are consistent */
4167 if (tls1_check_cert_param(s, x, 1))
4168 rv |= CERT_PKEY_EE_PARAM;
4169 else if (!check_flags)
4170 goto end;
4171 if (!s->server)
4172 rv |= CERT_PKEY_CA_PARAM;
4173 /* In strict mode check rest of chain too */
4174 else if (strict_mode) {
4175 rv |= CERT_PKEY_CA_PARAM;
4176 for (i = 0; i < sk_X509_num(chain); i++) {
4177 X509 *ca = sk_X509_value(chain, i);
4178 if (!tls1_check_cert_param(s, ca, 0)) {
4179 if (check_flags) {
4180 rv &= ~CERT_PKEY_CA_PARAM;
4181 break;
4182 } else
4183 goto end;
4184 }
4185 }
4186 }
4187 if (!s->server && strict_mode) {
4188 STACK_OF(X509_NAME) *ca_dn;
4189 int check_type = 0;
4190
4191 if (EVP_PKEY_is_a(pk, "RSA"))
4192 check_type = TLS_CT_RSA_SIGN;
4193 else if (EVP_PKEY_is_a(pk, "DSA"))
4194 check_type = TLS_CT_DSS_SIGN;
4195 else if (EVP_PKEY_is_a(pk, "EC"))
4196 check_type = TLS_CT_ECDSA_SIGN;
4197
4198 if (check_type) {
4199 const uint8_t *ctypes = s->s3.tmp.ctype;
4200 size_t j;
4201
4202 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
4203 if (*ctypes == check_type) {
4204 rv |= CERT_PKEY_CERT_TYPE;
4205 break;
4206 }
4207 }
4208 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
4209 goto end;
4210 } else {
4211 rv |= CERT_PKEY_CERT_TYPE;
4212 }
4213
4214 ca_dn = s->s3.tmp.peer_ca_names;
4215
4216 if (ca_dn == NULL
4217 || sk_X509_NAME_num(ca_dn) == 0
4218 || ssl_check_ca_name(ca_dn, x))
4219 rv |= CERT_PKEY_ISSUER_NAME;
4220 else
4221 for (i = 0; i < sk_X509_num(chain); i++) {
4222 X509 *xtmp = sk_X509_value(chain, i);
4223
4224 if (ssl_check_ca_name(ca_dn, xtmp)) {
4225 rv |= CERT_PKEY_ISSUER_NAME;
4226 break;
4227 }
4228 }
4229
4230 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
4231 goto end;
4232 } else
4233 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
4234
4235 if (!check_flags || (rv & check_flags) == check_flags)
4236 rv |= CERT_PKEY_VALID;
4237
4238 end:
4239
4240 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
4241 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
4242 else
4243 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
4244
4245 /*
4246 * When checking a CERT_PKEY structure all flags are irrelevant if the
4247 * chain is invalid.
4248 */
4249 if (!check_flags) {
4250 if (rv & CERT_PKEY_VALID) {
4251 *pvalid = rv;
4252 } else {
4253 /* Preserve sign and explicit sign flag, clear rest */
4254 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
4255 return 0;
4256 }
4257 }
4258 return rv;
4259 }
4260
4261 /* Set validity of certificates in an SSL structure */
tls1_set_cert_validity(SSL_CONNECTION * s)4262 void tls1_set_cert_validity(SSL_CONNECTION *s)
4263 {
4264 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
4265 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
4266 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
4267 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
4268 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
4269 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
4270 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
4271 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
4272 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
4273 }
4274
4275 /* User level utility function to check a chain is suitable */
SSL_check_chain(SSL * s,X509 * x,EVP_PKEY * pk,STACK_OF (X509)* chain)4276 int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
4277 {
4278 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
4279
4280 if (sc == NULL)
4281 return 0;
4282
4283 return tls1_check_chain(sc, x, pk, chain, -1);
4284 }
4285
ssl_get_auto_dh(SSL_CONNECTION * s)4286 EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
4287 {
4288 EVP_PKEY *dhp = NULL;
4289 BIGNUM *p;
4290 int dh_secbits = 80, sec_level_bits;
4291 EVP_PKEY_CTX *pctx = NULL;
4292 OSSL_PARAM_BLD *tmpl = NULL;
4293 OSSL_PARAM *params = NULL;
4294 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4295
4296 if (s->cert->dh_tmp_auto != 2) {
4297 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
4298 if (s->s3.tmp.new_cipher->strength_bits == 256)
4299 dh_secbits = 128;
4300 else
4301 dh_secbits = 80;
4302 } else {
4303 if (s->s3.tmp.cert == NULL)
4304 return NULL;
4305 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
4306 }
4307 }
4308
4309 /* Do not pick a prime that is too weak for the current security level */
4310 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
4311 NULL, NULL);
4312 if (dh_secbits < sec_level_bits)
4313 dh_secbits = sec_level_bits;
4314
4315 if (dh_secbits >= 192)
4316 p = BN_get_rfc3526_prime_8192(NULL);
4317 else if (dh_secbits >= 152)
4318 p = BN_get_rfc3526_prime_4096(NULL);
4319 else if (dh_secbits >= 128)
4320 p = BN_get_rfc3526_prime_3072(NULL);
4321 else if (dh_secbits >= 112)
4322 p = BN_get_rfc3526_prime_2048(NULL);
4323 else
4324 p = BN_get_rfc2409_prime_1024(NULL);
4325 if (p == NULL)
4326 goto err;
4327
4328 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
4329 if (pctx == NULL
4330 || EVP_PKEY_fromdata_init(pctx) != 1)
4331 goto err;
4332
4333 tmpl = OSSL_PARAM_BLD_new();
4334 if (tmpl == NULL
4335 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
4336 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
4337 goto err;
4338
4339 params = OSSL_PARAM_BLD_to_param(tmpl);
4340 if (params == NULL
4341 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
4342 goto err;
4343
4344 err:
4345 OSSL_PARAM_free(params);
4346 OSSL_PARAM_BLD_free(tmpl);
4347 EVP_PKEY_CTX_free(pctx);
4348 BN_free(p);
4349 return dhp;
4350 }
4351
ssl_security_cert_key(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4352 static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4353 int op)
4354 {
4355 int secbits = -1;
4356 EVP_PKEY *pkey = X509_get0_pubkey(x);
4357
4358 if (pkey) {
4359 /*
4360 * If no parameters this will return -1 and fail using the default
4361 * security callback for any non-zero security level. This will
4362 * reject keys which omit parameters but this only affects DSA and
4363 * omission of parameters is never (?) done in practice.
4364 */
4365 secbits = EVP_PKEY_get_security_bits(pkey);
4366 }
4367 if (s != NULL)
4368 return ssl_security(s, op, secbits, 0, x);
4369 else
4370 return ssl_ctx_security(ctx, op, secbits, 0, x);
4371 }
4372
ssl_security_cert_sig(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int op)4373 static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
4374 int op)
4375 {
4376 /* Lookup signature algorithm digest */
4377 int secbits, nid, pknid;
4378
4379 /* Don't check signature if self signed */
4380 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
4381 return 1;
4382 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
4383 secbits = -1;
4384 /* If digest NID not defined use signature NID */
4385 if (nid == NID_undef)
4386 nid = pknid;
4387 if (s != NULL)
4388 return ssl_security(s, op, secbits, nid, x);
4389 else
4390 return ssl_ctx_security(ctx, op, secbits, nid, x);
4391 }
4392
ssl_security_cert(SSL_CONNECTION * s,SSL_CTX * ctx,X509 * x,int vfy,int is_ee)4393 int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
4394 int is_ee)
4395 {
4396 if (vfy)
4397 vfy = SSL_SECOP_PEER;
4398 if (is_ee) {
4399 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
4400 return SSL_R_EE_KEY_TOO_SMALL;
4401 } else {
4402 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
4403 return SSL_R_CA_KEY_TOO_SMALL;
4404 }
4405 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
4406 return SSL_R_CA_MD_TOO_WEAK;
4407 return 1;
4408 }
4409
4410 /*
4411 * Check security of a chain, if |sk| includes the end entity certificate then
4412 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
4413 * one to the peer. Return values: 1 if ok otherwise error code to use
4414 */
4415
ssl_security_cert_chain(SSL_CONNECTION * s,STACK_OF (X509)* sk,X509 * x,int vfy)4416 int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
4417 X509 *x, int vfy)
4418 {
4419 int rv, start_idx, i;
4420
4421 if (x == NULL) {
4422 x = sk_X509_value(sk, 0);
4423 if (x == NULL)
4424 return ERR_R_INTERNAL_ERROR;
4425 start_idx = 1;
4426 } else
4427 start_idx = 0;
4428
4429 rv = ssl_security_cert(s, NULL, x, vfy, 1);
4430 if (rv != 1)
4431 return rv;
4432
4433 for (i = start_idx; i < sk_X509_num(sk); i++) {
4434 x = sk_X509_value(sk, i);
4435 rv = ssl_security_cert(s, NULL, x, vfy, 0);
4436 if (rv != 1)
4437 return rv;
4438 }
4439 return 1;
4440 }
4441
4442 /*
4443 * For TLS 1.2 servers check if we have a certificate which can be used
4444 * with the signature algorithm "lu" and return index of certificate.
4445 */
4446
tls12_get_cert_sigalg_idx(const SSL_CONNECTION * s,const SIGALG_LOOKUP * lu)4447 static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
4448 const SIGALG_LOOKUP *lu)
4449 {
4450 int sig_idx = lu->sig_idx;
4451 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
4452 SSL_CONNECTION_GET_CTX(s));
4453
4454 /* If not recognised or not supported by cipher mask it is not suitable */
4455 if (clu == NULL
4456 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
4457 || (clu->nid == EVP_PKEY_RSA_PSS
4458 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
4459 return -1;
4460
4461 /* If doing RPK, the CERT_PKEY won't be "valid" */
4462 if (tls12_rpk_and_privkey(s, sig_idx))
4463 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
4464
4465 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
4466 }
4467
4468 /*
4469 * Checks the given cert against signature_algorithm_cert restrictions sent by
4470 * the peer (if any) as well as whether the hash from the sigalg is usable with
4471 * the key.
4472 * Returns true if the cert is usable and false otherwise.
4473 */
check_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4474 static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
4475 X509 *x, EVP_PKEY *pkey)
4476 {
4477 const SIGALG_LOOKUP *lu;
4478 int mdnid, pknid, supported;
4479 size_t i;
4480 const char *mdname = NULL;
4481 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4482
4483 /*
4484 * If the given EVP_PKEY cannot support signing with this digest,
4485 * the answer is simply 'no'.
4486 */
4487 if (sig->hash != NID_undef)
4488 mdname = OBJ_nid2sn(sig->hash);
4489 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
4490 mdname,
4491 sctx->propq);
4492 if (supported <= 0)
4493 return 0;
4494
4495 /*
4496 * The TLS 1.3 signature_algorithms_cert extension places restrictions
4497 * on the sigalg with which the certificate was signed (by its issuer).
4498 */
4499 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
4500 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
4501 return 0;
4502 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
4503 lu = tls1_lookup_sigalg(SSL_CONNECTION_GET_CTX(s),
4504 s->s3.tmp.peer_cert_sigalgs[i]);
4505 if (lu == NULL)
4506 continue;
4507
4508 /*
4509 * This does not differentiate between the
4510 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
4511 * have a chain here that lets us look at the key OID in the
4512 * signing certificate.
4513 */
4514 if (mdnid == lu->hash && pknid == lu->sig)
4515 return 1;
4516 }
4517 return 0;
4518 }
4519
4520 /*
4521 * Without signat_algorithms_cert, any certificate for which we have
4522 * a viable public key is permitted.
4523 */
4524 return 1;
4525 }
4526
4527 /*
4528 * Returns true if |s| has a usable certificate configured for use
4529 * with signature scheme |sig|.
4530 * "Usable" includes a check for presence as well as applying
4531 * the signature_algorithm_cert restrictions sent by the peer (if any).
4532 * Returns false if no usable certificate is found.
4533 */
has_usable_cert(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,int idx)4534 static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
4535 {
4536 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
4537 if (idx == -1)
4538 idx = sig->sig_idx;
4539 if (!ssl_has_cert(s, idx))
4540 return 0;
4541
4542 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
4543 s->cert->pkeys[idx].privatekey);
4544 }
4545
4546 /*
4547 * Returns true if the supplied cert |x| and key |pkey| is usable with the
4548 * specified signature scheme |sig|, or false otherwise.
4549 */
is_cert_usable(SSL_CONNECTION * s,const SIGALG_LOOKUP * sig,X509 * x,EVP_PKEY * pkey)4550 static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
4551 EVP_PKEY *pkey)
4552 {
4553 size_t idx;
4554
4555 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
4556 return 0;
4557
4558 /* Check the key is consistent with the sig alg */
4559 if ((int)idx != sig->sig_idx)
4560 return 0;
4561
4562 return check_cert_usable(s, sig, x, pkey);
4563 }
4564
4565 /*
4566 * Find a signature scheme that works with the supplied certificate |x| and key
4567 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
4568 * available certs/keys to find one that works.
4569 */
find_sig_alg(SSL_CONNECTION * s,X509 * x,EVP_PKEY * pkey)4570 static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
4571 EVP_PKEY *pkey)
4572 {
4573 const SIGALG_LOOKUP *lu = NULL;
4574 size_t i;
4575 int curve = -1;
4576 EVP_PKEY *tmppkey;
4577 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4578
4579 /* Look for a shared sigalgs matching possible certificates */
4580 for (i = 0; i < s->shared_sigalgslen; i++) {
4581 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
4582 lu = s->shared_sigalgs[i];
4583 if (lu->hash == NID_sha1
4584 || lu->hash == NID_sha224
4585 || lu->sig == EVP_PKEY_DSA
4586 || lu->sig == EVP_PKEY_RSA
4587 || !tls_sigalg_compat(s, lu))
4588 continue;
4589
4590 /* Check that we have a cert, and signature_algorithms_cert */
4591 if (!tls1_lookup_md(sctx, lu, NULL))
4592 continue;
4593 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
4594 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
4595 continue;
4596
4597 tmppkey = (pkey != NULL) ? pkey
4598 : s->cert->pkeys[lu->sig_idx].privatekey;
4599
4600 if (lu->sig == EVP_PKEY_EC) {
4601 if (curve == -1)
4602 curve = ssl_get_EC_curve_nid(tmppkey);
4603 if (lu->curve != NID_undef && curve != lu->curve)
4604 continue;
4605 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
4606 /* validate that key is large enough for the signature algorithm */
4607 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
4608 continue;
4609 }
4610 break;
4611 }
4612
4613 if (i == s->shared_sigalgslen)
4614 return NULL;
4615
4616 return lu;
4617 }
4618
4619 /*
4620 * Choose an appropriate signature algorithm based on available certificates
4621 * Sets chosen certificate and signature algorithm.
4622 *
4623 * For servers if we fail to find a required certificate it is a fatal error,
4624 * an appropriate error code is set and a TLS alert is sent.
4625 *
4626 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
4627 * a fatal error: we will either try another certificate or not present one
4628 * to the server. In this case no error is set.
4629 */
tls_choose_sigalg(SSL_CONNECTION * s,int fatalerrs)4630 int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
4631 {
4632 const SIGALG_LOOKUP *lu = NULL;
4633 int sig_idx = -1;
4634
4635 s->s3.tmp.cert = NULL;
4636 s->s3.tmp.sigalg = NULL;
4637
4638 if (SSL_CONNECTION_IS_TLS13(s)) {
4639 lu = find_sig_alg(s, NULL, NULL);
4640 if (lu == NULL) {
4641 if (!fatalerrs)
4642 return 1;
4643 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4644 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4645 return 0;
4646 }
4647 } else {
4648 /* If ciphersuite doesn't require a cert nothing to do */
4649 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
4650 return 1;
4651 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
4652 return 1;
4653
4654 if (SSL_USE_SIGALGS(s)) {
4655 size_t i;
4656 if (s->s3.tmp.peer_sigalgs != NULL) {
4657 int curve = -1;
4658 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
4659
4660 /* For Suite B need to match signature algorithm to curve */
4661 if (tls1_suiteb(s))
4662 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
4663 .privatekey);
4664
4665 /*
4666 * Find highest preference signature algorithm matching
4667 * cert type
4668 */
4669 for (i = 0; i < s->shared_sigalgslen; i++) {
4670 /* Check the sigalg version bounds */
4671 lu = s->shared_sigalgs[i];
4672 if (!tls_sigalg_compat(s, lu))
4673 continue;
4674 if (s->server) {
4675 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
4676 continue;
4677 } else {
4678 int cc_idx = s->cert->key - s->cert->pkeys;
4679
4680 sig_idx = lu->sig_idx;
4681 if (cc_idx != sig_idx)
4682 continue;
4683 }
4684 /* Check that we have a cert, and sig_algs_cert */
4685 if (!has_usable_cert(s, lu, sig_idx))
4686 continue;
4687 if (lu->sig == EVP_PKEY_RSA_PSS) {
4688 /* validate that key is large enough for the signature algorithm */
4689 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
4690
4691 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
4692 continue;
4693 }
4694 if (curve == -1 || lu->curve == curve)
4695 break;
4696 }
4697 #ifndef OPENSSL_NO_GOST
4698 /*
4699 * Some Windows-based implementations do not send GOST algorithms indication
4700 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
4701 * we have to assume GOST support.
4702 */
4703 if (i == s->shared_sigalgslen
4704 && (s->s3.tmp.new_cipher->algorithm_auth
4705 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
4706 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4707 if (!fatalerrs)
4708 return 1;
4709 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4710 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4711 return 0;
4712 } else {
4713 i = 0;
4714 sig_idx = lu->sig_idx;
4715 }
4716 }
4717 #endif
4718 if (i == s->shared_sigalgslen) {
4719 if (!fatalerrs)
4720 return 1;
4721 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4722 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4723 return 0;
4724 }
4725 } else {
4726 /*
4727 * If we have no sigalg use defaults
4728 */
4729 const uint16_t *sent_sigs;
4730 size_t sent_sigslen;
4731
4732 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4733 if (!fatalerrs)
4734 return 1;
4735 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4736 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4737 return 0;
4738 }
4739
4740 /* Check signature matches a type we sent */
4741 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
4742 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
4743 if (lu->sigalg == *sent_sigs
4744 && has_usable_cert(s, lu, lu->sig_idx))
4745 break;
4746 }
4747 if (i == sent_sigslen) {
4748 if (!fatalerrs)
4749 return 1;
4750 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
4751 SSL_R_WRONG_SIGNATURE_TYPE);
4752 return 0;
4753 }
4754 }
4755 } else {
4756 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
4757 if (!fatalerrs)
4758 return 1;
4759 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
4760 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
4761 return 0;
4762 }
4763 }
4764 }
4765 if (sig_idx == -1)
4766 sig_idx = lu->sig_idx;
4767 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
4768 s->cert->key = s->s3.tmp.cert;
4769 s->s3.tmp.sigalg = lu;
4770 return 1;
4771 }
4772
SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX * ctx,uint8_t mode)4773 int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
4774 {
4775 if (mode != TLSEXT_max_fragment_length_DISABLED
4776 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4777 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4778 return 0;
4779 }
4780
4781 ctx->ext.max_fragment_len_mode = mode;
4782 return 1;
4783 }
4784
SSL_set_tlsext_max_fragment_length(SSL * ssl,uint8_t mode)4785 int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
4786 {
4787 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
4788
4789 if (sc == NULL
4790 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
4791 return 0;
4792
4793 if (mode != TLSEXT_max_fragment_length_DISABLED
4794 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
4795 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
4796 return 0;
4797 }
4798
4799 sc->ext.max_fragment_len_mode = mode;
4800 return 1;
4801 }
4802
SSL_SESSION_get_max_fragment_length(const SSL_SESSION * session)4803 uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
4804 {
4805 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
4806 return TLSEXT_max_fragment_length_DISABLED;
4807 return session->ext.max_fragment_len_mode;
4808 }
4809
4810 /*
4811 * Helper functions for HMAC access with legacy support included.
4812 */
ssl_hmac_new(const SSL_CTX * ctx)4813 SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
4814 {
4815 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
4816 EVP_MAC *mac = NULL;
4817
4818 if (ret == NULL)
4819 return NULL;
4820 #ifndef OPENSSL_NO_DEPRECATED_3_0
4821 if (ctx->ext.ticket_key_evp_cb == NULL
4822 && ctx->ext.ticket_key_cb != NULL) {
4823 if (!ssl_hmac_old_new(ret))
4824 goto err;
4825 return ret;
4826 }
4827 #endif
4828 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
4829 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
4830 goto err;
4831 EVP_MAC_free(mac);
4832 return ret;
4833 err:
4834 EVP_MAC_CTX_free(ret->ctx);
4835 EVP_MAC_free(mac);
4836 OPENSSL_free(ret);
4837 return NULL;
4838 }
4839
ssl_hmac_free(SSL_HMAC * ctx)4840 void ssl_hmac_free(SSL_HMAC *ctx)
4841 {
4842 if (ctx != NULL) {
4843 EVP_MAC_CTX_free(ctx->ctx);
4844 #ifndef OPENSSL_NO_DEPRECATED_3_0
4845 ssl_hmac_old_free(ctx);
4846 #endif
4847 OPENSSL_free(ctx);
4848 }
4849 }
4850
ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC * ctx)4851 EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
4852 {
4853 return ctx->ctx;
4854 }
4855
ssl_hmac_init(SSL_HMAC * ctx,void * key,size_t len,char * md)4856 int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
4857 {
4858 OSSL_PARAM params[2], *p = params;
4859
4860 if (ctx->ctx != NULL) {
4861 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
4862 *p = OSSL_PARAM_construct_end();
4863 if (EVP_MAC_init(ctx->ctx, key, len, params))
4864 return 1;
4865 }
4866 #ifndef OPENSSL_NO_DEPRECATED_3_0
4867 if (ctx->old_ctx != NULL)
4868 return ssl_hmac_old_init(ctx, key, len, md);
4869 #endif
4870 return 0;
4871 }
4872
ssl_hmac_update(SSL_HMAC * ctx,const unsigned char * data,size_t len)4873 int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
4874 {
4875 if (ctx->ctx != NULL)
4876 return EVP_MAC_update(ctx->ctx, data, len);
4877 #ifndef OPENSSL_NO_DEPRECATED_3_0
4878 if (ctx->old_ctx != NULL)
4879 return ssl_hmac_old_update(ctx, data, len);
4880 #endif
4881 return 0;
4882 }
4883
ssl_hmac_final(SSL_HMAC * ctx,unsigned char * md,size_t * len,size_t max_size)4884 int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4885 size_t max_size)
4886 {
4887 if (ctx->ctx != NULL)
4888 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4889 #ifndef OPENSSL_NO_DEPRECATED_3_0
4890 if (ctx->old_ctx != NULL)
4891 return ssl_hmac_old_final(ctx, md, len);
4892 #endif
4893 return 0;
4894 }
4895
ssl_hmac_size(const SSL_HMAC * ctx)4896 size_t ssl_hmac_size(const SSL_HMAC *ctx)
4897 {
4898 if (ctx->ctx != NULL)
4899 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4900 #ifndef OPENSSL_NO_DEPRECATED_3_0
4901 if (ctx->old_ctx != NULL)
4902 return ssl_hmac_old_size(ctx);
4903 #endif
4904 return 0;
4905 }
4906
ssl_get_EC_curve_nid(const EVP_PKEY * pkey)4907 int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4908 {
4909 char gname[OSSL_MAX_NAME_SIZE];
4910
4911 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4912 return OBJ_txt2nid(gname);
4913
4914 return NID_undef;
4915 }
4916
tls13_set_encoded_pub_key(EVP_PKEY * pkey,const unsigned char * enckey,size_t enckeylen)4917 __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4918 const unsigned char *enckey,
4919 size_t enckeylen)
4920 {
4921 if (EVP_PKEY_is_a(pkey, "DH")) {
4922 int bits = EVP_PKEY_get_bits(pkey);
4923
4924 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4925 /* the encoded key must be padded to the length of the p */
4926 return 0;
4927 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4928 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4929 || enckey[0] != 0x04)
4930 return 0;
4931 }
4932
4933 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4934 }
4935