xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace_impl.h (revision 1905ce3a6bef5652ad36ced7df9da6d2acb96b69)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright 2016 Joyent, Inc.
29  * Copyright (c) 2012 by Delphix. All rights reserved.
30  */
31 
32 #ifndef _SYS_DTRACE_IMPL_H
33 #define	_SYS_DTRACE_IMPL_H
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 /*
40  * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
41  *
42  * Note: The contents of this file are private to the implementation of the
43  * Solaris system and DTrace subsystem and are subject to change at any time
44  * without notice.  Applications and drivers using these interfaces will fail
45  * to run on future releases.  These interfaces should not be used for any
46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48  */
49 
50 #include <sys/dtrace.h>
51 #include <sys/file.h>
52 
53 #ifndef illumos
54 typedef uintptr_t		pc_t;
55 typedef	u_long			greg_t;
56 #endif
57 
58 /*
59  * DTrace Implementation Constants and Typedefs
60  */
61 #define	DTRACE_MAXPROPLEN		128
62 #define	DTRACE_DYNVAR_CHUNKSIZE		256
63 
64 #ifdef __FreeBSD__
65 #define	NCPU		MAXCPU
66 #endif /* __FreeBSD__ */
67 
68 struct dtrace_probe;
69 struct dtrace_ecb;
70 struct dtrace_predicate;
71 struct dtrace_action;
72 struct dtrace_provider;
73 struct dtrace_state;
74 
75 typedef struct dtrace_probe dtrace_probe_t;
76 typedef struct dtrace_ecb dtrace_ecb_t;
77 typedef struct dtrace_predicate dtrace_predicate_t;
78 typedef struct dtrace_action dtrace_action_t;
79 typedef struct dtrace_provider dtrace_provider_t;
80 typedef struct dtrace_meta dtrace_meta_t;
81 typedef struct dtrace_state dtrace_state_t;
82 typedef uint32_t dtrace_optid_t;
83 typedef uint32_t dtrace_specid_t;
84 typedef uint64_t dtrace_genid_t;
85 
86 /*
87  * DTrace Probes
88  *
89  * The probe is the fundamental unit of the DTrace architecture.  Probes are
90  * created by DTrace providers, and managed by the DTrace framework.  A probe
91  * is identified by a unique <provider, module, function, name> tuple, and has
92  * a unique probe identifier assigned to it.  (Some probes are not associated
93  * with a specific point in text; these are called _unanchored probes_ and have
94  * no module or function associated with them.)  Probes are represented as a
95  * dtrace_probe structure.  To allow quick lookups based on each element of the
96  * probe tuple, probes are hashed by each of provider, module, function and
97  * name.  (If a lookup is performed based on a regular expression, a
98  * dtrace_probekey is prepared, and a linear search is performed.) Each probe
99  * is additionally pointed to by a linear array indexed by its identifier.  The
100  * identifier is the provider's mechanism for indicating to the DTrace
101  * framework that a probe has fired:  the identifier is passed as the first
102  * argument to dtrace_probe(), where it is then mapped into the corresponding
103  * dtrace_probe structure.  From the dtrace_probe structure, dtrace_probe() can
104  * iterate over the probe's list of enabling control blocks; see "DTrace
105  * Enabling Control Blocks", below.)
106  */
107 struct dtrace_probe {
108 	dtrace_id_t dtpr_id;			/* probe identifier */
109 	dtrace_ecb_t *dtpr_ecb;			/* ECB list; see below */
110 	dtrace_ecb_t *dtpr_ecb_last;		/* last ECB in list */
111 	void *dtpr_arg;				/* provider argument */
112 	dtrace_cacheid_t dtpr_predcache;	/* predicate cache ID */
113 	int dtpr_aframes;			/* artificial frames */
114 	dtrace_provider_t *dtpr_provider;	/* pointer to provider */
115 	char *dtpr_mod;				/* probe's module name */
116 	char *dtpr_func;			/* probe's function name */
117 	char *dtpr_name;			/* probe's name */
118 	dtrace_probe_t *dtpr_nextmod;		/* next in module hash */
119 	dtrace_probe_t *dtpr_prevmod;		/* previous in module hash */
120 	dtrace_probe_t *dtpr_nextfunc;		/* next in function hash */
121 	dtrace_probe_t *dtpr_prevfunc;		/* previous in function hash */
122 	dtrace_probe_t *dtpr_nextname;		/* next in name hash */
123 	dtrace_probe_t *dtpr_prevname;		/* previous in name hash */
124 	dtrace_genid_t dtpr_gen;		/* probe generation ID */
125 };
126 
127 typedef int dtrace_probekey_f(const char *, const char *, int);
128 
129 typedef struct dtrace_probekey {
130 	char *dtpk_prov;			/* provider name to match */
131 	dtrace_probekey_f *dtpk_pmatch;		/* provider matching function */
132 	char *dtpk_mod;				/* module name to match */
133 	dtrace_probekey_f *dtpk_mmatch;		/* module matching function */
134 	char *dtpk_func;			/* func name to match */
135 	dtrace_probekey_f *dtpk_fmatch;		/* func matching function */
136 	char *dtpk_name;			/* name to match */
137 	dtrace_probekey_f *dtpk_nmatch;		/* name matching function */
138 	dtrace_id_t dtpk_id;			/* identifier to match */
139 } dtrace_probekey_t;
140 
141 typedef struct dtrace_hashbucket {
142 	struct dtrace_hashbucket *dthb_next;	/* next on hash chain */
143 	dtrace_probe_t *dthb_chain;		/* chain of probes */
144 	int dthb_len;				/* number of probes here */
145 } dtrace_hashbucket_t;
146 
147 typedef struct dtrace_hash {
148 	dtrace_hashbucket_t **dth_tab;		/* hash table */
149 	int dth_size;				/* size of hash table */
150 	int dth_mask;				/* mask to index into table */
151 	int dth_nbuckets;			/* total number of buckets */
152 	uintptr_t dth_nextoffs;			/* offset of next in probe */
153 	uintptr_t dth_prevoffs;			/* offset of prev in probe */
154 	uintptr_t dth_stroffs;			/* offset of str in probe */
155 } dtrace_hash_t;
156 
157 /*
158  * DTrace Enabling Control Blocks
159  *
160  * When a provider wishes to fire a probe, it calls into dtrace_probe(),
161  * passing the probe identifier as the first argument.  As described above,
162  * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
163  * structure.  This structure contains information about the probe, and a
164  * pointer to the list of Enabling Control Blocks (ECBs).  Each ECB points to
165  * DTrace consumer state, and contains an optional predicate, and a list of
166  * actions.  (Shown schematically below.)  The ECB abstraction allows a single
167  * probe to be multiplexed across disjoint consumers, or across disjoint
168  * enablings of a single probe within one consumer.
169  *
170  *   Enabling Control Block
171  *        dtrace_ecb_t
172  * +------------------------+
173  * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
174  * | dtrace_state_t * ------+--------------> State associated with this ECB
175  * | dtrace_predicate_t * --+---------+
176  * | dtrace_action_t * -----+----+    |
177  * | dtrace_ecb_t * ---+    |    |    |       Predicate (if any)
178  * +-------------------+----+    |    |       dtrace_predicate_t
179  *                     |         |    +---> +--------------------+
180  *                     |         |          | dtrace_difo_t * ---+----> DIFO
181  *                     |         |          +--------------------+
182  *                     |         |
183  *            Next ECB |         |           Action
184  *            (if any) |         |       dtrace_action_t
185  *                     :         +--> +-------------------+
186  *                     :              | dtrace_actkind_t -+------> kind
187  *                     v              | dtrace_difo_t * --+------> DIFO (if any)
188  *                                    | dtrace_recdesc_t -+------> record descr.
189  *                                    | dtrace_action_t * +------+
190  *                                    +-------------------+      |
191  *                                                               | Next action
192  *                               +-------------------------------+  (if any)
193  *                               |
194  *                               |           Action
195  *                               |       dtrace_action_t
196  *                               +--> +-------------------+
197  *                                    | dtrace_actkind_t -+------> kind
198  *                                    | dtrace_difo_t * --+------> DIFO (if any)
199  *                                    | dtrace_action_t * +------+
200  *                                    +-------------------+      |
201  *                                                               | Next action
202  *                               +-------------------------------+  (if any)
203  *                               |
204  *                               :
205  *                               v
206  *
207  *
208  * dtrace_probe() iterates over the ECB list.  If the ECB needs less space
209  * than is available in the principal buffer, the ECB is processed:  if the
210  * predicate is non-NULL, the DIF object is executed.  If the result is
211  * non-zero, the action list is processed, with each action being executed
212  * accordingly.  When the action list has been completely executed, processing
213  * advances to the next ECB. The ECB abstraction allows disjoint consumers
214  * to multiplex on single probes.
215  *
216  * Execution of the ECB results in consuming dte_size bytes in the buffer
217  * to record data.  During execution, dte_needed bytes must be available in
218  * the buffer.  This space is used for both recorded data and tuple data.
219  */
220 struct dtrace_ecb {
221 	dtrace_epid_t dte_epid;			/* enabled probe ID */
222 	uint32_t dte_alignment;			/* required alignment */
223 	size_t dte_needed;			/* space needed for execution */
224 	size_t dte_size;			/* size of recorded payload */
225 	dtrace_predicate_t *dte_predicate;	/* predicate, if any */
226 	dtrace_action_t *dte_action;		/* actions, if any */
227 	dtrace_ecb_t *dte_next;			/* next ECB on probe */
228 	dtrace_state_t *dte_state;		/* pointer to state */
229 	uint32_t dte_cond;			/* security condition */
230 	dtrace_probe_t *dte_probe;		/* pointer to probe */
231 	dtrace_action_t *dte_action_last;	/* last action on ECB */
232 	uint64_t dte_uarg;			/* library argument */
233 };
234 
235 struct dtrace_predicate {
236 	dtrace_difo_t *dtp_difo;		/* DIF object */
237 	dtrace_cacheid_t dtp_cacheid;		/* cache identifier */
238 	int dtp_refcnt;				/* reference count */
239 };
240 
241 struct dtrace_action {
242 	dtrace_actkind_t dta_kind;		/* kind of action */
243 	uint16_t dta_intuple;			/* boolean:  in aggregation */
244 	uint32_t dta_refcnt;			/* reference count */
245 	dtrace_difo_t *dta_difo;		/* pointer to DIFO */
246 	dtrace_recdesc_t dta_rec;		/* record description */
247 	dtrace_action_t *dta_prev;		/* previous action */
248 	dtrace_action_t *dta_next;		/* next action */
249 };
250 
251 typedef struct dtrace_aggregation {
252 	dtrace_action_t dtag_action;		/* action; must be first */
253 	dtrace_aggid_t dtag_id;			/* identifier */
254 	dtrace_ecb_t *dtag_ecb;			/* corresponding ECB */
255 	dtrace_action_t *dtag_first;		/* first action in tuple */
256 	uint32_t dtag_base;			/* base of aggregation */
257 	uint8_t dtag_hasarg;			/* boolean:  has argument */
258 	uint64_t dtag_initial;			/* initial value */
259 	void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
260 } dtrace_aggregation_t;
261 
262 /*
263  * DTrace Buffers
264  *
265  * Principal buffers, aggregation buffers, and speculative buffers are all
266  * managed with the dtrace_buffer structure.  By default, this structure
267  * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
268  * active and passive buffers, respectively.  For speculative buffers,
269  * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
270  * to a scratch buffer.  For all buffer types, the dtrace_buffer structure is
271  * always allocated on a per-CPU basis; a single dtrace_buffer structure is
272  * never shared among CPUs.  (That is, there is never true sharing of the
273  * dtrace_buffer structure; to prevent false sharing of the structure, it must
274  * always be aligned to the coherence granularity -- generally 64 bytes.)
275  *
276  * One of the critical design decisions of DTrace is that a given ECB always
277  * stores the same quantity and type of data.  This is done to assure that the
278  * only metadata required for an ECB's traced data is the EPID.  That is, from
279  * the EPID, the consumer can determine the data layout.  (The data buffer
280  * layout is shown schematically below.)  By assuring that one can determine
281  * data layout from the EPID, the metadata stream can be separated from the
282  * data stream -- simplifying the data stream enormously.  The ECB always
283  * proceeds the recorded data as part of the dtrace_rechdr_t structure that
284  * includes the EPID and a high-resolution timestamp used for output ordering
285  * consistency.
286  *
287  *      base of data buffer --->  +--------+--------------------+--------+
288  *                                | rechdr | data               | rechdr |
289  *                                +--------+------+--------+----+--------+
290  *                                | data          | rechdr | data        |
291  *                                +---------------+--------+-------------+
292  *                                | data, cont.                          |
293  *                                +--------+--------------------+--------+
294  *                                | rechdr | data               |        |
295  *                                +--------+--------------------+        |
296  *                                |                ||                    |
297  *                                |                ||                    |
298  *                                |                \/                    |
299  *                                :                                      :
300  *                                .                                      .
301  *                                .                                      .
302  *                                .                                      .
303  *                                :                                      :
304  *                                |                                      |
305  *     limit of data buffer --->  +--------------------------------------+
306  *
307  * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
308  * principal buffer (both scratch and payload) exceed the available space.  If
309  * the ECB's needs exceed available space (and if the principal buffer policy
310  * is the default "switch" policy), the ECB is dropped, the buffer's drop count
311  * is incremented, and processing advances to the next ECB.  If the ECB's needs
312  * can be met with the available space, the ECB is processed, but the offset in
313  * the principal buffer is only advanced if the ECB completes processing
314  * without error.
315  *
316  * When a buffer is to be switched (either because the buffer is the principal
317  * buffer with a "switch" policy or because it is an aggregation buffer), a
318  * cross call is issued to the CPU associated with the buffer.  In the cross
319  * call context, interrupts are disabled, and the active and the inactive
320  * buffers are atomically switched.  This involves switching the data pointers,
321  * copying the various state fields (offset, drops, errors, etc.) into their
322  * inactive equivalents, and clearing the state fields.  Because interrupts are
323  * disabled during this procedure, the switch is guaranteed to appear atomic to
324  * dtrace_probe().
325  *
326  * DTrace Ring Buffering
327  *
328  * To process a ring buffer correctly, one must know the oldest valid record.
329  * Processing starts at the oldest record in the buffer and continues until
330  * the end of the buffer is reached.  Processing then resumes starting with
331  * the record stored at offset 0 in the buffer, and continues until the
332  * youngest record is processed.  If trace records are of a fixed-length,
333  * determining the oldest record is trivial:
334  *
335  *   - If the ring buffer has not wrapped, the oldest record is the record
336  *     stored at offset 0.
337  *
338  *   - If the ring buffer has wrapped, the oldest record is the record stored
339  *     at the current offset.
340  *
341  * With variable length records, however, just knowing the current offset
342  * doesn't suffice for determining the oldest valid record:  assuming that one
343  * allows for arbitrary data, one has no way of searching forward from the
344  * current offset to find the oldest valid record.  (That is, one has no way
345  * of separating data from metadata.) It would be possible to simply refuse to
346  * process any data in the ring buffer between the current offset and the
347  * limit, but this leaves (potentially) an enormous amount of otherwise valid
348  * data unprocessed.
349  *
350  * To effect ring buffering, we track two offsets in the buffer:  the current
351  * offset and the _wrapped_ offset.  If a request is made to reserve some
352  * amount of data, and the buffer has wrapped, the wrapped offset is
353  * incremented until the wrapped offset minus the current offset is greater
354  * than or equal to the reserve request.  This is done by repeatedly looking
355  * up the ECB corresponding to the EPID at the current wrapped offset, and
356  * incrementing the wrapped offset by the size of the data payload
357  * corresponding to that ECB.  If this offset is greater than or equal to the
358  * limit of the data buffer, the wrapped offset is set to 0.  Thus, the
359  * current offset effectively "chases" the wrapped offset around the buffer.
360  * Schematically:
361  *
362  *      base of data buffer --->  +------+--------------------+------+
363  *                                | EPID | data               | EPID |
364  *                                +------+--------+------+----+------+
365  *                                | data          | EPID | data      |
366  *                                +---------------+------+-----------+
367  *                                | data, cont.                      |
368  *                                +------+---------------------------+
369  *                                | EPID | data                      |
370  *           current offset --->  +------+---------------------------+
371  *                                | invalid data                     |
372  *           wrapped offset --->  +------+--------------------+------+
373  *                                | EPID | data               | EPID |
374  *                                +------+--------+------+----+------+
375  *                                | data          | EPID | data      |
376  *                                +---------------+------+-----------+
377  *                                :                                  :
378  *                                .                                  .
379  *                                .        ... valid data ...        .
380  *                                .                                  .
381  *                                :                                  :
382  *                                +------+-------------+------+------+
383  *                                | EPID | data        | EPID | data |
384  *                                +------+------------++------+------+
385  *                                | data, cont.       | leftover     |
386  *     limit of data buffer --->  +-------------------+--------------+
387  *
388  * If the amount of requested buffer space exceeds the amount of space
389  * available between the current offset and the end of the buffer:
390  *
391  *  (1)  all words in the data buffer between the current offset and the limit
392  *       of the data buffer (marked "leftover", above) are set to
393  *       DTRACE_EPIDNONE
394  *
395  *  (2)  the wrapped offset is set to zero
396  *
397  *  (3)  the iteration process described above occurs until the wrapped offset
398  *       is greater than the amount of desired space.
399  *
400  * The wrapped offset is implemented by (re-)using the inactive offset.
401  * In a "switch" buffer policy, the inactive offset stores the offset in
402  * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
403  * offset.
404  *
405  * DTrace Scratch Buffering
406  *
407  * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
408  * To accommodate such requests easily, scratch memory may be allocated in
409  * the buffer beyond the current offset plus the needed memory of the current
410  * ECB.  If there isn't sufficient room in the buffer for the requested amount
411  * of scratch space, the allocation fails and an error is generated.  Scratch
412  * memory is tracked in the dtrace_mstate_t and is automatically freed when
413  * the ECB ceases processing.  Note that ring buffers cannot allocate their
414  * scratch from the principal buffer -- lest they needlessly overwrite older,
415  * valid data.  Ring buffers therefore have their own dedicated scratch buffer
416  * from which scratch is allocated.
417  */
418 #define	DTRACEBUF_RING		0x0001		/* bufpolicy set to "ring" */
419 #define	DTRACEBUF_FILL		0x0002		/* bufpolicy set to "fill" */
420 #define	DTRACEBUF_NOSWITCH	0x0004		/* do not switch buffer */
421 #define	DTRACEBUF_WRAPPED	0x0008		/* ring buffer has wrapped */
422 #define	DTRACEBUF_DROPPED	0x0010		/* drops occurred */
423 #define	DTRACEBUF_ERROR		0x0020		/* errors occurred */
424 #define	DTRACEBUF_FULL		0x0040		/* "fill" buffer is full */
425 #define	DTRACEBUF_CONSUMED	0x0080		/* buffer has been consumed */
426 #define	DTRACEBUF_INACTIVE	0x0100		/* buffer is not yet active */
427 
428 typedef struct dtrace_buffer {
429 	uint64_t dtb_offset;			/* current offset in buffer */
430 	uint64_t dtb_size;			/* size of buffer */
431 	uint32_t dtb_flags;			/* flags */
432 	uint32_t dtb_drops;			/* number of drops */
433 	caddr_t dtb_tomax;			/* active buffer */
434 	caddr_t dtb_xamot;			/* inactive buffer */
435 	uint32_t dtb_xamot_flags;		/* inactive flags */
436 	uint32_t dtb_xamot_drops;		/* drops in inactive buffer */
437 	uint64_t dtb_xamot_offset;		/* offset in inactive buffer */
438 	uint32_t dtb_errors;			/* number of errors */
439 	uint32_t dtb_xamot_errors;		/* errors in inactive buffer */
440 #ifndef _LP64
441 	uint64_t dtb_pad1;			/* pad out to 64 bytes */
442 #endif
443 	uint64_t dtb_switched;			/* time of last switch */
444 	uint64_t dtb_interval;			/* observed switch interval */
445 	uint64_t dtb_pad2[6];			/* pad to avoid false sharing */
446 } dtrace_buffer_t;
447 
448 /*
449  * DTrace Aggregation Buffers
450  *
451  * Aggregation buffers use much of the same mechanism as described above
452  * ("DTrace Buffers").  However, because an aggregation is fundamentally a
453  * hash, there exists dynamic metadata associated with an aggregation buffer
454  * that is not associated with other kinds of buffers.  This aggregation
455  * metadata is _only_ relevant for the in-kernel implementation of
456  * aggregations; it is not actually relevant to user-level consumers.  To do
457  * this, we allocate dynamic aggregation data (hash keys and hash buckets)
458  * starting below the _limit_ of the buffer, and we allocate data from the
459  * _base_ of the buffer.  When the aggregation buffer is copied out, _only_ the
460  * data is copied out; the metadata is simply discarded.  Schematically,
461  * aggregation buffers look like:
462  *
463  *      base of data buffer --->  +-------+------+-----------+-------+
464  *                                | aggid | key  | value     | aggid |
465  *                                +-------+------+-----------+-------+
466  *                                | key                              |
467  *                                +-------+-------+-----+------------+
468  *                                | value | aggid | key | value      |
469  *                                +-------+------++-----+------+-----+
470  *                                | aggid | key  | value       |     |
471  *                                +-------+------+-------------+     |
472  *                                |                ||                |
473  *                                |                ||                |
474  *                                |                \/                |
475  *                                :                                  :
476  *                                .                                  .
477  *                                .                                  .
478  *                                .                                  .
479  *                                :                                  :
480  *                                |                /\                |
481  *                                |                ||   +------------+
482  *                                |                ||   |            |
483  *                                +---------------------+            |
484  *                                | hash keys                        |
485  *                                | (dtrace_aggkey structures)       |
486  *                                |                                  |
487  *                                +----------------------------------+
488  *                                | hash buckets                     |
489  *                                | (dtrace_aggbuffer structure)     |
490  *                                |                                  |
491  *     limit of data buffer --->  +----------------------------------+
492  *
493  *
494  * As implied above, just as we assure that ECBs always store a constant
495  * amount of data, we assure that a given aggregation -- identified by its
496  * aggregation ID -- always stores data of a constant quantity and type.
497  * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
498  * given record.
499  *
500  * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
501  * aligned.  (If this the structure changes such that this becomes false, an
502  * assertion will fail in dtrace_aggregate().)
503  */
504 typedef struct dtrace_aggkey {
505 	uint32_t dtak_hashval;			/* hash value */
506 	uint32_t dtak_action:4;			/* action -- 4 bits */
507 	uint32_t dtak_size:28;			/* size -- 28 bits */
508 	caddr_t dtak_data;			/* data pointer */
509 	struct dtrace_aggkey *dtak_next;	/* next in hash chain */
510 } dtrace_aggkey_t;
511 
512 typedef struct dtrace_aggbuffer {
513 	uintptr_t dtagb_hashsize;		/* number of buckets */
514 	uintptr_t dtagb_free;			/* free list of keys */
515 	dtrace_aggkey_t **dtagb_hash;		/* hash table */
516 } dtrace_aggbuffer_t;
517 
518 /*
519  * DTrace Speculations
520  *
521  * Speculations have a per-CPU buffer and a global state.  Once a speculation
522  * buffer has been comitted or discarded, it cannot be reused until all CPUs
523  * have taken the same action (commit or discard) on their respective
524  * speculative buffer.  However, because DTrace probes may execute in arbitrary
525  * context, other CPUs cannot simply be cross-called at probe firing time to
526  * perform the necessary commit or discard.  The speculation states thus
527  * optimize for the case that a speculative buffer is only active on one CPU at
528  * the time of a commit() or discard() -- for if this is the case, other CPUs
529  * need not take action, and the speculation is immediately available for
530  * reuse.  If the speculation is active on multiple CPUs, it must be
531  * asynchronously cleaned -- potentially leading to a higher rate of dirty
532  * speculative drops.  The speculation states are as follows:
533  *
534  *  DTRACESPEC_INACTIVE       <= Initial state; inactive speculation
535  *  DTRACESPEC_ACTIVE         <= Allocated, but not yet speculatively traced to
536  *  DTRACESPEC_ACTIVEONE      <= Speculatively traced to on one CPU
537  *  DTRACESPEC_ACTIVEMANY     <= Speculatively traced to on more than one CPU
538  *  DTRACESPEC_COMMITTING     <= Currently being commited on one CPU
539  *  DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
540  *  DTRACESPEC_DISCARDING     <= Currently being discarded on many CPUs
541  *
542  * The state transition diagram is as follows:
543  *
544  *     +----------------------------------------------------------+
545  *     |                                                          |
546  *     |                      +------------+                      |
547  *     |  +-------------------| COMMITTING |<-----------------+   |
548  *     |  |                   +------------+                  |   |
549  *     |  | copied spec.            ^             commit() on |   | discard() on
550  *     |  | into principal          |              active CPU |   | active CPU
551  *     |  |                         | commit()                |   |
552  *     V  V                         |                         |   |
553  * +----------+                 +--------+                +-----------+
554  * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
555  * +----------+  speculation()  +--------+  speculate()   +-----------+
556  *     ^  ^                         |                         |   |
557  *     |  |                         | discard()               |   |
558  *     |  | asynchronously          |            discard() on |   | speculate()
559  *     |  | cleaned                 V            inactive CPU |   | on inactive
560  *     |  |                   +------------+                  |   | CPU
561  *     |  +-------------------| DISCARDING |<-----------------+   |
562  *     |                      +------------+                      |
563  *     | asynchronously             ^                             |
564  *     | copied spec.               |       discard()             |
565  *     | into principal             +------------------------+    |
566  *     |                                                     |    V
567  *  +----------------+             commit()              +------------+
568  *  | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
569  *  +----------------+                                   +------------+
570  */
571 typedef enum dtrace_speculation_state {
572 	DTRACESPEC_INACTIVE = 0,
573 	DTRACESPEC_ACTIVE,
574 	DTRACESPEC_ACTIVEONE,
575 	DTRACESPEC_ACTIVEMANY,
576 	DTRACESPEC_COMMITTING,
577 	DTRACESPEC_COMMITTINGMANY,
578 	DTRACESPEC_DISCARDING
579 } dtrace_speculation_state_t;
580 
581 typedef struct dtrace_speculation {
582 	dtrace_speculation_state_t dtsp_state;	/* current speculation state */
583 	int dtsp_cleaning;			/* non-zero if being cleaned */
584 	dtrace_buffer_t *dtsp_buffer;		/* speculative buffer */
585 } dtrace_speculation_t;
586 
587 /*
588  * DTrace Dynamic Variables
589  *
590  * The dynamic variable problem is obviously decomposed into two subproblems:
591  * allocating new dynamic storage, and freeing old dynamic storage.  The
592  * presence of the second problem makes the first much more complicated -- or
593  * rather, the absence of the second renders the first trivial.  This is the
594  * case with aggregations, for which there is effectively no deallocation of
595  * dynamic storage.  (Or more accurately, all dynamic storage is deallocated
596  * when a snapshot is taken of the aggregation.)  As DTrace dynamic variables
597  * allow for both dynamic allocation and dynamic deallocation, the
598  * implementation of dynamic variables is quite a bit more complicated than
599  * that of their aggregation kin.
600  *
601  * We observe that allocating new dynamic storage is tricky only because the
602  * size can vary -- the allocation problem is much easier if allocation sizes
603  * are uniform.  We further observe that in D, the size of dynamic variables is
604  * actually _not_ dynamic -- dynamic variable sizes may be determined by static
605  * analysis of DIF text.  (This is true even of putatively dynamically-sized
606  * objects like strings and stacks, the sizes of which are dictated by the
607  * "stringsize" and "stackframes" variables, respectively.)  We exploit this by
608  * performing this analysis on all DIF before enabling any probes.  For each
609  * dynamic load or store, we calculate the dynamically-allocated size plus the
610  * size of the dtrace_dynvar structure plus the storage required to key the
611  * data.  For all DIF, we take the largest value and dub it the _chunksize_.
612  * We then divide dynamic memory into two parts:  a hash table that is wide
613  * enough to have every chunk in its own bucket, and a larger region of equal
614  * chunksize units.  Whenever we wish to dynamically allocate a variable, we
615  * always allocate a single chunk of memory.  Depending on the uniformity of
616  * allocation, this will waste some amount of memory -- but it eliminates the
617  * non-determinism inherent in traditional heap fragmentation.
618  *
619  * Dynamic objects are allocated by storing a non-zero value to them; they are
620  * deallocated by storing a zero value to them.  Dynamic variables are
621  * complicated enormously by being shared between CPUs.  In particular,
622  * consider the following scenario:
623  *
624  *                 CPU A                                 CPU B
625  *  +---------------------------------+   +---------------------------------+
626  *  |                                 |   |                                 |
627  *  | allocates dynamic object a[123] |   |                                 |
628  *  | by storing the value 345 to it  |   |                                 |
629  *  |                               --------->                              |
630  *  |                                 |   | wishing to load from object     |
631  *  |                                 |   | a[123], performs lookup in      |
632  *  |                                 |   | dynamic variable space          |
633  *  |                               <---------                              |
634  *  | deallocates object a[123] by    |   |                                 |
635  *  | storing 0 to it                 |   |                                 |
636  *  |                                 |   |                                 |
637  *  | allocates dynamic object b[567] |   | performs load from a[123]       |
638  *  | by storing the value 789 to it  |   |                                 |
639  *  :                                 :   :                                 :
640  *  .                                 .   .                                 .
641  *
642  * This is obviously a race in the D program, but there are nonetheless only
643  * two valid values for CPU B's load from a[123]:  345 or 0.  Most importantly,
644  * CPU B may _not_ see the value 789 for a[123].
645  *
646  * There are essentially two ways to deal with this:
647  *
648  *  (1)  Explicitly spin-lock variables.  That is, if CPU B wishes to load
649  *       from a[123], it needs to lock a[123] and hold the lock for the
650  *       duration that it wishes to manipulate it.
651  *
652  *  (2)  Avoid reusing freed chunks until it is known that no CPU is referring
653  *       to them.
654  *
655  * The implementation of (1) is rife with complexity, because it requires the
656  * user of a dynamic variable to explicitly decree when they are done using it.
657  * Were all variables by value, this perhaps wouldn't be debilitating -- but
658  * dynamic variables of non-scalar types are tracked by reference.  That is, if
659  * a dynamic variable is, say, a string, and that variable is to be traced to,
660  * say, the principal buffer, the DIF emulation code returns to the main
661  * dtrace_probe() loop a pointer to the underlying storage, not the contents of
662  * the storage.  Further, code calling on DIF emulation would have to be aware
663  * that the DIF emulation has returned a reference to a dynamic variable that
664  * has been potentially locked.  The variable would have to be unlocked after
665  * the main dtrace_probe() loop is finished with the variable, and the main
666  * dtrace_probe() loop would have to be careful to not call any further DIF
667  * emulation while the variable is locked to avoid deadlock.  More generally,
668  * if one were to implement (1), DIF emulation code dealing with dynamic
669  * variables could only deal with one dynamic variable at a time (lest deadlock
670  * result).  To sum, (1) exports too much subtlety to the users of dynamic
671  * variables -- increasing maintenance burden and imposing serious constraints
672  * on future DTrace development.
673  *
674  * The implementation of (2) is also complex, but the complexity is more
675  * manageable.  We need to be sure that when a variable is deallocated, it is
676  * not placed on a traditional free list, but rather on a _dirty_ list.  Once a
677  * variable is on a dirty list, it cannot be found by CPUs performing a
678  * subsequent lookup of the variable -- but it may still be in use by other
679  * CPUs.  To assure that all CPUs that may be seeing the old variable have
680  * cleared out of probe context, a dtrace_sync() can be issued.  Once the
681  * dtrace_sync() has completed, it can be known that all CPUs are done
682  * manipulating the dynamic variable -- the dirty list can be atomically
683  * appended to the free list.  Unfortunately, there's a slight hiccup in this
684  * mechanism:  dtrace_sync() may not be issued from probe context.  The
685  * dtrace_sync() must be therefore issued asynchronously from non-probe
686  * context.  For this we rely on the DTrace cleaner, a cyclic that runs at the
687  * "cleanrate" frequency.  To ease this implementation, we define several chunk
688  * lists:
689  *
690  *   - Dirty.  Deallocated chunks, not yet cleaned.  Not available.
691  *
692  *   - Rinsing.  Formerly dirty chunks that are currently being asynchronously
693  *     cleaned.  Not available, but will be shortly.  Dynamic variable
694  *     allocation may not spin or block for availability, however.
695  *
696  *   - Clean.  Clean chunks, ready for allocation -- but not on the free list.
697  *
698  *   - Free.  Available for allocation.
699  *
700  * Moreover, to avoid absurd contention, _each_ of these lists is implemented
701  * on a per-CPU basis.  This is only for performance, not correctness; chunks
702  * may be allocated from another CPU's free list.  The algorithm for allocation
703  * then is this:
704  *
705  *   (1)  Attempt to atomically allocate from current CPU's free list.  If list
706  *        is non-empty and allocation is successful, allocation is complete.
707  *
708  *   (2)  If the clean list is non-empty, atomically move it to the free list,
709  *        and reattempt (1).
710  *
711  *   (3)  If the dynamic variable space is in the CLEAN state, look for free
712  *        and clean lists on other CPUs by setting the current CPU to the next
713  *        CPU, and reattempting (1).  If the next CPU is the current CPU (that
714  *        is, if all CPUs have been checked), atomically switch the state of
715  *        the dynamic variable space based on the following:
716  *
717  *        - If no free chunks were found and no dirty chunks were found,
718  *          atomically set the state to EMPTY.
719  *
720  *        - If dirty chunks were found, atomically set the state to DIRTY.
721  *
722  *        - If rinsing chunks were found, atomically set the state to RINSING.
723  *
724  *   (4)  Based on state of dynamic variable space state, increment appropriate
725  *        counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
726  *        dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
727  *        RINSING state).  Fail the allocation.
728  *
729  * The cleaning cyclic operates with the following algorithm:  for all CPUs
730  * with a non-empty dirty list, atomically move the dirty list to the rinsing
731  * list.  Perform a dtrace_sync().  For all CPUs with a non-empty rinsing list,
732  * atomically move the rinsing list to the clean list.  Perform another
733  * dtrace_sync().  By this point, all CPUs have seen the new clean list; the
734  * state of the dynamic variable space can be restored to CLEAN.
735  *
736  * There exist two final races that merit explanation.  The first is a simple
737  * allocation race:
738  *
739  *                 CPU A                                 CPU B
740  *  +---------------------------------+   +---------------------------------+
741  *  |                                 |   |                                 |
742  *  | allocates dynamic object a[123] |   | allocates dynamic object a[123] |
743  *  | by storing the value 345 to it  |   | by storing the value 567 to it  |
744  *  |                                 |   |                                 |
745  *  :                                 :   :                                 :
746  *  .                                 .   .                                 .
747  *
748  * Again, this is a race in the D program.  It can be resolved by having a[123]
749  * hold the value 345 or a[123] hold the value 567 -- but it must be true that
750  * a[123] have only _one_ of these values.  (That is, the racing CPUs may not
751  * put the same element twice on the same hash chain.)  This is resolved
752  * simply:  before the allocation is undertaken, the start of the new chunk's
753  * hash chain is noted.  Later, after the allocation is complete, the hash
754  * chain is atomically switched to point to the new element.  If this fails
755  * (because of either concurrent allocations or an allocation concurrent with a
756  * deletion), the newly allocated chunk is deallocated to the dirty list, and
757  * the whole process of looking up (and potentially allocating) the dynamic
758  * variable is reattempted.
759  *
760  * The final race is a simple deallocation race:
761  *
762  *                 CPU A                                 CPU B
763  *  +---------------------------------+   +---------------------------------+
764  *  |                                 |   |                                 |
765  *  | deallocates dynamic object      |   | deallocates dynamic object      |
766  *  | a[123] by storing the value 0   |   | a[123] by storing the value 0   |
767  *  | to it                           |   | to it                           |
768  *  |                                 |   |                                 |
769  *  :                                 :   :                                 :
770  *  .                                 .   .                                 .
771  *
772  * Once again, this is a race in the D program, but it is one that we must
773  * handle without corrupting the underlying data structures.  Because
774  * deallocations require the deletion of a chunk from the middle of a hash
775  * chain, we cannot use a single-word atomic operation to remove it.  For this,
776  * we add a spin lock to the hash buckets that is _only_ used for deallocations
777  * (allocation races are handled as above).  Further, this spin lock is _only_
778  * held for the duration of the delete; before control is returned to the DIF
779  * emulation code, the hash bucket is unlocked.
780  */
781 typedef struct dtrace_key {
782 	uint64_t dttk_value;			/* data value or data pointer */
783 	uint64_t dttk_size;			/* 0 if by-val, >0 if by-ref */
784 } dtrace_key_t;
785 
786 typedef struct dtrace_tuple {
787 	uint32_t dtt_nkeys;			/* number of keys in tuple */
788 	uint32_t dtt_pad;			/* padding */
789 	dtrace_key_t dtt_key[1];		/* array of tuple keys */
790 } dtrace_tuple_t;
791 
792 typedef struct dtrace_dynvar {
793 	uint64_t dtdv_hashval;			/* hash value -- 0 if free */
794 	struct dtrace_dynvar *dtdv_next;	/* next on list or hash chain */
795 	void *dtdv_data;			/* pointer to data */
796 	dtrace_tuple_t dtdv_tuple;		/* tuple key */
797 } dtrace_dynvar_t;
798 
799 typedef enum dtrace_dynvar_op {
800 	DTRACE_DYNVAR_ALLOC,
801 	DTRACE_DYNVAR_NOALLOC,
802 	DTRACE_DYNVAR_DEALLOC
803 } dtrace_dynvar_op_t;
804 
805 typedef struct dtrace_dynhash {
806 	dtrace_dynvar_t *dtdh_chain;		/* hash chain for this bucket */
807 	uintptr_t dtdh_lock;			/* deallocation lock */
808 #ifdef _LP64
809 	uintptr_t dtdh_pad[6];			/* pad to avoid false sharing */
810 #else
811 	uintptr_t dtdh_pad[14];			/* pad to avoid false sharing */
812 #endif
813 } dtrace_dynhash_t;
814 
815 typedef struct dtrace_dstate_percpu {
816 	dtrace_dynvar_t *dtdsc_free;		/* free list for this CPU */
817 	dtrace_dynvar_t *dtdsc_dirty;		/* dirty list for this CPU */
818 	dtrace_dynvar_t *dtdsc_rinsing;		/* rinsing list for this CPU */
819 	dtrace_dynvar_t *dtdsc_clean;		/* clean list for this CPU */
820 	uint64_t dtdsc_drops;			/* number of capacity drops */
821 	uint64_t dtdsc_dirty_drops;		/* number of dirty drops */
822 	uint64_t dtdsc_rinsing_drops;		/* number of rinsing drops */
823 #ifdef _LP64
824 	uint64_t dtdsc_pad;			/* pad to avoid false sharing */
825 #else
826 	uint64_t dtdsc_pad[2];			/* pad to avoid false sharing */
827 #endif
828 } dtrace_dstate_percpu_t;
829 
830 typedef enum dtrace_dstate_state {
831 	DTRACE_DSTATE_CLEAN = 0,
832 	DTRACE_DSTATE_EMPTY,
833 	DTRACE_DSTATE_DIRTY,
834 	DTRACE_DSTATE_RINSING
835 } dtrace_dstate_state_t;
836 
837 typedef struct dtrace_dstate {
838 	void *dtds_base;			/* base of dynamic var. space */
839 	size_t dtds_size;			/* size of dynamic var. space */
840 	size_t dtds_hashsize;			/* number of buckets in hash */
841 	size_t dtds_chunksize;			/* size of each chunk */
842 	dtrace_dynhash_t *dtds_hash;		/* pointer to hash table */
843 	dtrace_dstate_state_t dtds_state;	/* current dynamic var. state */
844 	dtrace_dstate_percpu_t *dtds_percpu;	/* per-CPU dyn. var. state */
845 } dtrace_dstate_t;
846 
847 /*
848  * DTrace Variable State
849  *
850  * The DTrace variable state tracks user-defined variables in its dtrace_vstate
851  * structure.  Each DTrace consumer has exactly one dtrace_vstate structure,
852  * but some dtrace_vstate structures may exist without a corresponding DTrace
853  * consumer (see "DTrace Helpers", below).  As described in <sys/dtrace.h>,
854  * user-defined variables can have one of three scopes:
855  *
856  *  DIFV_SCOPE_GLOBAL  =>  global scope
857  *  DIFV_SCOPE_THREAD  =>  thread-local scope (i.e. "self->" variables)
858  *  DIFV_SCOPE_LOCAL   =>  clause-local scope (i.e. "this->" variables)
859  *
860  * The variable state tracks variables by both their scope and their allocation
861  * type:
862  *
863  *  - The dtvs_globals and dtvs_locals members each point to an array of
864  *    dtrace_statvar structures.  These structures contain both the variable
865  *    metadata (dtrace_difv structures) and the underlying storage for all
866  *    statically allocated variables, including statically allocated
867  *    DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
868  *
869  *  - The dtvs_tlocals member points to an array of dtrace_difv structures for
870  *    DIFV_SCOPE_THREAD variables.  As such, this array tracks _only_ the
871  *    variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
872  *    is allocated out of the dynamic variable space.
873  *
874  *  - The dtvs_dynvars member is the dynamic variable state associated with the
875  *    variable state.  The dynamic variable state (described in "DTrace Dynamic
876  *    Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
877  *    dynamically-allocated DIFV_SCOPE_GLOBAL variables.
878  */
879 typedef struct dtrace_statvar {
880 	uint64_t dtsv_data;			/* data or pointer to it */
881 	size_t dtsv_size;			/* size of pointed-to data */
882 	int dtsv_refcnt;			/* reference count */
883 	dtrace_difv_t dtsv_var;			/* variable metadata */
884 } dtrace_statvar_t;
885 
886 typedef struct dtrace_vstate {
887 	dtrace_state_t *dtvs_state;		/* back pointer to state */
888 	dtrace_statvar_t **dtvs_globals;	/* statically-allocated glbls */
889 	int dtvs_nglobals;			/* number of globals */
890 	dtrace_difv_t *dtvs_tlocals;		/* thread-local metadata */
891 	int dtvs_ntlocals;			/* number of thread-locals */
892 	dtrace_statvar_t **dtvs_locals;		/* clause-local data */
893 	int dtvs_nlocals;			/* number of clause-locals */
894 	dtrace_dstate_t dtvs_dynvars;		/* dynamic variable state */
895 } dtrace_vstate_t;
896 
897 /*
898  * DTrace Machine State
899  *
900  * In the process of processing a fired probe, DTrace needs to track and/or
901  * cache some per-CPU state associated with that particular firing.  This is
902  * state that is always discarded after the probe firing has completed, and
903  * much of it is not specific to any DTrace consumer, remaining valid across
904  * all ECBs.  This state is tracked in the dtrace_mstate structure.
905  */
906 #define	DTRACE_MSTATE_ARGS		0x00000001
907 #define	DTRACE_MSTATE_PROBE		0x00000002
908 #define	DTRACE_MSTATE_EPID		0x00000004
909 #define	DTRACE_MSTATE_TIMESTAMP		0x00000008
910 #define	DTRACE_MSTATE_STACKDEPTH	0x00000010
911 #define	DTRACE_MSTATE_CALLER		0x00000020
912 #define	DTRACE_MSTATE_IPL		0x00000040
913 #define	DTRACE_MSTATE_FLTOFFS		0x00000080
914 #define	DTRACE_MSTATE_WALLTIMESTAMP	0x00000100
915 #define	DTRACE_MSTATE_USTACKDEPTH	0x00000200
916 #define	DTRACE_MSTATE_UCALLER		0x00000400
917 
918 typedef struct dtrace_mstate {
919 	uintptr_t dtms_scratch_base;		/* base of scratch space */
920 	uintptr_t dtms_scratch_ptr;		/* current scratch pointer */
921 	size_t dtms_scratch_size;		/* scratch size */
922 	uint32_t dtms_present;			/* variables that are present */
923 	uint64_t dtms_arg[5];			/* cached arguments */
924 	dtrace_epid_t dtms_epid;		/* current EPID */
925 	uint64_t dtms_timestamp;		/* cached timestamp */
926 	hrtime_t dtms_walltimestamp;		/* cached wall timestamp */
927 	int dtms_stackdepth;			/* cached stackdepth */
928 	int dtms_ustackdepth;			/* cached ustackdepth */
929 	struct dtrace_probe *dtms_probe;	/* current probe */
930 	uintptr_t dtms_caller;			/* cached caller */
931 	uint64_t dtms_ucaller;			/* cached user-level caller */
932 	int dtms_ipl;				/* cached interrupt pri lev */
933 	int dtms_fltoffs;			/* faulting DIFO offset */
934 	uintptr_t dtms_strtok;			/* saved strtok() pointer */
935 	uintptr_t dtms_strtok_limit;		/* upper bound of strtok ptr */
936 	uint32_t dtms_access;			/* memory access rights */
937 	dtrace_difo_t *dtms_difo;		/* current dif object */
938 	file_t *dtms_getf;			/* cached rval of getf() */
939 } dtrace_mstate_t;
940 
941 #define	DTRACE_COND_OWNER	0x1
942 #define	DTRACE_COND_USERMODE	0x2
943 #define	DTRACE_COND_ZONEOWNER	0x4
944 
945 #define	DTRACE_PROBEKEY_MAXDEPTH	8	/* max glob recursion depth */
946 
947 /*
948  * Access flag used by dtrace_mstate.dtms_access.
949  */
950 #define	DTRACE_ACCESS_KERNEL	0x1		/* the priv to read kmem */
951 
952 
953 /*
954  * DTrace Activity
955  *
956  * Each DTrace consumer is in one of several states, which (for purposes of
957  * avoiding yet-another overloading of the noun "state") we call the current
958  * _activity_.  The activity transitions on dtrace_go() (from DTRACIOCGO), on
959  * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action.  Activities may
960  * only transition in one direction; the activity transition diagram is a
961  * directed acyclic graph.  The activity transition diagram is as follows:
962  *
963  *
964  * +----------+                   +--------+                   +--------+
965  * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
966  * +----------+   dtrace_go(),    +--------+   dtrace_go(),    +--------+
967  *                before BEGIN        |        after BEGIN       |  |  |
968  *                                    |                          |  |  |
969  *                      exit() action |                          |  |  |
970  *                     from BEGIN ECB |                          |  |  |
971  *                                    |                          |  |  |
972  *                                    v                          |  |  |
973  *                               +----------+     exit() action  |  |  |
974  * +-----------------------------| DRAINING |<-------------------+  |  |
975  * |                             +----------+                       |  |
976  * |                                  |                             |  |
977  * |                   dtrace_stop(), |                             |  |
978  * |                     before END   |                             |  |
979  * |                                  |                             |  |
980  * |                                  v                             |  |
981  * | +---------+                 +----------+                       |  |
982  * | | STOPPED |<----------------| COOLDOWN |<----------------------+  |
983  * | +---------+  dtrace_stop(), +----------+     dtrace_stop(),       |
984  * |                after END                       before END         |
985  * |                                                                   |
986  * |                              +--------+                           |
987  * +----------------------------->| KILLED |<--------------------------+
988  *       deadman timeout or       +--------+     deadman timeout or
989  *        killed consumer                         killed consumer
990  *
991  * Note that once a DTrace consumer has stopped tracing, there is no way to
992  * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
993  * the DTrace pseudodevice.
994  */
995 typedef enum dtrace_activity {
996 	DTRACE_ACTIVITY_INACTIVE = 0,		/* not yet running */
997 	DTRACE_ACTIVITY_WARMUP,			/* while starting */
998 	DTRACE_ACTIVITY_ACTIVE,			/* running */
999 	DTRACE_ACTIVITY_DRAINING,		/* before stopping */
1000 	DTRACE_ACTIVITY_COOLDOWN,		/* while stopping */
1001 	DTRACE_ACTIVITY_STOPPED,		/* after stopping */
1002 	DTRACE_ACTIVITY_KILLED			/* killed */
1003 } dtrace_activity_t;
1004 
1005 /*
1006  * DTrace Helper Implementation
1007  *
1008  * A description of the helper architecture may be found in <sys/dtrace.h>.
1009  * Each process contains a pointer to its helpers in its p_dtrace_helpers
1010  * member.  This is a pointer to a dtrace_helpers structure, which contains an
1011  * array of pointers to dtrace_helper structures, helper variable state (shared
1012  * among a process's helpers) and a generation count.  (The generation count is
1013  * used to provide an identifier when a helper is added so that it may be
1014  * subsequently removed.)  The dtrace_helper structure is self-explanatory,
1015  * containing pointers to the objects needed to execute the helper.  Note that
1016  * helpers are _duplicated_ across fork(2), and destroyed on exec(2).  No more
1017  * than dtrace_helpers_max are allowed per-process.
1018  */
1019 #define	DTRACE_HELPER_ACTION_USTACK	0
1020 #define	DTRACE_NHELPER_ACTIONS		1
1021 
1022 typedef struct dtrace_helper_action {
1023 	int dtha_generation;			/* helper action generation */
1024 	int dtha_nactions;			/* number of actions */
1025 	dtrace_difo_t *dtha_predicate;		/* helper action predicate */
1026 	dtrace_difo_t **dtha_actions;		/* array of actions */
1027 	struct dtrace_helper_action *dtha_next;	/* next helper action */
1028 } dtrace_helper_action_t;
1029 
1030 typedef struct dtrace_helper_provider {
1031 	int dthp_generation;			/* helper provider generation */
1032 	uint32_t dthp_ref;			/* reference count */
1033 	dof_helper_t dthp_prov;			/* DOF w/ provider and probes */
1034 } dtrace_helper_provider_t;
1035 
1036 typedef struct dtrace_helpers {
1037 	dtrace_helper_action_t **dthps_actions;	/* array of helper actions */
1038 	dtrace_vstate_t dthps_vstate;		/* helper action var. state */
1039 	dtrace_helper_provider_t **dthps_provs;	/* array of providers */
1040 	uint_t dthps_nprovs;			/* count of providers */
1041 	uint_t dthps_maxprovs;			/* provider array size */
1042 	int dthps_generation;			/* current generation */
1043 	pid_t dthps_pid;			/* pid of associated proc */
1044 	int dthps_deferred;			/* helper in deferred list */
1045 	struct dtrace_helpers *dthps_next;	/* next pointer */
1046 	struct dtrace_helpers *dthps_prev;	/* prev pointer */
1047 } dtrace_helpers_t;
1048 
1049 /*
1050  * DTrace Helper Action Tracing
1051  *
1052  * Debugging helper actions can be arduous.  To ease the development and
1053  * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1054  * framework: helper tracing.  If dtrace_helptrace_enabled is non-zero (which
1055  * it is by default on DEBUG kernels), all helper activity will be traced to a
1056  * global, in-kernel ring buffer.  Each entry includes a pointer to the specific
1057  * helper, the location within the helper, and a trace of all local variables.
1058  * The ring buffer may be displayed in a human-readable format with the
1059  * ::dtrace_helptrace mdb(1) dcmd.
1060  */
1061 #define	DTRACE_HELPTRACE_NEXT	(-1)
1062 #define	DTRACE_HELPTRACE_DONE	(-2)
1063 #define	DTRACE_HELPTRACE_ERR	(-3)
1064 
1065 typedef struct dtrace_helptrace {
1066 	dtrace_helper_action_t	*dtht_helper;	/* helper action */
1067 	int dtht_where;				/* where in helper action */
1068 	int dtht_nlocals;			/* number of locals */
1069 	int dtht_fault;				/* type of fault (if any) */
1070 	int dtht_fltoffs;			/* DIF offset */
1071 	uint64_t dtht_illval;			/* faulting value */
1072 	uint64_t dtht_locals[1];		/* local variables */
1073 } dtrace_helptrace_t;
1074 
1075 /*
1076  * DTrace Credentials
1077  *
1078  * In probe context, we have limited flexibility to examine the credentials
1079  * of the DTrace consumer that created a particular enabling.  We use
1080  * the Least Privilege interfaces to cache the consumer's cred pointer and
1081  * some facts about that credential in a dtrace_cred_t structure. These
1082  * can limit the consumer's breadth of visibility and what actions the
1083  * consumer may take.
1084  */
1085 #define	DTRACE_CRV_ALLPROC		0x01
1086 #define	DTRACE_CRV_KERNEL		0x02
1087 #define	DTRACE_CRV_ALLZONE		0x04
1088 
1089 #define	DTRACE_CRV_ALL		(DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1090 	DTRACE_CRV_ALLZONE)
1091 
1092 #define	DTRACE_CRA_PROC				0x0001
1093 #define	DTRACE_CRA_PROC_CONTROL			0x0002
1094 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER	0x0004
1095 #define	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE	0x0008
1096 #define	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG	0x0010
1097 #define	DTRACE_CRA_KERNEL			0x0020
1098 #define	DTRACE_CRA_KERNEL_DESTRUCTIVE		0x0040
1099 
1100 #define	DTRACE_CRA_ALL		(DTRACE_CRA_PROC | \
1101 	DTRACE_CRA_PROC_CONTROL | \
1102 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1103 	DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1104 	DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1105 	DTRACE_CRA_KERNEL | \
1106 	DTRACE_CRA_KERNEL_DESTRUCTIVE)
1107 
1108 typedef struct dtrace_cred {
1109 	cred_t			*dcr_cred;
1110 	uint8_t			dcr_destructive;
1111 	uint8_t			dcr_visible;
1112 	uint16_t		dcr_action;
1113 } dtrace_cred_t;
1114 
1115 /*
1116  * DTrace Consumer State
1117  *
1118  * Each DTrace consumer has an associated dtrace_state structure that contains
1119  * its in-kernel DTrace state -- including options, credentials, statistics and
1120  * pointers to ECBs, buffers, speculations and formats.  A dtrace_state
1121  * structure is also allocated for anonymous enablings.  When anonymous state
1122  * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1123  * dtrace_state structure.
1124  */
1125 struct dtrace_state {
1126 #ifdef illumos
1127 	dev_t dts_dev;				/* device */
1128 #else
1129 	struct cdev *dts_dev;			/* device */
1130 #endif
1131 	int dts_necbs;				/* total number of ECBs */
1132 	dtrace_ecb_t **dts_ecbs;		/* array of ECBs */
1133 	dtrace_epid_t dts_epid;			/* next EPID to allocate */
1134 	size_t dts_needed;			/* greatest needed space */
1135 	struct dtrace_state *dts_anon;		/* anon. state, if grabbed */
1136 	dtrace_activity_t dts_activity;		/* current activity */
1137 	dtrace_vstate_t dts_vstate;		/* variable state */
1138 	dtrace_buffer_t *dts_buffer;		/* principal buffer */
1139 	dtrace_buffer_t *dts_aggbuffer;		/* aggregation buffer */
1140 	dtrace_speculation_t *dts_speculations;	/* speculation array */
1141 	int dts_nspeculations;			/* number of speculations */
1142 	int dts_naggregations;			/* number of aggregations */
1143 	dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1144 #ifdef illumos
1145 	vmem_t *dts_aggid_arena;		/* arena for aggregation IDs */
1146 #else
1147 	struct unrhdr *dts_aggid_arena;		/* arena for aggregation IDs */
1148 #endif
1149 	uint64_t dts_errors;			/* total number of errors */
1150 	uint32_t dts_speculations_busy;		/* number of spec. busy */
1151 	uint32_t dts_speculations_unavail;	/* number of spec unavail */
1152 	uint32_t dts_stkstroverflows;		/* stack string tab overflows */
1153 	uint32_t dts_dblerrors;			/* errors in ERROR probes */
1154 	uint32_t dts_reserve;			/* space reserved for END */
1155 	hrtime_t dts_laststatus;		/* time of last status */
1156 #ifdef illumos
1157 	cyclic_id_t dts_cleaner;		/* cleaning cyclic */
1158 	cyclic_id_t dts_deadman;		/* deadman cyclic */
1159 #else
1160 	struct callout dts_cleaner;		/* Cleaning callout. */
1161 	struct callout dts_deadman;		/* Deadman callout. */
1162 #endif
1163 	hrtime_t dts_alive;			/* time last alive */
1164 	char dts_speculates;			/* boolean: has speculations */
1165 	char dts_destructive;			/* boolean: has dest. actions */
1166 	int dts_nformats;			/* number of formats */
1167 	char **dts_formats;			/* format string array */
1168 	dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1169 	dtrace_cred_t dts_cred;			/* credentials */
1170 	size_t dts_nretained;			/* number of retained enabs */
1171 	int dts_getf;				/* number of getf() calls */
1172 	uint64_t dts_rstate[NCPU][2];		/* per-CPU random state */
1173 };
1174 
1175 struct dtrace_provider {
1176 	dtrace_pattr_t dtpv_attr;		/* provider attributes */
1177 	dtrace_ppriv_t dtpv_priv;		/* provider privileges */
1178 	dtrace_pops_t dtpv_pops;		/* provider operations */
1179 	char *dtpv_name;			/* provider name */
1180 	void *dtpv_arg;				/* provider argument */
1181 	hrtime_t dtpv_defunct;			/* when made defunct */
1182 	struct dtrace_provider *dtpv_next;	/* next provider */
1183 };
1184 
1185 struct dtrace_meta {
1186 	dtrace_mops_t dtm_mops;			/* meta provider operations */
1187 	char *dtm_name;				/* meta provider name */
1188 	void *dtm_arg;				/* meta provider user arg */
1189 	uint64_t dtm_count;			/* no. of associated provs. */
1190 };
1191 
1192 /*
1193  * DTrace Enablings
1194  *
1195  * A dtrace_enabling structure is used to track a collection of ECB
1196  * descriptions -- before they have been turned into actual ECBs.  This is
1197  * created as a result of DOF processing, and is generally used to generate
1198  * ECBs immediately thereafter.  However, enablings are also generally
1199  * retained should the probes they describe be created at a later time; as
1200  * each new module or provider registers with the framework, the retained
1201  * enablings are reevaluated, with any new match resulting in new ECBs.  To
1202  * prevent probes from being matched more than once, the enabling tracks the
1203  * last probe generation matched, and only matches probes from subsequent
1204  * generations.
1205  */
1206 typedef struct dtrace_enabling {
1207 	dtrace_ecbdesc_t **dten_desc;		/* all ECB descriptions */
1208 	int dten_ndesc;				/* number of ECB descriptions */
1209 	int dten_maxdesc;			/* size of ECB array */
1210 	dtrace_vstate_t *dten_vstate;		/* associated variable state */
1211 	dtrace_genid_t dten_probegen;		/* matched probe generation */
1212 	dtrace_ecbdesc_t *dten_current;		/* current ECB description */
1213 	int dten_error;				/* current error value */
1214 	int dten_primed;			/* boolean: set if primed */
1215 	struct dtrace_enabling *dten_prev;	/* previous enabling */
1216 	struct dtrace_enabling *dten_next;	/* next enabling */
1217 } dtrace_enabling_t;
1218 
1219 /*
1220  * DTrace Anonymous Enablings
1221  *
1222  * Anonymous enablings are DTrace enablings that are not associated with a
1223  * controlling process, but rather derive their enabling from DOF stored as
1224  * properties in the dtrace.conf file.  If there is an anonymous enabling, a
1225  * DTrace consumer state and enabling are created on attach.  The state may be
1226  * subsequently grabbed by the first consumer specifying the "grabanon"
1227  * option.  As long as an anonymous DTrace enabling exists, dtrace(7D) will
1228  * refuse to unload.
1229  */
1230 typedef struct dtrace_anon {
1231 	dtrace_state_t *dta_state;		/* DTrace consumer state */
1232 	dtrace_enabling_t *dta_enabling;	/* pointer to enabling */
1233 	processorid_t dta_beganon;		/* which CPU BEGIN ran on */
1234 } dtrace_anon_t;
1235 
1236 /*
1237  * DTrace Error Debugging
1238  */
1239 #ifdef DEBUG
1240 #define	DTRACE_ERRDEBUG
1241 #endif
1242 
1243 #ifdef DTRACE_ERRDEBUG
1244 
1245 typedef struct dtrace_errhash {
1246 	const char	*dter_msg;	/* error message */
1247 	int		dter_count;	/* number of times seen */
1248 } dtrace_errhash_t;
1249 
1250 #define	DTRACE_ERRHASHSZ	256	/* must be > number of err msgs */
1251 
1252 #endif	/* DTRACE_ERRDEBUG */
1253 
1254 /*
1255  * DTrace Toxic Ranges
1256  *
1257  * DTrace supports safe loads from probe context; if the address turns out to
1258  * be invalid, a bit will be set by the kernel indicating that DTrace
1259  * encountered a memory error, and DTrace will propagate the error to the user
1260  * accordingly.  However, there may exist some regions of memory in which an
1261  * arbitrary load can change system state, and from which it is impossible to
1262  * recover from such a load after it has been attempted.  Examples of this may
1263  * include memory in which programmable I/O registers are mapped (for which a
1264  * read may have some implications for the device) or (in the specific case of
1265  * UltraSPARC-I and -II) the virtual address hole.  The platform is required
1266  * to make DTrace aware of these toxic ranges; DTrace will then check that
1267  * target addresses are not in a toxic range before attempting to issue a
1268  * safe load.
1269  */
1270 typedef struct dtrace_toxrange {
1271 	uintptr_t	dtt_base;		/* base of toxic range */
1272 	uintptr_t	dtt_limit;		/* limit of toxic range */
1273 } dtrace_toxrange_t;
1274 
1275 #ifdef illumos
1276 extern uint64_t dtrace_getarg(int, int);
1277 #else
1278 extern uint64_t __noinline dtrace_getarg(int, int);
1279 #endif
1280 extern greg_t dtrace_getfp(void);
1281 extern int dtrace_getipl(void);
1282 extern uintptr_t dtrace_caller(int);
1283 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1284 extern void *dtrace_casptr(volatile void *, volatile void *, volatile void *);
1285 extern void dtrace_copyin(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1286 extern void dtrace_copyinstr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1287 extern void dtrace_copyout(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1288 extern void dtrace_copyoutstr(uintptr_t, uintptr_t, size_t,
1289     volatile uint16_t *);
1290 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1291 extern ulong_t dtrace_getreg(struct trapframe *, uint_t);
1292 extern int dtrace_getstackdepth(int);
1293 extern void dtrace_getupcstack(uint64_t *, int);
1294 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1295 extern int dtrace_getustackdepth(void);
1296 extern uintptr_t dtrace_fulword(void *);
1297 extern uint8_t dtrace_fuword8(void *);
1298 extern uint16_t dtrace_fuword16(void *);
1299 extern uint32_t dtrace_fuword32(void *);
1300 extern uint64_t dtrace_fuword64(void *);
1301 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1302     int, uintptr_t);
1303 extern int dtrace_assfail(const char *, const char *, int);
1304 extern int dtrace_attached(void);
1305 #ifdef illumos
1306 extern hrtime_t dtrace_gethrestime(void);
1307 #endif
1308 
1309 #ifdef __sparc
1310 extern void dtrace_flush_windows(void);
1311 extern void dtrace_flush_user_windows(void);
1312 extern uint_t dtrace_getotherwin(void);
1313 extern uint_t dtrace_getfprs(void);
1314 #else
1315 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1316 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1317 #endif
1318 
1319 /*
1320  * DTrace Assertions
1321  *
1322  * DTrace calls ASSERT and VERIFY from probe context.  To assure that a failed
1323  * ASSERT or VERIFY does not induce a markedly more catastrophic failure (e.g.,
1324  * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
1325  * and VERIFY macros to be ones that may safely be called from probe context.
1326  * This header file must thus be included by any DTrace component that calls
1327  * ASSERT and/or VERIFY from probe context, and _only_ by those components.
1328  * (The only exception to this is kernel debugging infrastructure at user-level
1329  * that doesn't depend on calling ASSERT.)
1330  */
1331 #undef ASSERT
1332 #undef VERIFY
1333 #define	VERIFY(EX)	((void)((EX) || \
1334 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1335 #ifdef DEBUG
1336 #define	ASSERT(EX)	((void)((EX) || \
1337 			dtrace_assfail(#EX, __FILE__, __LINE__)))
1338 #else
1339 #define	ASSERT(X)	((void)0)
1340 #endif
1341 
1342 #ifdef	__cplusplus
1343 }
1344 #endif
1345 
1346 #endif /* _SYS_DTRACE_IMPL_H */
1347