1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2019 Joyent, Inc.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 * Copyright 2023 Oxide Computer Company
27 */
28
29 /*
30 * DTrace - Dynamic Tracing for Solaris
31 *
32 * This is the implementation of the Solaris Dynamic Tracing framework
33 * (DTrace). The user-visible interface to DTrace is described at length in
34 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
35 * library, the in-kernel DTrace framework, and the DTrace providers are
36 * described in the block comments in the <sys/dtrace.h> header file. The
37 * internal architecture of DTrace is described in the block comments in the
38 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
39 * implementation very much assume mastery of all of these sources; if one has
40 * an unanswered question about the implementation, one should consult them
41 * first.
42 *
43 * The functions here are ordered roughly as follows:
44 *
45 * - Probe context functions
46 * - Probe hashing functions
47 * - Non-probe context utility functions
48 * - Matching functions
49 * - Provider-to-Framework API functions
50 * - Probe management functions
51 * - DIF object functions
52 * - Format functions
53 * - Predicate functions
54 * - ECB functions
55 * - Buffer functions
56 * - Enabling functions
57 * - DOF functions
58 * - Anonymous enabling functions
59 * - Consumer state functions
60 * - Helper functions
61 * - Hook functions
62 * - Driver cookbook functions
63 *
64 * Each group of functions begins with a block comment labelled the "DTrace
65 * [Group] Functions", allowing one to find each block by searching forward
66 * on capital-f functions.
67 */
68 #include <sys/errno.h>
69 #include <sys/stat.h>
70 #include <sys/modctl.h>
71 #include <sys/conf.h>
72 #include <sys/systm.h>
73 #include <sys/ddi.h>
74 #include <sys/sunddi.h>
75 #include <sys/cpuvar.h>
76 #include <sys/kmem.h>
77 #include <sys/strsubr.h>
78 #include <sys/sysmacros.h>
79 #include <sys/dtrace_impl.h>
80 #include <sys/atomic.h>
81 #include <sys/cmn_err.h>
82 #include <sys/mutex_impl.h>
83 #include <sys/rwlock_impl.h>
84 #include <sys/ctf_api.h>
85 #include <sys/panic.h>
86 #include <sys/priv_impl.h>
87 #include <sys/policy.h>
88 #include <sys/cred_impl.h>
89 #include <sys/procfs_isa.h>
90 #include <sys/taskq.h>
91 #include <sys/mkdev.h>
92 #include <sys/kdi.h>
93 #include <sys/zone.h>
94 #include <sys/socket.h>
95 #include <netinet/in.h>
96 #include "strtolctype.h"
97
98 /*
99 * DTrace Tunable Variables
100 *
101 * The following variables may be tuned by adding a line to /etc/system that
102 * includes both the name of the DTrace module ("dtrace") and the name of the
103 * variable. For example:
104 *
105 * set dtrace:dtrace_destructive_disallow = 1
106 *
107 * In general, the only variables that one should be tuning this way are those
108 * that affect system-wide DTrace behavior, and for which the default behavior
109 * is undesirable. Most of these variables are tunable on a per-consumer
110 * basis using DTrace options, and need not be tuned on a system-wide basis.
111 * When tuning these variables, avoid pathological values; while some attempt
112 * is made to verify the integrity of these variables, they are not considered
113 * part of the supported interface to DTrace, and they are therefore not
114 * checked comprehensively. Further, these variables should not be tuned
115 * dynamically via "mdb -kw" or other means; they should only be tuned via
116 * /etc/system.
117 */
118 int dtrace_destructive_disallow = 0;
119 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
120 size_t dtrace_difo_maxsize = (256 * 1024);
121 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
122 size_t dtrace_statvar_maxsize = (16 * 1024);
123 size_t dtrace_actions_max = (16 * 1024);
124 size_t dtrace_retain_max = 1024;
125 dtrace_optval_t dtrace_helper_actions_max = 1024;
126 dtrace_optval_t dtrace_helper_providers_max = 32;
127 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
128 size_t dtrace_strsize_default = 256;
129 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
130 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
131 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
132 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
133 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
134 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
135 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
136 dtrace_optval_t dtrace_nspec_default = 1;
137 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
138 dtrace_optval_t dtrace_stackframes_default = 20;
139 dtrace_optval_t dtrace_ustackframes_default = 20;
140 dtrace_optval_t dtrace_jstackframes_default = 50;
141 dtrace_optval_t dtrace_jstackstrsize_default = 512;
142 int dtrace_msgdsize_max = 128;
143 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
144 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
145 int dtrace_devdepth_max = 32;
146 int dtrace_err_verbose;
147 hrtime_t dtrace_deadman_interval = NANOSEC;
148 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
149 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
150 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
151
152 /*
153 * DTrace External Variables
154 *
155 * As dtrace(4D) is a kernel module, any DTrace variables are obviously
156 * available to DTrace consumers via the backtick (`) syntax. One of these,
157 * dtrace_zero, is made deliberately so: it is provided as a source of
158 * well-known, zero-filled memory. While this variable is not documented,
159 * it is used by some translators as an implementation detail.
160 */
161 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
162
163 /*
164 * DTrace Internal Variables
165 */
166 static dev_info_t *dtrace_devi; /* device info */
167 static vmem_t *dtrace_arena; /* probe ID arena */
168 static vmem_t *dtrace_minor; /* minor number arena */
169 static taskq_t *dtrace_taskq; /* task queue */
170 static dtrace_probe_t **dtrace_probes; /* array of all probes */
171 static int dtrace_nprobes; /* number of probes */
172 static dtrace_provider_t *dtrace_provider; /* provider list */
173 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
174 static int dtrace_opens; /* number of opens */
175 static int dtrace_helpers; /* number of helpers */
176 static int dtrace_getf; /* number of unpriv getf()s */
177 static void *dtrace_softstate; /* softstate pointer */
178 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
179 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
180 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
181 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
182 static int dtrace_toxranges; /* number of toxic ranges */
183 static int dtrace_toxranges_max; /* size of toxic range array */
184 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
185 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
186 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
187 static kthread_t *dtrace_panicked; /* panicking thread */
188 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
189 static dtrace_genid_t dtrace_probegen; /* current probe generation */
190 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
191 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
192 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
193 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
194 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
195
196 /*
197 * DTrace Locking
198 * DTrace is protected by three (relatively coarse-grained) locks:
199 *
200 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
201 * including enabling state, probes, ECBs, consumer state, helper state,
202 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
203 * probe context is lock-free -- synchronization is handled via the
204 * dtrace_sync() cross call mechanism.
205 *
206 * (2) dtrace_provider_lock is required when manipulating provider state, or
207 * when provider state must be held constant.
208 *
209 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
210 * when meta provider state must be held constant.
211 *
212 * The lock ordering between these three locks is dtrace_meta_lock before
213 * dtrace_provider_lock before dtrace_lock. (In particular, there are
214 * several places where dtrace_provider_lock is held by the framework as it
215 * calls into the providers -- which then call back into the framework,
216 * grabbing dtrace_lock.)
217 *
218 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
219 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
220 * role as a coarse-grained lock; it is acquired before both of these locks.
221 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
222 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
223 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
224 * acquired _between_ dtrace_provider_lock and dtrace_lock.
225 */
226 static kmutex_t dtrace_lock; /* probe state lock */
227 static kmutex_t dtrace_provider_lock; /* provider state lock */
228 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
229
230 /*
231 * DTrace Provider Variables
232 *
233 * These are the variables relating to DTrace as a provider (that is, the
234 * provider of the BEGIN, END, and ERROR probes).
235 */
236 static dtrace_pattr_t dtrace_provider_attr = {
237 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
242 };
243
244 static void
dtrace_nullop_provide(void * arg __unused,const dtrace_probedesc_t * spec __unused)245 dtrace_nullop_provide(void *arg __unused,
246 const dtrace_probedesc_t *spec __unused)
247 {
248 }
249
250 static void
dtrace_nullop_module(void * arg __unused,struct modctl * mp __unused)251 dtrace_nullop_module(void *arg __unused, struct modctl *mp __unused)
252 {
253 }
254
255 static void
dtrace_nullop(void * arg __unused,dtrace_id_t id __unused,void * parg __unused)256 dtrace_nullop(void *arg __unused, dtrace_id_t id __unused, void *parg __unused)
257 {
258 }
259
260 static int
dtrace_enable_nullop(void * arg __unused,dtrace_id_t id __unused,void * parg __unused)261 dtrace_enable_nullop(void *arg __unused, dtrace_id_t id __unused,
262 void *parg __unused)
263 {
264 return (0);
265 }
266
267 static dtrace_pops_t dtrace_provider_ops = {
268 .dtps_provide = dtrace_nullop_provide,
269 .dtps_provide_module = dtrace_nullop_module,
270 .dtps_enable = dtrace_enable_nullop,
271 .dtps_disable = dtrace_nullop,
272 .dtps_suspend = dtrace_nullop,
273 .dtps_resume = dtrace_nullop,
274 .dtps_getargdesc = NULL,
275 .dtps_getargval = NULL,
276 .dtps_mode = NULL,
277 .dtps_destroy = dtrace_nullop
278 };
279
280 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
281 static dtrace_id_t dtrace_probeid_end; /* special END probe */
282 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
283
284 /*
285 * DTrace Helper Tracing Variables
286 *
287 * These variables should be set dynamically to enable helper tracing. The
288 * only variables that should be set are dtrace_helptrace_enable (which should
289 * be set to a non-zero value to allocate helper tracing buffers on the next
290 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
291 * non-zero value to deallocate helper tracing buffers on the next close of
292 * /dev/dtrace). When (and only when) helper tracing is disabled, the
293 * buffer size may also be set via dtrace_helptrace_bufsize.
294 */
295 int dtrace_helptrace_enable = 0;
296 int dtrace_helptrace_disable = 0;
297 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
298 uint32_t dtrace_helptrace_nlocals;
299 static dtrace_helptrace_t *dtrace_helptrace_buffer;
300 static uint32_t dtrace_helptrace_next = 0;
301 static int dtrace_helptrace_wrapped = 0;
302
303 /*
304 * DTrace Error Hashing
305 *
306 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
307 * table. This is very useful for checking coverage of tests that are
308 * expected to induce DIF or DOF processing errors, and may be useful for
309 * debugging problems in the DIF code generator or in DOF generation . The
310 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
311 */
312 #ifdef DEBUG
313 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
314 static const char *dtrace_errlast;
315 static kthread_t *dtrace_errthread;
316 static kmutex_t dtrace_errlock;
317 #endif
318
319 /*
320 * DTrace Macros and Constants
321 *
322 * These are various macros that are useful in various spots in the
323 * implementation, along with a few random constants that have no meaning
324 * outside of the implementation. There is no real structure to this cpp
325 * mishmash -- but is there ever?
326 */
327 #define DTRACE_HASHSTR(hash, probe) \
328 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
329
330 #define DTRACE_HASHNEXT(hash, probe) \
331 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
332
333 #define DTRACE_HASHPREV(hash, probe) \
334 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
335
336 #define DTRACE_HASHEQ(hash, lhs, rhs) \
337 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
338 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
339
340 #define DTRACE_AGGHASHSIZE_SLEW 17
341
342 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
343
344 /*
345 * The key for a thread-local variable consists of the lower 61 bits of the
346 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
347 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
348 * equal to a variable identifier. This is necessary (but not sufficient) to
349 * assure that global associative arrays never collide with thread-local
350 * variables. To guarantee that they cannot collide, we must also define the
351 * order for keying dynamic variables. That order is:
352 *
353 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
354 *
355 * Because the variable-key and the tls-key are in orthogonal spaces, there is
356 * no way for a global variable key signature to match a thread-local key
357 * signature.
358 */
359 #define DTRACE_TLS_THRKEY(where) { \
360 uint_t intr = 0; \
361 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
362 for (; actv; actv >>= 1) \
363 intr++; \
364 ASSERT(intr < (1 << 3)); \
365 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
366 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
367 }
368
369 #define DT_BSWAP_8(x) ((x) & 0xff)
370 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
371 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
372 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
373
374 #define DT_MASK_LO 0x00000000FFFFFFFFULL
375
376 #define DTRACE_STORE(type, tomax, offset, what) \
377 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
378
379 #ifndef __x86
380 #define DTRACE_ALIGNCHECK(addr, size, flags) \
381 if (addr & (size - 1)) { \
382 *flags |= CPU_DTRACE_BADALIGN; \
383 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
384 return (0); \
385 }
386 #else
387 #define DTRACE_ALIGNCHECK(addr, size, flags)
388 #endif
389
390 /*
391 * Test whether a range of memory starting at testaddr of size testsz falls
392 * within the range of memory described by addr, sz. We take care to avoid
393 * problems with overflow and underflow of the unsigned quantities, and
394 * disallow all negative sizes. Ranges of size 0 are allowed.
395 */
396 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
397 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
398 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
399 (testaddr) + (testsz) >= (testaddr))
400
401 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
402 do { \
403 if ((remp) != NULL) { \
404 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
405 } \
406 _NOTE(CONSTCOND) } while (0)
407
408
409 /*
410 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
411 * alloc_sz on the righthand side of the comparison in order to avoid overflow
412 * or underflow in the comparison with it. This is simpler than the INRANGE
413 * check above, because we know that the dtms_scratch_ptr is valid in the
414 * range. Allocations of size zero are allowed.
415 */
416 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
417 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
418 (mstate)->dtms_scratch_ptr >= (alloc_sz))
419
420 #define DTRACE_LOADFUNC(bits) \
421 /*CSTYLED*/ \
422 uint##bits##_t \
423 dtrace_load##bits(uintptr_t addr) \
424 { \
425 size_t size = bits / NBBY; \
426 /*CSTYLED*/ \
427 uint##bits##_t rval; \
428 int i; \
429 volatile uint16_t *flags = (volatile uint16_t *) \
430 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
431 \
432 DTRACE_ALIGNCHECK(addr, size, flags); \
433 \
434 for (i = 0; i < dtrace_toxranges; i++) { \
435 if (addr >= dtrace_toxrange[i].dtt_limit) \
436 continue; \
437 \
438 if (addr + size <= dtrace_toxrange[i].dtt_base) \
439 continue; \
440 \
441 /* \
442 * This address falls within a toxic region; return 0. \
443 */ \
444 *flags |= CPU_DTRACE_BADADDR; \
445 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
446 return (0); \
447 } \
448 \
449 *flags |= CPU_DTRACE_NOFAULT; \
450 /*CSTYLED*/ \
451 rval = *((volatile uint##bits##_t *)addr); \
452 *flags &= ~CPU_DTRACE_NOFAULT; \
453 \
454 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
455 }
456
457 #ifdef _LP64
458 #define dtrace_loadptr dtrace_load64
459 #else
460 #define dtrace_loadptr dtrace_load32
461 #endif
462
463 #define DTRACE_DYNHASH_FREE 0
464 #define DTRACE_DYNHASH_SINK 1
465 #define DTRACE_DYNHASH_VALID 2
466
467 #define DTRACE_MATCH_FAIL -1
468 #define DTRACE_MATCH_NEXT 0
469 #define DTRACE_MATCH_DONE 1
470 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
471 #define DTRACE_STATE_ALIGN 64
472
473 #define DTRACE_FLAGS2FLT(flags) \
474 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
475 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
476 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
477 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
478 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
479 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
480 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
481 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
482 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
483 DTRACEFLT_UNKNOWN)
484
485 #define DTRACEACT_ISSTRING(act) \
486 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
487 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
488
489 static size_t dtrace_strlen(const char *, size_t);
490 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
491 static void dtrace_enabling_provide(dtrace_provider_t *);
492 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
493 static void dtrace_enabling_matchall(void);
494 static void dtrace_enabling_reap(void);
495 static dtrace_state_t *dtrace_anon_grab(void);
496 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
497 dtrace_state_t *, uint64_t, uint64_t);
498 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
499 static void dtrace_buffer_drop(dtrace_buffer_t *);
500 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
501 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
502 dtrace_state_t *, dtrace_mstate_t *);
503 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
504 dtrace_optval_t);
505 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
506 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
507 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
508 static void dtrace_getf_barrier(void);
509 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
510 dtrace_mstate_t *, dtrace_vstate_t *);
511 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
512 dtrace_mstate_t *, dtrace_vstate_t *);
513
514 /*
515 * DTrace Probe Context Functions
516 *
517 * These functions are called from probe context. Because probe context is
518 * any context in which C may be called, arbitrarily locks may be held,
519 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
520 * As a result, functions called from probe context may only call other DTrace
521 * support functions -- they may not interact at all with the system at large.
522 * (Note that the ASSERT macro is made probe-context safe by redefining it in
523 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
524 * loads are to be performed from probe context, they _must_ be in terms of
525 * the safe dtrace_load*() variants.
526 *
527 * Some functions in this block are not actually called from probe context;
528 * for these functions, there will be a comment above the function reading
529 * "Note: not called from probe context."
530 */
531 void
dtrace_panic(const char * format,...)532 dtrace_panic(const char *format, ...)
533 {
534 va_list alist;
535
536 va_start(alist, format);
537 dtrace_vpanic(format, alist);
538 va_end(alist);
539 }
540
541 int
dtrace_assfail(const char * a,const char * f,int l)542 dtrace_assfail(const char *a, const char *f, int l)
543 {
544 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
545
546 /*
547 * We just need something here that even the most clever compiler
548 * cannot optimize away.
549 */
550 return (a[(uintptr_t)f]);
551 }
552
553 /*
554 * Atomically increment a specified error counter from probe context.
555 */
556 static void
dtrace_error(uint32_t * counter)557 dtrace_error(uint32_t *counter)
558 {
559 /*
560 * Most counters stored to in probe context are per-CPU counters.
561 * However, there are some error conditions that are sufficiently
562 * arcane that they don't merit per-CPU storage. If these counters
563 * are incremented concurrently on different CPUs, scalability will be
564 * adversely affected -- but we don't expect them to be white-hot in a
565 * correctly constructed enabling...
566 */
567 uint32_t oval, nval;
568
569 do {
570 oval = *counter;
571
572 if ((nval = oval + 1) == 0) {
573 /*
574 * If the counter would wrap, set it to 1 -- assuring
575 * that the counter is never zero when we have seen
576 * errors. (The counter must be 32-bits because we
577 * aren't guaranteed a 64-bit compare&swap operation.)
578 * To save this code both the infamy of being fingered
579 * by a priggish news story and the indignity of being
580 * the target of a neo-puritan witch trial, we're
581 * carefully avoiding any colorful description of the
582 * likelihood of this condition -- but suffice it to
583 * say that it is only slightly more likely than the
584 * overflow of predicate cache IDs, as discussed in
585 * dtrace_predicate_create().
586 */
587 nval = 1;
588 }
589 } while (dtrace_cas32(counter, oval, nval) != oval);
590 }
591
592 /*
593 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
594 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
595 */
596 /* BEGIN CSTYLED */
597 DTRACE_LOADFUNC(8)
598 DTRACE_LOADFUNC(16)
599 DTRACE_LOADFUNC(32)
600 DTRACE_LOADFUNC(64)
601 /* END CSTYLED */
602
603 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)604 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
605 {
606 if (dest < mstate->dtms_scratch_base)
607 return (0);
608
609 if (dest + size < dest)
610 return (0);
611
612 if (dest + size > mstate->dtms_scratch_ptr)
613 return (0);
614
615 return (1);
616 }
617
618 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)619 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
620 dtrace_statvar_t **svars, int nsvars)
621 {
622 int i;
623 size_t maxglobalsize, maxlocalsize;
624
625 if (nsvars == 0)
626 return (0);
627
628 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
629 maxlocalsize = maxglobalsize * NCPU;
630
631 for (i = 0; i < nsvars; i++) {
632 dtrace_statvar_t *svar = svars[i];
633 uint8_t scope;
634 size_t size;
635
636 if (svar == NULL || (size = svar->dtsv_size) == 0)
637 continue;
638
639 scope = svar->dtsv_var.dtdv_scope;
640
641 /*
642 * We verify that our size is valid in the spirit of providing
643 * defense in depth: we want to prevent attackers from using
644 * DTrace to escalate an orthogonal kernel heap corruption bug
645 * into the ability to store to arbitrary locations in memory.
646 */
647 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
648 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
649
650 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
651 svar->dtsv_size)) {
652 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
653 svar->dtsv_size);
654 return (1);
655 }
656 }
657
658 return (0);
659 }
660
661 /*
662 * Check to see if the address is within a memory region to which a store may
663 * be issued. This includes the DTrace scratch areas, and any DTrace variable
664 * region. The caller of dtrace_canstore() is responsible for performing any
665 * alignment checks that are needed before stores are actually executed.
666 */
667 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)668 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
669 dtrace_vstate_t *vstate)
670 {
671 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
672 }
673
674 /*
675 * Implementation of dtrace_canstore which communicates the upper bound of the
676 * allowed memory region.
677 */
678 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)679 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
680 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
681 {
682 /*
683 * First, check to see if the address is in scratch space...
684 */
685 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
686 mstate->dtms_scratch_size)) {
687 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
688 mstate->dtms_scratch_size);
689 return (1);
690 }
691
692 /*
693 * Now check to see if it's a dynamic variable. This check will pick
694 * up both thread-local variables and any global dynamically-allocated
695 * variables.
696 */
697 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
698 vstate->dtvs_dynvars.dtds_size)) {
699 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
700 uintptr_t base = (uintptr_t)dstate->dtds_base +
701 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
702 uintptr_t chunkoffs;
703 dtrace_dynvar_t *dvar;
704
705 /*
706 * Before we assume that we can store here, we need to make
707 * sure that it isn't in our metadata -- storing to our
708 * dynamic variable metadata would corrupt our state. For
709 * the range to not include any dynamic variable metadata,
710 * it must:
711 *
712 * (1) Start above the hash table that is at the base of
713 * the dynamic variable space
714 *
715 * (2) Have a starting chunk offset that is beyond the
716 * dtrace_dynvar_t that is at the base of every chunk
717 *
718 * (3) Not span a chunk boundary
719 *
720 * (4) Not be in the tuple space of a dynamic variable
721 *
722 */
723 if (addr < base)
724 return (0);
725
726 chunkoffs = (addr - base) % dstate->dtds_chunksize;
727
728 if (chunkoffs < sizeof (dtrace_dynvar_t))
729 return (0);
730
731 if (chunkoffs + sz > dstate->dtds_chunksize)
732 return (0);
733
734 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
735
736 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
737 return (0);
738
739 if (chunkoffs < sizeof (dtrace_dynvar_t) +
740 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
741 return (0);
742
743 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
744 return (1);
745 }
746
747 /*
748 * Finally, check the static local and global variables. These checks
749 * take the longest, so we perform them last.
750 */
751 if (dtrace_canstore_statvar(addr, sz, remain,
752 vstate->dtvs_locals, vstate->dtvs_nlocals))
753 return (1);
754
755 if (dtrace_canstore_statvar(addr, sz, remain,
756 vstate->dtvs_globals, vstate->dtvs_nglobals))
757 return (1);
758
759 return (0);
760 }
761
762
763 /*
764 * Convenience routine to check to see if the address is within a memory
765 * region in which a load may be issued given the user's privilege level;
766 * if not, it sets the appropriate error flags and loads 'addr' into the
767 * illegal value slot.
768 *
769 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
770 * appropriate memory access protection.
771 */
772 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)773 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
774 dtrace_vstate_t *vstate)
775 {
776 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
777 }
778
779 /*
780 * Implementation of dtrace_canload which communicates the upper bound of the
781 * allowed memory region.
782 */
783 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)784 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
785 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
786 {
787 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
788 file_t *fp;
789
790 /*
791 * If we hold the privilege to read from kernel memory, then
792 * everything is readable.
793 */
794 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
795 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
796 return (1);
797 }
798
799 /*
800 * You can obviously read that which you can store.
801 */
802 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
803 return (1);
804
805 /*
806 * We're allowed to read from our own string table.
807 */
808 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
809 mstate->dtms_difo->dtdo_strlen)) {
810 DTRACE_RANGE_REMAIN(remain, addr,
811 mstate->dtms_difo->dtdo_strtab,
812 mstate->dtms_difo->dtdo_strlen);
813 return (1);
814 }
815
816 if (vstate->dtvs_state != NULL &&
817 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
818 proc_t *p;
819
820 /*
821 * When we have privileges to the current process, there are
822 * several context-related kernel structures that are safe to
823 * read, even absent the privilege to read from kernel memory.
824 * These reads are safe because these structures contain only
825 * state that (1) we're permitted to read, (2) is harmless or
826 * (3) contains pointers to additional kernel state that we're
827 * not permitted to read (and as such, do not present an
828 * opportunity for privilege escalation). Finally (and
829 * critically), because of the nature of their relation with
830 * the current thread context, the memory associated with these
831 * structures cannot change over the duration of probe context,
832 * and it is therefore impossible for this memory to be
833 * deallocated and reallocated as something else while it's
834 * being operated upon.
835 */
836 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
837 DTRACE_RANGE_REMAIN(remain, addr, curthread,
838 sizeof (kthread_t));
839 return (1);
840 }
841
842 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
843 sz, curthread->t_procp, sizeof (proc_t))) {
844 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
845 sizeof (proc_t));
846 return (1);
847 }
848
849 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
850 curthread->t_cred, sizeof (cred_t))) {
851 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
852 sizeof (cred_t));
853 return (1);
854 }
855
856 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
857 &(p->p_pidp->pid_id), sizeof (pid_t))) {
858 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
859 sizeof (pid_t));
860 return (1);
861 }
862
863 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
864 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
865 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
866 offsetof(cpu_t, cpu_pause_thread));
867 return (1);
868 }
869 }
870
871 if ((fp = mstate->dtms_getf) != NULL) {
872 uintptr_t psz = sizeof (void *);
873 vnode_t *vp;
874 vnodeops_t *op;
875
876 /*
877 * When getf() returns a file_t, the enabling is implicitly
878 * granted the (transient) right to read the returned file_t
879 * as well as the v_path and v_op->vnop_name of the underlying
880 * vnode. These accesses are allowed after a successful
881 * getf() because the members that they refer to cannot change
882 * once set -- and the barrier logic in the kernel's closef()
883 * path assures that the file_t and its referenced vode_t
884 * cannot themselves be stale (that is, it impossible for
885 * either dtms_getf itself or its f_vnode member to reference
886 * freed memory).
887 */
888 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
889 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
890 return (1);
891 }
892
893 if ((vp = fp->f_vnode) != NULL) {
894 size_t slen;
895
896 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
897 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
898 psz);
899 return (1);
900 }
901
902 slen = strlen(vp->v_path) + 1;
903 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
904 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
905 slen);
906 return (1);
907 }
908
909 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
910 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
911 psz);
912 return (1);
913 }
914
915 if ((op = vp->v_op) != NULL &&
916 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
917 DTRACE_RANGE_REMAIN(remain, addr,
918 &op->vnop_name, psz);
919 return (1);
920 }
921
922 if (op != NULL && op->vnop_name != NULL &&
923 DTRACE_INRANGE(addr, sz, op->vnop_name,
924 (slen = strlen(op->vnop_name) + 1))) {
925 DTRACE_RANGE_REMAIN(remain, addr,
926 op->vnop_name, slen);
927 return (1);
928 }
929 }
930 }
931
932 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
933 *illval = addr;
934 return (0);
935 }
936
937 /*
938 * Convenience routine to check to see if a given string is within a memory
939 * region in which a load may be issued given the user's privilege level;
940 * this exists so that we don't need to issue unnecessary dtrace_strlen()
941 * calls in the event that the user has all privileges.
942 */
943 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)944 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
945 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
946 {
947 size_t rsize;
948
949 /*
950 * If we hold the privilege to read from kernel memory, then
951 * everything is readable.
952 */
953 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
954 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
955 return (1);
956 }
957
958 /*
959 * Even if the caller is uninterested in querying the remaining valid
960 * range, it is required to ensure that the access is allowed.
961 */
962 if (remain == NULL) {
963 remain = &rsize;
964 }
965 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
966 size_t strsz;
967 /*
968 * Perform the strlen after determining the length of the
969 * memory region which is accessible. This prevents timing
970 * information from being used to find NULs in memory which is
971 * not accessible to the caller.
972 */
973 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
974 MIN(sz, *remain));
975 if (strsz <= *remain) {
976 return (1);
977 }
978 }
979
980 return (0);
981 }
982
983 /*
984 * Convenience routine to check to see if a given variable is within a memory
985 * region in which a load may be issued given the user's privilege level.
986 */
987 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)988 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
989 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
990 {
991 size_t sz;
992 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
993
994 /*
995 * Calculate the max size before performing any checks since even
996 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
997 * return the max length via 'remain'.
998 */
999 if (type->dtdt_kind == DIF_TYPE_STRING) {
1000 dtrace_state_t *state = vstate->dtvs_state;
1001
1002 if (state != NULL) {
1003 sz = state->dts_options[DTRACEOPT_STRSIZE];
1004 } else {
1005 /*
1006 * In helper context, we have a NULL state; fall back
1007 * to using the system-wide default for the string size
1008 * in this case.
1009 */
1010 sz = dtrace_strsize_default;
1011 }
1012 } else {
1013 sz = type->dtdt_size;
1014 }
1015
1016 /*
1017 * If we hold the privilege to read from kernel memory, then
1018 * everything is readable.
1019 */
1020 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1021 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1022 return (1);
1023 }
1024
1025 if (type->dtdt_kind == DIF_TYPE_STRING) {
1026 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1027 vstate));
1028 }
1029 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1030 vstate));
1031 }
1032
1033 /*
1034 * Convert a string to a signed integer using safe loads.
1035 *
1036 * NOTE: This function uses various macros from strtolctype.h to manipulate
1037 * digit values, etc -- these have all been checked to ensure they make
1038 * no additional function calls.
1039 */
1040 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1041 dtrace_strtoll(char *input, int base, size_t limit)
1042 {
1043 uintptr_t pos = (uintptr_t)input;
1044 int64_t val = 0;
1045 int x;
1046 boolean_t neg = B_FALSE;
1047 char c, cc, ccc;
1048 uintptr_t end = pos + limit;
1049
1050 /*
1051 * Consume any whitespace preceding digits.
1052 */
1053 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1054 pos++;
1055
1056 /*
1057 * Handle an explicit sign if one is present.
1058 */
1059 if (c == '-' || c == '+') {
1060 if (c == '-')
1061 neg = B_TRUE;
1062 c = dtrace_load8(++pos);
1063 }
1064
1065 /*
1066 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1067 * if present.
1068 */
1069 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1070 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1071 pos += 2;
1072 c = ccc;
1073 }
1074
1075 /*
1076 * Read in contiguous digits until the first non-digit character.
1077 */
1078 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1079 c = dtrace_load8(++pos))
1080 val = val * base + x;
1081
1082 return (neg ? -val : val);
1083 }
1084
1085 /*
1086 * Compare two strings using safe loads.
1087 */
1088 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1089 dtrace_strncmp(char *s1, char *s2, size_t limit)
1090 {
1091 uint8_t c1, c2;
1092 volatile uint16_t *flags;
1093
1094 if (s1 == s2 || limit == 0)
1095 return (0);
1096
1097 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1098
1099 do {
1100 if (s1 == NULL) {
1101 c1 = '\0';
1102 } else {
1103 c1 = dtrace_load8((uintptr_t)s1++);
1104 }
1105
1106 if (s2 == NULL) {
1107 c2 = '\0';
1108 } else {
1109 c2 = dtrace_load8((uintptr_t)s2++);
1110 }
1111
1112 if (c1 != c2)
1113 return (c1 - c2);
1114 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1115
1116 return (0);
1117 }
1118
1119 /*
1120 * Compute strlen(s) for a string using safe memory accesses. The additional
1121 * len parameter is used to specify a maximum length to ensure completion.
1122 */
1123 static size_t
dtrace_strlen(const char * s,size_t lim)1124 dtrace_strlen(const char *s, size_t lim)
1125 {
1126 uint_t len;
1127
1128 for (len = 0; len != lim; len++) {
1129 if (dtrace_load8((uintptr_t)s++) == '\0')
1130 break;
1131 }
1132
1133 return (len);
1134 }
1135
1136 /*
1137 * Check if an address falls within a toxic region.
1138 */
1139 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1140 dtrace_istoxic(uintptr_t kaddr, size_t size)
1141 {
1142 uintptr_t taddr, tsize;
1143 int i;
1144
1145 for (i = 0; i < dtrace_toxranges; i++) {
1146 taddr = dtrace_toxrange[i].dtt_base;
1147 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1148
1149 if (kaddr - taddr < tsize) {
1150 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1151 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1152 return (1);
1153 }
1154
1155 if (taddr - kaddr < size) {
1156 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1157 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1158 return (1);
1159 }
1160 }
1161
1162 return (0);
1163 }
1164
1165 /*
1166 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1167 * memory specified by the DIF program. The dst is assumed to be safe memory
1168 * that we can store to directly because it is managed by DTrace. As with
1169 * standard bcopy, overlapping copies are handled properly.
1170 */
1171 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1172 dtrace_bcopy(const void *src, void *dst, size_t len)
1173 {
1174 if (len != 0) {
1175 uint8_t *s1 = dst;
1176 const uint8_t *s2 = src;
1177
1178 if (s1 <= s2) {
1179 do {
1180 *s1++ = dtrace_load8((uintptr_t)s2++);
1181 } while (--len != 0);
1182 } else {
1183 s2 += len;
1184 s1 += len;
1185
1186 do {
1187 *--s1 = dtrace_load8((uintptr_t)--s2);
1188 } while (--len != 0);
1189 }
1190 }
1191 }
1192
1193 /*
1194 * Copy src to dst using safe memory accesses, up to either the specified
1195 * length, or the point that a nul byte is encountered. The src is assumed to
1196 * be unsafe memory specified by the DIF program. The dst is assumed to be
1197 * safe memory that we can store to directly because it is managed by DTrace.
1198 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1199 */
1200 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1201 dtrace_strcpy(const void *src, void *dst, size_t len)
1202 {
1203 if (len != 0) {
1204 uint8_t *s1 = dst, c;
1205 const uint8_t *s2 = src;
1206
1207 do {
1208 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1209 } while (--len != 0 && c != '\0');
1210 }
1211 }
1212
1213 /*
1214 * Copy src to dst, deriving the size and type from the specified (BYREF)
1215 * variable type. The src is assumed to be unsafe memory specified by the DIF
1216 * program. The dst is assumed to be DTrace variable memory that is of the
1217 * specified type; we assume that we can store to directly.
1218 */
1219 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1220 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1221 {
1222 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1223
1224 if (type->dtdt_kind == DIF_TYPE_STRING) {
1225 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1226 } else {
1227 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1228 }
1229 }
1230
1231 /*
1232 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1233 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1234 * safe memory that we can access directly because it is managed by DTrace.
1235 */
1236 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1237 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1238 {
1239 volatile uint16_t *flags;
1240
1241 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1242
1243 if (s1 == s2)
1244 return (0);
1245
1246 if (s1 == NULL || s2 == NULL)
1247 return (1);
1248
1249 if (s1 != s2 && len != 0) {
1250 const uint8_t *ps1 = s1;
1251 const uint8_t *ps2 = s2;
1252
1253 do {
1254 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1255 return (1);
1256 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1257 }
1258 return (0);
1259 }
1260
1261 /*
1262 * Zero the specified region using a simple byte-by-byte loop. Note that this
1263 * is for safe DTrace-managed memory only.
1264 */
1265 static void
dtrace_bzero(void * dst,size_t len)1266 dtrace_bzero(void *dst, size_t len)
1267 {
1268 uchar_t *cp;
1269
1270 for (cp = dst; len != 0; len--)
1271 *cp++ = 0;
1272 }
1273
1274 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1275 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1276 {
1277 uint64_t result[2];
1278
1279 result[0] = addend1[0] + addend2[0];
1280 result[1] = addend1[1] + addend2[1] +
1281 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1282
1283 sum[0] = result[0];
1284 sum[1] = result[1];
1285 }
1286
1287 /*
1288 * Shift the 128-bit value in a by b. If b is positive, shift left.
1289 * If b is negative, shift right.
1290 */
1291 static void
dtrace_shift_128(uint64_t * a,int b)1292 dtrace_shift_128(uint64_t *a, int b)
1293 {
1294 uint64_t mask;
1295
1296 if (b == 0)
1297 return;
1298
1299 if (b < 0) {
1300 b = -b;
1301 if (b >= 64) {
1302 a[0] = a[1] >> (b - 64);
1303 a[1] = 0;
1304 } else {
1305 a[0] >>= b;
1306 mask = 1LL << (64 - b);
1307 mask -= 1;
1308 a[0] |= ((a[1] & mask) << (64 - b));
1309 a[1] >>= b;
1310 }
1311 } else {
1312 if (b >= 64) {
1313 a[1] = a[0] << (b - 64);
1314 a[0] = 0;
1315 } else {
1316 a[1] <<= b;
1317 mask = a[0] >> (64 - b);
1318 a[1] |= mask;
1319 a[0] <<= b;
1320 }
1321 }
1322 }
1323
1324 /*
1325 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1326 * use native multiplication on those, and then re-combine into the
1327 * resulting 128-bit value.
1328 *
1329 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1330 * hi1 * hi2 << 64 +
1331 * hi1 * lo2 << 32 +
1332 * hi2 * lo1 << 32 +
1333 * lo1 * lo2
1334 */
1335 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1336 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1337 {
1338 uint64_t hi1, hi2, lo1, lo2;
1339 uint64_t tmp[2];
1340
1341 hi1 = factor1 >> 32;
1342 hi2 = factor2 >> 32;
1343
1344 lo1 = factor1 & DT_MASK_LO;
1345 lo2 = factor2 & DT_MASK_LO;
1346
1347 product[0] = lo1 * lo2;
1348 product[1] = hi1 * hi2;
1349
1350 tmp[0] = hi1 * lo2;
1351 tmp[1] = 0;
1352 dtrace_shift_128(tmp, 32);
1353 dtrace_add_128(product, tmp, product);
1354
1355 tmp[0] = hi2 * lo1;
1356 tmp[1] = 0;
1357 dtrace_shift_128(tmp, 32);
1358 dtrace_add_128(product, tmp, product);
1359 }
1360
1361 /*
1362 * This privilege check should be used by actions and subroutines to
1363 * verify that the user credentials of the process that enabled the
1364 * invoking ECB match the target credentials
1365 */
1366 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1367 dtrace_priv_proc_common_user(dtrace_state_t *state)
1368 {
1369 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1370
1371 /*
1372 * We should always have a non-NULL state cred here, since if cred
1373 * is null (anonymous tracing), we fast-path bypass this routine.
1374 */
1375 ASSERT(s_cr != NULL);
1376
1377 if ((cr = CRED()) != NULL &&
1378 s_cr->cr_uid == cr->cr_uid &&
1379 s_cr->cr_uid == cr->cr_ruid &&
1380 s_cr->cr_uid == cr->cr_suid &&
1381 s_cr->cr_gid == cr->cr_gid &&
1382 s_cr->cr_gid == cr->cr_rgid &&
1383 s_cr->cr_gid == cr->cr_sgid)
1384 return (1);
1385
1386 return (0);
1387 }
1388
1389 /*
1390 * This privilege check should be used by actions and subroutines to
1391 * verify that the zone of the process that enabled the invoking ECB
1392 * matches the target credentials
1393 */
1394 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1395 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1396 {
1397 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1398
1399 /*
1400 * We should always have a non-NULL state cred here, since if cred
1401 * is null (anonymous tracing), we fast-path bypass this routine.
1402 */
1403 ASSERT(s_cr != NULL);
1404
1405 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1406 return (1);
1407
1408 return (0);
1409 }
1410
1411 /*
1412 * This privilege check should be used by actions and subroutines to
1413 * verify that the process has not setuid or changed credentials.
1414 */
1415 static int
dtrace_priv_proc_common_nocd()1416 dtrace_priv_proc_common_nocd()
1417 {
1418 proc_t *proc;
1419
1420 if ((proc = ttoproc(curthread)) != NULL &&
1421 !(proc->p_flag & SNOCD))
1422 return (1);
1423
1424 return (0);
1425 }
1426
1427 static int
dtrace_priv_proc_destructive(dtrace_state_t * state,dtrace_mstate_t * mstate)1428 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1429 {
1430 int action = state->dts_cred.dcr_action;
1431
1432 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1433 goto bad;
1434
1435 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1436 dtrace_priv_proc_common_zone(state) == 0)
1437 goto bad;
1438
1439 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1440 dtrace_priv_proc_common_user(state) == 0)
1441 goto bad;
1442
1443 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1444 dtrace_priv_proc_common_nocd() == 0)
1445 goto bad;
1446
1447 return (1);
1448
1449 bad:
1450 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1451
1452 return (0);
1453 }
1454
1455 static int
dtrace_priv_proc_control(dtrace_state_t * state,dtrace_mstate_t * mstate)1456 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1457 {
1458 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1459 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1460 return (1);
1461
1462 if (dtrace_priv_proc_common_zone(state) &&
1463 dtrace_priv_proc_common_user(state) &&
1464 dtrace_priv_proc_common_nocd())
1465 return (1);
1466 }
1467
1468 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1469
1470 return (0);
1471 }
1472
1473 static int
dtrace_priv_proc(dtrace_state_t * state,dtrace_mstate_t * mstate)1474 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1475 {
1476 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1477 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1478 return (1);
1479
1480 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1481
1482 return (0);
1483 }
1484
1485 static int
dtrace_priv_kernel(dtrace_state_t * state)1486 dtrace_priv_kernel(dtrace_state_t *state)
1487 {
1488 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1489 return (1);
1490
1491 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1492
1493 return (0);
1494 }
1495
1496 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1497 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1498 {
1499 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1500 return (1);
1501
1502 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1503
1504 return (0);
1505 }
1506
1507 /*
1508 * Determine if the dte_cond of the specified ECB allows for processing of
1509 * the current probe to continue. Note that this routine may allow continued
1510 * processing, but with access(es) stripped from the mstate's dtms_access
1511 * field.
1512 */
1513 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1514 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1515 dtrace_ecb_t *ecb)
1516 {
1517 dtrace_probe_t *probe = ecb->dte_probe;
1518 dtrace_provider_t *prov = probe->dtpr_provider;
1519 dtrace_pops_t *pops = &prov->dtpv_pops;
1520 int mode = DTRACE_MODE_NOPRIV_DROP;
1521
1522 ASSERT(ecb->dte_cond);
1523
1524 if (pops->dtps_mode != NULL) {
1525 mode = pops->dtps_mode(prov->dtpv_arg,
1526 probe->dtpr_id, probe->dtpr_arg);
1527
1528 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1529 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1530 DTRACE_MODE_NOPRIV_DROP));
1531 }
1532
1533 /*
1534 * If the dte_cond bits indicate that this consumer is only allowed to
1535 * see user-mode firings of this probe, check that the probe was fired
1536 * while in a user context. If that's not the case, use the policy
1537 * specified by the provider to determine if we drop the probe or
1538 * merely restrict operation.
1539 */
1540 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1541 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1542
1543 if (!(mode & DTRACE_MODE_USER)) {
1544 if (mode & DTRACE_MODE_NOPRIV_DROP)
1545 return (0);
1546
1547 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1548 }
1549 }
1550
1551 /*
1552 * This is more subtle than it looks. We have to be absolutely certain
1553 * that CRED() isn't going to change out from under us so it's only
1554 * legit to examine that structure if we're in constrained situations.
1555 * Currently, the only times we'll this check is if a non-super-user
1556 * has enabled the profile or syscall providers -- providers that
1557 * allow visibility of all processes. For the profile case, the check
1558 * above will ensure that we're examining a user context.
1559 */
1560 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1561 cred_t *cr;
1562 cred_t *s_cr = state->dts_cred.dcr_cred;
1563 proc_t *proc;
1564
1565 ASSERT(s_cr != NULL);
1566
1567 if ((cr = CRED()) == NULL ||
1568 s_cr->cr_uid != cr->cr_uid ||
1569 s_cr->cr_uid != cr->cr_ruid ||
1570 s_cr->cr_uid != cr->cr_suid ||
1571 s_cr->cr_gid != cr->cr_gid ||
1572 s_cr->cr_gid != cr->cr_rgid ||
1573 s_cr->cr_gid != cr->cr_sgid ||
1574 (proc = ttoproc(curthread)) == NULL ||
1575 (proc->p_flag & SNOCD)) {
1576 if (mode & DTRACE_MODE_NOPRIV_DROP)
1577 return (0);
1578
1579 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1580 }
1581 }
1582
1583 /*
1584 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1585 * in our zone, check to see if our mode policy is to restrict rather
1586 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1587 * and DTRACE_ACCESS_ARGS
1588 */
1589 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1590 cred_t *cr;
1591 cred_t *s_cr = state->dts_cred.dcr_cred;
1592
1593 ASSERT(s_cr != NULL);
1594
1595 if ((cr = CRED()) == NULL ||
1596 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1597 if (mode & DTRACE_MODE_NOPRIV_DROP)
1598 return (0);
1599
1600 mstate->dtms_access &=
1601 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1602 }
1603 }
1604
1605 /*
1606 * By merits of being in this code path at all, we have limited
1607 * privileges. If the provider has indicated that limited privileges
1608 * are to denote restricted operation, strip off the ability to access
1609 * arguments.
1610 */
1611 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1612 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1613
1614 return (1);
1615 }
1616
1617 /*
1618 * Note: not called from probe context. This function is called
1619 * asynchronously (and at a regular interval) from outside of probe context to
1620 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1621 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1622 */
1623 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1624 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1625 {
1626 dtrace_dynvar_t *dirty;
1627 dtrace_dstate_percpu_t *dcpu;
1628 dtrace_dynvar_t **rinsep;
1629 int i, j, work = 0;
1630
1631 for (i = 0; i < NCPU; i++) {
1632 dcpu = &dstate->dtds_percpu[i];
1633 rinsep = &dcpu->dtdsc_rinsing;
1634
1635 /*
1636 * If the dirty list is NULL, there is no dirty work to do.
1637 */
1638 if (dcpu->dtdsc_dirty == NULL)
1639 continue;
1640
1641 if (dcpu->dtdsc_rinsing != NULL) {
1642 /*
1643 * If the rinsing list is non-NULL, then it is because
1644 * this CPU was selected to accept another CPU's
1645 * dirty list -- and since that time, dirty buffers
1646 * have accumulated. This is a highly unlikely
1647 * condition, but we choose to ignore the dirty
1648 * buffers -- they'll be picked up a future cleanse.
1649 */
1650 continue;
1651 }
1652
1653 if (dcpu->dtdsc_clean != NULL) {
1654 /*
1655 * If the clean list is non-NULL, then we're in a
1656 * situation where a CPU has done deallocations (we
1657 * have a non-NULL dirty list) but no allocations (we
1658 * also have a non-NULL clean list). We can't simply
1659 * move the dirty list into the clean list on this
1660 * CPU, yet we also don't want to allow this condition
1661 * to persist, lest a short clean list prevent a
1662 * massive dirty list from being cleaned (which in
1663 * turn could lead to otherwise avoidable dynamic
1664 * drops). To deal with this, we look for some CPU
1665 * with a NULL clean list, NULL dirty list, and NULL
1666 * rinsing list -- and then we borrow this CPU to
1667 * rinse our dirty list.
1668 */
1669 for (j = 0; j < NCPU; j++) {
1670 dtrace_dstate_percpu_t *rinser;
1671
1672 rinser = &dstate->dtds_percpu[j];
1673
1674 if (rinser->dtdsc_rinsing != NULL)
1675 continue;
1676
1677 if (rinser->dtdsc_dirty != NULL)
1678 continue;
1679
1680 if (rinser->dtdsc_clean != NULL)
1681 continue;
1682
1683 rinsep = &rinser->dtdsc_rinsing;
1684 break;
1685 }
1686
1687 if (j == NCPU) {
1688 /*
1689 * We were unable to find another CPU that
1690 * could accept this dirty list -- we are
1691 * therefore unable to clean it now.
1692 */
1693 dtrace_dynvar_failclean++;
1694 continue;
1695 }
1696 }
1697
1698 work = 1;
1699
1700 /*
1701 * Atomically move the dirty list aside.
1702 */
1703 do {
1704 dirty = dcpu->dtdsc_dirty;
1705
1706 /*
1707 * Before we zap the dirty list, set the rinsing list.
1708 * (This allows for a potential assertion in
1709 * dtrace_dynvar(): if a free dynamic variable appears
1710 * on a hash chain, either the dirty list or the
1711 * rinsing list for some CPU must be non-NULL.)
1712 */
1713 *rinsep = dirty;
1714 dtrace_membar_producer();
1715 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1716 dirty, NULL) != dirty);
1717 }
1718
1719 if (!work) {
1720 /*
1721 * We have no work to do; we can simply return.
1722 */
1723 return;
1724 }
1725
1726 dtrace_sync();
1727
1728 for (i = 0; i < NCPU; i++) {
1729 dcpu = &dstate->dtds_percpu[i];
1730
1731 if (dcpu->dtdsc_rinsing == NULL)
1732 continue;
1733
1734 /*
1735 * We are now guaranteed that no hash chain contains a pointer
1736 * into this dirty list; we can make it clean.
1737 */
1738 ASSERT(dcpu->dtdsc_clean == NULL);
1739 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1740 dcpu->dtdsc_rinsing = NULL;
1741 }
1742
1743 /*
1744 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1745 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1746 * This prevents a race whereby a CPU incorrectly decides that
1747 * the state should be something other than DTRACE_DSTATE_CLEAN
1748 * after dtrace_dynvar_clean() has completed.
1749 */
1750 dtrace_sync();
1751
1752 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1753 }
1754
1755 /*
1756 * Depending on the value of the op parameter, this function looks-up,
1757 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1758 * allocation is requested, this function will return a pointer to a
1759 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1760 * variable can be allocated. If NULL is returned, the appropriate counter
1761 * will be incremented.
1762 */
1763 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1764 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1765 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1766 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1767 {
1768 uint64_t hashval = DTRACE_DYNHASH_VALID;
1769 dtrace_dynhash_t *hash = dstate->dtds_hash;
1770 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1771 processorid_t me = CPU->cpu_id, cpu = me;
1772 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1773 size_t bucket, ksize;
1774 size_t chunksize = dstate->dtds_chunksize;
1775 uintptr_t kdata, lock, nstate;
1776 uint_t i;
1777
1778 ASSERT(nkeys != 0);
1779
1780 /*
1781 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1782 * algorithm. For the by-value portions, we perform the algorithm in
1783 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1784 * bit, and seems to have only a minute effect on distribution. For
1785 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1786 * over each referenced byte. It's painful to do this, but it's much
1787 * better than pathological hash distribution. The efficacy of the
1788 * hashing algorithm (and a comparison with other algorithms) may be
1789 * found by running the ::dtrace_dynstat MDB dcmd.
1790 */
1791 for (i = 0; i < nkeys; i++) {
1792 if (key[i].dttk_size == 0) {
1793 uint64_t val = key[i].dttk_value;
1794
1795 hashval += (val >> 48) & 0xffff;
1796 hashval += (hashval << 10);
1797 hashval ^= (hashval >> 6);
1798
1799 hashval += (val >> 32) & 0xffff;
1800 hashval += (hashval << 10);
1801 hashval ^= (hashval >> 6);
1802
1803 hashval += (val >> 16) & 0xffff;
1804 hashval += (hashval << 10);
1805 hashval ^= (hashval >> 6);
1806
1807 hashval += val & 0xffff;
1808 hashval += (hashval << 10);
1809 hashval ^= (hashval >> 6);
1810 } else {
1811 /*
1812 * This is incredibly painful, but it beats the hell
1813 * out of the alternative.
1814 */
1815 uint64_t j, size = key[i].dttk_size;
1816 uintptr_t base = (uintptr_t)key[i].dttk_value;
1817
1818 if (!dtrace_canload(base, size, mstate, vstate))
1819 break;
1820
1821 for (j = 0; j < size; j++) {
1822 hashval += dtrace_load8(base + j);
1823 hashval += (hashval << 10);
1824 hashval ^= (hashval >> 6);
1825 }
1826 }
1827 }
1828
1829 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1830 return (NULL);
1831
1832 hashval += (hashval << 3);
1833 hashval ^= (hashval >> 11);
1834 hashval += (hashval << 15);
1835
1836 /*
1837 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1838 * comes out to be one of our two sentinel hash values. If this
1839 * actually happens, we set the hashval to be a value known to be a
1840 * non-sentinel value.
1841 */
1842 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1843 hashval = DTRACE_DYNHASH_VALID;
1844
1845 /*
1846 * Yes, it's painful to do a divide here. If the cycle count becomes
1847 * important here, tricks can be pulled to reduce it. (However, it's
1848 * critical that hash collisions be kept to an absolute minimum;
1849 * they're much more painful than a divide.) It's better to have a
1850 * solution that generates few collisions and still keeps things
1851 * relatively simple.
1852 */
1853 bucket = hashval % dstate->dtds_hashsize;
1854
1855 if (op == DTRACE_DYNVAR_DEALLOC) {
1856 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1857
1858 for (;;) {
1859 while ((lock = *lockp) & 1)
1860 continue;
1861
1862 if (dtrace_casptr((void *)lockp,
1863 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1864 break;
1865 }
1866
1867 dtrace_membar_producer();
1868 }
1869
1870 top:
1871 prev = NULL;
1872 lock = hash[bucket].dtdh_lock;
1873
1874 dtrace_membar_consumer();
1875
1876 start = hash[bucket].dtdh_chain;
1877 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1878 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1879 op != DTRACE_DYNVAR_DEALLOC));
1880
1881 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1882 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1883 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1884
1885 if (dvar->dtdv_hashval != hashval) {
1886 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1887 /*
1888 * We've reached the sink, and therefore the
1889 * end of the hash chain; we can kick out of
1890 * the loop knowing that we have seen a valid
1891 * snapshot of state.
1892 */
1893 ASSERT(dvar->dtdv_next == NULL);
1894 ASSERT(dvar == &dtrace_dynhash_sink);
1895 break;
1896 }
1897
1898 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1899 /*
1900 * We've gone off the rails: somewhere along
1901 * the line, one of the members of this hash
1902 * chain was deleted. Note that we could also
1903 * detect this by simply letting this loop run
1904 * to completion, as we would eventually hit
1905 * the end of the dirty list. However, we
1906 * want to avoid running the length of the
1907 * dirty list unnecessarily (it might be quite
1908 * long), so we catch this as early as
1909 * possible by detecting the hash marker. In
1910 * this case, we simply set dvar to NULL and
1911 * break; the conditional after the loop will
1912 * send us back to top.
1913 */
1914 dvar = NULL;
1915 break;
1916 }
1917
1918 goto next;
1919 }
1920
1921 if (dtuple->dtt_nkeys != nkeys)
1922 goto next;
1923
1924 for (i = 0; i < nkeys; i++, dkey++) {
1925 if (dkey->dttk_size != key[i].dttk_size)
1926 goto next; /* size or type mismatch */
1927
1928 if (dkey->dttk_size != 0) {
1929 if (dtrace_bcmp(
1930 (void *)(uintptr_t)key[i].dttk_value,
1931 (void *)(uintptr_t)dkey->dttk_value,
1932 dkey->dttk_size))
1933 goto next;
1934 } else {
1935 if (dkey->dttk_value != key[i].dttk_value)
1936 goto next;
1937 }
1938 }
1939
1940 if (op != DTRACE_DYNVAR_DEALLOC)
1941 return (dvar);
1942
1943 ASSERT(dvar->dtdv_next == NULL ||
1944 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1945
1946 if (prev != NULL) {
1947 ASSERT(hash[bucket].dtdh_chain != dvar);
1948 ASSERT(start != dvar);
1949 ASSERT(prev->dtdv_next == dvar);
1950 prev->dtdv_next = dvar->dtdv_next;
1951 } else {
1952 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1953 start, dvar->dtdv_next) != start) {
1954 /*
1955 * We have failed to atomically swing the
1956 * hash table head pointer, presumably because
1957 * of a conflicting allocation on another CPU.
1958 * We need to reread the hash chain and try
1959 * again.
1960 */
1961 goto top;
1962 }
1963 }
1964
1965 dtrace_membar_producer();
1966
1967 /*
1968 * Now set the hash value to indicate that it's free.
1969 */
1970 ASSERT(hash[bucket].dtdh_chain != dvar);
1971 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1972
1973 dtrace_membar_producer();
1974
1975 /*
1976 * Set the next pointer to point at the dirty list, and
1977 * atomically swing the dirty pointer to the newly freed dvar.
1978 */
1979 do {
1980 next = dcpu->dtdsc_dirty;
1981 dvar->dtdv_next = next;
1982 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1983
1984 /*
1985 * Finally, unlock this hash bucket.
1986 */
1987 ASSERT(hash[bucket].dtdh_lock == lock);
1988 ASSERT(lock & 1);
1989 hash[bucket].dtdh_lock++;
1990
1991 return (NULL);
1992 next:
1993 prev = dvar;
1994 continue;
1995 }
1996
1997 if (dvar == NULL) {
1998 /*
1999 * If dvar is NULL, it is because we went off the rails:
2000 * one of the elements that we traversed in the hash chain
2001 * was deleted while we were traversing it. In this case,
2002 * we assert that we aren't doing a dealloc (deallocs lock
2003 * the hash bucket to prevent themselves from racing with
2004 * one another), and retry the hash chain traversal.
2005 */
2006 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2007 goto top;
2008 }
2009
2010 if (op != DTRACE_DYNVAR_ALLOC) {
2011 /*
2012 * If we are not to allocate a new variable, we want to
2013 * return NULL now. Before we return, check that the value
2014 * of the lock word hasn't changed. If it has, we may have
2015 * seen an inconsistent snapshot.
2016 */
2017 if (op == DTRACE_DYNVAR_NOALLOC) {
2018 if (hash[bucket].dtdh_lock != lock)
2019 goto top;
2020 } else {
2021 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2022 ASSERT(hash[bucket].dtdh_lock == lock);
2023 ASSERT(lock & 1);
2024 hash[bucket].dtdh_lock++;
2025 }
2026
2027 return (NULL);
2028 }
2029
2030 /*
2031 * We need to allocate a new dynamic variable. The size we need is the
2032 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2033 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2034 * the size of any referred-to data (dsize). We then round the final
2035 * size up to the chunksize for allocation.
2036 */
2037 for (ksize = 0, i = 0; i < nkeys; i++)
2038 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2039
2040 /*
2041 * This should be pretty much impossible, but could happen if, say,
2042 * strange DIF specified the tuple. Ideally, this should be an
2043 * assertion and not an error condition -- but that requires that the
2044 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2045 * bullet-proof. (That is, it must not be able to be fooled by
2046 * malicious DIF.) Given the lack of backwards branches in DIF,
2047 * solving this would presumably not amount to solving the Halting
2048 * Problem -- but it still seems awfully hard.
2049 */
2050 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2051 ksize + dsize > chunksize) {
2052 dcpu->dtdsc_drops++;
2053 return (NULL);
2054 }
2055
2056 nstate = DTRACE_DSTATE_EMPTY;
2057
2058 do {
2059 retry:
2060 free = dcpu->dtdsc_free;
2061
2062 if (free == NULL) {
2063 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2064 void *rval;
2065
2066 if (clean == NULL) {
2067 /*
2068 * We're out of dynamic variable space on
2069 * this CPU. Unless we have tried all CPUs,
2070 * we'll try to allocate from a different
2071 * CPU.
2072 */
2073 switch (dstate->dtds_state) {
2074 case DTRACE_DSTATE_CLEAN: {
2075 void *sp = &dstate->dtds_state;
2076
2077 if (++cpu >= NCPU)
2078 cpu = 0;
2079
2080 if (dcpu->dtdsc_dirty != NULL &&
2081 nstate == DTRACE_DSTATE_EMPTY)
2082 nstate = DTRACE_DSTATE_DIRTY;
2083
2084 if (dcpu->dtdsc_rinsing != NULL)
2085 nstate = DTRACE_DSTATE_RINSING;
2086
2087 dcpu = &dstate->dtds_percpu[cpu];
2088
2089 if (cpu != me)
2090 goto retry;
2091
2092 (void) dtrace_cas32(sp,
2093 DTRACE_DSTATE_CLEAN, nstate);
2094
2095 /*
2096 * To increment the correct bean
2097 * counter, take another lap.
2098 */
2099 goto retry;
2100 }
2101
2102 case DTRACE_DSTATE_DIRTY:
2103 dcpu->dtdsc_dirty_drops++;
2104 break;
2105
2106 case DTRACE_DSTATE_RINSING:
2107 dcpu->dtdsc_rinsing_drops++;
2108 break;
2109
2110 case DTRACE_DSTATE_EMPTY:
2111 dcpu->dtdsc_drops++;
2112 break;
2113 }
2114
2115 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2116 return (NULL);
2117 }
2118
2119 /*
2120 * The clean list appears to be non-empty. We want to
2121 * move the clean list to the free list; we start by
2122 * moving the clean pointer aside.
2123 */
2124 if (dtrace_casptr(&dcpu->dtdsc_clean,
2125 clean, NULL) != clean) {
2126 /*
2127 * We are in one of two situations:
2128 *
2129 * (a) The clean list was switched to the
2130 * free list by another CPU.
2131 *
2132 * (b) The clean list was added to by the
2133 * cleansing cyclic.
2134 *
2135 * In either of these situations, we can
2136 * just reattempt the free list allocation.
2137 */
2138 goto retry;
2139 }
2140
2141 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2142
2143 /*
2144 * Now we'll move the clean list to our free list.
2145 * It's impossible for this to fail: the only way
2146 * the free list can be updated is through this
2147 * code path, and only one CPU can own the clean list.
2148 * Thus, it would only be possible for this to fail if
2149 * this code were racing with dtrace_dynvar_clean().
2150 * (That is, if dtrace_dynvar_clean() updated the clean
2151 * list, and we ended up racing to update the free
2152 * list.) This race is prevented by the dtrace_sync()
2153 * in dtrace_dynvar_clean() -- which flushes the
2154 * owners of the clean lists out before resetting
2155 * the clean lists.
2156 */
2157 dcpu = &dstate->dtds_percpu[me];
2158 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2159 ASSERT(rval == NULL);
2160 goto retry;
2161 }
2162
2163 dvar = free;
2164 new_free = dvar->dtdv_next;
2165 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2166
2167 /*
2168 * We have now allocated a new chunk. We copy the tuple keys into the
2169 * tuple array and copy any referenced key data into the data space
2170 * following the tuple array. As we do this, we relocate dttk_value
2171 * in the final tuple to point to the key data address in the chunk.
2172 */
2173 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2174 dvar->dtdv_data = (void *)(kdata + ksize);
2175 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2176
2177 for (i = 0; i < nkeys; i++) {
2178 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2179 size_t kesize = key[i].dttk_size;
2180
2181 if (kesize != 0) {
2182 dtrace_bcopy(
2183 (const void *)(uintptr_t)key[i].dttk_value,
2184 (void *)kdata, kesize);
2185 dkey->dttk_value = kdata;
2186 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2187 } else {
2188 dkey->dttk_value = key[i].dttk_value;
2189 }
2190
2191 dkey->dttk_size = kesize;
2192 }
2193
2194 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2195 dvar->dtdv_hashval = hashval;
2196 dvar->dtdv_next = start;
2197
2198 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2199 return (dvar);
2200
2201 /*
2202 * The cas has failed. Either another CPU is adding an element to
2203 * this hash chain, or another CPU is deleting an element from this
2204 * hash chain. The simplest way to deal with both of these cases
2205 * (though not necessarily the most efficient) is to free our
2206 * allocated block and re-attempt it all. Note that the free is
2207 * to the dirty list and _not_ to the free list. This is to prevent
2208 * races with allocators, above.
2209 */
2210 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2211
2212 dtrace_membar_producer();
2213
2214 do {
2215 free = dcpu->dtdsc_dirty;
2216 dvar->dtdv_next = free;
2217 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2218
2219 goto top;
2220 }
2221
2222 /*ARGSUSED*/
2223 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2224 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2225 {
2226 if ((int64_t)nval < (int64_t)*oval)
2227 *oval = nval;
2228 }
2229
2230 /*ARGSUSED*/
2231 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2232 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2233 {
2234 if ((int64_t)nval > (int64_t)*oval)
2235 *oval = nval;
2236 }
2237
2238 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2239 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2240 {
2241 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2242 int64_t val = (int64_t)nval;
2243
2244 if (val < 0) {
2245 for (i = 0; i < zero; i++) {
2246 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2247 quanta[i] += incr;
2248 return;
2249 }
2250 }
2251 } else {
2252 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2253 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2254 quanta[i - 1] += incr;
2255 return;
2256 }
2257 }
2258
2259 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2260 return;
2261 }
2262
2263 ASSERT(0);
2264 }
2265
2266 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2267 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2268 {
2269 uint64_t arg = *lquanta++;
2270 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2271 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2272 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2273 int32_t val = (int32_t)nval, level;
2274
2275 ASSERT(step != 0);
2276 ASSERT(levels != 0);
2277
2278 if (val < base) {
2279 /*
2280 * This is an underflow.
2281 */
2282 lquanta[0] += incr;
2283 return;
2284 }
2285
2286 level = (val - base) / step;
2287
2288 if (level < levels) {
2289 lquanta[level + 1] += incr;
2290 return;
2291 }
2292
2293 /*
2294 * This is an overflow.
2295 */
2296 lquanta[levels + 1] += incr;
2297 }
2298
2299 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2300 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2301 uint16_t high, uint16_t nsteps, int64_t value)
2302 {
2303 int64_t this = 1, last, next;
2304 int base = 1, order;
2305
2306 ASSERT(factor <= nsteps);
2307 ASSERT(nsteps % factor == 0);
2308
2309 for (order = 0; order < low; order++)
2310 this *= factor;
2311
2312 /*
2313 * If our value is less than our factor taken to the power of the
2314 * low order of magnitude, it goes into the zeroth bucket.
2315 */
2316 if (value < (last = this))
2317 return (0);
2318
2319 for (this *= factor; order <= high; order++) {
2320 int nbuckets = this > nsteps ? nsteps : this;
2321
2322 if ((next = this * factor) < this) {
2323 /*
2324 * We should not generally get log/linear quantizations
2325 * with a high magnitude that allows 64-bits to
2326 * overflow, but we nonetheless protect against this
2327 * by explicitly checking for overflow, and clamping
2328 * our value accordingly.
2329 */
2330 value = this - 1;
2331 }
2332
2333 if (value < this) {
2334 /*
2335 * If our value lies within this order of magnitude,
2336 * determine its position by taking the offset within
2337 * the order of magnitude, dividing by the bucket
2338 * width, and adding to our (accumulated) base.
2339 */
2340 return (base + (value - last) / (this / nbuckets));
2341 }
2342
2343 base += nbuckets - (nbuckets / factor);
2344 last = this;
2345 this = next;
2346 }
2347
2348 /*
2349 * Our value is greater than or equal to our factor taken to the
2350 * power of one plus the high magnitude -- return the top bucket.
2351 */
2352 return (base);
2353 }
2354
2355 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2356 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2357 {
2358 uint64_t arg = *llquanta++;
2359 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2360 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2361 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2362 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2363
2364 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2365 low, high, nsteps, nval)] += incr;
2366 }
2367
2368 /*ARGSUSED*/
2369 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2370 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2371 {
2372 data[0]++;
2373 data[1] += nval;
2374 }
2375
2376 /*ARGSUSED*/
2377 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2378 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2379 {
2380 int64_t snval = (int64_t)nval;
2381 uint64_t tmp[2];
2382
2383 data[0]++;
2384 data[1] += nval;
2385
2386 /*
2387 * What we want to say here is:
2388 *
2389 * data[2] += nval * nval;
2390 *
2391 * But given that nval is 64-bit, we could easily overflow, so
2392 * we do this as 128-bit arithmetic.
2393 */
2394 if (snval < 0)
2395 snval = -snval;
2396
2397 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2398 dtrace_add_128(data + 2, tmp, data + 2);
2399 }
2400
2401 /*ARGSUSED*/
2402 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2403 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2404 {
2405 *oval = *oval + 1;
2406 }
2407
2408 /*ARGSUSED*/
2409 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2410 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2411 {
2412 *oval += nval;
2413 }
2414
2415 /*
2416 * Aggregate given the tuple in the principal data buffer, and the aggregating
2417 * action denoted by the specified dtrace_aggregation_t. The aggregation
2418 * buffer is specified as the buf parameter. This routine does not return
2419 * failure; if there is no space in the aggregation buffer, the data will be
2420 * dropped, and a corresponding counter incremented.
2421 */
2422 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2423 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2424 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2425 {
2426 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2427 uint32_t i, ndx, size, fsize;
2428 uint32_t align = sizeof (uint64_t) - 1;
2429 dtrace_aggbuffer_t *agb;
2430 dtrace_aggkey_t *key;
2431 uint32_t hashval = 0, limit, isstr;
2432 caddr_t tomax, data, kdata;
2433 dtrace_actkind_t action;
2434 dtrace_action_t *act;
2435 uintptr_t offs;
2436
2437 if (buf == NULL)
2438 return;
2439
2440 if (!agg->dtag_hasarg) {
2441 /*
2442 * Currently, only quantize() and lquantize() take additional
2443 * arguments, and they have the same semantics: an increment
2444 * value that defaults to 1 when not present. If additional
2445 * aggregating actions take arguments, the setting of the
2446 * default argument value will presumably have to become more
2447 * sophisticated...
2448 */
2449 arg = 1;
2450 }
2451
2452 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2453 size = rec->dtrd_offset - agg->dtag_base;
2454 fsize = size + rec->dtrd_size;
2455
2456 ASSERT(dbuf->dtb_tomax != NULL);
2457 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2458
2459 if ((tomax = buf->dtb_tomax) == NULL) {
2460 dtrace_buffer_drop(buf);
2461 return;
2462 }
2463
2464 /*
2465 * The metastructure is always at the bottom of the buffer.
2466 */
2467 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2468 sizeof (dtrace_aggbuffer_t));
2469
2470 if (buf->dtb_offset == 0) {
2471 /*
2472 * We just kludge up approximately 1/8th of the size to be
2473 * buckets. If this guess ends up being routinely
2474 * off-the-mark, we may need to dynamically readjust this
2475 * based on past performance.
2476 */
2477 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2478
2479 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2480 (uintptr_t)tomax || hashsize == 0) {
2481 /*
2482 * We've been given a ludicrously small buffer;
2483 * increment our drop count and leave.
2484 */
2485 dtrace_buffer_drop(buf);
2486 return;
2487 }
2488
2489 /*
2490 * And now, a pathetic attempt to try to get a an odd (or
2491 * perchance, a prime) hash size for better hash distribution.
2492 */
2493 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2494 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2495
2496 agb->dtagb_hashsize = hashsize;
2497 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2498 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2499 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2500
2501 for (i = 0; i < agb->dtagb_hashsize; i++)
2502 agb->dtagb_hash[i] = NULL;
2503 }
2504
2505 ASSERT(agg->dtag_first != NULL);
2506 ASSERT(agg->dtag_first->dta_intuple);
2507
2508 /*
2509 * Calculate the hash value based on the key. Note that we _don't_
2510 * include the aggid in the hashing (but we will store it as part of
2511 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2512 * algorithm: a simple, quick algorithm that has no known funnels, and
2513 * gets good distribution in practice. The efficacy of the hashing
2514 * algorithm (and a comparison with other algorithms) may be found by
2515 * running the ::dtrace_aggstat MDB dcmd.
2516 */
2517 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2518 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2519 limit = i + act->dta_rec.dtrd_size;
2520 ASSERT(limit <= size);
2521 isstr = DTRACEACT_ISSTRING(act);
2522
2523 for (; i < limit; i++) {
2524 hashval += data[i];
2525 hashval += (hashval << 10);
2526 hashval ^= (hashval >> 6);
2527
2528 if (isstr && data[i] == '\0')
2529 break;
2530 }
2531 }
2532
2533 hashval += (hashval << 3);
2534 hashval ^= (hashval >> 11);
2535 hashval += (hashval << 15);
2536
2537 /*
2538 * Yes, the divide here is expensive -- but it's generally the least
2539 * of the performance issues given the amount of data that we iterate
2540 * over to compute hash values, compare data, etc.
2541 */
2542 ndx = hashval % agb->dtagb_hashsize;
2543
2544 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2545 ASSERT((caddr_t)key >= tomax);
2546 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2547
2548 if (hashval != key->dtak_hashval || key->dtak_size != size)
2549 continue;
2550
2551 kdata = key->dtak_data;
2552 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2553
2554 for (act = agg->dtag_first; act->dta_intuple;
2555 act = act->dta_next) {
2556 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2557 limit = i + act->dta_rec.dtrd_size;
2558 ASSERT(limit <= size);
2559 isstr = DTRACEACT_ISSTRING(act);
2560
2561 for (; i < limit; i++) {
2562 if (kdata[i] != data[i])
2563 goto next;
2564
2565 if (isstr && data[i] == '\0')
2566 break;
2567 }
2568 }
2569
2570 if (action != key->dtak_action) {
2571 /*
2572 * We are aggregating on the same value in the same
2573 * aggregation with two different aggregating actions.
2574 * (This should have been picked up in the compiler,
2575 * so we may be dealing with errant or devious DIF.)
2576 * This is an error condition; we indicate as much,
2577 * and return.
2578 */
2579 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2580 return;
2581 }
2582
2583 /*
2584 * This is a hit: we need to apply the aggregator to
2585 * the value at this key.
2586 */
2587 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2588 return;
2589 next:
2590 continue;
2591 }
2592
2593 /*
2594 * We didn't find it. We need to allocate some zero-filled space,
2595 * link it into the hash table appropriately, and apply the aggregator
2596 * to the (zero-filled) value.
2597 */
2598 offs = buf->dtb_offset;
2599 while (offs & (align - 1))
2600 offs += sizeof (uint32_t);
2601
2602 /*
2603 * If we don't have enough room to both allocate a new key _and_
2604 * its associated data, increment the drop count and return.
2605 */
2606 if ((uintptr_t)tomax + offs + fsize >
2607 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2608 dtrace_buffer_drop(buf);
2609 return;
2610 }
2611
2612 /*CONSTCOND*/
2613 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2614 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2615 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2616
2617 key->dtak_data = kdata = tomax + offs;
2618 buf->dtb_offset = offs + fsize;
2619
2620 /*
2621 * Now copy the data across.
2622 */
2623 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2624
2625 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2626 kdata[i] = data[i];
2627
2628 /*
2629 * Because strings are not zeroed out by default, we need to iterate
2630 * looking for actions that store strings, and we need to explicitly
2631 * pad these strings out with zeroes.
2632 */
2633 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2634 int nul;
2635
2636 if (!DTRACEACT_ISSTRING(act))
2637 continue;
2638
2639 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2640 limit = i + act->dta_rec.dtrd_size;
2641 ASSERT(limit <= size);
2642
2643 for (nul = 0; i < limit; i++) {
2644 if (nul) {
2645 kdata[i] = '\0';
2646 continue;
2647 }
2648
2649 if (data[i] != '\0')
2650 continue;
2651
2652 nul = 1;
2653 }
2654 }
2655
2656 for (i = size; i < fsize; i++)
2657 kdata[i] = 0;
2658
2659 key->dtak_hashval = hashval;
2660 key->dtak_size = size;
2661 key->dtak_action = action;
2662 key->dtak_next = agb->dtagb_hash[ndx];
2663 agb->dtagb_hash[ndx] = key;
2664
2665 /*
2666 * Finally, apply the aggregator.
2667 */
2668 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2669 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2670 }
2671
2672 /*
2673 * Given consumer state, this routine finds a speculation in the INACTIVE
2674 * state and transitions it into the ACTIVE state. If there is no speculation
2675 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2676 * incremented -- it is up to the caller to take appropriate action.
2677 */
2678 static int
dtrace_speculation(dtrace_state_t * state)2679 dtrace_speculation(dtrace_state_t *state)
2680 {
2681 int i = 0;
2682 dtrace_speculation_state_t current;
2683 uint32_t *stat = &state->dts_speculations_unavail, count;
2684
2685 while (i < state->dts_nspeculations) {
2686 dtrace_speculation_t *spec = &state->dts_speculations[i];
2687
2688 current = spec->dtsp_state;
2689
2690 if (current != DTRACESPEC_INACTIVE) {
2691 if (current == DTRACESPEC_COMMITTINGMANY ||
2692 current == DTRACESPEC_COMMITTING ||
2693 current == DTRACESPEC_DISCARDING)
2694 stat = &state->dts_speculations_busy;
2695 i++;
2696 continue;
2697 }
2698
2699 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2700 current, DTRACESPEC_ACTIVE) == current)
2701 return (i + 1);
2702 }
2703
2704 /*
2705 * We couldn't find a speculation. If we found as much as a single
2706 * busy speculation buffer, we'll attribute this failure as "busy"
2707 * instead of "unavail".
2708 */
2709 do {
2710 count = *stat;
2711 } while (dtrace_cas32(stat, count, count + 1) != count);
2712
2713 return (0);
2714 }
2715
2716 /*
2717 * This routine commits an active speculation. If the specified speculation
2718 * is not in a valid state to perform a commit(), this routine will silently do
2719 * nothing. The state of the specified speculation is transitioned according
2720 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2721 */
2722 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2723 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2724 dtrace_specid_t which)
2725 {
2726 dtrace_speculation_t *spec;
2727 dtrace_buffer_t *src, *dest;
2728 uintptr_t daddr, saddr, dlimit, slimit;
2729 dtrace_speculation_state_t current, new;
2730 intptr_t offs;
2731 uint64_t timestamp;
2732
2733 if (which == 0)
2734 return;
2735
2736 if (which > state->dts_nspeculations) {
2737 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2738 return;
2739 }
2740
2741 spec = &state->dts_speculations[which - 1];
2742 src = &spec->dtsp_buffer[cpu];
2743 dest = &state->dts_buffer[cpu];
2744
2745 do {
2746 current = spec->dtsp_state;
2747
2748 if (current == DTRACESPEC_COMMITTINGMANY)
2749 break;
2750
2751 switch (current) {
2752 case DTRACESPEC_INACTIVE:
2753 case DTRACESPEC_DISCARDING:
2754 return;
2755
2756 case DTRACESPEC_COMMITTING:
2757 /*
2758 * This is only possible if we are (a) commit()'ing
2759 * without having done a prior speculate() on this CPU
2760 * and (b) racing with another commit() on a different
2761 * CPU. There's nothing to do -- we just assert that
2762 * our offset is 0.
2763 */
2764 ASSERT(src->dtb_offset == 0);
2765 return;
2766
2767 case DTRACESPEC_ACTIVE:
2768 new = DTRACESPEC_COMMITTING;
2769 break;
2770
2771 case DTRACESPEC_ACTIVEONE:
2772 /*
2773 * This speculation is active on one CPU. If our
2774 * buffer offset is non-zero, we know that the one CPU
2775 * must be us. Otherwise, we are committing on a
2776 * different CPU from the speculate(), and we must
2777 * rely on being asynchronously cleaned.
2778 */
2779 if (src->dtb_offset != 0) {
2780 new = DTRACESPEC_COMMITTING;
2781 break;
2782 }
2783 /*FALLTHROUGH*/
2784
2785 case DTRACESPEC_ACTIVEMANY:
2786 new = DTRACESPEC_COMMITTINGMANY;
2787 break;
2788
2789 default:
2790 ASSERT(0);
2791 }
2792 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2793 current, new) != current);
2794
2795 /*
2796 * We have set the state to indicate that we are committing this
2797 * speculation. Now reserve the necessary space in the destination
2798 * buffer.
2799 */
2800 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2801 sizeof (uint64_t), state, NULL)) < 0) {
2802 dtrace_buffer_drop(dest);
2803 goto out;
2804 }
2805
2806 /*
2807 * We have sufficient space to copy the speculative buffer into the
2808 * primary buffer. First, modify the speculative buffer, filling
2809 * in the timestamp of all entries with the current time. The data
2810 * must have the commit() time rather than the time it was traced,
2811 * so that all entries in the primary buffer are in timestamp order.
2812 */
2813 timestamp = dtrace_gethrtime();
2814 saddr = (uintptr_t)src->dtb_tomax;
2815 slimit = saddr + src->dtb_offset;
2816 while (saddr < slimit) {
2817 size_t size;
2818 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2819
2820 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2821 saddr += sizeof (dtrace_epid_t);
2822 continue;
2823 }
2824 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2825 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2826
2827 ASSERT3U(saddr + size, <=, slimit);
2828 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2829 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2830
2831 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2832
2833 saddr += size;
2834 }
2835
2836 /*
2837 * Copy the buffer across. (Note that this is a
2838 * highly subobtimal bcopy(); in the unlikely event that this becomes
2839 * a serious performance issue, a high-performance DTrace-specific
2840 * bcopy() should obviously be invented.)
2841 */
2842 daddr = (uintptr_t)dest->dtb_tomax + offs;
2843 dlimit = daddr + src->dtb_offset;
2844 saddr = (uintptr_t)src->dtb_tomax;
2845
2846 /*
2847 * First, the aligned portion.
2848 */
2849 while (dlimit - daddr >= sizeof (uint64_t)) {
2850 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2851
2852 daddr += sizeof (uint64_t);
2853 saddr += sizeof (uint64_t);
2854 }
2855
2856 /*
2857 * Now any left-over bit...
2858 */
2859 while (dlimit - daddr)
2860 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2861
2862 /*
2863 * Finally, commit the reserved space in the destination buffer.
2864 */
2865 dest->dtb_offset = offs + src->dtb_offset;
2866
2867 out:
2868 /*
2869 * If we're lucky enough to be the only active CPU on this speculation
2870 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2871 */
2872 if (current == DTRACESPEC_ACTIVE ||
2873 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2874 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2875 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2876
2877 ASSERT(rval == DTRACESPEC_COMMITTING);
2878 }
2879
2880 src->dtb_offset = 0;
2881 src->dtb_xamot_drops += src->dtb_drops;
2882 src->dtb_drops = 0;
2883 }
2884
2885 /*
2886 * This routine discards an active speculation. If the specified speculation
2887 * is not in a valid state to perform a discard(), this routine will silently
2888 * do nothing. The state of the specified speculation is transitioned
2889 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2890 */
2891 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2892 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2893 dtrace_specid_t which)
2894 {
2895 dtrace_speculation_t *spec;
2896 dtrace_speculation_state_t current, new;
2897 dtrace_buffer_t *buf;
2898
2899 if (which == 0)
2900 return;
2901
2902 if (which > state->dts_nspeculations) {
2903 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2904 return;
2905 }
2906
2907 spec = &state->dts_speculations[which - 1];
2908 buf = &spec->dtsp_buffer[cpu];
2909
2910 do {
2911 current = spec->dtsp_state;
2912
2913 switch (current) {
2914 case DTRACESPEC_INACTIVE:
2915 case DTRACESPEC_COMMITTINGMANY:
2916 case DTRACESPEC_COMMITTING:
2917 case DTRACESPEC_DISCARDING:
2918 return;
2919
2920 case DTRACESPEC_ACTIVE:
2921 case DTRACESPEC_ACTIVEMANY:
2922 new = DTRACESPEC_DISCARDING;
2923 break;
2924
2925 case DTRACESPEC_ACTIVEONE:
2926 if (buf->dtb_offset != 0) {
2927 new = DTRACESPEC_INACTIVE;
2928 } else {
2929 new = DTRACESPEC_DISCARDING;
2930 }
2931 break;
2932
2933 default:
2934 ASSERT(0);
2935 }
2936 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2937 current, new) != current);
2938
2939 buf->dtb_offset = 0;
2940 buf->dtb_drops = 0;
2941 }
2942
2943 /*
2944 * Note: not called from probe context. This function is called
2945 * asynchronously from cross call context to clean any speculations that are
2946 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2947 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2948 * speculation.
2949 */
2950 static void
dtrace_speculation_clean_here(dtrace_state_t * state)2951 dtrace_speculation_clean_here(dtrace_state_t *state)
2952 {
2953 dtrace_icookie_t cookie;
2954 processorid_t cpu = CPU->cpu_id;
2955 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2956 dtrace_specid_t i;
2957
2958 cookie = dtrace_interrupt_disable();
2959
2960 if (dest->dtb_tomax == NULL) {
2961 dtrace_interrupt_enable(cookie);
2962 return;
2963 }
2964
2965 for (i = 0; i < state->dts_nspeculations; i++) {
2966 dtrace_speculation_t *spec = &state->dts_speculations[i];
2967 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2968
2969 if (src->dtb_tomax == NULL)
2970 continue;
2971
2972 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2973 src->dtb_offset = 0;
2974 continue;
2975 }
2976
2977 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2978 continue;
2979
2980 if (src->dtb_offset == 0)
2981 continue;
2982
2983 dtrace_speculation_commit(state, cpu, i + 1);
2984 }
2985
2986 dtrace_interrupt_enable(cookie);
2987 }
2988
2989 /*
2990 * Note: not called from probe context. This function is called
2991 * asynchronously (and at a regular interval) to clean any speculations that
2992 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2993 * is work to be done, it cross calls all CPUs to perform that work;
2994 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2995 * INACTIVE state until they have been cleaned by all CPUs.
2996 */
2997 static void
dtrace_speculation_clean(dtrace_state_t * state)2998 dtrace_speculation_clean(dtrace_state_t *state)
2999 {
3000 int work = 0, rv;
3001 dtrace_specid_t i;
3002
3003 for (i = 0; i < state->dts_nspeculations; i++) {
3004 dtrace_speculation_t *spec = &state->dts_speculations[i];
3005
3006 ASSERT(!spec->dtsp_cleaning);
3007
3008 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3009 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3010 continue;
3011
3012 work++;
3013 spec->dtsp_cleaning = 1;
3014 }
3015
3016 if (!work)
3017 return;
3018
3019 dtrace_xcall(DTRACE_CPUALL,
3020 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3021
3022 /*
3023 * We now know that all CPUs have committed or discarded their
3024 * speculation buffers, as appropriate. We can now set the state
3025 * to inactive.
3026 */
3027 for (i = 0; i < state->dts_nspeculations; i++) {
3028 dtrace_speculation_t *spec = &state->dts_speculations[i];
3029 dtrace_speculation_state_t current, new;
3030
3031 if (!spec->dtsp_cleaning)
3032 continue;
3033
3034 current = spec->dtsp_state;
3035 ASSERT(current == DTRACESPEC_DISCARDING ||
3036 current == DTRACESPEC_COMMITTINGMANY);
3037
3038 new = DTRACESPEC_INACTIVE;
3039
3040 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
3041 ASSERT(rv == current);
3042 spec->dtsp_cleaning = 0;
3043 }
3044 }
3045
3046 /*
3047 * Called as part of a speculate() to get the speculative buffer associated
3048 * with a given speculation. Returns NULL if the specified speculation is not
3049 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3050 * the active CPU is not the specified CPU -- the speculation will be
3051 * atomically transitioned into the ACTIVEMANY state.
3052 */
3053 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3054 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3055 dtrace_specid_t which)
3056 {
3057 dtrace_speculation_t *spec;
3058 dtrace_speculation_state_t current, new;
3059 dtrace_buffer_t *buf;
3060
3061 if (which == 0)
3062 return (NULL);
3063
3064 if (which > state->dts_nspeculations) {
3065 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3066 return (NULL);
3067 }
3068
3069 spec = &state->dts_speculations[which - 1];
3070 buf = &spec->dtsp_buffer[cpuid];
3071
3072 do {
3073 current = spec->dtsp_state;
3074
3075 switch (current) {
3076 case DTRACESPEC_INACTIVE:
3077 case DTRACESPEC_COMMITTINGMANY:
3078 case DTRACESPEC_DISCARDING:
3079 return (NULL);
3080
3081 case DTRACESPEC_COMMITTING:
3082 ASSERT(buf->dtb_offset == 0);
3083 return (NULL);
3084
3085 case DTRACESPEC_ACTIVEONE:
3086 /*
3087 * This speculation is currently active on one CPU.
3088 * Check the offset in the buffer; if it's non-zero,
3089 * that CPU must be us (and we leave the state alone).
3090 * If it's zero, assume that we're starting on a new
3091 * CPU -- and change the state to indicate that the
3092 * speculation is active on more than one CPU.
3093 */
3094 if (buf->dtb_offset != 0)
3095 return (buf);
3096
3097 new = DTRACESPEC_ACTIVEMANY;
3098 break;
3099
3100 case DTRACESPEC_ACTIVEMANY:
3101 return (buf);
3102
3103 case DTRACESPEC_ACTIVE:
3104 new = DTRACESPEC_ACTIVEONE;
3105 break;
3106
3107 default:
3108 ASSERT(0);
3109 }
3110 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3111 current, new) != current);
3112
3113 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3114 return (buf);
3115 }
3116
3117 /*
3118 * Return a string. In the event that the user lacks the privilege to access
3119 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3120 * don't fail access checking.
3121 *
3122 * dtrace_dif_variable() uses this routine as a helper for various
3123 * builtin values such as 'execname' and 'probefunc.'
3124 */
3125 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3126 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3127 dtrace_mstate_t *mstate)
3128 {
3129 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3130 uintptr_t ret;
3131 size_t strsz;
3132
3133 /*
3134 * The easy case: this probe is allowed to read all of memory, so
3135 * we can just return this as a vanilla pointer.
3136 */
3137 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3138 return (addr);
3139
3140 /*
3141 * This is the tougher case: we copy the string in question from
3142 * kernel memory into scratch memory and return it that way: this
3143 * ensures that we won't trip up when access checking tests the
3144 * BYREF return value.
3145 */
3146 strsz = dtrace_strlen((char *)addr, size) + 1;
3147
3148 if (mstate->dtms_scratch_ptr + strsz >
3149 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3150 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3151 return (0);
3152 }
3153
3154 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3155 strsz);
3156 ret = mstate->dtms_scratch_ptr;
3157 mstate->dtms_scratch_ptr += strsz;
3158 return (ret);
3159 }
3160
3161 /*
3162 * This function implements the DIF emulator's variable lookups. The emulator
3163 * passes a reserved variable identifier and optional built-in array index.
3164 */
3165 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3166 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3167 uint64_t ndx)
3168 {
3169 /*
3170 * If we're accessing one of the uncached arguments, we'll turn this
3171 * into a reference in the args array.
3172 */
3173 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3174 ndx = v - DIF_VAR_ARG0;
3175 v = DIF_VAR_ARGS;
3176 }
3177
3178 switch (v) {
3179 case DIF_VAR_ARGS:
3180 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3181 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3182 CPU_DTRACE_KPRIV;
3183 return (0);
3184 }
3185
3186 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3187 if (ndx >= sizeof (mstate->dtms_arg) /
3188 sizeof (mstate->dtms_arg[0])) {
3189 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3190 dtrace_provider_t *pv;
3191 uint64_t val;
3192
3193 pv = mstate->dtms_probe->dtpr_provider;
3194 if (pv->dtpv_pops.dtps_getargval != NULL)
3195 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3196 mstate->dtms_probe->dtpr_id,
3197 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3198 else
3199 val = dtrace_getarg(ndx, aframes);
3200
3201 /*
3202 * This is regrettably required to keep the compiler
3203 * from tail-optimizing the call to dtrace_getarg().
3204 * The condition always evaluates to true, but the
3205 * compiler has no way of figuring that out a priori.
3206 * (None of this would be necessary if the compiler
3207 * could be relied upon to _always_ tail-optimize
3208 * the call to dtrace_getarg() -- but it can't.)
3209 */
3210 if (mstate->dtms_probe != NULL)
3211 return (val);
3212
3213 ASSERT(0);
3214 }
3215
3216 return (mstate->dtms_arg[ndx]);
3217
3218 case DIF_VAR_UREGS: {
3219 klwp_t *lwp;
3220
3221 if (!dtrace_priv_proc(state, mstate))
3222 return (0);
3223
3224 if ((lwp = curthread->t_lwp) == NULL) {
3225 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3226 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3227 return (0);
3228 }
3229
3230 return (dtrace_getreg(lwp->lwp_regs, ndx));
3231 }
3232
3233 case DIF_VAR_VMREGS: {
3234 uint64_t rval;
3235
3236 if (!dtrace_priv_kernel(state))
3237 return (0);
3238
3239 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3240
3241 rval = dtrace_getvmreg(ndx,
3242 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3243
3244 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3245
3246 return (rval);
3247 }
3248
3249 case DIF_VAR_CURTHREAD:
3250 if (!dtrace_priv_proc(state, mstate))
3251 return (0);
3252 return ((uint64_t)(uintptr_t)curthread);
3253
3254 case DIF_VAR_TIMESTAMP:
3255 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3256 mstate->dtms_timestamp = dtrace_gethrtime();
3257 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3258 }
3259 return (mstate->dtms_timestamp);
3260
3261 case DIF_VAR_VTIMESTAMP:
3262 ASSERT(dtrace_vtime_references != 0);
3263 return (curthread->t_dtrace_vtime);
3264
3265 case DIF_VAR_WALLTIMESTAMP:
3266 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3267 mstate->dtms_walltimestamp = dtrace_gethrestime();
3268 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3269 }
3270 return (mstate->dtms_walltimestamp);
3271
3272 case DIF_VAR_IPL:
3273 if (!dtrace_priv_kernel(state))
3274 return (0);
3275 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3276 mstate->dtms_ipl = dtrace_getipl();
3277 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3278 }
3279 return (mstate->dtms_ipl);
3280
3281 case DIF_VAR_EPID:
3282 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3283 return (mstate->dtms_epid);
3284
3285 case DIF_VAR_ID:
3286 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3287 return (mstate->dtms_probe->dtpr_id);
3288
3289 case DIF_VAR_STACKDEPTH:
3290 if (!dtrace_priv_kernel(state))
3291 return (0);
3292 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3293 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3294
3295 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3296 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3297 }
3298 return (mstate->dtms_stackdepth);
3299
3300 case DIF_VAR_USTACKDEPTH:
3301 if (!dtrace_priv_proc(state, mstate))
3302 return (0);
3303 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3304 /*
3305 * See comment in DIF_VAR_PID.
3306 */
3307 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3308 CPU_ON_INTR(CPU)) {
3309 mstate->dtms_ustackdepth = 0;
3310 } else {
3311 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3312 mstate->dtms_ustackdepth =
3313 dtrace_getustackdepth();
3314 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3315 }
3316 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3317 }
3318 return (mstate->dtms_ustackdepth);
3319
3320 case DIF_VAR_CALLER:
3321 if (!dtrace_priv_kernel(state))
3322 return (0);
3323 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3324 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3325
3326 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3327 /*
3328 * If this is an unanchored probe, we are
3329 * required to go through the slow path:
3330 * dtrace_caller() only guarantees correct
3331 * results for anchored probes.
3332 */
3333 pc_t caller[2];
3334
3335 dtrace_getpcstack(caller, 2, aframes,
3336 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3337 mstate->dtms_caller = caller[1];
3338 } else if ((mstate->dtms_caller =
3339 dtrace_caller(aframes)) == -1) {
3340 /*
3341 * We have failed to do this the quick way;
3342 * we must resort to the slower approach of
3343 * calling dtrace_getpcstack().
3344 */
3345 pc_t caller;
3346
3347 dtrace_getpcstack(&caller, 1, aframes, NULL);
3348 mstate->dtms_caller = caller;
3349 }
3350
3351 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3352 }
3353 return (mstate->dtms_caller);
3354
3355 case DIF_VAR_UCALLER:
3356 if (!dtrace_priv_proc(state, mstate))
3357 return (0);
3358
3359 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3360 uint64_t ustack[3];
3361
3362 /*
3363 * dtrace_getupcstack() fills in the first uint64_t
3364 * with the current PID. The second uint64_t will
3365 * be the program counter at user-level. The third
3366 * uint64_t will contain the caller, which is what
3367 * we're after.
3368 */
3369 ustack[2] = 0;
3370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3371 dtrace_getupcstack(ustack, 3);
3372 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3373 mstate->dtms_ucaller = ustack[2];
3374 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3375 }
3376
3377 return (mstate->dtms_ucaller);
3378
3379 case DIF_VAR_PROBEPROV:
3380 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3381 return (dtrace_dif_varstr(
3382 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3383 state, mstate));
3384
3385 case DIF_VAR_PROBEMOD:
3386 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3387 return (dtrace_dif_varstr(
3388 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3389 state, mstate));
3390
3391 case DIF_VAR_PROBEFUNC:
3392 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3393 return (dtrace_dif_varstr(
3394 (uintptr_t)mstate->dtms_probe->dtpr_func,
3395 state, mstate));
3396
3397 case DIF_VAR_PROBENAME:
3398 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3399 return (dtrace_dif_varstr(
3400 (uintptr_t)mstate->dtms_probe->dtpr_name,
3401 state, mstate));
3402
3403 case DIF_VAR_PID:
3404 if (!dtrace_priv_proc(state, mstate))
3405 return (0);
3406
3407 /*
3408 * Note that we are assuming that an unanchored probe is
3409 * always due to a high-level interrupt. (And we're assuming
3410 * that there is only a single high level interrupt.)
3411 */
3412 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3413 return (pid0.pid_id);
3414
3415 /*
3416 * It is always safe to dereference one's own t_procp pointer:
3417 * it always points to a valid, allocated proc structure.
3418 * Further, it is always safe to dereference the p_pidp member
3419 * of one's own proc structure. (These are truisms becuase
3420 * threads and processes don't clean up their own state --
3421 * they leave that task to whomever reaps them.)
3422 */
3423 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3424
3425 case DIF_VAR_PPID:
3426 if (!dtrace_priv_proc(state, mstate))
3427 return (0);
3428
3429 /*
3430 * See comment in DIF_VAR_PID.
3431 */
3432 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3433 return (pid0.pid_id);
3434
3435 /*
3436 * It is always safe to dereference one's own t_procp pointer:
3437 * it always points to a valid, allocated proc structure.
3438 * (This is true because threads don't clean up their own
3439 * state -- they leave that task to whomever reaps them.)
3440 */
3441 return ((uint64_t)curthread->t_procp->p_ppid);
3442
3443 case DIF_VAR_TID:
3444 /*
3445 * See comment in DIF_VAR_PID.
3446 */
3447 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3448 return (0);
3449
3450 return ((uint64_t)curthread->t_tid);
3451
3452 case DIF_VAR_EXECNAME:
3453 if (!dtrace_priv_proc(state, mstate))
3454 return (0);
3455
3456 /*
3457 * See comment in DIF_VAR_PID.
3458 */
3459 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3460 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3461
3462 /*
3463 * It is always safe to dereference one's own t_procp pointer:
3464 * it always points to a valid, allocated proc structure.
3465 * (This is true because threads don't clean up their own
3466 * state -- they leave that task to whomever reaps them.)
3467 */
3468 return (dtrace_dif_varstr(
3469 (uintptr_t)curthread->t_procp->p_user.u_comm,
3470 state, mstate));
3471
3472 case DIF_VAR_ZONENAME:
3473 if (!dtrace_priv_proc(state, mstate))
3474 return (0);
3475
3476 /*
3477 * See comment in DIF_VAR_PID.
3478 */
3479 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3480 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3481
3482 /*
3483 * It is always safe to dereference one's own t_procp pointer:
3484 * it always points to a valid, allocated proc structure.
3485 * (This is true because threads don't clean up their own
3486 * state -- they leave that task to whomever reaps them.)
3487 */
3488 return (dtrace_dif_varstr(
3489 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3490 state, mstate));
3491
3492 case DIF_VAR_UID:
3493 if (!dtrace_priv_proc(state, mstate))
3494 return (0);
3495
3496 /*
3497 * See comment in DIF_VAR_PID.
3498 */
3499 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3500 return ((uint64_t)p0.p_cred->cr_uid);
3501
3502 /*
3503 * It is always safe to dereference one's own t_procp pointer:
3504 * it always points to a valid, allocated proc structure.
3505 * (This is true because threads don't clean up their own
3506 * state -- they leave that task to whomever reaps them.)
3507 *
3508 * Additionally, it is safe to dereference one's own process
3509 * credential, since this is never NULL after process birth.
3510 */
3511 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3512
3513 case DIF_VAR_GID:
3514 if (!dtrace_priv_proc(state, mstate))
3515 return (0);
3516
3517 /*
3518 * See comment in DIF_VAR_PID.
3519 */
3520 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3521 return ((uint64_t)p0.p_cred->cr_gid);
3522
3523 /*
3524 * It is always safe to dereference one's own t_procp pointer:
3525 * it always points to a valid, allocated proc structure.
3526 * (This is true because threads don't clean up their own
3527 * state -- they leave that task to whomever reaps them.)
3528 *
3529 * Additionally, it is safe to dereference one's own process
3530 * credential, since this is never NULL after process birth.
3531 */
3532 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3533
3534 case DIF_VAR_ERRNO: {
3535 klwp_t *lwp;
3536 if (!dtrace_priv_proc(state, mstate))
3537 return (0);
3538
3539 /*
3540 * See comment in DIF_VAR_PID.
3541 */
3542 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3543 return (0);
3544
3545 /*
3546 * It is always safe to dereference one's own t_lwp pointer in
3547 * the event that this pointer is non-NULL. (This is true
3548 * because threads and lwps don't clean up their own state --
3549 * they leave that task to whomever reaps them.)
3550 */
3551 if ((lwp = curthread->t_lwp) == NULL)
3552 return (0);
3553
3554 return ((uint64_t)lwp->lwp_errno);
3555 }
3556
3557 case DIF_VAR_THREADNAME:
3558 /*
3559 * See comment in DIF_VAR_PID.
3560 */
3561 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3562 return (0);
3563
3564 if (curthread->t_name == NULL)
3565 return (0);
3566
3567 /*
3568 * Once set, ->t_name itself is never changed: any updates are
3569 * made to the same buffer that we are pointing out. So we are
3570 * safe to dereference it here.
3571 */
3572 return (dtrace_dif_varstr((uintptr_t)curthread->t_name,
3573 state, mstate));
3574
3575 default:
3576 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3577 return (0);
3578 }
3579 }
3580
3581 static void
dtrace_dif_variable_write(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx,uint64_t data)3582 dtrace_dif_variable_write(dtrace_mstate_t *mstate, dtrace_state_t *state,
3583 uint64_t v, uint64_t ndx, uint64_t data)
3584 {
3585 switch (v) {
3586 case DIF_VAR_UREGS: {
3587 klwp_t *lwp;
3588
3589 if (dtrace_destructive_disallow ||
3590 !dtrace_priv_proc_control(state, mstate)) {
3591 return;
3592 }
3593
3594 if ((lwp = curthread->t_lwp) == NULL) {
3595 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3596 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = 0;
3597 return;
3598 }
3599
3600 dtrace_setreg(lwp->lwp_regs, ndx, data);
3601 return;
3602 }
3603
3604 default:
3605 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3606 return;
3607 }
3608 }
3609
3610 typedef enum dtrace_json_state {
3611 DTRACE_JSON_REST = 1,
3612 DTRACE_JSON_OBJECT,
3613 DTRACE_JSON_STRING,
3614 DTRACE_JSON_STRING_ESCAPE,
3615 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3616 DTRACE_JSON_COLON,
3617 DTRACE_JSON_COMMA,
3618 DTRACE_JSON_VALUE,
3619 DTRACE_JSON_IDENTIFIER,
3620 DTRACE_JSON_NUMBER,
3621 DTRACE_JSON_NUMBER_FRAC,
3622 DTRACE_JSON_NUMBER_EXP,
3623 DTRACE_JSON_COLLECT_OBJECT
3624 } dtrace_json_state_t;
3625
3626 /*
3627 * This function possesses just enough knowledge about JSON to extract a single
3628 * value from a JSON string and store it in the scratch buffer. It is able
3629 * to extract nested object values, and members of arrays by index.
3630 *
3631 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3632 * be looked up as we descend into the object tree. e.g.
3633 *
3634 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3635 * with nelems = 5.
3636 *
3637 * The run time of this function must be bounded above by strsize to limit the
3638 * amount of work done in probe context. As such, it is implemented as a
3639 * simple state machine, reading one character at a time using safe loads
3640 * until we find the requested element, hit a parsing error or run off the
3641 * end of the object or string.
3642 *
3643 * As there is no way for a subroutine to return an error without interrupting
3644 * clause execution, we simply return NULL in the event of a missing key or any
3645 * other error condition. Each NULL return in this function is commented with
3646 * the error condition it represents -- parsing or otherwise.
3647 *
3648 * The set of states for the state machine closely matches the JSON
3649 * specification (http://json.org/). Briefly:
3650 *
3651 * DTRACE_JSON_REST:
3652 * Skip whitespace until we find either a top-level Object, moving
3653 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3654 *
3655 * DTRACE_JSON_OBJECT:
3656 * Locate the next key String in an Object. Sets a flag to denote
3657 * the next String as a key string and moves to DTRACE_JSON_STRING.
3658 *
3659 * DTRACE_JSON_COLON:
3660 * Skip whitespace until we find the colon that separates key Strings
3661 * from their values. Once found, move to DTRACE_JSON_VALUE.
3662 *
3663 * DTRACE_JSON_VALUE:
3664 * Detects the type of the next value (String, Number, Identifier, Object
3665 * or Array) and routes to the states that process that type. Here we also
3666 * deal with the element selector list if we are requested to traverse down
3667 * into the object tree.
3668 *
3669 * DTRACE_JSON_COMMA:
3670 * Skip whitespace until we find the comma that separates key-value pairs
3671 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3672 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3673 * states return to this state at the end of their value, unless otherwise
3674 * noted.
3675 *
3676 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3677 * Processes a Number literal from the JSON, including any exponent
3678 * component that may be present. Numbers are returned as strings, which
3679 * may be passed to strtoll() if an integer is required.
3680 *
3681 * DTRACE_JSON_IDENTIFIER:
3682 * Processes a "true", "false" or "null" literal in the JSON.
3683 *
3684 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3685 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3686 * Processes a String literal from the JSON, whether the String denotes
3687 * a key, a value or part of a larger Object. Handles all escape sequences
3688 * present in the specification, including four-digit unicode characters,
3689 * but merely includes the escape sequence without converting it to the
3690 * actual escaped character. If the String is flagged as a key, we
3691 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3692 *
3693 * DTRACE_JSON_COLLECT_OBJECT:
3694 * This state collects an entire Object (or Array), correctly handling
3695 * embedded strings. If the full element selector list matches this nested
3696 * object, we return the Object in full as a string. If not, we use this
3697 * state to skip to the next value at this level and continue processing.
3698 *
3699 * NOTE: This function uses various macros from strtolctype.h to manipulate
3700 * digit values, etc -- these have all been checked to ensure they make
3701 * no additional function calls.
3702 */
3703 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3704 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3705 char *dest)
3706 {
3707 dtrace_json_state_t state = DTRACE_JSON_REST;
3708 int64_t array_elem = INT64_MIN;
3709 int64_t array_pos = 0;
3710 uint8_t escape_unicount = 0;
3711 boolean_t string_is_key = B_FALSE;
3712 boolean_t collect_object = B_FALSE;
3713 boolean_t found_key = B_FALSE;
3714 boolean_t in_array = B_FALSE;
3715 uint32_t braces = 0, brackets = 0;
3716 char *elem = elemlist;
3717 char *dd = dest;
3718 uintptr_t cur;
3719
3720 for (cur = json; cur < json + size; cur++) {
3721 char cc = dtrace_load8(cur);
3722 if (cc == '\0')
3723 return (NULL);
3724
3725 switch (state) {
3726 case DTRACE_JSON_REST:
3727 if (isspace(cc))
3728 break;
3729
3730 if (cc == '{') {
3731 state = DTRACE_JSON_OBJECT;
3732 break;
3733 }
3734
3735 if (cc == '[') {
3736 in_array = B_TRUE;
3737 array_pos = 0;
3738 array_elem = dtrace_strtoll(elem, 10, size);
3739 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3740 state = DTRACE_JSON_VALUE;
3741 break;
3742 }
3743
3744 /*
3745 * ERROR: expected to find a top-level object or array.
3746 */
3747 return (NULL);
3748 case DTRACE_JSON_OBJECT:
3749 if (isspace(cc))
3750 break;
3751
3752 if (cc == '"') {
3753 state = DTRACE_JSON_STRING;
3754 string_is_key = B_TRUE;
3755 break;
3756 }
3757
3758 /*
3759 * ERROR: either the object did not start with a key
3760 * string, or we've run off the end of the object
3761 * without finding the requested key.
3762 */
3763 return (NULL);
3764 case DTRACE_JSON_STRING:
3765 if (cc == '\\') {
3766 *dd++ = '\\';
3767 state = DTRACE_JSON_STRING_ESCAPE;
3768 break;
3769 }
3770
3771 if (cc == '"') {
3772 if (collect_object) {
3773 /*
3774 * We don't reset the dest here, as
3775 * the string is part of a larger
3776 * object being collected.
3777 */
3778 *dd++ = cc;
3779 collect_object = B_FALSE;
3780 state = DTRACE_JSON_COLLECT_OBJECT;
3781 break;
3782 }
3783 *dd = '\0';
3784 dd = dest; /* reset string buffer */
3785 if (string_is_key) {
3786 if (dtrace_strncmp(dest, elem,
3787 size) == 0)
3788 found_key = B_TRUE;
3789 } else if (found_key) {
3790 if (nelems > 1) {
3791 /*
3792 * We expected an object, not
3793 * this string.
3794 */
3795 return (NULL);
3796 }
3797 return (dest);
3798 }
3799 state = string_is_key ? DTRACE_JSON_COLON :
3800 DTRACE_JSON_COMMA;
3801 string_is_key = B_FALSE;
3802 break;
3803 }
3804
3805 *dd++ = cc;
3806 break;
3807 case DTRACE_JSON_STRING_ESCAPE:
3808 *dd++ = cc;
3809 if (cc == 'u') {
3810 escape_unicount = 0;
3811 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3812 } else {
3813 state = DTRACE_JSON_STRING;
3814 }
3815 break;
3816 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3817 if (!isxdigit(cc)) {
3818 /*
3819 * ERROR: invalid unicode escape, expected
3820 * four valid hexidecimal digits.
3821 */
3822 return (NULL);
3823 }
3824
3825 *dd++ = cc;
3826 if (++escape_unicount == 4)
3827 state = DTRACE_JSON_STRING;
3828 break;
3829 case DTRACE_JSON_COLON:
3830 if (isspace(cc))
3831 break;
3832
3833 if (cc == ':') {
3834 state = DTRACE_JSON_VALUE;
3835 break;
3836 }
3837
3838 /*
3839 * ERROR: expected a colon.
3840 */
3841 return (NULL);
3842 case DTRACE_JSON_COMMA:
3843 if (isspace(cc))
3844 break;
3845
3846 if (cc == ',') {
3847 if (in_array) {
3848 state = DTRACE_JSON_VALUE;
3849 if (++array_pos == array_elem)
3850 found_key = B_TRUE;
3851 } else {
3852 state = DTRACE_JSON_OBJECT;
3853 }
3854 break;
3855 }
3856
3857 /*
3858 * ERROR: either we hit an unexpected character, or
3859 * we reached the end of the object or array without
3860 * finding the requested key.
3861 */
3862 return (NULL);
3863 case DTRACE_JSON_IDENTIFIER:
3864 if (islower(cc)) {
3865 *dd++ = cc;
3866 break;
3867 }
3868
3869 *dd = '\0';
3870 dd = dest; /* reset string buffer */
3871
3872 if (dtrace_strncmp(dest, "true", 5) == 0 ||
3873 dtrace_strncmp(dest, "false", 6) == 0 ||
3874 dtrace_strncmp(dest, "null", 5) == 0) {
3875 if (found_key) {
3876 if (nelems > 1) {
3877 /*
3878 * ERROR: We expected an object,
3879 * not this identifier.
3880 */
3881 return (NULL);
3882 }
3883 return (dest);
3884 } else {
3885 cur--;
3886 state = DTRACE_JSON_COMMA;
3887 break;
3888 }
3889 }
3890
3891 /*
3892 * ERROR: we did not recognise the identifier as one
3893 * of those in the JSON specification.
3894 */
3895 return (NULL);
3896 case DTRACE_JSON_NUMBER:
3897 if (cc == '.') {
3898 *dd++ = cc;
3899 state = DTRACE_JSON_NUMBER_FRAC;
3900 break;
3901 }
3902
3903 if (cc == 'x' || cc == 'X') {
3904 /*
3905 * ERROR: specification explicitly excludes
3906 * hexidecimal or octal numbers.
3907 */
3908 return (NULL);
3909 }
3910
3911 /* FALLTHRU */
3912 case DTRACE_JSON_NUMBER_FRAC:
3913 if (cc == 'e' || cc == 'E') {
3914 *dd++ = cc;
3915 state = DTRACE_JSON_NUMBER_EXP;
3916 break;
3917 }
3918
3919 if (cc == '+' || cc == '-') {
3920 /*
3921 * ERROR: expect sign as part of exponent only.
3922 */
3923 return (NULL);
3924 }
3925 /* FALLTHRU */
3926 case DTRACE_JSON_NUMBER_EXP:
3927 if (isdigit(cc) || cc == '+' || cc == '-') {
3928 *dd++ = cc;
3929 break;
3930 }
3931
3932 *dd = '\0';
3933 dd = dest; /* reset string buffer */
3934 if (found_key) {
3935 if (nelems > 1) {
3936 /*
3937 * ERROR: We expected an object, not
3938 * this number.
3939 */
3940 return (NULL);
3941 }
3942 return (dest);
3943 }
3944
3945 cur--;
3946 state = DTRACE_JSON_COMMA;
3947 break;
3948 case DTRACE_JSON_VALUE:
3949 if (isspace(cc))
3950 break;
3951
3952 if (cc == '{' || cc == '[') {
3953 if (nelems > 1 && found_key) {
3954 in_array = cc == '[' ? B_TRUE : B_FALSE;
3955 /*
3956 * If our element selector directs us
3957 * to descend into this nested object,
3958 * then move to the next selector
3959 * element in the list and restart the
3960 * state machine.
3961 */
3962 while (*elem != '\0')
3963 elem++;
3964 elem++; /* skip the inter-element NUL */
3965 nelems--;
3966 dd = dest;
3967 if (in_array) {
3968 state = DTRACE_JSON_VALUE;
3969 array_pos = 0;
3970 array_elem = dtrace_strtoll(
3971 elem, 10, size);
3972 found_key = array_elem == 0 ?
3973 B_TRUE : B_FALSE;
3974 } else {
3975 found_key = B_FALSE;
3976 state = DTRACE_JSON_OBJECT;
3977 }
3978 break;
3979 }
3980
3981 /*
3982 * Otherwise, we wish to either skip this
3983 * nested object or return it in full.
3984 */
3985 if (cc == '[')
3986 brackets = 1;
3987 else
3988 braces = 1;
3989 *dd++ = cc;
3990 state = DTRACE_JSON_COLLECT_OBJECT;
3991 break;
3992 }
3993
3994 if (cc == '"') {
3995 state = DTRACE_JSON_STRING;
3996 break;
3997 }
3998
3999 if (islower(cc)) {
4000 /*
4001 * Here we deal with true, false and null.
4002 */
4003 *dd++ = cc;
4004 state = DTRACE_JSON_IDENTIFIER;
4005 break;
4006 }
4007
4008 if (cc == '-' || isdigit(cc)) {
4009 *dd++ = cc;
4010 state = DTRACE_JSON_NUMBER;
4011 break;
4012 }
4013
4014 /*
4015 * ERROR: unexpected character at start of value.
4016 */
4017 return (NULL);
4018 case DTRACE_JSON_COLLECT_OBJECT:
4019 if (cc == '\0')
4020 /*
4021 * ERROR: unexpected end of input.
4022 */
4023 return (NULL);
4024
4025 *dd++ = cc;
4026 if (cc == '"') {
4027 collect_object = B_TRUE;
4028 state = DTRACE_JSON_STRING;
4029 break;
4030 }
4031
4032 if (cc == ']') {
4033 if (brackets-- == 0) {
4034 /*
4035 * ERROR: unbalanced brackets.
4036 */
4037 return (NULL);
4038 }
4039 } else if (cc == '}') {
4040 if (braces-- == 0) {
4041 /*
4042 * ERROR: unbalanced braces.
4043 */
4044 return (NULL);
4045 }
4046 } else if (cc == '{') {
4047 braces++;
4048 } else if (cc == '[') {
4049 brackets++;
4050 }
4051
4052 if (brackets == 0 && braces == 0) {
4053 if (found_key) {
4054 *dd = '\0';
4055 return (dest);
4056 }
4057 dd = dest; /* reset string buffer */
4058 state = DTRACE_JSON_COMMA;
4059 }
4060 break;
4061 }
4062 }
4063 return (NULL);
4064 }
4065
4066 /*
4067 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4068 * Notice that we don't bother validating the proper number of arguments or
4069 * their types in the tuple stack. This isn't needed because all argument
4070 * interpretation is safe because of our load safety -- the worst that can
4071 * happen is that a bogus program can obtain bogus results.
4072 */
4073 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4074 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4075 dtrace_key_t *tupregs, int nargs,
4076 dtrace_mstate_t *mstate, dtrace_state_t *state)
4077 {
4078 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
4079 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
4080 dtrace_vstate_t *vstate = &state->dts_vstate;
4081
4082 union {
4083 mutex_impl_t mi;
4084 uint64_t mx;
4085 } m;
4086
4087 union {
4088 krwlock_t ri;
4089 uintptr_t rw;
4090 } r;
4091
4092 switch (subr) {
4093 case DIF_SUBR_RAND:
4094 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
4095 break;
4096
4097 case DIF_SUBR_MUTEX_OWNED:
4098 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4099 mstate, vstate)) {
4100 regs[rd] = 0;
4101 break;
4102 }
4103
4104 m.mx = dtrace_load64(tupregs[0].dttk_value);
4105 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4106 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4107 else
4108 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4109 break;
4110
4111 case DIF_SUBR_MUTEX_OWNER:
4112 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4113 mstate, vstate)) {
4114 regs[rd] = 0;
4115 break;
4116 }
4117
4118 m.mx = dtrace_load64(tupregs[0].dttk_value);
4119 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4120 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4121 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4122 else
4123 regs[rd] = 0;
4124 break;
4125
4126 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4127 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4128 mstate, vstate)) {
4129 regs[rd] = 0;
4130 break;
4131 }
4132
4133 m.mx = dtrace_load64(tupregs[0].dttk_value);
4134 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4135 break;
4136
4137 case DIF_SUBR_MUTEX_TYPE_SPIN:
4138 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4139 mstate, vstate)) {
4140 regs[rd] = 0;
4141 break;
4142 }
4143
4144 m.mx = dtrace_load64(tupregs[0].dttk_value);
4145 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4146 break;
4147
4148 case DIF_SUBR_RW_READ_HELD: {
4149 uintptr_t tmp;
4150
4151 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4152 mstate, vstate)) {
4153 regs[rd] = 0;
4154 break;
4155 }
4156
4157 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4158 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4159 break;
4160 }
4161
4162 case DIF_SUBR_RW_WRITE_HELD:
4163 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4164 mstate, vstate)) {
4165 regs[rd] = 0;
4166 break;
4167 }
4168
4169 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4170 regs[rd] = _RW_WRITE_HELD(&r.ri);
4171 break;
4172
4173 case DIF_SUBR_RW_ISWRITER:
4174 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4175 mstate, vstate)) {
4176 regs[rd] = 0;
4177 break;
4178 }
4179
4180 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4181 regs[rd] = _RW_ISWRITER(&r.ri);
4182 break;
4183
4184 case DIF_SUBR_BCOPY: {
4185 /*
4186 * We need to be sure that the destination is in the scratch
4187 * region -- no other region is allowed.
4188 */
4189 uintptr_t src = tupregs[0].dttk_value;
4190 uintptr_t dest = tupregs[1].dttk_value;
4191 size_t size = tupregs[2].dttk_value;
4192
4193 if (!dtrace_inscratch(dest, size, mstate)) {
4194 *flags |= CPU_DTRACE_BADADDR;
4195 *illval = regs[rd];
4196 break;
4197 }
4198
4199 if (!dtrace_canload(src, size, mstate, vstate)) {
4200 regs[rd] = 0;
4201 break;
4202 }
4203
4204 dtrace_bcopy((void *)src, (void *)dest, size);
4205 break;
4206 }
4207
4208 case DIF_SUBR_ALLOCA:
4209 case DIF_SUBR_COPYIN: {
4210 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4211 uint64_t size =
4212 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4213 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4214
4215 /*
4216 * This action doesn't require any credential checks since
4217 * probes will not activate in user contexts to which the
4218 * enabling user does not have permissions.
4219 */
4220
4221 /*
4222 * Rounding up the user allocation size could have overflowed
4223 * a large, bogus allocation (like -1ULL) to 0.
4224 */
4225 if (scratch_size < size ||
4226 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4227 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4228 regs[rd] = 0;
4229 break;
4230 }
4231
4232 if (subr == DIF_SUBR_COPYIN) {
4233 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4234 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4235 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4236 }
4237
4238 mstate->dtms_scratch_ptr += scratch_size;
4239 regs[rd] = dest;
4240 break;
4241 }
4242
4243 case DIF_SUBR_COPYINTO: {
4244 uint64_t size = tupregs[1].dttk_value;
4245 uintptr_t dest = tupregs[2].dttk_value;
4246
4247 /*
4248 * This action doesn't require any credential checks since
4249 * probes will not activate in user contexts to which the
4250 * enabling user does not have permissions.
4251 */
4252 if (!dtrace_inscratch(dest, size, mstate)) {
4253 *flags |= CPU_DTRACE_BADADDR;
4254 *illval = regs[rd];
4255 break;
4256 }
4257
4258 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4259 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4260 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4261 break;
4262 }
4263
4264 case DIF_SUBR_COPYINSTR: {
4265 uintptr_t dest = mstate->dtms_scratch_ptr;
4266 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4267
4268 if (nargs > 1 && tupregs[1].dttk_value < size)
4269 size = tupregs[1].dttk_value + 1;
4270
4271 /*
4272 * This action doesn't require any credential checks since
4273 * probes will not activate in user contexts to which the
4274 * enabling user does not have permissions.
4275 */
4276 if (!DTRACE_INSCRATCH(mstate, size)) {
4277 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4278 regs[rd] = 0;
4279 break;
4280 }
4281
4282 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4283 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4284 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4285
4286 ((char *)dest)[size - 1] = '\0';
4287 mstate->dtms_scratch_ptr += size;
4288 regs[rd] = dest;
4289 break;
4290 }
4291
4292 case DIF_SUBR_MSGSIZE:
4293 case DIF_SUBR_MSGDSIZE: {
4294 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4295 uintptr_t wptr, rptr;
4296 size_t count = 0;
4297 int cont = 0;
4298
4299 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4300
4301 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4302 vstate)) {
4303 regs[rd] = 0;
4304 break;
4305 }
4306
4307 wptr = dtrace_loadptr(baddr +
4308 offsetof(mblk_t, b_wptr));
4309
4310 rptr = dtrace_loadptr(baddr +
4311 offsetof(mblk_t, b_rptr));
4312
4313 if (wptr < rptr) {
4314 *flags |= CPU_DTRACE_BADADDR;
4315 *illval = tupregs[0].dttk_value;
4316 break;
4317 }
4318
4319 daddr = dtrace_loadptr(baddr +
4320 offsetof(mblk_t, b_datap));
4321
4322 baddr = dtrace_loadptr(baddr +
4323 offsetof(mblk_t, b_cont));
4324
4325 /*
4326 * We want to prevent against denial-of-service here,
4327 * so we're only going to search the list for
4328 * dtrace_msgdsize_max mblks.
4329 */
4330 if (cont++ > dtrace_msgdsize_max) {
4331 *flags |= CPU_DTRACE_ILLOP;
4332 break;
4333 }
4334
4335 if (subr == DIF_SUBR_MSGDSIZE) {
4336 if (dtrace_load8(daddr +
4337 offsetof(dblk_t, db_type)) != M_DATA)
4338 continue;
4339 }
4340
4341 count += wptr - rptr;
4342 }
4343
4344 if (!(*flags & CPU_DTRACE_FAULT))
4345 regs[rd] = count;
4346
4347 break;
4348 }
4349
4350 case DIF_SUBR_PROGENYOF: {
4351 pid_t pid = tupregs[0].dttk_value;
4352 proc_t *p;
4353 int rval = 0;
4354
4355 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4356
4357 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4358 if (p->p_pidp->pid_id == pid) {
4359 rval = 1;
4360 break;
4361 }
4362 }
4363
4364 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4365
4366 regs[rd] = rval;
4367 break;
4368 }
4369
4370 case DIF_SUBR_SPECULATION:
4371 regs[rd] = dtrace_speculation(state);
4372 break;
4373
4374 case DIF_SUBR_COPYOUT: {
4375 uintptr_t kaddr = tupregs[0].dttk_value;
4376 uintptr_t uaddr = tupregs[1].dttk_value;
4377 uint64_t size = tupregs[2].dttk_value;
4378
4379 if (!dtrace_destructive_disallow &&
4380 dtrace_priv_proc_control(state, mstate) &&
4381 !dtrace_istoxic(kaddr, size) &&
4382 dtrace_canload(kaddr, size, mstate, vstate)) {
4383 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4384 dtrace_copyout(kaddr, uaddr, size, flags);
4385 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4386 }
4387 break;
4388 }
4389
4390 case DIF_SUBR_COPYOUTSTR: {
4391 uintptr_t kaddr = tupregs[0].dttk_value;
4392 uintptr_t uaddr = tupregs[1].dttk_value;
4393 uint64_t size = tupregs[2].dttk_value;
4394 size_t lim;
4395
4396 if (!dtrace_destructive_disallow &&
4397 dtrace_priv_proc_control(state, mstate) &&
4398 !dtrace_istoxic(kaddr, size) &&
4399 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4401 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4402 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4403 }
4404 break;
4405 }
4406
4407 case DIF_SUBR_STRLEN: {
4408 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4409 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4410 size_t lim;
4411
4412 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4413 regs[rd] = 0;
4414 break;
4415 }
4416 regs[rd] = dtrace_strlen((char *)addr, lim);
4417
4418 break;
4419 }
4420
4421 case DIF_SUBR_STRCHR:
4422 case DIF_SUBR_STRRCHR: {
4423 /*
4424 * We're going to iterate over the string looking for the
4425 * specified character. We will iterate until we have reached
4426 * the string length or we have found the character. If this
4427 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4428 * of the specified character instead of the first.
4429 */
4430 uintptr_t addr = tupregs[0].dttk_value;
4431 uintptr_t addr_limit;
4432 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4433 size_t lim;
4434 char c, target = (char)tupregs[1].dttk_value;
4435
4436 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4437 regs[rd] = 0;
4438 break;
4439 }
4440 addr_limit = addr + lim;
4441
4442 for (regs[rd] = 0; addr < addr_limit; addr++) {
4443 if ((c = dtrace_load8(addr)) == target) {
4444 regs[rd] = addr;
4445
4446 if (subr == DIF_SUBR_STRCHR)
4447 break;
4448 }
4449 if (c == '\0')
4450 break;
4451 }
4452
4453 break;
4454 }
4455
4456 case DIF_SUBR_STRSTR:
4457 case DIF_SUBR_INDEX:
4458 case DIF_SUBR_RINDEX: {
4459 /*
4460 * We're going to iterate over the string looking for the
4461 * specified string. We will iterate until we have reached
4462 * the string length or we have found the string. (Yes, this
4463 * is done in the most naive way possible -- but considering
4464 * that the string we're searching for is likely to be
4465 * relatively short, the complexity of Rabin-Karp or similar
4466 * hardly seems merited.)
4467 */
4468 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4469 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4470 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4471 size_t len = dtrace_strlen(addr, size);
4472 size_t sublen = dtrace_strlen(substr, size);
4473 char *limit = addr + len, *orig = addr;
4474 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4475 int inc = 1;
4476
4477 regs[rd] = notfound;
4478
4479 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4480 regs[rd] = 0;
4481 break;
4482 }
4483
4484 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4485 vstate)) {
4486 regs[rd] = 0;
4487 break;
4488 }
4489
4490 /*
4491 * strstr() and index()/rindex() have similar semantics if
4492 * both strings are the empty string: strstr() returns a
4493 * pointer to the (empty) string, and index() and rindex()
4494 * both return index 0 (regardless of any position argument).
4495 */
4496 if (sublen == 0 && len == 0) {
4497 if (subr == DIF_SUBR_STRSTR)
4498 regs[rd] = (uintptr_t)addr;
4499 else
4500 regs[rd] = 0;
4501 break;
4502 }
4503
4504 if (subr != DIF_SUBR_STRSTR) {
4505 if (subr == DIF_SUBR_RINDEX) {
4506 limit = orig - 1;
4507 addr += len;
4508 inc = -1;
4509 }
4510
4511 /*
4512 * Both index() and rindex() take an optional position
4513 * argument that denotes the starting position.
4514 */
4515 if (nargs == 3) {
4516 int64_t pos = (int64_t)tupregs[2].dttk_value;
4517
4518 /*
4519 * If the position argument to index() is
4520 * negative, Perl implicitly clamps it at
4521 * zero. This semantic is a little surprising
4522 * given the special meaning of negative
4523 * positions to similar Perl functions like
4524 * substr(), but it appears to reflect a
4525 * notion that index() can start from a
4526 * negative index and increment its way up to
4527 * the string. Given this notion, Perl's
4528 * rindex() is at least self-consistent in
4529 * that it implicitly clamps positions greater
4530 * than the string length to be the string
4531 * length. Where Perl completely loses
4532 * coherence, however, is when the specified
4533 * substring is the empty string (""). In
4534 * this case, even if the position is
4535 * negative, rindex() returns 0 -- and even if
4536 * the position is greater than the length,
4537 * index() returns the string length. These
4538 * semantics violate the notion that index()
4539 * should never return a value less than the
4540 * specified position and that rindex() should
4541 * never return a value greater than the
4542 * specified position. (One assumes that
4543 * these semantics are artifacts of Perl's
4544 * implementation and not the results of
4545 * deliberate design -- it beggars belief that
4546 * even Larry Wall could desire such oddness.)
4547 * While in the abstract one would wish for
4548 * consistent position semantics across
4549 * substr(), index() and rindex() -- or at the
4550 * very least self-consistent position
4551 * semantics for index() and rindex() -- we
4552 * instead opt to keep with the extant Perl
4553 * semantics, in all their broken glory. (Do
4554 * we have more desire to maintain Perl's
4555 * semantics than Perl does? Probably.)
4556 */
4557 if (subr == DIF_SUBR_RINDEX) {
4558 if (pos < 0) {
4559 if (sublen == 0)
4560 regs[rd] = 0;
4561 break;
4562 }
4563
4564 if (pos > len)
4565 pos = len;
4566 } else {
4567 if (pos < 0)
4568 pos = 0;
4569
4570 if (pos >= len) {
4571 if (sublen == 0)
4572 regs[rd] = len;
4573 break;
4574 }
4575 }
4576
4577 addr = orig + pos;
4578 }
4579 }
4580
4581 for (regs[rd] = notfound; addr != limit; addr += inc) {
4582 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4583 if (subr != DIF_SUBR_STRSTR) {
4584 /*
4585 * As D index() and rindex() are
4586 * modeled on Perl (and not on awk),
4587 * we return a zero-based (and not a
4588 * one-based) index. (For you Perl
4589 * weenies: no, we're not going to add
4590 * $[ -- and shouldn't you be at a con
4591 * or something?)
4592 */
4593 regs[rd] = (uintptr_t)(addr - orig);
4594 break;
4595 }
4596
4597 ASSERT(subr == DIF_SUBR_STRSTR);
4598 regs[rd] = (uintptr_t)addr;
4599 break;
4600 }
4601 }
4602
4603 break;
4604 }
4605
4606 case DIF_SUBR_STRTOK: {
4607 uintptr_t addr = tupregs[0].dttk_value;
4608 uintptr_t tokaddr = tupregs[1].dttk_value;
4609 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4610 uintptr_t limit, toklimit;
4611 size_t clim;
4612 uint8_t c, tokmap[32]; /* 256 / 8 */
4613 char *dest = (char *)mstate->dtms_scratch_ptr;
4614 int i;
4615
4616 /*
4617 * Check both the token buffer and (later) the input buffer,
4618 * since both could be non-scratch addresses.
4619 */
4620 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4621 regs[rd] = 0;
4622 break;
4623 }
4624 toklimit = tokaddr + clim;
4625
4626 if (!DTRACE_INSCRATCH(mstate, size)) {
4627 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4628 regs[rd] = 0;
4629 break;
4630 }
4631
4632 if (addr == 0) {
4633 /*
4634 * If the address specified is NULL, we use our saved
4635 * strtok pointer from the mstate. Note that this
4636 * means that the saved strtok pointer is _only_
4637 * valid within multiple enablings of the same probe --
4638 * it behaves like an implicit clause-local variable.
4639 */
4640 addr = mstate->dtms_strtok;
4641 limit = mstate->dtms_strtok_limit;
4642 } else {
4643 /*
4644 * If the user-specified address is non-NULL we must
4645 * access check it. This is the only time we have
4646 * a chance to do so, since this address may reside
4647 * in the string table of this clause-- future calls
4648 * (when we fetch addr from mstate->dtms_strtok)
4649 * would fail this access check.
4650 */
4651 if (!dtrace_strcanload(addr, size, &clim, mstate,
4652 vstate)) {
4653 regs[rd] = 0;
4654 break;
4655 }
4656 limit = addr + clim;
4657 }
4658
4659 /*
4660 * First, zero the token map, and then process the token
4661 * string -- setting a bit in the map for every character
4662 * found in the token string.
4663 */
4664 for (i = 0; i < sizeof (tokmap); i++)
4665 tokmap[i] = 0;
4666
4667 for (; tokaddr < toklimit; tokaddr++) {
4668 if ((c = dtrace_load8(tokaddr)) == '\0')
4669 break;
4670
4671 ASSERT((c >> 3) < sizeof (tokmap));
4672 tokmap[c >> 3] |= (1 << (c & 0x7));
4673 }
4674
4675 for (; addr < limit; addr++) {
4676 /*
4677 * We're looking for a character that is _not_
4678 * contained in the token string.
4679 */
4680 if ((c = dtrace_load8(addr)) == '\0')
4681 break;
4682
4683 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4684 break;
4685 }
4686
4687 if (c == '\0') {
4688 /*
4689 * We reached the end of the string without finding
4690 * any character that was not in the token string.
4691 * We return NULL in this case, and we set the saved
4692 * address to NULL as well.
4693 */
4694 regs[rd] = 0;
4695 mstate->dtms_strtok = 0;
4696 mstate->dtms_strtok_limit = 0;
4697 break;
4698 }
4699
4700 /*
4701 * From here on, we're copying into the destination string.
4702 */
4703 for (i = 0; addr < limit && i < size - 1; addr++) {
4704 if ((c = dtrace_load8(addr)) == '\0')
4705 break;
4706
4707 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4708 break;
4709
4710 ASSERT(i < size);
4711 dest[i++] = c;
4712 }
4713
4714 ASSERT(i < size);
4715 dest[i] = '\0';
4716 regs[rd] = (uintptr_t)dest;
4717 mstate->dtms_scratch_ptr += size;
4718 mstate->dtms_strtok = addr;
4719 mstate->dtms_strtok_limit = limit;
4720 break;
4721 }
4722
4723 case DIF_SUBR_SUBSTR: {
4724 uintptr_t s = tupregs[0].dttk_value;
4725 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4726 char *d = (char *)mstate->dtms_scratch_ptr;
4727 int64_t index = (int64_t)tupregs[1].dttk_value;
4728 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4729 size_t len = dtrace_strlen((char *)s, size);
4730 int64_t i;
4731
4732 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4733 regs[rd] = 0;
4734 break;
4735 }
4736
4737 if (!DTRACE_INSCRATCH(mstate, size)) {
4738 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4739 regs[rd] = 0;
4740 break;
4741 }
4742
4743 if (nargs <= 2)
4744 remaining = (int64_t)size;
4745
4746 if (index < 0) {
4747 index += len;
4748
4749 if (index < 0 && index + remaining > 0) {
4750 remaining += index;
4751 index = 0;
4752 }
4753 }
4754
4755 if (index >= len || index < 0) {
4756 remaining = 0;
4757 } else if (remaining < 0) {
4758 remaining += len - index;
4759 } else if (index + remaining > size) {
4760 remaining = size - index;
4761 }
4762
4763 for (i = 0; i < remaining; i++) {
4764 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4765 break;
4766 }
4767
4768 d[i] = '\0';
4769
4770 mstate->dtms_scratch_ptr += size;
4771 regs[rd] = (uintptr_t)d;
4772 break;
4773 }
4774
4775 case DIF_SUBR_JSON: {
4776 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4777 uintptr_t json = tupregs[0].dttk_value;
4778 size_t jsonlen = dtrace_strlen((char *)json, size);
4779 uintptr_t elem = tupregs[1].dttk_value;
4780 size_t elemlen = dtrace_strlen((char *)elem, size);
4781
4782 char *dest = (char *)mstate->dtms_scratch_ptr;
4783 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4784 char *ee = elemlist;
4785 int nelems = 1;
4786 uintptr_t cur;
4787
4788 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4789 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4790 regs[rd] = 0;
4791 break;
4792 }
4793
4794 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4795 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4796 regs[rd] = 0;
4797 break;
4798 }
4799
4800 /*
4801 * Read the element selector and split it up into a packed list
4802 * of strings.
4803 */
4804 for (cur = elem; cur < elem + elemlen; cur++) {
4805 char cc = dtrace_load8(cur);
4806
4807 if (cur == elem && cc == '[') {
4808 /*
4809 * If the first element selector key is
4810 * actually an array index then ignore the
4811 * bracket.
4812 */
4813 continue;
4814 }
4815
4816 if (cc == ']')
4817 continue;
4818
4819 if (cc == '.' || cc == '[') {
4820 nelems++;
4821 cc = '\0';
4822 }
4823
4824 *ee++ = cc;
4825 }
4826 *ee++ = '\0';
4827
4828 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4829 nelems, dest)) != 0)
4830 mstate->dtms_scratch_ptr += jsonlen + 1;
4831 break;
4832 }
4833
4834 case DIF_SUBR_TOUPPER:
4835 case DIF_SUBR_TOLOWER: {
4836 uintptr_t s = tupregs[0].dttk_value;
4837 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4838 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4839 size_t len = dtrace_strlen((char *)s, size);
4840 char lower, upper, convert;
4841 int64_t i;
4842
4843 if (subr == DIF_SUBR_TOUPPER) {
4844 lower = 'a';
4845 upper = 'z';
4846 convert = 'A';
4847 } else {
4848 lower = 'A';
4849 upper = 'Z';
4850 convert = 'a';
4851 }
4852
4853 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4854 regs[rd] = 0;
4855 break;
4856 }
4857
4858 if (!DTRACE_INSCRATCH(mstate, size)) {
4859 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4860 regs[rd] = 0;
4861 break;
4862 }
4863
4864 for (i = 0; i < size - 1; i++) {
4865 if ((c = dtrace_load8(s + i)) == '\0')
4866 break;
4867
4868 if (c >= lower && c <= upper)
4869 c = convert + (c - lower);
4870
4871 dest[i] = c;
4872 }
4873
4874 ASSERT(i < size);
4875 dest[i] = '\0';
4876 regs[rd] = (uintptr_t)dest;
4877 mstate->dtms_scratch_ptr += size;
4878 break;
4879 }
4880
4881 case DIF_SUBR_GETMAJOR:
4882 #ifdef _LP64
4883 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4884 #else
4885 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4886 #endif
4887 break;
4888
4889 case DIF_SUBR_GETMINOR:
4890 #ifdef _LP64
4891 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4892 #else
4893 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4894 #endif
4895 break;
4896
4897 case DIF_SUBR_DDI_PATHNAME: {
4898 /*
4899 * This one is a galactic mess. We are going to roughly
4900 * emulate ddi_pathname(), but it's made more complicated
4901 * by the fact that we (a) want to include the minor name and
4902 * (b) must proceed iteratively instead of recursively.
4903 */
4904 uintptr_t dest = mstate->dtms_scratch_ptr;
4905 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4906 char *start = (char *)dest, *end = start + size - 1;
4907 uintptr_t daddr = tupregs[0].dttk_value;
4908 int64_t minor = (int64_t)tupregs[1].dttk_value;
4909 char *s;
4910 int i, len, depth = 0;
4911
4912 /*
4913 * Due to all the pointer jumping we do and context we must
4914 * rely upon, we just mandate that the user must have kernel
4915 * read privileges to use this routine.
4916 */
4917 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4918 *flags |= CPU_DTRACE_KPRIV;
4919 *illval = daddr;
4920 regs[rd] = 0;
4921 }
4922
4923 if (!DTRACE_INSCRATCH(mstate, size)) {
4924 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4925 regs[rd] = 0;
4926 break;
4927 }
4928
4929 *end = '\0';
4930
4931 /*
4932 * We want to have a name for the minor. In order to do this,
4933 * we need to walk the minor list from the devinfo. We want
4934 * to be sure that we don't infinitely walk a circular list,
4935 * so we check for circularity by sending a scout pointer
4936 * ahead two elements for every element that we iterate over;
4937 * if the list is circular, these will ultimately point to the
4938 * same element. You may recognize this little trick as the
4939 * answer to a stupid interview question -- one that always
4940 * seems to be asked by those who had to have it laboriously
4941 * explained to them, and who can't even concisely describe
4942 * the conditions under which one would be forced to resort to
4943 * this technique. Needless to say, those conditions are
4944 * found here -- and probably only here. Is this the only use
4945 * of this infamous trick in shipping, production code? If it
4946 * isn't, it probably should be...
4947 */
4948 if (minor != -1) {
4949 uintptr_t maddr = dtrace_loadptr(daddr +
4950 offsetof(struct dev_info, devi_minor));
4951
4952 uintptr_t next = offsetof(struct ddi_minor_data, next);
4953 uintptr_t name = offsetof(struct ddi_minor_data,
4954 d_minor) + offsetof(struct ddi_minor, name);
4955 uintptr_t dev = offsetof(struct ddi_minor_data,
4956 d_minor) + offsetof(struct ddi_minor, dev);
4957 uintptr_t scout;
4958
4959 if (maddr != 0)
4960 scout = dtrace_loadptr(maddr + next);
4961
4962 while (maddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4963 uint64_t m;
4964 #ifdef _LP64
4965 m = dtrace_load64(maddr + dev) & MAXMIN64;
4966 #else
4967 m = dtrace_load32(maddr + dev) & MAXMIN;
4968 #endif
4969 if (m != minor) {
4970 maddr = dtrace_loadptr(maddr + next);
4971
4972 if (scout == 0)
4973 continue;
4974
4975 scout = dtrace_loadptr(scout + next);
4976
4977 if (scout == 0)
4978 continue;
4979
4980 scout = dtrace_loadptr(scout + next);
4981
4982 if (scout == 0)
4983 continue;
4984
4985 if (scout == maddr) {
4986 *flags |= CPU_DTRACE_ILLOP;
4987 break;
4988 }
4989
4990 continue;
4991 }
4992
4993 /*
4994 * We have the minor data. Now we need to
4995 * copy the minor's name into the end of the
4996 * pathname.
4997 */
4998 s = (char *)dtrace_loadptr(maddr + name);
4999 len = dtrace_strlen(s, size);
5000
5001 if (*flags & CPU_DTRACE_FAULT)
5002 break;
5003
5004 if (len != 0) {
5005 if ((end -= (len + 1)) < start)
5006 break;
5007
5008 *end = ':';
5009 }
5010
5011 for (i = 1; i <= len; i++)
5012 end[i] = dtrace_load8((uintptr_t)s++);
5013 break;
5014 }
5015 }
5016
5017 while (daddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
5018 ddi_node_state_t devi_state;
5019
5020 devi_state = dtrace_load32(daddr +
5021 offsetof(struct dev_info, devi_node_state));
5022
5023 if (*flags & CPU_DTRACE_FAULT)
5024 break;
5025
5026 if (devi_state >= DS_INITIALIZED) {
5027 s = (char *)dtrace_loadptr(daddr +
5028 offsetof(struct dev_info, devi_addr));
5029 len = dtrace_strlen(s, size);
5030
5031 if (*flags & CPU_DTRACE_FAULT)
5032 break;
5033
5034 if (len != 0) {
5035 if ((end -= (len + 1)) < start)
5036 break;
5037
5038 *end = '@';
5039 }
5040
5041 for (i = 1; i <= len; i++)
5042 end[i] = dtrace_load8((uintptr_t)s++);
5043 }
5044
5045 /*
5046 * Now for the node name...
5047 */
5048 s = (char *)dtrace_loadptr(daddr +
5049 offsetof(struct dev_info, devi_node_name));
5050
5051 daddr = dtrace_loadptr(daddr +
5052 offsetof(struct dev_info, devi_parent));
5053
5054 /*
5055 * If our parent is NULL (that is, if we're the root
5056 * node), we're going to use the special path
5057 * "devices".
5058 */
5059 if (daddr == 0)
5060 s = "devices";
5061
5062 len = dtrace_strlen(s, size);
5063 if (*flags & CPU_DTRACE_FAULT)
5064 break;
5065
5066 if ((end -= (len + 1)) < start)
5067 break;
5068
5069 for (i = 1; i <= len; i++)
5070 end[i] = dtrace_load8((uintptr_t)s++);
5071 *end = '/';
5072
5073 if (depth++ > dtrace_devdepth_max) {
5074 *flags |= CPU_DTRACE_ILLOP;
5075 break;
5076 }
5077 }
5078
5079 if (end < start)
5080 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5081
5082 if (daddr == 0) {
5083 regs[rd] = (uintptr_t)end;
5084 mstate->dtms_scratch_ptr += size;
5085 }
5086
5087 break;
5088 }
5089
5090 case DIF_SUBR_STRJOIN: {
5091 char *d = (char *)mstate->dtms_scratch_ptr;
5092 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5093 uintptr_t s1 = tupregs[0].dttk_value;
5094 uintptr_t s2 = tupregs[1].dttk_value;
5095 int i = 0, j = 0;
5096 size_t lim1, lim2;
5097 char c;
5098
5099 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5100 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5101 regs[rd] = 0;
5102 break;
5103 }
5104
5105 if (!DTRACE_INSCRATCH(mstate, size)) {
5106 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5107 regs[rd] = 0;
5108 break;
5109 }
5110
5111 for (;;) {
5112 if (i >= size) {
5113 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5114 regs[rd] = 0;
5115 break;
5116 }
5117 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5118 if ((d[i++] = c) == '\0') {
5119 i--;
5120 break;
5121 }
5122 }
5123
5124 for (;;) {
5125 if (i >= size) {
5126 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5127 regs[rd] = 0;
5128 break;
5129 }
5130
5131 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5132 if ((d[i++] = c) == '\0')
5133 break;
5134 }
5135
5136 if (i < size) {
5137 mstate->dtms_scratch_ptr += i;
5138 regs[rd] = (uintptr_t)d;
5139 }
5140
5141 break;
5142 }
5143
5144 case DIF_SUBR_STRTOLL: {
5145 uintptr_t s = tupregs[0].dttk_value;
5146 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5147 size_t lim;
5148 int base = 10;
5149
5150 if (nargs > 1) {
5151 if ((base = tupregs[1].dttk_value) <= 1 ||
5152 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5153 *flags |= CPU_DTRACE_ILLOP;
5154 break;
5155 }
5156 }
5157
5158 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5159 regs[rd] = INT64_MIN;
5160 break;
5161 }
5162
5163 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5164 break;
5165 }
5166
5167 case DIF_SUBR_LLTOSTR: {
5168 int64_t i = (int64_t)tupregs[0].dttk_value;
5169 uint64_t val, digit;
5170 uint64_t size = 65; /* enough room for 2^64 in binary */
5171 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5172 int base = 10;
5173
5174 if (nargs > 1) {
5175 if ((base = tupregs[1].dttk_value) <= 1 ||
5176 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5177 *flags |= CPU_DTRACE_ILLOP;
5178 break;
5179 }
5180 }
5181
5182 val = (base == 10 && i < 0) ? i * -1 : i;
5183
5184 if (!DTRACE_INSCRATCH(mstate, size)) {
5185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5186 regs[rd] = 0;
5187 break;
5188 }
5189
5190 for (*end-- = '\0'; val; val /= base) {
5191 if ((digit = val % base) <= '9' - '0') {
5192 *end-- = '0' + digit;
5193 } else {
5194 *end-- = 'a' + (digit - ('9' - '0') - 1);
5195 }
5196 }
5197
5198 if (i == 0 && base == 16)
5199 *end-- = '0';
5200
5201 if (base == 16)
5202 *end-- = 'x';
5203
5204 if (i == 0 || base == 8 || base == 16)
5205 *end-- = '0';
5206
5207 if (i < 0 && base == 10)
5208 *end-- = '-';
5209
5210 regs[rd] = (uintptr_t)end + 1;
5211 mstate->dtms_scratch_ptr += size;
5212 break;
5213 }
5214
5215 case DIF_SUBR_HTONS:
5216 case DIF_SUBR_NTOHS:
5217 #ifdef _BIG_ENDIAN
5218 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5219 #else
5220 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5221 #endif
5222 break;
5223
5224
5225 case DIF_SUBR_HTONL:
5226 case DIF_SUBR_NTOHL:
5227 #ifdef _BIG_ENDIAN
5228 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5229 #else
5230 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5231 #endif
5232 break;
5233
5234
5235 case DIF_SUBR_HTONLL:
5236 case DIF_SUBR_NTOHLL:
5237 #ifdef _BIG_ENDIAN
5238 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5239 #else
5240 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5241 #endif
5242 break;
5243
5244
5245 case DIF_SUBR_DIRNAME:
5246 case DIF_SUBR_BASENAME: {
5247 char *dest = (char *)mstate->dtms_scratch_ptr;
5248 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5249 uintptr_t src = tupregs[0].dttk_value;
5250 int i, j, len = dtrace_strlen((char *)src, size);
5251 int lastbase = -1, firstbase = -1, lastdir = -1;
5252 int start, end;
5253
5254 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5255 regs[rd] = 0;
5256 break;
5257 }
5258
5259 if (!DTRACE_INSCRATCH(mstate, size)) {
5260 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5261 regs[rd] = 0;
5262 break;
5263 }
5264
5265 /*
5266 * The basename and dirname for a zero-length string is
5267 * defined to be "."
5268 */
5269 if (len == 0) {
5270 len = 1;
5271 src = (uintptr_t)".";
5272 }
5273
5274 /*
5275 * Start from the back of the string, moving back toward the
5276 * front until we see a character that isn't a slash. That
5277 * character is the last character in the basename.
5278 */
5279 for (i = len - 1; i >= 0; i--) {
5280 if (dtrace_load8(src + i) != '/')
5281 break;
5282 }
5283
5284 if (i >= 0)
5285 lastbase = i;
5286
5287 /*
5288 * Starting from the last character in the basename, move
5289 * towards the front until we find a slash. The character
5290 * that we processed immediately before that is the first
5291 * character in the basename.
5292 */
5293 for (; i >= 0; i--) {
5294 if (dtrace_load8(src + i) == '/')
5295 break;
5296 }
5297
5298 if (i >= 0)
5299 firstbase = i + 1;
5300
5301 /*
5302 * Now keep going until we find a non-slash character. That
5303 * character is the last character in the dirname.
5304 */
5305 for (; i >= 0; i--) {
5306 if (dtrace_load8(src + i) != '/')
5307 break;
5308 }
5309
5310 if (i >= 0)
5311 lastdir = i;
5312
5313 ASSERT(!(lastbase == -1 && firstbase != -1));
5314 ASSERT(!(firstbase == -1 && lastdir != -1));
5315
5316 if (lastbase == -1) {
5317 /*
5318 * We didn't find a non-slash character. We know that
5319 * the length is non-zero, so the whole string must be
5320 * slashes. In either the dirname or the basename
5321 * case, we return '/'.
5322 */
5323 ASSERT(firstbase == -1);
5324 firstbase = lastbase = lastdir = 0;
5325 }
5326
5327 if (firstbase == -1) {
5328 /*
5329 * The entire string consists only of a basename
5330 * component. If we're looking for dirname, we need
5331 * to change our string to be just "."; if we're
5332 * looking for a basename, we'll just set the first
5333 * character of the basename to be 0.
5334 */
5335 if (subr == DIF_SUBR_DIRNAME) {
5336 ASSERT(lastdir == -1);
5337 src = (uintptr_t)".";
5338 lastdir = 0;
5339 } else {
5340 firstbase = 0;
5341 }
5342 }
5343
5344 if (subr == DIF_SUBR_DIRNAME) {
5345 if (lastdir == -1) {
5346 /*
5347 * We know that we have a slash in the name --
5348 * or lastdir would be set to 0, above. And
5349 * because lastdir is -1, we know that this
5350 * slash must be the first character. (That
5351 * is, the full string must be of the form
5352 * "/basename".) In this case, the last
5353 * character of the directory name is 0.
5354 */
5355 lastdir = 0;
5356 }
5357
5358 start = 0;
5359 end = lastdir;
5360 } else {
5361 ASSERT(subr == DIF_SUBR_BASENAME);
5362 ASSERT(firstbase != -1 && lastbase != -1);
5363 start = firstbase;
5364 end = lastbase;
5365 }
5366
5367 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5368 dest[j] = dtrace_load8(src + i);
5369
5370 dest[j] = '\0';
5371 regs[rd] = (uintptr_t)dest;
5372 mstate->dtms_scratch_ptr += size;
5373 break;
5374 }
5375
5376 case DIF_SUBR_GETF: {
5377 uintptr_t fd = tupregs[0].dttk_value;
5378 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5379 file_t *fp;
5380
5381 if (!dtrace_priv_proc(state, mstate)) {
5382 regs[rd] = 0;
5383 break;
5384 }
5385
5386 /*
5387 * This is safe because fi_nfiles only increases, and the
5388 * fi_list array is not freed when the array size doubles.
5389 * (See the comment in flist_grow() for details on the
5390 * management of the u_finfo structure.)
5391 */
5392 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5393
5394 mstate->dtms_getf = fp;
5395 regs[rd] = (uintptr_t)fp;
5396 break;
5397 }
5398
5399 case DIF_SUBR_CLEANPATH: {
5400 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5401 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5402 uintptr_t src = tupregs[0].dttk_value;
5403 size_t lim;
5404 int i = 0, j = 0;
5405 zone_t *z;
5406
5407 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5408 regs[rd] = 0;
5409 break;
5410 }
5411
5412 if (!DTRACE_INSCRATCH(mstate, size)) {
5413 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5414 regs[rd] = 0;
5415 break;
5416 }
5417
5418 /*
5419 * Move forward, loading each character.
5420 */
5421 do {
5422 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5423 next:
5424 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5425 break;
5426
5427 if (c != '/') {
5428 dest[j++] = c;
5429 continue;
5430 }
5431
5432 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5433
5434 if (c == '/') {
5435 /*
5436 * We have two slashes -- we can just advance
5437 * to the next character.
5438 */
5439 goto next;
5440 }
5441
5442 if (c != '.') {
5443 /*
5444 * This is not "." and it's not ".." -- we can
5445 * just store the "/" and this character and
5446 * drive on.
5447 */
5448 dest[j++] = '/';
5449 dest[j++] = c;
5450 continue;
5451 }
5452
5453 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5454
5455 if (c == '/') {
5456 /*
5457 * This is a "/./" component. We're not going
5458 * to store anything in the destination buffer;
5459 * we're just going to go to the next component.
5460 */
5461 goto next;
5462 }
5463
5464 if (c != '.') {
5465 /*
5466 * This is not ".." -- we can just store the
5467 * "/." and this character and continue
5468 * processing.
5469 */
5470 dest[j++] = '/';
5471 dest[j++] = '.';
5472 dest[j++] = c;
5473 continue;
5474 }
5475
5476 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5477
5478 if (c != '/' && c != '\0') {
5479 /*
5480 * This is not ".." -- it's "..[mumble]".
5481 * We'll store the "/.." and this character
5482 * and continue processing.
5483 */
5484 dest[j++] = '/';
5485 dest[j++] = '.';
5486 dest[j++] = '.';
5487 dest[j++] = c;
5488 continue;
5489 }
5490
5491 /*
5492 * This is "/../" or "/..\0". We need to back up
5493 * our destination pointer until we find a "/".
5494 */
5495 i--;
5496 while (j != 0 && dest[--j] != '/')
5497 continue;
5498
5499 if (c == '\0')
5500 dest[++j] = '/';
5501 } while (c != '\0');
5502
5503 dest[j] = '\0';
5504
5505 if (mstate->dtms_getf != NULL &&
5506 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5507 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5508 /*
5509 * If we've done a getf() as a part of this ECB and we
5510 * don't have kernel access (and we're not in the global
5511 * zone), check if the path we cleaned up begins with
5512 * the zone's root path, and trim it off if so. Note
5513 * that this is an output cleanliness issue, not a
5514 * security issue: knowing one's zone root path does
5515 * not enable privilege escalation.
5516 */
5517 if (strstr(dest, z->zone_rootpath) == dest)
5518 dest += strlen(z->zone_rootpath) - 1;
5519 }
5520
5521 regs[rd] = (uintptr_t)dest;
5522 mstate->dtms_scratch_ptr += size;
5523 break;
5524 }
5525
5526 case DIF_SUBR_INET_NTOA:
5527 case DIF_SUBR_INET_NTOA6:
5528 case DIF_SUBR_INET_NTOP: {
5529 size_t size;
5530 int af, argi, i;
5531 char *base, *end;
5532
5533 if (subr == DIF_SUBR_INET_NTOP) {
5534 af = (int)tupregs[0].dttk_value;
5535 argi = 1;
5536 } else {
5537 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5538 argi = 0;
5539 }
5540
5541 if (af == AF_INET) {
5542 ipaddr_t ip4;
5543 uint8_t *ptr8, val;
5544
5545 if (!dtrace_canload(tupregs[argi].dttk_value,
5546 sizeof (ipaddr_t), mstate, vstate)) {
5547 regs[rd] = 0;
5548 break;
5549 }
5550
5551 /*
5552 * Safely load the IPv4 address.
5553 */
5554 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5555
5556 /*
5557 * Check an IPv4 string will fit in scratch.
5558 */
5559 size = INET_ADDRSTRLEN;
5560 if (!DTRACE_INSCRATCH(mstate, size)) {
5561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5562 regs[rd] = 0;
5563 break;
5564 }
5565 base = (char *)mstate->dtms_scratch_ptr;
5566 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5567
5568 /*
5569 * Stringify as a dotted decimal quad.
5570 */
5571 *end-- = '\0';
5572 ptr8 = (uint8_t *)&ip4;
5573 for (i = 3; i >= 0; i--) {
5574 val = ptr8[i];
5575
5576 if (val == 0) {
5577 *end-- = '0';
5578 } else {
5579 for (; val; val /= 10) {
5580 *end-- = '0' + (val % 10);
5581 }
5582 }
5583
5584 if (i > 0)
5585 *end-- = '.';
5586 }
5587 ASSERT(end + 1 >= base);
5588
5589 } else if (af == AF_INET6) {
5590 struct in6_addr ip6;
5591 int firstzero, tryzero, numzero, v6end;
5592 uint16_t val;
5593 const char digits[] = "0123456789abcdef";
5594
5595 /*
5596 * Stringify using RFC 1884 convention 2 - 16 bit
5597 * hexadecimal values with a zero-run compression.
5598 * Lower case hexadecimal digits are used.
5599 * eg, fe80::214:4fff:fe0b:76c8.
5600 * The IPv4 embedded form is returned for inet_ntop,
5601 * just the IPv4 string is returned for inet_ntoa6.
5602 */
5603
5604 if (!dtrace_canload(tupregs[argi].dttk_value,
5605 sizeof (struct in6_addr), mstate, vstate)) {
5606 regs[rd] = 0;
5607 break;
5608 }
5609
5610 /*
5611 * Safely load the IPv6 address.
5612 */
5613 dtrace_bcopy(
5614 (void *)(uintptr_t)tupregs[argi].dttk_value,
5615 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5616
5617 /*
5618 * Check an IPv6 string will fit in scratch.
5619 */
5620 size = INET6_ADDRSTRLEN;
5621 if (!DTRACE_INSCRATCH(mstate, size)) {
5622 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5623 regs[rd] = 0;
5624 break;
5625 }
5626 base = (char *)mstate->dtms_scratch_ptr;
5627 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5628 *end-- = '\0';
5629
5630 /*
5631 * Find the longest run of 16 bit zero values
5632 * for the single allowed zero compression - "::".
5633 */
5634 firstzero = -1;
5635 tryzero = -1;
5636 numzero = 1;
5637 for (i = 0; i < sizeof (struct in6_addr); i++) {
5638 if (ip6._S6_un._S6_u8[i] == 0 &&
5639 tryzero == -1 && i % 2 == 0) {
5640 tryzero = i;
5641 continue;
5642 }
5643
5644 if (tryzero != -1 &&
5645 (ip6._S6_un._S6_u8[i] != 0 ||
5646 i == sizeof (struct in6_addr) - 1)) {
5647
5648 if (i - tryzero <= numzero) {
5649 tryzero = -1;
5650 continue;
5651 }
5652
5653 firstzero = tryzero;
5654 numzero = i - i % 2 - tryzero;
5655 tryzero = -1;
5656
5657 if (ip6._S6_un._S6_u8[i] == 0 &&
5658 i == sizeof (struct in6_addr) - 1)
5659 numzero += 2;
5660 }
5661 }
5662 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5663
5664 /*
5665 * Check for an IPv4 embedded address.
5666 */
5667 v6end = sizeof (struct in6_addr) - 2;
5668 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5669 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5670 for (i = sizeof (struct in6_addr) - 1;
5671 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5672 ASSERT(end >= base);
5673
5674 val = ip6._S6_un._S6_u8[i];
5675
5676 if (val == 0) {
5677 *end-- = '0';
5678 } else {
5679 for (; val; val /= 10) {
5680 *end-- = '0' + val % 10;
5681 }
5682 }
5683
5684 if (i > DTRACE_V4MAPPED_OFFSET)
5685 *end-- = '.';
5686 }
5687
5688 if (subr == DIF_SUBR_INET_NTOA6)
5689 goto inetout;
5690
5691 /*
5692 * Set v6end to skip the IPv4 address that
5693 * we have already stringified.
5694 */
5695 v6end = 10;
5696 }
5697
5698 /*
5699 * Build the IPv6 string by working through the
5700 * address in reverse.
5701 */
5702 for (i = v6end; i >= 0; i -= 2) {
5703 ASSERT(end >= base);
5704
5705 if (i == firstzero + numzero - 2) {
5706 *end-- = ':';
5707 *end-- = ':';
5708 i -= numzero - 2;
5709 continue;
5710 }
5711
5712 if (i < 14 && i != firstzero - 2)
5713 *end-- = ':';
5714
5715 val = (ip6._S6_un._S6_u8[i] << 8) +
5716 ip6._S6_un._S6_u8[i + 1];
5717
5718 if (val == 0) {
5719 *end-- = '0';
5720 } else {
5721 for (; val; val /= 16) {
5722 *end-- = digits[val % 16];
5723 }
5724 }
5725 }
5726 ASSERT(end + 1 >= base);
5727
5728 } else {
5729 /*
5730 * The user didn't use AH_INET or AH_INET6.
5731 */
5732 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5733 regs[rd] = 0;
5734 break;
5735 }
5736
5737 inetout: regs[rd] = (uintptr_t)end + 1;
5738 mstate->dtms_scratch_ptr += size;
5739 break;
5740 }
5741
5742 }
5743 }
5744
5745 /*
5746 * Emulate the execution of DTrace IR instructions specified by the given
5747 * DIF object. This function is deliberately void of assertions as all of
5748 * the necessary checks are handled by a call to dtrace_difo_validate().
5749 */
5750 static uint64_t
dtrace_dif_emulate(dtrace_difo_t * difo,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate,dtrace_state_t * state)5751 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5752 dtrace_vstate_t *vstate, dtrace_state_t *state)
5753 {
5754 const dif_instr_t *text = difo->dtdo_buf;
5755 const uint_t textlen = difo->dtdo_len;
5756 const char *strtab = difo->dtdo_strtab;
5757 const uint64_t *inttab = difo->dtdo_inttab;
5758
5759 uint64_t rval = 0;
5760 dtrace_statvar_t *svar;
5761 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5762 dtrace_difv_t *v;
5763 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5764 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5765
5766 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5767 uint64_t regs[DIF_DIR_NREGS];
5768 uint64_t *tmp;
5769
5770 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5771 int64_t cc_r;
5772 uint_t pc = 0, id, opc;
5773 uint8_t ttop = 0;
5774 dif_instr_t instr;
5775 uint_t r1, r2, rd;
5776
5777 /*
5778 * We stash the current DIF object into the machine state: we need it
5779 * for subsequent access checking.
5780 */
5781 mstate->dtms_difo = difo;
5782
5783 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
5784
5785 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5786 opc = pc;
5787
5788 instr = text[pc++];
5789 r1 = DIF_INSTR_R1(instr);
5790 r2 = DIF_INSTR_R2(instr);
5791 rd = DIF_INSTR_RD(instr);
5792
5793 switch (DIF_INSTR_OP(instr)) {
5794 case DIF_OP_OR:
5795 regs[rd] = regs[r1] | regs[r2];
5796 break;
5797 case DIF_OP_XOR:
5798 regs[rd] = regs[r1] ^ regs[r2];
5799 break;
5800 case DIF_OP_AND:
5801 regs[rd] = regs[r1] & regs[r2];
5802 break;
5803 case DIF_OP_SLL:
5804 regs[rd] = regs[r1] << regs[r2];
5805 break;
5806 case DIF_OP_SRL:
5807 regs[rd] = regs[r1] >> regs[r2];
5808 break;
5809 case DIF_OP_SUB:
5810 regs[rd] = regs[r1] - regs[r2];
5811 break;
5812 case DIF_OP_ADD:
5813 regs[rd] = regs[r1] + regs[r2];
5814 break;
5815 case DIF_OP_MUL:
5816 regs[rd] = regs[r1] * regs[r2];
5817 break;
5818 case DIF_OP_SDIV:
5819 if (regs[r2] == 0) {
5820 regs[rd] = 0;
5821 *flags |= CPU_DTRACE_DIVZERO;
5822 } else {
5823 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5824 regs[rd] = (int64_t)regs[r1] /
5825 (int64_t)regs[r2];
5826 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5827 }
5828 break;
5829
5830 case DIF_OP_UDIV:
5831 if (regs[r2] == 0) {
5832 regs[rd] = 0;
5833 *flags |= CPU_DTRACE_DIVZERO;
5834 } else {
5835 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5836 regs[rd] = regs[r1] / regs[r2];
5837 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5838 }
5839 break;
5840
5841 case DIF_OP_SREM:
5842 if (regs[r2] == 0) {
5843 regs[rd] = 0;
5844 *flags |= CPU_DTRACE_DIVZERO;
5845 } else {
5846 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5847 regs[rd] = (int64_t)regs[r1] %
5848 (int64_t)regs[r2];
5849 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5850 }
5851 break;
5852
5853 case DIF_OP_UREM:
5854 if (regs[r2] == 0) {
5855 regs[rd] = 0;
5856 *flags |= CPU_DTRACE_DIVZERO;
5857 } else {
5858 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5859 regs[rd] = regs[r1] % regs[r2];
5860 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5861 }
5862 break;
5863
5864 case DIF_OP_NOT:
5865 regs[rd] = ~regs[r1];
5866 break;
5867 case DIF_OP_MOV:
5868 regs[rd] = regs[r1];
5869 break;
5870 case DIF_OP_CMP:
5871 cc_r = regs[r1] - regs[r2];
5872 cc_n = cc_r < 0;
5873 cc_z = cc_r == 0;
5874 cc_v = 0;
5875 cc_c = regs[r1] < regs[r2];
5876 break;
5877 case DIF_OP_TST:
5878 cc_n = cc_v = cc_c = 0;
5879 cc_z = regs[r1] == 0;
5880 break;
5881 case DIF_OP_BA:
5882 pc = DIF_INSTR_LABEL(instr);
5883 break;
5884 case DIF_OP_BE:
5885 if (cc_z)
5886 pc = DIF_INSTR_LABEL(instr);
5887 break;
5888 case DIF_OP_BNE:
5889 if (cc_z == 0)
5890 pc = DIF_INSTR_LABEL(instr);
5891 break;
5892 case DIF_OP_BG:
5893 if ((cc_z | (cc_n ^ cc_v)) == 0)
5894 pc = DIF_INSTR_LABEL(instr);
5895 break;
5896 case DIF_OP_BGU:
5897 if ((cc_c | cc_z) == 0)
5898 pc = DIF_INSTR_LABEL(instr);
5899 break;
5900 case DIF_OP_BGE:
5901 if ((cc_n ^ cc_v) == 0)
5902 pc = DIF_INSTR_LABEL(instr);
5903 break;
5904 case DIF_OP_BGEU:
5905 if (cc_c == 0)
5906 pc = DIF_INSTR_LABEL(instr);
5907 break;
5908 case DIF_OP_BL:
5909 if (cc_n ^ cc_v)
5910 pc = DIF_INSTR_LABEL(instr);
5911 break;
5912 case DIF_OP_BLU:
5913 if (cc_c)
5914 pc = DIF_INSTR_LABEL(instr);
5915 break;
5916 case DIF_OP_BLE:
5917 if (cc_z | (cc_n ^ cc_v))
5918 pc = DIF_INSTR_LABEL(instr);
5919 break;
5920 case DIF_OP_BLEU:
5921 if (cc_c | cc_z)
5922 pc = DIF_INSTR_LABEL(instr);
5923 break;
5924 case DIF_OP_RLDSB:
5925 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5926 break;
5927 /*FALLTHROUGH*/
5928 case DIF_OP_LDSB:
5929 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5930 break;
5931 case DIF_OP_RLDSH:
5932 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5933 break;
5934 /*FALLTHROUGH*/
5935 case DIF_OP_LDSH:
5936 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5937 break;
5938 case DIF_OP_RLDSW:
5939 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5940 break;
5941 /*FALLTHROUGH*/
5942 case DIF_OP_LDSW:
5943 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5944 break;
5945 case DIF_OP_RLDUB:
5946 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5947 break;
5948 /*FALLTHROUGH*/
5949 case DIF_OP_LDUB:
5950 regs[rd] = dtrace_load8(regs[r1]);
5951 break;
5952 case DIF_OP_RLDUH:
5953 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5954 break;
5955 /*FALLTHROUGH*/
5956 case DIF_OP_LDUH:
5957 regs[rd] = dtrace_load16(regs[r1]);
5958 break;
5959 case DIF_OP_RLDUW:
5960 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5961 break;
5962 /*FALLTHROUGH*/
5963 case DIF_OP_LDUW:
5964 regs[rd] = dtrace_load32(regs[r1]);
5965 break;
5966 case DIF_OP_RLDX:
5967 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5968 break;
5969 /*FALLTHROUGH*/
5970 case DIF_OP_LDX:
5971 regs[rd] = dtrace_load64(regs[r1]);
5972 break;
5973 case DIF_OP_ULDSB:
5974 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5975 regs[rd] = (int8_t)
5976 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5977 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5978 break;
5979 case DIF_OP_ULDSH:
5980 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5981 regs[rd] = (int16_t)
5982 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5983 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5984 break;
5985 case DIF_OP_ULDSW:
5986 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5987 regs[rd] = (int32_t)
5988 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5989 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5990 break;
5991 case DIF_OP_ULDUB:
5992 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5993 regs[rd] =
5994 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5995 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5996 break;
5997 case DIF_OP_ULDUH:
5998 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5999 regs[rd] =
6000 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6001 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6002 break;
6003 case DIF_OP_ULDUW:
6004 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6005 regs[rd] =
6006 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6007 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6008 break;
6009 case DIF_OP_ULDX:
6010 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6011 regs[rd] =
6012 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6013 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6014 break;
6015 case DIF_OP_RET:
6016 rval = regs[rd];
6017 pc = textlen;
6018 break;
6019 case DIF_OP_NOP:
6020 break;
6021 case DIF_OP_SETX:
6022 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6023 break;
6024 case DIF_OP_SETS:
6025 regs[rd] = (uint64_t)(uintptr_t)
6026 (strtab + DIF_INSTR_STRING(instr));
6027 break;
6028 case DIF_OP_SCMP: {
6029 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6030 uintptr_t s1 = regs[r1];
6031 uintptr_t s2 = regs[r2];
6032 size_t lim1 = SIZE_MAX, lim2 = SIZE_MAX;
6033
6034 if (s1 != 0 &&
6035 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6036 break;
6037 if (s2 != 0 &&
6038 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6039 break;
6040
6041 /*
6042 * If s1 or s2 is NULL, we will take the limit that
6043 * corresponds with the non-NULL string. If they are
6044 * both NULL, we will pass SIZE_MAX as the limit --
6045 * but in this case dtrace_strncmp() will return
6046 * success without examining the limit.
6047 */
6048 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6049 MIN(lim1, lim2));
6050
6051 cc_n = cc_r < 0;
6052 cc_z = cc_r == 0;
6053 cc_v = cc_c = 0;
6054 break;
6055 }
6056 case DIF_OP_LDGA:
6057 regs[rd] = dtrace_dif_variable(mstate, state,
6058 r1, regs[r2]);
6059 break;
6060 case DIF_OP_LDGS:
6061 id = DIF_INSTR_VAR(instr);
6062
6063 if (id >= DIF_VAR_OTHER_UBASE) {
6064 uintptr_t a;
6065
6066 id -= DIF_VAR_OTHER_UBASE;
6067 svar = vstate->dtvs_globals[id];
6068 ASSERT(svar != NULL);
6069 v = &svar->dtsv_var;
6070
6071 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6072 regs[rd] = svar->dtsv_data;
6073 break;
6074 }
6075
6076 a = (uintptr_t)svar->dtsv_data;
6077
6078 if (*(uint8_t *)a == UINT8_MAX) {
6079 /*
6080 * If the 0th byte is set to UINT8_MAX
6081 * then this is to be treated as a
6082 * reference to a NULL variable.
6083 */
6084 regs[rd] = 0;
6085 } else {
6086 regs[rd] = a + sizeof (uint64_t);
6087 }
6088
6089 break;
6090 }
6091
6092 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6093 break;
6094
6095 case DIF_OP_STGA:
6096 dtrace_dif_variable_write(mstate, state, r1, regs[r2],
6097 regs[rd]);
6098 break;
6099
6100 case DIF_OP_STGS:
6101 id = DIF_INSTR_VAR(instr);
6102
6103 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6104 id -= DIF_VAR_OTHER_UBASE;
6105
6106 VERIFY(id < vstate->dtvs_nglobals);
6107 svar = vstate->dtvs_globals[id];
6108 ASSERT(svar != NULL);
6109 v = &svar->dtsv_var;
6110
6111 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6112 uintptr_t a = (uintptr_t)svar->dtsv_data;
6113 size_t lim;
6114
6115 ASSERT(a != (uintptr_t)NULL);
6116 ASSERT(svar->dtsv_size != 0);
6117
6118 if (regs[rd] == 0) {
6119 *(uint8_t *)a = UINT8_MAX;
6120 break;
6121 } else {
6122 *(uint8_t *)a = 0;
6123 a += sizeof (uint64_t);
6124 }
6125 if (!dtrace_vcanload(
6126 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6127 &lim, mstate, vstate))
6128 break;
6129
6130 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6131 (void *)a, &v->dtdv_type, lim);
6132 break;
6133 }
6134
6135 svar->dtsv_data = regs[rd];
6136 break;
6137
6138 case DIF_OP_LDTA:
6139 /*
6140 * There are no DTrace built-in thread-local arrays at
6141 * present. This opcode is saved for future work.
6142 */
6143 *flags |= CPU_DTRACE_ILLOP;
6144 regs[rd] = 0;
6145 break;
6146
6147 case DIF_OP_LDLS:
6148 id = DIF_INSTR_VAR(instr);
6149
6150 if (id < DIF_VAR_OTHER_UBASE) {
6151 /*
6152 * For now, this has no meaning.
6153 */
6154 regs[rd] = 0;
6155 break;
6156 }
6157
6158 id -= DIF_VAR_OTHER_UBASE;
6159
6160 ASSERT(id < vstate->dtvs_nlocals);
6161 ASSERT(vstate->dtvs_locals != NULL);
6162
6163 svar = vstate->dtvs_locals[id];
6164 ASSERT(svar != NULL);
6165 v = &svar->dtsv_var;
6166
6167 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6168 uintptr_t a = (uintptr_t)svar->dtsv_data;
6169 size_t sz = v->dtdv_type.dtdt_size;
6170
6171 sz += sizeof (uint64_t);
6172 ASSERT(svar->dtsv_size == NCPU * sz);
6173 a += CPU->cpu_id * sz;
6174
6175 if (*(uint8_t *)a == UINT8_MAX) {
6176 /*
6177 * If the 0th byte is set to UINT8_MAX
6178 * then this is to be treated as a
6179 * reference to a NULL variable.
6180 */
6181 regs[rd] = 0;
6182 } else {
6183 regs[rd] = a + sizeof (uint64_t);
6184 }
6185
6186 break;
6187 }
6188
6189 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6190 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6191 regs[rd] = tmp[CPU->cpu_id];
6192 break;
6193
6194 case DIF_OP_STLS:
6195 id = DIF_INSTR_VAR(instr);
6196
6197 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6198 id -= DIF_VAR_OTHER_UBASE;
6199 VERIFY(id < vstate->dtvs_nlocals);
6200
6201 ASSERT(vstate->dtvs_locals != NULL);
6202 svar = vstate->dtvs_locals[id];
6203 ASSERT(svar != NULL);
6204 v = &svar->dtsv_var;
6205
6206 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6207 uintptr_t a = (uintptr_t)svar->dtsv_data;
6208 size_t sz = v->dtdv_type.dtdt_size;
6209 size_t lim;
6210
6211 sz += sizeof (uint64_t);
6212 ASSERT(svar->dtsv_size == NCPU * sz);
6213 a += CPU->cpu_id * sz;
6214
6215 if (regs[rd] == 0) {
6216 *(uint8_t *)a = UINT8_MAX;
6217 break;
6218 } else {
6219 *(uint8_t *)a = 0;
6220 a += sizeof (uint64_t);
6221 }
6222
6223 if (!dtrace_vcanload(
6224 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6225 &lim, mstate, vstate))
6226 break;
6227
6228 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6229 (void *)a, &v->dtdv_type, lim);
6230 break;
6231 }
6232
6233 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6234 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6235 tmp[CPU->cpu_id] = regs[rd];
6236 break;
6237
6238 case DIF_OP_LDTS: {
6239 dtrace_dynvar_t *dvar;
6240 dtrace_key_t *key;
6241
6242 id = DIF_INSTR_VAR(instr);
6243 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6244 id -= DIF_VAR_OTHER_UBASE;
6245 v = &vstate->dtvs_tlocals[id];
6246
6247 key = &tupregs[DIF_DTR_NREGS];
6248 key[0].dttk_value = (uint64_t)id;
6249 key[0].dttk_size = 0;
6250 DTRACE_TLS_THRKEY(key[1].dttk_value);
6251 key[1].dttk_size = 0;
6252
6253 dvar = dtrace_dynvar(dstate, 2, key,
6254 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6255 mstate, vstate);
6256
6257 if (dvar == NULL) {
6258 regs[rd] = 0;
6259 break;
6260 }
6261
6262 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6263 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6264 } else {
6265 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6266 }
6267
6268 break;
6269 }
6270
6271 case DIF_OP_STTS: {
6272 dtrace_dynvar_t *dvar;
6273 dtrace_key_t *key;
6274
6275 id = DIF_INSTR_VAR(instr);
6276 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6277 id -= DIF_VAR_OTHER_UBASE;
6278 VERIFY(id < vstate->dtvs_ntlocals);
6279
6280 key = &tupregs[DIF_DTR_NREGS];
6281 key[0].dttk_value = (uint64_t)id;
6282 key[0].dttk_size = 0;
6283 DTRACE_TLS_THRKEY(key[1].dttk_value);
6284 key[1].dttk_size = 0;
6285 v = &vstate->dtvs_tlocals[id];
6286
6287 dvar = dtrace_dynvar(dstate, 2, key,
6288 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6289 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6290 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6291 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6292
6293 /*
6294 * Given that we're storing to thread-local data,
6295 * we need to flush our predicate cache.
6296 */
6297 curthread->t_predcache = DTRACE_CACHEIDNONE;
6298
6299 if (dvar == NULL)
6300 break;
6301
6302 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6303 size_t lim;
6304
6305 if (!dtrace_vcanload(
6306 (void *)(uintptr_t)regs[rd],
6307 &v->dtdv_type, &lim, mstate, vstate))
6308 break;
6309
6310 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6311 dvar->dtdv_data, &v->dtdv_type, lim);
6312 } else {
6313 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6314 }
6315
6316 break;
6317 }
6318
6319 case DIF_OP_SRA:
6320 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6321 break;
6322
6323 case DIF_OP_CALL:
6324 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6325 regs, tupregs, ttop, mstate, state);
6326 break;
6327
6328 case DIF_OP_PUSHTR:
6329 if (ttop == DIF_DTR_NREGS) {
6330 *flags |= CPU_DTRACE_TUPOFLOW;
6331 break;
6332 }
6333
6334 if (r1 == DIF_TYPE_STRING) {
6335 /*
6336 * If this is a string type and the size is 0,
6337 * we'll use the system-wide default string
6338 * size. Note that we are _not_ looking at
6339 * the value of the DTRACEOPT_STRSIZE option;
6340 * had this been set, we would expect to have
6341 * a non-zero size value in the "pushtr".
6342 */
6343 tupregs[ttop].dttk_size =
6344 dtrace_strlen((char *)(uintptr_t)regs[rd],
6345 regs[r2] ? regs[r2] :
6346 dtrace_strsize_default) + 1;
6347 } else {
6348 if (regs[r2] > LONG_MAX) {
6349 *flags |= CPU_DTRACE_ILLOP;
6350 break;
6351 }
6352
6353 tupregs[ttop].dttk_size = regs[r2];
6354 }
6355
6356 tupregs[ttop++].dttk_value = regs[rd];
6357 break;
6358
6359 case DIF_OP_PUSHTV:
6360 if (ttop == DIF_DTR_NREGS) {
6361 *flags |= CPU_DTRACE_TUPOFLOW;
6362 break;
6363 }
6364
6365 tupregs[ttop].dttk_value = regs[rd];
6366 tupregs[ttop++].dttk_size = 0;
6367 break;
6368
6369 case DIF_OP_POPTS:
6370 if (ttop != 0)
6371 ttop--;
6372 break;
6373
6374 case DIF_OP_FLUSHTS:
6375 ttop = 0;
6376 break;
6377
6378 case DIF_OP_LDGAA:
6379 case DIF_OP_LDTAA: {
6380 dtrace_dynvar_t *dvar;
6381 dtrace_key_t *key = tupregs;
6382 uint_t nkeys = ttop;
6383
6384 id = DIF_INSTR_VAR(instr);
6385 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6386 id -= DIF_VAR_OTHER_UBASE;
6387
6388 key[nkeys].dttk_value = (uint64_t)id;
6389 key[nkeys++].dttk_size = 0;
6390
6391 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6392 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6393 key[nkeys++].dttk_size = 0;
6394 VERIFY(id < vstate->dtvs_ntlocals);
6395 v = &vstate->dtvs_tlocals[id];
6396 } else {
6397 VERIFY(id < vstate->dtvs_nglobals);
6398 v = &vstate->dtvs_globals[id]->dtsv_var;
6399 }
6400
6401 dvar = dtrace_dynvar(dstate, nkeys, key,
6402 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6403 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6404 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6405
6406 if (dvar == NULL) {
6407 regs[rd] = 0;
6408 break;
6409 }
6410
6411 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6412 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6413 } else {
6414 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6415 }
6416
6417 break;
6418 }
6419
6420 case DIF_OP_STGAA:
6421 case DIF_OP_STTAA: {
6422 dtrace_dynvar_t *dvar;
6423 dtrace_key_t *key = tupregs;
6424 uint_t nkeys = ttop;
6425
6426 id = DIF_INSTR_VAR(instr);
6427 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6428 id -= DIF_VAR_OTHER_UBASE;
6429
6430 key[nkeys].dttk_value = (uint64_t)id;
6431 key[nkeys++].dttk_size = 0;
6432
6433 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6434 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6435 key[nkeys++].dttk_size = 0;
6436 VERIFY(id < vstate->dtvs_ntlocals);
6437 v = &vstate->dtvs_tlocals[id];
6438 } else {
6439 VERIFY(id < vstate->dtvs_nglobals);
6440 v = &vstate->dtvs_globals[id]->dtsv_var;
6441 }
6442
6443 dvar = dtrace_dynvar(dstate, nkeys, key,
6444 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6445 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6446 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6447 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6448
6449 if (dvar == NULL)
6450 break;
6451
6452 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6453 size_t lim;
6454
6455 if (!dtrace_vcanload(
6456 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6457 &lim, mstate, vstate))
6458 break;
6459
6460 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6461 dvar->dtdv_data, &v->dtdv_type, lim);
6462 } else {
6463 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6464 }
6465
6466 break;
6467 }
6468
6469 case DIF_OP_ALLOCS: {
6470 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6471 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6472
6473 /*
6474 * Rounding up the user allocation size could have
6475 * overflowed large, bogus allocations (like -1ULL) to
6476 * 0.
6477 */
6478 if (size < regs[r1] ||
6479 !DTRACE_INSCRATCH(mstate, size)) {
6480 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6481 regs[rd] = 0;
6482 break;
6483 }
6484
6485 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6486 mstate->dtms_scratch_ptr += size;
6487 regs[rd] = ptr;
6488 break;
6489 }
6490
6491 case DIF_OP_COPYS:
6492 if (!dtrace_canstore(regs[rd], regs[r2],
6493 mstate, vstate)) {
6494 *flags |= CPU_DTRACE_BADADDR;
6495 *illval = regs[rd];
6496 break;
6497 }
6498
6499 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6500 break;
6501
6502 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6503 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6504 break;
6505
6506 case DIF_OP_STB:
6507 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6508 *flags |= CPU_DTRACE_BADADDR;
6509 *illval = regs[rd];
6510 break;
6511 }
6512 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6513 break;
6514
6515 case DIF_OP_STH:
6516 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6517 *flags |= CPU_DTRACE_BADADDR;
6518 *illval = regs[rd];
6519 break;
6520 }
6521 if (regs[rd] & 1) {
6522 *flags |= CPU_DTRACE_BADALIGN;
6523 *illval = regs[rd];
6524 break;
6525 }
6526 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6527 break;
6528
6529 case DIF_OP_STW:
6530 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6531 *flags |= CPU_DTRACE_BADADDR;
6532 *illval = regs[rd];
6533 break;
6534 }
6535 if (regs[rd] & 3) {
6536 *flags |= CPU_DTRACE_BADALIGN;
6537 *illval = regs[rd];
6538 break;
6539 }
6540 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6541 break;
6542
6543 case DIF_OP_STX:
6544 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6545 *flags |= CPU_DTRACE_BADADDR;
6546 *illval = regs[rd];
6547 break;
6548 }
6549 if (regs[rd] & 7) {
6550 *flags |= CPU_DTRACE_BADALIGN;
6551 *illval = regs[rd];
6552 break;
6553 }
6554 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6555 break;
6556 }
6557 }
6558
6559 if (!(*flags & CPU_DTRACE_FAULT))
6560 return (rval);
6561
6562 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6563 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6564
6565 return (0);
6566 }
6567
6568 static void
dtrace_action_breakpoint(dtrace_ecb_t * ecb)6569 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6570 {
6571 dtrace_probe_t *probe = ecb->dte_probe;
6572 dtrace_provider_t *prov = probe->dtpr_provider;
6573 char c[DTRACE_FULLNAMELEN + 80], *str;
6574 char *msg = "dtrace: breakpoint action at probe ";
6575 char *ecbmsg = " (ecb ";
6576 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6577 uintptr_t val = (uintptr_t)ecb;
6578 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6579
6580 if (dtrace_destructive_disallow)
6581 return;
6582
6583 /*
6584 * It's impossible to be taking action on the NULL probe.
6585 */
6586 ASSERT(probe != NULL);
6587
6588 /*
6589 * This is a poor man's (destitute man's?) sprintf(): we want to
6590 * print the provider name, module name, function name and name of
6591 * the probe, along with the hex address of the ECB with the breakpoint
6592 * action -- all of which we must place in the character buffer by
6593 * hand.
6594 */
6595 while (*msg != '\0')
6596 c[i++] = *msg++;
6597
6598 for (str = prov->dtpv_name; *str != '\0'; str++)
6599 c[i++] = *str;
6600 c[i++] = ':';
6601
6602 for (str = probe->dtpr_mod; *str != '\0'; str++)
6603 c[i++] = *str;
6604 c[i++] = ':';
6605
6606 for (str = probe->dtpr_func; *str != '\0'; str++)
6607 c[i++] = *str;
6608 c[i++] = ':';
6609
6610 for (str = probe->dtpr_name; *str != '\0'; str++)
6611 c[i++] = *str;
6612
6613 while (*ecbmsg != '\0')
6614 c[i++] = *ecbmsg++;
6615
6616 while (shift >= 0) {
6617 mask = (uintptr_t)0xf << shift;
6618
6619 if (val >= ((uintptr_t)1 << shift))
6620 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6621 shift -= 4;
6622 }
6623
6624 c[i++] = ')';
6625 c[i] = '\0';
6626
6627 debug_enter(c);
6628 }
6629
6630 static void
dtrace_action_panic(dtrace_ecb_t * ecb)6631 dtrace_action_panic(dtrace_ecb_t *ecb)
6632 {
6633 dtrace_probe_t *probe = ecb->dte_probe;
6634
6635 /*
6636 * It's impossible to be taking action on the NULL probe.
6637 */
6638 ASSERT(probe != NULL);
6639
6640 if (dtrace_destructive_disallow)
6641 return;
6642
6643 if (dtrace_panicked != NULL)
6644 return;
6645
6646 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6647 return;
6648
6649 /*
6650 * We won the right to panic. (We want to be sure that only one
6651 * thread calls panic() from dtrace_probe(), and that panic() is
6652 * called exactly once.)
6653 */
6654 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6655 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6656 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6657 }
6658
6659 static void
dtrace_action_raise(uint64_t sig)6660 dtrace_action_raise(uint64_t sig)
6661 {
6662 if (dtrace_destructive_disallow)
6663 return;
6664
6665 if (sig >= NSIG) {
6666 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6667 return;
6668 }
6669
6670 /*
6671 * raise() has a queue depth of 1 -- we ignore all subsequent
6672 * invocations of the raise() action.
6673 */
6674 if (curthread->t_dtrace_sig == 0)
6675 curthread->t_dtrace_sig = (uint8_t)sig;
6676
6677 curthread->t_sig_check = 1;
6678 aston(curthread);
6679 }
6680
6681 static void
dtrace_action_stop(void)6682 dtrace_action_stop(void)
6683 {
6684 if (dtrace_destructive_disallow)
6685 return;
6686
6687 if (!curthread->t_dtrace_stop) {
6688 curthread->t_dtrace_stop = 1;
6689 curthread->t_sig_check = 1;
6690 aston(curthread);
6691 }
6692 }
6693
6694 static void
dtrace_action_chill(dtrace_mstate_t * mstate,hrtime_t val)6695 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6696 {
6697 hrtime_t now;
6698 volatile uint16_t *flags;
6699 cpu_t *cpu = CPU;
6700
6701 if (dtrace_destructive_disallow)
6702 return;
6703
6704 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6705
6706 now = dtrace_gethrtime();
6707
6708 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6709 /*
6710 * We need to advance the mark to the current time.
6711 */
6712 cpu->cpu_dtrace_chillmark = now;
6713 cpu->cpu_dtrace_chilled = 0;
6714 }
6715
6716 /*
6717 * Now check to see if the requested chill time would take us over
6718 * the maximum amount of time allowed in the chill interval. (Or
6719 * worse, if the calculation itself induces overflow.)
6720 */
6721 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6722 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6723 *flags |= CPU_DTRACE_ILLOP;
6724 return;
6725 }
6726
6727 while (dtrace_gethrtime() - now < val)
6728 continue;
6729
6730 /*
6731 * Normally, we assure that the value of the variable "timestamp" does
6732 * not change within an ECB. The presence of chill() represents an
6733 * exception to this rule, however.
6734 */
6735 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6736 cpu->cpu_dtrace_chilled += val;
6737 }
6738
6739 static void
dtrace_action_ustack(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t * buf,uint64_t arg)6740 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6741 uint64_t *buf, uint64_t arg)
6742 {
6743 int nframes = DTRACE_USTACK_NFRAMES(arg);
6744 int strsize = DTRACE_USTACK_STRSIZE(arg);
6745 uint64_t *pcs = &buf[1], *fps;
6746 char *str = (char *)&pcs[nframes];
6747 int size, offs = 0, i, j;
6748 size_t rem;
6749 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6750 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6751 char *sym;
6752
6753 /*
6754 * Should be taking a faster path if string space has not been
6755 * allocated.
6756 */
6757 ASSERT(strsize != 0);
6758
6759 /*
6760 * We will first allocate some temporary space for the frame pointers.
6761 */
6762 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6763 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6764 (nframes * sizeof (uint64_t));
6765
6766 if (!DTRACE_INSCRATCH(mstate, size)) {
6767 /*
6768 * Not enough room for our frame pointers -- need to indicate
6769 * that we ran out of scratch space.
6770 */
6771 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6772 return;
6773 }
6774
6775 mstate->dtms_scratch_ptr += size;
6776 saved = mstate->dtms_scratch_ptr;
6777
6778 /*
6779 * Now get a stack with both program counters and frame pointers.
6780 */
6781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6782 dtrace_getufpstack(buf, fps, nframes + 1);
6783 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6784
6785 /*
6786 * If that faulted, we're cooked.
6787 */
6788 if (*flags & CPU_DTRACE_FAULT)
6789 goto out;
6790
6791 /*
6792 * Now we want to walk up the stack, calling the USTACK helper. For
6793 * each iteration, we restore the scratch pointer.
6794 */
6795 for (i = 0; i < nframes; i++) {
6796 mstate->dtms_scratch_ptr = saved;
6797
6798 if (offs >= strsize)
6799 break;
6800
6801 sym = (char *)(uintptr_t)dtrace_helper(
6802 DTRACE_HELPER_ACTION_USTACK,
6803 mstate, state, pcs[i], fps[i]);
6804
6805 /*
6806 * If we faulted while running the helper, we're going to
6807 * clear the fault and null out the corresponding string.
6808 */
6809 if (*flags & CPU_DTRACE_FAULT) {
6810 *flags &= ~CPU_DTRACE_FAULT;
6811 str[offs++] = '\0';
6812 continue;
6813 }
6814
6815 if (sym == NULL) {
6816 str[offs++] = '\0';
6817 continue;
6818 }
6819
6820 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
6821 &(state->dts_vstate))) {
6822 str[offs++] = '\0';
6823 continue;
6824 }
6825
6826 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6827
6828 /*
6829 * Now copy in the string that the helper returned to us.
6830 */
6831 for (j = 0; offs + j < strsize && j < rem; j++) {
6832 if ((str[offs + j] = sym[j]) == '\0')
6833 break;
6834 }
6835
6836 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6837
6838 offs += j + 1;
6839 }
6840
6841 if (offs >= strsize) {
6842 /*
6843 * If we didn't have room for all of the strings, we don't
6844 * abort processing -- this needn't be a fatal error -- but we
6845 * still want to increment a counter (dts_stkstroverflows) to
6846 * allow this condition to be warned about. (If this is from
6847 * a jstack() action, it is easily tuned via jstackstrsize.)
6848 */
6849 dtrace_error(&state->dts_stkstroverflows);
6850 }
6851
6852 while (offs < strsize)
6853 str[offs++] = '\0';
6854
6855 out:
6856 mstate->dtms_scratch_ptr = old;
6857 }
6858
6859 static void
dtrace_store_by_ref(dtrace_difo_t * dp,caddr_t tomax,size_t size,size_t * valoffsp,uint64_t * valp,uint64_t end,int intuple,int dtkind)6860 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6861 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6862 {
6863 volatile uint16_t *flags;
6864 uint64_t val = *valp;
6865 size_t valoffs = *valoffsp;
6866
6867 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6868 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6869
6870 /*
6871 * If this is a string, we're going to only load until we find the zero
6872 * byte -- after which we'll store zero bytes.
6873 */
6874 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6875 char c = '\0' + 1;
6876 size_t s;
6877
6878 for (s = 0; s < size; s++) {
6879 if (c != '\0' && dtkind == DIF_TF_BYREF) {
6880 c = dtrace_load8(val++);
6881 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6882 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6883 c = dtrace_fuword8((void *)(uintptr_t)val++);
6884 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6885 if (*flags & CPU_DTRACE_FAULT)
6886 break;
6887 }
6888
6889 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6890
6891 if (c == '\0' && intuple)
6892 break;
6893 }
6894 } else {
6895 uint8_t c;
6896 while (valoffs < end) {
6897 if (dtkind == DIF_TF_BYREF) {
6898 c = dtrace_load8(val++);
6899 } else if (dtkind == DIF_TF_BYUREF) {
6900 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6901 c = dtrace_fuword8((void *)(uintptr_t)val++);
6902 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6903 if (*flags & CPU_DTRACE_FAULT)
6904 break;
6905 }
6906
6907 DTRACE_STORE(uint8_t, tomax,
6908 valoffs++, c);
6909 }
6910 }
6911
6912 *valp = val;
6913 *valoffsp = valoffs;
6914 }
6915
6916 /*
6917 * If you're looking for the epicenter of DTrace, you just found it. This
6918 * is the function called by the provider to fire a probe -- from which all
6919 * subsequent probe-context DTrace activity emanates.
6920 */
6921 void
dtrace_probe(dtrace_id_t id,uintptr_t arg0,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4)6922 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6923 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6924 {
6925 processorid_t cpuid;
6926 dtrace_icookie_t cookie;
6927 dtrace_probe_t *probe;
6928 dtrace_mstate_t mstate;
6929 dtrace_ecb_t *ecb;
6930 dtrace_action_t *act;
6931 intptr_t offs;
6932 size_t size;
6933 int vtime, onintr;
6934 volatile uint16_t *flags;
6935 hrtime_t now, end;
6936
6937 /*
6938 * Kick out immediately if this CPU is still being born (in which case
6939 * curthread will be set to -1) or the current thread can't allow
6940 * probes in its current context.
6941 */
6942 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6943 return;
6944
6945 cookie = dtrace_interrupt_disable();
6946
6947 /*
6948 * Also refuse to process any probe firings that might happen on a
6949 * disabled CPU.
6950 */
6951 if (CPU->cpu_flags & CPU_DISABLED) {
6952 dtrace_interrupt_enable(cookie);
6953 return;
6954 }
6955
6956 probe = dtrace_probes[id - 1];
6957 cpuid = CPU->cpu_id;
6958 onintr = CPU_ON_INTR(CPU);
6959
6960 CPU->cpu_dtrace_probes++;
6961
6962 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6963 probe->dtpr_predcache == curthread->t_predcache) {
6964 /*
6965 * We have hit in the predicate cache; we know that
6966 * this predicate would evaluate to be false.
6967 */
6968 dtrace_interrupt_enable(cookie);
6969 return;
6970 }
6971
6972 if (panic_quiesce) {
6973 /*
6974 * We don't trace anything if we're panicking.
6975 */
6976 dtrace_interrupt_enable(cookie);
6977 return;
6978 }
6979
6980 now = dtrace_gethrtime();
6981 vtime = dtrace_vtime_references != 0;
6982
6983 if (vtime && curthread->t_dtrace_start)
6984 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6985
6986 mstate.dtms_difo = NULL;
6987 mstate.dtms_probe = probe;
6988 mstate.dtms_strtok = 0;
6989 mstate.dtms_arg[0] = arg0;
6990 mstate.dtms_arg[1] = arg1;
6991 mstate.dtms_arg[2] = arg2;
6992 mstate.dtms_arg[3] = arg3;
6993 mstate.dtms_arg[4] = arg4;
6994
6995 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6996
6997 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6998 dtrace_predicate_t *pred = ecb->dte_predicate;
6999 dtrace_state_t *state = ecb->dte_state;
7000 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7001 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7002 dtrace_vstate_t *vstate = &state->dts_vstate;
7003 dtrace_provider_t *prov = probe->dtpr_provider;
7004 uint64_t tracememsize = 0;
7005 int committed = 0;
7006 caddr_t tomax;
7007
7008 /*
7009 * A little subtlety with the following (seemingly innocuous)
7010 * declaration of the automatic 'val': by looking at the
7011 * code, you might think that it could be declared in the
7012 * action processing loop, below. (That is, it's only used in
7013 * the action processing loop.) However, it must be declared
7014 * out of that scope because in the case of DIF expression
7015 * arguments to aggregating actions, one iteration of the
7016 * action loop will use the last iteration's value.
7017 */
7018 #ifdef lint
7019 uint64_t val = 0;
7020 #else
7021 uint64_t val;
7022 #endif
7023
7024 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7025 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
7026 mstate.dtms_getf = NULL;
7027
7028 *flags &= ~CPU_DTRACE_ERROR;
7029
7030 if (prov == dtrace_provider) {
7031 /*
7032 * If dtrace itself is the provider of this probe,
7033 * we're only going to continue processing the ECB if
7034 * arg0 (the dtrace_state_t) is equal to the ECB's
7035 * creating state. (This prevents disjoint consumers
7036 * from seeing one another's metaprobes.)
7037 */
7038 if (arg0 != (uint64_t)(uintptr_t)state)
7039 continue;
7040 }
7041
7042 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7043 /*
7044 * We're not currently active. If our provider isn't
7045 * the dtrace pseudo provider, we're not interested.
7046 */
7047 if (prov != dtrace_provider)
7048 continue;
7049
7050 /*
7051 * Now we must further check if we are in the BEGIN
7052 * probe. If we are, we will only continue processing
7053 * if we're still in WARMUP -- if one BEGIN enabling
7054 * has invoked the exit() action, we don't want to
7055 * evaluate subsequent BEGIN enablings.
7056 */
7057 if (probe->dtpr_id == dtrace_probeid_begin &&
7058 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7059 ASSERT(state->dts_activity ==
7060 DTRACE_ACTIVITY_DRAINING);
7061 continue;
7062 }
7063 }
7064
7065 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
7066 continue;
7067
7068 if (now - state->dts_alive > dtrace_deadman_timeout) {
7069 /*
7070 * We seem to be dead. Unless we (a) have kernel
7071 * destructive permissions (b) have explicitly enabled
7072 * destructive actions and (c) destructive actions have
7073 * not been disabled, we're going to transition into
7074 * the KILLED state, from which no further processing
7075 * on this state will be performed.
7076 */
7077 if (!dtrace_priv_kernel_destructive(state) ||
7078 !state->dts_cred.dcr_destructive ||
7079 dtrace_destructive_disallow) {
7080 void *activity = &state->dts_activity;
7081 dtrace_activity_t current;
7082
7083 do {
7084 current = state->dts_activity;
7085 } while (dtrace_cas32(activity, current,
7086 DTRACE_ACTIVITY_KILLED) != current);
7087
7088 continue;
7089 }
7090 }
7091
7092 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7093 ecb->dte_alignment, state, &mstate)) < 0)
7094 continue;
7095
7096 tomax = buf->dtb_tomax;
7097 ASSERT(tomax != NULL);
7098
7099 if (ecb->dte_size != 0) {
7100 dtrace_rechdr_t dtrh;
7101 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7102 mstate.dtms_timestamp = dtrace_gethrtime();
7103 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7104 }
7105 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7106 dtrh.dtrh_epid = ecb->dte_epid;
7107 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7108 mstate.dtms_timestamp);
7109 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7110 }
7111
7112 mstate.dtms_epid = ecb->dte_epid;
7113 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7114
7115 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7116 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
7117
7118 if (pred != NULL) {
7119 dtrace_difo_t *dp = pred->dtp_difo;
7120 uint64_t rval;
7121
7122 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7123
7124 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7125 dtrace_cacheid_t cid = probe->dtpr_predcache;
7126
7127 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7128 /*
7129 * Update the predicate cache...
7130 */
7131 ASSERT(cid == pred->dtp_cacheid);
7132 curthread->t_predcache = cid;
7133 }
7134
7135 continue;
7136 }
7137 }
7138
7139 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7140 act != NULL; act = act->dta_next) {
7141 size_t valoffs;
7142 dtrace_difo_t *dp;
7143 dtrace_recdesc_t *rec = &act->dta_rec;
7144
7145 size = rec->dtrd_size;
7146 valoffs = offs + rec->dtrd_offset;
7147
7148 if (DTRACEACT_ISAGG(act->dta_kind)) {
7149 uint64_t v = 0xbad;
7150 dtrace_aggregation_t *agg;
7151
7152 agg = (dtrace_aggregation_t *)act;
7153
7154 if ((dp = act->dta_difo) != NULL)
7155 v = dtrace_dif_emulate(dp,
7156 &mstate, vstate, state);
7157
7158 if (*flags & CPU_DTRACE_ERROR)
7159 continue;
7160
7161 /*
7162 * Note that we always pass the expression
7163 * value from the previous iteration of the
7164 * action loop. This value will only be used
7165 * if there is an expression argument to the
7166 * aggregating action, denoted by the
7167 * dtag_hasarg field.
7168 */
7169 dtrace_aggregate(agg, buf,
7170 offs, aggbuf, v, val);
7171 continue;
7172 }
7173
7174 switch (act->dta_kind) {
7175 case DTRACEACT_STOP:
7176 if (dtrace_priv_proc_destructive(state,
7177 &mstate))
7178 dtrace_action_stop();
7179 continue;
7180
7181 case DTRACEACT_BREAKPOINT:
7182 if (dtrace_priv_kernel_destructive(state))
7183 dtrace_action_breakpoint(ecb);
7184 continue;
7185
7186 case DTRACEACT_PANIC:
7187 if (dtrace_priv_kernel_destructive(state))
7188 dtrace_action_panic(ecb);
7189 continue;
7190
7191 case DTRACEACT_STACK:
7192 if (!dtrace_priv_kernel(state))
7193 continue;
7194
7195 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7196 size / sizeof (pc_t), probe->dtpr_aframes,
7197 DTRACE_ANCHORED(probe) ? NULL :
7198 (uint32_t *)arg0);
7199
7200 continue;
7201
7202 case DTRACEACT_JSTACK:
7203 case DTRACEACT_USTACK:
7204 if (!dtrace_priv_proc(state, &mstate))
7205 continue;
7206
7207 /*
7208 * See comment in DIF_VAR_PID.
7209 */
7210 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7211 CPU_ON_INTR(CPU)) {
7212 int depth = DTRACE_USTACK_NFRAMES(
7213 rec->dtrd_arg) + 1;
7214
7215 dtrace_bzero((void *)(tomax + valoffs),
7216 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7217 + depth * sizeof (uint64_t));
7218
7219 continue;
7220 }
7221
7222 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7223 curproc->p_dtrace_helpers != NULL) {
7224 /*
7225 * This is the slow path -- we have
7226 * allocated string space, and we're
7227 * getting the stack of a process that
7228 * has helpers. Call into a separate
7229 * routine to perform this processing.
7230 */
7231 dtrace_action_ustack(&mstate, state,
7232 (uint64_t *)(tomax + valoffs),
7233 rec->dtrd_arg);
7234 continue;
7235 }
7236
7237 /*
7238 * Clear the string space, since there's no
7239 * helper to do it for us.
7240 */
7241 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7242 int depth = DTRACE_USTACK_NFRAMES(
7243 rec->dtrd_arg);
7244 size_t strsize = DTRACE_USTACK_STRSIZE(
7245 rec->dtrd_arg);
7246 uint64_t *buf = (uint64_t *)(tomax +
7247 valoffs);
7248 void *strspace = &buf[depth + 1];
7249
7250 dtrace_bzero(strspace,
7251 MIN(depth, strsize));
7252 }
7253
7254 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7255 dtrace_getupcstack((uint64_t *)
7256 (tomax + valoffs),
7257 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7258 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7259 continue;
7260
7261 default:
7262 break;
7263 }
7264
7265 dp = act->dta_difo;
7266 ASSERT(dp != NULL);
7267
7268 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7269
7270 if (*flags & CPU_DTRACE_ERROR)
7271 continue;
7272
7273 switch (act->dta_kind) {
7274 case DTRACEACT_SPECULATE: {
7275 dtrace_rechdr_t *dtrh;
7276
7277 ASSERT(buf == &state->dts_buffer[cpuid]);
7278 buf = dtrace_speculation_buffer(state,
7279 cpuid, val);
7280
7281 if (buf == NULL) {
7282 *flags |= CPU_DTRACE_DROP;
7283 continue;
7284 }
7285
7286 offs = dtrace_buffer_reserve(buf,
7287 ecb->dte_needed, ecb->dte_alignment,
7288 state, NULL);
7289
7290 if (offs < 0) {
7291 *flags |= CPU_DTRACE_DROP;
7292 continue;
7293 }
7294
7295 tomax = buf->dtb_tomax;
7296 ASSERT(tomax != NULL);
7297
7298 if (ecb->dte_size == 0)
7299 continue;
7300
7301 ASSERT3U(ecb->dte_size, >=,
7302 sizeof (dtrace_rechdr_t));
7303 dtrh = ((void *)(tomax + offs));
7304 dtrh->dtrh_epid = ecb->dte_epid;
7305 /*
7306 * When the speculation is committed, all of
7307 * the records in the speculative buffer will
7308 * have their timestamps set to the commit
7309 * time. Until then, it is set to a sentinel
7310 * value, for debugability.
7311 */
7312 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7313 continue;
7314 }
7315
7316 case DTRACEACT_CHILL:
7317 if (dtrace_priv_kernel_destructive(state))
7318 dtrace_action_chill(&mstate, val);
7319 continue;
7320
7321 case DTRACEACT_RAISE:
7322 if (dtrace_priv_proc_destructive(state,
7323 &mstate))
7324 dtrace_action_raise(val);
7325 continue;
7326
7327 case DTRACEACT_COMMIT:
7328 ASSERT(!committed);
7329
7330 /*
7331 * We need to commit our buffer state.
7332 */
7333 if (ecb->dte_size)
7334 buf->dtb_offset = offs + ecb->dte_size;
7335 buf = &state->dts_buffer[cpuid];
7336 dtrace_speculation_commit(state, cpuid, val);
7337 committed = 1;
7338 continue;
7339
7340 case DTRACEACT_DISCARD:
7341 dtrace_speculation_discard(state, cpuid, val);
7342 continue;
7343
7344 case DTRACEACT_DIFEXPR:
7345 case DTRACEACT_LIBACT:
7346 case DTRACEACT_PRINTF:
7347 case DTRACEACT_PRINTA:
7348 case DTRACEACT_SYSTEM:
7349 case DTRACEACT_FREOPEN:
7350 case DTRACEACT_TRACEMEM:
7351 break;
7352
7353 case DTRACEACT_TRACEMEM_DYNSIZE:
7354 tracememsize = val;
7355 break;
7356
7357 case DTRACEACT_SYM:
7358 case DTRACEACT_MOD:
7359 if (!dtrace_priv_kernel(state))
7360 continue;
7361 break;
7362
7363 case DTRACEACT_USYM:
7364 case DTRACEACT_UMOD:
7365 case DTRACEACT_UADDR: {
7366 struct pid *pid = curthread->t_procp->p_pidp;
7367
7368 if (!dtrace_priv_proc(state, &mstate))
7369 continue;
7370
7371 DTRACE_STORE(uint64_t, tomax,
7372 valoffs, (uint64_t)pid->pid_id);
7373 DTRACE_STORE(uint64_t, tomax,
7374 valoffs + sizeof (uint64_t), val);
7375
7376 continue;
7377 }
7378
7379 case DTRACEACT_EXIT: {
7380 /*
7381 * For the exit action, we are going to attempt
7382 * to atomically set our activity to be
7383 * draining. If this fails (either because
7384 * another CPU has beat us to the exit action,
7385 * or because our current activity is something
7386 * other than ACTIVE or WARMUP), we will
7387 * continue. This assures that the exit action
7388 * can be successfully recorded at most once
7389 * when we're in the ACTIVE state. If we're
7390 * encountering the exit() action while in
7391 * COOLDOWN, however, we want to honor the new
7392 * status code. (We know that we're the only
7393 * thread in COOLDOWN, so there is no race.)
7394 */
7395 void *activity = &state->dts_activity;
7396 dtrace_activity_t current = state->dts_activity;
7397
7398 if (current == DTRACE_ACTIVITY_COOLDOWN)
7399 break;
7400
7401 if (current != DTRACE_ACTIVITY_WARMUP)
7402 current = DTRACE_ACTIVITY_ACTIVE;
7403
7404 if (dtrace_cas32(activity, current,
7405 DTRACE_ACTIVITY_DRAINING) != current) {
7406 *flags |= CPU_DTRACE_DROP;
7407 continue;
7408 }
7409
7410 break;
7411 }
7412
7413 default:
7414 ASSERT(0);
7415 }
7416
7417 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7418 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7419 uintptr_t end = valoffs + size;
7420
7421 if (tracememsize != 0 &&
7422 valoffs + tracememsize < end) {
7423 end = valoffs + tracememsize;
7424 tracememsize = 0;
7425 }
7426
7427 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7428 !dtrace_vcanload((void *)(uintptr_t)val,
7429 &dp->dtdo_rtype, NULL, &mstate, vstate))
7430 continue;
7431
7432 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7433 &val, end, act->dta_intuple,
7434 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7435 DIF_TF_BYREF: DIF_TF_BYUREF);
7436 continue;
7437 }
7438
7439 switch (size) {
7440 case 0:
7441 break;
7442
7443 case sizeof (uint8_t):
7444 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7445 break;
7446 case sizeof (uint16_t):
7447 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7448 break;
7449 case sizeof (uint32_t):
7450 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7451 break;
7452 case sizeof (uint64_t):
7453 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7454 break;
7455 default:
7456 /*
7457 * Any other size should have been returned by
7458 * reference, not by value.
7459 */
7460 ASSERT(0);
7461 break;
7462 }
7463 }
7464
7465 if (*flags & CPU_DTRACE_DROP)
7466 continue;
7467
7468 if (*flags & CPU_DTRACE_FAULT) {
7469 int ndx;
7470 dtrace_action_t *err;
7471
7472 buf->dtb_errors++;
7473
7474 if (probe->dtpr_id == dtrace_probeid_error) {
7475 /*
7476 * There's nothing we can do -- we had an
7477 * error on the error probe. We bump an
7478 * error counter to at least indicate that
7479 * this condition happened.
7480 */
7481 dtrace_error(&state->dts_dblerrors);
7482 continue;
7483 }
7484
7485 if (vtime) {
7486 /*
7487 * Before recursing on dtrace_probe(), we
7488 * need to explicitly clear out our start
7489 * time to prevent it from being accumulated
7490 * into t_dtrace_vtime.
7491 */
7492 curthread->t_dtrace_start = 0;
7493 }
7494
7495 /*
7496 * Iterate over the actions to figure out which action
7497 * we were processing when we experienced the error.
7498 * Note that act points _past_ the faulting action; if
7499 * act is ecb->dte_action, the fault was in the
7500 * predicate, if it's ecb->dte_action->dta_next it's
7501 * in action #1, and so on.
7502 */
7503 for (err = ecb->dte_action, ndx = 0;
7504 err != act; err = err->dta_next, ndx++)
7505 continue;
7506
7507 dtrace_probe_error(state, ecb->dte_epid, ndx,
7508 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7509 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7510 cpu_core[cpuid].cpuc_dtrace_illval);
7511
7512 continue;
7513 }
7514
7515 if (!committed)
7516 buf->dtb_offset = offs + ecb->dte_size;
7517 }
7518
7519 end = dtrace_gethrtime();
7520 if (vtime)
7521 curthread->t_dtrace_start = end;
7522
7523 CPU->cpu_dtrace_nsec += end - now;
7524
7525 dtrace_interrupt_enable(cookie);
7526 }
7527
7528 /*
7529 * DTrace Probe Hashing Functions
7530 *
7531 * The functions in this section (and indeed, the functions in remaining
7532 * sections) are not _called_ from probe context. (Any exceptions to this are
7533 * marked with a "Note:".) Rather, they are called from elsewhere in the
7534 * DTrace framework to look-up probes in, add probes to and remove probes from
7535 * the DTrace probe hashes. (Each probe is hashed by each element of the
7536 * probe tuple -- allowing for fast lookups, regardless of what was
7537 * specified.)
7538 */
7539 static uint_t
dtrace_hash_str(char * p)7540 dtrace_hash_str(char *p)
7541 {
7542 unsigned int g;
7543 uint_t hval = 0;
7544
7545 while (*p) {
7546 hval = (hval << 4) + *p++;
7547 if ((g = (hval & 0xf0000000)) != 0)
7548 hval ^= g >> 24;
7549 hval &= ~g;
7550 }
7551 return (hval);
7552 }
7553
7554 static dtrace_hash_t *
dtrace_hash_create(uintptr_t stroffs,uintptr_t nextoffs,uintptr_t prevoffs)7555 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7556 {
7557 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7558
7559 hash->dth_stroffs = stroffs;
7560 hash->dth_nextoffs = nextoffs;
7561 hash->dth_prevoffs = prevoffs;
7562
7563 hash->dth_size = 1;
7564 hash->dth_mask = hash->dth_size - 1;
7565
7566 hash->dth_tab = kmem_zalloc(hash->dth_size *
7567 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7568
7569 return (hash);
7570 }
7571
7572 static void
dtrace_hash_destroy(dtrace_hash_t * hash)7573 dtrace_hash_destroy(dtrace_hash_t *hash)
7574 {
7575 #ifdef DEBUG
7576 int i;
7577
7578 for (i = 0; i < hash->dth_size; i++)
7579 ASSERT(hash->dth_tab[i] == NULL);
7580 #endif
7581
7582 kmem_free(hash->dth_tab,
7583 hash->dth_size * sizeof (dtrace_hashbucket_t *));
7584 kmem_free(hash, sizeof (dtrace_hash_t));
7585 }
7586
7587 static void
dtrace_hash_resize(dtrace_hash_t * hash)7588 dtrace_hash_resize(dtrace_hash_t *hash)
7589 {
7590 int size = hash->dth_size, i, ndx;
7591 int new_size = hash->dth_size << 1;
7592 int new_mask = new_size - 1;
7593 dtrace_hashbucket_t **new_tab, *bucket, *next;
7594
7595 ASSERT((new_size & new_mask) == 0);
7596
7597 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7598
7599 for (i = 0; i < size; i++) {
7600 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7601 dtrace_probe_t *probe = bucket->dthb_chain;
7602
7603 ASSERT(probe != NULL);
7604 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7605
7606 next = bucket->dthb_next;
7607 bucket->dthb_next = new_tab[ndx];
7608 new_tab[ndx] = bucket;
7609 }
7610 }
7611
7612 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7613 hash->dth_tab = new_tab;
7614 hash->dth_size = new_size;
7615 hash->dth_mask = new_mask;
7616 }
7617
7618 static void
dtrace_hash_add(dtrace_hash_t * hash,dtrace_probe_t * new)7619 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7620 {
7621 int hashval = DTRACE_HASHSTR(hash, new);
7622 int ndx = hashval & hash->dth_mask;
7623 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7624 dtrace_probe_t **nextp, **prevp;
7625
7626 for (; bucket != NULL; bucket = bucket->dthb_next) {
7627 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7628 goto add;
7629 }
7630
7631 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7632 dtrace_hash_resize(hash);
7633 dtrace_hash_add(hash, new);
7634 return;
7635 }
7636
7637 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7638 bucket->dthb_next = hash->dth_tab[ndx];
7639 hash->dth_tab[ndx] = bucket;
7640 hash->dth_nbuckets++;
7641
7642 add:
7643 nextp = DTRACE_HASHNEXT(hash, new);
7644 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7645 *nextp = bucket->dthb_chain;
7646
7647 if (bucket->dthb_chain != NULL) {
7648 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7649 ASSERT(*prevp == NULL);
7650 *prevp = new;
7651 }
7652
7653 bucket->dthb_chain = new;
7654 bucket->dthb_len++;
7655 }
7656
7657 static dtrace_probe_t *
dtrace_hash_lookup(dtrace_hash_t * hash,dtrace_probe_t * template)7658 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7659 {
7660 int hashval = DTRACE_HASHSTR(hash, template);
7661 int ndx = hashval & hash->dth_mask;
7662 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7663
7664 for (; bucket != NULL; bucket = bucket->dthb_next) {
7665 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7666 return (bucket->dthb_chain);
7667 }
7668
7669 return (NULL);
7670 }
7671
7672 static int
dtrace_hash_collisions(dtrace_hash_t * hash,dtrace_probe_t * template)7673 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7674 {
7675 int hashval = DTRACE_HASHSTR(hash, template);
7676 int ndx = hashval & hash->dth_mask;
7677 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7678
7679 for (; bucket != NULL; bucket = bucket->dthb_next) {
7680 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7681 return (bucket->dthb_len);
7682 }
7683
7684 return (0);
7685 }
7686
7687 static void
dtrace_hash_remove(dtrace_hash_t * hash,dtrace_probe_t * probe)7688 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7689 {
7690 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7691 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7692
7693 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7694 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7695
7696 /*
7697 * Find the bucket that we're removing this probe from.
7698 */
7699 for (; bucket != NULL; bucket = bucket->dthb_next) {
7700 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7701 break;
7702 }
7703
7704 ASSERT(bucket != NULL);
7705
7706 if (*prevp == NULL) {
7707 if (*nextp == NULL) {
7708 /*
7709 * The removed probe was the only probe on this
7710 * bucket; we need to remove the bucket.
7711 */
7712 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7713
7714 ASSERT(bucket->dthb_chain == probe);
7715 ASSERT(b != NULL);
7716
7717 if (b == bucket) {
7718 hash->dth_tab[ndx] = bucket->dthb_next;
7719 } else {
7720 while (b->dthb_next != bucket)
7721 b = b->dthb_next;
7722 b->dthb_next = bucket->dthb_next;
7723 }
7724
7725 ASSERT(hash->dth_nbuckets > 0);
7726 hash->dth_nbuckets--;
7727 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7728 return;
7729 }
7730
7731 bucket->dthb_chain = *nextp;
7732 } else {
7733 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7734 }
7735
7736 if (*nextp != NULL)
7737 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7738 }
7739
7740 /*
7741 * DTrace Utility Functions
7742 *
7743 * These are random utility functions that are _not_ called from probe context.
7744 */
7745 static int
dtrace_badattr(const dtrace_attribute_t * a)7746 dtrace_badattr(const dtrace_attribute_t *a)
7747 {
7748 return (a->dtat_name > DTRACE_STABILITY_MAX ||
7749 a->dtat_data > DTRACE_STABILITY_MAX ||
7750 a->dtat_class > DTRACE_CLASS_MAX);
7751 }
7752
7753 /*
7754 * Return a duplicate copy of a string. If the specified string is NULL,
7755 * this function returns a zero-length string.
7756 */
7757 static char *
dtrace_strdup(const char * str)7758 dtrace_strdup(const char *str)
7759 {
7760 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7761
7762 if (str != NULL)
7763 (void) strcpy(new, str);
7764
7765 return (new);
7766 }
7767
7768 #define DTRACE_ISALPHA(c) \
7769 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7770
7771 static int
dtrace_badname(const char * s)7772 dtrace_badname(const char *s)
7773 {
7774 char c;
7775
7776 if (s == NULL || (c = *s++) == '\0')
7777 return (0);
7778
7779 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7780 return (1);
7781
7782 while ((c = *s++) != '\0') {
7783 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7784 c != '-' && c != '_' && c != '.' && c != '`')
7785 return (1);
7786 }
7787
7788 return (0);
7789 }
7790
7791 static void
dtrace_cred2priv(cred_t * cr,uint32_t * privp,uid_t * uidp,zoneid_t * zoneidp)7792 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7793 {
7794 uint32_t priv;
7795
7796 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7797 /*
7798 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7799 */
7800 priv = DTRACE_PRIV_ALL;
7801 } else {
7802 *uidp = crgetuid(cr);
7803 *zoneidp = crgetzoneid(cr);
7804
7805 priv = 0;
7806 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7807 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7808 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7809 priv |= DTRACE_PRIV_USER;
7810 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7811 priv |= DTRACE_PRIV_PROC;
7812 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7813 priv |= DTRACE_PRIV_OWNER;
7814 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7815 priv |= DTRACE_PRIV_ZONEOWNER;
7816 }
7817
7818 *privp = priv;
7819 }
7820
7821 #ifdef DTRACE_ERRDEBUG
7822 static void
dtrace_errdebug(const char * str)7823 dtrace_errdebug(const char *str)
7824 {
7825 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7826 int occupied = 0;
7827
7828 mutex_enter(&dtrace_errlock);
7829 dtrace_errlast = str;
7830 dtrace_errthread = curthread;
7831
7832 while (occupied++ < DTRACE_ERRHASHSZ) {
7833 if (dtrace_errhash[hval].dter_msg == str) {
7834 dtrace_errhash[hval].dter_count++;
7835 goto out;
7836 }
7837
7838 if (dtrace_errhash[hval].dter_msg != NULL) {
7839 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7840 continue;
7841 }
7842
7843 dtrace_errhash[hval].dter_msg = str;
7844 dtrace_errhash[hval].dter_count = 1;
7845 goto out;
7846 }
7847
7848 panic("dtrace: undersized error hash");
7849 out:
7850 mutex_exit(&dtrace_errlock);
7851 }
7852 #endif
7853
7854 /*
7855 * DTrace Matching Functions
7856 *
7857 * These functions are used to match groups of probes, given some elements of
7858 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7859 */
7860 static int
dtrace_match_priv(const dtrace_probe_t * prp,uint32_t priv,uid_t uid,zoneid_t zoneid)7861 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7862 zoneid_t zoneid)
7863 {
7864 if (priv != DTRACE_PRIV_ALL) {
7865 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7866 uint32_t match = priv & ppriv;
7867
7868 /*
7869 * No PRIV_DTRACE_* privileges...
7870 */
7871 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7872 DTRACE_PRIV_KERNEL)) == 0)
7873 return (0);
7874
7875 /*
7876 * No matching bits, but there were bits to match...
7877 */
7878 if (match == 0 && ppriv != 0)
7879 return (0);
7880
7881 /*
7882 * Need to have permissions to the process, but don't...
7883 */
7884 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7885 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7886 return (0);
7887 }
7888
7889 /*
7890 * Need to be in the same zone unless we possess the
7891 * privilege to examine all zones.
7892 */
7893 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7894 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7895 return (0);
7896 }
7897 }
7898
7899 return (1);
7900 }
7901
7902 /*
7903 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7904 * consists of input pattern strings and an ops-vector to evaluate them.
7905 * This function returns >0 for match, 0 for no match, and <0 for error.
7906 */
7907 static int
dtrace_match_probe(const dtrace_probe_t * prp,const dtrace_probekey_t * pkp,uint32_t priv,uid_t uid,zoneid_t zoneid)7908 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7909 uint32_t priv, uid_t uid, zoneid_t zoneid)
7910 {
7911 dtrace_provider_t *pvp = prp->dtpr_provider;
7912 int rv;
7913
7914 if (pvp->dtpv_defunct)
7915 return (0);
7916
7917 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7918 return (rv);
7919
7920 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7921 return (rv);
7922
7923 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7924 return (rv);
7925
7926 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7927 return (rv);
7928
7929 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7930 return (0);
7931
7932 return (rv);
7933 }
7934
7935 /*
7936 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7937 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7938 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7939 * In addition, all of the recursion cases except for '*' matching have been
7940 * unwound. For '*', we still implement recursive evaluation, but a depth
7941 * counter is maintained and matching is aborted if we recurse too deep.
7942 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7943 */
7944 static int
dtrace_match_glob(const char * s,const char * p,int depth)7945 dtrace_match_glob(const char *s, const char *p, int depth)
7946 {
7947 const char *olds;
7948 char s1, c;
7949 int gs;
7950
7951 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7952 return (-1);
7953
7954 if (s == NULL)
7955 s = ""; /* treat NULL as empty string */
7956
7957 top:
7958 olds = s;
7959 s1 = *s++;
7960
7961 if (p == NULL)
7962 return (0);
7963
7964 if ((c = *p++) == '\0')
7965 return (s1 == '\0');
7966
7967 switch (c) {
7968 case '[': {
7969 int ok = 0, notflag = 0;
7970 char lc = '\0';
7971
7972 if (s1 == '\0')
7973 return (0);
7974
7975 if (*p == '!') {
7976 notflag = 1;
7977 p++;
7978 }
7979
7980 if ((c = *p++) == '\0')
7981 return (0);
7982
7983 do {
7984 if (c == '-' && lc != '\0' && *p != ']') {
7985 if ((c = *p++) == '\0')
7986 return (0);
7987 if (c == '\\' && (c = *p++) == '\0')
7988 return (0);
7989
7990 if (notflag) {
7991 if (s1 < lc || s1 > c)
7992 ok++;
7993 else
7994 return (0);
7995 } else if (lc <= s1 && s1 <= c)
7996 ok++;
7997
7998 } else if (c == '\\' && (c = *p++) == '\0')
7999 return (0);
8000
8001 lc = c; /* save left-hand 'c' for next iteration */
8002
8003 if (notflag) {
8004 if (s1 != c)
8005 ok++;
8006 else
8007 return (0);
8008 } else if (s1 == c)
8009 ok++;
8010
8011 if ((c = *p++) == '\0')
8012 return (0);
8013
8014 } while (c != ']');
8015
8016 if (ok)
8017 goto top;
8018
8019 return (0);
8020 }
8021
8022 case '\\':
8023 if ((c = *p++) == '\0')
8024 return (0);
8025 /*FALLTHRU*/
8026
8027 default:
8028 if (c != s1)
8029 return (0);
8030 /*FALLTHRU*/
8031
8032 case '?':
8033 if (s1 != '\0')
8034 goto top;
8035 return (0);
8036
8037 case '*':
8038 while (*p == '*')
8039 p++; /* consecutive *'s are identical to a single one */
8040
8041 if (*p == '\0')
8042 return (1);
8043
8044 for (s = olds; *s != '\0'; s++) {
8045 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8046 return (gs);
8047 }
8048
8049 return (0);
8050 }
8051 }
8052
8053 /*ARGSUSED*/
8054 static int
dtrace_match_string(const char * s,const char * p,int depth)8055 dtrace_match_string(const char *s, const char *p, int depth)
8056 {
8057 return (s != NULL && strcmp(s, p) == 0);
8058 }
8059
8060 /*ARGSUSED*/
8061 static int
dtrace_match_nul(const char * s,const char * p,int depth)8062 dtrace_match_nul(const char *s, const char *p, int depth)
8063 {
8064 return (1); /* always match the empty pattern */
8065 }
8066
8067 /*ARGSUSED*/
8068 static int
dtrace_match_nonzero(const char * s,const char * p,int depth)8069 dtrace_match_nonzero(const char *s, const char *p, int depth)
8070 {
8071 return (s != NULL && s[0] != '\0');
8072 }
8073
8074 static int
dtrace_match(const dtrace_probekey_t * pkp,uint32_t priv,uid_t uid,zoneid_t zoneid,int (* matched)(dtrace_probe_t *,void *),void * arg)8075 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8076 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8077 {
8078 dtrace_probe_t template, *probe;
8079 dtrace_hash_t *hash = NULL;
8080 int len, rc, best = INT_MAX, nmatched = 0;
8081 dtrace_id_t i;
8082
8083 ASSERT(MUTEX_HELD(&dtrace_lock));
8084
8085 /*
8086 * If the probe ID is specified in the key, just lookup by ID and
8087 * invoke the match callback once if a matching probe is found.
8088 */
8089 if (pkp->dtpk_id != DTRACE_IDNONE) {
8090 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8091 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8092 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
8093 return (DTRACE_MATCH_FAIL);
8094 nmatched++;
8095 }
8096 return (nmatched);
8097 }
8098
8099 template.dtpr_mod = (char *)pkp->dtpk_mod;
8100 template.dtpr_func = (char *)pkp->dtpk_func;
8101 template.dtpr_name = (char *)pkp->dtpk_name;
8102
8103 /*
8104 * We want to find the most distinct of the module name, function
8105 * name, and name. So for each one that is not a glob pattern or
8106 * empty string, we perform a lookup in the corresponding hash and
8107 * use the hash table with the fewest collisions to do our search.
8108 */
8109 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8110 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8111 best = len;
8112 hash = dtrace_bymod;
8113 }
8114
8115 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8116 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8117 best = len;
8118 hash = dtrace_byfunc;
8119 }
8120
8121 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8122 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8123 best = len;
8124 hash = dtrace_byname;
8125 }
8126
8127 /*
8128 * If we did not select a hash table, iterate over every probe and
8129 * invoke our callback for each one that matches our input probe key.
8130 */
8131 if (hash == NULL) {
8132 for (i = 0; i < dtrace_nprobes; i++) {
8133 if ((probe = dtrace_probes[i]) == NULL ||
8134 dtrace_match_probe(probe, pkp, priv, uid,
8135 zoneid) <= 0)
8136 continue;
8137
8138 nmatched++;
8139
8140 if ((rc = (*matched)(probe, arg)) !=
8141 DTRACE_MATCH_NEXT) {
8142 if (rc == DTRACE_MATCH_FAIL)
8143 return (DTRACE_MATCH_FAIL);
8144 break;
8145 }
8146 }
8147
8148 return (nmatched);
8149 }
8150
8151 /*
8152 * If we selected a hash table, iterate over each probe of the same key
8153 * name and invoke the callback for every probe that matches the other
8154 * attributes of our input probe key.
8155 */
8156 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8157 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8158
8159 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8160 continue;
8161
8162 nmatched++;
8163
8164 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
8165 if (rc == DTRACE_MATCH_FAIL)
8166 return (DTRACE_MATCH_FAIL);
8167 break;
8168 }
8169 }
8170
8171 return (nmatched);
8172 }
8173
8174 /*
8175 * Return the function pointer dtrace_probecmp() should use to compare the
8176 * specified pattern with a string. For NULL or empty patterns, we select
8177 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8178 * For non-empty non-glob strings, we use dtrace_match_string().
8179 */
8180 static dtrace_probekey_f *
dtrace_probekey_func(const char * p)8181 dtrace_probekey_func(const char *p)
8182 {
8183 char c;
8184
8185 if (p == NULL || *p == '\0')
8186 return (&dtrace_match_nul);
8187
8188 while ((c = *p++) != '\0') {
8189 if (c == '[' || c == '?' || c == '*' || c == '\\')
8190 return (&dtrace_match_glob);
8191 }
8192
8193 return (&dtrace_match_string);
8194 }
8195
8196 /*
8197 * Build a probe comparison key for use with dtrace_match_probe() from the
8198 * given probe description. By convention, a null key only matches anchored
8199 * probes: if each field is the empty string, reset dtpk_fmatch to
8200 * dtrace_match_nonzero().
8201 */
8202 static void
dtrace_probekey(const dtrace_probedesc_t * pdp,dtrace_probekey_t * pkp)8203 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8204 {
8205 pkp->dtpk_prov = pdp->dtpd_provider;
8206 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8207
8208 pkp->dtpk_mod = pdp->dtpd_mod;
8209 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8210
8211 pkp->dtpk_func = pdp->dtpd_func;
8212 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8213
8214 pkp->dtpk_name = pdp->dtpd_name;
8215 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8216
8217 pkp->dtpk_id = pdp->dtpd_id;
8218
8219 if (pkp->dtpk_id == DTRACE_IDNONE &&
8220 pkp->dtpk_pmatch == &dtrace_match_nul &&
8221 pkp->dtpk_mmatch == &dtrace_match_nul &&
8222 pkp->dtpk_fmatch == &dtrace_match_nul &&
8223 pkp->dtpk_nmatch == &dtrace_match_nul)
8224 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8225 }
8226
8227 /*
8228 * DTrace Provider-to-Framework API Functions
8229 *
8230 * These functions implement much of the Provider-to-Framework API, as
8231 * described in <sys/dtrace.h>. The parts of the API not in this section are
8232 * the functions in the API for probe management (found below), and
8233 * dtrace_probe() itself (found above).
8234 */
8235
8236 /*
8237 * Register the calling provider with the DTrace framework. This should
8238 * generally be called by DTrace providers in their attach(9E) entry point.
8239 */
8240 int
dtrace_register(const char * name,const dtrace_pattr_t * pap,uint32_t priv,cred_t * cr,const dtrace_pops_t * pops,void * arg,dtrace_provider_id_t * idp)8241 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8242 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8243 {
8244 dtrace_provider_t *provider;
8245
8246 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8247 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8248 "arguments", name ? name : "<NULL>");
8249 return (EINVAL);
8250 }
8251
8252 if (name[0] == '\0' || dtrace_badname(name)) {
8253 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8254 "provider name", name);
8255 return (EINVAL);
8256 }
8257
8258 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8259 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8260 pops->dtps_destroy == NULL ||
8261 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8262 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8263 "provider ops", name);
8264 return (EINVAL);
8265 }
8266
8267 if (dtrace_badattr(&pap->dtpa_provider) ||
8268 dtrace_badattr(&pap->dtpa_mod) ||
8269 dtrace_badattr(&pap->dtpa_func) ||
8270 dtrace_badattr(&pap->dtpa_name) ||
8271 dtrace_badattr(&pap->dtpa_args)) {
8272 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8273 "provider attributes", name);
8274 return (EINVAL);
8275 }
8276
8277 if (priv & ~DTRACE_PRIV_ALL) {
8278 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8279 "privilege attributes", name);
8280 return (EINVAL);
8281 }
8282
8283 if ((priv & DTRACE_PRIV_KERNEL) &&
8284 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8285 pops->dtps_mode == NULL) {
8286 cmn_err(CE_WARN, "failed to register provider '%s': need "
8287 "dtps_mode() op for given privilege attributes", name);
8288 return (EINVAL);
8289 }
8290
8291 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8292 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8293 (void) strcpy(provider->dtpv_name, name);
8294
8295 provider->dtpv_attr = *pap;
8296 provider->dtpv_priv.dtpp_flags = priv;
8297 if (cr != NULL) {
8298 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8299 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8300 }
8301 provider->dtpv_pops = *pops;
8302
8303 if (pops->dtps_provide == NULL) {
8304 ASSERT(pops->dtps_provide_module != NULL);
8305 provider->dtpv_pops.dtps_provide = dtrace_nullop_provide;
8306 }
8307
8308 if (pops->dtps_provide_module == NULL) {
8309 ASSERT(pops->dtps_provide != NULL);
8310 provider->dtpv_pops.dtps_provide_module = dtrace_nullop_module;
8311 }
8312
8313 if (pops->dtps_suspend == NULL) {
8314 ASSERT(pops->dtps_resume == NULL);
8315 provider->dtpv_pops.dtps_suspend = dtrace_nullop;
8316 provider->dtpv_pops.dtps_resume = dtrace_nullop;
8317 }
8318
8319 provider->dtpv_arg = arg;
8320 *idp = (dtrace_provider_id_t)provider;
8321
8322 if (pops == &dtrace_provider_ops) {
8323 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8324 ASSERT(MUTEX_HELD(&dtrace_lock));
8325 ASSERT(dtrace_anon.dta_enabling == NULL);
8326
8327 /*
8328 * We make sure that the DTrace provider is at the head of
8329 * the provider chain.
8330 */
8331 provider->dtpv_next = dtrace_provider;
8332 dtrace_provider = provider;
8333 return (0);
8334 }
8335
8336 mutex_enter(&dtrace_provider_lock);
8337 mutex_enter(&dtrace_lock);
8338
8339 /*
8340 * If there is at least one provider registered, we'll add this
8341 * provider after the first provider.
8342 */
8343 if (dtrace_provider != NULL) {
8344 provider->dtpv_next = dtrace_provider->dtpv_next;
8345 dtrace_provider->dtpv_next = provider;
8346 } else {
8347 dtrace_provider = provider;
8348 }
8349
8350 if (dtrace_retained != NULL) {
8351 dtrace_enabling_provide(provider);
8352
8353 /*
8354 * Now we need to call dtrace_enabling_matchall() -- which
8355 * will acquire cpu_lock and dtrace_lock. We therefore need
8356 * to drop all of our locks before calling into it...
8357 */
8358 mutex_exit(&dtrace_lock);
8359 mutex_exit(&dtrace_provider_lock);
8360 dtrace_enabling_matchall();
8361
8362 return (0);
8363 }
8364
8365 mutex_exit(&dtrace_lock);
8366 mutex_exit(&dtrace_provider_lock);
8367
8368 return (0);
8369 }
8370
8371 /*
8372 * Unregister the specified provider from the DTrace framework. This should
8373 * generally be called by DTrace providers in their detach(9E) entry point.
8374 */
8375 int
dtrace_unregister(dtrace_provider_id_t id)8376 dtrace_unregister(dtrace_provider_id_t id)
8377 {
8378 dtrace_provider_t *old = (dtrace_provider_t *)id;
8379 dtrace_provider_t *prev = NULL;
8380 int i, self = 0, noreap = 0;
8381 dtrace_probe_t *probe, *first = NULL;
8382
8383 if (old->dtpv_pops.dtps_enable == dtrace_enable_nullop) {
8384 /*
8385 * If DTrace itself is the provider, we're called with locks
8386 * already held.
8387 */
8388 ASSERT(old == dtrace_provider);
8389 ASSERT(dtrace_devi != NULL);
8390 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8391 ASSERT(MUTEX_HELD(&dtrace_lock));
8392 self = 1;
8393
8394 if (dtrace_provider->dtpv_next != NULL) {
8395 /*
8396 * There's another provider here; return failure.
8397 */
8398 return (EBUSY);
8399 }
8400 } else {
8401 mutex_enter(&dtrace_provider_lock);
8402 mutex_enter(&mod_lock);
8403 mutex_enter(&dtrace_lock);
8404 }
8405
8406 /*
8407 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8408 * probes, we refuse to let providers slither away, unless this
8409 * provider has already been explicitly invalidated.
8410 */
8411 if (!old->dtpv_defunct &&
8412 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8413 dtrace_anon.dta_state->dts_necbs > 0))) {
8414 if (!self) {
8415 mutex_exit(&dtrace_lock);
8416 mutex_exit(&mod_lock);
8417 mutex_exit(&dtrace_provider_lock);
8418 }
8419 return (EBUSY);
8420 }
8421
8422 /*
8423 * Attempt to destroy the probes associated with this provider.
8424 */
8425 for (i = 0; i < dtrace_nprobes; i++) {
8426 if ((probe = dtrace_probes[i]) == NULL)
8427 continue;
8428
8429 if (probe->dtpr_provider != old)
8430 continue;
8431
8432 if (probe->dtpr_ecb == NULL)
8433 continue;
8434
8435 /*
8436 * If we are trying to unregister a defunct provider, and the
8437 * provider was made defunct within the interval dictated by
8438 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8439 * attempt to reap our enablings. To denote that the provider
8440 * should reattempt to unregister itself at some point in the
8441 * future, we will return a differentiable error code (EAGAIN
8442 * instead of EBUSY) in this case.
8443 */
8444 if (dtrace_gethrtime() - old->dtpv_defunct >
8445 dtrace_unregister_defunct_reap)
8446 noreap = 1;
8447
8448 if (!self) {
8449 mutex_exit(&dtrace_lock);
8450 mutex_exit(&mod_lock);
8451 mutex_exit(&dtrace_provider_lock);
8452 }
8453
8454 if (noreap)
8455 return (EBUSY);
8456
8457 (void) taskq_dispatch(dtrace_taskq,
8458 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8459
8460 return (EAGAIN);
8461 }
8462
8463 /*
8464 * All of the probes for this provider are disabled; we can safely
8465 * remove all of them from their hash chains and from the probe array.
8466 */
8467 for (i = 0; i < dtrace_nprobes; i++) {
8468 if ((probe = dtrace_probes[i]) == NULL)
8469 continue;
8470
8471 if (probe->dtpr_provider != old)
8472 continue;
8473
8474 dtrace_probes[i] = NULL;
8475
8476 dtrace_hash_remove(dtrace_bymod, probe);
8477 dtrace_hash_remove(dtrace_byfunc, probe);
8478 dtrace_hash_remove(dtrace_byname, probe);
8479
8480 if (first == NULL) {
8481 first = probe;
8482 probe->dtpr_nextmod = NULL;
8483 } else {
8484 probe->dtpr_nextmod = first;
8485 first = probe;
8486 }
8487 }
8488
8489 /*
8490 * The provider's probes have been removed from the hash chains and
8491 * from the probe array. Now issue a dtrace_sync() to be sure that
8492 * everyone has cleared out from any probe array processing.
8493 */
8494 dtrace_sync();
8495
8496 for (probe = first; probe != NULL; probe = first) {
8497 first = probe->dtpr_nextmod;
8498
8499 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8500 probe->dtpr_arg);
8501 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8502 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8503 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8504 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8505 kmem_free(probe, sizeof (dtrace_probe_t));
8506 }
8507
8508 if ((prev = dtrace_provider) == old) {
8509 ASSERT(self || dtrace_devi == NULL);
8510 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8511 dtrace_provider = old->dtpv_next;
8512 } else {
8513 while (prev != NULL && prev->dtpv_next != old)
8514 prev = prev->dtpv_next;
8515
8516 if (prev == NULL) {
8517 panic("attempt to unregister non-existent "
8518 "dtrace provider %p\n", (void *)id);
8519 }
8520
8521 prev->dtpv_next = old->dtpv_next;
8522 }
8523
8524 if (!self) {
8525 mutex_exit(&dtrace_lock);
8526 mutex_exit(&mod_lock);
8527 mutex_exit(&dtrace_provider_lock);
8528 }
8529
8530 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8531 kmem_free(old, sizeof (dtrace_provider_t));
8532
8533 return (0);
8534 }
8535
8536 /*
8537 * Invalidate the specified provider. All subsequent probe lookups for the
8538 * specified provider will fail, but its probes will not be removed.
8539 */
8540 void
dtrace_invalidate(dtrace_provider_id_t id)8541 dtrace_invalidate(dtrace_provider_id_t id)
8542 {
8543 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8544
8545 ASSERT(pvp->dtpv_pops.dtps_enable != dtrace_enable_nullop);
8546
8547 mutex_enter(&dtrace_provider_lock);
8548 mutex_enter(&dtrace_lock);
8549
8550 pvp->dtpv_defunct = dtrace_gethrtime();
8551
8552 mutex_exit(&dtrace_lock);
8553 mutex_exit(&dtrace_provider_lock);
8554 }
8555
8556 /*
8557 * Indicate whether or not DTrace has attached.
8558 */
8559 int
dtrace_attached(void)8560 dtrace_attached(void)
8561 {
8562 /*
8563 * dtrace_provider will be non-NULL iff the DTrace driver has
8564 * attached. (It's non-NULL because DTrace is always itself a
8565 * provider.)
8566 */
8567 return (dtrace_provider != NULL);
8568 }
8569
8570 /*
8571 * Remove all the unenabled probes for the given provider. This function is
8572 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8573 * -- just as many of its associated probes as it can.
8574 */
8575 int
dtrace_condense(dtrace_provider_id_t id)8576 dtrace_condense(dtrace_provider_id_t id)
8577 {
8578 dtrace_provider_t *prov = (dtrace_provider_t *)id;
8579 int i;
8580 dtrace_probe_t *probe;
8581
8582 /*
8583 * Make sure this isn't the dtrace provider itself.
8584 */
8585 ASSERT(prov->dtpv_pops.dtps_enable != dtrace_enable_nullop);
8586
8587 mutex_enter(&dtrace_provider_lock);
8588 mutex_enter(&dtrace_lock);
8589
8590 /*
8591 * Attempt to destroy the probes associated with this provider.
8592 */
8593 for (i = 0; i < dtrace_nprobes; i++) {
8594 if ((probe = dtrace_probes[i]) == NULL)
8595 continue;
8596
8597 if (probe->dtpr_provider != prov)
8598 continue;
8599
8600 if (probe->dtpr_ecb != NULL)
8601 continue;
8602
8603 dtrace_probes[i] = NULL;
8604
8605 dtrace_hash_remove(dtrace_bymod, probe);
8606 dtrace_hash_remove(dtrace_byfunc, probe);
8607 dtrace_hash_remove(dtrace_byname, probe);
8608
8609 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8610 probe->dtpr_arg);
8611 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8612 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8613 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8614 kmem_free(probe, sizeof (dtrace_probe_t));
8615 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8616 }
8617
8618 mutex_exit(&dtrace_lock);
8619 mutex_exit(&dtrace_provider_lock);
8620
8621 return (0);
8622 }
8623
8624 /*
8625 * DTrace Probe Management Functions
8626 *
8627 * The functions in this section perform the DTrace probe management,
8628 * including functions to create probes, look-up probes, and call into the
8629 * providers to request that probes be provided. Some of these functions are
8630 * in the Provider-to-Framework API; these functions can be identified by the
8631 * fact that they are not declared "static".
8632 */
8633
8634 /*
8635 * Create a probe with the specified module name, function name, and name.
8636 */
8637 dtrace_id_t
dtrace_probe_create(dtrace_provider_id_t prov,const char * mod,const char * func,const char * name,int aframes,void * arg)8638 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8639 const char *func, const char *name, int aframes, void *arg)
8640 {
8641 dtrace_probe_t *probe, **probes;
8642 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8643 dtrace_id_t id;
8644
8645 if (provider == dtrace_provider) {
8646 ASSERT(MUTEX_HELD(&dtrace_lock));
8647 } else {
8648 mutex_enter(&dtrace_lock);
8649 }
8650
8651 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8652 VM_BESTFIT | VM_SLEEP);
8653 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8654
8655 probe->dtpr_id = id;
8656 probe->dtpr_gen = dtrace_probegen++;
8657 probe->dtpr_mod = dtrace_strdup(mod);
8658 probe->dtpr_func = dtrace_strdup(func);
8659 probe->dtpr_name = dtrace_strdup(name);
8660 probe->dtpr_arg = arg;
8661 probe->dtpr_aframes = aframes;
8662 probe->dtpr_provider = provider;
8663
8664 dtrace_hash_add(dtrace_bymod, probe);
8665 dtrace_hash_add(dtrace_byfunc, probe);
8666 dtrace_hash_add(dtrace_byname, probe);
8667
8668 if (id - 1 >= dtrace_nprobes) {
8669 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8670 size_t nsize = osize << 1;
8671
8672 if (nsize == 0) {
8673 ASSERT(osize == 0);
8674 ASSERT(dtrace_probes == NULL);
8675 nsize = sizeof (dtrace_probe_t *);
8676 }
8677
8678 probes = kmem_zalloc(nsize, KM_SLEEP);
8679
8680 if (dtrace_probes == NULL) {
8681 ASSERT(osize == 0);
8682 dtrace_probes = probes;
8683 dtrace_nprobes = 1;
8684 } else {
8685 dtrace_probe_t **oprobes = dtrace_probes;
8686
8687 bcopy(oprobes, probes, osize);
8688 dtrace_membar_producer();
8689 dtrace_probes = probes;
8690
8691 dtrace_sync();
8692
8693 /*
8694 * All CPUs are now seeing the new probes array; we can
8695 * safely free the old array.
8696 */
8697 kmem_free(oprobes, osize);
8698 dtrace_nprobes <<= 1;
8699 }
8700
8701 ASSERT(id - 1 < dtrace_nprobes);
8702 }
8703
8704 ASSERT(dtrace_probes[id - 1] == NULL);
8705 dtrace_probes[id - 1] = probe;
8706
8707 if (provider != dtrace_provider)
8708 mutex_exit(&dtrace_lock);
8709
8710 return (id);
8711 }
8712
8713 static dtrace_probe_t *
dtrace_probe_lookup_id(dtrace_id_t id)8714 dtrace_probe_lookup_id(dtrace_id_t id)
8715 {
8716 ASSERT(MUTEX_HELD(&dtrace_lock));
8717
8718 if (id == 0 || id > dtrace_nprobes)
8719 return (NULL);
8720
8721 return (dtrace_probes[id - 1]);
8722 }
8723
8724 static int
dtrace_probe_lookup_match(dtrace_probe_t * probe,void * arg)8725 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8726 {
8727 *((dtrace_id_t *)arg) = probe->dtpr_id;
8728
8729 return (DTRACE_MATCH_DONE);
8730 }
8731
8732 /*
8733 * Look up a probe based on provider and one or more of module name, function
8734 * name and probe name.
8735 */
8736 dtrace_id_t
dtrace_probe_lookup(dtrace_provider_id_t prid,const char * mod,const char * func,const char * name)8737 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8738 const char *func, const char *name)
8739 {
8740 dtrace_probekey_t pkey;
8741 dtrace_id_t id;
8742 int match;
8743
8744 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8745 pkey.dtpk_pmatch = &dtrace_match_string;
8746 pkey.dtpk_mod = mod;
8747 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8748 pkey.dtpk_func = func;
8749 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8750 pkey.dtpk_name = name;
8751 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8752 pkey.dtpk_id = DTRACE_IDNONE;
8753
8754 mutex_enter(&dtrace_lock);
8755 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8756 dtrace_probe_lookup_match, &id);
8757 mutex_exit(&dtrace_lock);
8758
8759 ASSERT(match == 1 || match == 0);
8760 return (match ? id : 0);
8761 }
8762
8763 /*
8764 * Returns the probe argument associated with the specified probe.
8765 */
8766 void *
dtrace_probe_arg(dtrace_provider_id_t id,dtrace_id_t pid)8767 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8768 {
8769 dtrace_probe_t *probe;
8770 void *rval = NULL;
8771
8772 mutex_enter(&dtrace_lock);
8773
8774 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8775 probe->dtpr_provider == (dtrace_provider_t *)id)
8776 rval = probe->dtpr_arg;
8777
8778 mutex_exit(&dtrace_lock);
8779
8780 return (rval);
8781 }
8782
8783 /*
8784 * Copy a probe into a probe description.
8785 */
8786 static void
dtrace_probe_description(const dtrace_probe_t * prp,dtrace_probedesc_t * pdp)8787 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8788 {
8789 bzero(pdp, sizeof (dtrace_probedesc_t));
8790 pdp->dtpd_id = prp->dtpr_id;
8791
8792 (void) strncpy(pdp->dtpd_provider,
8793 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8794
8795 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8796 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8797 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8798 }
8799
8800 /*
8801 * Called to indicate that a probe -- or probes -- should be provided by a
8802 * specfied provider. If the specified description is NULL, the provider will
8803 * be told to provide all of its probes. (This is done whenever a new
8804 * consumer comes along, or whenever a retained enabling is to be matched.) If
8805 * the specified description is non-NULL, the provider is given the
8806 * opportunity to dynamically provide the specified probe, allowing providers
8807 * to support the creation of probes on-the-fly. (So-called _autocreated_
8808 * probes.) If the provider is NULL, the operations will be applied to all
8809 * providers; if the provider is non-NULL the operations will only be applied
8810 * to the specified provider. The dtrace_provider_lock must be held, and the
8811 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8812 * will need to grab the dtrace_lock when it reenters the framework through
8813 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8814 */
8815 static void
dtrace_probe_provide(dtrace_probedesc_t * desc,dtrace_provider_t * prv)8816 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8817 {
8818 struct modctl *ctl;
8819 int all = 0;
8820
8821 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8822
8823 if (prv == NULL) {
8824 all = 1;
8825 prv = dtrace_provider;
8826 }
8827
8828 do {
8829 /*
8830 * First, call the blanket provide operation.
8831 */
8832 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8833
8834 /*
8835 * Now call the per-module provide operation. We will grab
8836 * mod_lock to prevent the list from being modified. Note
8837 * that this also prevents the mod_busy bits from changing.
8838 * (mod_busy can only be changed with mod_lock held.)
8839 */
8840 mutex_enter(&mod_lock);
8841
8842 ctl = &modules;
8843 do {
8844 if (ctl->mod_busy || ctl->mod_mp == NULL)
8845 continue;
8846
8847 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8848
8849 } while ((ctl = ctl->mod_next) != &modules);
8850
8851 mutex_exit(&mod_lock);
8852 } while (all && (prv = prv->dtpv_next) != NULL);
8853 }
8854
8855 /*
8856 * Iterate over each probe, and call the Framework-to-Provider API function
8857 * denoted by offs.
8858 */
8859 static void
dtrace_probe_foreach(uintptr_t offs)8860 dtrace_probe_foreach(uintptr_t offs)
8861 {
8862 dtrace_provider_t *prov;
8863 void (*func)(void *, dtrace_id_t, void *);
8864 dtrace_probe_t *probe;
8865 dtrace_icookie_t cookie;
8866 int i;
8867
8868 /*
8869 * We disable interrupts to walk through the probe array. This is
8870 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8871 * won't see stale data.
8872 */
8873 cookie = dtrace_interrupt_disable();
8874
8875 for (i = 0; i < dtrace_nprobes; i++) {
8876 if ((probe = dtrace_probes[i]) == NULL)
8877 continue;
8878
8879 if (probe->dtpr_ecb == NULL) {
8880 /*
8881 * This probe isn't enabled -- don't call the function.
8882 */
8883 continue;
8884 }
8885
8886 prov = probe->dtpr_provider;
8887 func = *((void(**)(void *, dtrace_id_t, void *))
8888 ((uintptr_t)&prov->dtpv_pops + offs));
8889
8890 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8891 }
8892
8893 dtrace_interrupt_enable(cookie);
8894 }
8895
8896 static int
dtrace_probe_enable(const dtrace_probedesc_t * desc,dtrace_enabling_t * enab)8897 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8898 {
8899 dtrace_probekey_t pkey;
8900 uint32_t priv;
8901 uid_t uid;
8902 zoneid_t zoneid;
8903
8904 ASSERT(MUTEX_HELD(&dtrace_lock));
8905 dtrace_ecb_create_cache = NULL;
8906
8907 if (desc == NULL) {
8908 /*
8909 * If we're passed a NULL description, we're being asked to
8910 * create an ECB with a NULL probe.
8911 */
8912 (void) dtrace_ecb_create_enable(NULL, enab);
8913 return (0);
8914 }
8915
8916 dtrace_probekey(desc, &pkey);
8917 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8918 &priv, &uid, &zoneid);
8919
8920 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8921 enab));
8922 }
8923
8924 /*
8925 * DTrace Helper Provider Functions
8926 */
8927 static void
dtrace_dofattr2attr(dtrace_attribute_t * attr,const dof_attr_t dofattr)8928 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8929 {
8930 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8931 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8932 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8933 }
8934
8935 static void
dtrace_dofprov2hprov(dtrace_helper_provdesc_t * hprov,const dof_provider_t * dofprov,char * strtab)8936 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8937 const dof_provider_t *dofprov, char *strtab)
8938 {
8939 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8940 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8941 dofprov->dofpv_provattr);
8942 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8943 dofprov->dofpv_modattr);
8944 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8945 dofprov->dofpv_funcattr);
8946 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8947 dofprov->dofpv_nameattr);
8948 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8949 dofprov->dofpv_argsattr);
8950 }
8951
8952 static void
dtrace_helper_provide_one(dof_helper_t * dhp,dof_sec_t * sec,pid_t pid)8953 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8954 {
8955 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8956 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8957 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8958 dof_provider_t *provider;
8959 dof_probe_t *probe;
8960 uint32_t *off, *enoff;
8961 uint8_t *arg;
8962 char *strtab;
8963 uint_t i, nprobes;
8964 dtrace_helper_provdesc_t dhpv;
8965 dtrace_helper_probedesc_t dhpb;
8966 dtrace_meta_t *meta = dtrace_meta_pid;
8967 dtrace_mops_t *mops = &meta->dtm_mops;
8968 void *parg;
8969
8970 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8971 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8972 provider->dofpv_strtab * dof->dofh_secsize);
8973 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8974 provider->dofpv_probes * dof->dofh_secsize);
8975 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8976 provider->dofpv_prargs * dof->dofh_secsize);
8977 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8978 provider->dofpv_proffs * dof->dofh_secsize);
8979
8980 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8981 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8982 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8983 enoff = NULL;
8984
8985 /*
8986 * See dtrace_helper_provider_validate().
8987 */
8988 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8989 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8990 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8991 provider->dofpv_prenoffs * dof->dofh_secsize);
8992 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8993 }
8994
8995 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8996
8997 /*
8998 * Create the provider.
8999 */
9000 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9001
9002 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9003 return;
9004
9005 meta->dtm_count++;
9006
9007 /*
9008 * Create the probes.
9009 */
9010 for (i = 0; i < nprobes; i++) {
9011 probe = (dof_probe_t *)(uintptr_t)(daddr +
9012 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9013
9014 dhpb.dthpb_mod = dhp->dofhp_mod;
9015 dhpb.dthpb_func = strtab + probe->dofpr_func;
9016 dhpb.dthpb_name = strtab + probe->dofpr_name;
9017 dhpb.dthpb_base = probe->dofpr_addr;
9018 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9019 dhpb.dthpb_noffs = probe->dofpr_noffs;
9020 if (enoff != NULL) {
9021 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9022 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9023 } else {
9024 dhpb.dthpb_enoffs = NULL;
9025 dhpb.dthpb_nenoffs = 0;
9026 }
9027 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9028 dhpb.dthpb_nargc = probe->dofpr_nargc;
9029 dhpb.dthpb_xargc = probe->dofpr_xargc;
9030 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9031 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9032
9033 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9034 }
9035 }
9036
9037 static void
dtrace_helper_provide(dof_helper_t * dhp,pid_t pid)9038 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9039 {
9040 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9041 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9042 int i;
9043
9044 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9045
9046 for (i = 0; i < dof->dofh_secnum; i++) {
9047 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9048 dof->dofh_secoff + i * dof->dofh_secsize);
9049
9050 if (sec->dofs_type != DOF_SECT_PROVIDER)
9051 continue;
9052
9053 dtrace_helper_provide_one(dhp, sec, pid);
9054 }
9055
9056 /*
9057 * We may have just created probes, so we must now rematch against
9058 * any retained enablings. Note that this call will acquire both
9059 * cpu_lock and dtrace_lock; the fact that we are holding
9060 * dtrace_meta_lock now is what defines the ordering with respect to
9061 * these three locks.
9062 */
9063 dtrace_enabling_matchall();
9064 }
9065
9066 static void
dtrace_helper_provider_remove_one(dof_helper_t * dhp,dof_sec_t * sec,pid_t pid)9067 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9068 {
9069 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9070 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9071 dof_sec_t *str_sec;
9072 dof_provider_t *provider;
9073 char *strtab;
9074 dtrace_helper_provdesc_t dhpv;
9075 dtrace_meta_t *meta = dtrace_meta_pid;
9076 dtrace_mops_t *mops = &meta->dtm_mops;
9077
9078 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9079 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9080 provider->dofpv_strtab * dof->dofh_secsize);
9081
9082 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9083
9084 /*
9085 * Create the provider.
9086 */
9087 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9088
9089 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9090
9091 meta->dtm_count--;
9092 }
9093
9094 static void
dtrace_helper_provider_remove(dof_helper_t * dhp,pid_t pid)9095 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9096 {
9097 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9098 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9099 int i;
9100
9101 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9102
9103 for (i = 0; i < dof->dofh_secnum; i++) {
9104 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9105 dof->dofh_secoff + i * dof->dofh_secsize);
9106
9107 if (sec->dofs_type != DOF_SECT_PROVIDER)
9108 continue;
9109
9110 dtrace_helper_provider_remove_one(dhp, sec, pid);
9111 }
9112 }
9113
9114 /*
9115 * DTrace Meta Provider-to-Framework API Functions
9116 *
9117 * These functions implement the Meta Provider-to-Framework API, as described
9118 * in <sys/dtrace.h>.
9119 */
9120 int
dtrace_meta_register(const char * name,const dtrace_mops_t * mops,void * arg,dtrace_meta_provider_id_t * idp)9121 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9122 dtrace_meta_provider_id_t *idp)
9123 {
9124 dtrace_meta_t *meta;
9125 dtrace_helpers_t *help, *next;
9126 int i;
9127
9128 *idp = DTRACE_METAPROVNONE;
9129
9130 /*
9131 * We strictly don't need the name, but we hold onto it for
9132 * debuggability. All hail error queues!
9133 */
9134 if (name == NULL) {
9135 cmn_err(CE_WARN, "failed to register meta-provider: "
9136 "invalid name");
9137 return (EINVAL);
9138 }
9139
9140 if (mops == NULL ||
9141 mops->dtms_create_probe == NULL ||
9142 mops->dtms_provide_pid == NULL ||
9143 mops->dtms_remove_pid == NULL) {
9144 cmn_err(CE_WARN, "failed to register meta-register %s: "
9145 "invalid ops", name);
9146 return (EINVAL);
9147 }
9148
9149 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9150 meta->dtm_mops = *mops;
9151 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9152 (void) strcpy(meta->dtm_name, name);
9153 meta->dtm_arg = arg;
9154
9155 mutex_enter(&dtrace_meta_lock);
9156 mutex_enter(&dtrace_lock);
9157
9158 if (dtrace_meta_pid != NULL) {
9159 mutex_exit(&dtrace_lock);
9160 mutex_exit(&dtrace_meta_lock);
9161 cmn_err(CE_WARN, "failed to register meta-register %s: "
9162 "user-land meta-provider exists", name);
9163 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9164 kmem_free(meta, sizeof (dtrace_meta_t));
9165 return (EINVAL);
9166 }
9167
9168 dtrace_meta_pid = meta;
9169 *idp = (dtrace_meta_provider_id_t)meta;
9170
9171 /*
9172 * If there are providers and probes ready to go, pass them
9173 * off to the new meta provider now.
9174 */
9175
9176 help = dtrace_deferred_pid;
9177 dtrace_deferred_pid = NULL;
9178
9179 mutex_exit(&dtrace_lock);
9180
9181 while (help != NULL) {
9182 for (i = 0; i < help->dthps_nprovs; i++) {
9183 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9184 help->dthps_pid);
9185 }
9186
9187 next = help->dthps_next;
9188 help->dthps_next = NULL;
9189 help->dthps_prev = NULL;
9190 help->dthps_deferred = 0;
9191 help = next;
9192 }
9193
9194 mutex_exit(&dtrace_meta_lock);
9195
9196 return (0);
9197 }
9198
9199 int
dtrace_meta_unregister(dtrace_meta_provider_id_t id)9200 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9201 {
9202 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9203
9204 mutex_enter(&dtrace_meta_lock);
9205 mutex_enter(&dtrace_lock);
9206
9207 if (old == dtrace_meta_pid) {
9208 pp = &dtrace_meta_pid;
9209 } else {
9210 panic("attempt to unregister non-existent "
9211 "dtrace meta-provider %p\n", (void *)old);
9212 }
9213
9214 if (old->dtm_count != 0) {
9215 mutex_exit(&dtrace_lock);
9216 mutex_exit(&dtrace_meta_lock);
9217 return (EBUSY);
9218 }
9219
9220 *pp = NULL;
9221
9222 mutex_exit(&dtrace_lock);
9223 mutex_exit(&dtrace_meta_lock);
9224
9225 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9226 kmem_free(old, sizeof (dtrace_meta_t));
9227
9228 return (0);
9229 }
9230
9231
9232 /*
9233 * DTrace DIF Object Functions
9234 */
9235 static int
dtrace_difo_err(uint_t pc,const char * format,...)9236 dtrace_difo_err(uint_t pc, const char *format, ...)
9237 {
9238 if (dtrace_err_verbose) {
9239 va_list alist;
9240
9241 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9242 va_start(alist, format);
9243 (void) vuprintf(format, alist);
9244 va_end(alist);
9245 }
9246
9247 #ifdef DTRACE_ERRDEBUG
9248 dtrace_errdebug(format);
9249 #endif
9250 return (1);
9251 }
9252
9253 /*
9254 * Validate a DTrace DIF object by checking the IR instructions. The following
9255 * rules are currently enforced by dtrace_difo_validate():
9256 *
9257 * 1. Each instruction must have a valid opcode
9258 * 2. Each register, string, variable, or subroutine reference must be valid
9259 * 3. No instruction can modify register %r0 (must be zero)
9260 * 4. All instruction reserved bits must be set to zero
9261 * 5. The last instruction must be a "ret" instruction
9262 * 6. All branch targets must reference a valid instruction _after_ the branch
9263 */
9264 static int
dtrace_difo_validate(dtrace_difo_t * dp,dtrace_vstate_t * vstate,uint_t nregs,cred_t * cr)9265 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9266 cred_t *cr)
9267 {
9268 int err = 0, i;
9269 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9270 int kcheckload;
9271 uint_t pc;
9272 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9273
9274 kcheckload = cr == NULL ||
9275 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9276
9277 dp->dtdo_destructive = 0;
9278
9279 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9280 dif_instr_t instr = dp->dtdo_buf[pc];
9281
9282 uint_t r1 = DIF_INSTR_R1(instr);
9283 uint_t r2 = DIF_INSTR_R2(instr);
9284 uint_t rd = DIF_INSTR_RD(instr);
9285 uint_t rs = DIF_INSTR_RS(instr);
9286 uint_t label = DIF_INSTR_LABEL(instr);
9287 uint_t v = DIF_INSTR_VAR(instr);
9288 uint_t subr = DIF_INSTR_SUBR(instr);
9289 uint_t type = DIF_INSTR_TYPE(instr);
9290 uint_t op = DIF_INSTR_OP(instr);
9291
9292 switch (op) {
9293 case DIF_OP_OR:
9294 case DIF_OP_XOR:
9295 case DIF_OP_AND:
9296 case DIF_OP_SLL:
9297 case DIF_OP_SRL:
9298 case DIF_OP_SRA:
9299 case DIF_OP_SUB:
9300 case DIF_OP_ADD:
9301 case DIF_OP_MUL:
9302 case DIF_OP_SDIV:
9303 case DIF_OP_UDIV:
9304 case DIF_OP_SREM:
9305 case DIF_OP_UREM:
9306 case DIF_OP_COPYS:
9307 if (r1 >= nregs)
9308 err += efunc(pc, "invalid register %u\n", r1);
9309 if (r2 >= nregs)
9310 err += efunc(pc, "invalid register %u\n", r2);
9311 if (rd >= nregs)
9312 err += efunc(pc, "invalid register %u\n", rd);
9313 if (rd == 0)
9314 err += efunc(pc, "cannot write to %%r0\n");
9315 break;
9316 case DIF_OP_NOT:
9317 case DIF_OP_MOV:
9318 case DIF_OP_ALLOCS:
9319 if (r1 >= nregs)
9320 err += efunc(pc, "invalid register %u\n", r1);
9321 if (r2 != 0)
9322 err += efunc(pc, "non-zero reserved bits\n");
9323 if (rd >= nregs)
9324 err += efunc(pc, "invalid register %u\n", rd);
9325 if (rd == 0)
9326 err += efunc(pc, "cannot write to %%r0\n");
9327 break;
9328 case DIF_OP_LDSB:
9329 case DIF_OP_LDSH:
9330 case DIF_OP_LDSW:
9331 case DIF_OP_LDUB:
9332 case DIF_OP_LDUH:
9333 case DIF_OP_LDUW:
9334 case DIF_OP_LDX:
9335 if (r1 >= nregs)
9336 err += efunc(pc, "invalid register %u\n", r1);
9337 if (r2 != 0)
9338 err += efunc(pc, "non-zero reserved bits\n");
9339 if (rd >= nregs)
9340 err += efunc(pc, "invalid register %u\n", rd);
9341 if (rd == 0)
9342 err += efunc(pc, "cannot write to %%r0\n");
9343 if (kcheckload)
9344 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9345 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9346 break;
9347 case DIF_OP_RLDSB:
9348 case DIF_OP_RLDSH:
9349 case DIF_OP_RLDSW:
9350 case DIF_OP_RLDUB:
9351 case DIF_OP_RLDUH:
9352 case DIF_OP_RLDUW:
9353 case DIF_OP_RLDX:
9354 if (r1 >= nregs)
9355 err += efunc(pc, "invalid register %u\n", r1);
9356 if (r2 != 0)
9357 err += efunc(pc, "non-zero reserved bits\n");
9358 if (rd >= nregs)
9359 err += efunc(pc, "invalid register %u\n", rd);
9360 if (rd == 0)
9361 err += efunc(pc, "cannot write to %%r0\n");
9362 break;
9363 case DIF_OP_ULDSB:
9364 case DIF_OP_ULDSH:
9365 case DIF_OP_ULDSW:
9366 case DIF_OP_ULDUB:
9367 case DIF_OP_ULDUH:
9368 case DIF_OP_ULDUW:
9369 case DIF_OP_ULDX:
9370 if (r1 >= nregs)
9371 err += efunc(pc, "invalid register %u\n", r1);
9372 if (r2 != 0)
9373 err += efunc(pc, "non-zero reserved bits\n");
9374 if (rd >= nregs)
9375 err += efunc(pc, "invalid register %u\n", rd);
9376 if (rd == 0)
9377 err += efunc(pc, "cannot write to %%r0\n");
9378 break;
9379 case DIF_OP_STB:
9380 case DIF_OP_STH:
9381 case DIF_OP_STW:
9382 case DIF_OP_STX:
9383 if (r1 >= nregs)
9384 err += efunc(pc, "invalid register %u\n", r1);
9385 if (r2 != 0)
9386 err += efunc(pc, "non-zero reserved bits\n");
9387 if (rd >= nregs)
9388 err += efunc(pc, "invalid register %u\n", rd);
9389 if (rd == 0)
9390 err += efunc(pc, "cannot write to 0 address\n");
9391 break;
9392 case DIF_OP_CMP:
9393 case DIF_OP_SCMP:
9394 if (r1 >= nregs)
9395 err += efunc(pc, "invalid register %u\n", r1);
9396 if (r2 >= nregs)
9397 err += efunc(pc, "invalid register %u\n", r2);
9398 if (rd != 0)
9399 err += efunc(pc, "non-zero reserved bits\n");
9400 break;
9401 case DIF_OP_TST:
9402 if (r1 >= nregs)
9403 err += efunc(pc, "invalid register %u\n", r1);
9404 if (r2 != 0 || rd != 0)
9405 err += efunc(pc, "non-zero reserved bits\n");
9406 break;
9407 case DIF_OP_BA:
9408 case DIF_OP_BE:
9409 case DIF_OP_BNE:
9410 case DIF_OP_BG:
9411 case DIF_OP_BGU:
9412 case DIF_OP_BGE:
9413 case DIF_OP_BGEU:
9414 case DIF_OP_BL:
9415 case DIF_OP_BLU:
9416 case DIF_OP_BLE:
9417 case DIF_OP_BLEU:
9418 if (label >= dp->dtdo_len) {
9419 err += efunc(pc, "invalid branch target %u\n",
9420 label);
9421 }
9422 if (label <= pc) {
9423 err += efunc(pc, "backward branch to %u\n",
9424 label);
9425 }
9426 break;
9427 case DIF_OP_RET:
9428 if (r1 != 0 || r2 != 0)
9429 err += efunc(pc, "non-zero reserved bits\n");
9430 if (rd >= nregs)
9431 err += efunc(pc, "invalid register %u\n", rd);
9432 break;
9433 case DIF_OP_NOP:
9434 case DIF_OP_POPTS:
9435 case DIF_OP_FLUSHTS:
9436 if (r1 != 0 || r2 != 0 || rd != 0)
9437 err += efunc(pc, "non-zero reserved bits\n");
9438 break;
9439 case DIF_OP_SETX:
9440 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9441 err += efunc(pc, "invalid integer ref %u\n",
9442 DIF_INSTR_INTEGER(instr));
9443 }
9444 if (rd >= nregs)
9445 err += efunc(pc, "invalid register %u\n", rd);
9446 if (rd == 0)
9447 err += efunc(pc, "cannot write to %%r0\n");
9448 break;
9449 case DIF_OP_SETS:
9450 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9451 err += efunc(pc, "invalid string ref %u\n",
9452 DIF_INSTR_STRING(instr));
9453 }
9454 if (rd >= nregs)
9455 err += efunc(pc, "invalid register %u\n", rd);
9456 if (rd == 0)
9457 err += efunc(pc, "cannot write to %%r0\n");
9458 break;
9459 case DIF_OP_LDGA:
9460 case DIF_OP_LDTA:
9461 if (r1 > DIF_VAR_ARRAY_MAX)
9462 err += efunc(pc, "invalid array %u\n", r1);
9463 if (r2 >= nregs)
9464 err += efunc(pc, "invalid register %u\n", r2);
9465 if (rd >= nregs)
9466 err += efunc(pc, "invalid register %u\n", rd);
9467 if (rd == 0)
9468 err += efunc(pc, "cannot write to %%r0\n");
9469 break;
9470 case DIF_OP_STGA:
9471 if (r1 > DIF_VAR_ARRAY_MAX)
9472 err += efunc(pc, "invalid array %u\n", r1);
9473 if (r2 >= nregs)
9474 err += efunc(pc, "invalid register %u\n", r2);
9475 if (rd >= nregs)
9476 err += efunc(pc, "invalid register %u\n", rd);
9477 dp->dtdo_destructive = 1;
9478 break;
9479 case DIF_OP_LDGS:
9480 case DIF_OP_LDTS:
9481 case DIF_OP_LDLS:
9482 case DIF_OP_LDGAA:
9483 case DIF_OP_LDTAA:
9484 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9485 err += efunc(pc, "invalid variable %u\n", v);
9486 if (rd >= nregs)
9487 err += efunc(pc, "invalid register %u\n", rd);
9488 if (rd == 0)
9489 err += efunc(pc, "cannot write to %%r0\n");
9490 break;
9491 case DIF_OP_STGS:
9492 case DIF_OP_STTS:
9493 case DIF_OP_STLS:
9494 case DIF_OP_STGAA:
9495 case DIF_OP_STTAA:
9496 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9497 err += efunc(pc, "invalid variable %u\n", v);
9498 if (rs >= nregs)
9499 err += efunc(pc, "invalid register %u\n", rd);
9500 break;
9501 case DIF_OP_CALL:
9502 if (subr > DIF_SUBR_MAX)
9503 err += efunc(pc, "invalid subr %u\n", subr);
9504 if (rd >= nregs)
9505 err += efunc(pc, "invalid register %u\n", rd);
9506 if (rd == 0)
9507 err += efunc(pc, "cannot write to %%r0\n");
9508
9509 if (subr == DIF_SUBR_COPYOUT ||
9510 subr == DIF_SUBR_COPYOUTSTR) {
9511 dp->dtdo_destructive = 1;
9512 }
9513
9514 if (subr == DIF_SUBR_GETF) {
9515 /*
9516 * If we have a getf() we need to record that
9517 * in our state. Note that our state can be
9518 * NULL if this is a helper -- but in that
9519 * case, the call to getf() is itself illegal,
9520 * and will be caught (slightly later) when
9521 * the helper is validated.
9522 */
9523 if (vstate->dtvs_state != NULL)
9524 vstate->dtvs_state->dts_getf++;
9525 }
9526
9527 break;
9528 case DIF_OP_PUSHTR:
9529 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9530 err += efunc(pc, "invalid ref type %u\n", type);
9531 if (r2 >= nregs)
9532 err += efunc(pc, "invalid register %u\n", r2);
9533 if (rs >= nregs)
9534 err += efunc(pc, "invalid register %u\n", rs);
9535 break;
9536 case DIF_OP_PUSHTV:
9537 if (type != DIF_TYPE_CTF)
9538 err += efunc(pc, "invalid val type %u\n", type);
9539 if (r2 >= nregs)
9540 err += efunc(pc, "invalid register %u\n", r2);
9541 if (rs >= nregs)
9542 err += efunc(pc, "invalid register %u\n", rs);
9543 break;
9544 default:
9545 err += efunc(pc, "invalid opcode %u\n",
9546 DIF_INSTR_OP(instr));
9547 }
9548 }
9549
9550 if (dp->dtdo_len != 0 &&
9551 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9552 err += efunc(dp->dtdo_len - 1,
9553 "expected 'ret' as last DIF instruction\n");
9554 }
9555
9556 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9557 /*
9558 * If we're not returning by reference, the size must be either
9559 * 0 or the size of one of the base types.
9560 */
9561 switch (dp->dtdo_rtype.dtdt_size) {
9562 case 0:
9563 case sizeof (uint8_t):
9564 case sizeof (uint16_t):
9565 case sizeof (uint32_t):
9566 case sizeof (uint64_t):
9567 break;
9568
9569 default:
9570 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9571 }
9572 }
9573
9574 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9575 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9576 dtrace_diftype_t *vt, *et;
9577 uint_t id, ndx;
9578
9579 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9580 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9581 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9582 err += efunc(i, "unrecognized variable scope %d\n",
9583 v->dtdv_scope);
9584 break;
9585 }
9586
9587 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9588 v->dtdv_kind != DIFV_KIND_SCALAR) {
9589 err += efunc(i, "unrecognized variable type %d\n",
9590 v->dtdv_kind);
9591 break;
9592 }
9593
9594 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9595 err += efunc(i, "%d exceeds variable id limit\n", id);
9596 break;
9597 }
9598
9599 if (id < DIF_VAR_OTHER_UBASE)
9600 continue;
9601
9602 /*
9603 * For user-defined variables, we need to check that this
9604 * definition is identical to any previous definition that we
9605 * encountered.
9606 */
9607 ndx = id - DIF_VAR_OTHER_UBASE;
9608
9609 switch (v->dtdv_scope) {
9610 case DIFV_SCOPE_GLOBAL:
9611 if (maxglobal == -1 || ndx > maxglobal)
9612 maxglobal = ndx;
9613
9614 if (ndx < vstate->dtvs_nglobals) {
9615 dtrace_statvar_t *svar;
9616
9617 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9618 existing = &svar->dtsv_var;
9619 }
9620
9621 break;
9622
9623 case DIFV_SCOPE_THREAD:
9624 if (maxtlocal == -1 || ndx > maxtlocal)
9625 maxtlocal = ndx;
9626
9627 if (ndx < vstate->dtvs_ntlocals)
9628 existing = &vstate->dtvs_tlocals[ndx];
9629 break;
9630
9631 case DIFV_SCOPE_LOCAL:
9632 if (maxlocal == -1 || ndx > maxlocal)
9633 maxlocal = ndx;
9634
9635 if (ndx < vstate->dtvs_nlocals) {
9636 dtrace_statvar_t *svar;
9637
9638 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9639 existing = &svar->dtsv_var;
9640 }
9641
9642 break;
9643 }
9644
9645 vt = &v->dtdv_type;
9646
9647 if (vt->dtdt_flags & DIF_TF_BYREF) {
9648 if (vt->dtdt_size == 0) {
9649 err += efunc(i, "zero-sized variable\n");
9650 break;
9651 }
9652
9653 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9654 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9655 vt->dtdt_size > dtrace_statvar_maxsize) {
9656 err += efunc(i, "oversized by-ref static\n");
9657 break;
9658 }
9659 }
9660
9661 if (existing == NULL || existing->dtdv_id == 0)
9662 continue;
9663
9664 ASSERT(existing->dtdv_id == v->dtdv_id);
9665 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9666
9667 if (existing->dtdv_kind != v->dtdv_kind)
9668 err += efunc(i, "%d changed variable kind\n", id);
9669
9670 et = &existing->dtdv_type;
9671
9672 if (vt->dtdt_flags != et->dtdt_flags) {
9673 err += efunc(i, "%d changed variable type flags\n", id);
9674 break;
9675 }
9676
9677 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9678 err += efunc(i, "%d changed variable type size\n", id);
9679 break;
9680 }
9681 }
9682
9683 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9684 dif_instr_t instr = dp->dtdo_buf[pc];
9685
9686 uint_t v = DIF_INSTR_VAR(instr);
9687 uint_t op = DIF_INSTR_OP(instr);
9688
9689 switch (op) {
9690 case DIF_OP_LDGS:
9691 case DIF_OP_LDGAA:
9692 case DIF_OP_STGS:
9693 case DIF_OP_STGAA:
9694 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9695 err += efunc(pc, "invalid variable %u\n", v);
9696 break;
9697 case DIF_OP_LDTS:
9698 case DIF_OP_LDTAA:
9699 case DIF_OP_STTS:
9700 case DIF_OP_STTAA:
9701 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9702 err += efunc(pc, "invalid variable %u\n", v);
9703 break;
9704 case DIF_OP_LDLS:
9705 case DIF_OP_STLS:
9706 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9707 err += efunc(pc, "invalid variable %u\n", v);
9708 break;
9709 default:
9710 break;
9711 }
9712 }
9713
9714 return (err);
9715 }
9716
9717 /*
9718 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9719 * are much more constrained than normal DIFOs. Specifically, they may
9720 * not:
9721 *
9722 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9723 * miscellaneous string routines
9724 * 2. Access DTrace variables other than the args[] array, and the
9725 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9726 * 3. Have thread-local variables.
9727 * 4. Have dynamic variables.
9728 */
9729 static int
dtrace_difo_validate_helper(dtrace_difo_t * dp)9730 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9731 {
9732 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9733 int err = 0;
9734 uint_t pc;
9735
9736 for (pc = 0; pc < dp->dtdo_len; pc++) {
9737 dif_instr_t instr = dp->dtdo_buf[pc];
9738
9739 uint_t v = DIF_INSTR_VAR(instr);
9740 uint_t subr = DIF_INSTR_SUBR(instr);
9741 uint_t op = DIF_INSTR_OP(instr);
9742
9743 switch (op) {
9744 case DIF_OP_OR:
9745 case DIF_OP_XOR:
9746 case DIF_OP_AND:
9747 case DIF_OP_SLL:
9748 case DIF_OP_SRL:
9749 case DIF_OP_SRA:
9750 case DIF_OP_SUB:
9751 case DIF_OP_ADD:
9752 case DIF_OP_MUL:
9753 case DIF_OP_SDIV:
9754 case DIF_OP_UDIV:
9755 case DIF_OP_SREM:
9756 case DIF_OP_UREM:
9757 case DIF_OP_COPYS:
9758 case DIF_OP_NOT:
9759 case DIF_OP_MOV:
9760 case DIF_OP_RLDSB:
9761 case DIF_OP_RLDSH:
9762 case DIF_OP_RLDSW:
9763 case DIF_OP_RLDUB:
9764 case DIF_OP_RLDUH:
9765 case DIF_OP_RLDUW:
9766 case DIF_OP_RLDX:
9767 case DIF_OP_ULDSB:
9768 case DIF_OP_ULDSH:
9769 case DIF_OP_ULDSW:
9770 case DIF_OP_ULDUB:
9771 case DIF_OP_ULDUH:
9772 case DIF_OP_ULDUW:
9773 case DIF_OP_ULDX:
9774 case DIF_OP_STB:
9775 case DIF_OP_STH:
9776 case DIF_OP_STW:
9777 case DIF_OP_STX:
9778 case DIF_OP_ALLOCS:
9779 case DIF_OP_CMP:
9780 case DIF_OP_SCMP:
9781 case DIF_OP_TST:
9782 case DIF_OP_BA:
9783 case DIF_OP_BE:
9784 case DIF_OP_BNE:
9785 case DIF_OP_BG:
9786 case DIF_OP_BGU:
9787 case DIF_OP_BGE:
9788 case DIF_OP_BGEU:
9789 case DIF_OP_BL:
9790 case DIF_OP_BLU:
9791 case DIF_OP_BLE:
9792 case DIF_OP_BLEU:
9793 case DIF_OP_RET:
9794 case DIF_OP_NOP:
9795 case DIF_OP_POPTS:
9796 case DIF_OP_FLUSHTS:
9797 case DIF_OP_SETX:
9798 case DIF_OP_SETS:
9799 case DIF_OP_LDGA:
9800 case DIF_OP_LDLS:
9801 case DIF_OP_STGS:
9802 case DIF_OP_STLS:
9803 case DIF_OP_PUSHTR:
9804 case DIF_OP_PUSHTV:
9805 break;
9806
9807 case DIF_OP_LDGS:
9808 if (v >= DIF_VAR_OTHER_UBASE)
9809 break;
9810
9811 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9812 break;
9813
9814 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9815 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9816 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9817 v == DIF_VAR_UID || v == DIF_VAR_GID)
9818 break;
9819
9820 err += efunc(pc, "illegal variable %u\n", v);
9821 break;
9822
9823 case DIF_OP_LDTA:
9824 if (v < DIF_VAR_OTHER_UBASE) {
9825 err += efunc(pc, "illegal variable load\n");
9826 break;
9827 }
9828 /* FALLTHROUGH */
9829 case DIF_OP_LDTS:
9830 case DIF_OP_LDGAA:
9831 case DIF_OP_LDTAA:
9832 err += efunc(pc, "illegal dynamic variable load\n");
9833 break;
9834
9835 case DIF_OP_STGA:
9836 if (v < DIF_VAR_OTHER_UBASE) {
9837 err += efunc(pc, "illegal variable store\n");
9838 break;
9839 }
9840 /* FALLTHROUGH */
9841 case DIF_OP_STTS:
9842 case DIF_OP_STGAA:
9843 case DIF_OP_STTAA:
9844 err += efunc(pc, "illegal dynamic variable store\n");
9845 break;
9846
9847 case DIF_OP_CALL:
9848 if (subr == DIF_SUBR_ALLOCA ||
9849 subr == DIF_SUBR_BCOPY ||
9850 subr == DIF_SUBR_COPYIN ||
9851 subr == DIF_SUBR_COPYINTO ||
9852 subr == DIF_SUBR_COPYINSTR ||
9853 subr == DIF_SUBR_INDEX ||
9854 subr == DIF_SUBR_INET_NTOA ||
9855 subr == DIF_SUBR_INET_NTOA6 ||
9856 subr == DIF_SUBR_INET_NTOP ||
9857 subr == DIF_SUBR_JSON ||
9858 subr == DIF_SUBR_LLTOSTR ||
9859 subr == DIF_SUBR_STRTOLL ||
9860 subr == DIF_SUBR_RINDEX ||
9861 subr == DIF_SUBR_STRCHR ||
9862 subr == DIF_SUBR_STRJOIN ||
9863 subr == DIF_SUBR_STRRCHR ||
9864 subr == DIF_SUBR_STRSTR ||
9865 subr == DIF_SUBR_HTONS ||
9866 subr == DIF_SUBR_HTONL ||
9867 subr == DIF_SUBR_HTONLL ||
9868 subr == DIF_SUBR_NTOHS ||
9869 subr == DIF_SUBR_NTOHL ||
9870 subr == DIF_SUBR_NTOHLL)
9871 break;
9872
9873 err += efunc(pc, "invalid subr %u\n", subr);
9874 break;
9875
9876 default:
9877 err += efunc(pc, "invalid opcode %u\n",
9878 DIF_INSTR_OP(instr));
9879 }
9880 }
9881
9882 return (err);
9883 }
9884
9885 /*
9886 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9887 * basis; 0 if not.
9888 */
9889 static int
dtrace_difo_cacheable(dtrace_difo_t * dp)9890 dtrace_difo_cacheable(dtrace_difo_t *dp)
9891 {
9892 int i;
9893
9894 if (dp == NULL)
9895 return (0);
9896
9897 for (i = 0; i < dp->dtdo_varlen; i++) {
9898 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9899
9900 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9901 continue;
9902
9903 switch (v->dtdv_id) {
9904 case DIF_VAR_CURTHREAD:
9905 case DIF_VAR_PID:
9906 case DIF_VAR_TID:
9907 case DIF_VAR_EXECNAME:
9908 case DIF_VAR_ZONENAME:
9909 break;
9910
9911 default:
9912 return (0);
9913 }
9914 }
9915
9916 /*
9917 * This DIF object may be cacheable. Now we need to look for any
9918 * array loading instructions, any memory loading instructions, or
9919 * any stores to thread-local variables.
9920 */
9921 for (i = 0; i < dp->dtdo_len; i++) {
9922 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9923
9924 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9925 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9926 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9927 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9928 return (0);
9929 }
9930
9931 return (1);
9932 }
9933
9934 static void
dtrace_difo_hold(dtrace_difo_t * dp)9935 dtrace_difo_hold(dtrace_difo_t *dp)
9936 {
9937 int i;
9938
9939 ASSERT(MUTEX_HELD(&dtrace_lock));
9940
9941 dp->dtdo_refcnt++;
9942 ASSERT(dp->dtdo_refcnt != 0);
9943
9944 /*
9945 * We need to check this DIF object for references to the variable
9946 * DIF_VAR_VTIMESTAMP.
9947 */
9948 for (i = 0; i < dp->dtdo_varlen; i++) {
9949 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9950
9951 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9952 continue;
9953
9954 if (dtrace_vtime_references++ == 0)
9955 dtrace_vtime_enable();
9956 }
9957 }
9958
9959 /*
9960 * This routine calculates the dynamic variable chunksize for a given DIF
9961 * object. The calculation is not fool-proof, and can probably be tricked by
9962 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9963 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9964 * if a dynamic variable size exceeds the chunksize.
9965 */
9966 static void
dtrace_difo_chunksize(dtrace_difo_t * dp,dtrace_vstate_t * vstate)9967 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9968 {
9969 uint64_t sval;
9970 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9971 const dif_instr_t *text = dp->dtdo_buf;
9972 uint_t pc, srd = 0;
9973 uint_t ttop = 0;
9974 size_t size, ksize;
9975 uint_t id, i;
9976
9977 for (pc = 0; pc < dp->dtdo_len; pc++) {
9978 dif_instr_t instr = text[pc];
9979 uint_t op = DIF_INSTR_OP(instr);
9980 uint_t rd = DIF_INSTR_RD(instr);
9981 uint_t r1 = DIF_INSTR_R1(instr);
9982 uint_t nkeys = 0;
9983 uchar_t scope;
9984
9985 dtrace_key_t *key = tupregs;
9986
9987 switch (op) {
9988 case DIF_OP_SETX:
9989 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9990 srd = rd;
9991 continue;
9992
9993 case DIF_OP_STTS:
9994 key = &tupregs[DIF_DTR_NREGS];
9995 key[0].dttk_size = 0;
9996 key[1].dttk_size = 0;
9997 nkeys = 2;
9998 scope = DIFV_SCOPE_THREAD;
9999 break;
10000
10001 case DIF_OP_STGAA:
10002 case DIF_OP_STTAA:
10003 nkeys = ttop;
10004
10005 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10006 key[nkeys++].dttk_size = 0;
10007
10008 key[nkeys++].dttk_size = 0;
10009
10010 if (op == DIF_OP_STTAA) {
10011 scope = DIFV_SCOPE_THREAD;
10012 } else {
10013 scope = DIFV_SCOPE_GLOBAL;
10014 }
10015
10016 break;
10017
10018 case DIF_OP_PUSHTR:
10019 if (ttop == DIF_DTR_NREGS)
10020 return;
10021
10022 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10023 /*
10024 * If the register for the size of the "pushtr"
10025 * is %r0 (or the value is 0) and the type is
10026 * a string, we'll use the system-wide default
10027 * string size.
10028 */
10029 tupregs[ttop++].dttk_size =
10030 dtrace_strsize_default;
10031 } else {
10032 if (srd == 0)
10033 return;
10034
10035 if (sval > LONG_MAX)
10036 return;
10037
10038 tupregs[ttop++].dttk_size = sval;
10039 }
10040
10041 break;
10042
10043 case DIF_OP_PUSHTV:
10044 if (ttop == DIF_DTR_NREGS)
10045 return;
10046
10047 tupregs[ttop++].dttk_size = 0;
10048 break;
10049
10050 case DIF_OP_FLUSHTS:
10051 ttop = 0;
10052 break;
10053
10054 case DIF_OP_POPTS:
10055 if (ttop != 0)
10056 ttop--;
10057 break;
10058 }
10059
10060 sval = 0;
10061 srd = 0;
10062
10063 if (nkeys == 0)
10064 continue;
10065
10066 /*
10067 * We have a dynamic variable allocation; calculate its size.
10068 */
10069 for (ksize = 0, i = 0; i < nkeys; i++)
10070 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10071
10072 size = sizeof (dtrace_dynvar_t);
10073 size += sizeof (dtrace_key_t) * (nkeys - 1);
10074 size += ksize;
10075
10076 /*
10077 * Now we need to determine the size of the stored data.
10078 */
10079 id = DIF_INSTR_VAR(instr);
10080
10081 for (i = 0; i < dp->dtdo_varlen; i++) {
10082 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10083
10084 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10085 size += v->dtdv_type.dtdt_size;
10086 break;
10087 }
10088 }
10089
10090 if (i == dp->dtdo_varlen)
10091 return;
10092
10093 /*
10094 * We have the size. If this is larger than the chunk size
10095 * for our dynamic variable state, reset the chunk size.
10096 */
10097 size = P2ROUNDUP(size, sizeof (uint64_t));
10098
10099 /*
10100 * Before setting the chunk size, check that we're not going
10101 * to set it to a negative value...
10102 */
10103 if (size > LONG_MAX)
10104 return;
10105
10106 /*
10107 * ...and make certain that we didn't badly overflow.
10108 */
10109 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10110 return;
10111
10112 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10113 vstate->dtvs_dynvars.dtds_chunksize = size;
10114 }
10115 }
10116
10117 static void
dtrace_difo_init(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10118 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10119 {
10120 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10121 uint_t id;
10122
10123 ASSERT(MUTEX_HELD(&dtrace_lock));
10124 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10125
10126 for (i = 0; i < dp->dtdo_varlen; i++) {
10127 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10128 dtrace_statvar_t *svar, ***svarp;
10129 size_t dsize = 0;
10130 uint8_t scope = v->dtdv_scope;
10131 int *np;
10132
10133 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10134 continue;
10135
10136 id -= DIF_VAR_OTHER_UBASE;
10137
10138 switch (scope) {
10139 case DIFV_SCOPE_THREAD:
10140 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10141 dtrace_difv_t *tlocals;
10142
10143 if ((ntlocals = (otlocals << 1)) == 0)
10144 ntlocals = 1;
10145
10146 osz = otlocals * sizeof (dtrace_difv_t);
10147 nsz = ntlocals * sizeof (dtrace_difv_t);
10148
10149 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10150
10151 if (osz != 0) {
10152 bcopy(vstate->dtvs_tlocals,
10153 tlocals, osz);
10154 kmem_free(vstate->dtvs_tlocals, osz);
10155 }
10156
10157 vstate->dtvs_tlocals = tlocals;
10158 vstate->dtvs_ntlocals = ntlocals;
10159 }
10160
10161 vstate->dtvs_tlocals[id] = *v;
10162 continue;
10163
10164 case DIFV_SCOPE_LOCAL:
10165 np = &vstate->dtvs_nlocals;
10166 svarp = &vstate->dtvs_locals;
10167
10168 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10169 dsize = NCPU * (v->dtdv_type.dtdt_size +
10170 sizeof (uint64_t));
10171 else
10172 dsize = NCPU * sizeof (uint64_t);
10173
10174 break;
10175
10176 case DIFV_SCOPE_GLOBAL:
10177 np = &vstate->dtvs_nglobals;
10178 svarp = &vstate->dtvs_globals;
10179
10180 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10181 dsize = v->dtdv_type.dtdt_size +
10182 sizeof (uint64_t);
10183
10184 break;
10185
10186 default:
10187 ASSERT(0);
10188 }
10189
10190 while (id >= (oldsvars = *np)) {
10191 dtrace_statvar_t **statics;
10192 int newsvars, oldsize, newsize;
10193
10194 if ((newsvars = (oldsvars << 1)) == 0)
10195 newsvars = 1;
10196
10197 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10198 newsize = newsvars * sizeof (dtrace_statvar_t *);
10199
10200 statics = kmem_zalloc(newsize, KM_SLEEP);
10201
10202 if (oldsize != 0) {
10203 bcopy(*svarp, statics, oldsize);
10204 kmem_free(*svarp, oldsize);
10205 }
10206
10207 *svarp = statics;
10208 *np = newsvars;
10209 }
10210
10211 if ((svar = (*svarp)[id]) == NULL) {
10212 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10213 svar->dtsv_var = *v;
10214
10215 if ((svar->dtsv_size = dsize) != 0) {
10216 svar->dtsv_data = (uint64_t)(uintptr_t)
10217 kmem_zalloc(dsize, KM_SLEEP);
10218 }
10219
10220 (*svarp)[id] = svar;
10221 }
10222
10223 svar->dtsv_refcnt++;
10224 }
10225
10226 dtrace_difo_chunksize(dp, vstate);
10227 dtrace_difo_hold(dp);
10228 }
10229
10230 static dtrace_difo_t *
dtrace_difo_duplicate(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10231 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10232 {
10233 dtrace_difo_t *new;
10234 size_t sz;
10235
10236 ASSERT(dp->dtdo_buf != NULL);
10237 ASSERT(dp->dtdo_refcnt != 0);
10238
10239 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10240
10241 ASSERT(dp->dtdo_buf != NULL);
10242 sz = dp->dtdo_len * sizeof (dif_instr_t);
10243 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10244 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10245 new->dtdo_len = dp->dtdo_len;
10246
10247 if (dp->dtdo_strtab != NULL) {
10248 ASSERT(dp->dtdo_strlen != 0);
10249 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10250 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10251 new->dtdo_strlen = dp->dtdo_strlen;
10252 }
10253
10254 if (dp->dtdo_inttab != NULL) {
10255 ASSERT(dp->dtdo_intlen != 0);
10256 sz = dp->dtdo_intlen * sizeof (uint64_t);
10257 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10258 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10259 new->dtdo_intlen = dp->dtdo_intlen;
10260 }
10261
10262 if (dp->dtdo_vartab != NULL) {
10263 ASSERT(dp->dtdo_varlen != 0);
10264 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10265 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10266 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10267 new->dtdo_varlen = dp->dtdo_varlen;
10268 }
10269
10270 dtrace_difo_init(new, vstate);
10271 return (new);
10272 }
10273
10274 static void
dtrace_difo_destroy(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10275 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10276 {
10277 int i;
10278
10279 ASSERT(dp->dtdo_refcnt == 0);
10280
10281 for (i = 0; i < dp->dtdo_varlen; i++) {
10282 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10283 dtrace_statvar_t *svar, **svarp;
10284 uint_t id;
10285 uint8_t scope = v->dtdv_scope;
10286 int *np;
10287
10288 switch (scope) {
10289 case DIFV_SCOPE_THREAD:
10290 continue;
10291
10292 case DIFV_SCOPE_LOCAL:
10293 np = &vstate->dtvs_nlocals;
10294 svarp = vstate->dtvs_locals;
10295 break;
10296
10297 case DIFV_SCOPE_GLOBAL:
10298 np = &vstate->dtvs_nglobals;
10299 svarp = vstate->dtvs_globals;
10300 break;
10301
10302 default:
10303 ASSERT(0);
10304 }
10305
10306 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10307 continue;
10308
10309 id -= DIF_VAR_OTHER_UBASE;
10310 ASSERT(id < *np);
10311
10312 svar = svarp[id];
10313 ASSERT(svar != NULL);
10314 ASSERT(svar->dtsv_refcnt > 0);
10315
10316 if (--svar->dtsv_refcnt > 0)
10317 continue;
10318
10319 if (svar->dtsv_size != 0) {
10320 ASSERT(svar->dtsv_data != 0);
10321 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10322 svar->dtsv_size);
10323 }
10324
10325 kmem_free(svar, sizeof (dtrace_statvar_t));
10326 svarp[id] = NULL;
10327 }
10328
10329 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10330 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10331 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10332 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10333
10334 kmem_free(dp, sizeof (dtrace_difo_t));
10335 }
10336
10337 static void
dtrace_difo_release(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10338 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10339 {
10340 int i;
10341
10342 ASSERT(MUTEX_HELD(&dtrace_lock));
10343 ASSERT(dp->dtdo_refcnt != 0);
10344
10345 for (i = 0; i < dp->dtdo_varlen; i++) {
10346 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10347
10348 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10349 continue;
10350
10351 ASSERT(dtrace_vtime_references > 0);
10352 if (--dtrace_vtime_references == 0)
10353 dtrace_vtime_disable();
10354 }
10355
10356 if (--dp->dtdo_refcnt == 0)
10357 dtrace_difo_destroy(dp, vstate);
10358 }
10359
10360 /*
10361 * DTrace Format Functions
10362 */
10363 static uint16_t
dtrace_format_add(dtrace_state_t * state,char * str)10364 dtrace_format_add(dtrace_state_t *state, char *str)
10365 {
10366 char *fmt, **new;
10367 uint16_t ndx, len = strlen(str) + 1;
10368
10369 fmt = kmem_zalloc(len, KM_SLEEP);
10370 bcopy(str, fmt, len);
10371
10372 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10373 if (state->dts_formats[ndx] == NULL) {
10374 state->dts_formats[ndx] = fmt;
10375 return (ndx + 1);
10376 }
10377 }
10378
10379 if (state->dts_nformats == USHRT_MAX) {
10380 /*
10381 * This is only likely if a denial-of-service attack is being
10382 * attempted. As such, it's okay to fail silently here.
10383 */
10384 kmem_free(fmt, len);
10385 return (0);
10386 }
10387
10388 /*
10389 * For simplicity, we always resize the formats array to be exactly the
10390 * number of formats.
10391 */
10392 ndx = state->dts_nformats++;
10393 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10394
10395 if (state->dts_formats != NULL) {
10396 ASSERT(ndx != 0);
10397 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10398 kmem_free(state->dts_formats, ndx * sizeof (char *));
10399 }
10400
10401 state->dts_formats = new;
10402 state->dts_formats[ndx] = fmt;
10403
10404 return (ndx + 1);
10405 }
10406
10407 static void
dtrace_format_remove(dtrace_state_t * state,uint16_t format)10408 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10409 {
10410 char *fmt;
10411
10412 ASSERT(state->dts_formats != NULL);
10413 ASSERT(format <= state->dts_nformats);
10414 ASSERT(state->dts_formats[format - 1] != NULL);
10415
10416 fmt = state->dts_formats[format - 1];
10417 kmem_free(fmt, strlen(fmt) + 1);
10418 state->dts_formats[format - 1] = NULL;
10419 }
10420
10421 static void
dtrace_format_destroy(dtrace_state_t * state)10422 dtrace_format_destroy(dtrace_state_t *state)
10423 {
10424 int i;
10425
10426 if (state->dts_nformats == 0) {
10427 ASSERT(state->dts_formats == NULL);
10428 return;
10429 }
10430
10431 ASSERT(state->dts_formats != NULL);
10432
10433 for (i = 0; i < state->dts_nformats; i++) {
10434 char *fmt = state->dts_formats[i];
10435
10436 if (fmt == NULL)
10437 continue;
10438
10439 kmem_free(fmt, strlen(fmt) + 1);
10440 }
10441
10442 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10443 state->dts_nformats = 0;
10444 state->dts_formats = NULL;
10445 }
10446
10447 /*
10448 * DTrace Predicate Functions
10449 */
10450 static dtrace_predicate_t *
dtrace_predicate_create(dtrace_difo_t * dp)10451 dtrace_predicate_create(dtrace_difo_t *dp)
10452 {
10453 dtrace_predicate_t *pred;
10454
10455 ASSERT(MUTEX_HELD(&dtrace_lock));
10456 ASSERT(dp->dtdo_refcnt != 0);
10457
10458 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10459 pred->dtp_difo = dp;
10460 pred->dtp_refcnt = 1;
10461
10462 if (!dtrace_difo_cacheable(dp))
10463 return (pred);
10464
10465 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10466 /*
10467 * This is only theoretically possible -- we have had 2^32
10468 * cacheable predicates on this machine. We cannot allow any
10469 * more predicates to become cacheable: as unlikely as it is,
10470 * there may be a thread caching a (now stale) predicate cache
10471 * ID. (N.B.: the temptation is being successfully resisted to
10472 * have this cmn_err() "Holy shit -- we executed this code!")
10473 */
10474 return (pred);
10475 }
10476
10477 pred->dtp_cacheid = dtrace_predcache_id++;
10478
10479 return (pred);
10480 }
10481
10482 static void
dtrace_predicate_hold(dtrace_predicate_t * pred)10483 dtrace_predicate_hold(dtrace_predicate_t *pred)
10484 {
10485 ASSERT(MUTEX_HELD(&dtrace_lock));
10486 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10487 ASSERT(pred->dtp_refcnt > 0);
10488
10489 pred->dtp_refcnt++;
10490 }
10491
10492 static void
dtrace_predicate_release(dtrace_predicate_t * pred,dtrace_vstate_t * vstate)10493 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10494 {
10495 dtrace_difo_t *dp = pred->dtp_difo;
10496
10497 ASSERT(MUTEX_HELD(&dtrace_lock));
10498 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10499 ASSERT(pred->dtp_refcnt > 0);
10500
10501 if (--pred->dtp_refcnt == 0) {
10502 dtrace_difo_release(pred->dtp_difo, vstate);
10503 kmem_free(pred, sizeof (dtrace_predicate_t));
10504 }
10505 }
10506
10507 /*
10508 * DTrace Action Description Functions
10509 */
10510 static dtrace_actdesc_t *
dtrace_actdesc_create(dtrace_actkind_t kind,uint32_t ntuple,uint64_t uarg,uint64_t arg)10511 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10512 uint64_t uarg, uint64_t arg)
10513 {
10514 dtrace_actdesc_t *act;
10515
10516 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != 0 &&
10517 arg >= KERNELBASE) || (arg == 0 && kind == DTRACEACT_PRINTA));
10518
10519 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10520 act->dtad_kind = kind;
10521 act->dtad_ntuple = ntuple;
10522 act->dtad_uarg = uarg;
10523 act->dtad_arg = arg;
10524 act->dtad_refcnt = 1;
10525
10526 return (act);
10527 }
10528
10529 static void
dtrace_actdesc_hold(dtrace_actdesc_t * act)10530 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10531 {
10532 ASSERT(act->dtad_refcnt >= 1);
10533 act->dtad_refcnt++;
10534 }
10535
10536 static void
dtrace_actdesc_release(dtrace_actdesc_t * act,dtrace_vstate_t * vstate)10537 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10538 {
10539 dtrace_actkind_t kind = act->dtad_kind;
10540 dtrace_difo_t *dp;
10541
10542 ASSERT(act->dtad_refcnt >= 1);
10543
10544 if (--act->dtad_refcnt != 0)
10545 return;
10546
10547 if ((dp = act->dtad_difo) != NULL)
10548 dtrace_difo_release(dp, vstate);
10549
10550 if (DTRACEACT_ISPRINTFLIKE(kind)) {
10551 char *str = (char *)(uintptr_t)act->dtad_arg;
10552
10553 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10554 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10555
10556 if (str != NULL)
10557 kmem_free(str, strlen(str) + 1);
10558 }
10559
10560 kmem_free(act, sizeof (dtrace_actdesc_t));
10561 }
10562
10563 /*
10564 * DTrace ECB Functions
10565 */
10566 static dtrace_ecb_t *
dtrace_ecb_add(dtrace_state_t * state,dtrace_probe_t * probe)10567 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10568 {
10569 dtrace_ecb_t *ecb;
10570 dtrace_epid_t epid;
10571
10572 ASSERT(MUTEX_HELD(&dtrace_lock));
10573
10574 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10575 ecb->dte_predicate = NULL;
10576 ecb->dte_probe = probe;
10577
10578 /*
10579 * The default size is the size of the default action: recording
10580 * the header.
10581 */
10582 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10583 ecb->dte_alignment = sizeof (dtrace_epid_t);
10584
10585 epid = state->dts_epid++;
10586
10587 if (epid - 1 >= state->dts_necbs) {
10588 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10589 int necbs = state->dts_necbs << 1;
10590
10591 ASSERT(epid == state->dts_necbs + 1);
10592
10593 if (necbs == 0) {
10594 ASSERT(oecbs == NULL);
10595 necbs = 1;
10596 }
10597
10598 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10599
10600 if (oecbs != NULL)
10601 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10602
10603 dtrace_membar_producer();
10604 state->dts_ecbs = ecbs;
10605
10606 if (oecbs != NULL) {
10607 /*
10608 * If this state is active, we must dtrace_sync()
10609 * before we can free the old dts_ecbs array: we're
10610 * coming in hot, and there may be active ring
10611 * buffer processing (which indexes into the dts_ecbs
10612 * array) on another CPU.
10613 */
10614 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10615 dtrace_sync();
10616
10617 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10618 }
10619
10620 dtrace_membar_producer();
10621 state->dts_necbs = necbs;
10622 }
10623
10624 ecb->dte_state = state;
10625
10626 ASSERT(state->dts_ecbs[epid - 1] == NULL);
10627 dtrace_membar_producer();
10628 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10629
10630 return (ecb);
10631 }
10632
10633 static int
dtrace_ecb_enable(dtrace_ecb_t * ecb)10634 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10635 {
10636 dtrace_probe_t *probe = ecb->dte_probe;
10637
10638 ASSERT(MUTEX_HELD(&cpu_lock));
10639 ASSERT(MUTEX_HELD(&dtrace_lock));
10640 ASSERT(ecb->dte_next == NULL);
10641
10642 if (probe == NULL) {
10643 /*
10644 * This is the NULL probe -- there's nothing to do.
10645 */
10646 return (0);
10647 }
10648
10649 if (probe->dtpr_ecb == NULL) {
10650 dtrace_provider_t *prov = probe->dtpr_provider;
10651
10652 /*
10653 * We're the first ECB on this probe.
10654 */
10655 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10656
10657 if (ecb->dte_predicate != NULL)
10658 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10659
10660 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10661 probe->dtpr_id, probe->dtpr_arg));
10662 } else {
10663 /*
10664 * This probe is already active. Swing the last pointer to
10665 * point to the new ECB and invalidate the predicate cache.
10666 * (It will be up to the caller to call dtrace_sync() to
10667 * assure that all CPUs have seen the change.)
10668 */
10669 ASSERT(probe->dtpr_ecb_last != NULL);
10670 probe->dtpr_ecb_last->dte_next = ecb;
10671 probe->dtpr_ecb_last = ecb;
10672 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
10673 return (0);
10674 }
10675 }
10676
10677 static int
dtrace_ecb_resize(dtrace_ecb_t * ecb)10678 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10679 {
10680 dtrace_action_t *act;
10681 uint32_t curneeded = UINT32_MAX;
10682 uint32_t aggbase = UINT32_MAX;
10683
10684 /*
10685 * If we record anything, we always record the dtrace_rechdr_t. (And
10686 * we always record it first.)
10687 */
10688 ecb->dte_size = sizeof (dtrace_rechdr_t);
10689 ecb->dte_alignment = sizeof (dtrace_epid_t);
10690
10691 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10692 dtrace_recdesc_t *rec = &act->dta_rec;
10693 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10694
10695 ecb->dte_alignment = MAX(ecb->dte_alignment,
10696 rec->dtrd_alignment);
10697
10698 if (DTRACEACT_ISAGG(act->dta_kind)) {
10699 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10700
10701 ASSERT(rec->dtrd_size != 0);
10702 ASSERT(agg->dtag_first != NULL);
10703 ASSERT(act->dta_prev->dta_intuple);
10704 ASSERT(aggbase != UINT32_MAX);
10705 ASSERT(curneeded != UINT32_MAX);
10706
10707 agg->dtag_base = aggbase;
10708
10709 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10710 rec->dtrd_offset = curneeded;
10711 if (curneeded + rec->dtrd_size < curneeded)
10712 return (EINVAL);
10713 curneeded += rec->dtrd_size;
10714 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10715
10716 aggbase = UINT32_MAX;
10717 curneeded = UINT32_MAX;
10718 } else if (act->dta_intuple) {
10719 if (curneeded == UINT32_MAX) {
10720 /*
10721 * This is the first record in a tuple. Align
10722 * curneeded to be at offset 4 in an 8-byte
10723 * aligned block.
10724 */
10725 ASSERT(act->dta_prev == NULL ||
10726 !act->dta_prev->dta_intuple);
10727 ASSERT3U(aggbase, ==, UINT32_MAX);
10728 curneeded = P2PHASEUP(ecb->dte_size,
10729 sizeof (uint64_t), sizeof (dtrace_aggid_t));
10730
10731 aggbase = curneeded - sizeof (dtrace_aggid_t);
10732 ASSERT(IS_P2ALIGNED(aggbase,
10733 sizeof (uint64_t)));
10734 }
10735 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10736 rec->dtrd_offset = curneeded;
10737 if (curneeded + rec->dtrd_size < curneeded)
10738 return (EINVAL);
10739 curneeded += rec->dtrd_size;
10740 } else {
10741 /* tuples must be followed by an aggregation */
10742 ASSERT(act->dta_prev == NULL ||
10743 !act->dta_prev->dta_intuple);
10744
10745 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10746 rec->dtrd_alignment);
10747 rec->dtrd_offset = ecb->dte_size;
10748 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
10749 return (EINVAL);
10750 ecb->dte_size += rec->dtrd_size;
10751 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10752 }
10753 }
10754
10755 if ((act = ecb->dte_action) != NULL &&
10756 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10757 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10758 /*
10759 * If the size is still sizeof (dtrace_rechdr_t), then all
10760 * actions store no data; set the size to 0.
10761 */
10762 ecb->dte_size = 0;
10763 }
10764
10765 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10766 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10767 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10768 ecb->dte_needed);
10769 return (0);
10770 }
10771
10772 static dtrace_action_t *
dtrace_ecb_aggregation_create(dtrace_ecb_t * ecb,dtrace_actdesc_t * desc)10773 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10774 {
10775 dtrace_aggregation_t *agg;
10776 size_t size = sizeof (uint64_t);
10777 int ntuple = desc->dtad_ntuple;
10778 dtrace_action_t *act;
10779 dtrace_recdesc_t *frec;
10780 dtrace_aggid_t aggid;
10781 dtrace_state_t *state = ecb->dte_state;
10782
10783 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10784 agg->dtag_ecb = ecb;
10785
10786 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10787
10788 switch (desc->dtad_kind) {
10789 case DTRACEAGG_MIN:
10790 agg->dtag_initial = INT64_MAX;
10791 agg->dtag_aggregate = dtrace_aggregate_min;
10792 break;
10793
10794 case DTRACEAGG_MAX:
10795 agg->dtag_initial = INT64_MIN;
10796 agg->dtag_aggregate = dtrace_aggregate_max;
10797 break;
10798
10799 case DTRACEAGG_COUNT:
10800 agg->dtag_aggregate = dtrace_aggregate_count;
10801 break;
10802
10803 case DTRACEAGG_QUANTIZE:
10804 agg->dtag_aggregate = dtrace_aggregate_quantize;
10805 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10806 sizeof (uint64_t);
10807 break;
10808
10809 case DTRACEAGG_LQUANTIZE: {
10810 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10811 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10812
10813 agg->dtag_initial = desc->dtad_arg;
10814 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10815
10816 if (step == 0 || levels == 0)
10817 goto err;
10818
10819 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10820 break;
10821 }
10822
10823 case DTRACEAGG_LLQUANTIZE: {
10824 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10825 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10826 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10827 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10828 int64_t v;
10829
10830 agg->dtag_initial = desc->dtad_arg;
10831 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10832
10833 if (factor < 2 || low >= high || nsteps < factor)
10834 goto err;
10835
10836 /*
10837 * Now check that the number of steps evenly divides a power
10838 * of the factor. (This assures both integer bucket size and
10839 * linearity within each magnitude.)
10840 */
10841 for (v = factor; v < nsteps; v *= factor)
10842 continue;
10843
10844 if ((v % nsteps) || (nsteps % factor))
10845 goto err;
10846
10847 size = (dtrace_aggregate_llquantize_bucket(factor,
10848 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10849 break;
10850 }
10851
10852 case DTRACEAGG_AVG:
10853 agg->dtag_aggregate = dtrace_aggregate_avg;
10854 size = sizeof (uint64_t) * 2;
10855 break;
10856
10857 case DTRACEAGG_STDDEV:
10858 agg->dtag_aggregate = dtrace_aggregate_stddev;
10859 size = sizeof (uint64_t) * 4;
10860 break;
10861
10862 case DTRACEAGG_SUM:
10863 agg->dtag_aggregate = dtrace_aggregate_sum;
10864 break;
10865
10866 default:
10867 goto err;
10868 }
10869
10870 agg->dtag_action.dta_rec.dtrd_size = size;
10871
10872 if (ntuple == 0)
10873 goto err;
10874
10875 /*
10876 * We must make sure that we have enough actions for the n-tuple.
10877 */
10878 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10879 if (DTRACEACT_ISAGG(act->dta_kind))
10880 break;
10881
10882 if (--ntuple == 0) {
10883 /*
10884 * This is the action with which our n-tuple begins.
10885 */
10886 agg->dtag_first = act;
10887 goto success;
10888 }
10889 }
10890
10891 /*
10892 * This n-tuple is short by ntuple elements. Return failure.
10893 */
10894 ASSERT(ntuple != 0);
10895 err:
10896 kmem_free(agg, sizeof (dtrace_aggregation_t));
10897 return (NULL);
10898
10899 success:
10900 /*
10901 * If the last action in the tuple has a size of zero, it's actually
10902 * an expression argument for the aggregating action.
10903 */
10904 ASSERT(ecb->dte_action_last != NULL);
10905 act = ecb->dte_action_last;
10906
10907 if (act->dta_kind == DTRACEACT_DIFEXPR) {
10908 ASSERT(act->dta_difo != NULL);
10909
10910 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10911 agg->dtag_hasarg = 1;
10912 }
10913
10914 /*
10915 * We need to allocate an id for this aggregation.
10916 */
10917 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10918 VM_BESTFIT | VM_SLEEP);
10919
10920 if (aggid - 1 >= state->dts_naggregations) {
10921 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10922 dtrace_aggregation_t **aggs;
10923 int naggs = state->dts_naggregations << 1;
10924 int onaggs = state->dts_naggregations;
10925
10926 ASSERT(aggid == state->dts_naggregations + 1);
10927
10928 if (naggs == 0) {
10929 ASSERT(oaggs == NULL);
10930 naggs = 1;
10931 }
10932
10933 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10934
10935 if (oaggs != NULL) {
10936 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10937 kmem_free(oaggs, onaggs * sizeof (*aggs));
10938 }
10939
10940 state->dts_aggregations = aggs;
10941 state->dts_naggregations = naggs;
10942 }
10943
10944 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10945 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10946
10947 frec = &agg->dtag_first->dta_rec;
10948 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10949 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10950
10951 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10952 ASSERT(!act->dta_intuple);
10953 act->dta_intuple = 1;
10954 }
10955
10956 return (&agg->dtag_action);
10957 }
10958
10959 static void
dtrace_ecb_aggregation_destroy(dtrace_ecb_t * ecb,dtrace_action_t * act)10960 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10961 {
10962 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10963 dtrace_state_t *state = ecb->dte_state;
10964 dtrace_aggid_t aggid = agg->dtag_id;
10965
10966 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10967 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10968
10969 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10970 state->dts_aggregations[aggid - 1] = NULL;
10971
10972 kmem_free(agg, sizeof (dtrace_aggregation_t));
10973 }
10974
10975 static int
dtrace_ecb_action_add(dtrace_ecb_t * ecb,dtrace_actdesc_t * desc)10976 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10977 {
10978 dtrace_action_t *action, *last;
10979 dtrace_difo_t *dp = desc->dtad_difo;
10980 uint32_t size = 0, align = sizeof (uint8_t), mask;
10981 uint16_t format = 0;
10982 dtrace_recdesc_t *rec;
10983 dtrace_state_t *state = ecb->dte_state;
10984 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10985 uint64_t arg = desc->dtad_arg;
10986
10987 ASSERT(MUTEX_HELD(&dtrace_lock));
10988 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10989
10990 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10991 /*
10992 * If this is an aggregating action, there must be neither
10993 * a speculate nor a commit on the action chain.
10994 */
10995 dtrace_action_t *act;
10996
10997 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10998 if (act->dta_kind == DTRACEACT_COMMIT)
10999 return (EINVAL);
11000
11001 if (act->dta_kind == DTRACEACT_SPECULATE)
11002 return (EINVAL);
11003 }
11004
11005 action = dtrace_ecb_aggregation_create(ecb, desc);
11006
11007 if (action == NULL)
11008 return (EINVAL);
11009 } else {
11010 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11011 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11012 dp != NULL && dp->dtdo_destructive)) {
11013 state->dts_destructive = 1;
11014 }
11015
11016 switch (desc->dtad_kind) {
11017 case DTRACEACT_PRINTF:
11018 case DTRACEACT_PRINTA:
11019 case DTRACEACT_SYSTEM:
11020 case DTRACEACT_FREOPEN:
11021 case DTRACEACT_DIFEXPR:
11022 /*
11023 * We know that our arg is a string -- turn it into a
11024 * format.
11025 */
11026 if (arg == 0) {
11027 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11028 desc->dtad_kind == DTRACEACT_DIFEXPR);
11029 format = 0;
11030 } else {
11031 ASSERT(arg != 0);
11032 ASSERT(arg > KERNELBASE);
11033 format = dtrace_format_add(state,
11034 (char *)(uintptr_t)arg);
11035 }
11036
11037 /*FALLTHROUGH*/
11038 case DTRACEACT_LIBACT:
11039 case DTRACEACT_TRACEMEM:
11040 case DTRACEACT_TRACEMEM_DYNSIZE:
11041 if (dp == NULL)
11042 return (EINVAL);
11043
11044 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11045 break;
11046
11047 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11048 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11049 return (EINVAL);
11050
11051 size = opt[DTRACEOPT_STRSIZE];
11052 }
11053
11054 break;
11055
11056 case DTRACEACT_STACK:
11057 if ((nframes = arg) == 0) {
11058 nframes = opt[DTRACEOPT_STACKFRAMES];
11059 ASSERT(nframes > 0);
11060 arg = nframes;
11061 }
11062
11063 size = nframes * sizeof (pc_t);
11064 break;
11065
11066 case DTRACEACT_JSTACK:
11067 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11068 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11069
11070 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11071 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11072
11073 arg = DTRACE_USTACK_ARG(nframes, strsize);
11074
11075 /*FALLTHROUGH*/
11076 case DTRACEACT_USTACK:
11077 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11078 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11079 strsize = DTRACE_USTACK_STRSIZE(arg);
11080 nframes = opt[DTRACEOPT_USTACKFRAMES];
11081 ASSERT(nframes > 0);
11082 arg = DTRACE_USTACK_ARG(nframes, strsize);
11083 }
11084
11085 /*
11086 * Save a slot for the pid.
11087 */
11088 size = (nframes + 1) * sizeof (uint64_t);
11089 size += DTRACE_USTACK_STRSIZE(arg);
11090 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11091
11092 break;
11093
11094 case DTRACEACT_SYM:
11095 case DTRACEACT_MOD:
11096 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11097 sizeof (uint64_t)) ||
11098 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11099 return (EINVAL);
11100 break;
11101
11102 case DTRACEACT_USYM:
11103 case DTRACEACT_UMOD:
11104 case DTRACEACT_UADDR:
11105 if (dp == NULL ||
11106 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11107 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11108 return (EINVAL);
11109
11110 /*
11111 * We have a slot for the pid, plus a slot for the
11112 * argument. To keep things simple (aligned with
11113 * bitness-neutral sizing), we store each as a 64-bit
11114 * quantity.
11115 */
11116 size = 2 * sizeof (uint64_t);
11117 break;
11118
11119 case DTRACEACT_STOP:
11120 case DTRACEACT_BREAKPOINT:
11121 case DTRACEACT_PANIC:
11122 break;
11123
11124 case DTRACEACT_CHILL:
11125 case DTRACEACT_DISCARD:
11126 case DTRACEACT_RAISE:
11127 if (dp == NULL)
11128 return (EINVAL);
11129 break;
11130
11131 case DTRACEACT_EXIT:
11132 if (dp == NULL ||
11133 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11134 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11135 return (EINVAL);
11136 break;
11137
11138 case DTRACEACT_SPECULATE:
11139 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11140 return (EINVAL);
11141
11142 if (dp == NULL)
11143 return (EINVAL);
11144
11145 state->dts_speculates = 1;
11146 break;
11147
11148 case DTRACEACT_COMMIT: {
11149 dtrace_action_t *act = ecb->dte_action;
11150
11151 for (; act != NULL; act = act->dta_next) {
11152 if (act->dta_kind == DTRACEACT_COMMIT)
11153 return (EINVAL);
11154 }
11155
11156 if (dp == NULL)
11157 return (EINVAL);
11158 break;
11159 }
11160
11161 default:
11162 return (EINVAL);
11163 }
11164
11165 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11166 /*
11167 * If this is a data-storing action or a speculate,
11168 * we must be sure that there isn't a commit on the
11169 * action chain.
11170 */
11171 dtrace_action_t *act = ecb->dte_action;
11172
11173 for (; act != NULL; act = act->dta_next) {
11174 if (act->dta_kind == DTRACEACT_COMMIT)
11175 return (EINVAL);
11176 }
11177 }
11178
11179 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11180 action->dta_rec.dtrd_size = size;
11181 }
11182
11183 action->dta_refcnt = 1;
11184 rec = &action->dta_rec;
11185 size = rec->dtrd_size;
11186
11187 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11188 if (!(size & mask)) {
11189 align = mask + 1;
11190 break;
11191 }
11192 }
11193
11194 action->dta_kind = desc->dtad_kind;
11195
11196 if ((action->dta_difo = dp) != NULL)
11197 dtrace_difo_hold(dp);
11198
11199 rec->dtrd_action = action->dta_kind;
11200 rec->dtrd_arg = arg;
11201 rec->dtrd_uarg = desc->dtad_uarg;
11202 rec->dtrd_alignment = (uint16_t)align;
11203 rec->dtrd_format = format;
11204
11205 if ((last = ecb->dte_action_last) != NULL) {
11206 ASSERT(ecb->dte_action != NULL);
11207 action->dta_prev = last;
11208 last->dta_next = action;
11209 } else {
11210 ASSERT(ecb->dte_action == NULL);
11211 ecb->dte_action = action;
11212 }
11213
11214 ecb->dte_action_last = action;
11215
11216 return (0);
11217 }
11218
11219 static void
dtrace_ecb_action_remove(dtrace_ecb_t * ecb)11220 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11221 {
11222 dtrace_action_t *act = ecb->dte_action, *next;
11223 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11224 dtrace_difo_t *dp;
11225 uint16_t format;
11226
11227 if (act != NULL && act->dta_refcnt > 1) {
11228 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11229 act->dta_refcnt--;
11230 } else {
11231 for (; act != NULL; act = next) {
11232 next = act->dta_next;
11233 ASSERT(next != NULL || act == ecb->dte_action_last);
11234 ASSERT(act->dta_refcnt == 1);
11235
11236 if ((format = act->dta_rec.dtrd_format) != 0)
11237 dtrace_format_remove(ecb->dte_state, format);
11238
11239 if ((dp = act->dta_difo) != NULL)
11240 dtrace_difo_release(dp, vstate);
11241
11242 if (DTRACEACT_ISAGG(act->dta_kind)) {
11243 dtrace_ecb_aggregation_destroy(ecb, act);
11244 } else {
11245 kmem_free(act, sizeof (dtrace_action_t));
11246 }
11247 }
11248 }
11249
11250 ecb->dte_action = NULL;
11251 ecb->dte_action_last = NULL;
11252 ecb->dte_size = 0;
11253 }
11254
11255 static void
dtrace_ecb_disable(dtrace_ecb_t * ecb)11256 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11257 {
11258 /*
11259 * We disable the ECB by removing it from its probe.
11260 */
11261 dtrace_ecb_t *pecb, *prev = NULL;
11262 dtrace_probe_t *probe = ecb->dte_probe;
11263
11264 ASSERT(MUTEX_HELD(&dtrace_lock));
11265
11266 if (probe == NULL) {
11267 /*
11268 * This is the NULL probe; there is nothing to disable.
11269 */
11270 return;
11271 }
11272
11273 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11274 if (pecb == ecb)
11275 break;
11276 prev = pecb;
11277 }
11278
11279 if (pecb == NULL) {
11280 /*
11281 * This is okay: it means that this ECB was never actually
11282 * enabled (that is, we are in the process of ripping our
11283 * state down sometime after creating ECBs but before enabling
11284 * them); we have nothing to do, so just return.
11285 */
11286 return;
11287 }
11288
11289 if (prev == NULL) {
11290 probe->dtpr_ecb = ecb->dte_next;
11291 } else {
11292 prev->dte_next = ecb->dte_next;
11293 }
11294
11295 if (ecb == probe->dtpr_ecb_last) {
11296 ASSERT(ecb->dte_next == NULL);
11297 probe->dtpr_ecb_last = prev;
11298 }
11299
11300 if (probe->dtpr_ecb == NULL) {
11301 /*
11302 * That was the last ECB on the probe; clear the predicate
11303 * cache ID for the probe and disable it.
11304 */
11305 dtrace_provider_t *prov = probe->dtpr_provider;
11306
11307 ASSERT(ecb->dte_next == NULL);
11308 ASSERT(probe->dtpr_ecb_last == NULL);
11309 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11310 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11311 probe->dtpr_id, probe->dtpr_arg);
11312 } else {
11313 /*
11314 * There is at least one ECB remaining on the probe. If there
11315 * is _exactly_ one, set the probe's predicate cache ID to be
11316 * the predicate cache ID of the remaining ECB.
11317 */
11318 ASSERT(probe->dtpr_ecb_last != NULL);
11319 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11320
11321 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11322 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11323
11324 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11325
11326 if (p != NULL)
11327 probe->dtpr_predcache = p->dtp_cacheid;
11328 }
11329
11330 ecb->dte_next = NULL;
11331 }
11332 }
11333
11334 /*
11335 * Destroy an ECB. It's up to the caller to be sure that no CPU is still
11336 * seeing this ECB (i.e., by having issued a dtrace_sync() after having
11337 * disabled it).
11338 */
11339 static void
dtrace_ecb_destroy(dtrace_ecb_t * ecb)11340 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11341 {
11342 dtrace_state_t *state = ecb->dte_state;
11343 dtrace_vstate_t *vstate = &state->dts_vstate;
11344 dtrace_predicate_t *pred;
11345 dtrace_epid_t epid = ecb->dte_epid;
11346
11347 ASSERT(MUTEX_HELD(&dtrace_lock));
11348 ASSERT(ecb->dte_next == NULL);
11349 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11350
11351 if ((pred = ecb->dte_predicate) != NULL)
11352 dtrace_predicate_release(pred, vstate);
11353
11354 dtrace_ecb_action_remove(ecb);
11355
11356 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11357 state->dts_ecbs[epid - 1] = NULL;
11358
11359 kmem_free(ecb, sizeof (dtrace_ecb_t));
11360 }
11361
11362 static dtrace_ecb_t *
dtrace_ecb_create(dtrace_state_t * state,dtrace_probe_t * probe,dtrace_enabling_t * enab)11363 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11364 dtrace_enabling_t *enab)
11365 {
11366 dtrace_ecb_t *ecb;
11367 dtrace_predicate_t *pred;
11368 dtrace_actdesc_t *act;
11369 dtrace_provider_t *prov;
11370 dtrace_ecbdesc_t *desc = enab->dten_current;
11371
11372 ASSERT(MUTEX_HELD(&dtrace_lock));
11373 ASSERT(state != NULL);
11374
11375 ecb = dtrace_ecb_add(state, probe);
11376 ecb->dte_uarg = desc->dted_uarg;
11377
11378 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11379 dtrace_predicate_hold(pred);
11380 ecb->dte_predicate = pred;
11381 }
11382
11383 if (probe != NULL) {
11384 /*
11385 * If the provider shows more leg than the consumer is old
11386 * enough to see, we need to enable the appropriate implicit
11387 * predicate bits to prevent the ecb from activating at
11388 * revealing times.
11389 *
11390 * Providers specifying DTRACE_PRIV_USER at register time
11391 * are stating that they need the /proc-style privilege
11392 * model to be enforced, and this is what DTRACE_COND_OWNER
11393 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11394 */
11395 prov = probe->dtpr_provider;
11396 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11397 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11398 ecb->dte_cond |= DTRACE_COND_OWNER;
11399
11400 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11401 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11402 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11403
11404 /*
11405 * If the provider shows us kernel innards and the user
11406 * is lacking sufficient privilege, enable the
11407 * DTRACE_COND_USERMODE implicit predicate.
11408 */
11409 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11410 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11411 ecb->dte_cond |= DTRACE_COND_USERMODE;
11412 }
11413
11414 if (dtrace_ecb_create_cache != NULL) {
11415 /*
11416 * If we have a cached ecb, we'll use its action list instead
11417 * of creating our own (saving both time and space).
11418 */
11419 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11420 dtrace_action_t *act = cached->dte_action;
11421
11422 if (act != NULL) {
11423 ASSERT(act->dta_refcnt > 0);
11424 act->dta_refcnt++;
11425 ecb->dte_action = act;
11426 ecb->dte_action_last = cached->dte_action_last;
11427 ecb->dte_needed = cached->dte_needed;
11428 ecb->dte_size = cached->dte_size;
11429 ecb->dte_alignment = cached->dte_alignment;
11430 }
11431
11432 return (ecb);
11433 }
11434
11435 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11436 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11437 dtrace_ecb_destroy(ecb);
11438 return (NULL);
11439 }
11440 }
11441
11442 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11443 dtrace_ecb_destroy(ecb);
11444 return (NULL);
11445 }
11446
11447 return (dtrace_ecb_create_cache = ecb);
11448 }
11449
11450 static int
dtrace_ecb_create_enable(dtrace_probe_t * probe,void * arg)11451 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11452 {
11453 dtrace_ecb_t *ecb;
11454 dtrace_enabling_t *enab = arg;
11455 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11456
11457 ASSERT(state != NULL);
11458
11459 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11460 /*
11461 * This probe was created in a generation for which this
11462 * enabling has previously created ECBs; we don't want to
11463 * enable it again, so just kick out.
11464 */
11465 return (DTRACE_MATCH_NEXT);
11466 }
11467
11468 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11469 return (DTRACE_MATCH_DONE);
11470
11471 /*
11472 * If we can, we want to defer actually enabling the probe until
11473 * immediately before transitioning the state to be active: there is
11474 * still a lot of work to do before then (e.g., all per-state buffer
11475 * allocation), and for enablings with a heavy probe effect (e.g.,
11476 * enabling every FBT probe), that work can become debilitatingly slow
11477 * (and pointlessly so because the state isn't even active).
11478 *
11479 * So we default to not enabling our newly created ECB, with two
11480 * exceptions:
11481 *
11482 * (1) If the state is currently active, we need to enable the ECB
11483 * immediately
11484 *
11485 * (2) If the probe is provided by DTrace itself, we choose to enable
11486 * the ECB now to assure that we can easily determine our
11487 * dts_reserve before allocating buffers.
11488 */
11489 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE ||
11490 (probe != NULL && probe->dtpr_provider == dtrace_provider)) {
11491 if (dtrace_ecb_enable(ecb) < 0) {
11492 return (DTRACE_MATCH_FAIL);
11493 }
11494
11495 /*
11496 * As we have changed ECB state on potentially an active
11497 * consumer, issue a dtrace_sync() to assure that all CPUs
11498 * have seen it.
11499 */
11500 dtrace_sync();
11501 }
11502
11503 return (DTRACE_MATCH_NEXT);
11504 }
11505
11506 static dtrace_ecb_t *
dtrace_epid2ecb(dtrace_state_t * state,dtrace_epid_t id)11507 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11508 {
11509 dtrace_ecb_t *ecb;
11510
11511 ASSERT(MUTEX_HELD(&dtrace_lock));
11512
11513 if (id == 0 || id > state->dts_necbs)
11514 return (NULL);
11515
11516 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11517 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11518
11519 return (state->dts_ecbs[id - 1]);
11520 }
11521
11522 static dtrace_aggregation_t *
dtrace_aggid2agg(dtrace_state_t * state,dtrace_aggid_t id)11523 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11524 {
11525 dtrace_aggregation_t *agg;
11526
11527 ASSERT(MUTEX_HELD(&dtrace_lock));
11528
11529 if (id == 0 || id > state->dts_naggregations)
11530 return (NULL);
11531
11532 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11533 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11534 agg->dtag_id == id);
11535
11536 return (state->dts_aggregations[id - 1]);
11537 }
11538
11539 /*
11540 * DTrace Buffer Functions
11541 *
11542 * The following functions manipulate DTrace buffers. Most of these functions
11543 * are called in the context of establishing or processing consumer state;
11544 * exceptions are explicitly noted.
11545 */
11546
11547 /*
11548 * Note: called from cross call context. This function switches the two
11549 * buffers on a given CPU. The atomicity of this operation is assured by
11550 * disabling interrupts while the actual switch takes place; the disabling of
11551 * interrupts serializes the execution with any execution of dtrace_probe() on
11552 * the same CPU.
11553 */
11554 static void
dtrace_buffer_switch(dtrace_buffer_t * buf)11555 dtrace_buffer_switch(dtrace_buffer_t *buf)
11556 {
11557 caddr_t tomax = buf->dtb_tomax;
11558 caddr_t xamot = buf->dtb_xamot;
11559 dtrace_icookie_t cookie;
11560 hrtime_t now;
11561
11562 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11563 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11564
11565 cookie = dtrace_interrupt_disable();
11566 now = dtrace_gethrtime();
11567 buf->dtb_tomax = xamot;
11568 buf->dtb_xamot = tomax;
11569 buf->dtb_xamot_drops = buf->dtb_drops;
11570 buf->dtb_xamot_offset = buf->dtb_offset;
11571 buf->dtb_xamot_errors = buf->dtb_errors;
11572 buf->dtb_xamot_flags = buf->dtb_flags;
11573 buf->dtb_offset = 0;
11574 buf->dtb_drops = 0;
11575 buf->dtb_errors = 0;
11576 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11577 buf->dtb_interval = now - buf->dtb_switched;
11578 buf->dtb_switched = now;
11579 dtrace_interrupt_enable(cookie);
11580 }
11581
11582 /*
11583 * Note: called from cross call context. This function activates a buffer
11584 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11585 * is guaranteed by the disabling of interrupts.
11586 */
11587 static void
dtrace_buffer_activate(dtrace_state_t * state)11588 dtrace_buffer_activate(dtrace_state_t *state)
11589 {
11590 dtrace_buffer_t *buf;
11591 dtrace_icookie_t cookie = dtrace_interrupt_disable();
11592
11593 buf = &state->dts_buffer[CPU->cpu_id];
11594
11595 if (buf->dtb_tomax != NULL) {
11596 /*
11597 * We might like to assert that the buffer is marked inactive,
11598 * but this isn't necessarily true: the buffer for the CPU
11599 * that processes the BEGIN probe has its buffer activated
11600 * manually. In this case, we take the (harmless) action
11601 * re-clearing the bit INACTIVE bit.
11602 */
11603 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11604 }
11605
11606 dtrace_interrupt_enable(cookie);
11607 }
11608
11609 static int
dtrace_buffer_alloc(dtrace_buffer_t * bufs,size_t size,int flags,processorid_t cpu,int * factor)11610 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11611 processorid_t cpu, int *factor)
11612 {
11613 cpu_t *cp;
11614 dtrace_buffer_t *buf;
11615 int allocated = 0, desired = 0;
11616
11617 ASSERT(MUTEX_HELD(&cpu_lock));
11618 ASSERT(MUTEX_HELD(&dtrace_lock));
11619
11620 *factor = 1;
11621
11622 if (size > dtrace_nonroot_maxsize &&
11623 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11624 return (EFBIG);
11625
11626 cp = cpu_list;
11627
11628 do {
11629 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11630 continue;
11631
11632 buf = &bufs[cp->cpu_id];
11633
11634 /*
11635 * If there is already a buffer allocated for this CPU, it
11636 * is only possible that this is a DR event. In this case,
11637 * the buffer size must match our specified size.
11638 */
11639 if (buf->dtb_tomax != NULL) {
11640 ASSERT(buf->dtb_size == size);
11641 continue;
11642 }
11643
11644 ASSERT(buf->dtb_xamot == NULL);
11645
11646 if ((buf->dtb_tomax = kmem_zalloc(size, KM_NOSLEEP_LAZY)) ==
11647 NULL)
11648 goto err;
11649
11650 buf->dtb_size = size;
11651 buf->dtb_flags = flags;
11652 buf->dtb_offset = 0;
11653 buf->dtb_drops = 0;
11654
11655 if (flags & DTRACEBUF_NOSWITCH)
11656 continue;
11657
11658 if ((buf->dtb_xamot = kmem_zalloc(size, KM_NOSLEEP_LAZY)) ==
11659 NULL)
11660 goto err;
11661 } while ((cp = cp->cpu_next) != cpu_list);
11662
11663 return (0);
11664
11665 err:
11666 cp = cpu_list;
11667
11668 do {
11669 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11670 continue;
11671
11672 buf = &bufs[cp->cpu_id];
11673 desired += 2;
11674
11675 if (buf->dtb_xamot != NULL) {
11676 ASSERT(buf->dtb_tomax != NULL);
11677 ASSERT(buf->dtb_size == size);
11678 kmem_free(buf->dtb_xamot, size);
11679 allocated++;
11680 }
11681
11682 if (buf->dtb_tomax != NULL) {
11683 ASSERT(buf->dtb_size == size);
11684 kmem_free(buf->dtb_tomax, size);
11685 allocated++;
11686 }
11687
11688 buf->dtb_tomax = NULL;
11689 buf->dtb_xamot = NULL;
11690 buf->dtb_size = 0;
11691 } while ((cp = cp->cpu_next) != cpu_list);
11692
11693 *factor = desired / (allocated > 0 ? allocated : 1);
11694
11695 return (ENOMEM);
11696 }
11697
11698 /*
11699 * Note: called from probe context. This function just increments the drop
11700 * count on a buffer. It has been made a function to allow for the
11701 * possibility of understanding the source of mysterious drop counts. (A
11702 * problem for which one may be particularly disappointed that DTrace cannot
11703 * be used to understand DTrace.)
11704 */
11705 static void
dtrace_buffer_drop(dtrace_buffer_t * buf)11706 dtrace_buffer_drop(dtrace_buffer_t *buf)
11707 {
11708 buf->dtb_drops++;
11709 }
11710
11711 /*
11712 * Note: called from probe context. This function is called to reserve space
11713 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11714 * mstate. Returns the new offset in the buffer, or a negative value if an
11715 * error has occurred.
11716 */
11717 static intptr_t
dtrace_buffer_reserve(dtrace_buffer_t * buf,size_t needed,size_t align,dtrace_state_t * state,dtrace_mstate_t * mstate)11718 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11719 dtrace_state_t *state, dtrace_mstate_t *mstate)
11720 {
11721 intptr_t offs = buf->dtb_offset, soffs;
11722 intptr_t woffs;
11723 caddr_t tomax;
11724 size_t total;
11725
11726 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11727 return (-1);
11728
11729 if ((tomax = buf->dtb_tomax) == NULL) {
11730 dtrace_buffer_drop(buf);
11731 return (-1);
11732 }
11733
11734 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11735 while (offs & (align - 1)) {
11736 /*
11737 * Assert that our alignment is off by a number which
11738 * is itself sizeof (uint32_t) aligned.
11739 */
11740 ASSERT(!((align - (offs & (align - 1))) &
11741 (sizeof (uint32_t) - 1)));
11742 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11743 offs += sizeof (uint32_t);
11744 }
11745
11746 if ((soffs = offs + needed) > buf->dtb_size) {
11747 dtrace_buffer_drop(buf);
11748 return (-1);
11749 }
11750
11751 if (mstate == NULL)
11752 return (offs);
11753
11754 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11755 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11756 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11757
11758 return (offs);
11759 }
11760
11761 if (buf->dtb_flags & DTRACEBUF_FILL) {
11762 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11763 (buf->dtb_flags & DTRACEBUF_FULL))
11764 return (-1);
11765 goto out;
11766 }
11767
11768 total = needed + (offs & (align - 1));
11769
11770 /*
11771 * For a ring buffer, life is quite a bit more complicated. Before
11772 * we can store any padding, we need to adjust our wrapping offset.
11773 * (If we've never before wrapped or we're not about to, no adjustment
11774 * is required.)
11775 */
11776 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11777 offs + total > buf->dtb_size) {
11778 woffs = buf->dtb_xamot_offset;
11779
11780 if (offs + total > buf->dtb_size) {
11781 /*
11782 * We can't fit in the end of the buffer. First, a
11783 * sanity check that we can fit in the buffer at all.
11784 */
11785 if (total > buf->dtb_size) {
11786 dtrace_buffer_drop(buf);
11787 return (-1);
11788 }
11789
11790 /*
11791 * We're going to be storing at the top of the buffer,
11792 * so now we need to deal with the wrapped offset. We
11793 * only reset our wrapped offset to 0 if it is
11794 * currently greater than the current offset. If it
11795 * is less than the current offset, it is because a
11796 * previous allocation induced a wrap -- but the
11797 * allocation didn't subsequently take the space due
11798 * to an error or false predicate evaluation. In this
11799 * case, we'll just leave the wrapped offset alone: if
11800 * the wrapped offset hasn't been advanced far enough
11801 * for this allocation, it will be adjusted in the
11802 * lower loop.
11803 */
11804 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11805 if (woffs >= offs)
11806 woffs = 0;
11807 } else {
11808 woffs = 0;
11809 }
11810
11811 /*
11812 * Now we know that we're going to be storing to the
11813 * top of the buffer and that there is room for us
11814 * there. We need to clear the buffer from the current
11815 * offset to the end (there may be old gunk there).
11816 */
11817 while (offs < buf->dtb_size)
11818 tomax[offs++] = 0;
11819
11820 /*
11821 * We need to set our offset to zero. And because we
11822 * are wrapping, we need to set the bit indicating as
11823 * much. We can also adjust our needed space back
11824 * down to the space required by the ECB -- we know
11825 * that the top of the buffer is aligned.
11826 */
11827 offs = 0;
11828 total = needed;
11829 buf->dtb_flags |= DTRACEBUF_WRAPPED;
11830 } else {
11831 /*
11832 * There is room for us in the buffer, so we simply
11833 * need to check the wrapped offset.
11834 */
11835 if (woffs < offs) {
11836 /*
11837 * The wrapped offset is less than the offset.
11838 * This can happen if we allocated buffer space
11839 * that induced a wrap, but then we didn't
11840 * subsequently take the space due to an error
11841 * or false predicate evaluation. This is
11842 * okay; we know that _this_ allocation isn't
11843 * going to induce a wrap. We still can't
11844 * reset the wrapped offset to be zero,
11845 * however: the space may have been trashed in
11846 * the previous failed probe attempt. But at
11847 * least the wrapped offset doesn't need to
11848 * be adjusted at all...
11849 */
11850 goto out;
11851 }
11852 }
11853
11854 while (offs + total > woffs) {
11855 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11856 size_t size;
11857
11858 if (epid == DTRACE_EPIDNONE) {
11859 size = sizeof (uint32_t);
11860 } else {
11861 ASSERT3U(epid, <=, state->dts_necbs);
11862 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11863
11864 size = state->dts_ecbs[epid - 1]->dte_size;
11865 }
11866
11867 ASSERT(woffs + size <= buf->dtb_size);
11868 ASSERT(size != 0);
11869
11870 if (woffs + size == buf->dtb_size) {
11871 /*
11872 * We've reached the end of the buffer; we want
11873 * to set the wrapped offset to 0 and break
11874 * out. However, if the offs is 0, then we're
11875 * in a strange edge-condition: the amount of
11876 * space that we want to reserve plus the size
11877 * of the record that we're overwriting is
11878 * greater than the size of the buffer. This
11879 * is problematic because if we reserve the
11880 * space but subsequently don't consume it (due
11881 * to a failed predicate or error) the wrapped
11882 * offset will be 0 -- yet the EPID at offset 0
11883 * will not be committed. This situation is
11884 * relatively easy to deal with: if we're in
11885 * this case, the buffer is indistinguishable
11886 * from one that hasn't wrapped; we need only
11887 * finish the job by clearing the wrapped bit,
11888 * explicitly setting the offset to be 0, and
11889 * zero'ing out the old data in the buffer.
11890 */
11891 if (offs == 0) {
11892 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11893 buf->dtb_offset = 0;
11894 woffs = total;
11895
11896 while (woffs < buf->dtb_size)
11897 tomax[woffs++] = 0;
11898 }
11899
11900 woffs = 0;
11901 break;
11902 }
11903
11904 woffs += size;
11905 }
11906
11907 /*
11908 * We have a wrapped offset. It may be that the wrapped offset
11909 * has become zero -- that's okay.
11910 */
11911 buf->dtb_xamot_offset = woffs;
11912 }
11913
11914 out:
11915 /*
11916 * Now we can plow the buffer with any necessary padding.
11917 */
11918 while (offs & (align - 1)) {
11919 /*
11920 * Assert that our alignment is off by a number which
11921 * is itself sizeof (uint32_t) aligned.
11922 */
11923 ASSERT(!((align - (offs & (align - 1))) &
11924 (sizeof (uint32_t) - 1)));
11925 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11926 offs += sizeof (uint32_t);
11927 }
11928
11929 if (buf->dtb_flags & DTRACEBUF_FILL) {
11930 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11931 buf->dtb_flags |= DTRACEBUF_FULL;
11932 return (-1);
11933 }
11934 }
11935
11936 if (mstate == NULL)
11937 return (offs);
11938
11939 /*
11940 * For ring buffers and fill buffers, the scratch space is always
11941 * the inactive buffer.
11942 */
11943 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11944 mstate->dtms_scratch_size = buf->dtb_size;
11945 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11946
11947 return (offs);
11948 }
11949
11950 static void
dtrace_buffer_polish(dtrace_buffer_t * buf)11951 dtrace_buffer_polish(dtrace_buffer_t *buf)
11952 {
11953 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11954 ASSERT(MUTEX_HELD(&dtrace_lock));
11955
11956 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11957 return;
11958
11959 /*
11960 * We need to polish the ring buffer. There are three cases:
11961 *
11962 * - The first (and presumably most common) is that there is no gap
11963 * between the buffer offset and the wrapped offset. In this case,
11964 * there is nothing in the buffer that isn't valid data; we can
11965 * mark the buffer as polished and return.
11966 *
11967 * - The second (less common than the first but still more common
11968 * than the third) is that there is a gap between the buffer offset
11969 * and the wrapped offset, and the wrapped offset is larger than the
11970 * buffer offset. This can happen because of an alignment issue, or
11971 * can happen because of a call to dtrace_buffer_reserve() that
11972 * didn't subsequently consume the buffer space. In this case,
11973 * we need to zero the data from the buffer offset to the wrapped
11974 * offset.
11975 *
11976 * - The third (and least common) is that there is a gap between the
11977 * buffer offset and the wrapped offset, but the wrapped offset is
11978 * _less_ than the buffer offset. This can only happen because a
11979 * call to dtrace_buffer_reserve() induced a wrap, but the space
11980 * was not subsequently consumed. In this case, we need to zero the
11981 * space from the offset to the end of the buffer _and_ from the
11982 * top of the buffer to the wrapped offset.
11983 */
11984 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11985 bzero(buf->dtb_tomax + buf->dtb_offset,
11986 buf->dtb_xamot_offset - buf->dtb_offset);
11987 }
11988
11989 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11990 bzero(buf->dtb_tomax + buf->dtb_offset,
11991 buf->dtb_size - buf->dtb_offset);
11992 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11993 }
11994 }
11995
11996 /*
11997 * This routine determines if data generated at the specified time has likely
11998 * been entirely consumed at user-level. This routine is called to determine
11999 * if an ECB on a defunct probe (but for an active enabling) can be safely
12000 * disabled and destroyed.
12001 */
12002 static int
dtrace_buffer_consumed(dtrace_buffer_t * bufs,hrtime_t when)12003 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12004 {
12005 int i;
12006
12007 for (i = 0; i < NCPU; i++) {
12008 dtrace_buffer_t *buf = &bufs[i];
12009
12010 if (buf->dtb_size == 0)
12011 continue;
12012
12013 if (buf->dtb_flags & DTRACEBUF_RING)
12014 return (0);
12015
12016 if (!buf->dtb_switched && buf->dtb_offset != 0)
12017 return (0);
12018
12019 if (buf->dtb_switched - buf->dtb_interval < when)
12020 return (0);
12021 }
12022
12023 return (1);
12024 }
12025
12026 static void
dtrace_buffer_free(dtrace_buffer_t * bufs)12027 dtrace_buffer_free(dtrace_buffer_t *bufs)
12028 {
12029 int i;
12030
12031 for (i = 0; i < NCPU; i++) {
12032 dtrace_buffer_t *buf = &bufs[i];
12033
12034 if (buf->dtb_tomax == NULL) {
12035 ASSERT(buf->dtb_xamot == NULL);
12036 ASSERT(buf->dtb_size == 0);
12037 continue;
12038 }
12039
12040 if (buf->dtb_xamot != NULL) {
12041 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12042 kmem_free(buf->dtb_xamot, buf->dtb_size);
12043 }
12044
12045 kmem_free(buf->dtb_tomax, buf->dtb_size);
12046 buf->dtb_size = 0;
12047 buf->dtb_tomax = NULL;
12048 buf->dtb_xamot = NULL;
12049 }
12050 }
12051
12052 /*
12053 * DTrace Enabling Functions
12054 */
12055 static dtrace_enabling_t *
dtrace_enabling_create(dtrace_vstate_t * vstate)12056 dtrace_enabling_create(dtrace_vstate_t *vstate)
12057 {
12058 dtrace_enabling_t *enab;
12059
12060 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12061 enab->dten_vstate = vstate;
12062
12063 return (enab);
12064 }
12065
12066 static void
dtrace_enabling_add(dtrace_enabling_t * enab,dtrace_ecbdesc_t * ecb)12067 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12068 {
12069 dtrace_ecbdesc_t **ndesc;
12070 size_t osize, nsize;
12071
12072 /*
12073 * We can't add to enablings after we've enabled them, or after we've
12074 * retained them.
12075 */
12076 ASSERT(enab->dten_probegen == 0);
12077 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12078
12079 if (enab->dten_ndesc < enab->dten_maxdesc) {
12080 enab->dten_desc[enab->dten_ndesc++] = ecb;
12081 return;
12082 }
12083
12084 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12085
12086 if (enab->dten_maxdesc == 0) {
12087 enab->dten_maxdesc = 1;
12088 } else {
12089 enab->dten_maxdesc <<= 1;
12090 }
12091
12092 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12093
12094 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12095 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12096 bcopy(enab->dten_desc, ndesc, osize);
12097 kmem_free(enab->dten_desc, osize);
12098
12099 enab->dten_desc = ndesc;
12100 enab->dten_desc[enab->dten_ndesc++] = ecb;
12101 }
12102
12103 static void
dtrace_enabling_addlike(dtrace_enabling_t * enab,dtrace_ecbdesc_t * ecb,dtrace_probedesc_t * pd)12104 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12105 dtrace_probedesc_t *pd)
12106 {
12107 dtrace_ecbdesc_t *new;
12108 dtrace_predicate_t *pred;
12109 dtrace_actdesc_t *act;
12110
12111 /*
12112 * We're going to create a new ECB description that matches the
12113 * specified ECB in every way, but has the specified probe description.
12114 */
12115 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12116
12117 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12118 dtrace_predicate_hold(pred);
12119
12120 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12121 dtrace_actdesc_hold(act);
12122
12123 new->dted_action = ecb->dted_action;
12124 new->dted_pred = ecb->dted_pred;
12125 new->dted_probe = *pd;
12126 new->dted_uarg = ecb->dted_uarg;
12127
12128 dtrace_enabling_add(enab, new);
12129 }
12130
12131 static void
dtrace_enabling_dump(dtrace_enabling_t * enab)12132 dtrace_enabling_dump(dtrace_enabling_t *enab)
12133 {
12134 int i;
12135
12136 for (i = 0; i < enab->dten_ndesc; i++) {
12137 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12138
12139 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12140 desc->dtpd_provider, desc->dtpd_mod,
12141 desc->dtpd_func, desc->dtpd_name);
12142 }
12143 }
12144
12145 static void
dtrace_enabling_destroy(dtrace_enabling_t * enab)12146 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12147 {
12148 int i;
12149 dtrace_ecbdesc_t *ep;
12150 dtrace_vstate_t *vstate = enab->dten_vstate;
12151
12152 ASSERT(MUTEX_HELD(&dtrace_lock));
12153
12154 for (i = 0; i < enab->dten_ndesc; i++) {
12155 dtrace_actdesc_t *act, *next;
12156 dtrace_predicate_t *pred;
12157
12158 ep = enab->dten_desc[i];
12159
12160 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12161 dtrace_predicate_release(pred, vstate);
12162
12163 for (act = ep->dted_action; act != NULL; act = next) {
12164 next = act->dtad_next;
12165 dtrace_actdesc_release(act, vstate);
12166 }
12167
12168 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12169 }
12170
12171 kmem_free(enab->dten_desc,
12172 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12173
12174 /*
12175 * If this was a retained enabling, decrement the dts_nretained count
12176 * and take it off of the dtrace_retained list.
12177 */
12178 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12179 dtrace_retained == enab) {
12180 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12181 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12182 enab->dten_vstate->dtvs_state->dts_nretained--;
12183 dtrace_retained_gen++;
12184 }
12185
12186 if (enab->dten_prev == NULL) {
12187 if (dtrace_retained == enab) {
12188 dtrace_retained = enab->dten_next;
12189
12190 if (dtrace_retained != NULL)
12191 dtrace_retained->dten_prev = NULL;
12192 }
12193 } else {
12194 ASSERT(enab != dtrace_retained);
12195 ASSERT(dtrace_retained != NULL);
12196 enab->dten_prev->dten_next = enab->dten_next;
12197 }
12198
12199 if (enab->dten_next != NULL) {
12200 ASSERT(dtrace_retained != NULL);
12201 enab->dten_next->dten_prev = enab->dten_prev;
12202 }
12203
12204 kmem_free(enab, sizeof (dtrace_enabling_t));
12205 }
12206
12207 static int
dtrace_enabling_retain(dtrace_enabling_t * enab)12208 dtrace_enabling_retain(dtrace_enabling_t *enab)
12209 {
12210 dtrace_state_t *state;
12211
12212 ASSERT(MUTEX_HELD(&dtrace_lock));
12213 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12214 ASSERT(enab->dten_vstate != NULL);
12215
12216 state = enab->dten_vstate->dtvs_state;
12217 ASSERT(state != NULL);
12218
12219 /*
12220 * We only allow each state to retain dtrace_retain_max enablings.
12221 */
12222 if (state->dts_nretained >= dtrace_retain_max)
12223 return (ENOSPC);
12224
12225 state->dts_nretained++;
12226 dtrace_retained_gen++;
12227
12228 if (dtrace_retained == NULL) {
12229 dtrace_retained = enab;
12230 return (0);
12231 }
12232
12233 enab->dten_next = dtrace_retained;
12234 dtrace_retained->dten_prev = enab;
12235 dtrace_retained = enab;
12236
12237 return (0);
12238 }
12239
12240 static int
dtrace_enabling_replicate(dtrace_state_t * state,dtrace_probedesc_t * match,dtrace_probedesc_t * create)12241 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12242 dtrace_probedesc_t *create)
12243 {
12244 dtrace_enabling_t *new, *enab;
12245 int found = 0, err = ENOENT;
12246
12247 ASSERT(MUTEX_HELD(&dtrace_lock));
12248 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12249 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12250 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12251 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12252
12253 new = dtrace_enabling_create(&state->dts_vstate);
12254
12255 /*
12256 * Iterate over all retained enablings, looking for enablings that
12257 * match the specified state.
12258 */
12259 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12260 int i;
12261
12262 /*
12263 * dtvs_state can only be NULL for helper enablings -- and
12264 * helper enablings can't be retained.
12265 */
12266 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12267
12268 if (enab->dten_vstate->dtvs_state != state)
12269 continue;
12270
12271 /*
12272 * Now iterate over each probe description; we're looking for
12273 * an exact match to the specified probe description.
12274 */
12275 for (i = 0; i < enab->dten_ndesc; i++) {
12276 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12277 dtrace_probedesc_t *pd = &ep->dted_probe;
12278
12279 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12280 continue;
12281
12282 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12283 continue;
12284
12285 if (strcmp(pd->dtpd_func, match->dtpd_func))
12286 continue;
12287
12288 if (strcmp(pd->dtpd_name, match->dtpd_name))
12289 continue;
12290
12291 /*
12292 * We have a winning probe! Add it to our growing
12293 * enabling.
12294 */
12295 found = 1;
12296 dtrace_enabling_addlike(new, ep, create);
12297 }
12298 }
12299
12300 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12301 dtrace_enabling_destroy(new);
12302 return (err);
12303 }
12304
12305 return (0);
12306 }
12307
12308 static void
dtrace_enabling_retract(dtrace_state_t * state)12309 dtrace_enabling_retract(dtrace_state_t *state)
12310 {
12311 dtrace_enabling_t *enab, *next;
12312
12313 ASSERT(MUTEX_HELD(&dtrace_lock));
12314
12315 /*
12316 * Iterate over all retained enablings, destroy the enablings retained
12317 * for the specified state.
12318 */
12319 for (enab = dtrace_retained; enab != NULL; enab = next) {
12320 next = enab->dten_next;
12321
12322 /*
12323 * dtvs_state can only be NULL for helper enablings -- and
12324 * helper enablings can't be retained.
12325 */
12326 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12327
12328 if (enab->dten_vstate->dtvs_state == state) {
12329 ASSERT(state->dts_nretained > 0);
12330 dtrace_enabling_destroy(enab);
12331 }
12332 }
12333
12334 ASSERT(state->dts_nretained == 0);
12335 }
12336
12337 static int
dtrace_enabling_match(dtrace_enabling_t * enab,int * nmatched)12338 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12339 {
12340 int i = 0;
12341 int total_matched = 0, matched = 0;
12342
12343 ASSERT(MUTEX_HELD(&cpu_lock));
12344 ASSERT(MUTEX_HELD(&dtrace_lock));
12345
12346 for (i = 0; i < enab->dten_ndesc; i++) {
12347 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12348
12349 enab->dten_current = ep;
12350 enab->dten_error = 0;
12351
12352 /*
12353 * If a provider failed to enable a probe then get out and
12354 * let the consumer know we failed.
12355 */
12356 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12357 return (EBUSY);
12358
12359 total_matched += matched;
12360
12361 if (enab->dten_error != 0) {
12362 /*
12363 * If we get an error half-way through enabling the
12364 * probes, we kick out -- perhaps with some number of
12365 * them enabled. Leaving enabled probes enabled may
12366 * be slightly confusing for user-level, but we expect
12367 * that no one will attempt to actually drive on in
12368 * the face of such errors. If this is an anonymous
12369 * enabling (indicated with a NULL nmatched pointer),
12370 * we cmn_err() a message. We aren't expecting to
12371 * get such an error -- such as it can exist at all,
12372 * it would be a result of corrupted DOF in the driver
12373 * properties.
12374 */
12375 if (nmatched == NULL) {
12376 cmn_err(CE_WARN, "dtrace_enabling_match() "
12377 "error on %p: %d", (void *)ep,
12378 enab->dten_error);
12379 }
12380
12381 return (enab->dten_error);
12382 }
12383 }
12384
12385 enab->dten_probegen = dtrace_probegen;
12386 if (nmatched != NULL)
12387 *nmatched = total_matched;
12388
12389 return (0);
12390 }
12391
12392 static void
dtrace_enabling_matchall(void)12393 dtrace_enabling_matchall(void)
12394 {
12395 dtrace_enabling_t *enab;
12396
12397 mutex_enter(&cpu_lock);
12398 mutex_enter(&dtrace_lock);
12399
12400 /*
12401 * Iterate over all retained enablings to see if any probes match
12402 * against them. We only perform this operation on enablings for which
12403 * we have sufficient permissions by virtue of being in the global zone
12404 * or in the same zone as the DTrace client. Because we can be called
12405 * after dtrace_detach() has been called, we cannot assert that there
12406 * are retained enablings. We can safely load from dtrace_retained,
12407 * however: the taskq_destroy() at the end of dtrace_detach() will
12408 * block pending our completion.
12409 */
12410 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12411 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12412 cred_t *cr = dcr->dcr_cred;
12413 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12414
12415 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12416 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12417 (void) dtrace_enabling_match(enab, NULL);
12418 }
12419
12420 mutex_exit(&dtrace_lock);
12421 mutex_exit(&cpu_lock);
12422 }
12423
12424 /*
12425 * If an enabling is to be enabled without having matched probes (that is, if
12426 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12427 * enabling must be _primed_ by creating an ECB for every ECB description.
12428 * This must be done to assure that we know the number of speculations, the
12429 * number of aggregations, the minimum buffer size needed, etc. before we
12430 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12431 * enabling any probes, we create ECBs for every ECB decription, but with a
12432 * NULL probe -- which is exactly what this function does.
12433 */
12434 static void
dtrace_enabling_prime(dtrace_state_t * state)12435 dtrace_enabling_prime(dtrace_state_t *state)
12436 {
12437 dtrace_enabling_t *enab;
12438 int i;
12439
12440 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12441 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12442
12443 if (enab->dten_vstate->dtvs_state != state)
12444 continue;
12445
12446 /*
12447 * We don't want to prime an enabling more than once, lest
12448 * we allow a malicious user to induce resource exhaustion.
12449 * (The ECBs that result from priming an enabling aren't
12450 * leaked -- but they also aren't deallocated until the
12451 * consumer state is destroyed.)
12452 */
12453 if (enab->dten_primed)
12454 continue;
12455
12456 for (i = 0; i < enab->dten_ndesc; i++) {
12457 enab->dten_current = enab->dten_desc[i];
12458 (void) dtrace_probe_enable(NULL, enab);
12459 }
12460
12461 enab->dten_primed = 1;
12462 }
12463 }
12464
12465 /*
12466 * Called to indicate that probes should be provided due to retained
12467 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12468 * must take an initial lap through the enabling calling the dtps_provide()
12469 * entry point explicitly to allow for autocreated probes.
12470 */
12471 static void
dtrace_enabling_provide(dtrace_provider_t * prv)12472 dtrace_enabling_provide(dtrace_provider_t *prv)
12473 {
12474 int i, all = 0;
12475 dtrace_probedesc_t desc;
12476 dtrace_genid_t gen;
12477
12478 ASSERT(MUTEX_HELD(&dtrace_lock));
12479 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12480
12481 if (prv == NULL) {
12482 all = 1;
12483 prv = dtrace_provider;
12484 }
12485
12486 do {
12487 dtrace_enabling_t *enab;
12488 void *parg = prv->dtpv_arg;
12489
12490 retry:
12491 gen = dtrace_retained_gen;
12492 for (enab = dtrace_retained; enab != NULL;
12493 enab = enab->dten_next) {
12494 for (i = 0; i < enab->dten_ndesc; i++) {
12495 desc = enab->dten_desc[i]->dted_probe;
12496 mutex_exit(&dtrace_lock);
12497 prv->dtpv_pops.dtps_provide(parg, &desc);
12498 mutex_enter(&dtrace_lock);
12499 /*
12500 * Process the retained enablings again if
12501 * they have changed while we weren't holding
12502 * dtrace_lock.
12503 */
12504 if (gen != dtrace_retained_gen)
12505 goto retry;
12506 }
12507 }
12508 } while (all && (prv = prv->dtpv_next) != NULL);
12509
12510 mutex_exit(&dtrace_lock);
12511 dtrace_probe_provide(NULL, all ? NULL : prv);
12512 mutex_enter(&dtrace_lock);
12513 }
12514
12515 /*
12516 * Called to reap ECBs that are attached to probes from defunct providers.
12517 */
12518 static void
dtrace_enabling_reap(void)12519 dtrace_enabling_reap(void)
12520 {
12521 dtrace_provider_t *prov;
12522 dtrace_probe_t *probe;
12523 dtrace_ecb_t *ecb;
12524 hrtime_t when;
12525 int i;
12526
12527 mutex_enter(&cpu_lock);
12528 mutex_enter(&dtrace_lock);
12529
12530 for (i = 0; i < dtrace_nprobes; i++) {
12531 if ((probe = dtrace_probes[i]) == NULL)
12532 continue;
12533
12534 if (probe->dtpr_ecb == NULL)
12535 continue;
12536
12537 prov = probe->dtpr_provider;
12538
12539 if ((when = prov->dtpv_defunct) == 0)
12540 continue;
12541
12542 /*
12543 * We have ECBs on a defunct provider: we want to reap these
12544 * ECBs to allow the provider to unregister. The destruction
12545 * of these ECBs must be done carefully: if we destroy the ECB
12546 * and the consumer later wishes to consume an EPID that
12547 * corresponds to the destroyed ECB (and if the EPID metadata
12548 * has not been previously consumed), the consumer will abort
12549 * processing on the unknown EPID. To reduce (but not, sadly,
12550 * eliminate) the possibility of this, we will only destroy an
12551 * ECB for a defunct provider if, for the state that
12552 * corresponds to the ECB:
12553 *
12554 * (a) There is no speculative tracing (which can effectively
12555 * cache an EPID for an arbitrary amount of time).
12556 *
12557 * (b) The principal buffers have been switched twice since the
12558 * provider became defunct.
12559 *
12560 * (c) The aggregation buffers are of zero size or have been
12561 * switched twice since the provider became defunct.
12562 *
12563 * We use dts_speculates to determine (a) and call a function
12564 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12565 * that as soon as we've been unable to destroy one of the ECBs
12566 * associated with the probe, we quit trying -- reaping is only
12567 * fruitful in as much as we can destroy all ECBs associated
12568 * with the defunct provider's probes.
12569 */
12570 while ((ecb = probe->dtpr_ecb) != NULL) {
12571 dtrace_state_t *state = ecb->dte_state;
12572 dtrace_buffer_t *buf = state->dts_buffer;
12573 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12574
12575 if (state->dts_speculates)
12576 break;
12577
12578 if (!dtrace_buffer_consumed(buf, when))
12579 break;
12580
12581 if (!dtrace_buffer_consumed(aggbuf, when))
12582 break;
12583
12584 dtrace_ecb_disable(ecb);
12585 ASSERT(probe->dtpr_ecb != ecb);
12586
12587 /*
12588 * Before we can destroy the ECB, we need to issue a
12589 * sync to assure that no CPU is processing it.
12590 */
12591 dtrace_sync();
12592 dtrace_ecb_destroy(ecb);
12593 }
12594 }
12595
12596 mutex_exit(&dtrace_lock);
12597 mutex_exit(&cpu_lock);
12598 }
12599
12600 /*
12601 * DTrace DOF Functions
12602 */
12603 /*ARGSUSED*/
12604 static void
dtrace_dof_error(dof_hdr_t * dof,const char * str)12605 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12606 {
12607 if (dtrace_err_verbose)
12608 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12609
12610 #ifdef DTRACE_ERRDEBUG
12611 dtrace_errdebug(str);
12612 #endif
12613 }
12614
12615 /*
12616 * Create DOF out of a currently enabled state. Right now, we only create
12617 * DOF containing the run-time options -- but this could be expanded to create
12618 * complete DOF representing the enabled state.
12619 */
12620 static dof_hdr_t *
dtrace_dof_create(dtrace_state_t * state)12621 dtrace_dof_create(dtrace_state_t *state)
12622 {
12623 dof_hdr_t *dof;
12624 dof_sec_t *sec;
12625 dof_optdesc_t *opt;
12626 int i, len = sizeof (dof_hdr_t) +
12627 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12628 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12629
12630 ASSERT(MUTEX_HELD(&dtrace_lock));
12631
12632 dof = kmem_zalloc(len, KM_SLEEP);
12633 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12634 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12635 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12636 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12637
12638 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12639 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12640 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12641 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12642 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12643 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12644
12645 dof->dofh_flags = 0;
12646 dof->dofh_hdrsize = sizeof (dof_hdr_t);
12647 dof->dofh_secsize = sizeof (dof_sec_t);
12648 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
12649 dof->dofh_secoff = sizeof (dof_hdr_t);
12650 dof->dofh_loadsz = len;
12651 dof->dofh_filesz = len;
12652 dof->dofh_pad = 0;
12653
12654 /*
12655 * Fill in the option section header...
12656 */
12657 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12658 sec->dofs_type = DOF_SECT_OPTDESC;
12659 sec->dofs_align = sizeof (uint64_t);
12660 sec->dofs_flags = DOF_SECF_LOAD;
12661 sec->dofs_entsize = sizeof (dof_optdesc_t);
12662
12663 opt = (dof_optdesc_t *)((uintptr_t)sec +
12664 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12665
12666 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12667 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12668
12669 for (i = 0; i < DTRACEOPT_MAX; i++) {
12670 opt[i].dofo_option = i;
12671 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12672 opt[i].dofo_value = state->dts_options[i];
12673 }
12674
12675 return (dof);
12676 }
12677
12678 static dof_hdr_t *
dtrace_dof_copyin(uintptr_t uarg,int * errp)12679 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12680 {
12681 dof_hdr_t hdr, *dof;
12682
12683 ASSERT(!MUTEX_HELD(&dtrace_lock));
12684
12685 /*
12686 * First, we're going to copyin() the sizeof (dof_hdr_t).
12687 */
12688 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12689 dtrace_dof_error(NULL, "failed to copyin DOF header");
12690 *errp = EFAULT;
12691 return (NULL);
12692 }
12693
12694 /*
12695 * Now we'll allocate the entire DOF and copy it in -- provided
12696 * that the length isn't outrageous.
12697 */
12698 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12699 dtrace_dof_error(&hdr, "load size exceeds maximum");
12700 *errp = E2BIG;
12701 return (NULL);
12702 }
12703
12704 if (hdr.dofh_loadsz < sizeof (hdr)) {
12705 dtrace_dof_error(&hdr, "invalid load size");
12706 *errp = EINVAL;
12707 return (NULL);
12708 }
12709
12710 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12711
12712 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12713 dof->dofh_loadsz != hdr.dofh_loadsz) {
12714 kmem_free(dof, hdr.dofh_loadsz);
12715 *errp = EFAULT;
12716 return (NULL);
12717 }
12718
12719 return (dof);
12720 }
12721
12722 static dof_hdr_t *
dtrace_dof_property(const char * name)12723 dtrace_dof_property(const char *name)
12724 {
12725 uchar_t *buf;
12726 uint64_t loadsz;
12727 unsigned int len, i;
12728 dof_hdr_t *dof;
12729
12730 /*
12731 * Unfortunately, array of values in .conf files are always (and
12732 * only) interpreted to be integer arrays. We must read our DOF
12733 * as an integer array, and then squeeze it into a byte array.
12734 */
12735 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12736 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12737 return (NULL);
12738
12739 for (i = 0; i < len; i++)
12740 buf[i] = (uchar_t)(((int *)buf)[i]);
12741
12742 if (len < sizeof (dof_hdr_t)) {
12743 ddi_prop_free(buf);
12744 dtrace_dof_error(NULL, "truncated header");
12745 return (NULL);
12746 }
12747
12748 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12749 ddi_prop_free(buf);
12750 dtrace_dof_error(NULL, "truncated DOF");
12751 return (NULL);
12752 }
12753
12754 if (loadsz >= dtrace_dof_maxsize) {
12755 ddi_prop_free(buf);
12756 dtrace_dof_error(NULL, "oversized DOF");
12757 return (NULL);
12758 }
12759
12760 dof = kmem_alloc(loadsz, KM_SLEEP);
12761 bcopy(buf, dof, loadsz);
12762 ddi_prop_free(buf);
12763
12764 return (dof);
12765 }
12766
12767 static void
dtrace_dof_destroy(dof_hdr_t * dof)12768 dtrace_dof_destroy(dof_hdr_t *dof)
12769 {
12770 kmem_free(dof, dof->dofh_loadsz);
12771 }
12772
12773 /*
12774 * Return the dof_sec_t pointer corresponding to a given section index. If the
12775 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12776 * a type other than DOF_SECT_NONE is specified, the header is checked against
12777 * this type and NULL is returned if the types do not match.
12778 */
12779 static dof_sec_t *
dtrace_dof_sect(dof_hdr_t * dof,uint32_t type,dof_secidx_t i)12780 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12781 {
12782 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12783 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12784
12785 if (i >= dof->dofh_secnum) {
12786 dtrace_dof_error(dof, "referenced section index is invalid");
12787 return (NULL);
12788 }
12789
12790 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12791 dtrace_dof_error(dof, "referenced section is not loadable");
12792 return (NULL);
12793 }
12794
12795 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12796 dtrace_dof_error(dof, "referenced section is the wrong type");
12797 return (NULL);
12798 }
12799
12800 return (sec);
12801 }
12802
12803 static dtrace_probedesc_t *
dtrace_dof_probedesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_probedesc_t * desc)12804 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12805 {
12806 dof_probedesc_t *probe;
12807 dof_sec_t *strtab;
12808 uintptr_t daddr = (uintptr_t)dof;
12809 uintptr_t str;
12810 size_t size;
12811
12812 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12813 dtrace_dof_error(dof, "invalid probe section");
12814 return (NULL);
12815 }
12816
12817 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12818 dtrace_dof_error(dof, "bad alignment in probe description");
12819 return (NULL);
12820 }
12821
12822 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12823 dtrace_dof_error(dof, "truncated probe description");
12824 return (NULL);
12825 }
12826
12827 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12828 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12829
12830 if (strtab == NULL)
12831 return (NULL);
12832
12833 str = daddr + strtab->dofs_offset;
12834 size = strtab->dofs_size;
12835
12836 if (probe->dofp_provider >= strtab->dofs_size) {
12837 dtrace_dof_error(dof, "corrupt probe provider");
12838 return (NULL);
12839 }
12840
12841 (void) strncpy(desc->dtpd_provider,
12842 (char *)(str + probe->dofp_provider),
12843 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12844
12845 if (probe->dofp_mod >= strtab->dofs_size) {
12846 dtrace_dof_error(dof, "corrupt probe module");
12847 return (NULL);
12848 }
12849
12850 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12851 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12852
12853 if (probe->dofp_func >= strtab->dofs_size) {
12854 dtrace_dof_error(dof, "corrupt probe function");
12855 return (NULL);
12856 }
12857
12858 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12859 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12860
12861 if (probe->dofp_name >= strtab->dofs_size) {
12862 dtrace_dof_error(dof, "corrupt probe name");
12863 return (NULL);
12864 }
12865
12866 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12867 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12868
12869 return (desc);
12870 }
12871
12872 static dtrace_difo_t *
dtrace_dof_difo(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)12873 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12874 cred_t *cr)
12875 {
12876 dtrace_difo_t *dp;
12877 size_t ttl = 0;
12878 dof_difohdr_t *dofd;
12879 uintptr_t daddr = (uintptr_t)dof;
12880 size_t max = dtrace_difo_maxsize;
12881 int i, l, n;
12882
12883 static const struct {
12884 int section;
12885 int bufoffs;
12886 int lenoffs;
12887 int entsize;
12888 int align;
12889 const char *msg;
12890 } difo[] = {
12891 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12892 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12893 sizeof (dif_instr_t), "multiple DIF sections" },
12894
12895 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12896 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12897 sizeof (uint64_t), "multiple integer tables" },
12898
12899 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12900 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12901 sizeof (char), "multiple string tables" },
12902
12903 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12904 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12905 sizeof (uint_t), "multiple variable tables" },
12906
12907 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
12908 };
12909
12910 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12911 dtrace_dof_error(dof, "invalid DIFO header section");
12912 return (NULL);
12913 }
12914
12915 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12916 dtrace_dof_error(dof, "bad alignment in DIFO header");
12917 return (NULL);
12918 }
12919
12920 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12921 sec->dofs_size % sizeof (dof_secidx_t)) {
12922 dtrace_dof_error(dof, "bad size in DIFO header");
12923 return (NULL);
12924 }
12925
12926 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12927 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12928
12929 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12930 dp->dtdo_rtype = dofd->dofd_rtype;
12931
12932 for (l = 0; l < n; l++) {
12933 dof_sec_t *subsec;
12934 void **bufp;
12935 uint32_t *lenp;
12936
12937 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12938 dofd->dofd_links[l])) == NULL)
12939 goto err; /* invalid section link */
12940
12941 if (ttl + subsec->dofs_size > max) {
12942 dtrace_dof_error(dof, "exceeds maximum size");
12943 goto err;
12944 }
12945
12946 ttl += subsec->dofs_size;
12947
12948 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12949 if (subsec->dofs_type != difo[i].section)
12950 continue;
12951
12952 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12953 dtrace_dof_error(dof, "section not loaded");
12954 goto err;
12955 }
12956
12957 if (subsec->dofs_align != difo[i].align) {
12958 dtrace_dof_error(dof, "bad alignment");
12959 goto err;
12960 }
12961
12962 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12963 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12964
12965 if (*bufp != NULL) {
12966 dtrace_dof_error(dof, difo[i].msg);
12967 goto err;
12968 }
12969
12970 if (difo[i].entsize != subsec->dofs_entsize) {
12971 dtrace_dof_error(dof, "entry size mismatch");
12972 goto err;
12973 }
12974
12975 if (subsec->dofs_entsize != 0 &&
12976 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12977 dtrace_dof_error(dof, "corrupt entry size");
12978 goto err;
12979 }
12980
12981 *lenp = subsec->dofs_size;
12982 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12983 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12984 *bufp, subsec->dofs_size);
12985
12986 if (subsec->dofs_entsize != 0)
12987 *lenp /= subsec->dofs_entsize;
12988
12989 break;
12990 }
12991
12992 /*
12993 * If we encounter a loadable DIFO sub-section that is not
12994 * known to us, assume this is a broken program and fail.
12995 */
12996 if (difo[i].section == DOF_SECT_NONE &&
12997 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12998 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12999 goto err;
13000 }
13001 }
13002
13003 if (dp->dtdo_buf == NULL) {
13004 /*
13005 * We can't have a DIF object without DIF text.
13006 */
13007 dtrace_dof_error(dof, "missing DIF text");
13008 goto err;
13009 }
13010
13011 /*
13012 * Before we validate the DIF object, run through the variable table
13013 * looking for the strings -- if any of their size are under, we'll set
13014 * their size to be the system-wide default string size. Note that
13015 * this should _not_ happen if the "strsize" option has been set --
13016 * in this case, the compiler should have set the size to reflect the
13017 * setting of the option.
13018 */
13019 for (i = 0; i < dp->dtdo_varlen; i++) {
13020 dtrace_difv_t *v = &dp->dtdo_vartab[i];
13021 dtrace_diftype_t *t = &v->dtdv_type;
13022
13023 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13024 continue;
13025
13026 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13027 t->dtdt_size = dtrace_strsize_default;
13028 }
13029
13030 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13031 goto err;
13032
13033 dtrace_difo_init(dp, vstate);
13034 return (dp);
13035
13036 err:
13037 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13038 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13039 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13040 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13041
13042 kmem_free(dp, sizeof (dtrace_difo_t));
13043 return (NULL);
13044 }
13045
13046 static dtrace_predicate_t *
dtrace_dof_predicate(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)13047 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13048 cred_t *cr)
13049 {
13050 dtrace_difo_t *dp;
13051
13052 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13053 return (NULL);
13054
13055 return (dtrace_predicate_create(dp));
13056 }
13057
13058 static dtrace_actdesc_t *
dtrace_dof_actdesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)13059 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13060 cred_t *cr)
13061 {
13062 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13063 dof_actdesc_t *desc;
13064 dof_sec_t *difosec;
13065 size_t offs;
13066 uintptr_t daddr = (uintptr_t)dof;
13067 uint64_t arg;
13068 dtrace_actkind_t kind;
13069
13070 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13071 dtrace_dof_error(dof, "invalid action section");
13072 return (NULL);
13073 }
13074
13075 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13076 dtrace_dof_error(dof, "truncated action description");
13077 return (NULL);
13078 }
13079
13080 if (sec->dofs_align != sizeof (uint64_t)) {
13081 dtrace_dof_error(dof, "bad alignment in action description");
13082 return (NULL);
13083 }
13084
13085 if (sec->dofs_size < sec->dofs_entsize) {
13086 dtrace_dof_error(dof, "section entry size exceeds total size");
13087 return (NULL);
13088 }
13089
13090 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13091 dtrace_dof_error(dof, "bad entry size in action description");
13092 return (NULL);
13093 }
13094
13095 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13096 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13097 return (NULL);
13098 }
13099
13100 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13101 desc = (dof_actdesc_t *)(daddr +
13102 (uintptr_t)sec->dofs_offset + offs);
13103 kind = (dtrace_actkind_t)desc->dofa_kind;
13104
13105 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13106 (kind != DTRACEACT_PRINTA ||
13107 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13108 (kind == DTRACEACT_DIFEXPR &&
13109 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13110 dof_sec_t *strtab;
13111 char *str, *fmt;
13112 uint64_t i;
13113
13114 /*
13115 * The argument to these actions is an index into the
13116 * DOF string table. For printf()-like actions, this
13117 * is the format string. For print(), this is the
13118 * CTF type of the expression result.
13119 */
13120 if ((strtab = dtrace_dof_sect(dof,
13121 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13122 goto err;
13123
13124 str = (char *)((uintptr_t)dof +
13125 (uintptr_t)strtab->dofs_offset);
13126
13127 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13128 if (str[i] == '\0')
13129 break;
13130 }
13131
13132 if (i >= strtab->dofs_size) {
13133 dtrace_dof_error(dof, "bogus format string");
13134 goto err;
13135 }
13136
13137 if (i == desc->dofa_arg) {
13138 dtrace_dof_error(dof, "empty format string");
13139 goto err;
13140 }
13141
13142 i -= desc->dofa_arg;
13143 fmt = kmem_alloc(i + 1, KM_SLEEP);
13144 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13145 arg = (uint64_t)(uintptr_t)fmt;
13146 } else {
13147 if (kind == DTRACEACT_PRINTA) {
13148 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13149 arg = 0;
13150 } else {
13151 arg = desc->dofa_arg;
13152 }
13153 }
13154
13155 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13156 desc->dofa_uarg, arg);
13157
13158 if (last != NULL) {
13159 last->dtad_next = act;
13160 } else {
13161 first = act;
13162 }
13163
13164 last = act;
13165
13166 if (desc->dofa_difo == DOF_SECIDX_NONE)
13167 continue;
13168
13169 if ((difosec = dtrace_dof_sect(dof,
13170 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13171 goto err;
13172
13173 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13174
13175 if (act->dtad_difo == NULL)
13176 goto err;
13177 }
13178
13179 ASSERT(first != NULL);
13180 return (first);
13181
13182 err:
13183 for (act = first; act != NULL; act = next) {
13184 next = act->dtad_next;
13185 dtrace_actdesc_release(act, vstate);
13186 }
13187
13188 return (NULL);
13189 }
13190
13191 static dtrace_ecbdesc_t *
dtrace_dof_ecbdesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)13192 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13193 cred_t *cr)
13194 {
13195 dtrace_ecbdesc_t *ep;
13196 dof_ecbdesc_t *ecb;
13197 dtrace_probedesc_t *desc;
13198 dtrace_predicate_t *pred = NULL;
13199
13200 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13201 dtrace_dof_error(dof, "truncated ECB description");
13202 return (NULL);
13203 }
13204
13205 if (sec->dofs_align != sizeof (uint64_t)) {
13206 dtrace_dof_error(dof, "bad alignment in ECB description");
13207 return (NULL);
13208 }
13209
13210 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13211 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13212
13213 if (sec == NULL)
13214 return (NULL);
13215
13216 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13217 ep->dted_uarg = ecb->dofe_uarg;
13218 desc = &ep->dted_probe;
13219
13220 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13221 goto err;
13222
13223 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13224 if ((sec = dtrace_dof_sect(dof,
13225 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13226 goto err;
13227
13228 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13229 goto err;
13230
13231 ep->dted_pred.dtpdd_predicate = pred;
13232 }
13233
13234 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
13235 if ((sec = dtrace_dof_sect(dof,
13236 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
13237 goto err;
13238
13239 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
13240
13241 if (ep->dted_action == NULL)
13242 goto err;
13243 }
13244
13245 return (ep);
13246
13247 err:
13248 if (pred != NULL)
13249 dtrace_predicate_release(pred, vstate);
13250 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
13251 return (NULL);
13252 }
13253
13254 /*
13255 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
13256 * specified DOF. At present, this amounts to simply adding 'ubase' to the
13257 * site of any user SETX relocations to account for load object base address.
13258 * In the future, if we need other relocations, this function can be extended.
13259 */
13260 static int
dtrace_dof_relocate(dof_hdr_t * dof,dof_sec_t * sec,uint64_t ubase)13261 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
13262 {
13263 uintptr_t daddr = (uintptr_t)dof;
13264 uintptr_t ts_end;
13265 dof_relohdr_t *dofr =
13266 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13267 dof_sec_t *ss, *rs, *ts;
13268 dof_relodesc_t *r;
13269 uint_t i, n;
13270
13271 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
13272 sec->dofs_align != sizeof (dof_secidx_t)) {
13273 dtrace_dof_error(dof, "invalid relocation header");
13274 return (-1);
13275 }
13276
13277 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
13278 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
13279 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
13280 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
13281
13282 if (ss == NULL || rs == NULL || ts == NULL)
13283 return (-1); /* dtrace_dof_error() has been called already */
13284
13285 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
13286 rs->dofs_align != sizeof (uint64_t)) {
13287 dtrace_dof_error(dof, "invalid relocation section");
13288 return (-1);
13289 }
13290
13291 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
13292 n = rs->dofs_size / rs->dofs_entsize;
13293
13294 for (i = 0; i < n; i++) {
13295 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
13296
13297 switch (r->dofr_type) {
13298 case DOF_RELO_NONE:
13299 break;
13300 case DOF_RELO_SETX:
13301 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13302 sizeof (uint64_t) > ts->dofs_size) {
13303 dtrace_dof_error(dof, "bad relocation offset");
13304 return (-1);
13305 }
13306
13307 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
13308 dtrace_dof_error(dof, "bad relocation offset");
13309 return (-1);
13310 }
13311
13312 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13313 dtrace_dof_error(dof, "misaligned setx relo");
13314 return (-1);
13315 }
13316
13317 *(uint64_t *)taddr += ubase;
13318 break;
13319 default:
13320 dtrace_dof_error(dof, "invalid relocation type");
13321 return (-1);
13322 }
13323
13324 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13325 }
13326
13327 return (0);
13328 }
13329
13330 /*
13331 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13332 * header: it should be at the front of a memory region that is at least
13333 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13334 * size. It need not be validated in any other way.
13335 */
13336 static int
dtrace_dof_slurp(dof_hdr_t * dof,dtrace_vstate_t * vstate,cred_t * cr,dtrace_enabling_t ** enabp,uint64_t ubase,int noprobes)13337 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13338 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13339 {
13340 uint64_t len = dof->dofh_loadsz, seclen;
13341 uintptr_t daddr = (uintptr_t)dof;
13342 dtrace_ecbdesc_t *ep;
13343 dtrace_enabling_t *enab;
13344 uint_t i;
13345
13346 ASSERT(MUTEX_HELD(&dtrace_lock));
13347 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13348
13349 /*
13350 * Check the DOF header identification bytes. In addition to checking
13351 * valid settings, we also verify that unused bits/bytes are zeroed so
13352 * we can use them later without fear of regressing existing binaries.
13353 */
13354 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13355 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13356 dtrace_dof_error(dof, "DOF magic string mismatch");
13357 return (-1);
13358 }
13359
13360 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13361 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13362 dtrace_dof_error(dof, "DOF has invalid data model");
13363 return (-1);
13364 }
13365
13366 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13367 dtrace_dof_error(dof, "DOF encoding mismatch");
13368 return (-1);
13369 }
13370
13371 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13372 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13373 dtrace_dof_error(dof, "DOF version mismatch");
13374 return (-1);
13375 }
13376
13377 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13378 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13379 return (-1);
13380 }
13381
13382 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13383 dtrace_dof_error(dof, "DOF uses too many integer registers");
13384 return (-1);
13385 }
13386
13387 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13388 dtrace_dof_error(dof, "DOF uses too many tuple registers");
13389 return (-1);
13390 }
13391
13392 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13393 if (dof->dofh_ident[i] != 0) {
13394 dtrace_dof_error(dof, "DOF has invalid ident byte set");
13395 return (-1);
13396 }
13397 }
13398
13399 if (dof->dofh_flags & ~DOF_FL_VALID) {
13400 dtrace_dof_error(dof, "DOF has invalid flag bits set");
13401 return (-1);
13402 }
13403
13404 if (dof->dofh_secsize == 0) {
13405 dtrace_dof_error(dof, "zero section header size");
13406 return (-1);
13407 }
13408
13409 /*
13410 * Check that the section headers don't exceed the amount of DOF
13411 * data. Note that we cast the section size and number of sections
13412 * to uint64_t's to prevent possible overflow in the multiplication.
13413 */
13414 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13415
13416 if (dof->dofh_secoff > len || seclen > len ||
13417 dof->dofh_secoff + seclen > len) {
13418 dtrace_dof_error(dof, "truncated section headers");
13419 return (-1);
13420 }
13421
13422 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13423 dtrace_dof_error(dof, "misaligned section headers");
13424 return (-1);
13425 }
13426
13427 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13428 dtrace_dof_error(dof, "misaligned section size");
13429 return (-1);
13430 }
13431
13432 /*
13433 * Take an initial pass through the section headers to be sure that
13434 * the headers don't have stray offsets. If the 'noprobes' flag is
13435 * set, do not permit sections relating to providers, probes, or args.
13436 */
13437 for (i = 0; i < dof->dofh_secnum; i++) {
13438 dof_sec_t *sec = (dof_sec_t *)(daddr +
13439 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13440
13441 if (noprobes) {
13442 switch (sec->dofs_type) {
13443 case DOF_SECT_PROVIDER:
13444 case DOF_SECT_PROBES:
13445 case DOF_SECT_PRARGS:
13446 case DOF_SECT_PROFFS:
13447 dtrace_dof_error(dof, "illegal sections "
13448 "for enabling");
13449 return (-1);
13450 }
13451 }
13452
13453 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13454 !(sec->dofs_flags & DOF_SECF_LOAD)) {
13455 dtrace_dof_error(dof, "loadable section with load "
13456 "flag unset");
13457 return (-1);
13458 }
13459
13460 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13461 continue; /* just ignore non-loadable sections */
13462
13463 if (!ISP2(sec->dofs_align)) {
13464 dtrace_dof_error(dof, "bad section alignment");
13465 return (-1);
13466 }
13467
13468 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13469 dtrace_dof_error(dof, "misaligned section");
13470 return (-1);
13471 }
13472
13473 if (sec->dofs_offset > len || sec->dofs_size > len ||
13474 sec->dofs_offset + sec->dofs_size > len) {
13475 dtrace_dof_error(dof, "corrupt section header");
13476 return (-1);
13477 }
13478
13479 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13480 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13481 dtrace_dof_error(dof, "non-terminating string table");
13482 return (-1);
13483 }
13484 }
13485
13486 /*
13487 * Take a second pass through the sections and locate and perform any
13488 * relocations that are present. We do this after the first pass to
13489 * be sure that all sections have had their headers validated.
13490 */
13491 for (i = 0; i < dof->dofh_secnum; i++) {
13492 dof_sec_t *sec = (dof_sec_t *)(daddr +
13493 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13494
13495 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13496 continue; /* skip sections that are not loadable */
13497
13498 switch (sec->dofs_type) {
13499 case DOF_SECT_URELHDR:
13500 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13501 return (-1);
13502 break;
13503 }
13504 }
13505
13506 if ((enab = *enabp) == NULL)
13507 enab = *enabp = dtrace_enabling_create(vstate);
13508
13509 for (i = 0; i < dof->dofh_secnum; i++) {
13510 dof_sec_t *sec = (dof_sec_t *)(daddr +
13511 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13512
13513 if (sec->dofs_type != DOF_SECT_ECBDESC)
13514 continue;
13515
13516 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13517 dtrace_enabling_destroy(enab);
13518 *enabp = NULL;
13519 return (-1);
13520 }
13521
13522 dtrace_enabling_add(enab, ep);
13523 }
13524
13525 return (0);
13526 }
13527
13528 /*
13529 * Process DOF for any options. This routine assumes that the DOF has been
13530 * at least processed by dtrace_dof_slurp().
13531 */
13532 static int
dtrace_dof_options(dof_hdr_t * dof,dtrace_state_t * state)13533 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13534 {
13535 int i, rval;
13536 uint32_t entsize;
13537 size_t offs;
13538 dof_optdesc_t *desc;
13539
13540 for (i = 0; i < dof->dofh_secnum; i++) {
13541 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13542 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13543
13544 if (sec->dofs_type != DOF_SECT_OPTDESC)
13545 continue;
13546
13547 if (sec->dofs_align != sizeof (uint64_t)) {
13548 dtrace_dof_error(dof, "bad alignment in "
13549 "option description");
13550 return (EINVAL);
13551 }
13552
13553 if ((entsize = sec->dofs_entsize) == 0) {
13554 dtrace_dof_error(dof, "zeroed option entry size");
13555 return (EINVAL);
13556 }
13557
13558 if (entsize < sizeof (dof_optdesc_t)) {
13559 dtrace_dof_error(dof, "bad option entry size");
13560 return (EINVAL);
13561 }
13562
13563 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13564 desc = (dof_optdesc_t *)((uintptr_t)dof +
13565 (uintptr_t)sec->dofs_offset + offs);
13566
13567 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13568 dtrace_dof_error(dof, "non-zero option string");
13569 return (EINVAL);
13570 }
13571
13572 if (desc->dofo_value == DTRACEOPT_UNSET) {
13573 dtrace_dof_error(dof, "unset option");
13574 return (EINVAL);
13575 }
13576
13577 if ((rval = dtrace_state_option(state,
13578 desc->dofo_option, desc->dofo_value)) != 0) {
13579 dtrace_dof_error(dof, "rejected option");
13580 return (rval);
13581 }
13582 }
13583 }
13584
13585 return (0);
13586 }
13587
13588 /*
13589 * DTrace Consumer State Functions
13590 */
13591 int
dtrace_dstate_init(dtrace_dstate_t * dstate,size_t size)13592 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13593 {
13594 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13595 void *base;
13596 uintptr_t limit;
13597 dtrace_dynvar_t *dvar, *next, *start;
13598 int i;
13599
13600 ASSERT(MUTEX_HELD(&dtrace_lock));
13601 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13602
13603 bzero(dstate, sizeof (dtrace_dstate_t));
13604
13605 if ((dstate->dtds_chunksize = chunksize) == 0)
13606 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13607
13608 VERIFY(dstate->dtds_chunksize < LONG_MAX);
13609
13610 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13611 size = min;
13612
13613 if ((base = kmem_zalloc(size, KM_NOSLEEP_LAZY)) == NULL)
13614 return (ENOMEM);
13615
13616 dstate->dtds_size = size;
13617 dstate->dtds_base = base;
13618 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13619 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13620
13621 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13622
13623 if (hashsize != 1 && (hashsize & 1))
13624 hashsize--;
13625
13626 dstate->dtds_hashsize = hashsize;
13627 dstate->dtds_hash = dstate->dtds_base;
13628
13629 /*
13630 * Set all of our hash buckets to point to the single sink, and (if
13631 * it hasn't already been set), set the sink's hash value to be the
13632 * sink sentinel value. The sink is needed for dynamic variable
13633 * lookups to know that they have iterated over an entire, valid hash
13634 * chain.
13635 */
13636 for (i = 0; i < hashsize; i++)
13637 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13638
13639 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13640 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13641
13642 /*
13643 * Determine number of active CPUs. Divide free list evenly among
13644 * active CPUs.
13645 */
13646 start = (dtrace_dynvar_t *)
13647 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13648 limit = (uintptr_t)base + size;
13649
13650 VERIFY((uintptr_t)start < limit);
13651 VERIFY((uintptr_t)start >= (uintptr_t)base);
13652
13653 maxper = (limit - (uintptr_t)start) / NCPU;
13654 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13655
13656 for (i = 0; i < NCPU; i++) {
13657 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13658
13659 /*
13660 * If we don't even have enough chunks to make it once through
13661 * NCPUs, we're just going to allocate everything to the first
13662 * CPU. And if we're on the last CPU, we're going to allocate
13663 * whatever is left over. In either case, we set the limit to
13664 * be the limit of the dynamic variable space.
13665 */
13666 if (maxper == 0 || i == NCPU - 1) {
13667 limit = (uintptr_t)base + size;
13668 start = NULL;
13669 } else {
13670 limit = (uintptr_t)start + maxper;
13671 start = (dtrace_dynvar_t *)limit;
13672 }
13673
13674 VERIFY(limit <= (uintptr_t)base + size);
13675
13676 for (;;) {
13677 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13678 dstate->dtds_chunksize);
13679
13680 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13681 break;
13682
13683 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13684 (uintptr_t)dvar <= (uintptr_t)base + size);
13685 dvar->dtdv_next = next;
13686 dvar = next;
13687 }
13688
13689 if (maxper == 0)
13690 break;
13691 }
13692
13693 return (0);
13694 }
13695
13696 void
dtrace_dstate_fini(dtrace_dstate_t * dstate)13697 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13698 {
13699 ASSERT(MUTEX_HELD(&cpu_lock));
13700
13701 if (dstate->dtds_base == NULL)
13702 return;
13703
13704 kmem_free(dstate->dtds_base, dstate->dtds_size);
13705 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13706 }
13707
13708 static void
dtrace_vstate_fini(dtrace_vstate_t * vstate)13709 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13710 {
13711 /*
13712 * Logical XOR, where are you?
13713 */
13714 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13715
13716 if (vstate->dtvs_nglobals > 0) {
13717 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13718 sizeof (dtrace_statvar_t *));
13719 }
13720
13721 if (vstate->dtvs_ntlocals > 0) {
13722 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13723 sizeof (dtrace_difv_t));
13724 }
13725
13726 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13727
13728 if (vstate->dtvs_nlocals > 0) {
13729 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13730 sizeof (dtrace_statvar_t *));
13731 }
13732 }
13733
13734 static void
dtrace_state_clean(dtrace_state_t * state)13735 dtrace_state_clean(dtrace_state_t *state)
13736 {
13737 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13738 return;
13739
13740 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13741 dtrace_speculation_clean(state);
13742 }
13743
13744 static void
dtrace_state_deadman(dtrace_state_t * state)13745 dtrace_state_deadman(dtrace_state_t *state)
13746 {
13747 hrtime_t now;
13748
13749 dtrace_sync();
13750
13751 now = dtrace_gethrtime();
13752
13753 if (state != dtrace_anon.dta_state &&
13754 now - state->dts_laststatus >= dtrace_deadman_user)
13755 return;
13756
13757 /*
13758 * We must be sure that dts_alive never appears to be less than the
13759 * value upon entry to dtrace_state_deadman(), and because we lack a
13760 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13761 * store INT64_MAX to it, followed by a memory barrier, followed by
13762 * the new value. This assures that dts_alive never appears to be
13763 * less than its true value, regardless of the order in which the
13764 * stores to the underlying storage are issued.
13765 */
13766 state->dts_alive = INT64_MAX;
13767 dtrace_membar_producer();
13768 state->dts_alive = now;
13769 }
13770
13771 dtrace_state_t *
dtrace_state_create(dev_t * devp,cred_t * cr)13772 dtrace_state_create(dev_t *devp, cred_t *cr)
13773 {
13774 minor_t minor;
13775 major_t major;
13776 char c[30];
13777 dtrace_state_t *state;
13778 dtrace_optval_t *opt;
13779 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13780
13781 ASSERT(MUTEX_HELD(&dtrace_lock));
13782 ASSERT(MUTEX_HELD(&cpu_lock));
13783
13784 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13785 VM_BESTFIT | VM_SLEEP);
13786
13787 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13788 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13789 return (NULL);
13790 }
13791
13792 state = ddi_get_soft_state(dtrace_softstate, minor);
13793 state->dts_epid = DTRACE_EPIDNONE + 1;
13794
13795 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13796 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13797 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13798
13799 if (devp != NULL) {
13800 major = getemajor(*devp);
13801 } else {
13802 major = ddi_driver_major(dtrace_devi);
13803 }
13804
13805 state->dts_dev = makedevice(major, minor);
13806
13807 if (devp != NULL)
13808 *devp = state->dts_dev;
13809
13810 /*
13811 * We allocate NCPU buffers. On the one hand, this can be quite
13812 * a bit of memory per instance (nearly 36K on a Starcat). On the
13813 * other hand, it saves an additional memory reference in the probe
13814 * path.
13815 */
13816 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13817 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13818 state->dts_cleaner = CYCLIC_NONE;
13819 state->dts_deadman = CYCLIC_NONE;
13820 state->dts_vstate.dtvs_state = state;
13821
13822 for (i = 0; i < DTRACEOPT_MAX; i++)
13823 state->dts_options[i] = DTRACEOPT_UNSET;
13824
13825 /*
13826 * Set the default options.
13827 */
13828 opt = state->dts_options;
13829 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13830 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13831 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13832 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13833 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13834 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13835 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13836 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13837 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13838 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13839 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13840 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13841 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13842 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13843
13844 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13845
13846 /*
13847 * Depending on the user credentials, we set flag bits which alter probe
13848 * visibility or the amount of destructiveness allowed. In the case of
13849 * actual anonymous tracing, or the possession of all privileges, all of
13850 * the normal checks are bypassed.
13851 */
13852 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13853 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13854 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13855 } else {
13856 /*
13857 * Set up the credentials for this instantiation. We take a
13858 * hold on the credential to prevent it from disappearing on
13859 * us; this in turn prevents the zone_t referenced by this
13860 * credential from disappearing. This means that we can
13861 * examine the credential and the zone from probe context.
13862 */
13863 crhold(cr);
13864 state->dts_cred.dcr_cred = cr;
13865
13866 /*
13867 * CRA_PROC means "we have *some* privilege for dtrace" and
13868 * unlocks the use of variables like pid, zonename, etc.
13869 */
13870 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13871 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13872 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13873 }
13874
13875 /*
13876 * dtrace_user allows use of syscall and profile providers.
13877 * If the user also has proc_owner and/or proc_zone, we
13878 * extend the scope to include additional visibility and
13879 * destructive power.
13880 */
13881 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13882 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13883 state->dts_cred.dcr_visible |=
13884 DTRACE_CRV_ALLPROC;
13885
13886 state->dts_cred.dcr_action |=
13887 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13888 }
13889
13890 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13891 state->dts_cred.dcr_visible |=
13892 DTRACE_CRV_ALLZONE;
13893
13894 state->dts_cred.dcr_action |=
13895 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13896 }
13897
13898 /*
13899 * If we have all privs in whatever zone this is,
13900 * we can do destructive things to processes which
13901 * have altered credentials.
13902 */
13903 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13904 cr->cr_zone->zone_privset)) {
13905 state->dts_cred.dcr_action |=
13906 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13907 }
13908 }
13909
13910 /*
13911 * Holding the dtrace_kernel privilege also implies that
13912 * the user has the dtrace_user privilege from a visibility
13913 * perspective. But without further privileges, some
13914 * destructive actions are not available.
13915 */
13916 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13917 /*
13918 * Make all probes in all zones visible. However,
13919 * this doesn't mean that all actions become available
13920 * to all zones.
13921 */
13922 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13923 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13924
13925 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13926 DTRACE_CRA_PROC;
13927 /*
13928 * Holding proc_owner means that destructive actions
13929 * for *this* zone are allowed.
13930 */
13931 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13932 state->dts_cred.dcr_action |=
13933 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13934
13935 /*
13936 * Holding proc_zone means that destructive actions
13937 * for this user/group ID in all zones is allowed.
13938 */
13939 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13940 state->dts_cred.dcr_action |=
13941 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13942
13943 /*
13944 * If we have all privs in whatever zone this is,
13945 * we can do destructive things to processes which
13946 * have altered credentials.
13947 */
13948 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13949 cr->cr_zone->zone_privset)) {
13950 state->dts_cred.dcr_action |=
13951 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13952 }
13953 }
13954
13955 /*
13956 * Holding the dtrace_proc privilege gives control over fasttrap
13957 * and pid providers. We need to grant wider destructive
13958 * privileges in the event that the user has proc_owner and/or
13959 * proc_zone.
13960 */
13961 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13962 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13963 state->dts_cred.dcr_action |=
13964 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13965
13966 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13967 state->dts_cred.dcr_action |=
13968 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13969 }
13970 }
13971
13972 return (state);
13973 }
13974
13975 static int
dtrace_state_buffer(dtrace_state_t * state,dtrace_buffer_t * buf,int which)13976 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13977 {
13978 dtrace_optval_t *opt = state->dts_options, size;
13979 processorid_t cpu;
13980 int flags = 0, rval, factor, divisor = 1;
13981
13982 ASSERT(MUTEX_HELD(&dtrace_lock));
13983 ASSERT(MUTEX_HELD(&cpu_lock));
13984 ASSERT(which < DTRACEOPT_MAX);
13985 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13986 (state == dtrace_anon.dta_state &&
13987 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13988
13989 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13990 return (0);
13991
13992 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13993 cpu = opt[DTRACEOPT_CPU];
13994
13995 if (which == DTRACEOPT_SPECSIZE)
13996 flags |= DTRACEBUF_NOSWITCH;
13997
13998 if (which == DTRACEOPT_BUFSIZE) {
13999 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14000 flags |= DTRACEBUF_RING;
14001
14002 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14003 flags |= DTRACEBUF_FILL;
14004
14005 if (state != dtrace_anon.dta_state ||
14006 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14007 flags |= DTRACEBUF_INACTIVE;
14008 }
14009
14010 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14011 /*
14012 * The size must be 8-byte aligned. If the size is not 8-byte
14013 * aligned, drop it down by the difference.
14014 */
14015 if (size & (sizeof (uint64_t) - 1))
14016 size -= size & (sizeof (uint64_t) - 1);
14017
14018 if (size < state->dts_reserve) {
14019 /*
14020 * Buffers always must be large enough to accommodate
14021 * their prereserved space. We return E2BIG instead
14022 * of ENOMEM in this case to allow for user-level
14023 * software to differentiate the cases.
14024 */
14025 return (E2BIG);
14026 }
14027
14028 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14029
14030 if (rval != ENOMEM) {
14031 opt[which] = size;
14032 return (rval);
14033 }
14034
14035 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14036 return (rval);
14037
14038 for (divisor = 2; divisor < factor; divisor <<= 1)
14039 continue;
14040 }
14041
14042 return (ENOMEM);
14043 }
14044
14045 static int
dtrace_state_buffers(dtrace_state_t * state)14046 dtrace_state_buffers(dtrace_state_t *state)
14047 {
14048 dtrace_speculation_t *spec = state->dts_speculations;
14049 int rval, i;
14050
14051 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14052 DTRACEOPT_BUFSIZE)) != 0)
14053 return (rval);
14054
14055 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14056 DTRACEOPT_AGGSIZE)) != 0)
14057 return (rval);
14058
14059 for (i = 0; i < state->dts_nspeculations; i++) {
14060 if ((rval = dtrace_state_buffer(state,
14061 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14062 return (rval);
14063 }
14064
14065 return (0);
14066 }
14067
14068 static void
dtrace_state_prereserve(dtrace_state_t * state)14069 dtrace_state_prereserve(dtrace_state_t *state)
14070 {
14071 dtrace_ecb_t *ecb;
14072 dtrace_probe_t *probe;
14073
14074 state->dts_reserve = 0;
14075
14076 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14077 return;
14078
14079 /*
14080 * If our buffer policy is a "fill" buffer policy, we need to set the
14081 * prereserved space to be the space required by the END probes.
14082 */
14083 probe = dtrace_probes[dtrace_probeid_end - 1];
14084 ASSERT(probe != NULL);
14085
14086 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14087 if (ecb->dte_state != state)
14088 continue;
14089
14090 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14091 }
14092 }
14093
14094 static int
dtrace_state_go(dtrace_state_t * state,processorid_t * cpu)14095 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14096 {
14097 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14098 dtrace_speculation_t *spec;
14099 dtrace_buffer_t *buf;
14100 cyc_handler_t hdlr;
14101 cyc_time_t when;
14102 int rval = 0, i, j, bufsize = NCPU * sizeof (dtrace_buffer_t);
14103 dtrace_icookie_t cookie;
14104
14105 mutex_enter(&cpu_lock);
14106 mutex_enter(&dtrace_lock);
14107
14108 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14109 rval = EBUSY;
14110 goto out;
14111 }
14112
14113 /*
14114 * Before we can perform any checks, we must prime all of the
14115 * retained enablings that correspond to this state.
14116 */
14117 dtrace_enabling_prime(state);
14118
14119 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14120 rval = EACCES;
14121 goto out;
14122 }
14123
14124 dtrace_state_prereserve(state);
14125
14126 /*
14127 * Now we want to do is try to allocate our speculations.
14128 * We do not automatically resize the number of speculations; if
14129 * this fails, we will fail the operation.
14130 */
14131 nspec = opt[DTRACEOPT_NSPEC];
14132 ASSERT(nspec != DTRACEOPT_UNSET);
14133
14134 if (nspec > INT_MAX) {
14135 rval = ENOMEM;
14136 goto out;
14137 }
14138
14139 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
14140 KM_NOSLEEP_LAZY);
14141
14142 if (spec == NULL) {
14143 rval = ENOMEM;
14144 goto out;
14145 }
14146
14147 state->dts_speculations = spec;
14148 state->dts_nspeculations = (int)nspec;
14149
14150 for (i = 0; i < nspec; i++) {
14151 if ((buf = kmem_zalloc(bufsize, KM_NOSLEEP_LAZY)) == NULL) {
14152 rval = ENOMEM;
14153 goto err;
14154 }
14155
14156 spec[i].dtsp_buffer = buf;
14157 }
14158
14159 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
14160 if (dtrace_anon.dta_state == NULL) {
14161 rval = ENOENT;
14162 goto out;
14163 }
14164
14165 if (state->dts_necbs != 0) {
14166 rval = EALREADY;
14167 goto out;
14168 }
14169
14170 state->dts_anon = dtrace_anon_grab();
14171 ASSERT(state->dts_anon != NULL);
14172 state = state->dts_anon;
14173
14174 /*
14175 * We want "grabanon" to be set in the grabbed state, so we'll
14176 * copy that option value from the grabbing state into the
14177 * grabbed state.
14178 */
14179 state->dts_options[DTRACEOPT_GRABANON] =
14180 opt[DTRACEOPT_GRABANON];
14181
14182 *cpu = dtrace_anon.dta_beganon;
14183
14184 /*
14185 * If the anonymous state is active (as it almost certainly
14186 * is if the anonymous enabling ultimately matched anything),
14187 * we don't allow any further option processing -- but we
14188 * don't return failure.
14189 */
14190 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14191 goto out;
14192 }
14193
14194 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
14195 opt[DTRACEOPT_AGGSIZE] != 0) {
14196 if (state->dts_aggregations == NULL) {
14197 /*
14198 * We're not going to create an aggregation buffer
14199 * because we don't have any ECBs that contain
14200 * aggregations -- set this option to 0.
14201 */
14202 opt[DTRACEOPT_AGGSIZE] = 0;
14203 } else {
14204 /*
14205 * If we have an aggregation buffer, we must also have
14206 * a buffer to use as scratch.
14207 */
14208 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
14209 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
14210 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
14211 }
14212 }
14213 }
14214
14215 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
14216 opt[DTRACEOPT_SPECSIZE] != 0) {
14217 if (!state->dts_speculates) {
14218 /*
14219 * We're not going to create speculation buffers
14220 * because we don't have any ECBs that actually
14221 * speculate -- set the speculation size to 0.
14222 */
14223 opt[DTRACEOPT_SPECSIZE] = 0;
14224 }
14225 }
14226
14227 /*
14228 * The bare minimum size for any buffer that we're actually going to
14229 * do anything to is sizeof (uint64_t).
14230 */
14231 sz = sizeof (uint64_t);
14232
14233 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
14234 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
14235 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
14236 /*
14237 * A buffer size has been explicitly set to 0 (or to a size
14238 * that will be adjusted to 0) and we need the space -- we
14239 * need to return failure. We return ENOSPC to differentiate
14240 * it from failing to allocate a buffer due to failure to meet
14241 * the reserve (for which we return E2BIG).
14242 */
14243 rval = ENOSPC;
14244 goto out;
14245 }
14246
14247 if ((rval = dtrace_state_buffers(state)) != 0)
14248 goto err;
14249
14250 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
14251 sz = dtrace_dstate_defsize;
14252
14253 do {
14254 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
14255
14256 if (rval == 0)
14257 break;
14258
14259 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14260 goto err;
14261 } while (sz >>= 1);
14262
14263 opt[DTRACEOPT_DYNVARSIZE] = sz;
14264
14265 if (rval != 0)
14266 goto err;
14267
14268 /*
14269 * We are almost ready to go! As a final step, we are going to
14270 * actually enable our ECBs. (We wait to do this until now to
14271 * minimize the amount of DTrace itself that we run through with
14272 * potentially many probes enabled.) Once everything is enabled, we
14273 * are at the point of no return: our state will be made active.
14274 */
14275 for (i = 0; i < state->dts_necbs; i++) {
14276 dtrace_ecb_t *ecb;
14277 dtrace_probe_t *probe;
14278
14279 if ((ecb = state->dts_ecbs[i]) == NULL)
14280 continue;
14281
14282 /*
14283 * Any ECB on a DTrace-provided probe has already been
14284 * enabled; skip over it.
14285 */
14286 if ((probe = ecb->dte_probe) != NULL &&
14287 probe->dtpr_provider == dtrace_provider) {
14288 continue;
14289 }
14290
14291 if (dtrace_ecb_enable(ecb) < 0) {
14292 /*
14293 * In the unlikely event that a provider is failing to
14294 * enable the probe, disable all of the ECBs that we
14295 * have enabled and kick out with a distinctive error
14296 * code.
14297 */
14298 for (j = i - 1; j >= 0; j--) {
14299 if ((ecb = state->dts_ecbs[j]) == NULL)
14300 continue;
14301
14302 /*
14303 * And skip back over any ECB that corresponds
14304 * to a DTrace-provided probe...
14305 */
14306 if ((probe = ecb->dte_probe) != NULL &&
14307 probe->dtpr_provider == dtrace_provider) {
14308 continue;
14309 }
14310
14311 dtrace_ecb_disable(ecb);
14312 }
14313
14314 rval = EIO;
14315 goto err;
14316 }
14317 }
14318
14319 /*
14320 * We have just enabled a bunch of ECBs; make sure that all CPUs
14321 * have seen it before progressing.
14322 */
14323 dtrace_sync();
14324
14325 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
14326 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
14327
14328 if (opt[DTRACEOPT_CLEANRATE] == 0)
14329 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14330
14331 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
14332 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
14333
14334 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
14335 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
14336
14337 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
14338 hdlr.cyh_arg = state;
14339 hdlr.cyh_level = CY_LOW_LEVEL;
14340
14341 when.cyt_when = 0;
14342 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
14343
14344 state->dts_cleaner = cyclic_add(&hdlr, &when);
14345
14346 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
14347 hdlr.cyh_arg = state;
14348 hdlr.cyh_level = CY_LOW_LEVEL;
14349
14350 when.cyt_when = 0;
14351 when.cyt_interval = dtrace_deadman_interval;
14352
14353 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
14354 state->dts_deadman = cyclic_add(&hdlr, &when);
14355
14356 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
14357
14358 if (state->dts_getf != 0 &&
14359 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14360 /*
14361 * We don't have kernel privs but we have at least one call
14362 * to getf(); we need to bump our zone's count, and (if
14363 * this is the first enabling to have an unprivileged call
14364 * to getf()) we need to hook into closef().
14365 */
14366 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14367
14368 if (dtrace_getf++ == 0) {
14369 ASSERT(dtrace_closef == NULL);
14370 dtrace_closef = dtrace_getf_barrier;
14371 }
14372 }
14373
14374 /*
14375 * Now it's time to actually fire the BEGIN probe. We need to disable
14376 * interrupts here both to record the CPU on which we fired the BEGIN
14377 * probe (the data from this CPU will be processed first at user
14378 * level) and to manually activate the buffer for this CPU.
14379 */
14380 cookie = dtrace_interrupt_disable();
14381 *cpu = CPU->cpu_id;
14382 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14383 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14384
14385 dtrace_probe(dtrace_probeid_begin,
14386 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14387 dtrace_interrupt_enable(cookie);
14388 /*
14389 * We may have had an exit action from a BEGIN probe; only change our
14390 * state to ACTIVE if we're still in WARMUP.
14391 */
14392 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14393 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14394
14395 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14396 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14397
14398 /*
14399 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14400 * want each CPU to transition its principal buffer out of the
14401 * INACTIVE state. Doing this assures that no CPU will suddenly begin
14402 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14403 * atomically transition from processing none of a state's ECBs to
14404 * processing all of them.
14405 */
14406 dtrace_xcall(DTRACE_CPUALL,
14407 (dtrace_xcall_t)dtrace_buffer_activate, state);
14408 goto out;
14409
14410 err:
14411 dtrace_buffer_free(state->dts_buffer);
14412 dtrace_buffer_free(state->dts_aggbuffer);
14413
14414 if ((nspec = state->dts_nspeculations) == 0) {
14415 ASSERT(state->dts_speculations == NULL);
14416 goto out;
14417 }
14418
14419 spec = state->dts_speculations;
14420 ASSERT(spec != NULL);
14421
14422 for (i = 0; i < state->dts_nspeculations; i++) {
14423 if ((buf = spec[i].dtsp_buffer) == NULL)
14424 break;
14425
14426 dtrace_buffer_free(buf);
14427 kmem_free(buf, bufsize);
14428 }
14429
14430 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14431 state->dts_nspeculations = 0;
14432 state->dts_speculations = NULL;
14433
14434 out:
14435 mutex_exit(&dtrace_lock);
14436 mutex_exit(&cpu_lock);
14437
14438 return (rval);
14439 }
14440
14441 static int
dtrace_state_stop(dtrace_state_t * state,processorid_t * cpu)14442 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14443 {
14444 dtrace_icookie_t cookie;
14445
14446 ASSERT(MUTEX_HELD(&dtrace_lock));
14447
14448 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14449 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14450 return (EINVAL);
14451
14452 /*
14453 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14454 * to be sure that every CPU has seen it. See below for the details
14455 * on why this is done.
14456 */
14457 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14458 dtrace_sync();
14459
14460 /*
14461 * By this point, it is impossible for any CPU to be still processing
14462 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
14463 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14464 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
14465 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14466 * iff we're in the END probe.
14467 */
14468 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14469 dtrace_sync();
14470 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14471
14472 /*
14473 * Finally, we can release the reserve and call the END probe. We
14474 * disable interrupts across calling the END probe to allow us to
14475 * return the CPU on which we actually called the END probe. This
14476 * allows user-land to be sure that this CPU's principal buffer is
14477 * processed last.
14478 */
14479 state->dts_reserve = 0;
14480
14481 cookie = dtrace_interrupt_disable();
14482 *cpu = CPU->cpu_id;
14483 dtrace_probe(dtrace_probeid_end,
14484 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14485 dtrace_interrupt_enable(cookie);
14486
14487 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14488 dtrace_sync();
14489
14490 if (state->dts_getf != 0 &&
14491 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14492 /*
14493 * We don't have kernel privs but we have at least one call
14494 * to getf(); we need to lower our zone's count, and (if
14495 * this is the last enabling to have an unprivileged call
14496 * to getf()) we need to clear the closef() hook.
14497 */
14498 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14499 ASSERT(dtrace_closef == dtrace_getf_barrier);
14500 ASSERT(dtrace_getf > 0);
14501
14502 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14503
14504 if (--dtrace_getf == 0)
14505 dtrace_closef = NULL;
14506 }
14507
14508 return (0);
14509 }
14510
14511 static int
dtrace_state_option(dtrace_state_t * state,dtrace_optid_t option,dtrace_optval_t val)14512 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14513 dtrace_optval_t val)
14514 {
14515 ASSERT(MUTEX_HELD(&dtrace_lock));
14516
14517 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14518 return (EBUSY);
14519
14520 if (option >= DTRACEOPT_MAX)
14521 return (EINVAL);
14522
14523 if (option != DTRACEOPT_CPU && val < 0)
14524 return (EINVAL);
14525
14526 switch (option) {
14527 case DTRACEOPT_DESTRUCTIVE:
14528 if (dtrace_destructive_disallow)
14529 return (EACCES);
14530
14531 state->dts_cred.dcr_destructive = 1;
14532 break;
14533
14534 case DTRACEOPT_BUFSIZE:
14535 case DTRACEOPT_DYNVARSIZE:
14536 case DTRACEOPT_AGGSIZE:
14537 case DTRACEOPT_SPECSIZE:
14538 case DTRACEOPT_STRSIZE:
14539 if (val < 0)
14540 return (EINVAL);
14541
14542 if (val >= LONG_MAX) {
14543 /*
14544 * If this is an otherwise negative value, set it to
14545 * the highest multiple of 128m less than LONG_MAX.
14546 * Technically, we're adjusting the size without
14547 * regard to the buffer resizing policy, but in fact,
14548 * this has no effect -- if we set the buffer size to
14549 * ~LONG_MAX and the buffer policy is ultimately set to
14550 * be "manual", the buffer allocation is guaranteed to
14551 * fail, if only because the allocation requires two
14552 * buffers. (We set the the size to the highest
14553 * multiple of 128m because it ensures that the size
14554 * will remain a multiple of a megabyte when
14555 * repeatedly halved -- all the way down to 15m.)
14556 */
14557 val = LONG_MAX - (1 << 27) + 1;
14558 }
14559 }
14560
14561 state->dts_options[option] = val;
14562
14563 return (0);
14564 }
14565
14566 static void
dtrace_state_destroy(dtrace_state_t * state)14567 dtrace_state_destroy(dtrace_state_t *state)
14568 {
14569 dtrace_ecb_t *ecb;
14570 dtrace_vstate_t *vstate = &state->dts_vstate;
14571 minor_t minor = getminor(state->dts_dev);
14572 int i, pass, bufsize = NCPU * sizeof (dtrace_buffer_t);
14573 dtrace_speculation_t *spec = state->dts_speculations;
14574 int nspec = state->dts_nspeculations;
14575
14576 ASSERT(MUTEX_HELD(&dtrace_lock));
14577 ASSERT(MUTEX_HELD(&cpu_lock));
14578
14579 /*
14580 * First, retract any retained enablings for this state.
14581 */
14582 dtrace_enabling_retract(state);
14583 ASSERT(state->dts_nretained == 0);
14584
14585 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14586 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14587 /*
14588 * We have managed to come into dtrace_state_destroy() on a
14589 * hot enabling -- almost certainly because of a disorderly
14590 * shutdown of a consumer. (That is, a consumer that is
14591 * exiting without having called dtrace_stop().) In this case,
14592 * we're going to set our activity to be KILLED, and then
14593 * issue a sync to be sure that everyone is out of probe
14594 * context before we start blowing away ECBs.
14595 */
14596 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14597 dtrace_sync();
14598 }
14599
14600 /*
14601 * Release the credential hold we took in dtrace_state_create().
14602 */
14603 if (state->dts_cred.dcr_cred != NULL)
14604 crfree(state->dts_cred.dcr_cred);
14605
14606 /*
14607 * Now we can safely disable and destroy any enabled probes. We want
14608 * to optimize for system performance here, which paradoxically is
14609 * going to result in more work: the enabled probe effect of kernel
14610 * probes can be high, and if we have any of those enabled, we want
14611 * to get them out of the way first. In addition, we want to minimize
14612 * calls to dtrace_sync() while there remain any kernel probes
14613 * enabled: that code path requires cross calling all CPUs, and -- if
14614 * instrumented -- can result in debilitatingly slow execution times on
14615 * high CPU machines. So we take four passes through the ECBs here:
14616 *
14617 * 1. Disable ECBs on DTRACE_PRIV_KERNEL probes
14618 * 2. Destroy ECBs on DTRACE_PRIV_KERNEL probes
14619 * 3. Disable ECBs on non-DTRACE_PRIV_KERNEL probes
14620 * 4. Destroy ECBs on non-DTRACE_PRIV_KERNEL probes
14621 *
14622 * (Channeling the benevolent spirits of Aho, Weinberger, and Kernighan,
14623 * we number our passes from 1 rather than 0.)
14624 */
14625 for (pass = 1; pass <= 4; pass++) {
14626 boolean_t only_kernel = (pass == 1 || pass == 2);
14627 boolean_t destroy = (pass == 2 || pass == 4);
14628
14629 if (destroy) {
14630 dtrace_sync();
14631 }
14632
14633 for (i = 0; i < state->dts_necbs; i++) {
14634 if ((ecb = state->dts_ecbs[i]) == NULL)
14635 continue;
14636
14637 if (only_kernel && ecb->dte_probe != NULL) {
14638 dtrace_probe_t *probe = ecb->dte_probe;
14639 dtrace_provider_t *prov = probe->dtpr_provider;
14640 const uint32_t match = DTRACE_PRIV_KERNEL;
14641
14642 if (!(prov->dtpv_priv.dtpp_flags & match))
14643 continue;
14644 }
14645
14646 if (!destroy) {
14647 dtrace_ecb_disable(ecb);
14648 } else {
14649 dtrace_ecb_destroy(ecb);
14650 }
14651 }
14652 }
14653
14654 /*
14655 * Before we free the buffers, perform one more sync to assure that
14656 * every CPU is out of probe context.
14657 */
14658 dtrace_sync();
14659
14660 dtrace_buffer_free(state->dts_buffer);
14661 dtrace_buffer_free(state->dts_aggbuffer);
14662
14663 for (i = 0; i < nspec; i++)
14664 dtrace_buffer_free(spec[i].dtsp_buffer);
14665
14666 if (state->dts_cleaner != CYCLIC_NONE)
14667 cyclic_remove(state->dts_cleaner);
14668
14669 if (state->dts_deadman != CYCLIC_NONE)
14670 cyclic_remove(state->dts_deadman);
14671
14672 dtrace_dstate_fini(&vstate->dtvs_dynvars);
14673 dtrace_vstate_fini(vstate);
14674 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14675
14676 if (state->dts_aggregations != NULL) {
14677 #ifdef DEBUG
14678 for (i = 0; i < state->dts_naggregations; i++)
14679 ASSERT(state->dts_aggregations[i] == NULL);
14680 #endif
14681 ASSERT(state->dts_naggregations > 0);
14682 kmem_free(state->dts_aggregations,
14683 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14684 }
14685
14686 kmem_free(state->dts_buffer, bufsize);
14687 kmem_free(state->dts_aggbuffer, bufsize);
14688
14689 for (i = 0; i < nspec; i++)
14690 kmem_free(spec[i].dtsp_buffer, bufsize);
14691
14692 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14693
14694 dtrace_format_destroy(state);
14695
14696 vmem_destroy(state->dts_aggid_arena);
14697 ddi_soft_state_free(dtrace_softstate, minor);
14698 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14699 }
14700
14701 /*
14702 * DTrace Anonymous Enabling Functions
14703 */
14704 static dtrace_state_t *
dtrace_anon_grab(void)14705 dtrace_anon_grab(void)
14706 {
14707 dtrace_state_t *state;
14708
14709 ASSERT(MUTEX_HELD(&dtrace_lock));
14710
14711 if ((state = dtrace_anon.dta_state) == NULL) {
14712 ASSERT(dtrace_anon.dta_enabling == NULL);
14713 return (NULL);
14714 }
14715
14716 ASSERT(dtrace_anon.dta_enabling != NULL);
14717 ASSERT(dtrace_retained != NULL);
14718
14719 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14720 dtrace_anon.dta_enabling = NULL;
14721 dtrace_anon.dta_state = NULL;
14722
14723 return (state);
14724 }
14725
14726 static void
dtrace_anon_property(void)14727 dtrace_anon_property(void)
14728 {
14729 int i, rv;
14730 dtrace_state_t *state;
14731 dof_hdr_t *dof;
14732 char c[32]; /* enough for "dof-data-" + digits */
14733
14734 ASSERT(MUTEX_HELD(&dtrace_lock));
14735 ASSERT(MUTEX_HELD(&cpu_lock));
14736
14737 for (i = 0; ; i++) {
14738 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14739
14740 dtrace_err_verbose = 1;
14741
14742 if ((dof = dtrace_dof_property(c)) == NULL) {
14743 dtrace_err_verbose = 0;
14744 break;
14745 }
14746
14747 /*
14748 * We want to create anonymous state, so we need to transition
14749 * the kernel debugger to indicate that DTrace is active. If
14750 * this fails (e.g. because the debugger has modified text in
14751 * some way), we won't continue with the processing.
14752 */
14753 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14754 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14755 "enabling ignored.");
14756 dtrace_dof_destroy(dof);
14757 break;
14758 }
14759
14760 /*
14761 * If we haven't allocated an anonymous state, we'll do so now.
14762 */
14763 if ((state = dtrace_anon.dta_state) == NULL) {
14764 state = dtrace_state_create(NULL, NULL);
14765 dtrace_anon.dta_state = state;
14766
14767 if (state == NULL) {
14768 /*
14769 * This basically shouldn't happen: the only
14770 * failure mode from dtrace_state_create() is a
14771 * failure of ddi_soft_state_zalloc() that
14772 * itself should never happen. Still, the
14773 * interface allows for a failure mode, and
14774 * we want to fail as gracefully as possible:
14775 * we'll emit an error message and cease
14776 * processing anonymous state in this case.
14777 */
14778 cmn_err(CE_WARN, "failed to create "
14779 "anonymous state");
14780 dtrace_dof_destroy(dof);
14781 break;
14782 }
14783 }
14784
14785 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14786 &dtrace_anon.dta_enabling, 0, B_TRUE);
14787
14788 if (rv == 0)
14789 rv = dtrace_dof_options(dof, state);
14790
14791 dtrace_err_verbose = 0;
14792 dtrace_dof_destroy(dof);
14793
14794 if (rv != 0) {
14795 /*
14796 * This is malformed DOF; chuck any anonymous state
14797 * that we created.
14798 */
14799 ASSERT(dtrace_anon.dta_enabling == NULL);
14800 dtrace_state_destroy(state);
14801 dtrace_anon.dta_state = NULL;
14802 break;
14803 }
14804
14805 ASSERT(dtrace_anon.dta_enabling != NULL);
14806 }
14807
14808 if (dtrace_anon.dta_enabling != NULL) {
14809 int rval;
14810
14811 /*
14812 * dtrace_enabling_retain() can only fail because we are
14813 * trying to retain more enablings than are allowed -- but
14814 * we only have one anonymous enabling, and we are guaranteed
14815 * to be allowed at least one retained enabling; we assert
14816 * that dtrace_enabling_retain() returns success.
14817 */
14818 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14819 ASSERT(rval == 0);
14820
14821 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14822 }
14823 }
14824
14825 /*
14826 * DTrace Helper Functions
14827 */
14828 static void
dtrace_helper_trace(dtrace_helper_action_t * helper,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate,int where)14829 dtrace_helper_trace(dtrace_helper_action_t *helper,
14830 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14831 {
14832 uint32_t size, next, nnext, i;
14833 dtrace_helptrace_t *ent, *buffer;
14834 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14835
14836 if ((buffer = dtrace_helptrace_buffer) == NULL)
14837 return;
14838
14839 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14840
14841 /*
14842 * What would a tracing framework be without its own tracing
14843 * framework? (Well, a hell of a lot simpler, for starters...)
14844 */
14845 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14846 sizeof (uint64_t) - sizeof (uint64_t);
14847
14848 /*
14849 * Iterate until we can allocate a slot in the trace buffer.
14850 */
14851 do {
14852 next = dtrace_helptrace_next;
14853
14854 if (next + size < dtrace_helptrace_bufsize) {
14855 nnext = next + size;
14856 } else {
14857 nnext = size;
14858 }
14859 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14860
14861 /*
14862 * We have our slot; fill it in.
14863 */
14864 if (nnext == size) {
14865 dtrace_helptrace_wrapped++;
14866 next = 0;
14867 }
14868
14869 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14870 ent->dtht_helper = helper;
14871 ent->dtht_where = where;
14872 ent->dtht_nlocals = vstate->dtvs_nlocals;
14873
14874 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14875 mstate->dtms_fltoffs : -1;
14876 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14877 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14878
14879 for (i = 0; i < vstate->dtvs_nlocals; i++) {
14880 dtrace_statvar_t *svar;
14881
14882 if ((svar = vstate->dtvs_locals[i]) == NULL)
14883 continue;
14884
14885 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14886 ent->dtht_locals[i] =
14887 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14888 }
14889 }
14890
14891 static uint64_t
dtrace_helper(int which,dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t arg0,uint64_t arg1)14892 dtrace_helper(int which, dtrace_mstate_t *mstate,
14893 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14894 {
14895 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14896 uint64_t sarg0 = mstate->dtms_arg[0];
14897 uint64_t sarg1 = mstate->dtms_arg[1];
14898 uint64_t rval;
14899 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14900 dtrace_helper_action_t *helper;
14901 dtrace_vstate_t *vstate;
14902 dtrace_difo_t *pred;
14903 int i, trace = dtrace_helptrace_buffer != NULL;
14904
14905 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14906
14907 if (helpers == NULL)
14908 return (0);
14909
14910 if ((helper = helpers->dthps_actions[which]) == NULL)
14911 return (0);
14912
14913 vstate = &helpers->dthps_vstate;
14914 mstate->dtms_arg[0] = arg0;
14915 mstate->dtms_arg[1] = arg1;
14916
14917 /*
14918 * Now iterate over each helper. If its predicate evaluates to 'true',
14919 * we'll call the corresponding actions. Note that the below calls
14920 * to dtrace_dif_emulate() may set faults in machine state. This is
14921 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14922 * the stored DIF offset with its own (which is the desired behavior).
14923 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14924 * from machine state; this is okay, too.
14925 */
14926 for (; helper != NULL; helper = helper->dtha_next) {
14927 if ((pred = helper->dtha_predicate) != NULL) {
14928 if (trace)
14929 dtrace_helper_trace(helper, mstate, vstate, 0);
14930
14931 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14932 goto next;
14933
14934 if (*flags & CPU_DTRACE_FAULT)
14935 goto err;
14936 }
14937
14938 for (i = 0; i < helper->dtha_nactions; i++) {
14939 if (trace)
14940 dtrace_helper_trace(helper,
14941 mstate, vstate, i + 1);
14942
14943 rval = dtrace_dif_emulate(helper->dtha_actions[i],
14944 mstate, vstate, state);
14945
14946 if (*flags & CPU_DTRACE_FAULT)
14947 goto err;
14948 }
14949
14950 next:
14951 if (trace)
14952 dtrace_helper_trace(helper, mstate, vstate,
14953 DTRACE_HELPTRACE_NEXT);
14954 }
14955
14956 if (trace)
14957 dtrace_helper_trace(helper, mstate, vstate,
14958 DTRACE_HELPTRACE_DONE);
14959
14960 /*
14961 * Restore the arg0 that we saved upon entry.
14962 */
14963 mstate->dtms_arg[0] = sarg0;
14964 mstate->dtms_arg[1] = sarg1;
14965
14966 return (rval);
14967
14968 err:
14969 if (trace)
14970 dtrace_helper_trace(helper, mstate, vstate,
14971 DTRACE_HELPTRACE_ERR);
14972
14973 /*
14974 * Restore the arg0 that we saved upon entry.
14975 */
14976 mstate->dtms_arg[0] = sarg0;
14977 mstate->dtms_arg[1] = sarg1;
14978
14979 return (0);
14980 }
14981
14982 static void
dtrace_helper_action_destroy(dtrace_helper_action_t * helper,dtrace_vstate_t * vstate)14983 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14984 dtrace_vstate_t *vstate)
14985 {
14986 int i;
14987
14988 if (helper->dtha_predicate != NULL)
14989 dtrace_difo_release(helper->dtha_predicate, vstate);
14990
14991 for (i = 0; i < helper->dtha_nactions; i++) {
14992 ASSERT(helper->dtha_actions[i] != NULL);
14993 dtrace_difo_release(helper->dtha_actions[i], vstate);
14994 }
14995
14996 kmem_free(helper->dtha_actions,
14997 helper->dtha_nactions * sizeof (dtrace_difo_t *));
14998 kmem_free(helper, sizeof (dtrace_helper_action_t));
14999 }
15000
15001 static int
dtrace_helper_destroygen(int gen)15002 dtrace_helper_destroygen(int gen)
15003 {
15004 proc_t *p = curproc;
15005 dtrace_helpers_t *help = p->p_dtrace_helpers;
15006 dtrace_vstate_t *vstate;
15007 int i;
15008
15009 ASSERT(MUTEX_HELD(&dtrace_lock));
15010
15011 if (help == NULL || gen > help->dthps_generation)
15012 return (EINVAL);
15013
15014 vstate = &help->dthps_vstate;
15015
15016 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15017 dtrace_helper_action_t *last = NULL, *h, *next;
15018
15019 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15020 next = h->dtha_next;
15021
15022 if (h->dtha_generation == gen) {
15023 if (last != NULL) {
15024 last->dtha_next = next;
15025 } else {
15026 help->dthps_actions[i] = next;
15027 }
15028
15029 dtrace_helper_action_destroy(h, vstate);
15030 } else {
15031 last = h;
15032 }
15033 }
15034 }
15035
15036 /*
15037 * Interate until we've cleared out all helper providers with the
15038 * given generation number.
15039 */
15040 for (;;) {
15041 dtrace_helper_provider_t *prov;
15042
15043 /*
15044 * Look for a helper provider with the right generation. We
15045 * have to start back at the beginning of the list each time
15046 * because we drop dtrace_lock. It's unlikely that we'll make
15047 * more than two passes.
15048 */
15049 for (i = 0; i < help->dthps_nprovs; i++) {
15050 prov = help->dthps_provs[i];
15051
15052 if (prov->dthp_generation == gen)
15053 break;
15054 }
15055
15056 /*
15057 * If there were no matches, we're done.
15058 */
15059 if (i == help->dthps_nprovs)
15060 break;
15061
15062 /*
15063 * Move the last helper provider into this slot.
15064 */
15065 help->dthps_nprovs--;
15066 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15067 help->dthps_provs[help->dthps_nprovs] = NULL;
15068
15069 mutex_exit(&dtrace_lock);
15070
15071 /*
15072 * If we have a meta provider, remove this helper provider.
15073 */
15074 mutex_enter(&dtrace_meta_lock);
15075 if (dtrace_meta_pid != NULL) {
15076 ASSERT(dtrace_deferred_pid == NULL);
15077 dtrace_helper_provider_remove(&prov->dthp_prov,
15078 p->p_pid);
15079 }
15080 mutex_exit(&dtrace_meta_lock);
15081
15082 dtrace_helper_provider_destroy(prov);
15083
15084 mutex_enter(&dtrace_lock);
15085 }
15086
15087 return (0);
15088 }
15089
15090 static int
dtrace_helper_validate(dtrace_helper_action_t * helper)15091 dtrace_helper_validate(dtrace_helper_action_t *helper)
15092 {
15093 int err = 0, i;
15094 dtrace_difo_t *dp;
15095
15096 if ((dp = helper->dtha_predicate) != NULL)
15097 err += dtrace_difo_validate_helper(dp);
15098
15099 for (i = 0; i < helper->dtha_nactions; i++)
15100 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15101
15102 return (err == 0);
15103 }
15104
15105 static int
dtrace_helper_action_add(int which,dtrace_ecbdesc_t * ep)15106 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
15107 {
15108 dtrace_helpers_t *help;
15109 dtrace_helper_action_t *helper, *last;
15110 dtrace_actdesc_t *act;
15111 dtrace_vstate_t *vstate;
15112 dtrace_predicate_t *pred;
15113 int count = 0, nactions = 0, i;
15114
15115 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15116 return (EINVAL);
15117
15118 help = curproc->p_dtrace_helpers;
15119 last = help->dthps_actions[which];
15120 vstate = &help->dthps_vstate;
15121
15122 for (count = 0; last != NULL; last = last->dtha_next) {
15123 count++;
15124 if (last->dtha_next == NULL)
15125 break;
15126 }
15127
15128 /*
15129 * If we already have dtrace_helper_actions_max helper actions for this
15130 * helper action type, we'll refuse to add a new one.
15131 */
15132 if (count >= dtrace_helper_actions_max)
15133 return (ENOSPC);
15134
15135 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15136 helper->dtha_generation = help->dthps_generation;
15137
15138 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15139 ASSERT(pred->dtp_difo != NULL);
15140 dtrace_difo_hold(pred->dtp_difo);
15141 helper->dtha_predicate = pred->dtp_difo;
15142 }
15143
15144 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15145 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15146 goto err;
15147
15148 if (act->dtad_difo == NULL)
15149 goto err;
15150
15151 nactions++;
15152 }
15153
15154 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15155 (helper->dtha_nactions = nactions), KM_SLEEP);
15156
15157 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
15158 dtrace_difo_hold(act->dtad_difo);
15159 helper->dtha_actions[i++] = act->dtad_difo;
15160 }
15161
15162 if (!dtrace_helper_validate(helper))
15163 goto err;
15164
15165 if (last == NULL) {
15166 help->dthps_actions[which] = helper;
15167 } else {
15168 last->dtha_next = helper;
15169 }
15170
15171 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
15172 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
15173 dtrace_helptrace_next = 0;
15174 }
15175
15176 return (0);
15177 err:
15178 dtrace_helper_action_destroy(helper, vstate);
15179 return (EINVAL);
15180 }
15181
15182 static void
dtrace_helper_provider_register(proc_t * p,dtrace_helpers_t * help,dof_helper_t * dofhp)15183 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
15184 dof_helper_t *dofhp)
15185 {
15186 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
15187
15188 mutex_enter(&dtrace_meta_lock);
15189 mutex_enter(&dtrace_lock);
15190
15191 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
15192 /*
15193 * If the dtrace module is loaded but not attached, or if
15194 * there aren't isn't a meta provider registered to deal with
15195 * these provider descriptions, we need to postpone creating
15196 * the actual providers until later.
15197 */
15198
15199 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
15200 dtrace_deferred_pid != help) {
15201 help->dthps_deferred = 1;
15202 help->dthps_pid = p->p_pid;
15203 help->dthps_next = dtrace_deferred_pid;
15204 help->dthps_prev = NULL;
15205 if (dtrace_deferred_pid != NULL)
15206 dtrace_deferred_pid->dthps_prev = help;
15207 dtrace_deferred_pid = help;
15208 }
15209
15210 mutex_exit(&dtrace_lock);
15211
15212 } else if (dofhp != NULL) {
15213 /*
15214 * If the dtrace module is loaded and we have a particular
15215 * helper provider description, pass that off to the
15216 * meta provider.
15217 */
15218
15219 mutex_exit(&dtrace_lock);
15220
15221 dtrace_helper_provide(dofhp, p->p_pid);
15222
15223 } else {
15224 /*
15225 * Otherwise, just pass all the helper provider descriptions
15226 * off to the meta provider.
15227 */
15228
15229 int i;
15230 mutex_exit(&dtrace_lock);
15231
15232 for (i = 0; i < help->dthps_nprovs; i++) {
15233 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
15234 p->p_pid);
15235 }
15236 }
15237
15238 mutex_exit(&dtrace_meta_lock);
15239 }
15240
15241 static int
dtrace_helper_provider_add(dof_helper_t * dofhp,int gen)15242 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
15243 {
15244 dtrace_helpers_t *help;
15245 dtrace_helper_provider_t *hprov, **tmp_provs;
15246 uint_t tmp_maxprovs, i;
15247
15248 ASSERT(MUTEX_HELD(&dtrace_lock));
15249
15250 help = curproc->p_dtrace_helpers;
15251 ASSERT(help != NULL);
15252
15253 /*
15254 * If we already have dtrace_helper_providers_max helper providers,
15255 * we're refuse to add a new one.
15256 */
15257 if (help->dthps_nprovs >= dtrace_helper_providers_max)
15258 return (ENOSPC);
15259
15260 /*
15261 * Check to make sure this isn't a duplicate.
15262 */
15263 for (i = 0; i < help->dthps_nprovs; i++) {
15264 if (dofhp->dofhp_addr ==
15265 help->dthps_provs[i]->dthp_prov.dofhp_addr)
15266 return (EALREADY);
15267 }
15268
15269 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
15270 hprov->dthp_prov = *dofhp;
15271 hprov->dthp_ref = 1;
15272 hprov->dthp_generation = gen;
15273
15274 /*
15275 * Allocate a bigger table for helper providers if it's already full.
15276 */
15277 if (help->dthps_maxprovs == help->dthps_nprovs) {
15278 tmp_maxprovs = help->dthps_maxprovs;
15279 tmp_provs = help->dthps_provs;
15280
15281 if (help->dthps_maxprovs == 0)
15282 help->dthps_maxprovs = 2;
15283 else
15284 help->dthps_maxprovs *= 2;
15285 if (help->dthps_maxprovs > dtrace_helper_providers_max)
15286 help->dthps_maxprovs = dtrace_helper_providers_max;
15287
15288 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
15289
15290 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
15291 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15292
15293 if (tmp_provs != NULL) {
15294 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
15295 sizeof (dtrace_helper_provider_t *));
15296 kmem_free(tmp_provs, tmp_maxprovs *
15297 sizeof (dtrace_helper_provider_t *));
15298 }
15299 }
15300
15301 help->dthps_provs[help->dthps_nprovs] = hprov;
15302 help->dthps_nprovs++;
15303
15304 return (0);
15305 }
15306
15307 static void
dtrace_helper_provider_destroy(dtrace_helper_provider_t * hprov)15308 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
15309 {
15310 mutex_enter(&dtrace_lock);
15311
15312 if (--hprov->dthp_ref == 0) {
15313 dof_hdr_t *dof;
15314 mutex_exit(&dtrace_lock);
15315 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
15316 dtrace_dof_destroy(dof);
15317 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
15318 } else {
15319 mutex_exit(&dtrace_lock);
15320 }
15321 }
15322
15323 static int
dtrace_helper_provider_validate(dof_hdr_t * dof,dof_sec_t * sec)15324 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
15325 {
15326 uintptr_t daddr = (uintptr_t)dof;
15327 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
15328 dof_provider_t *provider;
15329 dof_probe_t *probe;
15330 uint8_t *arg;
15331 char *strtab, *typestr;
15332 dof_stridx_t typeidx;
15333 size_t typesz;
15334 uint_t nprobes, j, k;
15335
15336 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
15337
15338 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
15339 dtrace_dof_error(dof, "misaligned section offset");
15340 return (-1);
15341 }
15342
15343 /*
15344 * The section needs to be large enough to contain the DOF provider
15345 * structure appropriate for the given version.
15346 */
15347 if (sec->dofs_size <
15348 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
15349 offsetof(dof_provider_t, dofpv_prenoffs) :
15350 sizeof (dof_provider_t))) {
15351 dtrace_dof_error(dof, "provider section too small");
15352 return (-1);
15353 }
15354
15355 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
15356 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
15357 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
15358 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
15359 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
15360
15361 if (str_sec == NULL || prb_sec == NULL ||
15362 arg_sec == NULL || off_sec == NULL)
15363 return (-1);
15364
15365 enoff_sec = NULL;
15366
15367 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
15368 provider->dofpv_prenoffs != DOF_SECT_NONE &&
15369 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
15370 provider->dofpv_prenoffs)) == NULL)
15371 return (-1);
15372
15373 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
15374
15375 if (provider->dofpv_name >= str_sec->dofs_size ||
15376 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
15377 dtrace_dof_error(dof, "invalid provider name");
15378 return (-1);
15379 }
15380
15381 if (prb_sec->dofs_entsize == 0 ||
15382 prb_sec->dofs_entsize > prb_sec->dofs_size) {
15383 dtrace_dof_error(dof, "invalid entry size");
15384 return (-1);
15385 }
15386
15387 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15388 dtrace_dof_error(dof, "misaligned entry size");
15389 return (-1);
15390 }
15391
15392 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15393 dtrace_dof_error(dof, "invalid entry size");
15394 return (-1);
15395 }
15396
15397 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15398 dtrace_dof_error(dof, "misaligned section offset");
15399 return (-1);
15400 }
15401
15402 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15403 dtrace_dof_error(dof, "invalid entry size");
15404 return (-1);
15405 }
15406
15407 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15408
15409 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15410
15411 /*
15412 * Take a pass through the probes to check for errors.
15413 */
15414 for (j = 0; j < nprobes; j++) {
15415 probe = (dof_probe_t *)(uintptr_t)(daddr +
15416 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15417
15418 if (probe->dofpr_func >= str_sec->dofs_size) {
15419 dtrace_dof_error(dof, "invalid function name");
15420 return (-1);
15421 }
15422
15423 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15424 dtrace_dof_error(dof, "function name too long");
15425 return (-1);
15426 }
15427
15428 if (probe->dofpr_name >= str_sec->dofs_size ||
15429 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15430 dtrace_dof_error(dof, "invalid probe name");
15431 return (-1);
15432 }
15433
15434 /*
15435 * The offset count must not wrap the index, and the offsets
15436 * must also not overflow the section's data.
15437 */
15438 if (probe->dofpr_offidx + probe->dofpr_noffs <
15439 probe->dofpr_offidx ||
15440 (probe->dofpr_offidx + probe->dofpr_noffs) *
15441 off_sec->dofs_entsize > off_sec->dofs_size) {
15442 dtrace_dof_error(dof, "invalid probe offset");
15443 return (-1);
15444 }
15445
15446 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15447 /*
15448 * If there's no is-enabled offset section, make sure
15449 * there aren't any is-enabled offsets. Otherwise
15450 * perform the same checks as for probe offsets
15451 * (immediately above).
15452 */
15453 if (enoff_sec == NULL) {
15454 if (probe->dofpr_enoffidx != 0 ||
15455 probe->dofpr_nenoffs != 0) {
15456 dtrace_dof_error(dof, "is-enabled "
15457 "offsets with null section");
15458 return (-1);
15459 }
15460 } else if (probe->dofpr_enoffidx +
15461 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15462 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15463 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15464 dtrace_dof_error(dof, "invalid is-enabled "
15465 "offset");
15466 return (-1);
15467 }
15468
15469 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15470 dtrace_dof_error(dof, "zero probe and "
15471 "is-enabled offsets");
15472 return (-1);
15473 }
15474 } else if (probe->dofpr_noffs == 0) {
15475 dtrace_dof_error(dof, "zero probe offsets");
15476 return (-1);
15477 }
15478
15479 if (probe->dofpr_argidx + probe->dofpr_xargc <
15480 probe->dofpr_argidx ||
15481 (probe->dofpr_argidx + probe->dofpr_xargc) *
15482 arg_sec->dofs_entsize > arg_sec->dofs_size) {
15483 dtrace_dof_error(dof, "invalid args");
15484 return (-1);
15485 }
15486
15487 typeidx = probe->dofpr_nargv;
15488 typestr = strtab + probe->dofpr_nargv;
15489 for (k = 0; k < probe->dofpr_nargc; k++) {
15490 if (typeidx >= str_sec->dofs_size) {
15491 dtrace_dof_error(dof, "bad "
15492 "native argument type");
15493 return (-1);
15494 }
15495
15496 typesz = strlen(typestr) + 1;
15497 if (typesz > DTRACE_ARGTYPELEN) {
15498 dtrace_dof_error(dof, "native "
15499 "argument type too long");
15500 return (-1);
15501 }
15502 typeidx += typesz;
15503 typestr += typesz;
15504 }
15505
15506 typeidx = probe->dofpr_xargv;
15507 typestr = strtab + probe->dofpr_xargv;
15508 for (k = 0; k < probe->dofpr_xargc; k++) {
15509 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15510 dtrace_dof_error(dof, "bad "
15511 "native argument index");
15512 return (-1);
15513 }
15514
15515 if (typeidx >= str_sec->dofs_size) {
15516 dtrace_dof_error(dof, "bad "
15517 "translated argument type");
15518 return (-1);
15519 }
15520
15521 typesz = strlen(typestr) + 1;
15522 if (typesz > DTRACE_ARGTYPELEN) {
15523 dtrace_dof_error(dof, "translated argument "
15524 "type too long");
15525 return (-1);
15526 }
15527
15528 typeidx += typesz;
15529 typestr += typesz;
15530 }
15531 }
15532
15533 return (0);
15534 }
15535
15536 static int
dtrace_helper_slurp(dof_hdr_t * dof,dof_helper_t * dhp)15537 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15538 {
15539 dtrace_helpers_t *help;
15540 dtrace_vstate_t *vstate;
15541 dtrace_enabling_t *enab = NULL;
15542 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15543 uintptr_t daddr = (uintptr_t)dof;
15544
15545 ASSERT(MUTEX_HELD(&dtrace_lock));
15546
15547 if ((help = curproc->p_dtrace_helpers) == NULL)
15548 help = dtrace_helpers_create(curproc);
15549
15550 vstate = &help->dthps_vstate;
15551
15552 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15553 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15554 dtrace_dof_destroy(dof);
15555 return (rv);
15556 }
15557
15558 /*
15559 * Look for helper providers and validate their descriptions.
15560 */
15561 if (dhp != NULL) {
15562 for (i = 0; i < dof->dofh_secnum; i++) {
15563 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15564 dof->dofh_secoff + i * dof->dofh_secsize);
15565
15566 if (sec->dofs_type != DOF_SECT_PROVIDER)
15567 continue;
15568
15569 if (dtrace_helper_provider_validate(dof, sec) != 0) {
15570 dtrace_enabling_destroy(enab);
15571 dtrace_dof_destroy(dof);
15572 return (-1);
15573 }
15574
15575 nprovs++;
15576 }
15577 }
15578
15579 /*
15580 * Now we need to walk through the ECB descriptions in the enabling.
15581 */
15582 for (i = 0; i < enab->dten_ndesc; i++) {
15583 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15584 dtrace_probedesc_t *desc = &ep->dted_probe;
15585
15586 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15587 continue;
15588
15589 if (strcmp(desc->dtpd_mod, "helper") != 0)
15590 continue;
15591
15592 if (strcmp(desc->dtpd_func, "ustack") != 0)
15593 continue;
15594
15595 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15596 ep)) != 0) {
15597 /*
15598 * Adding this helper action failed -- we are now going
15599 * to rip out the entire generation and return failure.
15600 */
15601 (void) dtrace_helper_destroygen(help->dthps_generation);
15602 dtrace_enabling_destroy(enab);
15603 dtrace_dof_destroy(dof);
15604 return (-1);
15605 }
15606
15607 nhelpers++;
15608 }
15609
15610 if (nhelpers < enab->dten_ndesc)
15611 dtrace_dof_error(dof, "unmatched helpers");
15612
15613 gen = help->dthps_generation++;
15614 dtrace_enabling_destroy(enab);
15615
15616 if (dhp != NULL && nprovs > 0) {
15617 /*
15618 * Now that this is in-kernel, we change the sense of the
15619 * members: dofhp_dof denotes the in-kernel copy of the DOF
15620 * and dofhp_addr denotes the address at user-level.
15621 */
15622 dhp->dofhp_addr = dhp->dofhp_dof;
15623 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15624
15625 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15626 mutex_exit(&dtrace_lock);
15627 dtrace_helper_provider_register(curproc, help, dhp);
15628 mutex_enter(&dtrace_lock);
15629
15630 destroy = 0;
15631 }
15632 }
15633
15634 if (destroy)
15635 dtrace_dof_destroy(dof);
15636
15637 return (gen);
15638 }
15639
15640 static dtrace_helpers_t *
dtrace_helpers_create(proc_t * p)15641 dtrace_helpers_create(proc_t *p)
15642 {
15643 dtrace_helpers_t *help;
15644
15645 ASSERT(MUTEX_HELD(&dtrace_lock));
15646 ASSERT(p->p_dtrace_helpers == NULL);
15647
15648 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15649 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15650 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15651
15652 p->p_dtrace_helpers = help;
15653 dtrace_helpers++;
15654
15655 return (help);
15656 }
15657
15658 static void
dtrace_helpers_destroy(proc_t * p)15659 dtrace_helpers_destroy(proc_t *p)
15660 {
15661 dtrace_helpers_t *help;
15662 dtrace_vstate_t *vstate;
15663 int i;
15664
15665 mutex_enter(&dtrace_lock);
15666
15667 ASSERT(p->p_dtrace_helpers != NULL);
15668 ASSERT(dtrace_helpers > 0);
15669
15670 help = p->p_dtrace_helpers;
15671 vstate = &help->dthps_vstate;
15672
15673 /*
15674 * We're now going to lose the help from this process.
15675 */
15676 p->p_dtrace_helpers = NULL;
15677 if (p == curproc) {
15678 dtrace_sync();
15679 } else {
15680 /*
15681 * It is sometimes necessary to clean up dtrace helpers from a
15682 * an incomplete child process as part of a failed fork
15683 * operation. In such situations, a dtrace_sync() call should
15684 * be unnecessary as the process should be devoid of threads,
15685 * much less any in probe context.
15686 */
15687 VERIFY(p->p_stat == SIDL);
15688 }
15689
15690 /*
15691 * Destroy the helper actions.
15692 */
15693 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15694 dtrace_helper_action_t *h, *next;
15695
15696 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15697 next = h->dtha_next;
15698 dtrace_helper_action_destroy(h, vstate);
15699 h = next;
15700 }
15701 }
15702
15703 mutex_exit(&dtrace_lock);
15704
15705 /*
15706 * Destroy the helper providers.
15707 */
15708 if (help->dthps_maxprovs > 0) {
15709 mutex_enter(&dtrace_meta_lock);
15710 if (dtrace_meta_pid != NULL) {
15711 ASSERT(dtrace_deferred_pid == NULL);
15712
15713 for (i = 0; i < help->dthps_nprovs; i++) {
15714 dtrace_helper_provider_remove(
15715 &help->dthps_provs[i]->dthp_prov, p->p_pid);
15716 }
15717 } else {
15718 mutex_enter(&dtrace_lock);
15719 ASSERT(help->dthps_deferred == 0 ||
15720 help->dthps_next != NULL ||
15721 help->dthps_prev != NULL ||
15722 help == dtrace_deferred_pid);
15723
15724 /*
15725 * Remove the helper from the deferred list.
15726 */
15727 if (help->dthps_next != NULL)
15728 help->dthps_next->dthps_prev = help->dthps_prev;
15729 if (help->dthps_prev != NULL)
15730 help->dthps_prev->dthps_next = help->dthps_next;
15731 if (dtrace_deferred_pid == help) {
15732 dtrace_deferred_pid = help->dthps_next;
15733 ASSERT(help->dthps_prev == NULL);
15734 }
15735
15736 mutex_exit(&dtrace_lock);
15737 }
15738
15739 mutex_exit(&dtrace_meta_lock);
15740
15741 for (i = 0; i < help->dthps_nprovs; i++) {
15742 dtrace_helper_provider_destroy(help->dthps_provs[i]);
15743 }
15744
15745 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15746 sizeof (dtrace_helper_provider_t *));
15747 }
15748
15749 mutex_enter(&dtrace_lock);
15750
15751 dtrace_vstate_fini(&help->dthps_vstate);
15752 kmem_free(help->dthps_actions,
15753 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15754 kmem_free(help, sizeof (dtrace_helpers_t));
15755
15756 --dtrace_helpers;
15757 mutex_exit(&dtrace_lock);
15758 }
15759
15760 static void
dtrace_helpers_duplicate(proc_t * from,proc_t * to)15761 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15762 {
15763 dtrace_helpers_t *help, *newhelp;
15764 dtrace_helper_action_t *helper, *new, *last;
15765 dtrace_difo_t *dp;
15766 dtrace_vstate_t *vstate;
15767 int i, j, sz, hasprovs = 0;
15768
15769 mutex_enter(&dtrace_lock);
15770 ASSERT(from->p_dtrace_helpers != NULL);
15771 ASSERT(dtrace_helpers > 0);
15772
15773 help = from->p_dtrace_helpers;
15774 newhelp = dtrace_helpers_create(to);
15775 ASSERT(to->p_dtrace_helpers != NULL);
15776
15777 newhelp->dthps_generation = help->dthps_generation;
15778 vstate = &newhelp->dthps_vstate;
15779
15780 /*
15781 * Duplicate the helper actions.
15782 */
15783 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15784 if ((helper = help->dthps_actions[i]) == NULL)
15785 continue;
15786
15787 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15788 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15789 KM_SLEEP);
15790 new->dtha_generation = helper->dtha_generation;
15791
15792 if ((dp = helper->dtha_predicate) != NULL) {
15793 dp = dtrace_difo_duplicate(dp, vstate);
15794 new->dtha_predicate = dp;
15795 }
15796
15797 new->dtha_nactions = helper->dtha_nactions;
15798 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15799 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15800
15801 for (j = 0; j < new->dtha_nactions; j++) {
15802 dtrace_difo_t *dp = helper->dtha_actions[j];
15803
15804 ASSERT(dp != NULL);
15805 dp = dtrace_difo_duplicate(dp, vstate);
15806 new->dtha_actions[j] = dp;
15807 }
15808
15809 if (last != NULL) {
15810 last->dtha_next = new;
15811 } else {
15812 newhelp->dthps_actions[i] = new;
15813 }
15814
15815 last = new;
15816 }
15817 }
15818
15819 /*
15820 * Duplicate the helper providers and register them with the
15821 * DTrace framework.
15822 */
15823 if (help->dthps_nprovs > 0) {
15824 newhelp->dthps_nprovs = help->dthps_nprovs;
15825 newhelp->dthps_maxprovs = help->dthps_nprovs;
15826 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15827 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15828 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15829 newhelp->dthps_provs[i] = help->dthps_provs[i];
15830 newhelp->dthps_provs[i]->dthp_ref++;
15831 }
15832
15833 hasprovs = 1;
15834 }
15835
15836 mutex_exit(&dtrace_lock);
15837
15838 if (hasprovs)
15839 dtrace_helper_provider_register(to, newhelp, NULL);
15840 }
15841
15842 /*
15843 * DTrace Hook Functions
15844 */
15845 static void
dtrace_module_loaded(struct modctl * ctl)15846 dtrace_module_loaded(struct modctl *ctl)
15847 {
15848 dtrace_provider_t *prv;
15849
15850 mutex_enter(&dtrace_provider_lock);
15851 mutex_enter(&mod_lock);
15852
15853 ASSERT(ctl->mod_busy);
15854
15855 /*
15856 * We're going to call each providers per-module provide operation
15857 * specifying only this module.
15858 */
15859 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15860 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15861
15862 mutex_exit(&mod_lock);
15863 mutex_exit(&dtrace_provider_lock);
15864
15865 /*
15866 * If we have any retained enablings, we need to match against them.
15867 * Enabling probes requires that cpu_lock be held, and we cannot hold
15868 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15869 * module. (In particular, this happens when loading scheduling
15870 * classes.) So if we have any retained enablings, we need to dispatch
15871 * our task queue to do the match for us.
15872 */
15873 mutex_enter(&dtrace_lock);
15874
15875 if (dtrace_retained == NULL) {
15876 mutex_exit(&dtrace_lock);
15877 return;
15878 }
15879
15880 (void) taskq_dispatch(dtrace_taskq,
15881 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15882
15883 mutex_exit(&dtrace_lock);
15884
15885 /*
15886 * And now, for a little heuristic sleaze: in general, we want to
15887 * match modules as soon as they load. However, we cannot guarantee
15888 * this, because it would lead us to the lock ordering violation
15889 * outlined above. The common case, of course, is that cpu_lock is
15890 * _not_ held -- so we delay here for a clock tick, hoping that that's
15891 * long enough for the task queue to do its work. If it's not, it's
15892 * not a serious problem -- it just means that the module that we
15893 * just loaded may not be immediately instrumentable.
15894 */
15895 delay(1);
15896 }
15897
15898 static void
dtrace_module_unloaded(struct modctl * ctl)15899 dtrace_module_unloaded(struct modctl *ctl)
15900 {
15901 dtrace_probe_t template, *probe, *first, *next;
15902 dtrace_provider_t *prov;
15903
15904 template.dtpr_mod = ctl->mod_modname;
15905
15906 mutex_enter(&dtrace_provider_lock);
15907 mutex_enter(&mod_lock);
15908 mutex_enter(&dtrace_lock);
15909
15910 if (dtrace_bymod == NULL) {
15911 /*
15912 * The DTrace module is loaded (obviously) but not attached;
15913 * we don't have any work to do.
15914 */
15915 mutex_exit(&dtrace_provider_lock);
15916 mutex_exit(&mod_lock);
15917 mutex_exit(&dtrace_lock);
15918 return;
15919 }
15920
15921 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15922 probe != NULL; probe = probe->dtpr_nextmod) {
15923 if (probe->dtpr_ecb != NULL) {
15924 mutex_exit(&dtrace_provider_lock);
15925 mutex_exit(&mod_lock);
15926 mutex_exit(&dtrace_lock);
15927
15928 /*
15929 * This shouldn't _actually_ be possible -- we're
15930 * unloading a module that has an enabled probe in it.
15931 * (It's normally up to the provider to make sure that
15932 * this can't happen.) However, because dtps_enable()
15933 * doesn't have a failure mode, there can be an
15934 * enable/unload race. Upshot: we don't want to
15935 * assert, but we're not going to disable the
15936 * probe, either.
15937 */
15938 if (dtrace_err_verbose) {
15939 cmn_err(CE_WARN, "unloaded module '%s' had "
15940 "enabled probes", ctl->mod_modname);
15941 }
15942
15943 return;
15944 }
15945 }
15946
15947 probe = first;
15948
15949 for (first = NULL; probe != NULL; probe = next) {
15950 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15951
15952 dtrace_probes[probe->dtpr_id - 1] = NULL;
15953
15954 next = probe->dtpr_nextmod;
15955 dtrace_hash_remove(dtrace_bymod, probe);
15956 dtrace_hash_remove(dtrace_byfunc, probe);
15957 dtrace_hash_remove(dtrace_byname, probe);
15958
15959 if (first == NULL) {
15960 first = probe;
15961 probe->dtpr_nextmod = NULL;
15962 } else {
15963 probe->dtpr_nextmod = first;
15964 first = probe;
15965 }
15966 }
15967
15968 /*
15969 * We've removed all of the module's probes from the hash chains and
15970 * from the probe array. Now issue a dtrace_sync() to be sure that
15971 * everyone has cleared out from any probe array processing.
15972 */
15973 dtrace_sync();
15974
15975 for (probe = first; probe != NULL; probe = first) {
15976 first = probe->dtpr_nextmod;
15977 prov = probe->dtpr_provider;
15978 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15979 probe->dtpr_arg);
15980 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15981 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15982 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15983 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15984 kmem_free(probe, sizeof (dtrace_probe_t));
15985 }
15986
15987 mutex_exit(&dtrace_lock);
15988 mutex_exit(&mod_lock);
15989 mutex_exit(&dtrace_provider_lock);
15990 }
15991
15992 void
dtrace_suspend(void)15993 dtrace_suspend(void)
15994 {
15995 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15996 }
15997
15998 void
dtrace_resume(void)15999 dtrace_resume(void)
16000 {
16001 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16002 }
16003
16004 static int
dtrace_cpu_setup(cpu_setup_t what,processorid_t cpu,void * ptr __unused)16005 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu, void *ptr __unused)
16006 {
16007 ASSERT(MUTEX_HELD(&cpu_lock));
16008 mutex_enter(&dtrace_lock);
16009
16010 switch (what) {
16011 case CPU_CONFIG: {
16012 dtrace_state_t *state;
16013 dtrace_optval_t *opt, rs, c;
16014
16015 /*
16016 * For now, we only allocate a new buffer for anonymous state.
16017 */
16018 if ((state = dtrace_anon.dta_state) == NULL)
16019 break;
16020
16021 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16022 break;
16023
16024 opt = state->dts_options;
16025 c = opt[DTRACEOPT_CPU];
16026
16027 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16028 break;
16029
16030 /*
16031 * Regardless of what the actual policy is, we're going to
16032 * temporarily set our resize policy to be manual. We're
16033 * also going to temporarily set our CPU option to denote
16034 * the newly configured CPU.
16035 */
16036 rs = opt[DTRACEOPT_BUFRESIZE];
16037 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16038 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16039
16040 (void) dtrace_state_buffers(state);
16041
16042 opt[DTRACEOPT_BUFRESIZE] = rs;
16043 opt[DTRACEOPT_CPU] = c;
16044
16045 break;
16046 }
16047
16048 case CPU_UNCONFIG:
16049 /*
16050 * We don't free the buffer in the CPU_UNCONFIG case. (The
16051 * buffer will be freed when the consumer exits.)
16052 */
16053 break;
16054
16055 default:
16056 break;
16057 }
16058
16059 mutex_exit(&dtrace_lock);
16060 return (0);
16061 }
16062
16063 static void
dtrace_cpu_setup_initial(processorid_t cpu)16064 dtrace_cpu_setup_initial(processorid_t cpu)
16065 {
16066 (void) dtrace_cpu_setup(CPU_CONFIG, cpu, NULL);
16067 }
16068
16069 static void
dtrace_toxrange_add(uintptr_t base,uintptr_t limit)16070 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16071 {
16072 if (dtrace_toxranges >= dtrace_toxranges_max) {
16073 int osize, nsize;
16074 dtrace_toxrange_t *range;
16075
16076 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16077
16078 if (osize == 0) {
16079 ASSERT(dtrace_toxrange == NULL);
16080 ASSERT(dtrace_toxranges_max == 0);
16081 dtrace_toxranges_max = 1;
16082 } else {
16083 dtrace_toxranges_max <<= 1;
16084 }
16085
16086 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16087 range = kmem_zalloc(nsize, KM_SLEEP);
16088
16089 if (dtrace_toxrange != NULL) {
16090 ASSERT(osize != 0);
16091 bcopy(dtrace_toxrange, range, osize);
16092 kmem_free(dtrace_toxrange, osize);
16093 }
16094
16095 dtrace_toxrange = range;
16096 }
16097
16098 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == (uintptr_t)NULL);
16099 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == (uintptr_t)NULL);
16100
16101 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
16102 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
16103 dtrace_toxranges++;
16104 }
16105
16106 static void
dtrace_getf_barrier()16107 dtrace_getf_barrier()
16108 {
16109 /*
16110 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
16111 * that contain calls to getf(), this routine will be called on every
16112 * closef() before either the underlying vnode is released or the
16113 * file_t itself is freed. By the time we are here, it is essential
16114 * that the file_t can no longer be accessed from a call to getf()
16115 * in probe context -- that assures that a dtrace_sync() can be used
16116 * to clear out any enablings referring to the old structures.
16117 */
16118 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
16119 kcred->cr_zone->zone_dtrace_getf != 0)
16120 dtrace_sync();
16121 }
16122
16123 /*
16124 * DTrace Driver Cookbook Functions
16125 */
16126 /*ARGSUSED*/
16127 static int
dtrace_attach(dev_info_t * devi,ddi_attach_cmd_t cmd)16128 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
16129 {
16130 dtrace_provider_id_t id;
16131 dtrace_state_t *state = NULL;
16132 dtrace_enabling_t *enab;
16133
16134 mutex_enter(&cpu_lock);
16135 mutex_enter(&dtrace_provider_lock);
16136 mutex_enter(&dtrace_lock);
16137
16138 if (ddi_soft_state_init(&dtrace_softstate,
16139 sizeof (dtrace_state_t), 0) != 0) {
16140 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
16141 mutex_exit(&cpu_lock);
16142 mutex_exit(&dtrace_provider_lock);
16143 mutex_exit(&dtrace_lock);
16144 return (DDI_FAILURE);
16145 }
16146
16147 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
16148 DTRACEMNRN_DTRACE, DDI_PSEUDO, 0) == DDI_FAILURE ||
16149 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
16150 DTRACEMNRN_HELPER, DDI_PSEUDO, 0) == DDI_FAILURE) {
16151 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
16152 ddi_remove_minor_node(devi, NULL);
16153 ddi_soft_state_fini(&dtrace_softstate);
16154 mutex_exit(&cpu_lock);
16155 mutex_exit(&dtrace_provider_lock);
16156 mutex_exit(&dtrace_lock);
16157 return (DDI_FAILURE);
16158 }
16159
16160 ddi_report_dev(devi);
16161 dtrace_devi = devi;
16162
16163 dtrace_modload = dtrace_module_loaded;
16164 dtrace_modunload = dtrace_module_unloaded;
16165 dtrace_cpu_init = dtrace_cpu_setup_initial;
16166 dtrace_helpers_cleanup = dtrace_helpers_destroy;
16167 dtrace_helpers_fork = dtrace_helpers_duplicate;
16168 dtrace_cpustart_init = dtrace_suspend;
16169 dtrace_cpustart_fini = dtrace_resume;
16170 dtrace_debugger_init = dtrace_suspend;
16171 dtrace_debugger_fini = dtrace_resume;
16172
16173 register_cpu_setup_func(dtrace_cpu_setup, NULL);
16174
16175 ASSERT(MUTEX_HELD(&cpu_lock));
16176
16177 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
16178 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
16179 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
16180 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
16181 VM_SLEEP | VMC_IDENTIFIER);
16182 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
16183 1, INT_MAX, 0);
16184
16185 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
16186 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
16187 NULL, NULL, NULL, NULL, NULL, 0);
16188
16189 ASSERT(MUTEX_HELD(&cpu_lock));
16190 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
16191 offsetof(dtrace_probe_t, dtpr_nextmod),
16192 offsetof(dtrace_probe_t, dtpr_prevmod));
16193
16194 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
16195 offsetof(dtrace_probe_t, dtpr_nextfunc),
16196 offsetof(dtrace_probe_t, dtpr_prevfunc));
16197
16198 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
16199 offsetof(dtrace_probe_t, dtpr_nextname),
16200 offsetof(dtrace_probe_t, dtpr_prevname));
16201
16202 if (dtrace_retain_max < 1) {
16203 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
16204 "setting to 1", dtrace_retain_max);
16205 dtrace_retain_max = 1;
16206 }
16207
16208 /*
16209 * Now discover our toxic ranges.
16210 */
16211 dtrace_toxic_ranges(dtrace_toxrange_add);
16212
16213 /*
16214 * Before we register ourselves as a provider to our own framework,
16215 * we would like to assert that dtrace_provider is NULL -- but that's
16216 * not true if we were loaded as a dependency of a DTrace provider.
16217 * Once we've registered, we can assert that dtrace_provider is our
16218 * pseudo provider.
16219 */
16220 (void) dtrace_register("dtrace", &dtrace_provider_attr,
16221 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
16222
16223 ASSERT(dtrace_provider != NULL);
16224 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
16225
16226 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
16227 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
16228 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
16229 dtrace_provider, NULL, NULL, "END", 0, NULL);
16230 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
16231 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
16232
16233 dtrace_anon_property();
16234 mutex_exit(&cpu_lock);
16235
16236 /*
16237 * If there are already providers, we must ask them to provide their
16238 * probes, and then match any anonymous enabling against them. Note
16239 * that there should be no other retained enablings at this time:
16240 * the only retained enablings at this time should be the anonymous
16241 * enabling.
16242 */
16243 if (dtrace_anon.dta_enabling != NULL) {
16244 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
16245
16246 dtrace_enabling_provide(NULL);
16247 state = dtrace_anon.dta_state;
16248
16249 /*
16250 * We couldn't hold cpu_lock across the above call to
16251 * dtrace_enabling_provide(), but we must hold it to actually
16252 * enable the probes. We have to drop all of our locks, pick
16253 * up cpu_lock, and regain our locks before matching the
16254 * retained anonymous enabling.
16255 */
16256 mutex_exit(&dtrace_lock);
16257 mutex_exit(&dtrace_provider_lock);
16258
16259 mutex_enter(&cpu_lock);
16260 mutex_enter(&dtrace_provider_lock);
16261 mutex_enter(&dtrace_lock);
16262
16263 if ((enab = dtrace_anon.dta_enabling) != NULL)
16264 (void) dtrace_enabling_match(enab, NULL);
16265
16266 mutex_exit(&cpu_lock);
16267 }
16268
16269 mutex_exit(&dtrace_lock);
16270 mutex_exit(&dtrace_provider_lock);
16271
16272 if (state != NULL) {
16273 /*
16274 * If we created any anonymous state, set it going now.
16275 */
16276 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
16277 }
16278
16279 return (DDI_SUCCESS);
16280 }
16281
16282 /*ARGSUSED*/
16283 static int
dtrace_open(dev_t * devp,int flag,int otyp,cred_t * cred_p)16284 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
16285 {
16286 dtrace_state_t *state;
16287 uint32_t priv;
16288 uid_t uid;
16289 zoneid_t zoneid;
16290
16291 if (getminor(*devp) == DTRACEMNRN_HELPER)
16292 return (0);
16293
16294 /*
16295 * If this wasn't an open with the "helper" minor, then it must be
16296 * the "dtrace" minor.
16297 */
16298 if (getminor(*devp) != DTRACEMNRN_DTRACE)
16299 return (ENXIO);
16300
16301 /*
16302 * If no DTRACE_PRIV_* bits are set in the credential, then the
16303 * caller lacks sufficient permission to do anything with DTrace.
16304 */
16305 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
16306 if (priv == DTRACE_PRIV_NONE)
16307 return (EACCES);
16308
16309 /*
16310 * Ask all providers to provide all their probes.
16311 */
16312 mutex_enter(&dtrace_provider_lock);
16313 dtrace_probe_provide(NULL, NULL);
16314 mutex_exit(&dtrace_provider_lock);
16315
16316 mutex_enter(&cpu_lock);
16317 mutex_enter(&dtrace_lock);
16318 dtrace_opens++;
16319 dtrace_membar_producer();
16320
16321 /*
16322 * If the kernel debugger is active (that is, if the kernel debugger
16323 * modified text in some way), we won't allow the open.
16324 */
16325 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
16326 dtrace_opens--;
16327 mutex_exit(&cpu_lock);
16328 mutex_exit(&dtrace_lock);
16329 return (EBUSY);
16330 }
16331
16332 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
16333 /*
16334 * If DTrace helper tracing is enabled, we need to allocate the
16335 * trace buffer and initialize the values.
16336 */
16337 dtrace_helptrace_buffer =
16338 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
16339 dtrace_helptrace_next = 0;
16340 dtrace_helptrace_wrapped = 0;
16341 dtrace_helptrace_enable = 0;
16342 }
16343
16344 state = dtrace_state_create(devp, cred_p);
16345 mutex_exit(&cpu_lock);
16346
16347 if (state == NULL) {
16348 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16349 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16350 mutex_exit(&dtrace_lock);
16351 return (EAGAIN);
16352 }
16353
16354 mutex_exit(&dtrace_lock);
16355
16356 return (0);
16357 }
16358
16359 /*ARGSUSED*/
16360 static int
dtrace_close(dev_t dev,int flag,int otyp,cred_t * cred_p)16361 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
16362 {
16363 minor_t minor = getminor(dev);
16364 dtrace_state_t *state;
16365 dtrace_helptrace_t *buf = NULL;
16366
16367 if (minor == DTRACEMNRN_HELPER)
16368 return (0);
16369
16370 state = ddi_get_soft_state(dtrace_softstate, minor);
16371
16372 mutex_enter(&cpu_lock);
16373 mutex_enter(&dtrace_lock);
16374
16375 if (state->dts_anon) {
16376 /*
16377 * There is anonymous state. Destroy that first.
16378 */
16379 ASSERT(dtrace_anon.dta_state == NULL);
16380 dtrace_state_destroy(state->dts_anon);
16381 }
16382
16383 if (dtrace_helptrace_disable) {
16384 /*
16385 * If we have been told to disable helper tracing, set the
16386 * buffer to NULL before calling into dtrace_state_destroy();
16387 * we take advantage of its dtrace_sync() to know that no
16388 * CPU is in probe context with enabled helper tracing
16389 * after it returns.
16390 */
16391 buf = dtrace_helptrace_buffer;
16392 dtrace_helptrace_buffer = NULL;
16393 }
16394
16395 dtrace_state_destroy(state);
16396 ASSERT(dtrace_opens > 0);
16397
16398 /*
16399 * Only relinquish control of the kernel debugger interface when there
16400 * are no consumers and no anonymous enablings.
16401 */
16402 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16403 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16404
16405 if (buf != NULL) {
16406 kmem_free(buf, dtrace_helptrace_bufsize);
16407 dtrace_helptrace_disable = 0;
16408 }
16409
16410 mutex_exit(&dtrace_lock);
16411 mutex_exit(&cpu_lock);
16412
16413 return (0);
16414 }
16415
16416 /*ARGSUSED*/
16417 static int
dtrace_ioctl_helper(int cmd,intptr_t arg,int * rv)16418 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16419 {
16420 int rval;
16421 dof_helper_t help, *dhp = NULL;
16422
16423 switch (cmd) {
16424 case DTRACEHIOC_ADDDOF:
16425 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16426 dtrace_dof_error(NULL, "failed to copyin DOF helper");
16427 return (EFAULT);
16428 }
16429
16430 dhp = &help;
16431 arg = (intptr_t)help.dofhp_dof;
16432 /*FALLTHROUGH*/
16433
16434 case DTRACEHIOC_ADD: {
16435 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16436
16437 if (dof == NULL)
16438 return (rval);
16439
16440 mutex_enter(&dtrace_lock);
16441
16442 /*
16443 * dtrace_helper_slurp() takes responsibility for the dof --
16444 * it may free it now or it may save it and free it later.
16445 */
16446 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16447 *rv = rval;
16448 rval = 0;
16449 } else {
16450 rval = EINVAL;
16451 }
16452
16453 mutex_exit(&dtrace_lock);
16454 return (rval);
16455 }
16456
16457 case DTRACEHIOC_REMOVE: {
16458 mutex_enter(&dtrace_lock);
16459 rval = dtrace_helper_destroygen(arg);
16460 mutex_exit(&dtrace_lock);
16461
16462 return (rval);
16463 }
16464
16465 default:
16466 break;
16467 }
16468
16469 return (ENOTTY);
16470 }
16471
16472 /*ARGSUSED*/
16473 static int
dtrace_ioctl(dev_t dev,int cmd,intptr_t arg,int md,cred_t * cr,int * rv)16474 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16475 {
16476 minor_t minor = getminor(dev);
16477 dtrace_state_t *state;
16478 int rval;
16479
16480 if (minor == DTRACEMNRN_HELPER)
16481 return (dtrace_ioctl_helper(cmd, arg, rv));
16482
16483 state = ddi_get_soft_state(dtrace_softstate, minor);
16484
16485 if (state->dts_anon) {
16486 ASSERT(dtrace_anon.dta_state == NULL);
16487 state = state->dts_anon;
16488 }
16489
16490 switch (cmd) {
16491 case DTRACEIOC_PROVIDER: {
16492 dtrace_providerdesc_t pvd;
16493 dtrace_provider_t *pvp;
16494
16495 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16496 return (EFAULT);
16497
16498 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16499 mutex_enter(&dtrace_provider_lock);
16500
16501 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16502 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16503 break;
16504 }
16505
16506 mutex_exit(&dtrace_provider_lock);
16507
16508 if (pvp == NULL)
16509 return (ESRCH);
16510
16511 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16512 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16513 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16514 return (EFAULT);
16515
16516 return (0);
16517 }
16518
16519 case DTRACEIOC_EPROBE: {
16520 dtrace_eprobedesc_t epdesc;
16521 dtrace_ecb_t *ecb;
16522 dtrace_action_t *act;
16523 void *buf;
16524 size_t size;
16525 uintptr_t dest;
16526 int nrecs;
16527
16528 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16529 return (EFAULT);
16530
16531 mutex_enter(&dtrace_lock);
16532
16533 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16534 mutex_exit(&dtrace_lock);
16535 return (EINVAL);
16536 }
16537
16538 if (ecb->dte_probe == NULL) {
16539 mutex_exit(&dtrace_lock);
16540 return (EINVAL);
16541 }
16542
16543 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16544 epdesc.dtepd_uarg = ecb->dte_uarg;
16545 epdesc.dtepd_size = ecb->dte_size;
16546
16547 nrecs = epdesc.dtepd_nrecs;
16548 epdesc.dtepd_nrecs = 0;
16549 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16550 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16551 continue;
16552
16553 epdesc.dtepd_nrecs++;
16554 }
16555
16556 /*
16557 * Now that we have the size, we need to allocate a temporary
16558 * buffer in which to store the complete description. We need
16559 * the temporary buffer to be able to drop dtrace_lock()
16560 * across the copyout(), below.
16561 */
16562 size = sizeof (dtrace_eprobedesc_t) +
16563 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16564
16565 buf = kmem_alloc(size, KM_SLEEP);
16566 dest = (uintptr_t)buf;
16567
16568 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16569 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16570
16571 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16572 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16573 continue;
16574
16575 if (nrecs-- == 0)
16576 break;
16577
16578 bcopy(&act->dta_rec, (void *)dest,
16579 sizeof (dtrace_recdesc_t));
16580 dest += sizeof (dtrace_recdesc_t);
16581 }
16582
16583 mutex_exit(&dtrace_lock);
16584
16585 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16586 kmem_free(buf, size);
16587 return (EFAULT);
16588 }
16589
16590 kmem_free(buf, size);
16591 return (0);
16592 }
16593
16594 case DTRACEIOC_AGGDESC: {
16595 dtrace_aggdesc_t aggdesc;
16596 dtrace_action_t *act;
16597 dtrace_aggregation_t *agg;
16598 int nrecs;
16599 uint32_t offs;
16600 dtrace_recdesc_t *lrec;
16601 void *buf;
16602 size_t size;
16603 uintptr_t dest;
16604
16605 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16606 return (EFAULT);
16607
16608 mutex_enter(&dtrace_lock);
16609
16610 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16611 mutex_exit(&dtrace_lock);
16612 return (EINVAL);
16613 }
16614
16615 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16616
16617 nrecs = aggdesc.dtagd_nrecs;
16618 aggdesc.dtagd_nrecs = 0;
16619
16620 offs = agg->dtag_base;
16621 lrec = &agg->dtag_action.dta_rec;
16622 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16623
16624 for (act = agg->dtag_first; ; act = act->dta_next) {
16625 ASSERT(act->dta_intuple ||
16626 DTRACEACT_ISAGG(act->dta_kind));
16627
16628 /*
16629 * If this action has a record size of zero, it
16630 * denotes an argument to the aggregating action.
16631 * Because the presence of this record doesn't (or
16632 * shouldn't) affect the way the data is interpreted,
16633 * we don't copy it out to save user-level the
16634 * confusion of dealing with a zero-length record.
16635 */
16636 if (act->dta_rec.dtrd_size == 0) {
16637 ASSERT(agg->dtag_hasarg);
16638 continue;
16639 }
16640
16641 aggdesc.dtagd_nrecs++;
16642
16643 if (act == &agg->dtag_action)
16644 break;
16645 }
16646
16647 /*
16648 * Now that we have the size, we need to allocate a temporary
16649 * buffer in which to store the complete description. We need
16650 * the temporary buffer to be able to drop dtrace_lock()
16651 * across the copyout(), below.
16652 */
16653 size = sizeof (dtrace_aggdesc_t) +
16654 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16655
16656 buf = kmem_alloc(size, KM_SLEEP);
16657 dest = (uintptr_t)buf;
16658
16659 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16660 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16661
16662 for (act = agg->dtag_first; ; act = act->dta_next) {
16663 dtrace_recdesc_t rec = act->dta_rec;
16664
16665 /*
16666 * See the comment in the above loop for why we pass
16667 * over zero-length records.
16668 */
16669 if (rec.dtrd_size == 0) {
16670 ASSERT(agg->dtag_hasarg);
16671 continue;
16672 }
16673
16674 if (nrecs-- == 0)
16675 break;
16676
16677 rec.dtrd_offset -= offs;
16678 bcopy(&rec, (void *)dest, sizeof (rec));
16679 dest += sizeof (dtrace_recdesc_t);
16680
16681 if (act == &agg->dtag_action)
16682 break;
16683 }
16684
16685 mutex_exit(&dtrace_lock);
16686
16687 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16688 kmem_free(buf, size);
16689 return (EFAULT);
16690 }
16691
16692 kmem_free(buf, size);
16693 return (0);
16694 }
16695
16696 case DTRACEIOC_ENABLE: {
16697 dof_hdr_t *dof;
16698 dtrace_enabling_t *enab = NULL;
16699 dtrace_vstate_t *vstate;
16700 int err = 0;
16701
16702 *rv = 0;
16703
16704 /*
16705 * If a NULL argument has been passed, we take this as our
16706 * cue to reevaluate our enablings.
16707 */
16708 if (arg == 0) {
16709 dtrace_enabling_matchall();
16710
16711 return (0);
16712 }
16713
16714 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16715 return (rval);
16716
16717 mutex_enter(&cpu_lock);
16718 mutex_enter(&dtrace_lock);
16719 vstate = &state->dts_vstate;
16720
16721 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16722 mutex_exit(&dtrace_lock);
16723 mutex_exit(&cpu_lock);
16724 dtrace_dof_destroy(dof);
16725 return (EBUSY);
16726 }
16727
16728 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16729 mutex_exit(&dtrace_lock);
16730 mutex_exit(&cpu_lock);
16731 dtrace_dof_destroy(dof);
16732 return (EINVAL);
16733 }
16734
16735 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16736 dtrace_enabling_destroy(enab);
16737 mutex_exit(&dtrace_lock);
16738 mutex_exit(&cpu_lock);
16739 dtrace_dof_destroy(dof);
16740 return (rval);
16741 }
16742
16743 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16744 err = dtrace_enabling_retain(enab);
16745 } else {
16746 dtrace_enabling_destroy(enab);
16747 }
16748
16749 mutex_exit(&cpu_lock);
16750 mutex_exit(&dtrace_lock);
16751 dtrace_dof_destroy(dof);
16752
16753 return (err);
16754 }
16755
16756 case DTRACEIOC_REPLICATE: {
16757 dtrace_repldesc_t desc;
16758 dtrace_probedesc_t *match = &desc.dtrpd_match;
16759 dtrace_probedesc_t *create = &desc.dtrpd_create;
16760 int err;
16761
16762 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16763 return (EFAULT);
16764
16765 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16766 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16767 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16768 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16769
16770 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16771 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16772 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16773 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16774
16775 mutex_enter(&dtrace_lock);
16776 err = dtrace_enabling_replicate(state, match, create);
16777 mutex_exit(&dtrace_lock);
16778
16779 return (err);
16780 }
16781
16782 case DTRACEIOC_PROBEMATCH:
16783 case DTRACEIOC_PROBES: {
16784 dtrace_probe_t *probe = NULL;
16785 dtrace_probedesc_t desc;
16786 dtrace_probekey_t pkey;
16787 dtrace_id_t i;
16788 int m = 0;
16789 uint32_t priv;
16790 uid_t uid;
16791 zoneid_t zoneid;
16792
16793 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16794 return (EFAULT);
16795
16796 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16797 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16798 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16799 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16800
16801 /*
16802 * Before we attempt to match this probe, we want to give
16803 * all providers the opportunity to provide it.
16804 */
16805 if (desc.dtpd_id == DTRACE_IDNONE) {
16806 mutex_enter(&dtrace_provider_lock);
16807 dtrace_probe_provide(&desc, NULL);
16808 mutex_exit(&dtrace_provider_lock);
16809 desc.dtpd_id++;
16810 }
16811
16812 if (cmd == DTRACEIOC_PROBEMATCH) {
16813 dtrace_probekey(&desc, &pkey);
16814 pkey.dtpk_id = DTRACE_IDNONE;
16815 }
16816
16817 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16818
16819 mutex_enter(&dtrace_lock);
16820
16821 if (cmd == DTRACEIOC_PROBEMATCH) {
16822 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16823 if ((probe = dtrace_probes[i - 1]) != NULL &&
16824 (m = dtrace_match_probe(probe, &pkey,
16825 priv, uid, zoneid)) != 0)
16826 break;
16827 }
16828
16829 if (m < 0) {
16830 mutex_exit(&dtrace_lock);
16831 return (EINVAL);
16832 }
16833
16834 } else {
16835 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16836 if ((probe = dtrace_probes[i - 1]) != NULL &&
16837 dtrace_match_priv(probe, priv, uid, zoneid))
16838 break;
16839 }
16840 }
16841
16842 if (probe == NULL) {
16843 mutex_exit(&dtrace_lock);
16844 return (ESRCH);
16845 }
16846
16847 dtrace_probe_description(probe, &desc);
16848 mutex_exit(&dtrace_lock);
16849
16850 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16851 return (EFAULT);
16852
16853 return (0);
16854 }
16855
16856 case DTRACEIOC_PROBEARG: {
16857 dtrace_argdesc_t desc;
16858 dtrace_probe_t *probe;
16859 dtrace_provider_t *prov;
16860
16861 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16862 return (EFAULT);
16863
16864 if (desc.dtargd_id == DTRACE_IDNONE)
16865 return (EINVAL);
16866
16867 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16868 return (EINVAL);
16869
16870 mutex_enter(&dtrace_provider_lock);
16871 mutex_enter(&mod_lock);
16872 mutex_enter(&dtrace_lock);
16873
16874 if (desc.dtargd_id > dtrace_nprobes) {
16875 mutex_exit(&dtrace_lock);
16876 mutex_exit(&mod_lock);
16877 mutex_exit(&dtrace_provider_lock);
16878 return (EINVAL);
16879 }
16880
16881 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16882 mutex_exit(&dtrace_lock);
16883 mutex_exit(&mod_lock);
16884 mutex_exit(&dtrace_provider_lock);
16885 return (EINVAL);
16886 }
16887
16888 mutex_exit(&dtrace_lock);
16889
16890 prov = probe->dtpr_provider;
16891
16892 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16893 /*
16894 * There isn't any typed information for this probe.
16895 * Set the argument number to DTRACE_ARGNONE.
16896 */
16897 desc.dtargd_ndx = DTRACE_ARGNONE;
16898 } else {
16899 desc.dtargd_native[0] = '\0';
16900 desc.dtargd_xlate[0] = '\0';
16901 desc.dtargd_mapping = desc.dtargd_ndx;
16902
16903 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16904 probe->dtpr_id, probe->dtpr_arg, &desc);
16905 }
16906
16907 mutex_exit(&mod_lock);
16908 mutex_exit(&dtrace_provider_lock);
16909
16910 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16911 return (EFAULT);
16912
16913 return (0);
16914 }
16915
16916 case DTRACEIOC_GO: {
16917 processorid_t cpuid;
16918 rval = dtrace_state_go(state, &cpuid);
16919
16920 if (rval != 0)
16921 return (rval);
16922
16923 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16924 return (EFAULT);
16925
16926 return (0);
16927 }
16928
16929 case DTRACEIOC_STOP: {
16930 processorid_t cpuid;
16931
16932 mutex_enter(&dtrace_lock);
16933 rval = dtrace_state_stop(state, &cpuid);
16934 mutex_exit(&dtrace_lock);
16935
16936 if (rval != 0)
16937 return (rval);
16938
16939 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16940 return (EFAULT);
16941
16942 return (0);
16943 }
16944
16945 case DTRACEIOC_DOFGET: {
16946 dof_hdr_t hdr, *dof;
16947 uint64_t len;
16948
16949 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16950 return (EFAULT);
16951
16952 mutex_enter(&dtrace_lock);
16953 dof = dtrace_dof_create(state);
16954 mutex_exit(&dtrace_lock);
16955
16956 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16957 rval = copyout(dof, (void *)arg, len);
16958 dtrace_dof_destroy(dof);
16959
16960 return (rval == 0 ? 0 : EFAULT);
16961 }
16962
16963 case DTRACEIOC_AGGSNAP:
16964 case DTRACEIOC_BUFSNAP: {
16965 dtrace_bufdesc_t desc;
16966 caddr_t cached;
16967 dtrace_buffer_t *buf;
16968
16969 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16970 return (EFAULT);
16971
16972 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16973 return (EINVAL);
16974
16975 mutex_enter(&dtrace_lock);
16976
16977 if (cmd == DTRACEIOC_BUFSNAP) {
16978 buf = &state->dts_buffer[desc.dtbd_cpu];
16979 } else {
16980 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16981 }
16982
16983 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16984 size_t sz = buf->dtb_offset;
16985
16986 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16987 mutex_exit(&dtrace_lock);
16988 return (EBUSY);
16989 }
16990
16991 /*
16992 * If this buffer has already been consumed, we're
16993 * going to indicate that there's nothing left here
16994 * to consume.
16995 */
16996 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16997 mutex_exit(&dtrace_lock);
16998
16999 desc.dtbd_size = 0;
17000 desc.dtbd_drops = 0;
17001 desc.dtbd_errors = 0;
17002 desc.dtbd_oldest = 0;
17003 sz = sizeof (desc);
17004
17005 if (copyout(&desc, (void *)arg, sz) != 0)
17006 return (EFAULT);
17007
17008 return (0);
17009 }
17010
17011 /*
17012 * If this is a ring buffer that has wrapped, we want
17013 * to copy the whole thing out.
17014 */
17015 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17016 dtrace_buffer_polish(buf);
17017 sz = buf->dtb_size;
17018 }
17019
17020 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17021 mutex_exit(&dtrace_lock);
17022 return (EFAULT);
17023 }
17024
17025 desc.dtbd_size = sz;
17026 desc.dtbd_drops = buf->dtb_drops;
17027 desc.dtbd_errors = buf->dtb_errors;
17028 desc.dtbd_oldest = buf->dtb_xamot_offset;
17029 desc.dtbd_timestamp = dtrace_gethrtime();
17030
17031 mutex_exit(&dtrace_lock);
17032
17033 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17034 return (EFAULT);
17035
17036 buf->dtb_flags |= DTRACEBUF_CONSUMED;
17037
17038 return (0);
17039 }
17040
17041 if (buf->dtb_tomax == NULL) {
17042 ASSERT(buf->dtb_xamot == NULL);
17043 mutex_exit(&dtrace_lock);
17044 return (ENOENT);
17045 }
17046
17047 cached = buf->dtb_tomax;
17048 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
17049
17050 dtrace_xcall(desc.dtbd_cpu,
17051 (dtrace_xcall_t)dtrace_buffer_switch, buf);
17052
17053 state->dts_errors += buf->dtb_xamot_errors;
17054
17055 /*
17056 * If the buffers did not actually switch, then the cross call
17057 * did not take place -- presumably because the given CPU is
17058 * not in the ready set. If this is the case, we'll return
17059 * ENOENT.
17060 */
17061 if (buf->dtb_tomax == cached) {
17062 ASSERT(buf->dtb_xamot != cached);
17063 mutex_exit(&dtrace_lock);
17064 return (ENOENT);
17065 }
17066
17067 ASSERT(cached == buf->dtb_xamot);
17068
17069 /*
17070 * We have our snapshot; now copy it out.
17071 */
17072 if (copyout(buf->dtb_xamot, desc.dtbd_data,
17073 buf->dtb_xamot_offset) != 0) {
17074 mutex_exit(&dtrace_lock);
17075 return (EFAULT);
17076 }
17077
17078 desc.dtbd_size = buf->dtb_xamot_offset;
17079 desc.dtbd_drops = buf->dtb_xamot_drops;
17080 desc.dtbd_errors = buf->dtb_xamot_errors;
17081 desc.dtbd_oldest = 0;
17082 desc.dtbd_timestamp = buf->dtb_switched;
17083
17084 mutex_exit(&dtrace_lock);
17085
17086 /*
17087 * Finally, copy out the buffer description.
17088 */
17089 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17090 return (EFAULT);
17091
17092 return (0);
17093 }
17094
17095 case DTRACEIOC_CONF: {
17096 dtrace_conf_t conf;
17097
17098 bzero(&conf, sizeof (conf));
17099 conf.dtc_difversion = DIF_VERSION;
17100 conf.dtc_difintregs = DIF_DIR_NREGS;
17101 conf.dtc_diftupregs = DIF_DTR_NREGS;
17102 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
17103
17104 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
17105 return (EFAULT);
17106
17107 return (0);
17108 }
17109
17110 case DTRACEIOC_STATUS: {
17111 dtrace_status_t stat;
17112 dtrace_dstate_t *dstate;
17113 int i, j;
17114 uint64_t nerrs;
17115
17116 /*
17117 * See the comment in dtrace_state_deadman() for the reason
17118 * for setting dts_laststatus to INT64_MAX before setting
17119 * it to the correct value.
17120 */
17121 state->dts_laststatus = INT64_MAX;
17122 dtrace_membar_producer();
17123 state->dts_laststatus = dtrace_gethrtime();
17124
17125 bzero(&stat, sizeof (stat));
17126
17127 mutex_enter(&dtrace_lock);
17128
17129 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
17130 mutex_exit(&dtrace_lock);
17131 return (ENOENT);
17132 }
17133
17134 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
17135 stat.dtst_exiting = 1;
17136
17137 nerrs = state->dts_errors;
17138 dstate = &state->dts_vstate.dtvs_dynvars;
17139
17140 for (i = 0; i < NCPU; i++) {
17141 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
17142
17143 stat.dtst_dyndrops += dcpu->dtdsc_drops;
17144 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
17145 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
17146
17147 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
17148 stat.dtst_filled++;
17149
17150 nerrs += state->dts_buffer[i].dtb_errors;
17151
17152 for (j = 0; j < state->dts_nspeculations; j++) {
17153 dtrace_speculation_t *spec;
17154 dtrace_buffer_t *buf;
17155
17156 spec = &state->dts_speculations[j];
17157 buf = &spec->dtsp_buffer[i];
17158 stat.dtst_specdrops += buf->dtb_xamot_drops;
17159 }
17160 }
17161
17162 stat.dtst_specdrops_busy = state->dts_speculations_busy;
17163 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
17164 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
17165 stat.dtst_dblerrors = state->dts_dblerrors;
17166 stat.dtst_killed =
17167 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
17168 stat.dtst_errors = nerrs;
17169
17170 mutex_exit(&dtrace_lock);
17171
17172 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
17173 return (EFAULT);
17174
17175 return (0);
17176 }
17177
17178 case DTRACEIOC_FORMAT: {
17179 dtrace_fmtdesc_t fmt;
17180 char *str;
17181 int len;
17182
17183 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
17184 return (EFAULT);
17185
17186 mutex_enter(&dtrace_lock);
17187
17188 if (fmt.dtfd_format == 0 ||
17189 fmt.dtfd_format > state->dts_nformats) {
17190 mutex_exit(&dtrace_lock);
17191 return (EINVAL);
17192 }
17193
17194 /*
17195 * Format strings are allocated contiguously and they are
17196 * never freed; if a format index is less than the number
17197 * of formats, we can assert that the format map is non-NULL
17198 * and that the format for the specified index is non-NULL.
17199 */
17200 ASSERT(state->dts_formats != NULL);
17201 str = state->dts_formats[fmt.dtfd_format - 1];
17202 ASSERT(str != NULL);
17203
17204 len = strlen(str) + 1;
17205
17206 if (len > fmt.dtfd_length) {
17207 fmt.dtfd_length = len;
17208
17209 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
17210 mutex_exit(&dtrace_lock);
17211 return (EINVAL);
17212 }
17213 } else {
17214 if (copyout(str, fmt.dtfd_string, len) != 0) {
17215 mutex_exit(&dtrace_lock);
17216 return (EINVAL);
17217 }
17218 }
17219
17220 mutex_exit(&dtrace_lock);
17221 return (0);
17222 }
17223
17224 default:
17225 break;
17226 }
17227
17228 return (ENOTTY);
17229 }
17230
17231 /*ARGSUSED*/
17232 static int
dtrace_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)17233 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
17234 {
17235 dtrace_state_t *state;
17236
17237 switch (cmd) {
17238 case DDI_DETACH:
17239 break;
17240
17241 case DDI_SUSPEND:
17242 return (DDI_SUCCESS);
17243
17244 default:
17245 return (DDI_FAILURE);
17246 }
17247
17248 mutex_enter(&cpu_lock);
17249 mutex_enter(&dtrace_provider_lock);
17250 mutex_enter(&dtrace_lock);
17251
17252 ASSERT(dtrace_opens == 0);
17253
17254 if (dtrace_helpers > 0) {
17255 mutex_exit(&dtrace_provider_lock);
17256 mutex_exit(&dtrace_lock);
17257 mutex_exit(&cpu_lock);
17258 return (DDI_FAILURE);
17259 }
17260
17261 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
17262 mutex_exit(&dtrace_provider_lock);
17263 mutex_exit(&dtrace_lock);
17264 mutex_exit(&cpu_lock);
17265 return (DDI_FAILURE);
17266 }
17267
17268 dtrace_provider = NULL;
17269
17270 if ((state = dtrace_anon_grab()) != NULL) {
17271 /*
17272 * If there were ECBs on this state, the provider should
17273 * have not been allowed to detach; assert that there is
17274 * none.
17275 */
17276 ASSERT(state->dts_necbs == 0);
17277 dtrace_state_destroy(state);
17278
17279 /*
17280 * If we're being detached with anonymous state, we need to
17281 * indicate to the kernel debugger that DTrace is now inactive.
17282 */
17283 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17284 }
17285
17286 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
17287 unregister_cpu_setup_func(dtrace_cpu_setup, NULL);
17288 dtrace_cpu_init = NULL;
17289 dtrace_helpers_cleanup = NULL;
17290 dtrace_helpers_fork = NULL;
17291 dtrace_cpustart_init = NULL;
17292 dtrace_cpustart_fini = NULL;
17293 dtrace_debugger_init = NULL;
17294 dtrace_debugger_fini = NULL;
17295 dtrace_modload = NULL;
17296 dtrace_modunload = NULL;
17297
17298 ASSERT(dtrace_getf == 0);
17299 ASSERT(dtrace_closef == NULL);
17300
17301 mutex_exit(&cpu_lock);
17302
17303 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
17304 dtrace_probes = NULL;
17305 dtrace_nprobes = 0;
17306
17307 dtrace_hash_destroy(dtrace_bymod);
17308 dtrace_hash_destroy(dtrace_byfunc);
17309 dtrace_hash_destroy(dtrace_byname);
17310 dtrace_bymod = NULL;
17311 dtrace_byfunc = NULL;
17312 dtrace_byname = NULL;
17313
17314 kmem_cache_destroy(dtrace_state_cache);
17315 vmem_destroy(dtrace_minor);
17316 vmem_destroy(dtrace_arena);
17317
17318 if (dtrace_toxrange != NULL) {
17319 kmem_free(dtrace_toxrange,
17320 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
17321 dtrace_toxrange = NULL;
17322 dtrace_toxranges = 0;
17323 dtrace_toxranges_max = 0;
17324 }
17325
17326 ddi_remove_minor_node(dtrace_devi, NULL);
17327 dtrace_devi = NULL;
17328
17329 ddi_soft_state_fini(&dtrace_softstate);
17330
17331 ASSERT(dtrace_vtime_references == 0);
17332 ASSERT(dtrace_opens == 0);
17333 ASSERT(dtrace_retained == NULL);
17334
17335 mutex_exit(&dtrace_lock);
17336 mutex_exit(&dtrace_provider_lock);
17337
17338 /*
17339 * We don't destroy the task queue until after we have dropped our
17340 * locks (taskq_destroy() may block on running tasks). To prevent
17341 * attempting to do work after we have effectively detached but before
17342 * the task queue has been destroyed, all tasks dispatched via the
17343 * task queue must check that DTrace is still attached before
17344 * performing any operation.
17345 */
17346 taskq_destroy(dtrace_taskq);
17347 dtrace_taskq = NULL;
17348
17349 return (DDI_SUCCESS);
17350 }
17351
17352 /*ARGSUSED*/
17353 static int
dtrace_info(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)17354 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
17355 {
17356 int error;
17357
17358 switch (infocmd) {
17359 case DDI_INFO_DEVT2DEVINFO:
17360 *result = (void *)dtrace_devi;
17361 error = DDI_SUCCESS;
17362 break;
17363 case DDI_INFO_DEVT2INSTANCE:
17364 *result = (void *)0;
17365 error = DDI_SUCCESS;
17366 break;
17367 default:
17368 error = DDI_FAILURE;
17369 }
17370 return (error);
17371 }
17372
17373 static struct cb_ops dtrace_cb_ops = {
17374 dtrace_open, /* open */
17375 dtrace_close, /* close */
17376 nulldev, /* strategy */
17377 nulldev, /* print */
17378 nodev, /* dump */
17379 nodev, /* read */
17380 nodev, /* write */
17381 dtrace_ioctl, /* ioctl */
17382 nodev, /* devmap */
17383 nodev, /* mmap */
17384 nodev, /* segmap */
17385 nochpoll, /* poll */
17386 ddi_prop_op, /* cb_prop_op */
17387 0, /* streamtab */
17388 D_NEW | D_MP /* Driver compatibility flag */
17389 };
17390
17391 static struct dev_ops dtrace_ops = {
17392 DEVO_REV, /* devo_rev */
17393 0, /* refcnt */
17394 dtrace_info, /* get_dev_info */
17395 nulldev, /* identify */
17396 nulldev, /* probe */
17397 dtrace_attach, /* attach */
17398 dtrace_detach, /* detach */
17399 nodev, /* reset */
17400 &dtrace_cb_ops, /* driver operations */
17401 NULL, /* bus operations */
17402 nodev, /* dev power */
17403 ddi_quiesce_not_needed, /* quiesce */
17404 };
17405
17406 static struct modldrv modldrv = {
17407 &mod_driverops, /* module type (this is a pseudo driver) */
17408 "Dynamic Tracing", /* name of module */
17409 &dtrace_ops, /* driver ops */
17410 };
17411
17412 static struct modlinkage modlinkage = {
17413 MODREV_1,
17414 (void *)&modldrv,
17415 NULL
17416 };
17417
17418 int
_init(void)17419 _init(void)
17420 {
17421 return (mod_install(&modlinkage));
17422 }
17423
17424 int
_info(struct modinfo * modinfop)17425 _info(struct modinfo *modinfop)
17426 {
17427 return (mod_info(&modlinkage, modinfop));
17428 }
17429
17430 int
_fini(void)17431 _fini(void)
17432 {
17433 return (mod_remove(&modlinkage));
17434 }
17435