1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/param.h>
69 #include <sys/types.h>
70 #ifndef illumos
71 #include <sys/time.h>
72 #endif
73 #include <sys/stat.h>
74 #include <sys/conf.h>
75 #include <sys/systm.h>
76 #include <sys/endian.h>
77 #ifdef illumos
78 #include <sys/ddi.h>
79 #include <sys/sunddi.h>
80 #endif
81 #include <sys/cpuvar.h>
82 #include <sys/kmem.h>
83 #ifdef illumos
84 #include <sys/strsubr.h>
85 #endif
86 #include <sys/sysmacros.h>
87 #include <sys/dtrace_impl.h>
88 #include <sys/atomic.h>
89 #include <sys/cmn_err.h>
90 #ifdef illumos
91 #include <sys/mutex_impl.h>
92 #include <sys/rwlock_impl.h>
93 #endif
94 #include <sys/ctf_api.h>
95 #ifdef illumos
96 #include <sys/panic.h>
97 #include <sys/priv_impl.h>
98 #endif
99 #ifdef illumos
100 #include <sys/cred_impl.h>
101 #include <sys/procfs_isa.h>
102 #endif
103 #include <sys/taskq.h>
104 #ifdef illumos
105 #include <sys/mkdev.h>
106 #include <sys/kdi.h>
107 #endif
108 #include <sys/zone.h>
109 #include <sys/socket.h>
110 #include <netinet/in.h>
111 #include "strtolctype.h"
112
113 /* FreeBSD includes: */
114 #ifndef illumos
115 #include <sys/callout.h>
116 #include <sys/ctype.h>
117 #include <sys/eventhandler.h>
118 #include <sys/limits.h>
119 #include <sys/linker.h>
120 #include <sys/kdb.h>
121 #include <sys/jail.h>
122 #include <sys/kernel.h>
123 #include <sys/malloc.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/ptrace.h>
127 #include <sys/random.h>
128 #include <sys/rwlock.h>
129 #include <sys/sx.h>
130 #include <sys/sysctl.h>
131
132
133 #include <sys/mount.h>
134 #undef AT_UID
135 #undef AT_GID
136 #include <sys/vnode.h>
137 #include <sys/cred.h>
138
139 #include <sys/dtrace_bsd.h>
140
141 #include <netinet/in.h>
142
143 #include "dtrace_cddl.h"
144 #include "dtrace_debug.c"
145 #endif
146
147 #include "dtrace_xoroshiro128_plus.h"
148
149 /*
150 * DTrace Tunable Variables
151 *
152 * The following variables may be tuned by adding a line to /etc/system that
153 * includes both the name of the DTrace module ("dtrace") and the name of the
154 * variable. For example:
155 *
156 * set dtrace:dtrace_destructive_disallow = 1
157 *
158 * In general, the only variables that one should be tuning this way are those
159 * that affect system-wide DTrace behavior, and for which the default behavior
160 * is undesirable. Most of these variables are tunable on a per-consumer
161 * basis using DTrace options, and need not be tuned on a system-wide basis.
162 * When tuning these variables, avoid pathological values; while some attempt
163 * is made to verify the integrity of these variables, they are not considered
164 * part of the supported interface to DTrace, and they are therefore not
165 * checked comprehensively. Further, these variables should not be tuned
166 * dynamically via "mdb -kw" or other means; they should only be tuned via
167 * /etc/system.
168 */
169 int dtrace_destructive_disallow = 0;
170 #ifndef illumos
171 /* Positive logic version of dtrace_destructive_disallow for loader tunable */
172 int dtrace_allow_destructive = 1;
173 #endif
174 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
175 size_t dtrace_difo_maxsize = (256 * 1024);
176 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
177 size_t dtrace_statvar_maxsize = (16 * 1024);
178 size_t dtrace_actions_max = (16 * 1024);
179 size_t dtrace_retain_max = 1024;
180 dtrace_optval_t dtrace_helper_actions_max = 128;
181 dtrace_optval_t dtrace_helper_providers_max = 32;
182 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
183 size_t dtrace_strsize_default = 256;
184 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
185 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
186 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
187 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
188 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
189 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
190 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
191 dtrace_optval_t dtrace_nspec_default = 1;
192 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
193 dtrace_optval_t dtrace_stackframes_default = 20;
194 dtrace_optval_t dtrace_ustackframes_default = 20;
195 dtrace_optval_t dtrace_jstackframes_default = 50;
196 dtrace_optval_t dtrace_jstackstrsize_default = 512;
197 int dtrace_msgdsize_max = 128;
198 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
199 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
200 int dtrace_devdepth_max = 32;
201 int dtrace_err_verbose;
202 hrtime_t dtrace_deadman_interval = NANOSEC;
203 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
204 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
205 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
206 #ifndef illumos
207 int dtrace_memstr_max = 4096;
208 int dtrace_bufsize_max_frac = 128;
209 #endif
210
211 /*
212 * DTrace External Variables
213 *
214 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
215 * available to DTrace consumers via the backtick (`) syntax. One of these,
216 * dtrace_zero, is made deliberately so: it is provided as a source of
217 * well-known, zero-filled memory. While this variable is not documented,
218 * it is used by some translators as an implementation detail.
219 */
220 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
221
222 /*
223 * DTrace Internal Variables
224 */
225 #ifdef illumos
226 static dev_info_t *dtrace_devi; /* device info */
227 #endif
228 #ifdef illumos
229 static vmem_t *dtrace_arena; /* probe ID arena */
230 static vmem_t *dtrace_minor; /* minor number arena */
231 #else
232 static taskq_t *dtrace_taskq; /* task queue */
233 static struct unrhdr *dtrace_arena; /* Probe ID number. */
234 #endif
235 static dtrace_probe_t **dtrace_probes; /* array of all probes */
236 static int dtrace_nprobes; /* number of probes */
237 static dtrace_provider_t *dtrace_provider; /* provider list */
238 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
239 static int dtrace_opens; /* number of opens */
240 static int dtrace_helpers; /* number of helpers */
241 static int dtrace_getf; /* number of unpriv getf()s */
242 #ifdef illumos
243 static void *dtrace_softstate; /* softstate pointer */
244 #endif
245 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
246 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
247 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
248 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
249 static int dtrace_toxranges; /* number of toxic ranges */
250 static int dtrace_toxranges_max; /* size of toxic range array */
251 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
252 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
253 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
254 static kthread_t *dtrace_panicked; /* panicking thread */
255 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
256 static dtrace_genid_t dtrace_probegen; /* current probe generation */
257 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
258 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
259 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
260 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
261 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
262 #ifndef illumos
263 static struct mtx dtrace_unr_mtx;
264 MTX_SYSINIT(dtrace_unr_mtx, &dtrace_unr_mtx, "Unique resource identifier", MTX_DEF);
265 static eventhandler_tag dtrace_kld_load_tag;
266 static eventhandler_tag dtrace_kld_unload_try_tag;
267 #endif
268
269 /*
270 * DTrace Locking
271 * DTrace is protected by three (relatively coarse-grained) locks:
272 *
273 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
274 * including enabling state, probes, ECBs, consumer state, helper state,
275 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
276 * probe context is lock-free -- synchronization is handled via the
277 * dtrace_sync() cross call mechanism.
278 *
279 * (2) dtrace_provider_lock is required when manipulating provider state, or
280 * when provider state must be held constant.
281 *
282 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
283 * when meta provider state must be held constant.
284 *
285 * The lock ordering between these three locks is dtrace_meta_lock before
286 * dtrace_provider_lock before dtrace_lock. (In particular, there are
287 * several places where dtrace_provider_lock is held by the framework as it
288 * calls into the providers -- which then call back into the framework,
289 * grabbing dtrace_lock.)
290 *
291 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
292 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
293 * role as a coarse-grained lock; it is acquired before both of these locks.
294 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
295 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
296 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
297 * acquired _between_ dtrace_provider_lock and dtrace_lock.
298 */
299 static kmutex_t dtrace_lock; /* probe state lock */
300 static kmutex_t dtrace_provider_lock; /* provider state lock */
301 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
302
303 #ifndef illumos
304 /* XXX FreeBSD hacks. */
305 #define cr_suid cr_svuid
306 #define cr_sgid cr_svgid
307 #define ipaddr_t in_addr_t
308 #define mod_modname pathname
309 #define vuprintf vprintf
310 #ifndef crgetzoneid
311 #define crgetzoneid(_a) 0
312 #endif
313 #define ttoproc(_a) ((_a)->td_proc)
314 #define SNOCD 0
315 #define CPU_ON_INTR(_a) 0
316
317 #define PRIV_EFFECTIVE (1 << 0)
318 #define PRIV_DTRACE_KERNEL (1 << 1)
319 #define PRIV_DTRACE_PROC (1 << 2)
320 #define PRIV_DTRACE_USER (1 << 3)
321 #define PRIV_PROC_OWNER (1 << 4)
322 #define PRIV_PROC_ZONE (1 << 5)
323 #define PRIV_ALL ~0
324
325 SYSCTL_DECL(_debug_dtrace);
326 SYSCTL_DECL(_kern_dtrace);
327 #endif
328
329 #ifdef illumos
330 #define curcpu CPU->cpu_id
331 #endif
332
333
334 /*
335 * DTrace Provider Variables
336 *
337 * These are the variables relating to DTrace as a provider (that is, the
338 * provider of the BEGIN, END, and ERROR probes).
339 */
340 static dtrace_pattr_t dtrace_provider_attr = {
341 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
342 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
343 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
344 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
345 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
346 };
347
348 static void
dtrace_nullop(void)349 dtrace_nullop(void)
350 {}
351
352 static dtrace_pops_t dtrace_provider_ops = {
353 .dtps_provide = (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop,
354 .dtps_provide_module = (void (*)(void *, modctl_t *))dtrace_nullop,
355 .dtps_enable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
356 .dtps_disable = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
357 .dtps_suspend = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
358 .dtps_resume = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
359 .dtps_getargdesc = NULL,
360 .dtps_getargval = NULL,
361 .dtps_usermode = NULL,
362 .dtps_destroy = (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
363 };
364
365 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
366 static dtrace_id_t dtrace_probeid_end; /* special END probe */
367 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
368
369 /*
370 * DTrace Helper Tracing Variables
371 *
372 * These variables should be set dynamically to enable helper tracing. The
373 * only variables that should be set are dtrace_helptrace_enable (which should
374 * be set to a non-zero value to allocate helper tracing buffers on the next
375 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
376 * non-zero value to deallocate helper tracing buffers on the next close of
377 * /dev/dtrace). When (and only when) helper tracing is disabled, the
378 * buffer size may also be set via dtrace_helptrace_bufsize.
379 */
380 int dtrace_helptrace_enable = 0;
381 int dtrace_helptrace_disable = 0;
382 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
383 uint32_t dtrace_helptrace_nlocals;
384 static dtrace_helptrace_t *dtrace_helptrace_buffer;
385 static uint32_t dtrace_helptrace_next = 0;
386 static int dtrace_helptrace_wrapped = 0;
387
388 /*
389 * DTrace Error Hashing
390 *
391 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
392 * table. This is very useful for checking coverage of tests that are
393 * expected to induce DIF or DOF processing errors, and may be useful for
394 * debugging problems in the DIF code generator or in DOF generation . The
395 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
396 */
397 #ifdef DEBUG
398 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
399 static const char *dtrace_errlast;
400 static kthread_t *dtrace_errthread;
401 static kmutex_t dtrace_errlock;
402 #endif
403
404 /*
405 * DTrace Macros and Constants
406 *
407 * These are various macros that are useful in various spots in the
408 * implementation, along with a few random constants that have no meaning
409 * outside of the implementation. There is no real structure to this cpp
410 * mishmash -- but is there ever?
411 */
412 #define DTRACE_HASHSTR(hash, probe) \
413 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
414
415 #define DTRACE_HASHNEXT(hash, probe) \
416 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
417
418 #define DTRACE_HASHPREV(hash, probe) \
419 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
420
421 #define DTRACE_HASHEQ(hash, lhs, rhs) \
422 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
423 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
424
425 #define DTRACE_AGGHASHSIZE_SLEW 17
426
427 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
428
429 /*
430 * The key for a thread-local variable consists of the lower 61 bits of the
431 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
432 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
433 * equal to a variable identifier. This is necessary (but not sufficient) to
434 * assure that global associative arrays never collide with thread-local
435 * variables. To guarantee that they cannot collide, we must also define the
436 * order for keying dynamic variables. That order is:
437 *
438 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
439 *
440 * Because the variable-key and the tls-key are in orthogonal spaces, there is
441 * no way for a global variable key signature to match a thread-local key
442 * signature.
443 */
444 #ifdef illumos
445 #define DTRACE_TLS_THRKEY(where) { \
446 uint_t intr = 0; \
447 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
448 for (; actv; actv >>= 1) \
449 intr++; \
450 ASSERT(intr < (1 << 3)); \
451 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
452 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
453 }
454 #else
455 #define DTRACE_TLS_THRKEY(where) { \
456 solaris_cpu_t *_c = &solaris_cpu[curcpu]; \
457 uint_t intr = 0; \
458 uint_t actv = _c->cpu_intr_actv; \
459 for (; actv; actv >>= 1) \
460 intr++; \
461 ASSERT(intr < (1 << 3)); \
462 (where) = ((curthread->td_tid + DIF_VARIABLE_MAX) & \
463 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
464 }
465 #endif
466
467 #define DT_BSWAP_8(x) ((x) & 0xff)
468 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
469 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
470 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
471
472 #define DT_MASK_LO 0x00000000FFFFFFFFULL
473
474 #define DTRACE_STORE(type, tomax, offset, what) \
475 *((type *)((uintptr_t)(tomax) + (size_t)offset)) = (type)(what);
476
477 #if !defined(__x86) && !defined(__aarch64__)
478 #define DTRACE_ALIGNCHECK(addr, size, flags) \
479 if (addr & (size - 1)) { \
480 *flags |= CPU_DTRACE_BADALIGN; \
481 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
482 return (0); \
483 }
484 #else
485 #define DTRACE_ALIGNCHECK(addr, size, flags)
486 #endif
487
488 /*
489 * Test whether a range of memory starting at testaddr of size testsz falls
490 * within the range of memory described by addr, sz. We take care to avoid
491 * problems with overflow and underflow of the unsigned quantities, and
492 * disallow all negative sizes. Ranges of size 0 are allowed.
493 */
494 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
495 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
496 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
497 (testaddr) + (testsz) >= (testaddr))
498
499 #define DTRACE_RANGE_REMAIN(remp, addr, baseaddr, basesz) \
500 do { \
501 if ((remp) != NULL) { \
502 *(remp) = (uintptr_t)(baseaddr) + (basesz) - (addr); \
503 } \
504 } while (0)
505
506
507 /*
508 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
509 * alloc_sz on the righthand side of the comparison in order to avoid overflow
510 * or underflow in the comparison with it. This is simpler than the INRANGE
511 * check above, because we know that the dtms_scratch_ptr is valid in the
512 * range. Allocations of size zero are allowed.
513 */
514 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
515 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
516 (mstate)->dtms_scratch_ptr >= (alloc_sz))
517
518 #define DTRACE_INSCRATCHPTR(mstate, ptr, howmany) \
519 ((ptr) >= (mstate)->dtms_scratch_base && \
520 (ptr) <= \
521 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - (howmany)))
522
523 #define DTRACE_LOADFUNC(bits) \
524 /*CSTYLED*/ \
525 uint##bits##_t \
526 dtrace_load##bits(uintptr_t addr) \
527 { \
528 size_t size = bits / NBBY; \
529 /*CSTYLED*/ \
530 uint##bits##_t rval; \
531 int i; \
532 volatile uint16_t *flags = (volatile uint16_t *) \
533 &cpu_core[curcpu].cpuc_dtrace_flags; \
534 \
535 DTRACE_ALIGNCHECK(addr, size, flags); \
536 \
537 for (i = 0; i < dtrace_toxranges; i++) { \
538 if (addr >= dtrace_toxrange[i].dtt_limit) \
539 continue; \
540 \
541 if (addr + size <= dtrace_toxrange[i].dtt_base) \
542 continue; \
543 \
544 /* \
545 * This address falls within a toxic region; return 0. \
546 */ \
547 *flags |= CPU_DTRACE_BADADDR; \
548 cpu_core[curcpu].cpuc_dtrace_illval = addr; \
549 return (0); \
550 } \
551 \
552 *flags |= CPU_DTRACE_NOFAULT; \
553 /*CSTYLED*/ \
554 rval = *((volatile uint##bits##_t *)addr); \
555 *flags &= ~CPU_DTRACE_NOFAULT; \
556 \
557 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
558 }
559
560 #ifdef _LP64
561 #define dtrace_loadptr dtrace_load64
562 #else
563 #define dtrace_loadptr dtrace_load32
564 #endif
565
566 #define DTRACE_DYNHASH_FREE 0
567 #define DTRACE_DYNHASH_SINK 1
568 #define DTRACE_DYNHASH_VALID 2
569
570 #define DTRACE_MATCH_NEXT 0
571 #define DTRACE_MATCH_DONE 1
572 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
573 #define DTRACE_STATE_ALIGN 64
574
575 #define DTRACE_FLAGS2FLT(flags) \
576 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
577 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
578 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
579 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
580 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
581 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
582 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
583 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
584 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
585 DTRACEFLT_UNKNOWN)
586
587 #define DTRACEACT_ISSTRING(act) \
588 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
589 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
590
591 /* Function prototype definitions: */
592 static size_t dtrace_strlen(const char *, size_t);
593 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
594 static void dtrace_enabling_provide(dtrace_provider_t *);
595 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
596 static void dtrace_enabling_matchall(void);
597 static void dtrace_enabling_matchall_task(void *);
598 static void dtrace_enabling_reap(void *);
599 static dtrace_state_t *dtrace_anon_grab(void);
600 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
601 dtrace_state_t *, uint64_t, uint64_t);
602 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
603 static void dtrace_buffer_drop(dtrace_buffer_t *);
604 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
605 static ssize_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
606 dtrace_state_t *, dtrace_mstate_t *);
607 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
608 dtrace_optval_t);
609 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
610 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
611 uint16_t dtrace_load16(uintptr_t);
612 uint32_t dtrace_load32(uintptr_t);
613 uint64_t dtrace_load64(uintptr_t);
614 uint8_t dtrace_load8(uintptr_t);
615 void dtrace_dynvar_clean(dtrace_dstate_t *);
616 dtrace_dynvar_t *dtrace_dynvar(dtrace_dstate_t *, uint_t, dtrace_key_t *,
617 size_t, dtrace_dynvar_op_t, dtrace_mstate_t *, dtrace_vstate_t *);
618 uintptr_t dtrace_dif_varstr(uintptr_t, dtrace_state_t *, dtrace_mstate_t *);
619 static int dtrace_priv_proc(dtrace_state_t *);
620 static void dtrace_getf_barrier(void);
621 static int dtrace_canload_remains(uint64_t, size_t, size_t *,
622 dtrace_mstate_t *, dtrace_vstate_t *);
623 static int dtrace_canstore_remains(uint64_t, size_t, size_t *,
624 dtrace_mstate_t *, dtrace_vstate_t *);
625
626 /*
627 * DTrace Probe Context Functions
628 *
629 * These functions are called from probe context. Because probe context is
630 * any context in which C may be called, arbitrarily locks may be held,
631 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
632 * As a result, functions called from probe context may only call other DTrace
633 * support functions -- they may not interact at all with the system at large.
634 * (Note that the ASSERT macro is made probe-context safe by redefining it in
635 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
636 * loads are to be performed from probe context, they _must_ be in terms of
637 * the safe dtrace_load*() variants.
638 *
639 * Some functions in this block are not actually called from probe context;
640 * for these functions, there will be a comment above the function reading
641 * "Note: not called from probe context."
642 */
643 void
dtrace_panic(const char * format,...)644 dtrace_panic(const char *format, ...)
645 {
646 va_list alist;
647
648 va_start(alist, format);
649 #ifdef __FreeBSD__
650 vpanic(format, alist);
651 #else
652 dtrace_vpanic(format, alist);
653 #endif
654 va_end(alist);
655 }
656
657 int
dtrace_assfail(const char * a,const char * f,int l)658 dtrace_assfail(const char *a, const char *f, int l)
659 {
660 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
661
662 /*
663 * We just need something here that even the most clever compiler
664 * cannot optimize away.
665 */
666 return (a[(uintptr_t)f]);
667 }
668
669 /*
670 * Atomically increment a specified error counter from probe context.
671 */
672 static void
dtrace_error(uint32_t * counter)673 dtrace_error(uint32_t *counter)
674 {
675 /*
676 * Most counters stored to in probe context are per-CPU counters.
677 * However, there are some error conditions that are sufficiently
678 * arcane that they don't merit per-CPU storage. If these counters
679 * are incremented concurrently on different CPUs, scalability will be
680 * adversely affected -- but we don't expect them to be white-hot in a
681 * correctly constructed enabling...
682 */
683 uint32_t oval, nval;
684
685 do {
686 oval = *counter;
687
688 if ((nval = oval + 1) == 0) {
689 /*
690 * If the counter would wrap, set it to 1 -- assuring
691 * that the counter is never zero when we have seen
692 * errors. (The counter must be 32-bits because we
693 * aren't guaranteed a 64-bit compare&swap operation.)
694 * To save this code both the infamy of being fingered
695 * by a priggish news story and the indignity of being
696 * the target of a neo-puritan witch trial, we're
697 * carefully avoiding any colorful description of the
698 * likelihood of this condition -- but suffice it to
699 * say that it is only slightly more likely than the
700 * overflow of predicate cache IDs, as discussed in
701 * dtrace_predicate_create().
702 */
703 nval = 1;
704 }
705 } while (dtrace_cas32(counter, oval, nval) != oval);
706 }
707
708 /*
709 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
710 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
711 */
712 /* BEGIN CSTYLED */
713 DTRACE_LOADFUNC(8)
714 DTRACE_LOADFUNC(16)
715 DTRACE_LOADFUNC(32)
716 DTRACE_LOADFUNC(64)
717 /* END CSTYLED */
718
719 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)720 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
721 {
722 if (dest < mstate->dtms_scratch_base)
723 return (0);
724
725 if (dest + size < dest)
726 return (0);
727
728 if (dest + size > mstate->dtms_scratch_ptr)
729 return (0);
730
731 return (1);
732 }
733
734 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,size_t * remain,dtrace_statvar_t ** svars,int nsvars)735 dtrace_canstore_statvar(uint64_t addr, size_t sz, size_t *remain,
736 dtrace_statvar_t **svars, int nsvars)
737 {
738 int i;
739 size_t maxglobalsize, maxlocalsize;
740
741 if (nsvars == 0)
742 return (0);
743
744 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
745 maxlocalsize = maxglobalsize * (mp_maxid + 1);
746
747 for (i = 0; i < nsvars; i++) {
748 dtrace_statvar_t *svar = svars[i];
749 uint8_t scope;
750 size_t size;
751
752 if (svar == NULL || (size = svar->dtsv_size) == 0)
753 continue;
754
755 scope = svar->dtsv_var.dtdv_scope;
756
757 /*
758 * We verify that our size is valid in the spirit of providing
759 * defense in depth: we want to prevent attackers from using
760 * DTrace to escalate an orthogonal kernel heap corruption bug
761 * into the ability to store to arbitrary locations in memory.
762 */
763 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
764 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
765
766 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data,
767 svar->dtsv_size)) {
768 DTRACE_RANGE_REMAIN(remain, addr, svar->dtsv_data,
769 svar->dtsv_size);
770 return (1);
771 }
772 }
773
774 return (0);
775 }
776
777 /*
778 * Check to see if the address is within a memory region to which a store may
779 * be issued. This includes the DTrace scratch areas, and any DTrace variable
780 * region. The caller of dtrace_canstore() is responsible for performing any
781 * alignment checks that are needed before stores are actually executed.
782 */
783 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)784 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
785 dtrace_vstate_t *vstate)
786 {
787 return (dtrace_canstore_remains(addr, sz, NULL, mstate, vstate));
788 }
789
790 /*
791 * Implementation of dtrace_canstore which communicates the upper bound of the
792 * allowed memory region.
793 */
794 static int
dtrace_canstore_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)795 dtrace_canstore_remains(uint64_t addr, size_t sz, size_t *remain,
796 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
797 {
798 /*
799 * First, check to see if the address is in scratch space...
800 */
801 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
802 mstate->dtms_scratch_size)) {
803 DTRACE_RANGE_REMAIN(remain, addr, mstate->dtms_scratch_base,
804 mstate->dtms_scratch_size);
805 return (1);
806 }
807
808 /*
809 * Now check to see if it's a dynamic variable. This check will pick
810 * up both thread-local variables and any global dynamically-allocated
811 * variables.
812 */
813 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
814 vstate->dtvs_dynvars.dtds_size)) {
815 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
816 uintptr_t base = (uintptr_t)dstate->dtds_base +
817 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
818 uintptr_t chunkoffs;
819 dtrace_dynvar_t *dvar;
820
821 /*
822 * Before we assume that we can store here, we need to make
823 * sure that it isn't in our metadata -- storing to our
824 * dynamic variable metadata would corrupt our state. For
825 * the range to not include any dynamic variable metadata,
826 * it must:
827 *
828 * (1) Start above the hash table that is at the base of
829 * the dynamic variable space
830 *
831 * (2) Have a starting chunk offset that is beyond the
832 * dtrace_dynvar_t that is at the base of every chunk
833 *
834 * (3) Not span a chunk boundary
835 *
836 * (4) Not be in the tuple space of a dynamic variable
837 *
838 */
839 if (addr < base)
840 return (0);
841
842 chunkoffs = (addr - base) % dstate->dtds_chunksize;
843
844 if (chunkoffs < sizeof (dtrace_dynvar_t))
845 return (0);
846
847 if (chunkoffs + sz > dstate->dtds_chunksize)
848 return (0);
849
850 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
851
852 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
853 return (0);
854
855 if (chunkoffs < sizeof (dtrace_dynvar_t) +
856 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
857 return (0);
858
859 DTRACE_RANGE_REMAIN(remain, addr, dvar, dstate->dtds_chunksize);
860 return (1);
861 }
862
863 /*
864 * Finally, check the static local and global variables. These checks
865 * take the longest, so we perform them last.
866 */
867 if (dtrace_canstore_statvar(addr, sz, remain,
868 vstate->dtvs_locals, vstate->dtvs_nlocals))
869 return (1);
870
871 if (dtrace_canstore_statvar(addr, sz, remain,
872 vstate->dtvs_globals, vstate->dtvs_nglobals))
873 return (1);
874
875 return (0);
876 }
877
878
879 /*
880 * Convenience routine to check to see if the address is within a memory
881 * region in which a load may be issued given the user's privilege level;
882 * if not, it sets the appropriate error flags and loads 'addr' into the
883 * illegal value slot.
884 *
885 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
886 * appropriate memory access protection.
887 */
888 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)889 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
890 dtrace_vstate_t *vstate)
891 {
892 return (dtrace_canload_remains(addr, sz, NULL, mstate, vstate));
893 }
894
895 /*
896 * Implementation of dtrace_canload which communicates the uppoer bound of the
897 * allowed memory region.
898 */
899 static int
dtrace_canload_remains(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)900 dtrace_canload_remains(uint64_t addr, size_t sz, size_t *remain,
901 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
902 {
903 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
904 file_t *fp;
905
906 /*
907 * If we hold the privilege to read from kernel memory, then
908 * everything is readable.
909 */
910 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
911 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
912 return (1);
913 }
914
915 /*
916 * You can obviously read that which you can store.
917 */
918 if (dtrace_canstore_remains(addr, sz, remain, mstate, vstate))
919 return (1);
920
921 /*
922 * We're allowed to read from our own string table.
923 */
924 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
925 mstate->dtms_difo->dtdo_strlen)) {
926 DTRACE_RANGE_REMAIN(remain, addr,
927 mstate->dtms_difo->dtdo_strtab,
928 mstate->dtms_difo->dtdo_strlen);
929 return (1);
930 }
931
932 if (vstate->dtvs_state != NULL &&
933 dtrace_priv_proc(vstate->dtvs_state)) {
934 proc_t *p;
935
936 /*
937 * When we have privileges to the current process, there are
938 * several context-related kernel structures that are safe to
939 * read, even absent the privilege to read from kernel memory.
940 * These reads are safe because these structures contain only
941 * state that (1) we're permitted to read, (2) is harmless or
942 * (3) contains pointers to additional kernel state that we're
943 * not permitted to read (and as such, do not present an
944 * opportunity for privilege escalation). Finally (and
945 * critically), because of the nature of their relation with
946 * the current thread context, the memory associated with these
947 * structures cannot change over the duration of probe context,
948 * and it is therefore impossible for this memory to be
949 * deallocated and reallocated as something else while it's
950 * being operated upon.
951 */
952 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t))) {
953 DTRACE_RANGE_REMAIN(remain, addr, curthread,
954 sizeof (kthread_t));
955 return (1);
956 }
957
958 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
959 sz, curthread->t_procp, sizeof (proc_t))) {
960 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_procp,
961 sizeof (proc_t));
962 return (1);
963 }
964
965 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
966 curthread->t_cred, sizeof (cred_t))) {
967 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cred,
968 sizeof (cred_t));
969 return (1);
970 }
971
972 #ifdef illumos
973 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
974 &(p->p_pidp->pid_id), sizeof (pid_t))) {
975 DTRACE_RANGE_REMAIN(remain, addr, &(p->p_pidp->pid_id),
976 sizeof (pid_t));
977 return (1);
978 }
979
980 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
981 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
982 DTRACE_RANGE_REMAIN(remain, addr, curthread->t_cpu,
983 offsetof(cpu_t, cpu_pause_thread));
984 return (1);
985 }
986 #endif
987 }
988
989 if ((fp = mstate->dtms_getf) != NULL) {
990 uintptr_t psz = sizeof (void *);
991 vnode_t *vp;
992 vnodeops_t *op;
993
994 /*
995 * When getf() returns a file_t, the enabling is implicitly
996 * granted the (transient) right to read the returned file_t
997 * as well as the v_path and v_op->vnop_name of the underlying
998 * vnode. These accesses are allowed after a successful
999 * getf() because the members that they refer to cannot change
1000 * once set -- and the barrier logic in the kernel's closef()
1001 * path assures that the file_t and its referenced vode_t
1002 * cannot themselves be stale (that is, it impossible for
1003 * either dtms_getf itself or its f_vnode member to reference
1004 * freed memory).
1005 */
1006 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t))) {
1007 DTRACE_RANGE_REMAIN(remain, addr, fp, sizeof (file_t));
1008 return (1);
1009 }
1010
1011 if ((vp = fp->f_vnode) != NULL) {
1012 size_t slen;
1013 #ifdef illumos
1014 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz)) {
1015 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_path,
1016 psz);
1017 return (1);
1018 }
1019 slen = strlen(vp->v_path) + 1;
1020 if (DTRACE_INRANGE(addr, sz, vp->v_path, slen)) {
1021 DTRACE_RANGE_REMAIN(remain, addr, vp->v_path,
1022 slen);
1023 return (1);
1024 }
1025 #endif
1026
1027 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz)) {
1028 DTRACE_RANGE_REMAIN(remain, addr, &vp->v_op,
1029 psz);
1030 return (1);
1031 }
1032
1033 #ifdef illumos
1034 if ((op = vp->v_op) != NULL &&
1035 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
1036 DTRACE_RANGE_REMAIN(remain, addr,
1037 &op->vnop_name, psz);
1038 return (1);
1039 }
1040
1041 if (op != NULL && op->vnop_name != NULL &&
1042 DTRACE_INRANGE(addr, sz, op->vnop_name,
1043 (slen = strlen(op->vnop_name) + 1))) {
1044 DTRACE_RANGE_REMAIN(remain, addr,
1045 op->vnop_name, slen);
1046 return (1);
1047 }
1048 #endif
1049 }
1050 }
1051
1052 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
1053 *illval = addr;
1054 return (0);
1055 }
1056
1057 /*
1058 * Convenience routine to check to see if a given string is within a memory
1059 * region in which a load may be issued given the user's privilege level;
1060 * this exists so that we don't need to issue unnecessary dtrace_strlen()
1061 * calls in the event that the user has all privileges.
1062 */
1063 static int
dtrace_strcanload(uint64_t addr,size_t sz,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1064 dtrace_strcanload(uint64_t addr, size_t sz, size_t *remain,
1065 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1066 {
1067 size_t rsize;
1068
1069 /*
1070 * If we hold the privilege to read from kernel memory, then
1071 * everything is readable.
1072 */
1073 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1074 DTRACE_RANGE_REMAIN(remain, addr, addr, sz);
1075 return (1);
1076 }
1077
1078 /*
1079 * Even if the caller is uninterested in querying the remaining valid
1080 * range, it is required to ensure that the access is allowed.
1081 */
1082 if (remain == NULL) {
1083 remain = &rsize;
1084 }
1085 if (dtrace_canload_remains(addr, 0, remain, mstate, vstate)) {
1086 size_t strsz;
1087 /*
1088 * Perform the strlen after determining the length of the
1089 * memory region which is accessible. This prevents timing
1090 * information from being used to find NULs in memory which is
1091 * not accessible to the caller.
1092 */
1093 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr,
1094 MIN(sz, *remain));
1095 if (strsz <= *remain) {
1096 return (1);
1097 }
1098 }
1099
1100 return (0);
1101 }
1102
1103 /*
1104 * Convenience routine to check to see if a given variable is within a memory
1105 * region in which a load may be issued given the user's privilege level.
1106 */
1107 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,size_t * remain,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1108 dtrace_vcanload(void *src, dtrace_diftype_t *type, size_t *remain,
1109 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1110 {
1111 size_t sz;
1112 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1113
1114 /*
1115 * Calculate the max size before performing any checks since even
1116 * DTRACE_ACCESS_KERNEL-credentialed callers expect that this function
1117 * return the max length via 'remain'.
1118 */
1119 if (type->dtdt_kind == DIF_TYPE_STRING) {
1120 dtrace_state_t *state = vstate->dtvs_state;
1121
1122 if (state != NULL) {
1123 sz = state->dts_options[DTRACEOPT_STRSIZE];
1124 } else {
1125 /*
1126 * In helper context, we have a NULL state; fall back
1127 * to using the system-wide default for the string size
1128 * in this case.
1129 */
1130 sz = dtrace_strsize_default;
1131 }
1132 } else {
1133 sz = type->dtdt_size;
1134 }
1135
1136 /*
1137 * If we hold the privilege to read from kernel memory, then
1138 * everything is readable.
1139 */
1140 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0) {
1141 DTRACE_RANGE_REMAIN(remain, (uintptr_t)src, src, sz);
1142 return (1);
1143 }
1144
1145 if (type->dtdt_kind == DIF_TYPE_STRING) {
1146 return (dtrace_strcanload((uintptr_t)src, sz, remain, mstate,
1147 vstate));
1148 }
1149 return (dtrace_canload_remains((uintptr_t)src, sz, remain, mstate,
1150 vstate));
1151 }
1152
1153 /*
1154 * Convert a string to a signed integer using safe loads.
1155 *
1156 * NOTE: This function uses various macros from strtolctype.h to manipulate
1157 * digit values, etc -- these have all been checked to ensure they make
1158 * no additional function calls.
1159 */
1160 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)1161 dtrace_strtoll(char *input, int base, size_t limit)
1162 {
1163 uintptr_t pos = (uintptr_t)input;
1164 int64_t val = 0;
1165 int x;
1166 boolean_t neg = B_FALSE;
1167 char c, cc, ccc;
1168 uintptr_t end = pos + limit;
1169
1170 /*
1171 * Consume any whitespace preceding digits.
1172 */
1173 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
1174 pos++;
1175
1176 /*
1177 * Handle an explicit sign if one is present.
1178 */
1179 if (c == '-' || c == '+') {
1180 if (c == '-')
1181 neg = B_TRUE;
1182 c = dtrace_load8(++pos);
1183 }
1184
1185 /*
1186 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
1187 * if present.
1188 */
1189 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
1190 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
1191 pos += 2;
1192 c = ccc;
1193 }
1194
1195 /*
1196 * Read in contiguous digits until the first non-digit character.
1197 */
1198 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
1199 c = dtrace_load8(++pos))
1200 val = val * base + x;
1201
1202 return (neg ? -val : val);
1203 }
1204
1205 /*
1206 * Compare two strings using safe loads.
1207 */
1208 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)1209 dtrace_strncmp(char *s1, char *s2, size_t limit)
1210 {
1211 uint8_t c1, c2;
1212 volatile uint16_t *flags;
1213
1214 if (s1 == s2 || limit == 0)
1215 return (0);
1216
1217 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1218
1219 do {
1220 if (s1 == NULL) {
1221 c1 = '\0';
1222 } else {
1223 c1 = dtrace_load8((uintptr_t)s1++);
1224 }
1225
1226 if (s2 == NULL) {
1227 c2 = '\0';
1228 } else {
1229 c2 = dtrace_load8((uintptr_t)s2++);
1230 }
1231
1232 if (c1 != c2)
1233 return (c1 - c2);
1234 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
1235
1236 return (0);
1237 }
1238
1239 /*
1240 * Compute strlen(s) for a string using safe memory accesses. The additional
1241 * len parameter is used to specify a maximum length to ensure completion.
1242 */
1243 static size_t
dtrace_strlen(const char * s,size_t lim)1244 dtrace_strlen(const char *s, size_t lim)
1245 {
1246 uint_t len;
1247
1248 for (len = 0; len != lim; len++) {
1249 if (dtrace_load8((uintptr_t)s++) == '\0')
1250 break;
1251 }
1252
1253 return (len);
1254 }
1255
1256 /*
1257 * Check if an address falls within a toxic region.
1258 */
1259 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1260 dtrace_istoxic(uintptr_t kaddr, size_t size)
1261 {
1262 uintptr_t taddr, tsize;
1263 int i;
1264
1265 for (i = 0; i < dtrace_toxranges; i++) {
1266 taddr = dtrace_toxrange[i].dtt_base;
1267 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1268
1269 if (kaddr - taddr < tsize) {
1270 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1271 cpu_core[curcpu].cpuc_dtrace_illval = kaddr;
1272 return (1);
1273 }
1274
1275 if (taddr - kaddr < size) {
1276 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1277 cpu_core[curcpu].cpuc_dtrace_illval = taddr;
1278 return (1);
1279 }
1280 }
1281
1282 return (0);
1283 }
1284
1285 /*
1286 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1287 * memory specified by the DIF program. The dst is assumed to be safe memory
1288 * that we can store to directly because it is managed by DTrace. As with
1289 * standard bcopy, overlapping copies are handled properly.
1290 */
1291 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1292 dtrace_bcopy(const void *src, void *dst, size_t len)
1293 {
1294 if (len != 0) {
1295 uint8_t *s1 = dst;
1296 const uint8_t *s2 = src;
1297
1298 if (s1 <= s2) {
1299 do {
1300 *s1++ = dtrace_load8((uintptr_t)s2++);
1301 } while (--len != 0);
1302 } else {
1303 s2 += len;
1304 s1 += len;
1305
1306 do {
1307 *--s1 = dtrace_load8((uintptr_t)--s2);
1308 } while (--len != 0);
1309 }
1310 }
1311 }
1312
1313 /*
1314 * Copy src to dst using safe memory accesses, up to either the specified
1315 * length, or the point that a nul byte is encountered. The src is assumed to
1316 * be unsafe memory specified by the DIF program. The dst is assumed to be
1317 * safe memory that we can store to directly because it is managed by DTrace.
1318 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1319 */
1320 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1321 dtrace_strcpy(const void *src, void *dst, size_t len)
1322 {
1323 if (len != 0) {
1324 uint8_t *s1 = dst, c;
1325 const uint8_t *s2 = src;
1326
1327 do {
1328 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1329 } while (--len != 0 && c != '\0');
1330 }
1331 }
1332
1333 /*
1334 * Copy src to dst, deriving the size and type from the specified (BYREF)
1335 * variable type. The src is assumed to be unsafe memory specified by the DIF
1336 * program. The dst is assumed to be DTrace variable memory that is of the
1337 * specified type; we assume that we can store to directly.
1338 */
1339 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type,size_t limit)1340 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type, size_t limit)
1341 {
1342 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1343
1344 if (type->dtdt_kind == DIF_TYPE_STRING) {
1345 dtrace_strcpy(src, dst, MIN(type->dtdt_size, limit));
1346 } else {
1347 dtrace_bcopy(src, dst, MIN(type->dtdt_size, limit));
1348 }
1349 }
1350
1351 /*
1352 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1353 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1354 * safe memory that we can access directly because it is managed by DTrace.
1355 */
1356 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1357 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1358 {
1359 volatile uint16_t *flags;
1360
1361 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
1362
1363 if (s1 == s2)
1364 return (0);
1365
1366 if (s1 == NULL || s2 == NULL)
1367 return (1);
1368
1369 if (s1 != s2 && len != 0) {
1370 const uint8_t *ps1 = s1;
1371 const uint8_t *ps2 = s2;
1372
1373 do {
1374 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1375 return (1);
1376 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1377 }
1378 return (0);
1379 }
1380
1381 /*
1382 * Zero the specified region using a simple byte-by-byte loop. Note that this
1383 * is for safe DTrace-managed memory only.
1384 */
1385 static void
dtrace_bzero(void * dst,size_t len)1386 dtrace_bzero(void *dst, size_t len)
1387 {
1388 uchar_t *cp;
1389
1390 for (cp = dst; len != 0; len--)
1391 *cp++ = 0;
1392 }
1393
1394 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1395 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1396 {
1397 uint64_t result[2];
1398
1399 result[0] = addend1[0] + addend2[0];
1400 result[1] = addend1[1] + addend2[1] +
1401 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1402
1403 sum[0] = result[0];
1404 sum[1] = result[1];
1405 }
1406
1407 /*
1408 * Shift the 128-bit value in a by b. If b is positive, shift left.
1409 * If b is negative, shift right.
1410 */
1411 static void
dtrace_shift_128(uint64_t * a,int b)1412 dtrace_shift_128(uint64_t *a, int b)
1413 {
1414 uint64_t mask;
1415
1416 if (b == 0)
1417 return;
1418
1419 if (b < 0) {
1420 b = -b;
1421 if (b >= 64) {
1422 a[0] = a[1] >> (b - 64);
1423 a[1] = 0;
1424 } else {
1425 a[0] >>= b;
1426 mask = 1LL << (64 - b);
1427 mask -= 1;
1428 a[0] |= ((a[1] & mask) << (64 - b));
1429 a[1] >>= b;
1430 }
1431 } else {
1432 if (b >= 64) {
1433 a[1] = a[0] << (b - 64);
1434 a[0] = 0;
1435 } else {
1436 a[1] <<= b;
1437 mask = a[0] >> (64 - b);
1438 a[1] |= mask;
1439 a[0] <<= b;
1440 }
1441 }
1442 }
1443
1444 /*
1445 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1446 * use native multiplication on those, and then re-combine into the
1447 * resulting 128-bit value.
1448 *
1449 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1450 * hi1 * hi2 << 64 +
1451 * hi1 * lo2 << 32 +
1452 * hi2 * lo1 << 32 +
1453 * lo1 * lo2
1454 */
1455 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1456 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1457 {
1458 uint64_t hi1, hi2, lo1, lo2;
1459 uint64_t tmp[2];
1460
1461 hi1 = factor1 >> 32;
1462 hi2 = factor2 >> 32;
1463
1464 lo1 = factor1 & DT_MASK_LO;
1465 lo2 = factor2 & DT_MASK_LO;
1466
1467 product[0] = lo1 * lo2;
1468 product[1] = hi1 * hi2;
1469
1470 tmp[0] = hi1 * lo2;
1471 tmp[1] = 0;
1472 dtrace_shift_128(tmp, 32);
1473 dtrace_add_128(product, tmp, product);
1474
1475 tmp[0] = hi2 * lo1;
1476 tmp[1] = 0;
1477 dtrace_shift_128(tmp, 32);
1478 dtrace_add_128(product, tmp, product);
1479 }
1480
1481 /*
1482 * This privilege check should be used by actions and subroutines to
1483 * verify that the user credentials of the process that enabled the
1484 * invoking ECB match the target credentials
1485 */
1486 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1487 dtrace_priv_proc_common_user(dtrace_state_t *state)
1488 {
1489 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1490
1491 /*
1492 * We should always have a non-NULL state cred here, since if cred
1493 * is null (anonymous tracing), we fast-path bypass this routine.
1494 */
1495 ASSERT(s_cr != NULL);
1496
1497 if ((cr = CRED()) != NULL &&
1498 s_cr->cr_uid == cr->cr_uid &&
1499 s_cr->cr_uid == cr->cr_ruid &&
1500 s_cr->cr_uid == cr->cr_suid &&
1501 s_cr->cr_gid == cr->cr_gid &&
1502 s_cr->cr_gid == cr->cr_rgid &&
1503 s_cr->cr_gid == cr->cr_sgid)
1504 return (1);
1505
1506 return (0);
1507 }
1508
1509 /*
1510 * This privilege check should be used by actions and subroutines to
1511 * verify that the zone of the process that enabled the invoking ECB
1512 * matches the target credentials
1513 */
1514 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1515 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1516 {
1517 #ifdef illumos
1518 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1519
1520 /*
1521 * We should always have a non-NULL state cred here, since if cred
1522 * is null (anonymous tracing), we fast-path bypass this routine.
1523 */
1524 ASSERT(s_cr != NULL);
1525
1526 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1527 return (1);
1528
1529 return (0);
1530 #else
1531 return (1);
1532 #endif
1533 }
1534
1535 /*
1536 * This privilege check should be used by actions and subroutines to
1537 * verify that the process has not setuid or changed credentials.
1538 */
1539 static int
dtrace_priv_proc_common_nocd(void)1540 dtrace_priv_proc_common_nocd(void)
1541 {
1542 proc_t *proc;
1543
1544 if ((proc = ttoproc(curthread)) != NULL &&
1545 !(proc->p_flag & SNOCD))
1546 return (1);
1547
1548 return (0);
1549 }
1550
1551 static int
dtrace_priv_proc_destructive(dtrace_state_t * state)1552 dtrace_priv_proc_destructive(dtrace_state_t *state)
1553 {
1554 int action = state->dts_cred.dcr_action;
1555
1556 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1557 dtrace_priv_proc_common_zone(state) == 0)
1558 goto bad;
1559
1560 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1561 dtrace_priv_proc_common_user(state) == 0)
1562 goto bad;
1563
1564 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1565 dtrace_priv_proc_common_nocd() == 0)
1566 goto bad;
1567
1568 return (1);
1569
1570 bad:
1571 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1572
1573 return (0);
1574 }
1575
1576 static int
dtrace_priv_proc_control(dtrace_state_t * state)1577 dtrace_priv_proc_control(dtrace_state_t *state)
1578 {
1579 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1580 return (1);
1581
1582 if (dtrace_priv_proc_common_zone(state) &&
1583 dtrace_priv_proc_common_user(state) &&
1584 dtrace_priv_proc_common_nocd())
1585 return (1);
1586
1587 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1588
1589 return (0);
1590 }
1591
1592 static int
dtrace_priv_proc(dtrace_state_t * state)1593 dtrace_priv_proc(dtrace_state_t *state)
1594 {
1595 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC)
1596 return (1);
1597
1598 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1599
1600 return (0);
1601 }
1602
1603 static int
dtrace_priv_kernel(dtrace_state_t * state)1604 dtrace_priv_kernel(dtrace_state_t *state)
1605 {
1606 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1607 return (1);
1608
1609 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1610
1611 return (0);
1612 }
1613
1614 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1615 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1616 {
1617 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1618 return (1);
1619
1620 cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1621
1622 return (0);
1623 }
1624
1625 /*
1626 * Determine if the dte_cond of the specified ECB allows for processing of
1627 * the current probe to continue. Note that this routine may allow continued
1628 * processing, but with access(es) stripped from the mstate's dtms_access
1629 * field.
1630 */
1631 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1632 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1633 dtrace_ecb_t *ecb)
1634 {
1635 dtrace_probe_t *probe = ecb->dte_probe;
1636 dtrace_provider_t *prov = probe->dtpr_provider;
1637 dtrace_pops_t *pops = &prov->dtpv_pops;
1638 int mode = DTRACE_MODE_NOPRIV_DROP;
1639
1640 ASSERT(ecb->dte_cond);
1641
1642 #ifdef illumos
1643 if (pops->dtps_mode != NULL) {
1644 mode = pops->dtps_mode(prov->dtpv_arg,
1645 probe->dtpr_id, probe->dtpr_arg);
1646
1647 ASSERT((mode & DTRACE_MODE_USER) ||
1648 (mode & DTRACE_MODE_KERNEL));
1649 ASSERT((mode & DTRACE_MODE_NOPRIV_RESTRICT) ||
1650 (mode & DTRACE_MODE_NOPRIV_DROP));
1651 }
1652
1653 /*
1654 * If the dte_cond bits indicate that this consumer is only allowed to
1655 * see user-mode firings of this probe, call the provider's dtps_mode()
1656 * entry point to check that the probe was fired while in a user
1657 * context. If that's not the case, use the policy specified by the
1658 * provider to determine if we drop the probe or merely restrict
1659 * operation.
1660 */
1661 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1662 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1663
1664 if (!(mode & DTRACE_MODE_USER)) {
1665 if (mode & DTRACE_MODE_NOPRIV_DROP)
1666 return (0);
1667
1668 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1669 }
1670 }
1671 #endif
1672
1673 /*
1674 * This is more subtle than it looks. We have to be absolutely certain
1675 * that CRED() isn't going to change out from under us so it's only
1676 * legit to examine that structure if we're in constrained situations.
1677 * Currently, the only times we'll this check is if a non-super-user
1678 * has enabled the profile or syscall providers -- providers that
1679 * allow visibility of all processes. For the profile case, the check
1680 * above will ensure that we're examining a user context.
1681 */
1682 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1683 cred_t *cr;
1684 cred_t *s_cr = state->dts_cred.dcr_cred;
1685 proc_t *proc;
1686
1687 ASSERT(s_cr != NULL);
1688
1689 if ((cr = CRED()) == NULL ||
1690 s_cr->cr_uid != cr->cr_uid ||
1691 s_cr->cr_uid != cr->cr_ruid ||
1692 s_cr->cr_uid != cr->cr_suid ||
1693 s_cr->cr_gid != cr->cr_gid ||
1694 s_cr->cr_gid != cr->cr_rgid ||
1695 s_cr->cr_gid != cr->cr_sgid ||
1696 (proc = ttoproc(curthread)) == NULL ||
1697 (proc->p_flag & SNOCD)) {
1698 if (mode & DTRACE_MODE_NOPRIV_DROP)
1699 return (0);
1700
1701 #ifdef illumos
1702 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1703 #endif
1704 }
1705 }
1706
1707 #ifdef illumos
1708 /*
1709 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1710 * in our zone, check to see if our mode policy is to restrict rather
1711 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1712 * and DTRACE_ACCESS_ARGS
1713 */
1714 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1715 cred_t *cr;
1716 cred_t *s_cr = state->dts_cred.dcr_cred;
1717
1718 ASSERT(s_cr != NULL);
1719
1720 if ((cr = CRED()) == NULL ||
1721 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1722 if (mode & DTRACE_MODE_NOPRIV_DROP)
1723 return (0);
1724
1725 mstate->dtms_access &=
1726 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1727 }
1728 }
1729 #endif
1730
1731 return (1);
1732 }
1733
1734 /*
1735 * Note: not called from probe context. This function is called
1736 * asynchronously (and at a regular interval) from outside of probe context to
1737 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1738 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1739 */
1740 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1741 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1742 {
1743 dtrace_dynvar_t *dirty;
1744 dtrace_dstate_percpu_t *dcpu;
1745 dtrace_dynvar_t **rinsep;
1746 int i, j, work = 0;
1747
1748 CPU_FOREACH(i) {
1749 dcpu = &dstate->dtds_percpu[i];
1750 rinsep = &dcpu->dtdsc_rinsing;
1751
1752 /*
1753 * If the dirty list is NULL, there is no dirty work to do.
1754 */
1755 if (dcpu->dtdsc_dirty == NULL)
1756 continue;
1757
1758 if (dcpu->dtdsc_rinsing != NULL) {
1759 /*
1760 * If the rinsing list is non-NULL, then it is because
1761 * this CPU was selected to accept another CPU's
1762 * dirty list -- and since that time, dirty buffers
1763 * have accumulated. This is a highly unlikely
1764 * condition, but we choose to ignore the dirty
1765 * buffers -- they'll be picked up a future cleanse.
1766 */
1767 continue;
1768 }
1769
1770 if (dcpu->dtdsc_clean != NULL) {
1771 /*
1772 * If the clean list is non-NULL, then we're in a
1773 * situation where a CPU has done deallocations (we
1774 * have a non-NULL dirty list) but no allocations (we
1775 * also have a non-NULL clean list). We can't simply
1776 * move the dirty list into the clean list on this
1777 * CPU, yet we also don't want to allow this condition
1778 * to persist, lest a short clean list prevent a
1779 * massive dirty list from being cleaned (which in
1780 * turn could lead to otherwise avoidable dynamic
1781 * drops). To deal with this, we look for some CPU
1782 * with a NULL clean list, NULL dirty list, and NULL
1783 * rinsing list -- and then we borrow this CPU to
1784 * rinse our dirty list.
1785 */
1786 CPU_FOREACH(j) {
1787 dtrace_dstate_percpu_t *rinser;
1788
1789 rinser = &dstate->dtds_percpu[j];
1790
1791 if (rinser->dtdsc_rinsing != NULL)
1792 continue;
1793
1794 if (rinser->dtdsc_dirty != NULL)
1795 continue;
1796
1797 if (rinser->dtdsc_clean != NULL)
1798 continue;
1799
1800 rinsep = &rinser->dtdsc_rinsing;
1801 break;
1802 }
1803
1804 if (j > mp_maxid) {
1805 /*
1806 * We were unable to find another CPU that
1807 * could accept this dirty list -- we are
1808 * therefore unable to clean it now.
1809 */
1810 dtrace_dynvar_failclean++;
1811 continue;
1812 }
1813 }
1814
1815 work = 1;
1816
1817 /*
1818 * Atomically move the dirty list aside.
1819 */
1820 do {
1821 dirty = dcpu->dtdsc_dirty;
1822
1823 /*
1824 * Before we zap the dirty list, set the rinsing list.
1825 * (This allows for a potential assertion in
1826 * dtrace_dynvar(): if a free dynamic variable appears
1827 * on a hash chain, either the dirty list or the
1828 * rinsing list for some CPU must be non-NULL.)
1829 */
1830 *rinsep = dirty;
1831 dtrace_membar_producer();
1832 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1833 dirty, NULL) != dirty);
1834 }
1835
1836 if (!work) {
1837 /*
1838 * We have no work to do; we can simply return.
1839 */
1840 return;
1841 }
1842
1843 dtrace_sync();
1844
1845 CPU_FOREACH(i) {
1846 dcpu = &dstate->dtds_percpu[i];
1847
1848 if (dcpu->dtdsc_rinsing == NULL)
1849 continue;
1850
1851 /*
1852 * We are now guaranteed that no hash chain contains a pointer
1853 * into this dirty list; we can make it clean.
1854 */
1855 ASSERT(dcpu->dtdsc_clean == NULL);
1856 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1857 dcpu->dtdsc_rinsing = NULL;
1858 }
1859
1860 /*
1861 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1862 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1863 * This prevents a race whereby a CPU incorrectly decides that
1864 * the state should be something other than DTRACE_DSTATE_CLEAN
1865 * after dtrace_dynvar_clean() has completed.
1866 */
1867 dtrace_sync();
1868
1869 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1870 }
1871
1872 /*
1873 * Depending on the value of the op parameter, this function looks-up,
1874 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1875 * allocation is requested, this function will return a pointer to a
1876 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1877 * variable can be allocated. If NULL is returned, the appropriate counter
1878 * will be incremented.
1879 */
1880 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1881 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1882 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1883 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1884 {
1885 uint64_t hashval = DTRACE_DYNHASH_VALID;
1886 dtrace_dynhash_t *hash = dstate->dtds_hash;
1887 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1888 processorid_t me = curcpu, cpu = me;
1889 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1890 size_t bucket, ksize;
1891 size_t chunksize = dstate->dtds_chunksize;
1892 uintptr_t kdata, lock, nstate;
1893 uint_t i;
1894
1895 ASSERT(nkeys != 0);
1896
1897 /*
1898 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1899 * algorithm. For the by-value portions, we perform the algorithm in
1900 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1901 * bit, and seems to have only a minute effect on distribution. For
1902 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1903 * over each referenced byte. It's painful to do this, but it's much
1904 * better than pathological hash distribution. The efficacy of the
1905 * hashing algorithm (and a comparison with other algorithms) may be
1906 * found by running the ::dtrace_dynstat MDB dcmd.
1907 */
1908 for (i = 0; i < nkeys; i++) {
1909 if (key[i].dttk_size == 0) {
1910 uint64_t val = key[i].dttk_value;
1911
1912 hashval += (val >> 48) & 0xffff;
1913 hashval += (hashval << 10);
1914 hashval ^= (hashval >> 6);
1915
1916 hashval += (val >> 32) & 0xffff;
1917 hashval += (hashval << 10);
1918 hashval ^= (hashval >> 6);
1919
1920 hashval += (val >> 16) & 0xffff;
1921 hashval += (hashval << 10);
1922 hashval ^= (hashval >> 6);
1923
1924 hashval += val & 0xffff;
1925 hashval += (hashval << 10);
1926 hashval ^= (hashval >> 6);
1927 } else {
1928 /*
1929 * This is incredibly painful, but it beats the hell
1930 * out of the alternative.
1931 */
1932 uint64_t j, size = key[i].dttk_size;
1933 uintptr_t base = (uintptr_t)key[i].dttk_value;
1934
1935 if (!dtrace_canload(base, size, mstate, vstate))
1936 break;
1937
1938 for (j = 0; j < size; j++) {
1939 hashval += dtrace_load8(base + j);
1940 hashval += (hashval << 10);
1941 hashval ^= (hashval >> 6);
1942 }
1943 }
1944 }
1945
1946 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1947 return (NULL);
1948
1949 hashval += (hashval << 3);
1950 hashval ^= (hashval >> 11);
1951 hashval += (hashval << 15);
1952
1953 /*
1954 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1955 * comes out to be one of our two sentinel hash values. If this
1956 * actually happens, we set the hashval to be a value known to be a
1957 * non-sentinel value.
1958 */
1959 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1960 hashval = DTRACE_DYNHASH_VALID;
1961
1962 /*
1963 * Yes, it's painful to do a divide here. If the cycle count becomes
1964 * important here, tricks can be pulled to reduce it. (However, it's
1965 * critical that hash collisions be kept to an absolute minimum;
1966 * they're much more painful than a divide.) It's better to have a
1967 * solution that generates few collisions and still keeps things
1968 * relatively simple.
1969 */
1970 bucket = hashval % dstate->dtds_hashsize;
1971
1972 if (op == DTRACE_DYNVAR_DEALLOC) {
1973 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1974
1975 for (;;) {
1976 while ((lock = *lockp) & 1)
1977 continue;
1978
1979 if (dtrace_casptr((volatile void *)lockp,
1980 (volatile void *)lock, (volatile void *)(lock + 1)) == (void *)lock)
1981 break;
1982 }
1983
1984 dtrace_membar_producer();
1985 }
1986
1987 top:
1988 prev = NULL;
1989 lock = hash[bucket].dtdh_lock;
1990
1991 dtrace_membar_consumer();
1992
1993 start = hash[bucket].dtdh_chain;
1994 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1995 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1996 op != DTRACE_DYNVAR_DEALLOC));
1997
1998 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1999 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
2000 dtrace_key_t *dkey = &dtuple->dtt_key[0];
2001
2002 if (dvar->dtdv_hashval != hashval) {
2003 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
2004 /*
2005 * We've reached the sink, and therefore the
2006 * end of the hash chain; we can kick out of
2007 * the loop knowing that we have seen a valid
2008 * snapshot of state.
2009 */
2010 ASSERT(dvar->dtdv_next == NULL);
2011 ASSERT(dvar == &dtrace_dynhash_sink);
2012 break;
2013 }
2014
2015 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
2016 /*
2017 * We've gone off the rails: somewhere along
2018 * the line, one of the members of this hash
2019 * chain was deleted. Note that we could also
2020 * detect this by simply letting this loop run
2021 * to completion, as we would eventually hit
2022 * the end of the dirty list. However, we
2023 * want to avoid running the length of the
2024 * dirty list unnecessarily (it might be quite
2025 * long), so we catch this as early as
2026 * possible by detecting the hash marker. In
2027 * this case, we simply set dvar to NULL and
2028 * break; the conditional after the loop will
2029 * send us back to top.
2030 */
2031 dvar = NULL;
2032 break;
2033 }
2034
2035 goto next;
2036 }
2037
2038 if (dtuple->dtt_nkeys != nkeys)
2039 goto next;
2040
2041 for (i = 0; i < nkeys; i++, dkey++) {
2042 if (dkey->dttk_size != key[i].dttk_size)
2043 goto next; /* size or type mismatch */
2044
2045 if (dkey->dttk_size != 0) {
2046 if (dtrace_bcmp(
2047 (void *)(uintptr_t)key[i].dttk_value,
2048 (void *)(uintptr_t)dkey->dttk_value,
2049 dkey->dttk_size))
2050 goto next;
2051 } else {
2052 if (dkey->dttk_value != key[i].dttk_value)
2053 goto next;
2054 }
2055 }
2056
2057 if (op != DTRACE_DYNVAR_DEALLOC)
2058 return (dvar);
2059
2060 ASSERT(dvar->dtdv_next == NULL ||
2061 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
2062
2063 if (prev != NULL) {
2064 ASSERT(hash[bucket].dtdh_chain != dvar);
2065 ASSERT(start != dvar);
2066 ASSERT(prev->dtdv_next == dvar);
2067 prev->dtdv_next = dvar->dtdv_next;
2068 } else {
2069 if (dtrace_casptr(&hash[bucket].dtdh_chain,
2070 start, dvar->dtdv_next) != start) {
2071 /*
2072 * We have failed to atomically swing the
2073 * hash table head pointer, presumably because
2074 * of a conflicting allocation on another CPU.
2075 * We need to reread the hash chain and try
2076 * again.
2077 */
2078 goto top;
2079 }
2080 }
2081
2082 dtrace_membar_producer();
2083
2084 /*
2085 * Now set the hash value to indicate that it's free.
2086 */
2087 ASSERT(hash[bucket].dtdh_chain != dvar);
2088 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2089
2090 dtrace_membar_producer();
2091
2092 /*
2093 * Set the next pointer to point at the dirty list, and
2094 * atomically swing the dirty pointer to the newly freed dvar.
2095 */
2096 do {
2097 next = dcpu->dtdsc_dirty;
2098 dvar->dtdv_next = next;
2099 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
2100
2101 /*
2102 * Finally, unlock this hash bucket.
2103 */
2104 ASSERT(hash[bucket].dtdh_lock == lock);
2105 ASSERT(lock & 1);
2106 hash[bucket].dtdh_lock++;
2107
2108 return (NULL);
2109 next:
2110 prev = dvar;
2111 continue;
2112 }
2113
2114 if (dvar == NULL) {
2115 /*
2116 * If dvar is NULL, it is because we went off the rails:
2117 * one of the elements that we traversed in the hash chain
2118 * was deleted while we were traversing it. In this case,
2119 * we assert that we aren't doing a dealloc (deallocs lock
2120 * the hash bucket to prevent themselves from racing with
2121 * one another), and retry the hash chain traversal.
2122 */
2123 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
2124 goto top;
2125 }
2126
2127 if (op != DTRACE_DYNVAR_ALLOC) {
2128 /*
2129 * If we are not to allocate a new variable, we want to
2130 * return NULL now. Before we return, check that the value
2131 * of the lock word hasn't changed. If it has, we may have
2132 * seen an inconsistent snapshot.
2133 */
2134 if (op == DTRACE_DYNVAR_NOALLOC) {
2135 if (hash[bucket].dtdh_lock != lock)
2136 goto top;
2137 } else {
2138 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
2139 ASSERT(hash[bucket].dtdh_lock == lock);
2140 ASSERT(lock & 1);
2141 hash[bucket].dtdh_lock++;
2142 }
2143
2144 return (NULL);
2145 }
2146
2147 /*
2148 * We need to allocate a new dynamic variable. The size we need is the
2149 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
2150 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
2151 * the size of any referred-to data (dsize). We then round the final
2152 * size up to the chunksize for allocation.
2153 */
2154 for (ksize = 0, i = 0; i < nkeys; i++)
2155 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
2156
2157 /*
2158 * This should be pretty much impossible, but could happen if, say,
2159 * strange DIF specified the tuple. Ideally, this should be an
2160 * assertion and not an error condition -- but that requires that the
2161 * chunksize calculation in dtrace_difo_chunksize() be absolutely
2162 * bullet-proof. (That is, it must not be able to be fooled by
2163 * malicious DIF.) Given the lack of backwards branches in DIF,
2164 * solving this would presumably not amount to solving the Halting
2165 * Problem -- but it still seems awfully hard.
2166 */
2167 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
2168 ksize + dsize > chunksize) {
2169 dcpu->dtdsc_drops++;
2170 return (NULL);
2171 }
2172
2173 nstate = DTRACE_DSTATE_EMPTY;
2174
2175 do {
2176 retry:
2177 free = dcpu->dtdsc_free;
2178
2179 if (free == NULL) {
2180 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
2181 void *rval;
2182
2183 if (clean == NULL) {
2184 /*
2185 * We're out of dynamic variable space on
2186 * this CPU. Unless we have tried all CPUs,
2187 * we'll try to allocate from a different
2188 * CPU.
2189 */
2190 switch (dstate->dtds_state) {
2191 case DTRACE_DSTATE_CLEAN: {
2192 void *sp = &dstate->dtds_state;
2193
2194 if (++cpu > mp_maxid)
2195 cpu = 0;
2196
2197 if (dcpu->dtdsc_dirty != NULL &&
2198 nstate == DTRACE_DSTATE_EMPTY)
2199 nstate = DTRACE_DSTATE_DIRTY;
2200
2201 if (dcpu->dtdsc_rinsing != NULL)
2202 nstate = DTRACE_DSTATE_RINSING;
2203
2204 dcpu = &dstate->dtds_percpu[cpu];
2205
2206 if (cpu != me)
2207 goto retry;
2208
2209 (void) dtrace_cas32(sp,
2210 DTRACE_DSTATE_CLEAN, nstate);
2211
2212 /*
2213 * To increment the correct bean
2214 * counter, take another lap.
2215 */
2216 goto retry;
2217 }
2218
2219 case DTRACE_DSTATE_DIRTY:
2220 dcpu->dtdsc_dirty_drops++;
2221 break;
2222
2223 case DTRACE_DSTATE_RINSING:
2224 dcpu->dtdsc_rinsing_drops++;
2225 break;
2226
2227 case DTRACE_DSTATE_EMPTY:
2228 dcpu->dtdsc_drops++;
2229 break;
2230 }
2231
2232 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
2233 return (NULL);
2234 }
2235
2236 /*
2237 * The clean list appears to be non-empty. We want to
2238 * move the clean list to the free list; we start by
2239 * moving the clean pointer aside.
2240 */
2241 if (dtrace_casptr(&dcpu->dtdsc_clean,
2242 clean, NULL) != clean) {
2243 /*
2244 * We are in one of two situations:
2245 *
2246 * (a) The clean list was switched to the
2247 * free list by another CPU.
2248 *
2249 * (b) The clean list was added to by the
2250 * cleansing cyclic.
2251 *
2252 * In either of these situations, we can
2253 * just reattempt the free list allocation.
2254 */
2255 goto retry;
2256 }
2257
2258 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2259
2260 /*
2261 * Now we'll move the clean list to our free list.
2262 * It's impossible for this to fail: the only way
2263 * the free list can be updated is through this
2264 * code path, and only one CPU can own the clean list.
2265 * Thus, it would only be possible for this to fail if
2266 * this code were racing with dtrace_dynvar_clean().
2267 * (That is, if dtrace_dynvar_clean() updated the clean
2268 * list, and we ended up racing to update the free
2269 * list.) This race is prevented by the dtrace_sync()
2270 * in dtrace_dynvar_clean() -- which flushes the
2271 * owners of the clean lists out before resetting
2272 * the clean lists.
2273 */
2274 dcpu = &dstate->dtds_percpu[me];
2275 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2276 ASSERT(rval == NULL);
2277 goto retry;
2278 }
2279
2280 dvar = free;
2281 new_free = dvar->dtdv_next;
2282 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2283
2284 /*
2285 * We have now allocated a new chunk. We copy the tuple keys into the
2286 * tuple array and copy any referenced key data into the data space
2287 * following the tuple array. As we do this, we relocate dttk_value
2288 * in the final tuple to point to the key data address in the chunk.
2289 */
2290 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2291 dvar->dtdv_data = (void *)(kdata + ksize);
2292 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2293
2294 for (i = 0; i < nkeys; i++) {
2295 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2296 size_t kesize = key[i].dttk_size;
2297
2298 if (kesize != 0) {
2299 dtrace_bcopy(
2300 (const void *)(uintptr_t)key[i].dttk_value,
2301 (void *)kdata, kesize);
2302 dkey->dttk_value = kdata;
2303 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2304 } else {
2305 dkey->dttk_value = key[i].dttk_value;
2306 }
2307
2308 dkey->dttk_size = kesize;
2309 }
2310
2311 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2312 dvar->dtdv_hashval = hashval;
2313 dvar->dtdv_next = start;
2314
2315 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2316 return (dvar);
2317
2318 /*
2319 * The cas has failed. Either another CPU is adding an element to
2320 * this hash chain, or another CPU is deleting an element from this
2321 * hash chain. The simplest way to deal with both of these cases
2322 * (though not necessarily the most efficient) is to free our
2323 * allocated block and re-attempt it all. Note that the free is
2324 * to the dirty list and _not_ to the free list. This is to prevent
2325 * races with allocators, above.
2326 */
2327 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2328
2329 dtrace_membar_producer();
2330
2331 do {
2332 free = dcpu->dtdsc_dirty;
2333 dvar->dtdv_next = free;
2334 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2335
2336 goto top;
2337 }
2338
2339 /*ARGSUSED*/
2340 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2341 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2342 {
2343 if ((int64_t)nval < (int64_t)*oval)
2344 *oval = nval;
2345 }
2346
2347 /*ARGSUSED*/
2348 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2349 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2350 {
2351 if ((int64_t)nval > (int64_t)*oval)
2352 *oval = nval;
2353 }
2354
2355 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2356 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2357 {
2358 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2359 int64_t val = (int64_t)nval;
2360
2361 if (val < 0) {
2362 for (i = 0; i < zero; i++) {
2363 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2364 quanta[i] += incr;
2365 return;
2366 }
2367 }
2368 } else {
2369 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2370 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2371 quanta[i - 1] += incr;
2372 return;
2373 }
2374 }
2375
2376 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2377 return;
2378 }
2379
2380 ASSERT(0);
2381 }
2382
2383 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2384 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2385 {
2386 uint64_t arg = *lquanta++;
2387 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2388 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2389 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2390 int32_t val = (int32_t)nval, level;
2391
2392 ASSERT(step != 0);
2393 ASSERT(levels != 0);
2394
2395 if (val < base) {
2396 /*
2397 * This is an underflow.
2398 */
2399 lquanta[0] += incr;
2400 return;
2401 }
2402
2403 level = (val - base) / step;
2404
2405 if (level < levels) {
2406 lquanta[level + 1] += incr;
2407 return;
2408 }
2409
2410 /*
2411 * This is an overflow.
2412 */
2413 lquanta[levels + 1] += incr;
2414 }
2415
2416 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2417 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2418 uint16_t high, uint16_t nsteps, int64_t value)
2419 {
2420 int64_t this = 1, last, next;
2421 int base = 1, order;
2422
2423 ASSERT(factor <= nsteps);
2424 ASSERT(nsteps % factor == 0);
2425
2426 for (order = 0; order < low; order++)
2427 this *= factor;
2428
2429 /*
2430 * If our value is less than our factor taken to the power of the
2431 * low order of magnitude, it goes into the zeroth bucket.
2432 */
2433 if (value < (last = this))
2434 return (0);
2435
2436 for (this *= factor; order <= high; order++) {
2437 int nbuckets = this > nsteps ? nsteps : this;
2438
2439 if ((next = this * factor) < this) {
2440 /*
2441 * We should not generally get log/linear quantizations
2442 * with a high magnitude that allows 64-bits to
2443 * overflow, but we nonetheless protect against this
2444 * by explicitly checking for overflow, and clamping
2445 * our value accordingly.
2446 */
2447 value = this - 1;
2448 }
2449
2450 if (value < this) {
2451 /*
2452 * If our value lies within this order of magnitude,
2453 * determine its position by taking the offset within
2454 * the order of magnitude, dividing by the bucket
2455 * width, and adding to our (accumulated) base.
2456 */
2457 return (base + (value - last) / (this / nbuckets));
2458 }
2459
2460 base += nbuckets - (nbuckets / factor);
2461 last = this;
2462 this = next;
2463 }
2464
2465 /*
2466 * Our value is greater than or equal to our factor taken to the
2467 * power of one plus the high magnitude -- return the top bucket.
2468 */
2469 return (base);
2470 }
2471
2472 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2473 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2474 {
2475 uint64_t arg = *llquanta++;
2476 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2477 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2478 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2479 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2480
2481 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2482 low, high, nsteps, nval)] += incr;
2483 }
2484
2485 /*ARGSUSED*/
2486 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2487 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2488 {
2489 data[0]++;
2490 data[1] += nval;
2491 }
2492
2493 /*ARGSUSED*/
2494 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2495 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2496 {
2497 int64_t snval = (int64_t)nval;
2498 uint64_t tmp[2];
2499
2500 data[0]++;
2501 data[1] += nval;
2502
2503 /*
2504 * What we want to say here is:
2505 *
2506 * data[2] += nval * nval;
2507 *
2508 * But given that nval is 64-bit, we could easily overflow, so
2509 * we do this as 128-bit arithmetic.
2510 */
2511 if (snval < 0)
2512 snval = -snval;
2513
2514 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2515 dtrace_add_128(data + 2, tmp, data + 2);
2516 }
2517
2518 /*ARGSUSED*/
2519 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2520 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2521 {
2522 *oval = *oval + 1;
2523 }
2524
2525 /*ARGSUSED*/
2526 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2527 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2528 {
2529 *oval += nval;
2530 }
2531
2532 /*
2533 * Aggregate given the tuple in the principal data buffer, and the aggregating
2534 * action denoted by the specified dtrace_aggregation_t. The aggregation
2535 * buffer is specified as the buf parameter. This routine does not return
2536 * failure; if there is no space in the aggregation buffer, the data will be
2537 * dropped, and a corresponding counter incremented.
2538 */
2539 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2540 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2541 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2542 {
2543 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2544 uint32_t i, ndx, size, fsize;
2545 uint32_t align = sizeof (uint64_t) - 1;
2546 dtrace_aggbuffer_t *agb;
2547 dtrace_aggkey_t *key;
2548 uint32_t hashval = 0, limit, isstr;
2549 caddr_t tomax, data, kdata;
2550 dtrace_actkind_t action;
2551 dtrace_action_t *act;
2552 size_t offs;
2553
2554 if (buf == NULL)
2555 return;
2556
2557 if (!agg->dtag_hasarg) {
2558 /*
2559 * Currently, only quantize() and lquantize() take additional
2560 * arguments, and they have the same semantics: an increment
2561 * value that defaults to 1 when not present. If additional
2562 * aggregating actions take arguments, the setting of the
2563 * default argument value will presumably have to become more
2564 * sophisticated...
2565 */
2566 arg = 1;
2567 }
2568
2569 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2570 size = rec->dtrd_offset - agg->dtag_base;
2571 fsize = size + rec->dtrd_size;
2572
2573 ASSERT(dbuf->dtb_tomax != NULL);
2574 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2575
2576 if ((tomax = buf->dtb_tomax) == NULL) {
2577 dtrace_buffer_drop(buf);
2578 return;
2579 }
2580
2581 /*
2582 * The metastructure is always at the bottom of the buffer.
2583 */
2584 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2585 sizeof (dtrace_aggbuffer_t));
2586
2587 if (buf->dtb_offset == 0) {
2588 /*
2589 * We just kludge up approximately 1/8th of the size to be
2590 * buckets. If this guess ends up being routinely
2591 * off-the-mark, we may need to dynamically readjust this
2592 * based on past performance.
2593 */
2594 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2595
2596 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2597 (uintptr_t)tomax || hashsize == 0) {
2598 /*
2599 * We've been given a ludicrously small buffer;
2600 * increment our drop count and leave.
2601 */
2602 dtrace_buffer_drop(buf);
2603 return;
2604 }
2605
2606 /*
2607 * And now, a pathetic attempt to try to get a an odd (or
2608 * perchance, a prime) hash size for better hash distribution.
2609 */
2610 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2611 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2612
2613 agb->dtagb_hashsize = hashsize;
2614 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2615 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2616 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2617
2618 for (i = 0; i < agb->dtagb_hashsize; i++)
2619 agb->dtagb_hash[i] = NULL;
2620 }
2621
2622 ASSERT(agg->dtag_first != NULL);
2623 ASSERT(agg->dtag_first->dta_intuple);
2624
2625 /*
2626 * Calculate the hash value based on the key. Note that we _don't_
2627 * include the aggid in the hashing (but we will store it as part of
2628 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2629 * algorithm: a simple, quick algorithm that has no known funnels, and
2630 * gets good distribution in practice. The efficacy of the hashing
2631 * algorithm (and a comparison with other algorithms) may be found by
2632 * running the ::dtrace_aggstat MDB dcmd.
2633 */
2634 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2635 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2636 limit = i + act->dta_rec.dtrd_size;
2637 ASSERT(limit <= size);
2638 isstr = DTRACEACT_ISSTRING(act);
2639
2640 for (; i < limit; i++) {
2641 hashval += data[i];
2642 hashval += (hashval << 10);
2643 hashval ^= (hashval >> 6);
2644
2645 if (isstr && data[i] == '\0')
2646 break;
2647 }
2648 }
2649
2650 hashval += (hashval << 3);
2651 hashval ^= (hashval >> 11);
2652 hashval += (hashval << 15);
2653
2654 /*
2655 * Yes, the divide here is expensive -- but it's generally the least
2656 * of the performance issues given the amount of data that we iterate
2657 * over to compute hash values, compare data, etc.
2658 */
2659 ndx = hashval % agb->dtagb_hashsize;
2660
2661 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2662 ASSERT((caddr_t)key >= tomax);
2663 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2664
2665 if (hashval != key->dtak_hashval || key->dtak_size != size)
2666 continue;
2667
2668 kdata = key->dtak_data;
2669 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2670
2671 for (act = agg->dtag_first; act->dta_intuple;
2672 act = act->dta_next) {
2673 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2674 limit = i + act->dta_rec.dtrd_size;
2675 ASSERT(limit <= size);
2676 isstr = DTRACEACT_ISSTRING(act);
2677
2678 for (; i < limit; i++) {
2679 if (kdata[i] != data[i])
2680 goto next;
2681
2682 if (isstr && data[i] == '\0')
2683 break;
2684 }
2685 }
2686
2687 if (action != key->dtak_action) {
2688 /*
2689 * We are aggregating on the same value in the same
2690 * aggregation with two different aggregating actions.
2691 * (This should have been picked up in the compiler,
2692 * so we may be dealing with errant or devious DIF.)
2693 * This is an error condition; we indicate as much,
2694 * and return.
2695 */
2696 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2697 return;
2698 }
2699
2700 /*
2701 * This is a hit: we need to apply the aggregator to
2702 * the value at this key.
2703 */
2704 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2705 return;
2706 next:
2707 continue;
2708 }
2709
2710 /*
2711 * We didn't find it. We need to allocate some zero-filled space,
2712 * link it into the hash table appropriately, and apply the aggregator
2713 * to the (zero-filled) value.
2714 */
2715 offs = buf->dtb_offset;
2716 while (offs & (align - 1))
2717 offs += sizeof (uint32_t);
2718
2719 /*
2720 * If we don't have enough room to both allocate a new key _and_
2721 * its associated data, increment the drop count and return.
2722 */
2723 if ((uintptr_t)tomax + offs + fsize >
2724 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2725 dtrace_buffer_drop(buf);
2726 return;
2727 }
2728
2729 /*CONSTCOND*/
2730 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2731 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2732 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2733
2734 key->dtak_data = kdata = tomax + offs;
2735 buf->dtb_offset = offs + fsize;
2736
2737 /*
2738 * Now copy the data across.
2739 */
2740 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2741
2742 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2743 kdata[i] = data[i];
2744
2745 /*
2746 * Because strings are not zeroed out by default, we need to iterate
2747 * looking for actions that store strings, and we need to explicitly
2748 * pad these strings out with zeroes.
2749 */
2750 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2751 int nul;
2752
2753 if (!DTRACEACT_ISSTRING(act))
2754 continue;
2755
2756 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2757 limit = i + act->dta_rec.dtrd_size;
2758 ASSERT(limit <= size);
2759
2760 for (nul = 0; i < limit; i++) {
2761 if (nul) {
2762 kdata[i] = '\0';
2763 continue;
2764 }
2765
2766 if (data[i] != '\0')
2767 continue;
2768
2769 nul = 1;
2770 }
2771 }
2772
2773 for (i = size; i < fsize; i++)
2774 kdata[i] = 0;
2775
2776 key->dtak_hashval = hashval;
2777 key->dtak_size = size;
2778 key->dtak_action = action;
2779 key->dtak_next = agb->dtagb_hash[ndx];
2780 agb->dtagb_hash[ndx] = key;
2781
2782 /*
2783 * Finally, apply the aggregator.
2784 */
2785 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2786 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2787 }
2788
2789 /*
2790 * Given consumer state, this routine finds a speculation in the INACTIVE
2791 * state and transitions it into the ACTIVE state. If there is no speculation
2792 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2793 * incremented -- it is up to the caller to take appropriate action.
2794 */
2795 static int
dtrace_speculation(dtrace_state_t * state)2796 dtrace_speculation(dtrace_state_t *state)
2797 {
2798 int i = 0;
2799 dtrace_speculation_state_t curstate;
2800 uint32_t *stat = &state->dts_speculations_unavail, count;
2801
2802 while (i < state->dts_nspeculations) {
2803 dtrace_speculation_t *spec = &state->dts_speculations[i];
2804
2805 curstate = spec->dtsp_state;
2806
2807 if (curstate != DTRACESPEC_INACTIVE) {
2808 if (curstate == DTRACESPEC_COMMITTINGMANY ||
2809 curstate == DTRACESPEC_COMMITTING ||
2810 curstate == DTRACESPEC_DISCARDING)
2811 stat = &state->dts_speculations_busy;
2812 i++;
2813 continue;
2814 }
2815
2816 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2817 curstate, DTRACESPEC_ACTIVE) == curstate)
2818 return (i + 1);
2819 }
2820
2821 /*
2822 * We couldn't find a speculation. If we found as much as a single
2823 * busy speculation buffer, we'll attribute this failure as "busy"
2824 * instead of "unavail".
2825 */
2826 do {
2827 count = *stat;
2828 } while (dtrace_cas32(stat, count, count + 1) != count);
2829
2830 return (0);
2831 }
2832
2833 /*
2834 * This routine commits an active speculation. If the specified speculation
2835 * is not in a valid state to perform a commit(), this routine will silently do
2836 * nothing. The state of the specified speculation is transitioned according
2837 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2838 */
2839 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2840 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2841 dtrace_specid_t which)
2842 {
2843 dtrace_speculation_t *spec;
2844 dtrace_buffer_t *src, *dest;
2845 uintptr_t daddr, saddr, dlimit, slimit;
2846 dtrace_speculation_state_t curstate, new = 0;
2847 ssize_t offs;
2848 uint64_t timestamp;
2849
2850 if (which == 0)
2851 return;
2852
2853 if (which > state->dts_nspeculations) {
2854 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2855 return;
2856 }
2857
2858 spec = &state->dts_speculations[which - 1];
2859 src = &spec->dtsp_buffer[cpu];
2860 dest = &state->dts_buffer[cpu];
2861
2862 do {
2863 curstate = spec->dtsp_state;
2864
2865 if (curstate == DTRACESPEC_COMMITTINGMANY)
2866 break;
2867
2868 switch (curstate) {
2869 case DTRACESPEC_INACTIVE:
2870 case DTRACESPEC_DISCARDING:
2871 return;
2872
2873 case DTRACESPEC_COMMITTING:
2874 /*
2875 * This is only possible if we are (a) commit()'ing
2876 * without having done a prior speculate() on this CPU
2877 * and (b) racing with another commit() on a different
2878 * CPU. There's nothing to do -- we just assert that
2879 * our offset is 0.
2880 */
2881 ASSERT(src->dtb_offset == 0);
2882 return;
2883
2884 case DTRACESPEC_ACTIVE:
2885 new = DTRACESPEC_COMMITTING;
2886 break;
2887
2888 case DTRACESPEC_ACTIVEONE:
2889 /*
2890 * This speculation is active on one CPU. If our
2891 * buffer offset is non-zero, we know that the one CPU
2892 * must be us. Otherwise, we are committing on a
2893 * different CPU from the speculate(), and we must
2894 * rely on being asynchronously cleaned.
2895 */
2896 if (src->dtb_offset != 0) {
2897 new = DTRACESPEC_COMMITTING;
2898 break;
2899 }
2900 /*FALLTHROUGH*/
2901
2902 case DTRACESPEC_ACTIVEMANY:
2903 new = DTRACESPEC_COMMITTINGMANY;
2904 break;
2905
2906 default:
2907 ASSERT(0);
2908 }
2909 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2910 curstate, new) != curstate);
2911
2912 /*
2913 * We have set the state to indicate that we are committing this
2914 * speculation. Now reserve the necessary space in the destination
2915 * buffer.
2916 */
2917 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2918 sizeof (uint64_t), state, NULL)) < 0) {
2919 dtrace_buffer_drop(dest);
2920 goto out;
2921 }
2922
2923 /*
2924 * We have sufficient space to copy the speculative buffer into the
2925 * primary buffer. First, modify the speculative buffer, filling
2926 * in the timestamp of all entries with the curstate time. The data
2927 * must have the commit() time rather than the time it was traced,
2928 * so that all entries in the primary buffer are in timestamp order.
2929 */
2930 timestamp = dtrace_gethrtime();
2931 saddr = (uintptr_t)src->dtb_tomax;
2932 slimit = saddr + src->dtb_offset;
2933 while (saddr < slimit) {
2934 size_t size;
2935 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2936
2937 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2938 saddr += sizeof (dtrace_epid_t);
2939 continue;
2940 }
2941 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2942 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2943
2944 ASSERT3U(saddr + size, <=, slimit);
2945 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2946 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2947
2948 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2949
2950 saddr += size;
2951 }
2952
2953 /*
2954 * Copy the buffer across. (Note that this is a
2955 * highly subobtimal bcopy(); in the unlikely event that this becomes
2956 * a serious performance issue, a high-performance DTrace-specific
2957 * bcopy() should obviously be invented.)
2958 */
2959 daddr = (uintptr_t)dest->dtb_tomax + offs;
2960 dlimit = daddr + src->dtb_offset;
2961 saddr = (uintptr_t)src->dtb_tomax;
2962
2963 /*
2964 * First, the aligned portion.
2965 */
2966 while (dlimit - daddr >= sizeof (uint64_t)) {
2967 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2968
2969 daddr += sizeof (uint64_t);
2970 saddr += sizeof (uint64_t);
2971 }
2972
2973 /*
2974 * Now any left-over bit...
2975 */
2976 while (dlimit - daddr)
2977 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2978
2979 /*
2980 * Finally, commit the reserved space in the destination buffer.
2981 */
2982 dest->dtb_offset = offs + src->dtb_offset;
2983
2984 out:
2985 /*
2986 * If we're lucky enough to be the only active CPU on this speculation
2987 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2988 */
2989 if (curstate == DTRACESPEC_ACTIVE ||
2990 (curstate == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2991 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2992 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2993
2994 ASSERT(rval == DTRACESPEC_COMMITTING);
2995 }
2996
2997 src->dtb_offset = 0;
2998 src->dtb_xamot_drops += src->dtb_drops;
2999 src->dtb_drops = 0;
3000 }
3001
3002 /*
3003 * This routine discards an active speculation. If the specified speculation
3004 * is not in a valid state to perform a discard(), this routine will silently
3005 * do nothing. The state of the specified speculation is transitioned
3006 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
3007 */
3008 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)3009 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
3010 dtrace_specid_t which)
3011 {
3012 dtrace_speculation_t *spec;
3013 dtrace_speculation_state_t curstate, new = 0;
3014 dtrace_buffer_t *buf;
3015
3016 if (which == 0)
3017 return;
3018
3019 if (which > state->dts_nspeculations) {
3020 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3021 return;
3022 }
3023
3024 spec = &state->dts_speculations[which - 1];
3025 buf = &spec->dtsp_buffer[cpu];
3026
3027 do {
3028 curstate = spec->dtsp_state;
3029
3030 switch (curstate) {
3031 case DTRACESPEC_INACTIVE:
3032 case DTRACESPEC_COMMITTINGMANY:
3033 case DTRACESPEC_COMMITTING:
3034 case DTRACESPEC_DISCARDING:
3035 return;
3036
3037 case DTRACESPEC_ACTIVE:
3038 case DTRACESPEC_ACTIVEMANY:
3039 new = DTRACESPEC_DISCARDING;
3040 break;
3041
3042 case DTRACESPEC_ACTIVEONE:
3043 if (buf->dtb_offset != 0) {
3044 new = DTRACESPEC_INACTIVE;
3045 } else {
3046 new = DTRACESPEC_DISCARDING;
3047 }
3048 break;
3049
3050 default:
3051 ASSERT(0);
3052 }
3053 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3054 curstate, new) != curstate);
3055
3056 buf->dtb_offset = 0;
3057 buf->dtb_drops = 0;
3058 }
3059
3060 /*
3061 * Note: not called from probe context. This function is called
3062 * asynchronously from cross call context to clean any speculations that are
3063 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
3064 * transitioned back to the INACTIVE state until all CPUs have cleaned the
3065 * speculation.
3066 */
3067 static void
dtrace_speculation_clean_here(dtrace_state_t * state)3068 dtrace_speculation_clean_here(dtrace_state_t *state)
3069 {
3070 dtrace_icookie_t cookie;
3071 processorid_t cpu = curcpu;
3072 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
3073 dtrace_specid_t i;
3074
3075 cookie = dtrace_interrupt_disable();
3076
3077 if (dest->dtb_tomax == NULL) {
3078 dtrace_interrupt_enable(cookie);
3079 return;
3080 }
3081
3082 for (i = 0; i < state->dts_nspeculations; i++) {
3083 dtrace_speculation_t *spec = &state->dts_speculations[i];
3084 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
3085
3086 if (src->dtb_tomax == NULL)
3087 continue;
3088
3089 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
3090 src->dtb_offset = 0;
3091 continue;
3092 }
3093
3094 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3095 continue;
3096
3097 if (src->dtb_offset == 0)
3098 continue;
3099
3100 dtrace_speculation_commit(state, cpu, i + 1);
3101 }
3102
3103 dtrace_interrupt_enable(cookie);
3104 }
3105
3106 /*
3107 * Note: not called from probe context. This function is called
3108 * asynchronously (and at a regular interval) to clean any speculations that
3109 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
3110 * is work to be done, it cross calls all CPUs to perform that work;
3111 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
3112 * INACTIVE state until they have been cleaned by all CPUs.
3113 */
3114 static void
dtrace_speculation_clean(dtrace_state_t * state)3115 dtrace_speculation_clean(dtrace_state_t *state)
3116 {
3117 int work = 0, rv;
3118 dtrace_specid_t i;
3119
3120 for (i = 0; i < state->dts_nspeculations; i++) {
3121 dtrace_speculation_t *spec = &state->dts_speculations[i];
3122
3123 ASSERT(!spec->dtsp_cleaning);
3124
3125 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
3126 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
3127 continue;
3128
3129 work++;
3130 spec->dtsp_cleaning = 1;
3131 }
3132
3133 if (!work)
3134 return;
3135
3136 dtrace_xcall(DTRACE_CPUALL,
3137 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
3138
3139 /*
3140 * We now know that all CPUs have committed or discarded their
3141 * speculation buffers, as appropriate. We can now set the state
3142 * to inactive.
3143 */
3144 for (i = 0; i < state->dts_nspeculations; i++) {
3145 dtrace_speculation_t *spec = &state->dts_speculations[i];
3146 dtrace_speculation_state_t curstate, new;
3147
3148 if (!spec->dtsp_cleaning)
3149 continue;
3150
3151 curstate = spec->dtsp_state;
3152 ASSERT(curstate == DTRACESPEC_DISCARDING ||
3153 curstate == DTRACESPEC_COMMITTINGMANY);
3154
3155 new = DTRACESPEC_INACTIVE;
3156
3157 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, curstate, new);
3158 ASSERT(rv == curstate);
3159 spec->dtsp_cleaning = 0;
3160 }
3161 }
3162
3163 /*
3164 * Called as part of a speculate() to get the speculative buffer associated
3165 * with a given speculation. Returns NULL if the specified speculation is not
3166 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
3167 * the active CPU is not the specified CPU -- the speculation will be
3168 * atomically transitioned into the ACTIVEMANY state.
3169 */
3170 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)3171 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
3172 dtrace_specid_t which)
3173 {
3174 dtrace_speculation_t *spec;
3175 dtrace_speculation_state_t curstate, new = 0;
3176 dtrace_buffer_t *buf;
3177
3178 if (which == 0)
3179 return (NULL);
3180
3181 if (which > state->dts_nspeculations) {
3182 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
3183 return (NULL);
3184 }
3185
3186 spec = &state->dts_speculations[which - 1];
3187 buf = &spec->dtsp_buffer[cpuid];
3188
3189 do {
3190 curstate = spec->dtsp_state;
3191
3192 switch (curstate) {
3193 case DTRACESPEC_INACTIVE:
3194 case DTRACESPEC_COMMITTINGMANY:
3195 case DTRACESPEC_DISCARDING:
3196 return (NULL);
3197
3198 case DTRACESPEC_COMMITTING:
3199 ASSERT(buf->dtb_offset == 0);
3200 return (NULL);
3201
3202 case DTRACESPEC_ACTIVEONE:
3203 /*
3204 * This speculation is currently active on one CPU.
3205 * Check the offset in the buffer; if it's non-zero,
3206 * that CPU must be us (and we leave the state alone).
3207 * If it's zero, assume that we're starting on a new
3208 * CPU -- and change the state to indicate that the
3209 * speculation is active on more than one CPU.
3210 */
3211 if (buf->dtb_offset != 0)
3212 return (buf);
3213
3214 new = DTRACESPEC_ACTIVEMANY;
3215 break;
3216
3217 case DTRACESPEC_ACTIVEMANY:
3218 return (buf);
3219
3220 case DTRACESPEC_ACTIVE:
3221 new = DTRACESPEC_ACTIVEONE;
3222 break;
3223
3224 default:
3225 ASSERT(0);
3226 }
3227 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
3228 curstate, new) != curstate);
3229
3230 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
3231 return (buf);
3232 }
3233
3234 /*
3235 * Return a string. In the event that the user lacks the privilege to access
3236 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3237 * don't fail access checking.
3238 *
3239 * dtrace_dif_variable() uses this routine as a helper for various
3240 * builtin values such as 'execname' and 'probefunc.'
3241 */
3242 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)3243 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
3244 dtrace_mstate_t *mstate)
3245 {
3246 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
3247 uintptr_t ret;
3248 size_t strsz;
3249
3250 /*
3251 * The easy case: this probe is allowed to read all of memory, so
3252 * we can just return this as a vanilla pointer.
3253 */
3254 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3255 return (addr);
3256
3257 /*
3258 * This is the tougher case: we copy the string in question from
3259 * kernel memory into scratch memory and return it that way: this
3260 * ensures that we won't trip up when access checking tests the
3261 * BYREF return value.
3262 */
3263 strsz = dtrace_strlen((char *)addr, size) + 1;
3264
3265 if (mstate->dtms_scratch_ptr + strsz >
3266 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3267 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3268 return (0);
3269 }
3270
3271 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3272 strsz);
3273 ret = mstate->dtms_scratch_ptr;
3274 mstate->dtms_scratch_ptr += strsz;
3275 return (ret);
3276 }
3277
3278 /*
3279 * Return a string from a memoy address which is known to have one or
3280 * more concatenated, individually zero terminated, sub-strings.
3281 * In the event that the user lacks the privilege to access
3282 * arbitrary kernel memory, we copy the string out to scratch memory so that we
3283 * don't fail access checking.
3284 *
3285 * dtrace_dif_variable() uses this routine as a helper for various
3286 * builtin values such as 'execargs'.
3287 */
3288 static uintptr_t
dtrace_dif_varstrz(uintptr_t addr,size_t strsz,dtrace_state_t * state,dtrace_mstate_t * mstate)3289 dtrace_dif_varstrz(uintptr_t addr, size_t strsz, dtrace_state_t *state,
3290 dtrace_mstate_t *mstate)
3291 {
3292 char *p;
3293 size_t i;
3294 uintptr_t ret;
3295
3296 if (mstate->dtms_scratch_ptr + strsz >
3297 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3298 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3299 return (0);
3300 }
3301
3302 dtrace_bcopy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3303 strsz);
3304
3305 /* Replace sub-string termination characters with a space. */
3306 for (p = (char *) mstate->dtms_scratch_ptr, i = 0; i < strsz - 1;
3307 p++, i++)
3308 if (*p == '\0')
3309 *p = ' ';
3310
3311 ret = mstate->dtms_scratch_ptr;
3312 mstate->dtms_scratch_ptr += strsz;
3313 return (ret);
3314 }
3315
3316 /*
3317 * This function implements the DIF emulator's variable lookups. The emulator
3318 * passes a reserved variable identifier and optional built-in array index.
3319 */
3320 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3321 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3322 uint64_t ndx)
3323 {
3324 /*
3325 * If we're accessing one of the uncached arguments, we'll turn this
3326 * into a reference in the args array.
3327 */
3328 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3329 ndx = v - DIF_VAR_ARG0;
3330 v = DIF_VAR_ARGS;
3331 }
3332
3333 switch (v) {
3334 case DIF_VAR_ARGS:
3335 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3336 if (ndx >= sizeof (mstate->dtms_arg) /
3337 sizeof (mstate->dtms_arg[0])) {
3338 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3339 dtrace_provider_t *pv;
3340 uint64_t val;
3341
3342 pv = mstate->dtms_probe->dtpr_provider;
3343 if (pv->dtpv_pops.dtps_getargval != NULL)
3344 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3345 mstate->dtms_probe->dtpr_id,
3346 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3347 else
3348 val = dtrace_getarg(ndx, aframes);
3349
3350 /*
3351 * This is regrettably required to keep the compiler
3352 * from tail-optimizing the call to dtrace_getarg().
3353 * The condition always evaluates to true, but the
3354 * compiler has no way of figuring that out a priori.
3355 * (None of this would be necessary if the compiler
3356 * could be relied upon to _always_ tail-optimize
3357 * the call to dtrace_getarg() -- but it can't.)
3358 */
3359 if (mstate->dtms_probe != NULL)
3360 return (val);
3361
3362 ASSERT(0);
3363 }
3364
3365 return (mstate->dtms_arg[ndx]);
3366
3367 case DIF_VAR_REGS:
3368 case DIF_VAR_UREGS: {
3369 struct trapframe *tframe;
3370
3371 if (!dtrace_priv_proc(state))
3372 return (0);
3373
3374 if (v == DIF_VAR_REGS)
3375 tframe = curthread->t_dtrace_trapframe;
3376 else
3377 tframe = curthread->td_frame;
3378
3379 if (tframe == NULL) {
3380 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3381 cpu_core[curcpu].cpuc_dtrace_illval = 0;
3382 return (0);
3383 }
3384
3385 return (dtrace_getreg(tframe, ndx));
3386 }
3387
3388 case DIF_VAR_CURTHREAD:
3389 if (!dtrace_priv_proc(state))
3390 return (0);
3391 return ((uint64_t)(uintptr_t)curthread);
3392
3393 case DIF_VAR_TIMESTAMP:
3394 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3395 mstate->dtms_timestamp = dtrace_gethrtime();
3396 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3397 }
3398 return (mstate->dtms_timestamp);
3399
3400 case DIF_VAR_VTIMESTAMP:
3401 ASSERT(dtrace_vtime_references != 0);
3402 return (curthread->t_dtrace_vtime);
3403
3404 case DIF_VAR_WALLTIMESTAMP:
3405 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3406 mstate->dtms_walltimestamp = dtrace_gethrestime();
3407 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3408 }
3409 return (mstate->dtms_walltimestamp);
3410
3411 #ifdef illumos
3412 case DIF_VAR_IPL:
3413 if (!dtrace_priv_kernel(state))
3414 return (0);
3415 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3416 mstate->dtms_ipl = dtrace_getipl();
3417 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3418 }
3419 return (mstate->dtms_ipl);
3420 #endif
3421
3422 case DIF_VAR_EPID:
3423 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3424 return (mstate->dtms_epid);
3425
3426 case DIF_VAR_ID:
3427 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3428 return (mstate->dtms_probe->dtpr_id);
3429
3430 case DIF_VAR_STACKDEPTH:
3431 if (!dtrace_priv_kernel(state))
3432 return (0);
3433 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3434 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3435
3436 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3437 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3438 }
3439 return (mstate->dtms_stackdepth);
3440
3441 case DIF_VAR_USTACKDEPTH:
3442 if (!dtrace_priv_proc(state))
3443 return (0);
3444 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3445 /*
3446 * See comment in DIF_VAR_PID.
3447 */
3448 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3449 CPU_ON_INTR(CPU)) {
3450 mstate->dtms_ustackdepth = 0;
3451 } else {
3452 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3453 mstate->dtms_ustackdepth =
3454 dtrace_getustackdepth();
3455 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3456 }
3457 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3458 }
3459 return (mstate->dtms_ustackdepth);
3460
3461 case DIF_VAR_CALLER:
3462 if (!dtrace_priv_kernel(state))
3463 return (0);
3464 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3465 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3466
3467 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3468 /*
3469 * If this is an unanchored probe, we are
3470 * required to go through the slow path:
3471 * dtrace_caller() only guarantees correct
3472 * results for anchored probes.
3473 */
3474 pc_t caller[2] = {0, 0};
3475
3476 dtrace_getpcstack(caller, 2, aframes,
3477 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3478 mstate->dtms_caller = caller[1];
3479 } else if ((mstate->dtms_caller =
3480 dtrace_caller(aframes)) == -1) {
3481 /*
3482 * We have failed to do this the quick way;
3483 * we must resort to the slower approach of
3484 * calling dtrace_getpcstack().
3485 */
3486 pc_t caller = 0;
3487
3488 dtrace_getpcstack(&caller, 1, aframes, NULL);
3489 mstate->dtms_caller = caller;
3490 }
3491
3492 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3493 }
3494 return (mstate->dtms_caller);
3495
3496 case DIF_VAR_UCALLER:
3497 if (!dtrace_priv_proc(state))
3498 return (0);
3499
3500 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3501 uint64_t ustack[3];
3502
3503 /*
3504 * dtrace_getupcstack() fills in the first uint64_t
3505 * with the current PID. The second uint64_t will
3506 * be the program counter at user-level. The third
3507 * uint64_t will contain the caller, which is what
3508 * we're after.
3509 */
3510 ustack[2] = 0;
3511 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3512 dtrace_getupcstack(ustack, 3);
3513 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3514 mstate->dtms_ucaller = ustack[2];
3515 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3516 }
3517
3518 return (mstate->dtms_ucaller);
3519
3520 case DIF_VAR_PROBEPROV:
3521 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3522 return (dtrace_dif_varstr(
3523 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3524 state, mstate));
3525
3526 case DIF_VAR_PROBEMOD:
3527 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3528 return (dtrace_dif_varstr(
3529 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3530 state, mstate));
3531
3532 case DIF_VAR_PROBEFUNC:
3533 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3534 return (dtrace_dif_varstr(
3535 (uintptr_t)mstate->dtms_probe->dtpr_func,
3536 state, mstate));
3537
3538 case DIF_VAR_PROBENAME:
3539 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3540 return (dtrace_dif_varstr(
3541 (uintptr_t)mstate->dtms_probe->dtpr_name,
3542 state, mstate));
3543
3544 case DIF_VAR_PID:
3545 if (!dtrace_priv_proc(state))
3546 return (0);
3547
3548 #ifdef illumos
3549 /*
3550 * Note that we are assuming that an unanchored probe is
3551 * always due to a high-level interrupt. (And we're assuming
3552 * that there is only a single high level interrupt.)
3553 */
3554 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3555 return (pid0.pid_id);
3556
3557 /*
3558 * It is always safe to dereference one's own t_procp pointer:
3559 * it always points to a valid, allocated proc structure.
3560 * Further, it is always safe to dereference the p_pidp member
3561 * of one's own proc structure. (These are truisms becuase
3562 * threads and processes don't clean up their own state --
3563 * they leave that task to whomever reaps them.)
3564 */
3565 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3566 #else
3567 return ((uint64_t)curproc->p_pid);
3568 #endif
3569
3570 case DIF_VAR_PPID:
3571 if (!dtrace_priv_proc(state))
3572 return (0);
3573
3574 #ifdef illumos
3575 /*
3576 * See comment in DIF_VAR_PID.
3577 */
3578 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3579 return (pid0.pid_id);
3580
3581 /*
3582 * It is always safe to dereference one's own t_procp pointer:
3583 * it always points to a valid, allocated proc structure.
3584 * (This is true because threads don't clean up their own
3585 * state -- they leave that task to whomever reaps them.)
3586 */
3587 return ((uint64_t)curthread->t_procp->p_ppid);
3588 #else
3589 if (curproc->p_pid == proc0.p_pid)
3590 return (curproc->p_pid);
3591 else
3592 return (curproc->p_pptr->p_pid);
3593 #endif
3594
3595 case DIF_VAR_TID:
3596 #ifdef illumos
3597 /*
3598 * See comment in DIF_VAR_PID.
3599 */
3600 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3601 return (0);
3602 #endif
3603
3604 return ((uint64_t)curthread->t_tid);
3605
3606 case DIF_VAR_EXECARGS: {
3607 struct pargs *p_args = curthread->td_proc->p_args;
3608
3609 if (p_args == NULL)
3610 return(0);
3611
3612 return (dtrace_dif_varstrz(
3613 (uintptr_t) p_args->ar_args, p_args->ar_length, state, mstate));
3614 }
3615
3616 case DIF_VAR_EXECNAME:
3617 #ifdef illumos
3618 if (!dtrace_priv_proc(state))
3619 return (0);
3620
3621 /*
3622 * See comment in DIF_VAR_PID.
3623 */
3624 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3625 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3626
3627 /*
3628 * It is always safe to dereference one's own t_procp pointer:
3629 * it always points to a valid, allocated proc structure.
3630 * (This is true because threads don't clean up their own
3631 * state -- they leave that task to whomever reaps them.)
3632 */
3633 return (dtrace_dif_varstr(
3634 (uintptr_t)curthread->t_procp->p_user.u_comm,
3635 state, mstate));
3636 #else
3637 return (dtrace_dif_varstr(
3638 (uintptr_t) curthread->td_proc->p_comm, state, mstate));
3639 #endif
3640
3641 case DIF_VAR_ZONENAME:
3642 #ifdef illumos
3643 if (!dtrace_priv_proc(state))
3644 return (0);
3645
3646 /*
3647 * See comment in DIF_VAR_PID.
3648 */
3649 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3650 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3651
3652 /*
3653 * It is always safe to dereference one's own t_procp pointer:
3654 * it always points to a valid, allocated proc structure.
3655 * (This is true because threads don't clean up their own
3656 * state -- they leave that task to whomever reaps them.)
3657 */
3658 return (dtrace_dif_varstr(
3659 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3660 state, mstate));
3661 #elif defined(__FreeBSD__)
3662 /*
3663 * On FreeBSD, we introduce compatibility to zonename by falling through
3664 * into jailname.
3665 */
3666 case DIF_VAR_JAILNAME:
3667 if (!dtrace_priv_kernel(state))
3668 return (0);
3669
3670 return (dtrace_dif_varstr(
3671 (uintptr_t)curthread->td_ucred->cr_prison->pr_name,
3672 state, mstate));
3673
3674 case DIF_VAR_JID:
3675 if (!dtrace_priv_kernel(state))
3676 return (0);
3677
3678 return ((uint64_t)curthread->td_ucred->cr_prison->pr_id);
3679 #else
3680 return (0);
3681 #endif
3682
3683 case DIF_VAR_UID:
3684 if (!dtrace_priv_proc(state))
3685 return (0);
3686
3687 #ifdef illumos
3688 /*
3689 * See comment in DIF_VAR_PID.
3690 */
3691 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3692 return ((uint64_t)p0.p_cred->cr_uid);
3693
3694 /*
3695 * It is always safe to dereference one's own t_procp pointer:
3696 * it always points to a valid, allocated proc structure.
3697 * (This is true because threads don't clean up their own
3698 * state -- they leave that task to whomever reaps them.)
3699 *
3700 * Additionally, it is safe to dereference one's own process
3701 * credential, since this is never NULL after process birth.
3702 */
3703 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3704 #else
3705 return ((uint64_t)curthread->td_ucred->cr_uid);
3706 #endif
3707
3708 case DIF_VAR_GID:
3709 if (!dtrace_priv_proc(state))
3710 return (0);
3711
3712 #ifdef illumos
3713 /*
3714 * See comment in DIF_VAR_PID.
3715 */
3716 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3717 return ((uint64_t)p0.p_cred->cr_gid);
3718
3719 /*
3720 * It is always safe to dereference one's own t_procp pointer:
3721 * it always points to a valid, allocated proc structure.
3722 * (This is true because threads don't clean up their own
3723 * state -- they leave that task to whomever reaps them.)
3724 *
3725 * Additionally, it is safe to dereference one's own process
3726 * credential, since this is never NULL after process birth.
3727 */
3728 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3729 #else
3730 return ((uint64_t)curthread->td_ucred->cr_gid);
3731 #endif
3732
3733 case DIF_VAR_ERRNO: {
3734 #ifdef illumos
3735 klwp_t *lwp;
3736 if (!dtrace_priv_proc(state))
3737 return (0);
3738
3739 /*
3740 * See comment in DIF_VAR_PID.
3741 */
3742 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3743 return (0);
3744
3745 /*
3746 * It is always safe to dereference one's own t_lwp pointer in
3747 * the event that this pointer is non-NULL. (This is true
3748 * because threads and lwps don't clean up their own state --
3749 * they leave that task to whomever reaps them.)
3750 */
3751 if ((lwp = curthread->t_lwp) == NULL)
3752 return (0);
3753
3754 return ((uint64_t)lwp->lwp_errno);
3755 #else
3756 return (curthread->td_errno);
3757 #endif
3758 }
3759 #ifndef illumos
3760 case DIF_VAR_CPU: {
3761 return curcpu;
3762 }
3763 #endif
3764 default:
3765 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3766 return (0);
3767 }
3768 }
3769
3770
3771 typedef enum dtrace_json_state {
3772 DTRACE_JSON_REST = 1,
3773 DTRACE_JSON_OBJECT,
3774 DTRACE_JSON_STRING,
3775 DTRACE_JSON_STRING_ESCAPE,
3776 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3777 DTRACE_JSON_COLON,
3778 DTRACE_JSON_COMMA,
3779 DTRACE_JSON_VALUE,
3780 DTRACE_JSON_IDENTIFIER,
3781 DTRACE_JSON_NUMBER,
3782 DTRACE_JSON_NUMBER_FRAC,
3783 DTRACE_JSON_NUMBER_EXP,
3784 DTRACE_JSON_COLLECT_OBJECT
3785 } dtrace_json_state_t;
3786
3787 /*
3788 * This function possesses just enough knowledge about JSON to extract a single
3789 * value from a JSON string and store it in the scratch buffer. It is able
3790 * to extract nested object values, and members of arrays by index.
3791 *
3792 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3793 * be looked up as we descend into the object tree. e.g.
3794 *
3795 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3796 * with nelems = 5.
3797 *
3798 * The run time of this function must be bounded above by strsize to limit the
3799 * amount of work done in probe context. As such, it is implemented as a
3800 * simple state machine, reading one character at a time using safe loads
3801 * until we find the requested element, hit a parsing error or run off the
3802 * end of the object or string.
3803 *
3804 * As there is no way for a subroutine to return an error without interrupting
3805 * clause execution, we simply return NULL in the event of a missing key or any
3806 * other error condition. Each NULL return in this function is commented with
3807 * the error condition it represents -- parsing or otherwise.
3808 *
3809 * The set of states for the state machine closely matches the JSON
3810 * specification (http://json.org/). Briefly:
3811 *
3812 * DTRACE_JSON_REST:
3813 * Skip whitespace until we find either a top-level Object, moving
3814 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3815 *
3816 * DTRACE_JSON_OBJECT:
3817 * Locate the next key String in an Object. Sets a flag to denote
3818 * the next String as a key string and moves to DTRACE_JSON_STRING.
3819 *
3820 * DTRACE_JSON_COLON:
3821 * Skip whitespace until we find the colon that separates key Strings
3822 * from their values. Once found, move to DTRACE_JSON_VALUE.
3823 *
3824 * DTRACE_JSON_VALUE:
3825 * Detects the type of the next value (String, Number, Identifier, Object
3826 * or Array) and routes to the states that process that type. Here we also
3827 * deal with the element selector list if we are requested to traverse down
3828 * into the object tree.
3829 *
3830 * DTRACE_JSON_COMMA:
3831 * Skip whitespace until we find the comma that separates key-value pairs
3832 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3833 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3834 * states return to this state at the end of their value, unless otherwise
3835 * noted.
3836 *
3837 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3838 * Processes a Number literal from the JSON, including any exponent
3839 * component that may be present. Numbers are returned as strings, which
3840 * may be passed to strtoll() if an integer is required.
3841 *
3842 * DTRACE_JSON_IDENTIFIER:
3843 * Processes a "true", "false" or "null" literal in the JSON.
3844 *
3845 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3846 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3847 * Processes a String literal from the JSON, whether the String denotes
3848 * a key, a value or part of a larger Object. Handles all escape sequences
3849 * present in the specification, including four-digit unicode characters,
3850 * but merely includes the escape sequence without converting it to the
3851 * actual escaped character. If the String is flagged as a key, we
3852 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3853 *
3854 * DTRACE_JSON_COLLECT_OBJECT:
3855 * This state collects an entire Object (or Array), correctly handling
3856 * embedded strings. If the full element selector list matches this nested
3857 * object, we return the Object in full as a string. If not, we use this
3858 * state to skip to the next value at this level and continue processing.
3859 *
3860 * NOTE: This function uses various macros from strtolctype.h to manipulate
3861 * digit values, etc -- these have all been checked to ensure they make
3862 * no additional function calls.
3863 */
3864 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3865 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3866 char *dest)
3867 {
3868 dtrace_json_state_t state = DTRACE_JSON_REST;
3869 int64_t array_elem = INT64_MIN;
3870 int64_t array_pos = 0;
3871 uint8_t escape_unicount = 0;
3872 boolean_t string_is_key = B_FALSE;
3873 boolean_t collect_object = B_FALSE;
3874 boolean_t found_key = B_FALSE;
3875 boolean_t in_array = B_FALSE;
3876 uint32_t braces = 0, brackets = 0;
3877 char *elem = elemlist;
3878 char *dd = dest;
3879 uintptr_t cur;
3880
3881 for (cur = json; cur < json + size; cur++) {
3882 char cc = dtrace_load8(cur);
3883 if (cc == '\0')
3884 return (NULL);
3885
3886 switch (state) {
3887 case DTRACE_JSON_REST:
3888 if (isspace(cc))
3889 break;
3890
3891 if (cc == '{') {
3892 state = DTRACE_JSON_OBJECT;
3893 break;
3894 }
3895
3896 if (cc == '[') {
3897 in_array = B_TRUE;
3898 array_pos = 0;
3899 array_elem = dtrace_strtoll(elem, 10, size);
3900 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3901 state = DTRACE_JSON_VALUE;
3902 break;
3903 }
3904
3905 /*
3906 * ERROR: expected to find a top-level object or array.
3907 */
3908 return (NULL);
3909 case DTRACE_JSON_OBJECT:
3910 if (isspace(cc))
3911 break;
3912
3913 if (cc == '"') {
3914 state = DTRACE_JSON_STRING;
3915 string_is_key = B_TRUE;
3916 break;
3917 }
3918
3919 /*
3920 * ERROR: either the object did not start with a key
3921 * string, or we've run off the end of the object
3922 * without finding the requested key.
3923 */
3924 return (NULL);
3925 case DTRACE_JSON_STRING:
3926 if (cc == '\\') {
3927 *dd++ = '\\';
3928 state = DTRACE_JSON_STRING_ESCAPE;
3929 break;
3930 }
3931
3932 if (cc == '"') {
3933 if (collect_object) {
3934 /*
3935 * We don't reset the dest here, as
3936 * the string is part of a larger
3937 * object being collected.
3938 */
3939 *dd++ = cc;
3940 collect_object = B_FALSE;
3941 state = DTRACE_JSON_COLLECT_OBJECT;
3942 break;
3943 }
3944 *dd = '\0';
3945 dd = dest; /* reset string buffer */
3946 if (string_is_key) {
3947 if (dtrace_strncmp(dest, elem,
3948 size) == 0)
3949 found_key = B_TRUE;
3950 } else if (found_key) {
3951 if (nelems > 1) {
3952 /*
3953 * We expected an object, not
3954 * this string.
3955 */
3956 return (NULL);
3957 }
3958 return (dest);
3959 }
3960 state = string_is_key ? DTRACE_JSON_COLON :
3961 DTRACE_JSON_COMMA;
3962 string_is_key = B_FALSE;
3963 break;
3964 }
3965
3966 *dd++ = cc;
3967 break;
3968 case DTRACE_JSON_STRING_ESCAPE:
3969 *dd++ = cc;
3970 if (cc == 'u') {
3971 escape_unicount = 0;
3972 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3973 } else {
3974 state = DTRACE_JSON_STRING;
3975 }
3976 break;
3977 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3978 if (!isxdigit(cc)) {
3979 /*
3980 * ERROR: invalid unicode escape, expected
3981 * four valid hexidecimal digits.
3982 */
3983 return (NULL);
3984 }
3985
3986 *dd++ = cc;
3987 if (++escape_unicount == 4)
3988 state = DTRACE_JSON_STRING;
3989 break;
3990 case DTRACE_JSON_COLON:
3991 if (isspace(cc))
3992 break;
3993
3994 if (cc == ':') {
3995 state = DTRACE_JSON_VALUE;
3996 break;
3997 }
3998
3999 /*
4000 * ERROR: expected a colon.
4001 */
4002 return (NULL);
4003 case DTRACE_JSON_COMMA:
4004 if (isspace(cc))
4005 break;
4006
4007 if (cc == ',') {
4008 if (in_array) {
4009 state = DTRACE_JSON_VALUE;
4010 if (++array_pos == array_elem)
4011 found_key = B_TRUE;
4012 } else {
4013 state = DTRACE_JSON_OBJECT;
4014 }
4015 break;
4016 }
4017
4018 /*
4019 * ERROR: either we hit an unexpected character, or
4020 * we reached the end of the object or array without
4021 * finding the requested key.
4022 */
4023 return (NULL);
4024 case DTRACE_JSON_IDENTIFIER:
4025 if (islower(cc)) {
4026 *dd++ = cc;
4027 break;
4028 }
4029
4030 *dd = '\0';
4031 dd = dest; /* reset string buffer */
4032
4033 if (dtrace_strncmp(dest, "true", 5) == 0 ||
4034 dtrace_strncmp(dest, "false", 6) == 0 ||
4035 dtrace_strncmp(dest, "null", 5) == 0) {
4036 if (found_key) {
4037 if (nelems > 1) {
4038 /*
4039 * ERROR: We expected an object,
4040 * not this identifier.
4041 */
4042 return (NULL);
4043 }
4044 return (dest);
4045 } else {
4046 cur--;
4047 state = DTRACE_JSON_COMMA;
4048 break;
4049 }
4050 }
4051
4052 /*
4053 * ERROR: we did not recognise the identifier as one
4054 * of those in the JSON specification.
4055 */
4056 return (NULL);
4057 case DTRACE_JSON_NUMBER:
4058 if (cc == '.') {
4059 *dd++ = cc;
4060 state = DTRACE_JSON_NUMBER_FRAC;
4061 break;
4062 }
4063
4064 if (cc == 'x' || cc == 'X') {
4065 /*
4066 * ERROR: specification explicitly excludes
4067 * hexidecimal or octal numbers.
4068 */
4069 return (NULL);
4070 }
4071
4072 /* FALLTHRU */
4073 case DTRACE_JSON_NUMBER_FRAC:
4074 if (cc == 'e' || cc == 'E') {
4075 *dd++ = cc;
4076 state = DTRACE_JSON_NUMBER_EXP;
4077 break;
4078 }
4079
4080 if (cc == '+' || cc == '-') {
4081 /*
4082 * ERROR: expect sign as part of exponent only.
4083 */
4084 return (NULL);
4085 }
4086 /* FALLTHRU */
4087 case DTRACE_JSON_NUMBER_EXP:
4088 if (isdigit(cc) || cc == '+' || cc == '-') {
4089 *dd++ = cc;
4090 break;
4091 }
4092
4093 *dd = '\0';
4094 dd = dest; /* reset string buffer */
4095 if (found_key) {
4096 if (nelems > 1) {
4097 /*
4098 * ERROR: We expected an object, not
4099 * this number.
4100 */
4101 return (NULL);
4102 }
4103 return (dest);
4104 }
4105
4106 cur--;
4107 state = DTRACE_JSON_COMMA;
4108 break;
4109 case DTRACE_JSON_VALUE:
4110 if (isspace(cc))
4111 break;
4112
4113 if (cc == '{' || cc == '[') {
4114 if (nelems > 1 && found_key) {
4115 in_array = cc == '[' ? B_TRUE : B_FALSE;
4116 /*
4117 * If our element selector directs us
4118 * to descend into this nested object,
4119 * then move to the next selector
4120 * element in the list and restart the
4121 * state machine.
4122 */
4123 while (*elem != '\0')
4124 elem++;
4125 elem++; /* skip the inter-element NUL */
4126 nelems--;
4127 dd = dest;
4128 if (in_array) {
4129 state = DTRACE_JSON_VALUE;
4130 array_pos = 0;
4131 array_elem = dtrace_strtoll(
4132 elem, 10, size);
4133 found_key = array_elem == 0 ?
4134 B_TRUE : B_FALSE;
4135 } else {
4136 found_key = B_FALSE;
4137 state = DTRACE_JSON_OBJECT;
4138 }
4139 break;
4140 }
4141
4142 /*
4143 * Otherwise, we wish to either skip this
4144 * nested object or return it in full.
4145 */
4146 if (cc == '[')
4147 brackets = 1;
4148 else
4149 braces = 1;
4150 *dd++ = cc;
4151 state = DTRACE_JSON_COLLECT_OBJECT;
4152 break;
4153 }
4154
4155 if (cc == '"') {
4156 state = DTRACE_JSON_STRING;
4157 break;
4158 }
4159
4160 if (islower(cc)) {
4161 /*
4162 * Here we deal with true, false and null.
4163 */
4164 *dd++ = cc;
4165 state = DTRACE_JSON_IDENTIFIER;
4166 break;
4167 }
4168
4169 if (cc == '-' || isdigit(cc)) {
4170 *dd++ = cc;
4171 state = DTRACE_JSON_NUMBER;
4172 break;
4173 }
4174
4175 /*
4176 * ERROR: unexpected character at start of value.
4177 */
4178 return (NULL);
4179 case DTRACE_JSON_COLLECT_OBJECT:
4180 if (cc == '\0')
4181 /*
4182 * ERROR: unexpected end of input.
4183 */
4184 return (NULL);
4185
4186 *dd++ = cc;
4187 if (cc == '"') {
4188 collect_object = B_TRUE;
4189 state = DTRACE_JSON_STRING;
4190 break;
4191 }
4192
4193 if (cc == ']') {
4194 if (brackets-- == 0) {
4195 /*
4196 * ERROR: unbalanced brackets.
4197 */
4198 return (NULL);
4199 }
4200 } else if (cc == '}') {
4201 if (braces-- == 0) {
4202 /*
4203 * ERROR: unbalanced braces.
4204 */
4205 return (NULL);
4206 }
4207 } else if (cc == '{') {
4208 braces++;
4209 } else if (cc == '[') {
4210 brackets++;
4211 }
4212
4213 if (brackets == 0 && braces == 0) {
4214 if (found_key) {
4215 *dd = '\0';
4216 return (dest);
4217 }
4218 dd = dest; /* reset string buffer */
4219 state = DTRACE_JSON_COMMA;
4220 }
4221 break;
4222 }
4223 }
4224 return (NULL);
4225 }
4226
4227 /*
4228 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
4229 * Notice that we don't bother validating the proper number of arguments or
4230 * their types in the tuple stack. This isn't needed because all argument
4231 * interpretation is safe because of our load safety -- the worst that can
4232 * happen is that a bogus program can obtain bogus results.
4233 */
4234 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)4235 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
4236 dtrace_key_t *tupregs, int nargs,
4237 dtrace_mstate_t *mstate, dtrace_state_t *state)
4238 {
4239 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
4240 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
4241 dtrace_vstate_t *vstate = &state->dts_vstate;
4242
4243 #ifdef illumos
4244 union {
4245 mutex_impl_t mi;
4246 uint64_t mx;
4247 } m;
4248
4249 union {
4250 krwlock_t ri;
4251 uintptr_t rw;
4252 } r;
4253 #else
4254 struct thread *lowner;
4255 union {
4256 struct lock_object *li;
4257 uintptr_t lx;
4258 } l;
4259 #endif
4260
4261 switch (subr) {
4262 case DIF_SUBR_RAND:
4263 regs[rd] = dtrace_xoroshiro128_plus_next(
4264 state->dts_rstate[curcpu]);
4265 break;
4266
4267 #ifdef illumos
4268 case DIF_SUBR_MUTEX_OWNED:
4269 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4270 mstate, vstate)) {
4271 regs[rd] = 0;
4272 break;
4273 }
4274
4275 m.mx = dtrace_load64(tupregs[0].dttk_value);
4276 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
4277 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
4278 else
4279 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
4280 break;
4281
4282 case DIF_SUBR_MUTEX_OWNER:
4283 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4284 mstate, vstate)) {
4285 regs[rd] = 0;
4286 break;
4287 }
4288
4289 m.mx = dtrace_load64(tupregs[0].dttk_value);
4290 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
4291 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
4292 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
4293 else
4294 regs[rd] = 0;
4295 break;
4296
4297 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4298 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4299 mstate, vstate)) {
4300 regs[rd] = 0;
4301 break;
4302 }
4303
4304 m.mx = dtrace_load64(tupregs[0].dttk_value);
4305 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
4306 break;
4307
4308 case DIF_SUBR_MUTEX_TYPE_SPIN:
4309 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
4310 mstate, vstate)) {
4311 regs[rd] = 0;
4312 break;
4313 }
4314
4315 m.mx = dtrace_load64(tupregs[0].dttk_value);
4316 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
4317 break;
4318
4319 case DIF_SUBR_RW_READ_HELD: {
4320 uintptr_t tmp;
4321
4322 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4323 mstate, vstate)) {
4324 regs[rd] = 0;
4325 break;
4326 }
4327
4328 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4329 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
4330 break;
4331 }
4332
4333 case DIF_SUBR_RW_WRITE_HELD:
4334 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4335 mstate, vstate)) {
4336 regs[rd] = 0;
4337 break;
4338 }
4339
4340 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4341 regs[rd] = _RW_WRITE_HELD(&r.ri);
4342 break;
4343
4344 case DIF_SUBR_RW_ISWRITER:
4345 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
4346 mstate, vstate)) {
4347 regs[rd] = 0;
4348 break;
4349 }
4350
4351 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4352 regs[rd] = _RW_ISWRITER(&r.ri);
4353 break;
4354
4355 #else /* !illumos */
4356 case DIF_SUBR_MUTEX_OWNED:
4357 if (!dtrace_canload(tupregs[0].dttk_value,
4358 sizeof (struct lock_object), mstate, vstate)) {
4359 regs[rd] = 0;
4360 break;
4361 }
4362 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4363 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4364 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4365 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4366 break;
4367
4368 case DIF_SUBR_MUTEX_OWNER:
4369 if (!dtrace_canload(tupregs[0].dttk_value,
4370 sizeof (struct lock_object), mstate, vstate)) {
4371 regs[rd] = 0;
4372 break;
4373 }
4374 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4375 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4376 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4377 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4378 regs[rd] = (uintptr_t)lowner;
4379 break;
4380
4381 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
4382 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4383 mstate, vstate)) {
4384 regs[rd] = 0;
4385 break;
4386 }
4387 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4388 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4389 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SLEEPLOCK) != 0;
4390 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4391 break;
4392
4393 case DIF_SUBR_MUTEX_TYPE_SPIN:
4394 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (struct mtx),
4395 mstate, vstate)) {
4396 regs[rd] = 0;
4397 break;
4398 }
4399 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4400 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4401 regs[rd] = (LOCK_CLASS(l.li)->lc_flags & LC_SPINLOCK) != 0;
4402 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4403 break;
4404
4405 case DIF_SUBR_RW_READ_HELD:
4406 case DIF_SUBR_SX_SHARED_HELD:
4407 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4408 mstate, vstate)) {
4409 regs[rd] = 0;
4410 break;
4411 }
4412 l.lx = dtrace_loadptr((uintptr_t)&tupregs[0].dttk_value);
4413 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4414 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4415 lowner == NULL;
4416 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4417 break;
4418
4419 case DIF_SUBR_RW_WRITE_HELD:
4420 case DIF_SUBR_SX_EXCLUSIVE_HELD:
4421 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4422 mstate, vstate)) {
4423 regs[rd] = 0;
4424 break;
4425 }
4426 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4427 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4428 regs[rd] = LOCK_CLASS(l.li)->lc_owner(l.li, &lowner) &&
4429 lowner != NULL;
4430 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4431 break;
4432
4433 case DIF_SUBR_RW_ISWRITER:
4434 case DIF_SUBR_SX_ISEXCLUSIVE:
4435 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
4436 mstate, vstate)) {
4437 regs[rd] = 0;
4438 break;
4439 }
4440 l.lx = dtrace_loadptr(tupregs[0].dttk_value);
4441 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4442 LOCK_CLASS(l.li)->lc_owner(l.li, &lowner);
4443 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4444 regs[rd] = (lowner == curthread);
4445 break;
4446 #endif /* illumos */
4447
4448 case DIF_SUBR_BCOPY: {
4449 /*
4450 * We need to be sure that the destination is in the scratch
4451 * region -- no other region is allowed.
4452 */
4453 uintptr_t src = tupregs[0].dttk_value;
4454 uintptr_t dest = tupregs[1].dttk_value;
4455 size_t size = tupregs[2].dttk_value;
4456
4457 if (!dtrace_inscratch(dest, size, mstate)) {
4458 *flags |= CPU_DTRACE_BADADDR;
4459 *illval = regs[rd];
4460 break;
4461 }
4462
4463 if (!dtrace_canload(src, size, mstate, vstate)) {
4464 regs[rd] = 0;
4465 break;
4466 }
4467
4468 dtrace_bcopy((void *)src, (void *)dest, size);
4469 break;
4470 }
4471
4472 case DIF_SUBR_ALLOCA:
4473 case DIF_SUBR_COPYIN: {
4474 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4475 uint64_t size =
4476 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4477 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4478
4479 /*
4480 * This action doesn't require any credential checks since
4481 * probes will not activate in user contexts to which the
4482 * enabling user does not have permissions.
4483 */
4484
4485 /*
4486 * Rounding up the user allocation size could have overflowed
4487 * a large, bogus allocation (like -1ULL) to 0.
4488 */
4489 if (scratch_size < size ||
4490 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4491 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4492 regs[rd] = 0;
4493 break;
4494 }
4495
4496 if (subr == DIF_SUBR_COPYIN) {
4497 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4498 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4499 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4500 }
4501
4502 mstate->dtms_scratch_ptr += scratch_size;
4503 regs[rd] = dest;
4504 break;
4505 }
4506
4507 case DIF_SUBR_COPYINTO: {
4508 uint64_t size = tupregs[1].dttk_value;
4509 uintptr_t dest = tupregs[2].dttk_value;
4510
4511 /*
4512 * This action doesn't require any credential checks since
4513 * probes will not activate in user contexts to which the
4514 * enabling user does not have permissions.
4515 */
4516 if (!dtrace_inscratch(dest, size, mstate)) {
4517 *flags |= CPU_DTRACE_BADADDR;
4518 *illval = regs[rd];
4519 break;
4520 }
4521
4522 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4523 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4524 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4525 break;
4526 }
4527
4528 case DIF_SUBR_COPYINSTR: {
4529 uintptr_t dest = mstate->dtms_scratch_ptr;
4530 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4531
4532 if (nargs > 1 && tupregs[1].dttk_value < size)
4533 size = tupregs[1].dttk_value + 1;
4534
4535 /*
4536 * This action doesn't require any credential checks since
4537 * probes will not activate in user contexts to which the
4538 * enabling user does not have permissions.
4539 */
4540 if (!DTRACE_INSCRATCH(mstate, size)) {
4541 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4542 regs[rd] = 0;
4543 break;
4544 }
4545
4546 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4547 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4548 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4549
4550 ((char *)dest)[size - 1] = '\0';
4551 mstate->dtms_scratch_ptr += size;
4552 regs[rd] = dest;
4553 break;
4554 }
4555
4556 #ifdef illumos
4557 case DIF_SUBR_MSGSIZE:
4558 case DIF_SUBR_MSGDSIZE: {
4559 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4560 uintptr_t wptr, rptr;
4561 size_t count = 0;
4562 int cont = 0;
4563
4564 while (baddr != 0 && !(*flags & CPU_DTRACE_FAULT)) {
4565
4566 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4567 vstate)) {
4568 regs[rd] = 0;
4569 break;
4570 }
4571
4572 wptr = dtrace_loadptr(baddr +
4573 offsetof(mblk_t, b_wptr));
4574
4575 rptr = dtrace_loadptr(baddr +
4576 offsetof(mblk_t, b_rptr));
4577
4578 if (wptr < rptr) {
4579 *flags |= CPU_DTRACE_BADADDR;
4580 *illval = tupregs[0].dttk_value;
4581 break;
4582 }
4583
4584 daddr = dtrace_loadptr(baddr +
4585 offsetof(mblk_t, b_datap));
4586
4587 baddr = dtrace_loadptr(baddr +
4588 offsetof(mblk_t, b_cont));
4589
4590 /*
4591 * We want to prevent against denial-of-service here,
4592 * so we're only going to search the list for
4593 * dtrace_msgdsize_max mblks.
4594 */
4595 if (cont++ > dtrace_msgdsize_max) {
4596 *flags |= CPU_DTRACE_ILLOP;
4597 break;
4598 }
4599
4600 if (subr == DIF_SUBR_MSGDSIZE) {
4601 if (dtrace_load8(daddr +
4602 offsetof(dblk_t, db_type)) != M_DATA)
4603 continue;
4604 }
4605
4606 count += wptr - rptr;
4607 }
4608
4609 if (!(*flags & CPU_DTRACE_FAULT))
4610 regs[rd] = count;
4611
4612 break;
4613 }
4614 #endif
4615
4616 case DIF_SUBR_PROGENYOF: {
4617 pid_t pid = tupregs[0].dttk_value;
4618 proc_t *p;
4619 int rval = 0;
4620
4621 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4622
4623 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4624 #ifdef illumos
4625 if (p->p_pidp->pid_id == pid) {
4626 #else
4627 if (p->p_pid == pid) {
4628 #endif
4629 rval = 1;
4630 break;
4631 }
4632 }
4633
4634 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4635
4636 regs[rd] = rval;
4637 break;
4638 }
4639
4640 case DIF_SUBR_SPECULATION:
4641 regs[rd] = dtrace_speculation(state);
4642 break;
4643
4644 case DIF_SUBR_COPYOUT: {
4645 uintptr_t kaddr = tupregs[0].dttk_value;
4646 uintptr_t uaddr = tupregs[1].dttk_value;
4647 uint64_t size = tupregs[2].dttk_value;
4648
4649 if (!dtrace_destructive_disallow &&
4650 dtrace_priv_proc_control(state) &&
4651 !dtrace_istoxic(kaddr, size) &&
4652 dtrace_canload(kaddr, size, mstate, vstate)) {
4653 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4654 dtrace_copyout(kaddr, uaddr, size, flags);
4655 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4656 }
4657 break;
4658 }
4659
4660 case DIF_SUBR_COPYOUTSTR: {
4661 uintptr_t kaddr = tupregs[0].dttk_value;
4662 uintptr_t uaddr = tupregs[1].dttk_value;
4663 uint64_t size = tupregs[2].dttk_value;
4664 size_t lim;
4665
4666 if (!dtrace_destructive_disallow &&
4667 dtrace_priv_proc_control(state) &&
4668 !dtrace_istoxic(kaddr, size) &&
4669 dtrace_strcanload(kaddr, size, &lim, mstate, vstate)) {
4670 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4671 dtrace_copyoutstr(kaddr, uaddr, lim, flags);
4672 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4673 }
4674 break;
4675 }
4676
4677 case DIF_SUBR_STRLEN: {
4678 size_t size = state->dts_options[DTRACEOPT_STRSIZE];
4679 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4680 size_t lim;
4681
4682 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4683 regs[rd] = 0;
4684 break;
4685 }
4686
4687 regs[rd] = dtrace_strlen((char *)addr, lim);
4688 break;
4689 }
4690
4691 case DIF_SUBR_STRCHR:
4692 case DIF_SUBR_STRRCHR: {
4693 /*
4694 * We're going to iterate over the string looking for the
4695 * specified character. We will iterate until we have reached
4696 * the string length or we have found the character. If this
4697 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4698 * of the specified character instead of the first.
4699 */
4700 uintptr_t addr = tupregs[0].dttk_value;
4701 uintptr_t addr_limit;
4702 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4703 size_t lim;
4704 char c, target = (char)tupregs[1].dttk_value;
4705
4706 if (!dtrace_strcanload(addr, size, &lim, mstate, vstate)) {
4707 regs[rd] = 0;
4708 break;
4709 }
4710 addr_limit = addr + lim;
4711
4712 for (regs[rd] = 0; addr < addr_limit; addr++) {
4713 if ((c = dtrace_load8(addr)) == target) {
4714 regs[rd] = addr;
4715
4716 if (subr == DIF_SUBR_STRCHR)
4717 break;
4718 }
4719
4720 if (c == '\0')
4721 break;
4722 }
4723 break;
4724 }
4725
4726 case DIF_SUBR_STRSTR:
4727 case DIF_SUBR_INDEX:
4728 case DIF_SUBR_RINDEX: {
4729 /*
4730 * We're going to iterate over the string looking for the
4731 * specified string. We will iterate until we have reached
4732 * the string length or we have found the string. (Yes, this
4733 * is done in the most naive way possible -- but considering
4734 * that the string we're searching for is likely to be
4735 * relatively short, the complexity of Rabin-Karp or similar
4736 * hardly seems merited.)
4737 */
4738 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4739 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4740 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4741 size_t len = dtrace_strlen(addr, size);
4742 size_t sublen = dtrace_strlen(substr, size);
4743 char *limit = addr + len, *orig = addr;
4744 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4745 int inc = 1;
4746
4747 regs[rd] = notfound;
4748
4749 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4750 regs[rd] = 0;
4751 break;
4752 }
4753
4754 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4755 vstate)) {
4756 regs[rd] = 0;
4757 break;
4758 }
4759
4760 /*
4761 * strstr() and index()/rindex() have similar semantics if
4762 * both strings are the empty string: strstr() returns a
4763 * pointer to the (empty) string, and index() and rindex()
4764 * both return index 0 (regardless of any position argument).
4765 */
4766 if (sublen == 0 && len == 0) {
4767 if (subr == DIF_SUBR_STRSTR)
4768 regs[rd] = (uintptr_t)addr;
4769 else
4770 regs[rd] = 0;
4771 break;
4772 }
4773
4774 if (subr != DIF_SUBR_STRSTR) {
4775 if (subr == DIF_SUBR_RINDEX) {
4776 limit = orig - 1;
4777 addr += len;
4778 inc = -1;
4779 }
4780
4781 /*
4782 * Both index() and rindex() take an optional position
4783 * argument that denotes the starting position.
4784 */
4785 if (nargs == 3) {
4786 int64_t pos = (int64_t)tupregs[2].dttk_value;
4787
4788 /*
4789 * If the position argument to index() is
4790 * negative, Perl implicitly clamps it at
4791 * zero. This semantic is a little surprising
4792 * given the special meaning of negative
4793 * positions to similar Perl functions like
4794 * substr(), but it appears to reflect a
4795 * notion that index() can start from a
4796 * negative index and increment its way up to
4797 * the string. Given this notion, Perl's
4798 * rindex() is at least self-consistent in
4799 * that it implicitly clamps positions greater
4800 * than the string length to be the string
4801 * length. Where Perl completely loses
4802 * coherence, however, is when the specified
4803 * substring is the empty string (""). In
4804 * this case, even if the position is
4805 * negative, rindex() returns 0 -- and even if
4806 * the position is greater than the length,
4807 * index() returns the string length. These
4808 * semantics violate the notion that index()
4809 * should never return a value less than the
4810 * specified position and that rindex() should
4811 * never return a value greater than the
4812 * specified position. (One assumes that
4813 * these semantics are artifacts of Perl's
4814 * implementation and not the results of
4815 * deliberate design -- it beggars belief that
4816 * even Larry Wall could desire such oddness.)
4817 * While in the abstract one would wish for
4818 * consistent position semantics across
4819 * substr(), index() and rindex() -- or at the
4820 * very least self-consistent position
4821 * semantics for index() and rindex() -- we
4822 * instead opt to keep with the extant Perl
4823 * semantics, in all their broken glory. (Do
4824 * we have more desire to maintain Perl's
4825 * semantics than Perl does? Probably.)
4826 */
4827 if (subr == DIF_SUBR_RINDEX) {
4828 if (pos < 0) {
4829 if (sublen == 0)
4830 regs[rd] = 0;
4831 break;
4832 }
4833
4834 if (pos > len)
4835 pos = len;
4836 } else {
4837 if (pos < 0)
4838 pos = 0;
4839
4840 if (pos >= len) {
4841 if (sublen == 0)
4842 regs[rd] = len;
4843 break;
4844 }
4845 }
4846
4847 addr = orig + pos;
4848 }
4849 }
4850
4851 for (regs[rd] = notfound; addr != limit; addr += inc) {
4852 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4853 if (subr != DIF_SUBR_STRSTR) {
4854 /*
4855 * As D index() and rindex() are
4856 * modeled on Perl (and not on awk),
4857 * we return a zero-based (and not a
4858 * one-based) index. (For you Perl
4859 * weenies: no, we're not going to add
4860 * $[ -- and shouldn't you be at a con
4861 * or something?)
4862 */
4863 regs[rd] = (uintptr_t)(addr - orig);
4864 break;
4865 }
4866
4867 ASSERT(subr == DIF_SUBR_STRSTR);
4868 regs[rd] = (uintptr_t)addr;
4869 break;
4870 }
4871 }
4872
4873 break;
4874 }
4875
4876 case DIF_SUBR_STRTOK: {
4877 uintptr_t addr = tupregs[0].dttk_value;
4878 uintptr_t tokaddr = tupregs[1].dttk_value;
4879 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4880 uintptr_t limit, toklimit;
4881 size_t clim;
4882 uint8_t c = 0, tokmap[32]; /* 256 / 8 */
4883 char *dest = (char *)mstate->dtms_scratch_ptr;
4884 int i;
4885
4886 /*
4887 * Check both the token buffer and (later) the input buffer,
4888 * since both could be non-scratch addresses.
4889 */
4890 if (!dtrace_strcanload(tokaddr, size, &clim, mstate, vstate)) {
4891 regs[rd] = 0;
4892 break;
4893 }
4894 toklimit = tokaddr + clim;
4895
4896 if (!DTRACE_INSCRATCH(mstate, size)) {
4897 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4898 regs[rd] = 0;
4899 break;
4900 }
4901
4902 if (addr == 0) {
4903 /*
4904 * If the address specified is NULL, we use our saved
4905 * strtok pointer from the mstate. Note that this
4906 * means that the saved strtok pointer is _only_
4907 * valid within multiple enablings of the same probe --
4908 * it behaves like an implicit clause-local variable.
4909 */
4910 addr = mstate->dtms_strtok;
4911 limit = mstate->dtms_strtok_limit;
4912 } else {
4913 /*
4914 * If the user-specified address is non-NULL we must
4915 * access check it. This is the only time we have
4916 * a chance to do so, since this address may reside
4917 * in the string table of this clause-- future calls
4918 * (when we fetch addr from mstate->dtms_strtok)
4919 * would fail this access check.
4920 */
4921 if (!dtrace_strcanload(addr, size, &clim, mstate,
4922 vstate)) {
4923 regs[rd] = 0;
4924 break;
4925 }
4926 limit = addr + clim;
4927 }
4928
4929 /*
4930 * First, zero the token map, and then process the token
4931 * string -- setting a bit in the map for every character
4932 * found in the token string.
4933 */
4934 for (i = 0; i < sizeof (tokmap); i++)
4935 tokmap[i] = 0;
4936
4937 for (; tokaddr < toklimit; tokaddr++) {
4938 if ((c = dtrace_load8(tokaddr)) == '\0')
4939 break;
4940
4941 ASSERT((c >> 3) < sizeof (tokmap));
4942 tokmap[c >> 3] |= (1 << (c & 0x7));
4943 }
4944
4945 for (; addr < limit; addr++) {
4946 /*
4947 * We're looking for a character that is _not_
4948 * contained in the token string.
4949 */
4950 if ((c = dtrace_load8(addr)) == '\0')
4951 break;
4952
4953 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4954 break;
4955 }
4956
4957 if (c == '\0') {
4958 /*
4959 * We reached the end of the string without finding
4960 * any character that was not in the token string.
4961 * We return NULL in this case, and we set the saved
4962 * address to NULL as well.
4963 */
4964 regs[rd] = 0;
4965 mstate->dtms_strtok = 0;
4966 mstate->dtms_strtok_limit = 0;
4967 break;
4968 }
4969
4970 /*
4971 * From here on, we're copying into the destination string.
4972 */
4973 for (i = 0; addr < limit && i < size - 1; addr++) {
4974 if ((c = dtrace_load8(addr)) == '\0')
4975 break;
4976
4977 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4978 break;
4979
4980 ASSERT(i < size);
4981 dest[i++] = c;
4982 }
4983
4984 ASSERT(i < size);
4985 dest[i] = '\0';
4986 regs[rd] = (uintptr_t)dest;
4987 mstate->dtms_scratch_ptr += size;
4988 mstate->dtms_strtok = addr;
4989 mstate->dtms_strtok_limit = limit;
4990 break;
4991 }
4992
4993 case DIF_SUBR_SUBSTR: {
4994 uintptr_t s = tupregs[0].dttk_value;
4995 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4996 char *d = (char *)mstate->dtms_scratch_ptr;
4997 int64_t index = (int64_t)tupregs[1].dttk_value;
4998 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4999 size_t len = dtrace_strlen((char *)s, size);
5000 int64_t i;
5001
5002 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5003 regs[rd] = 0;
5004 break;
5005 }
5006
5007 if (!DTRACE_INSCRATCH(mstate, size)) {
5008 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5009 regs[rd] = 0;
5010 break;
5011 }
5012
5013 if (nargs <= 2)
5014 remaining = (int64_t)size;
5015
5016 if (index < 0) {
5017 index += len;
5018
5019 if (index < 0 && index + remaining > 0) {
5020 remaining += index;
5021 index = 0;
5022 }
5023 }
5024
5025 if (index >= len || index < 0) {
5026 remaining = 0;
5027 } else if (remaining < 0) {
5028 remaining += len - index;
5029 } else if (index + remaining > size) {
5030 remaining = size - index;
5031 }
5032
5033 for (i = 0; i < remaining; i++) {
5034 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
5035 break;
5036 }
5037
5038 d[i] = '\0';
5039
5040 mstate->dtms_scratch_ptr += size;
5041 regs[rd] = (uintptr_t)d;
5042 break;
5043 }
5044
5045 case DIF_SUBR_JSON: {
5046 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5047 uintptr_t json = tupregs[0].dttk_value;
5048 size_t jsonlen = dtrace_strlen((char *)json, size);
5049 uintptr_t elem = tupregs[1].dttk_value;
5050 size_t elemlen = dtrace_strlen((char *)elem, size);
5051
5052 char *dest = (char *)mstate->dtms_scratch_ptr;
5053 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
5054 char *ee = elemlist;
5055 int nelems = 1;
5056 uintptr_t cur;
5057
5058 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
5059 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
5060 regs[rd] = 0;
5061 break;
5062 }
5063
5064 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
5065 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5066 regs[rd] = 0;
5067 break;
5068 }
5069
5070 /*
5071 * Read the element selector and split it up into a packed list
5072 * of strings.
5073 */
5074 for (cur = elem; cur < elem + elemlen; cur++) {
5075 char cc = dtrace_load8(cur);
5076
5077 if (cur == elem && cc == '[') {
5078 /*
5079 * If the first element selector key is
5080 * actually an array index then ignore the
5081 * bracket.
5082 */
5083 continue;
5084 }
5085
5086 if (cc == ']')
5087 continue;
5088
5089 if (cc == '.' || cc == '[') {
5090 nelems++;
5091 cc = '\0';
5092 }
5093
5094 *ee++ = cc;
5095 }
5096 *ee++ = '\0';
5097
5098 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
5099 nelems, dest)) != 0)
5100 mstate->dtms_scratch_ptr += jsonlen + 1;
5101 break;
5102 }
5103
5104 case DIF_SUBR_TOUPPER:
5105 case DIF_SUBR_TOLOWER: {
5106 uintptr_t s = tupregs[0].dttk_value;
5107 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5108 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5109 size_t len = dtrace_strlen((char *)s, size);
5110 char lower, upper, convert;
5111 int64_t i;
5112
5113 if (subr == DIF_SUBR_TOUPPER) {
5114 lower = 'a';
5115 upper = 'z';
5116 convert = 'A';
5117 } else {
5118 lower = 'A';
5119 upper = 'Z';
5120 convert = 'a';
5121 }
5122
5123 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
5124 regs[rd] = 0;
5125 break;
5126 }
5127
5128 if (!DTRACE_INSCRATCH(mstate, size)) {
5129 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5130 regs[rd] = 0;
5131 break;
5132 }
5133
5134 for (i = 0; i < size - 1; i++) {
5135 if ((c = dtrace_load8(s + i)) == '\0')
5136 break;
5137
5138 if (c >= lower && c <= upper)
5139 c = convert + (c - lower);
5140
5141 dest[i] = c;
5142 }
5143
5144 ASSERT(i < size);
5145 dest[i] = '\0';
5146 regs[rd] = (uintptr_t)dest;
5147 mstate->dtms_scratch_ptr += size;
5148 break;
5149 }
5150
5151 #ifdef illumos
5152 case DIF_SUBR_GETMAJOR:
5153 #ifdef _LP64
5154 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
5155 #else
5156 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
5157 #endif
5158 break;
5159
5160 case DIF_SUBR_GETMINOR:
5161 #ifdef _LP64
5162 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
5163 #else
5164 regs[rd] = tupregs[0].dttk_value & MAXMIN;
5165 #endif
5166 break;
5167
5168 case DIF_SUBR_DDI_PATHNAME: {
5169 /*
5170 * This one is a galactic mess. We are going to roughly
5171 * emulate ddi_pathname(), but it's made more complicated
5172 * by the fact that we (a) want to include the minor name and
5173 * (b) must proceed iteratively instead of recursively.
5174 */
5175 uintptr_t dest = mstate->dtms_scratch_ptr;
5176 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5177 char *start = (char *)dest, *end = start + size - 1;
5178 uintptr_t daddr = tupregs[0].dttk_value;
5179 int64_t minor = (int64_t)tupregs[1].dttk_value;
5180 char *s;
5181 int i, len, depth = 0;
5182
5183 /*
5184 * Due to all the pointer jumping we do and context we must
5185 * rely upon, we just mandate that the user must have kernel
5186 * read privileges to use this routine.
5187 */
5188 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
5189 *flags |= CPU_DTRACE_KPRIV;
5190 *illval = daddr;
5191 regs[rd] = 0;
5192 }
5193
5194 if (!DTRACE_INSCRATCH(mstate, size)) {
5195 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5196 regs[rd] = 0;
5197 break;
5198 }
5199
5200 *end = '\0';
5201
5202 /*
5203 * We want to have a name for the minor. In order to do this,
5204 * we need to walk the minor list from the devinfo. We want
5205 * to be sure that we don't infinitely walk a circular list,
5206 * so we check for circularity by sending a scout pointer
5207 * ahead two elements for every element that we iterate over;
5208 * if the list is circular, these will ultimately point to the
5209 * same element. You may recognize this little trick as the
5210 * answer to a stupid interview question -- one that always
5211 * seems to be asked by those who had to have it laboriously
5212 * explained to them, and who can't even concisely describe
5213 * the conditions under which one would be forced to resort to
5214 * this technique. Needless to say, those conditions are
5215 * found here -- and probably only here. Is this the only use
5216 * of this infamous trick in shipping, production code? If it
5217 * isn't, it probably should be...
5218 */
5219 if (minor != -1) {
5220 uintptr_t maddr = dtrace_loadptr(daddr +
5221 offsetof(struct dev_info, devi_minor));
5222
5223 uintptr_t next = offsetof(struct ddi_minor_data, next);
5224 uintptr_t name = offsetof(struct ddi_minor_data,
5225 d_minor) + offsetof(struct ddi_minor, name);
5226 uintptr_t dev = offsetof(struct ddi_minor_data,
5227 d_minor) + offsetof(struct ddi_minor, dev);
5228 uintptr_t scout;
5229
5230 if (maddr != NULL)
5231 scout = dtrace_loadptr(maddr + next);
5232
5233 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5234 uint64_t m;
5235 #ifdef _LP64
5236 m = dtrace_load64(maddr + dev) & MAXMIN64;
5237 #else
5238 m = dtrace_load32(maddr + dev) & MAXMIN;
5239 #endif
5240 if (m != minor) {
5241 maddr = dtrace_loadptr(maddr + next);
5242
5243 if (scout == NULL)
5244 continue;
5245
5246 scout = dtrace_loadptr(scout + next);
5247
5248 if (scout == NULL)
5249 continue;
5250
5251 scout = dtrace_loadptr(scout + next);
5252
5253 if (scout == NULL)
5254 continue;
5255
5256 if (scout == maddr) {
5257 *flags |= CPU_DTRACE_ILLOP;
5258 break;
5259 }
5260
5261 continue;
5262 }
5263
5264 /*
5265 * We have the minor data. Now we need to
5266 * copy the minor's name into the end of the
5267 * pathname.
5268 */
5269 s = (char *)dtrace_loadptr(maddr + name);
5270 len = dtrace_strlen(s, size);
5271
5272 if (*flags & CPU_DTRACE_FAULT)
5273 break;
5274
5275 if (len != 0) {
5276 if ((end -= (len + 1)) < start)
5277 break;
5278
5279 *end = ':';
5280 }
5281
5282 for (i = 1; i <= len; i++)
5283 end[i] = dtrace_load8((uintptr_t)s++);
5284 break;
5285 }
5286 }
5287
5288 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
5289 ddi_node_state_t devi_state;
5290
5291 devi_state = dtrace_load32(daddr +
5292 offsetof(struct dev_info, devi_node_state));
5293
5294 if (*flags & CPU_DTRACE_FAULT)
5295 break;
5296
5297 if (devi_state >= DS_INITIALIZED) {
5298 s = (char *)dtrace_loadptr(daddr +
5299 offsetof(struct dev_info, devi_addr));
5300 len = dtrace_strlen(s, size);
5301
5302 if (*flags & CPU_DTRACE_FAULT)
5303 break;
5304
5305 if (len != 0) {
5306 if ((end -= (len + 1)) < start)
5307 break;
5308
5309 *end = '@';
5310 }
5311
5312 for (i = 1; i <= len; i++)
5313 end[i] = dtrace_load8((uintptr_t)s++);
5314 }
5315
5316 /*
5317 * Now for the node name...
5318 */
5319 s = (char *)dtrace_loadptr(daddr +
5320 offsetof(struct dev_info, devi_node_name));
5321
5322 daddr = dtrace_loadptr(daddr +
5323 offsetof(struct dev_info, devi_parent));
5324
5325 /*
5326 * If our parent is NULL (that is, if we're the root
5327 * node), we're going to use the special path
5328 * "devices".
5329 */
5330 if (daddr == 0)
5331 s = "devices";
5332
5333 len = dtrace_strlen(s, size);
5334 if (*flags & CPU_DTRACE_FAULT)
5335 break;
5336
5337 if ((end -= (len + 1)) < start)
5338 break;
5339
5340 for (i = 1; i <= len; i++)
5341 end[i] = dtrace_load8((uintptr_t)s++);
5342 *end = '/';
5343
5344 if (depth++ > dtrace_devdepth_max) {
5345 *flags |= CPU_DTRACE_ILLOP;
5346 break;
5347 }
5348 }
5349
5350 if (end < start)
5351 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5352
5353 if (daddr == 0) {
5354 regs[rd] = (uintptr_t)end;
5355 mstate->dtms_scratch_ptr += size;
5356 }
5357
5358 break;
5359 }
5360 #endif
5361
5362 case DIF_SUBR_STRJOIN: {
5363 char *d = (char *)mstate->dtms_scratch_ptr;
5364 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5365 uintptr_t s1 = tupregs[0].dttk_value;
5366 uintptr_t s2 = tupregs[1].dttk_value;
5367 int i = 0, j = 0;
5368 size_t lim1, lim2;
5369 char c;
5370
5371 if (!dtrace_strcanload(s1, size, &lim1, mstate, vstate) ||
5372 !dtrace_strcanload(s2, size, &lim2, mstate, vstate)) {
5373 regs[rd] = 0;
5374 break;
5375 }
5376
5377 if (!DTRACE_INSCRATCH(mstate, size)) {
5378 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5379 regs[rd] = 0;
5380 break;
5381 }
5382
5383 for (;;) {
5384 if (i >= size) {
5385 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5386 regs[rd] = 0;
5387 break;
5388 }
5389 c = (i >= lim1) ? '\0' : dtrace_load8(s1++);
5390 if ((d[i++] = c) == '\0') {
5391 i--;
5392 break;
5393 }
5394 }
5395
5396 for (;;) {
5397 if (i >= size) {
5398 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5399 regs[rd] = 0;
5400 break;
5401 }
5402
5403 c = (j++ >= lim2) ? '\0' : dtrace_load8(s2++);
5404 if ((d[i++] = c) == '\0')
5405 break;
5406 }
5407
5408 if (i < size) {
5409 mstate->dtms_scratch_ptr += i;
5410 regs[rd] = (uintptr_t)d;
5411 }
5412
5413 break;
5414 }
5415
5416 case DIF_SUBR_STRTOLL: {
5417 uintptr_t s = tupregs[0].dttk_value;
5418 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5419 size_t lim;
5420 int base = 10;
5421
5422 if (nargs > 1) {
5423 if ((base = tupregs[1].dttk_value) <= 1 ||
5424 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5425 *flags |= CPU_DTRACE_ILLOP;
5426 break;
5427 }
5428 }
5429
5430 if (!dtrace_strcanload(s, size, &lim, mstate, vstate)) {
5431 regs[rd] = INT64_MIN;
5432 break;
5433 }
5434
5435 regs[rd] = dtrace_strtoll((char *)s, base, lim);
5436 break;
5437 }
5438
5439 case DIF_SUBR_LLTOSTR: {
5440 int64_t i = (int64_t)tupregs[0].dttk_value;
5441 uint64_t val, digit;
5442 uint64_t size = 65; /* enough room for 2^64 in binary */
5443 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
5444 int base = 10;
5445
5446 if (nargs > 1) {
5447 if ((base = tupregs[1].dttk_value) <= 1 ||
5448 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
5449 *flags |= CPU_DTRACE_ILLOP;
5450 break;
5451 }
5452 }
5453
5454 val = (base == 10 && i < 0) ? i * -1 : i;
5455
5456 if (!DTRACE_INSCRATCH(mstate, size)) {
5457 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5458 regs[rd] = 0;
5459 break;
5460 }
5461
5462 for (*end-- = '\0'; val; val /= base) {
5463 if ((digit = val % base) <= '9' - '0') {
5464 *end-- = '0' + digit;
5465 } else {
5466 *end-- = 'a' + (digit - ('9' - '0') - 1);
5467 }
5468 }
5469
5470 if (i == 0 && base == 16)
5471 *end-- = '0';
5472
5473 if (base == 16)
5474 *end-- = 'x';
5475
5476 if (i == 0 || base == 8 || base == 16)
5477 *end-- = '0';
5478
5479 if (i < 0 && base == 10)
5480 *end-- = '-';
5481
5482 regs[rd] = (uintptr_t)end + 1;
5483 mstate->dtms_scratch_ptr += size;
5484 break;
5485 }
5486
5487 case DIF_SUBR_HTONS:
5488 case DIF_SUBR_NTOHS:
5489 #if BYTE_ORDER == BIG_ENDIAN
5490 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5491 #else
5492 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5493 #endif
5494 break;
5495
5496
5497 case DIF_SUBR_HTONL:
5498 case DIF_SUBR_NTOHL:
5499 #if BYTE_ORDER == BIG_ENDIAN
5500 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5501 #else
5502 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5503 #endif
5504 break;
5505
5506
5507 case DIF_SUBR_HTONLL:
5508 case DIF_SUBR_NTOHLL:
5509 #if BYTE_ORDER == BIG_ENDIAN
5510 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5511 #else
5512 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5513 #endif
5514 break;
5515
5516
5517 case DIF_SUBR_DIRNAME:
5518 case DIF_SUBR_BASENAME: {
5519 char *dest = (char *)mstate->dtms_scratch_ptr;
5520 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5521 uintptr_t src = tupregs[0].dttk_value;
5522 int i, j, len = dtrace_strlen((char *)src, size);
5523 int lastbase = -1, firstbase = -1, lastdir = -1;
5524 int start, end;
5525
5526 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5527 regs[rd] = 0;
5528 break;
5529 }
5530
5531 if (!DTRACE_INSCRATCH(mstate, size)) {
5532 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5533 regs[rd] = 0;
5534 break;
5535 }
5536
5537 /*
5538 * The basename and dirname for a zero-length string is
5539 * defined to be "."
5540 */
5541 if (len == 0) {
5542 len = 1;
5543 src = (uintptr_t)".";
5544 }
5545
5546 /*
5547 * Start from the back of the string, moving back toward the
5548 * front until we see a character that isn't a slash. That
5549 * character is the last character in the basename.
5550 */
5551 for (i = len - 1; i >= 0; i--) {
5552 if (dtrace_load8(src + i) != '/')
5553 break;
5554 }
5555
5556 if (i >= 0)
5557 lastbase = i;
5558
5559 /*
5560 * Starting from the last character in the basename, move
5561 * towards the front until we find a slash. The character
5562 * that we processed immediately before that is the first
5563 * character in the basename.
5564 */
5565 for (; i >= 0; i--) {
5566 if (dtrace_load8(src + i) == '/')
5567 break;
5568 }
5569
5570 if (i >= 0)
5571 firstbase = i + 1;
5572
5573 /*
5574 * Now keep going until we find a non-slash character. That
5575 * character is the last character in the dirname.
5576 */
5577 for (; i >= 0; i--) {
5578 if (dtrace_load8(src + i) != '/')
5579 break;
5580 }
5581
5582 if (i >= 0)
5583 lastdir = i;
5584
5585 ASSERT(!(lastbase == -1 && firstbase != -1));
5586 ASSERT(!(firstbase == -1 && lastdir != -1));
5587
5588 if (lastbase == -1) {
5589 /*
5590 * We didn't find a non-slash character. We know that
5591 * the length is non-zero, so the whole string must be
5592 * slashes. In either the dirname or the basename
5593 * case, we return '/'.
5594 */
5595 ASSERT(firstbase == -1);
5596 firstbase = lastbase = lastdir = 0;
5597 }
5598
5599 if (firstbase == -1) {
5600 /*
5601 * The entire string consists only of a basename
5602 * component. If we're looking for dirname, we need
5603 * to change our string to be just "."; if we're
5604 * looking for a basename, we'll just set the first
5605 * character of the basename to be 0.
5606 */
5607 if (subr == DIF_SUBR_DIRNAME) {
5608 ASSERT(lastdir == -1);
5609 src = (uintptr_t)".";
5610 lastdir = 0;
5611 } else {
5612 firstbase = 0;
5613 }
5614 }
5615
5616 if (subr == DIF_SUBR_DIRNAME) {
5617 if (lastdir == -1) {
5618 /*
5619 * We know that we have a slash in the name --
5620 * or lastdir would be set to 0, above. And
5621 * because lastdir is -1, we know that this
5622 * slash must be the first character. (That
5623 * is, the full string must be of the form
5624 * "/basename".) In this case, the last
5625 * character of the directory name is 0.
5626 */
5627 lastdir = 0;
5628 }
5629
5630 start = 0;
5631 end = lastdir;
5632 } else {
5633 ASSERT(subr == DIF_SUBR_BASENAME);
5634 ASSERT(firstbase != -1 && lastbase != -1);
5635 start = firstbase;
5636 end = lastbase;
5637 }
5638
5639 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5640 dest[j] = dtrace_load8(src + i);
5641
5642 dest[j] = '\0';
5643 regs[rd] = (uintptr_t)dest;
5644 mstate->dtms_scratch_ptr += size;
5645 break;
5646 }
5647
5648 case DIF_SUBR_GETF: {
5649 uintptr_t fd = tupregs[0].dttk_value;
5650 struct filedesc *fdp;
5651 file_t *fp;
5652
5653 if (!dtrace_priv_proc(state)) {
5654 regs[rd] = 0;
5655 break;
5656 }
5657 fdp = curproc->p_fd;
5658 FILEDESC_SLOCK(fdp);
5659 /*
5660 * XXXMJG this looks broken as no ref is taken.
5661 */
5662 fp = fget_noref(fdp, fd);
5663 mstate->dtms_getf = fp;
5664 regs[rd] = (uintptr_t)fp;
5665 FILEDESC_SUNLOCK(fdp);
5666 break;
5667 }
5668
5669 case DIF_SUBR_CLEANPATH: {
5670 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5671 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5672 uintptr_t src = tupregs[0].dttk_value;
5673 size_t lim;
5674 int i = 0, j = 0;
5675 #ifdef illumos
5676 zone_t *z;
5677 #endif
5678
5679 if (!dtrace_strcanload(src, size, &lim, mstate, vstate)) {
5680 regs[rd] = 0;
5681 break;
5682 }
5683
5684 if (!DTRACE_INSCRATCH(mstate, size)) {
5685 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5686 regs[rd] = 0;
5687 break;
5688 }
5689
5690 /*
5691 * Move forward, loading each character.
5692 */
5693 do {
5694 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5695 next:
5696 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5697 break;
5698
5699 if (c != '/') {
5700 dest[j++] = c;
5701 continue;
5702 }
5703
5704 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5705
5706 if (c == '/') {
5707 /*
5708 * We have two slashes -- we can just advance
5709 * to the next character.
5710 */
5711 goto next;
5712 }
5713
5714 if (c != '.') {
5715 /*
5716 * This is not "." and it's not ".." -- we can
5717 * just store the "/" and this character and
5718 * drive on.
5719 */
5720 dest[j++] = '/';
5721 dest[j++] = c;
5722 continue;
5723 }
5724
5725 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5726
5727 if (c == '/') {
5728 /*
5729 * This is a "/./" component. We're not going
5730 * to store anything in the destination buffer;
5731 * we're just going to go to the next component.
5732 */
5733 goto next;
5734 }
5735
5736 if (c != '.') {
5737 /*
5738 * This is not ".." -- we can just store the
5739 * "/." and this character and continue
5740 * processing.
5741 */
5742 dest[j++] = '/';
5743 dest[j++] = '.';
5744 dest[j++] = c;
5745 continue;
5746 }
5747
5748 c = (i >= lim) ? '\0' : dtrace_load8(src + i++);
5749
5750 if (c != '/' && c != '\0') {
5751 /*
5752 * This is not ".." -- it's "..[mumble]".
5753 * We'll store the "/.." and this character
5754 * and continue processing.
5755 */
5756 dest[j++] = '/';
5757 dest[j++] = '.';
5758 dest[j++] = '.';
5759 dest[j++] = c;
5760 continue;
5761 }
5762
5763 /*
5764 * This is "/../" or "/..\0". We need to back up
5765 * our destination pointer until we find a "/".
5766 */
5767 i--;
5768 while (j != 0 && dest[--j] != '/')
5769 continue;
5770
5771 if (c == '\0')
5772 dest[++j] = '/';
5773 } while (c != '\0');
5774
5775 dest[j] = '\0';
5776
5777 #ifdef illumos
5778 if (mstate->dtms_getf != NULL &&
5779 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5780 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5781 /*
5782 * If we've done a getf() as a part of this ECB and we
5783 * don't have kernel access (and we're not in the global
5784 * zone), check if the path we cleaned up begins with
5785 * the zone's root path, and trim it off if so. Note
5786 * that this is an output cleanliness issue, not a
5787 * security issue: knowing one's zone root path does
5788 * not enable privilege escalation.
5789 */
5790 if (strstr(dest, z->zone_rootpath) == dest)
5791 dest += strlen(z->zone_rootpath) - 1;
5792 }
5793 #endif
5794
5795 regs[rd] = (uintptr_t)dest;
5796 mstate->dtms_scratch_ptr += size;
5797 break;
5798 }
5799
5800 case DIF_SUBR_INET_NTOA:
5801 case DIF_SUBR_INET_NTOA6:
5802 case DIF_SUBR_INET_NTOP: {
5803 size_t size;
5804 int af, argi, i;
5805 char *base, *end;
5806
5807 if (subr == DIF_SUBR_INET_NTOP) {
5808 af = (int)tupregs[0].dttk_value;
5809 argi = 1;
5810 } else {
5811 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5812 argi = 0;
5813 }
5814
5815 if (af == AF_INET) {
5816 ipaddr_t ip4;
5817 uint8_t *ptr8, val;
5818
5819 if (!dtrace_canload(tupregs[argi].dttk_value,
5820 sizeof (ipaddr_t), mstate, vstate)) {
5821 regs[rd] = 0;
5822 break;
5823 }
5824
5825 /*
5826 * Safely load the IPv4 address.
5827 */
5828 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5829
5830 /*
5831 * Check an IPv4 string will fit in scratch.
5832 */
5833 size = INET_ADDRSTRLEN;
5834 if (!DTRACE_INSCRATCH(mstate, size)) {
5835 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5836 regs[rd] = 0;
5837 break;
5838 }
5839 base = (char *)mstate->dtms_scratch_ptr;
5840 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5841
5842 /*
5843 * Stringify as a dotted decimal quad.
5844 */
5845 *end-- = '\0';
5846 ptr8 = (uint8_t *)&ip4;
5847 for (i = 3; i >= 0; i--) {
5848 val = ptr8[i];
5849
5850 if (val == 0) {
5851 *end-- = '0';
5852 } else {
5853 for (; val; val /= 10) {
5854 *end-- = '0' + (val % 10);
5855 }
5856 }
5857
5858 if (i > 0)
5859 *end-- = '.';
5860 }
5861 ASSERT(end + 1 >= base);
5862
5863 } else if (af == AF_INET6) {
5864 struct in6_addr ip6;
5865 int firstzero, tryzero, numzero, v6end;
5866 uint16_t val;
5867 const char digits[] = "0123456789abcdef";
5868
5869 /*
5870 * Stringify using RFC 1884 convention 2 - 16 bit
5871 * hexadecimal values with a zero-run compression.
5872 * Lower case hexadecimal digits are used.
5873 * eg, fe80::214:4fff:fe0b:76c8.
5874 * The IPv4 embedded form is returned for inet_ntop,
5875 * just the IPv4 string is returned for inet_ntoa6.
5876 */
5877
5878 if (!dtrace_canload(tupregs[argi].dttk_value,
5879 sizeof (struct in6_addr), mstate, vstate)) {
5880 regs[rd] = 0;
5881 break;
5882 }
5883
5884 /*
5885 * Safely load the IPv6 address.
5886 */
5887 dtrace_bcopy(
5888 (void *)(uintptr_t)tupregs[argi].dttk_value,
5889 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5890
5891 /*
5892 * Check an IPv6 string will fit in scratch.
5893 */
5894 size = INET6_ADDRSTRLEN;
5895 if (!DTRACE_INSCRATCH(mstate, size)) {
5896 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5897 regs[rd] = 0;
5898 break;
5899 }
5900 base = (char *)mstate->dtms_scratch_ptr;
5901 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5902 *end-- = '\0';
5903
5904 /*
5905 * Find the longest run of 16 bit zero values
5906 * for the single allowed zero compression - "::".
5907 */
5908 firstzero = -1;
5909 tryzero = -1;
5910 numzero = 1;
5911 for (i = 0; i < sizeof (struct in6_addr); i++) {
5912 #ifdef illumos
5913 if (ip6._S6_un._S6_u8[i] == 0 &&
5914 #else
5915 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5916 #endif
5917 tryzero == -1 && i % 2 == 0) {
5918 tryzero = i;
5919 continue;
5920 }
5921
5922 if (tryzero != -1 &&
5923 #ifdef illumos
5924 (ip6._S6_un._S6_u8[i] != 0 ||
5925 #else
5926 (ip6.__u6_addr.__u6_addr8[i] != 0 ||
5927 #endif
5928 i == sizeof (struct in6_addr) - 1)) {
5929
5930 if (i - tryzero <= numzero) {
5931 tryzero = -1;
5932 continue;
5933 }
5934
5935 firstzero = tryzero;
5936 numzero = i - i % 2 - tryzero;
5937 tryzero = -1;
5938
5939 #ifdef illumos
5940 if (ip6._S6_un._S6_u8[i] == 0 &&
5941 #else
5942 if (ip6.__u6_addr.__u6_addr8[i] == 0 &&
5943 #endif
5944 i == sizeof (struct in6_addr) - 1)
5945 numzero += 2;
5946 }
5947 }
5948 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5949
5950 /*
5951 * Check for an IPv4 embedded address.
5952 */
5953 v6end = sizeof (struct in6_addr) - 2;
5954 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5955 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5956 for (i = sizeof (struct in6_addr) - 1;
5957 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5958 ASSERT(end >= base);
5959
5960 #ifdef illumos
5961 val = ip6._S6_un._S6_u8[i];
5962 #else
5963 val = ip6.__u6_addr.__u6_addr8[i];
5964 #endif
5965
5966 if (val == 0) {
5967 *end-- = '0';
5968 } else {
5969 for (; val; val /= 10) {
5970 *end-- = '0' + val % 10;
5971 }
5972 }
5973
5974 if (i > DTRACE_V4MAPPED_OFFSET)
5975 *end-- = '.';
5976 }
5977
5978 if (subr == DIF_SUBR_INET_NTOA6)
5979 goto inetout;
5980
5981 /*
5982 * Set v6end to skip the IPv4 address that
5983 * we have already stringified.
5984 */
5985 v6end = 10;
5986 }
5987
5988 /*
5989 * Build the IPv6 string by working through the
5990 * address in reverse.
5991 */
5992 for (i = v6end; i >= 0; i -= 2) {
5993 ASSERT(end >= base);
5994
5995 if (i == firstzero + numzero - 2) {
5996 *end-- = ':';
5997 *end-- = ':';
5998 i -= numzero - 2;
5999 continue;
6000 }
6001
6002 if (i < 14 && i != firstzero - 2)
6003 *end-- = ':';
6004
6005 #ifdef illumos
6006 val = (ip6._S6_un._S6_u8[i] << 8) +
6007 ip6._S6_un._S6_u8[i + 1];
6008 #else
6009 val = (ip6.__u6_addr.__u6_addr8[i] << 8) +
6010 ip6.__u6_addr.__u6_addr8[i + 1];
6011 #endif
6012
6013 if (val == 0) {
6014 *end-- = '0';
6015 } else {
6016 for (; val; val /= 16) {
6017 *end-- = digits[val % 16];
6018 }
6019 }
6020 }
6021 ASSERT(end + 1 >= base);
6022
6023 } else {
6024 /*
6025 * The user didn't use AH_INET or AH_INET6.
6026 */
6027 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6028 regs[rd] = 0;
6029 break;
6030 }
6031
6032 inetout: regs[rd] = (uintptr_t)end + 1;
6033 mstate->dtms_scratch_ptr += size;
6034 break;
6035 }
6036
6037 case DIF_SUBR_MEMREF: {
6038 uintptr_t size = 2 * sizeof(uintptr_t);
6039 uintptr_t *memref = (uintptr_t *) P2ROUNDUP(mstate->dtms_scratch_ptr, sizeof(uintptr_t));
6040 size_t scratch_size = ((uintptr_t) memref - mstate->dtms_scratch_ptr) + size;
6041
6042 /* address and length */
6043 memref[0] = tupregs[0].dttk_value;
6044 memref[1] = tupregs[1].dttk_value;
6045
6046 regs[rd] = (uintptr_t) memref;
6047 mstate->dtms_scratch_ptr += scratch_size;
6048 break;
6049 }
6050
6051 #ifndef illumos
6052 case DIF_SUBR_MEMSTR: {
6053 char *str = (char *)mstate->dtms_scratch_ptr;
6054 uintptr_t mem = tupregs[0].dttk_value;
6055 char c = tupregs[1].dttk_value;
6056 size_t size = tupregs[2].dttk_value;
6057 uint8_t n;
6058 int i;
6059
6060 regs[rd] = 0;
6061
6062 if (size == 0)
6063 break;
6064
6065 if (!dtrace_canload(mem, size - 1, mstate, vstate))
6066 break;
6067
6068 if (!DTRACE_INSCRATCH(mstate, size)) {
6069 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6070 break;
6071 }
6072
6073 if (dtrace_memstr_max != 0 && size > dtrace_memstr_max) {
6074 *flags |= CPU_DTRACE_ILLOP;
6075 break;
6076 }
6077
6078 for (i = 0; i < size - 1; i++) {
6079 n = dtrace_load8(mem++);
6080 str[i] = (n == 0) ? c : n;
6081 }
6082 str[size - 1] = 0;
6083
6084 regs[rd] = (uintptr_t)str;
6085 mstate->dtms_scratch_ptr += size;
6086 break;
6087 }
6088 #endif
6089 }
6090 }
6091
6092 /*
6093 * Emulate the execution of DTrace IR instructions specified by the given
6094 * DIF object. This function is deliberately void of assertions as all of
6095 * the necessary checks are handled by a call to dtrace_difo_validate().
6096 */
6097 static uint64_t
6098 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
6099 dtrace_vstate_t *vstate, dtrace_state_t *state)
6100 {
6101 const dif_instr_t *text = difo->dtdo_buf;
6102 const uint_t textlen = difo->dtdo_len;
6103 const char *strtab = difo->dtdo_strtab;
6104 const uint64_t *inttab = difo->dtdo_inttab;
6105
6106 uint64_t rval = 0;
6107 dtrace_statvar_t *svar;
6108 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
6109 dtrace_difv_t *v;
6110 volatile uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
6111 volatile uintptr_t *illval = &cpu_core[curcpu].cpuc_dtrace_illval;
6112
6113 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
6114 uint64_t regs[DIF_DIR_NREGS];
6115 uint64_t *tmp;
6116
6117 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
6118 int64_t cc_r;
6119 uint_t pc = 0, id, opc = 0;
6120 uint8_t ttop = 0;
6121 dif_instr_t instr;
6122 uint_t r1, r2, rd;
6123
6124 /*
6125 * We stash the current DIF object into the machine state: we need it
6126 * for subsequent access checking.
6127 */
6128 mstate->dtms_difo = difo;
6129
6130 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
6131
6132 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
6133 opc = pc;
6134
6135 instr = text[pc++];
6136 r1 = DIF_INSTR_R1(instr);
6137 r2 = DIF_INSTR_R2(instr);
6138 rd = DIF_INSTR_RD(instr);
6139
6140 switch (DIF_INSTR_OP(instr)) {
6141 case DIF_OP_OR:
6142 regs[rd] = regs[r1] | regs[r2];
6143 break;
6144 case DIF_OP_XOR:
6145 regs[rd] = regs[r1] ^ regs[r2];
6146 break;
6147 case DIF_OP_AND:
6148 regs[rd] = regs[r1] & regs[r2];
6149 break;
6150 case DIF_OP_SLL:
6151 regs[rd] = regs[r1] << regs[r2];
6152 break;
6153 case DIF_OP_SRL:
6154 regs[rd] = regs[r1] >> regs[r2];
6155 break;
6156 case DIF_OP_SUB:
6157 regs[rd] = regs[r1] - regs[r2];
6158 break;
6159 case DIF_OP_ADD:
6160 regs[rd] = regs[r1] + regs[r2];
6161 break;
6162 case DIF_OP_MUL:
6163 regs[rd] = regs[r1] * regs[r2];
6164 break;
6165 case DIF_OP_SDIV:
6166 if (regs[r2] == 0) {
6167 regs[rd] = 0;
6168 *flags |= CPU_DTRACE_DIVZERO;
6169 } else {
6170 regs[rd] = (int64_t)regs[r1] /
6171 (int64_t)regs[r2];
6172 }
6173 break;
6174
6175 case DIF_OP_UDIV:
6176 if (regs[r2] == 0) {
6177 regs[rd] = 0;
6178 *flags |= CPU_DTRACE_DIVZERO;
6179 } else {
6180 regs[rd] = regs[r1] / regs[r2];
6181 }
6182 break;
6183
6184 case DIF_OP_SREM:
6185 if (regs[r2] == 0) {
6186 regs[rd] = 0;
6187 *flags |= CPU_DTRACE_DIVZERO;
6188 } else {
6189 regs[rd] = (int64_t)regs[r1] %
6190 (int64_t)regs[r2];
6191 }
6192 break;
6193
6194 case DIF_OP_UREM:
6195 if (regs[r2] == 0) {
6196 regs[rd] = 0;
6197 *flags |= CPU_DTRACE_DIVZERO;
6198 } else {
6199 regs[rd] = regs[r1] % regs[r2];
6200 }
6201 break;
6202
6203 case DIF_OP_NOT:
6204 regs[rd] = ~regs[r1];
6205 break;
6206 case DIF_OP_MOV:
6207 regs[rd] = regs[r1];
6208 break;
6209 case DIF_OP_CMP:
6210 cc_r = regs[r1] - regs[r2];
6211 cc_n = cc_r < 0;
6212 cc_z = cc_r == 0;
6213 cc_v = 0;
6214 cc_c = regs[r1] < regs[r2];
6215 break;
6216 case DIF_OP_TST:
6217 cc_n = cc_v = cc_c = 0;
6218 cc_z = regs[r1] == 0;
6219 break;
6220 case DIF_OP_BA:
6221 pc = DIF_INSTR_LABEL(instr);
6222 break;
6223 case DIF_OP_BE:
6224 if (cc_z)
6225 pc = DIF_INSTR_LABEL(instr);
6226 break;
6227 case DIF_OP_BNE:
6228 if (cc_z == 0)
6229 pc = DIF_INSTR_LABEL(instr);
6230 break;
6231 case DIF_OP_BG:
6232 if ((cc_z | (cc_n ^ cc_v)) == 0)
6233 pc = DIF_INSTR_LABEL(instr);
6234 break;
6235 case DIF_OP_BGU:
6236 if ((cc_c | cc_z) == 0)
6237 pc = DIF_INSTR_LABEL(instr);
6238 break;
6239 case DIF_OP_BGE:
6240 if ((cc_n ^ cc_v) == 0)
6241 pc = DIF_INSTR_LABEL(instr);
6242 break;
6243 case DIF_OP_BGEU:
6244 if (cc_c == 0)
6245 pc = DIF_INSTR_LABEL(instr);
6246 break;
6247 case DIF_OP_BL:
6248 if (cc_n ^ cc_v)
6249 pc = DIF_INSTR_LABEL(instr);
6250 break;
6251 case DIF_OP_BLU:
6252 if (cc_c)
6253 pc = DIF_INSTR_LABEL(instr);
6254 break;
6255 case DIF_OP_BLE:
6256 if (cc_z | (cc_n ^ cc_v))
6257 pc = DIF_INSTR_LABEL(instr);
6258 break;
6259 case DIF_OP_BLEU:
6260 if (cc_c | cc_z)
6261 pc = DIF_INSTR_LABEL(instr);
6262 break;
6263 case DIF_OP_RLDSB:
6264 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6265 break;
6266 /*FALLTHROUGH*/
6267 case DIF_OP_LDSB:
6268 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
6269 break;
6270 case DIF_OP_RLDSH:
6271 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6272 break;
6273 /*FALLTHROUGH*/
6274 case DIF_OP_LDSH:
6275 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
6276 break;
6277 case DIF_OP_RLDSW:
6278 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6279 break;
6280 /*FALLTHROUGH*/
6281 case DIF_OP_LDSW:
6282 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
6283 break;
6284 case DIF_OP_RLDUB:
6285 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
6286 break;
6287 /*FALLTHROUGH*/
6288 case DIF_OP_LDUB:
6289 regs[rd] = dtrace_load8(regs[r1]);
6290 break;
6291 case DIF_OP_RLDUH:
6292 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
6293 break;
6294 /*FALLTHROUGH*/
6295 case DIF_OP_LDUH:
6296 regs[rd] = dtrace_load16(regs[r1]);
6297 break;
6298 case DIF_OP_RLDUW:
6299 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
6300 break;
6301 /*FALLTHROUGH*/
6302 case DIF_OP_LDUW:
6303 regs[rd] = dtrace_load32(regs[r1]);
6304 break;
6305 case DIF_OP_RLDX:
6306 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
6307 break;
6308 /*FALLTHROUGH*/
6309 case DIF_OP_LDX:
6310 regs[rd] = dtrace_load64(regs[r1]);
6311 break;
6312 case DIF_OP_ULDSB:
6313 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6314 regs[rd] = (int8_t)
6315 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6316 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6317 break;
6318 case DIF_OP_ULDSH:
6319 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6320 regs[rd] = (int16_t)
6321 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6322 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6323 break;
6324 case DIF_OP_ULDSW:
6325 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6326 regs[rd] = (int32_t)
6327 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6328 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6329 break;
6330 case DIF_OP_ULDUB:
6331 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6332 regs[rd] =
6333 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
6334 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6335 break;
6336 case DIF_OP_ULDUH:
6337 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6338 regs[rd] =
6339 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
6340 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6341 break;
6342 case DIF_OP_ULDUW:
6343 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6344 regs[rd] =
6345 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
6346 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6347 break;
6348 case DIF_OP_ULDX:
6349 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6350 regs[rd] =
6351 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
6352 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6353 break;
6354 case DIF_OP_RET:
6355 rval = regs[rd];
6356 pc = textlen;
6357 break;
6358 case DIF_OP_NOP:
6359 break;
6360 case DIF_OP_SETX:
6361 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
6362 break;
6363 case DIF_OP_SETS:
6364 regs[rd] = (uint64_t)(uintptr_t)
6365 (strtab + DIF_INSTR_STRING(instr));
6366 break;
6367 case DIF_OP_SCMP: {
6368 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
6369 uintptr_t s1 = regs[r1];
6370 uintptr_t s2 = regs[r2];
6371 size_t lim1, lim2;
6372
6373 /*
6374 * If one of the strings is NULL then the limit becomes
6375 * 0 which compares 0 characters in dtrace_strncmp()
6376 * resulting in a false positive. dtrace_strncmp()
6377 * treats a NULL as an empty 1-char string.
6378 */
6379 lim1 = lim2 = 1;
6380
6381 if (s1 != 0 &&
6382 !dtrace_strcanload(s1, sz, &lim1, mstate, vstate))
6383 break;
6384 if (s2 != 0 &&
6385 !dtrace_strcanload(s2, sz, &lim2, mstate, vstate))
6386 break;
6387
6388 cc_r = dtrace_strncmp((char *)s1, (char *)s2,
6389 MIN(lim1, lim2));
6390
6391 cc_n = cc_r < 0;
6392 cc_z = cc_r == 0;
6393 cc_v = cc_c = 0;
6394 break;
6395 }
6396 case DIF_OP_LDGA:
6397 regs[rd] = dtrace_dif_variable(mstate, state,
6398 r1, regs[r2]);
6399 break;
6400 case DIF_OP_LDGS:
6401 id = DIF_INSTR_VAR(instr);
6402
6403 if (id >= DIF_VAR_OTHER_UBASE) {
6404 uintptr_t a;
6405
6406 id -= DIF_VAR_OTHER_UBASE;
6407 svar = vstate->dtvs_globals[id];
6408 ASSERT(svar != NULL);
6409 v = &svar->dtsv_var;
6410
6411 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
6412 regs[rd] = svar->dtsv_data;
6413 break;
6414 }
6415
6416 a = (uintptr_t)svar->dtsv_data;
6417
6418 if (*(uint8_t *)a == UINT8_MAX) {
6419 /*
6420 * If the 0th byte is set to UINT8_MAX
6421 * then this is to be treated as a
6422 * reference to a NULL variable.
6423 */
6424 regs[rd] = 0;
6425 } else {
6426 regs[rd] = a + sizeof (uint64_t);
6427 }
6428
6429 break;
6430 }
6431
6432 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
6433 break;
6434
6435 case DIF_OP_STGS:
6436 id = DIF_INSTR_VAR(instr);
6437
6438 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6439 id -= DIF_VAR_OTHER_UBASE;
6440
6441 VERIFY(id < vstate->dtvs_nglobals);
6442 svar = vstate->dtvs_globals[id];
6443 ASSERT(svar != NULL);
6444 v = &svar->dtsv_var;
6445
6446 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6447 uintptr_t a = (uintptr_t)svar->dtsv_data;
6448 size_t lim;
6449
6450 ASSERT(a != 0);
6451 ASSERT(svar->dtsv_size != 0);
6452
6453 if (regs[rd] == 0) {
6454 *(uint8_t *)a = UINT8_MAX;
6455 break;
6456 } else {
6457 *(uint8_t *)a = 0;
6458 a += sizeof (uint64_t);
6459 }
6460 if (!dtrace_vcanload(
6461 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6462 &lim, mstate, vstate))
6463 break;
6464
6465 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6466 (void *)a, &v->dtdv_type, lim);
6467 break;
6468 }
6469
6470 svar->dtsv_data = regs[rd];
6471 break;
6472
6473 case DIF_OP_LDTA:
6474 /*
6475 * There are no DTrace built-in thread-local arrays at
6476 * present. This opcode is saved for future work.
6477 */
6478 *flags |= CPU_DTRACE_ILLOP;
6479 regs[rd] = 0;
6480 break;
6481
6482 case DIF_OP_LDLS:
6483 id = DIF_INSTR_VAR(instr);
6484
6485 if (id < DIF_VAR_OTHER_UBASE) {
6486 /*
6487 * For now, this has no meaning.
6488 */
6489 regs[rd] = 0;
6490 break;
6491 }
6492
6493 id -= DIF_VAR_OTHER_UBASE;
6494
6495 ASSERT(id < vstate->dtvs_nlocals);
6496 ASSERT(vstate->dtvs_locals != NULL);
6497
6498 svar = vstate->dtvs_locals[id];
6499 ASSERT(svar != NULL);
6500 v = &svar->dtsv_var;
6501
6502 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6503 uintptr_t a = (uintptr_t)svar->dtsv_data;
6504 size_t sz = v->dtdv_type.dtdt_size;
6505 size_t lim;
6506
6507 sz += sizeof (uint64_t);
6508 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6509 a += curcpu * sz;
6510
6511 if (*(uint8_t *)a == UINT8_MAX) {
6512 /*
6513 * If the 0th byte is set to UINT8_MAX
6514 * then this is to be treated as a
6515 * reference to a NULL variable.
6516 */
6517 regs[rd] = 0;
6518 } else {
6519 regs[rd] = a + sizeof (uint64_t);
6520 }
6521
6522 break;
6523 }
6524
6525 ASSERT(svar->dtsv_size ==
6526 (mp_maxid + 1) * sizeof (uint64_t));
6527 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6528 regs[rd] = tmp[curcpu];
6529 break;
6530
6531 case DIF_OP_STLS:
6532 id = DIF_INSTR_VAR(instr);
6533
6534 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6535 id -= DIF_VAR_OTHER_UBASE;
6536 VERIFY(id < vstate->dtvs_nlocals);
6537
6538 ASSERT(vstate->dtvs_locals != NULL);
6539 svar = vstate->dtvs_locals[id];
6540 ASSERT(svar != NULL);
6541 v = &svar->dtsv_var;
6542
6543 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6544 uintptr_t a = (uintptr_t)svar->dtsv_data;
6545 size_t sz = v->dtdv_type.dtdt_size;
6546 size_t lim;
6547
6548 sz += sizeof (uint64_t);
6549 ASSERT(svar->dtsv_size == (mp_maxid + 1) * sz);
6550 a += curcpu * sz;
6551
6552 if (regs[rd] == 0) {
6553 *(uint8_t *)a = UINT8_MAX;
6554 break;
6555 } else {
6556 *(uint8_t *)a = 0;
6557 a += sizeof (uint64_t);
6558 }
6559
6560 if (!dtrace_vcanload(
6561 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6562 &lim, mstate, vstate))
6563 break;
6564
6565 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6566 (void *)a, &v->dtdv_type, lim);
6567 break;
6568 }
6569
6570 ASSERT(svar->dtsv_size ==
6571 (mp_maxid + 1) * sizeof (uint64_t));
6572 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6573 tmp[curcpu] = regs[rd];
6574 break;
6575
6576 case DIF_OP_LDTS: {
6577 dtrace_dynvar_t *dvar;
6578 dtrace_key_t *key;
6579
6580 id = DIF_INSTR_VAR(instr);
6581 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6582 id -= DIF_VAR_OTHER_UBASE;
6583 v = &vstate->dtvs_tlocals[id];
6584
6585 key = &tupregs[DIF_DTR_NREGS];
6586 key[0].dttk_value = (uint64_t)id;
6587 key[0].dttk_size = 0;
6588 DTRACE_TLS_THRKEY(key[1].dttk_value);
6589 key[1].dttk_size = 0;
6590
6591 dvar = dtrace_dynvar(dstate, 2, key,
6592 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6593 mstate, vstate);
6594
6595 if (dvar == NULL) {
6596 regs[rd] = 0;
6597 break;
6598 }
6599
6600 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6601 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6602 } else {
6603 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6604 }
6605
6606 break;
6607 }
6608
6609 case DIF_OP_STTS: {
6610 dtrace_dynvar_t *dvar;
6611 dtrace_key_t *key;
6612
6613 id = DIF_INSTR_VAR(instr);
6614 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6615 id -= DIF_VAR_OTHER_UBASE;
6616 VERIFY(id < vstate->dtvs_ntlocals);
6617
6618 key = &tupregs[DIF_DTR_NREGS];
6619 key[0].dttk_value = (uint64_t)id;
6620 key[0].dttk_size = 0;
6621 DTRACE_TLS_THRKEY(key[1].dttk_value);
6622 key[1].dttk_size = 0;
6623 v = &vstate->dtvs_tlocals[id];
6624
6625 dvar = dtrace_dynvar(dstate, 2, key,
6626 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6627 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6628 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6629 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6630
6631 /*
6632 * Given that we're storing to thread-local data,
6633 * we need to flush our predicate cache.
6634 */
6635 curthread->t_predcache = 0;
6636
6637 if (dvar == NULL)
6638 break;
6639
6640 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6641 size_t lim;
6642
6643 if (!dtrace_vcanload(
6644 (void *)(uintptr_t)regs[rd],
6645 &v->dtdv_type, &lim, mstate, vstate))
6646 break;
6647
6648 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6649 dvar->dtdv_data, &v->dtdv_type, lim);
6650 } else {
6651 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6652 }
6653
6654 break;
6655 }
6656
6657 case DIF_OP_SRA:
6658 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6659 break;
6660
6661 case DIF_OP_CALL:
6662 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6663 regs, tupregs, ttop, mstate, state);
6664 break;
6665
6666 case DIF_OP_PUSHTR:
6667 if (ttop == DIF_DTR_NREGS) {
6668 *flags |= CPU_DTRACE_TUPOFLOW;
6669 break;
6670 }
6671
6672 if (r1 == DIF_TYPE_STRING) {
6673 /*
6674 * If this is a string type and the size is 0,
6675 * we'll use the system-wide default string
6676 * size. Note that we are _not_ looking at
6677 * the value of the DTRACEOPT_STRSIZE option;
6678 * had this been set, we would expect to have
6679 * a non-zero size value in the "pushtr".
6680 */
6681 tupregs[ttop].dttk_size =
6682 dtrace_strlen((char *)(uintptr_t)regs[rd],
6683 regs[r2] ? regs[r2] :
6684 dtrace_strsize_default) + 1;
6685 } else {
6686 if (regs[r2] > LONG_MAX) {
6687 *flags |= CPU_DTRACE_ILLOP;
6688 break;
6689 }
6690
6691 tupregs[ttop].dttk_size = regs[r2];
6692 }
6693
6694 tupregs[ttop++].dttk_value = regs[rd];
6695 break;
6696
6697 case DIF_OP_PUSHTV:
6698 if (ttop == DIF_DTR_NREGS) {
6699 *flags |= CPU_DTRACE_TUPOFLOW;
6700 break;
6701 }
6702
6703 tupregs[ttop].dttk_value = regs[rd];
6704 tupregs[ttop++].dttk_size = 0;
6705 break;
6706
6707 case DIF_OP_POPTS:
6708 if (ttop != 0)
6709 ttop--;
6710 break;
6711
6712 case DIF_OP_FLUSHTS:
6713 ttop = 0;
6714 break;
6715
6716 case DIF_OP_LDGAA:
6717 case DIF_OP_LDTAA: {
6718 dtrace_dynvar_t *dvar;
6719 dtrace_key_t *key = tupregs;
6720 uint_t nkeys = ttop;
6721
6722 id = DIF_INSTR_VAR(instr);
6723 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6724 id -= DIF_VAR_OTHER_UBASE;
6725
6726 key[nkeys].dttk_value = (uint64_t)id;
6727 key[nkeys++].dttk_size = 0;
6728
6729 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6730 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6731 key[nkeys++].dttk_size = 0;
6732 VERIFY(id < vstate->dtvs_ntlocals);
6733 v = &vstate->dtvs_tlocals[id];
6734 } else {
6735 VERIFY(id < vstate->dtvs_nglobals);
6736 v = &vstate->dtvs_globals[id]->dtsv_var;
6737 }
6738
6739 dvar = dtrace_dynvar(dstate, nkeys, key,
6740 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6741 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6742 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6743
6744 if (dvar == NULL) {
6745 regs[rd] = 0;
6746 break;
6747 }
6748
6749 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6750 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6751 } else {
6752 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6753 }
6754
6755 break;
6756 }
6757
6758 case DIF_OP_STGAA:
6759 case DIF_OP_STTAA: {
6760 dtrace_dynvar_t *dvar;
6761 dtrace_key_t *key = tupregs;
6762 uint_t nkeys = ttop;
6763
6764 id = DIF_INSTR_VAR(instr);
6765 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6766 id -= DIF_VAR_OTHER_UBASE;
6767
6768 key[nkeys].dttk_value = (uint64_t)id;
6769 key[nkeys++].dttk_size = 0;
6770
6771 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6772 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6773 key[nkeys++].dttk_size = 0;
6774 VERIFY(id < vstate->dtvs_ntlocals);
6775 v = &vstate->dtvs_tlocals[id];
6776 } else {
6777 VERIFY(id < vstate->dtvs_nglobals);
6778 v = &vstate->dtvs_globals[id]->dtsv_var;
6779 }
6780
6781 dvar = dtrace_dynvar(dstate, nkeys, key,
6782 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6783 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6784 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6785 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6786
6787 if (dvar == NULL)
6788 break;
6789
6790 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6791 size_t lim;
6792
6793 if (!dtrace_vcanload(
6794 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6795 &lim, mstate, vstate))
6796 break;
6797
6798 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6799 dvar->dtdv_data, &v->dtdv_type, lim);
6800 } else {
6801 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6802 }
6803
6804 break;
6805 }
6806
6807 case DIF_OP_ALLOCS: {
6808 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6809 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6810
6811 /*
6812 * Rounding up the user allocation size could have
6813 * overflowed large, bogus allocations (like -1ULL) to
6814 * 0.
6815 */
6816 if (size < regs[r1] ||
6817 !DTRACE_INSCRATCH(mstate, size)) {
6818 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6819 regs[rd] = 0;
6820 break;
6821 }
6822
6823 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6824 mstate->dtms_scratch_ptr += size;
6825 regs[rd] = ptr;
6826 break;
6827 }
6828
6829 case DIF_OP_COPYS:
6830 if (!dtrace_canstore(regs[rd], regs[r2],
6831 mstate, vstate)) {
6832 *flags |= CPU_DTRACE_BADADDR;
6833 *illval = regs[rd];
6834 break;
6835 }
6836
6837 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6838 break;
6839
6840 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6841 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6842 break;
6843
6844 case DIF_OP_STB:
6845 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6846 *flags |= CPU_DTRACE_BADADDR;
6847 *illval = regs[rd];
6848 break;
6849 }
6850 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6851 break;
6852
6853 case DIF_OP_STH:
6854 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6855 *flags |= CPU_DTRACE_BADADDR;
6856 *illval = regs[rd];
6857 break;
6858 }
6859 if (regs[rd] & 1) {
6860 *flags |= CPU_DTRACE_BADALIGN;
6861 *illval = regs[rd];
6862 break;
6863 }
6864 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6865 break;
6866
6867 case DIF_OP_STW:
6868 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6869 *flags |= CPU_DTRACE_BADADDR;
6870 *illval = regs[rd];
6871 break;
6872 }
6873 if (regs[rd] & 3) {
6874 *flags |= CPU_DTRACE_BADALIGN;
6875 *illval = regs[rd];
6876 break;
6877 }
6878 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6879 break;
6880
6881 case DIF_OP_STX:
6882 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6883 *flags |= CPU_DTRACE_BADADDR;
6884 *illval = regs[rd];
6885 break;
6886 }
6887 if (regs[rd] & 7) {
6888 *flags |= CPU_DTRACE_BADALIGN;
6889 *illval = regs[rd];
6890 break;
6891 }
6892 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6893 break;
6894 }
6895 }
6896
6897 if (!(*flags & CPU_DTRACE_FAULT))
6898 return (rval);
6899
6900 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6901 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6902
6903 return (0);
6904 }
6905
6906 static void
6907 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6908 {
6909 dtrace_probe_t *probe = ecb->dte_probe;
6910 dtrace_provider_t *prov = probe->dtpr_provider;
6911 char c[DTRACE_FULLNAMELEN + 80], *str;
6912 char *msg = "dtrace: breakpoint action at probe ";
6913 char *ecbmsg = " (ecb ";
6914 uintptr_t val = (uintptr_t)ecb;
6915 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6916
6917 if (dtrace_destructive_disallow)
6918 return;
6919
6920 /*
6921 * It's impossible to be taking action on the NULL probe.
6922 */
6923 ASSERT(probe != NULL);
6924
6925 /*
6926 * This is a poor man's (destitute man's?) sprintf(): we want to
6927 * print the provider name, module name, function name and name of
6928 * the probe, along with the hex address of the ECB with the breakpoint
6929 * action -- all of which we must place in the character buffer by
6930 * hand.
6931 */
6932 while (*msg != '\0')
6933 c[i++] = *msg++;
6934
6935 for (str = prov->dtpv_name; *str != '\0'; str++)
6936 c[i++] = *str;
6937 c[i++] = ':';
6938
6939 for (str = probe->dtpr_mod; *str != '\0'; str++)
6940 c[i++] = *str;
6941 c[i++] = ':';
6942
6943 for (str = probe->dtpr_func; *str != '\0'; str++)
6944 c[i++] = *str;
6945 c[i++] = ':';
6946
6947 for (str = probe->dtpr_name; *str != '\0'; str++)
6948 c[i++] = *str;
6949
6950 while (*ecbmsg != '\0')
6951 c[i++] = *ecbmsg++;
6952
6953 while (shift >= 0) {
6954 size_t mask = (size_t)0xf << shift;
6955
6956 if (val >= ((size_t)1 << shift))
6957 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6958 shift -= 4;
6959 }
6960
6961 c[i++] = ')';
6962 c[i] = '\0';
6963
6964 #ifdef illumos
6965 debug_enter(c);
6966 #else
6967 kdb_enter(KDB_WHY_DTRACE, "breakpoint action");
6968 #endif
6969 }
6970
6971 static void
6972 dtrace_action_panic(dtrace_ecb_t *ecb)
6973 {
6974 dtrace_probe_t *probe = ecb->dte_probe;
6975
6976 /*
6977 * It's impossible to be taking action on the NULL probe.
6978 */
6979 ASSERT(probe != NULL);
6980
6981 if (dtrace_destructive_disallow)
6982 return;
6983
6984 if (dtrace_panicked != NULL)
6985 return;
6986
6987 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6988 return;
6989
6990 /*
6991 * We won the right to panic. (We want to be sure that only one
6992 * thread calls panic() from dtrace_probe(), and that panic() is
6993 * called exactly once.)
6994 */
6995 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6996 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6997 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6998 }
6999
7000 static void
7001 dtrace_action_raise(uint64_t sig)
7002 {
7003 if (dtrace_destructive_disallow)
7004 return;
7005
7006 if (sig >= NSIG) {
7007 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
7008 return;
7009 }
7010
7011 #ifdef illumos
7012 /*
7013 * raise() has a queue depth of 1 -- we ignore all subsequent
7014 * invocations of the raise() action.
7015 */
7016 if (curthread->t_dtrace_sig == 0)
7017 curthread->t_dtrace_sig = (uint8_t)sig;
7018
7019 curthread->t_sig_check = 1;
7020 aston(curthread);
7021 #else
7022 struct proc *p = curproc;
7023 PROC_LOCK(p);
7024 kern_psignal(p, sig);
7025 PROC_UNLOCK(p);
7026 #endif
7027 }
7028
7029 static void
7030 dtrace_action_stop(void)
7031 {
7032 if (dtrace_destructive_disallow)
7033 return;
7034
7035 #ifdef illumos
7036 if (!curthread->t_dtrace_stop) {
7037 curthread->t_dtrace_stop = 1;
7038 curthread->t_sig_check = 1;
7039 aston(curthread);
7040 }
7041 #else
7042 struct proc *p = curproc;
7043 PROC_LOCK(p);
7044 kern_psignal(p, SIGSTOP);
7045 PROC_UNLOCK(p);
7046 #endif
7047 }
7048
7049 static void
7050 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
7051 {
7052 hrtime_t now;
7053 volatile uint16_t *flags;
7054 #ifdef illumos
7055 cpu_t *cpu = CPU;
7056 #else
7057 cpu_t *cpu = &solaris_cpu[curcpu];
7058 #endif
7059
7060 if (dtrace_destructive_disallow)
7061 return;
7062
7063 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7064
7065 now = dtrace_gethrtime();
7066
7067 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
7068 /*
7069 * We need to advance the mark to the current time.
7070 */
7071 cpu->cpu_dtrace_chillmark = now;
7072 cpu->cpu_dtrace_chilled = 0;
7073 }
7074
7075 /*
7076 * Now check to see if the requested chill time would take us over
7077 * the maximum amount of time allowed in the chill interval. (Or
7078 * worse, if the calculation itself induces overflow.)
7079 */
7080 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
7081 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
7082 *flags |= CPU_DTRACE_ILLOP;
7083 return;
7084 }
7085
7086 while (dtrace_gethrtime() - now < val)
7087 continue;
7088
7089 /*
7090 * Normally, we assure that the value of the variable "timestamp" does
7091 * not change within an ECB. The presence of chill() represents an
7092 * exception to this rule, however.
7093 */
7094 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
7095 cpu->cpu_dtrace_chilled += val;
7096 }
7097
7098 static void
7099 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
7100 uint64_t *buf, uint64_t arg)
7101 {
7102 int nframes = DTRACE_USTACK_NFRAMES(arg);
7103 int strsize = DTRACE_USTACK_STRSIZE(arg);
7104 uint64_t *pcs = &buf[1], *fps;
7105 char *str = (char *)&pcs[nframes];
7106 int size, offs = 0, i, j;
7107 size_t rem;
7108 uintptr_t old = mstate->dtms_scratch_ptr, saved;
7109 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
7110 char *sym;
7111
7112 /*
7113 * Should be taking a faster path if string space has not been
7114 * allocated.
7115 */
7116 ASSERT(strsize != 0);
7117
7118 /*
7119 * We will first allocate some temporary space for the frame pointers.
7120 */
7121 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
7122 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
7123 (nframes * sizeof (uint64_t));
7124
7125 if (!DTRACE_INSCRATCH(mstate, size)) {
7126 /*
7127 * Not enough room for our frame pointers -- need to indicate
7128 * that we ran out of scratch space.
7129 */
7130 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
7131 return;
7132 }
7133
7134 mstate->dtms_scratch_ptr += size;
7135 saved = mstate->dtms_scratch_ptr;
7136
7137 /*
7138 * Now get a stack with both program counters and frame pointers.
7139 */
7140 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7141 dtrace_getufpstack(buf, fps, nframes + 1);
7142 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7143
7144 /*
7145 * If that faulted, we're cooked.
7146 */
7147 if (*flags & CPU_DTRACE_FAULT)
7148 goto out;
7149
7150 /*
7151 * Now we want to walk up the stack, calling the USTACK helper. For
7152 * each iteration, we restore the scratch pointer.
7153 */
7154 for (i = 0; i < nframes; i++) {
7155 mstate->dtms_scratch_ptr = saved;
7156
7157 if (offs >= strsize)
7158 break;
7159
7160 sym = (char *)(uintptr_t)dtrace_helper(
7161 DTRACE_HELPER_ACTION_USTACK,
7162 mstate, state, pcs[i], fps[i]);
7163
7164 /*
7165 * If we faulted while running the helper, we're going to
7166 * clear the fault and null out the corresponding string.
7167 */
7168 if (*flags & CPU_DTRACE_FAULT) {
7169 *flags &= ~CPU_DTRACE_FAULT;
7170 str[offs++] = '\0';
7171 continue;
7172 }
7173
7174 if (sym == NULL) {
7175 str[offs++] = '\0';
7176 continue;
7177 }
7178
7179 if (!dtrace_strcanload((uintptr_t)sym, strsize, &rem, mstate,
7180 &(state->dts_vstate))) {
7181 str[offs++] = '\0';
7182 continue;
7183 }
7184
7185 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7186
7187 /*
7188 * Now copy in the string that the helper returned to us.
7189 */
7190 for (j = 0; offs + j < strsize && j < rem; j++) {
7191 if ((str[offs + j] = sym[j]) == '\0')
7192 break;
7193 }
7194
7195 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7196
7197 offs += j + 1;
7198 }
7199
7200 if (offs >= strsize) {
7201 /*
7202 * If we didn't have room for all of the strings, we don't
7203 * abort processing -- this needn't be a fatal error -- but we
7204 * still want to increment a counter (dts_stkstroverflows) to
7205 * allow this condition to be warned about. (If this is from
7206 * a jstack() action, it is easily tuned via jstackstrsize.)
7207 */
7208 dtrace_error(&state->dts_stkstroverflows);
7209 }
7210
7211 while (offs < strsize)
7212 str[offs++] = '\0';
7213
7214 out:
7215 mstate->dtms_scratch_ptr = old;
7216 }
7217
7218 static void
7219 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
7220 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
7221 {
7222 volatile uint16_t *flags;
7223 uint64_t val = *valp;
7224 size_t valoffs = *valoffsp;
7225
7226 flags = (volatile uint16_t *)&cpu_core[curcpu].cpuc_dtrace_flags;
7227 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
7228
7229 /*
7230 * If this is a string, we're going to only load until we find the zero
7231 * byte -- after which we'll store zero bytes.
7232 */
7233 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
7234 char c = '\0' + 1;
7235 size_t s;
7236
7237 for (s = 0; s < size; s++) {
7238 if (c != '\0' && dtkind == DIF_TF_BYREF) {
7239 c = dtrace_load8(val++);
7240 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
7241 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7242 c = dtrace_fuword8((void *)(uintptr_t)val++);
7243 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7244 if (*flags & CPU_DTRACE_FAULT)
7245 break;
7246 }
7247
7248 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
7249
7250 if (c == '\0' && intuple)
7251 break;
7252 }
7253 } else {
7254 uint8_t c;
7255 while (valoffs < end) {
7256 if (dtkind == DIF_TF_BYREF) {
7257 c = dtrace_load8(val++);
7258 } else if (dtkind == DIF_TF_BYUREF) {
7259 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7260 c = dtrace_fuword8((void *)(uintptr_t)val++);
7261 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7262 if (*flags & CPU_DTRACE_FAULT)
7263 break;
7264 }
7265
7266 DTRACE_STORE(uint8_t, tomax,
7267 valoffs++, c);
7268 }
7269 }
7270
7271 *valp = val;
7272 *valoffsp = valoffs;
7273 }
7274
7275 /*
7276 * Disables interrupts and sets the per-thread inprobe flag. When DEBUG is
7277 * defined, we also assert that we are not recursing unless the probe ID is an
7278 * error probe.
7279 */
7280 static dtrace_icookie_t
7281 dtrace_probe_enter(dtrace_id_t id)
7282 {
7283 dtrace_icookie_t cookie;
7284
7285 cookie = dtrace_interrupt_disable();
7286
7287 /*
7288 * Unless this is an ERROR probe, we are not allowed to recurse in
7289 * dtrace_probe(). Recursing into DTrace probe usually means that a
7290 * function is instrumented that should not have been instrumented or
7291 * that the ordering guarantee of the records will be violated,
7292 * resulting in unexpected output. If there is an exception to this
7293 * assertion, a new case should be added.
7294 */
7295 ASSERT(curthread->t_dtrace_inprobe == 0 ||
7296 id == dtrace_probeid_error);
7297 curthread->t_dtrace_inprobe = 1;
7298
7299 return (cookie);
7300 }
7301
7302 /*
7303 * Clears the per-thread inprobe flag and enables interrupts.
7304 */
7305 static void
7306 dtrace_probe_exit(dtrace_icookie_t cookie)
7307 {
7308
7309 curthread->t_dtrace_inprobe = 0;
7310 dtrace_interrupt_enable(cookie);
7311 }
7312
7313 /*
7314 * If you're looking for the epicenter of DTrace, you just found it. This
7315 * is the function called by the provider to fire a probe -- from which all
7316 * subsequent probe-context DTrace activity emanates.
7317 */
7318 void
7319 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
7320 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
7321 {
7322 processorid_t cpuid;
7323 dtrace_icookie_t cookie;
7324 dtrace_probe_t *probe;
7325 dtrace_mstate_t mstate;
7326 dtrace_ecb_t *ecb;
7327 dtrace_action_t *act;
7328 intptr_t offs;
7329 size_t size;
7330 int vtime, onintr;
7331 volatile uint16_t *flags;
7332 hrtime_t now;
7333
7334 if (KERNEL_PANICKED())
7335 return;
7336
7337 #ifdef illumos
7338 /*
7339 * Kick out immediately if this CPU is still being born (in which case
7340 * curthread will be set to -1) or the current thread can't allow
7341 * probes in its current context.
7342 */
7343 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
7344 return;
7345 #endif
7346
7347 cookie = dtrace_probe_enter(id);
7348 probe = dtrace_probes[id - 1];
7349 cpuid = curcpu;
7350 onintr = CPU_ON_INTR(CPU);
7351
7352 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
7353 probe->dtpr_predcache == curthread->t_predcache) {
7354 /*
7355 * We have hit in the predicate cache; we know that
7356 * this predicate would evaluate to be false.
7357 */
7358 dtrace_probe_exit(cookie);
7359 return;
7360 }
7361
7362 #ifdef illumos
7363 if (panic_quiesce) {
7364 #else
7365 if (KERNEL_PANICKED()) {
7366 #endif
7367 /*
7368 * We don't trace anything if we're panicking.
7369 */
7370 dtrace_probe_exit(cookie);
7371 return;
7372 }
7373
7374 now = mstate.dtms_timestamp = dtrace_gethrtime();
7375 mstate.dtms_present = DTRACE_MSTATE_TIMESTAMP;
7376 vtime = dtrace_vtime_references != 0;
7377
7378 if (vtime && curthread->t_dtrace_start)
7379 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
7380
7381 mstate.dtms_difo = NULL;
7382 mstate.dtms_probe = probe;
7383 mstate.dtms_strtok = 0;
7384 mstate.dtms_arg[0] = arg0;
7385 mstate.dtms_arg[1] = arg1;
7386 mstate.dtms_arg[2] = arg2;
7387 mstate.dtms_arg[3] = arg3;
7388 mstate.dtms_arg[4] = arg4;
7389
7390 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
7391
7392 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
7393 dtrace_predicate_t *pred = ecb->dte_predicate;
7394 dtrace_state_t *state = ecb->dte_state;
7395 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
7396 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
7397 dtrace_vstate_t *vstate = &state->dts_vstate;
7398 dtrace_provider_t *prov = probe->dtpr_provider;
7399 uint64_t tracememsize = 0;
7400 int committed = 0;
7401 caddr_t tomax;
7402
7403 /*
7404 * A little subtlety with the following (seemingly innocuous)
7405 * declaration of the automatic 'val': by looking at the
7406 * code, you might think that it could be declared in the
7407 * action processing loop, below. (That is, it's only used in
7408 * the action processing loop.) However, it must be declared
7409 * out of that scope because in the case of DIF expression
7410 * arguments to aggregating actions, one iteration of the
7411 * action loop will use the last iteration's value.
7412 */
7413 uint64_t val = 0;
7414
7415 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
7416 mstate.dtms_getf = NULL;
7417
7418 *flags &= ~CPU_DTRACE_ERROR;
7419
7420 if (prov == dtrace_provider) {
7421 /*
7422 * If dtrace itself is the provider of this probe,
7423 * we're only going to continue processing the ECB if
7424 * arg0 (the dtrace_state_t) is equal to the ECB's
7425 * creating state. (This prevents disjoint consumers
7426 * from seeing one another's metaprobes.)
7427 */
7428 if (arg0 != (uint64_t)(uintptr_t)state)
7429 continue;
7430 }
7431
7432 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
7433 /*
7434 * We're not currently active. If our provider isn't
7435 * the dtrace pseudo provider, we're not interested.
7436 */
7437 if (prov != dtrace_provider)
7438 continue;
7439
7440 /*
7441 * Now we must further check if we are in the BEGIN
7442 * probe. If we are, we will only continue processing
7443 * if we're still in WARMUP -- if one BEGIN enabling
7444 * has invoked the exit() action, we don't want to
7445 * evaluate subsequent BEGIN enablings.
7446 */
7447 if (probe->dtpr_id == dtrace_probeid_begin &&
7448 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
7449 ASSERT(state->dts_activity ==
7450 DTRACE_ACTIVITY_DRAINING);
7451 continue;
7452 }
7453 }
7454
7455 if (ecb->dte_cond) {
7456 /*
7457 * If the dte_cond bits indicate that this
7458 * consumer is only allowed to see user-mode firings
7459 * of this probe, call the provider's dtps_usermode()
7460 * entry point to check that the probe was fired
7461 * while in a user context. Skip this ECB if that's
7462 * not the case.
7463 */
7464 if ((ecb->dte_cond & DTRACE_COND_USERMODE) &&
7465 prov->dtpv_pops.dtps_usermode(prov->dtpv_arg,
7466 probe->dtpr_id, probe->dtpr_arg) == 0)
7467 continue;
7468
7469 #ifdef illumos
7470 /*
7471 * This is more subtle than it looks. We have to be
7472 * absolutely certain that CRED() isn't going to
7473 * change out from under us so it's only legit to
7474 * examine that structure if we're in constrained
7475 * situations. Currently, the only times we'll this
7476 * check is if a non-super-user has enabled the
7477 * profile or syscall providers -- providers that
7478 * allow visibility of all processes. For the
7479 * profile case, the check above will ensure that
7480 * we're examining a user context.
7481 */
7482 if (ecb->dte_cond & DTRACE_COND_OWNER) {
7483 cred_t *cr;
7484 cred_t *s_cr =
7485 ecb->dte_state->dts_cred.dcr_cred;
7486 proc_t *proc;
7487
7488 ASSERT(s_cr != NULL);
7489
7490 if ((cr = CRED()) == NULL ||
7491 s_cr->cr_uid != cr->cr_uid ||
7492 s_cr->cr_uid != cr->cr_ruid ||
7493 s_cr->cr_uid != cr->cr_suid ||
7494 s_cr->cr_gid != cr->cr_gid ||
7495 s_cr->cr_gid != cr->cr_rgid ||
7496 s_cr->cr_gid != cr->cr_sgid ||
7497 (proc = ttoproc(curthread)) == NULL ||
7498 (proc->p_flag & SNOCD))
7499 continue;
7500 }
7501
7502 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
7503 cred_t *cr;
7504 cred_t *s_cr =
7505 ecb->dte_state->dts_cred.dcr_cred;
7506
7507 ASSERT(s_cr != NULL);
7508
7509 if ((cr = CRED()) == NULL ||
7510 s_cr->cr_zone->zone_id !=
7511 cr->cr_zone->zone_id)
7512 continue;
7513 }
7514 #endif
7515 }
7516
7517 if (now - state->dts_alive > dtrace_deadman_timeout) {
7518 /*
7519 * We seem to be dead. Unless we (a) have kernel
7520 * destructive permissions (b) have explicitly enabled
7521 * destructive actions and (c) destructive actions have
7522 * not been disabled, we're going to transition into
7523 * the KILLED state, from which no further processing
7524 * on this state will be performed.
7525 */
7526 if (!dtrace_priv_kernel_destructive(state) ||
7527 !state->dts_cred.dcr_destructive ||
7528 dtrace_destructive_disallow) {
7529 void *activity = &state->dts_activity;
7530 dtrace_activity_t curstate;
7531
7532 do {
7533 curstate = state->dts_activity;
7534 } while (dtrace_cas32(activity, curstate,
7535 DTRACE_ACTIVITY_KILLED) != curstate);
7536
7537 continue;
7538 }
7539 }
7540
7541 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
7542 ecb->dte_alignment, state, &mstate)) < 0)
7543 continue;
7544
7545 tomax = buf->dtb_tomax;
7546 ASSERT(tomax != NULL);
7547
7548 if (ecb->dte_size != 0) {
7549 dtrace_rechdr_t dtrh;
7550 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
7551 mstate.dtms_timestamp = dtrace_gethrtime();
7552 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
7553 }
7554 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
7555 dtrh.dtrh_epid = ecb->dte_epid;
7556 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
7557 mstate.dtms_timestamp);
7558 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
7559 }
7560
7561 mstate.dtms_epid = ecb->dte_epid;
7562 mstate.dtms_present |= DTRACE_MSTATE_EPID;
7563
7564 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
7565 mstate.dtms_access = DTRACE_ACCESS_KERNEL;
7566 else
7567 mstate.dtms_access = 0;
7568
7569 if (pred != NULL) {
7570 dtrace_difo_t *dp = pred->dtp_difo;
7571 uint64_t rval;
7572
7573 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
7574
7575 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
7576 dtrace_cacheid_t cid = probe->dtpr_predcache;
7577
7578 if (cid != DTRACE_CACHEIDNONE && !onintr) {
7579 /*
7580 * Update the predicate cache...
7581 */
7582 ASSERT(cid == pred->dtp_cacheid);
7583 curthread->t_predcache = cid;
7584 }
7585
7586 continue;
7587 }
7588 }
7589
7590 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
7591 act != NULL; act = act->dta_next) {
7592 size_t valoffs;
7593 dtrace_difo_t *dp;
7594 dtrace_recdesc_t *rec = &act->dta_rec;
7595
7596 size = rec->dtrd_size;
7597 valoffs = offs + rec->dtrd_offset;
7598
7599 if (DTRACEACT_ISAGG(act->dta_kind)) {
7600 uint64_t v = 0xbad;
7601 dtrace_aggregation_t *agg;
7602
7603 agg = (dtrace_aggregation_t *)act;
7604
7605 if ((dp = act->dta_difo) != NULL)
7606 v = dtrace_dif_emulate(dp,
7607 &mstate, vstate, state);
7608
7609 if (*flags & CPU_DTRACE_ERROR)
7610 continue;
7611
7612 /*
7613 * Note that we always pass the expression
7614 * value from the previous iteration of the
7615 * action loop. This value will only be used
7616 * if there is an expression argument to the
7617 * aggregating action, denoted by the
7618 * dtag_hasarg field.
7619 */
7620 dtrace_aggregate(agg, buf,
7621 offs, aggbuf, v, val);
7622 continue;
7623 }
7624
7625 switch (act->dta_kind) {
7626 case DTRACEACT_STOP:
7627 if (dtrace_priv_proc_destructive(state))
7628 dtrace_action_stop();
7629 continue;
7630
7631 case DTRACEACT_BREAKPOINT:
7632 if (dtrace_priv_kernel_destructive(state))
7633 dtrace_action_breakpoint(ecb);
7634 continue;
7635
7636 case DTRACEACT_PANIC:
7637 if (dtrace_priv_kernel_destructive(state))
7638 dtrace_action_panic(ecb);
7639 continue;
7640
7641 case DTRACEACT_STACK:
7642 if (!dtrace_priv_kernel(state))
7643 continue;
7644
7645 dtrace_getpcstack((pc_t *)(tomax + valoffs),
7646 size / sizeof (pc_t), probe->dtpr_aframes,
7647 DTRACE_ANCHORED(probe) ? NULL :
7648 (uint32_t *)arg0);
7649 continue;
7650
7651 case DTRACEACT_JSTACK:
7652 case DTRACEACT_USTACK:
7653 if (!dtrace_priv_proc(state))
7654 continue;
7655
7656 /*
7657 * See comment in DIF_VAR_PID.
7658 */
7659 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
7660 CPU_ON_INTR(CPU)) {
7661 int depth = DTRACE_USTACK_NFRAMES(
7662 rec->dtrd_arg) + 1;
7663
7664 dtrace_bzero((void *)(tomax + valoffs),
7665 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
7666 + depth * sizeof (uint64_t));
7667
7668 continue;
7669 }
7670
7671 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
7672 curproc->p_dtrace_helpers != NULL) {
7673 /*
7674 * This is the slow path -- we have
7675 * allocated string space, and we're
7676 * getting the stack of a process that
7677 * has helpers. Call into a separate
7678 * routine to perform this processing.
7679 */
7680 dtrace_action_ustack(&mstate, state,
7681 (uint64_t *)(tomax + valoffs),
7682 rec->dtrd_arg);
7683 continue;
7684 }
7685
7686 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7687 dtrace_getupcstack((uint64_t *)
7688 (tomax + valoffs),
7689 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7690 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7691 continue;
7692
7693 default:
7694 break;
7695 }
7696
7697 dp = act->dta_difo;
7698 ASSERT(dp != NULL);
7699
7700 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7701
7702 if (*flags & CPU_DTRACE_ERROR)
7703 continue;
7704
7705 switch (act->dta_kind) {
7706 case DTRACEACT_SPECULATE: {
7707 dtrace_rechdr_t *dtrh;
7708
7709 ASSERT(buf == &state->dts_buffer[cpuid]);
7710 buf = dtrace_speculation_buffer(state,
7711 cpuid, val);
7712
7713 if (buf == NULL) {
7714 *flags |= CPU_DTRACE_DROP;
7715 continue;
7716 }
7717
7718 offs = dtrace_buffer_reserve(buf,
7719 ecb->dte_needed, ecb->dte_alignment,
7720 state, NULL);
7721
7722 if (offs < 0) {
7723 *flags |= CPU_DTRACE_DROP;
7724 continue;
7725 }
7726
7727 tomax = buf->dtb_tomax;
7728 ASSERT(tomax != NULL);
7729
7730 if (ecb->dte_size == 0)
7731 continue;
7732
7733 ASSERT3U(ecb->dte_size, >=,
7734 sizeof (dtrace_rechdr_t));
7735 dtrh = ((void *)(tomax + offs));
7736 dtrh->dtrh_epid = ecb->dte_epid;
7737 /*
7738 * When the speculation is committed, all of
7739 * the records in the speculative buffer will
7740 * have their timestamps set to the commit
7741 * time. Until then, it is set to a sentinel
7742 * value, for debugability.
7743 */
7744 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7745 continue;
7746 }
7747
7748 case DTRACEACT_PRINTM: {
7749 /*
7750 * printm() assumes that the DIF returns a
7751 * pointer returned by memref(). memref() is a
7752 * subroutine that is used to get around the
7753 * single-valued returns of DIF and is assumed
7754 * to always be allocated in the scratch space.
7755 * Therefore, we need to validate that the
7756 * pointer given to printm() is in the scratch
7757 * space in order to avoid a potential panic.
7758 */
7759 uintptr_t *memref = (uintptr_t *)(uintptr_t) val;
7760
7761 if (!DTRACE_INSCRATCHPTR(&mstate,
7762 (uintptr_t)memref, 2 * sizeof(uintptr_t))) {
7763 *flags |= CPU_DTRACE_BADADDR;
7764 continue;
7765 }
7766
7767 /* Get the size from the memref. */
7768 size = memref[1];
7769
7770 /*
7771 * Check if the size exceeds the allocated
7772 * buffer size.
7773 */
7774 if (size + sizeof(uintptr_t) > dp->dtdo_rtype.dtdt_size) {
7775 /* Flag a drop! */
7776 *flags |= CPU_DTRACE_DROP;
7777 continue;
7778 }
7779
7780 /* Store the size in the buffer first. */
7781 DTRACE_STORE(uintptr_t, tomax,
7782 valoffs, size);
7783
7784 /*
7785 * Offset the buffer address to the start
7786 * of the data.
7787 */
7788 valoffs += sizeof(uintptr_t);
7789
7790 /*
7791 * Reset to the memory address rather than
7792 * the memref array, then let the BYREF
7793 * code below do the work to store the
7794 * memory data in the buffer.
7795 */
7796 val = memref[0];
7797 break;
7798 }
7799
7800 case DTRACEACT_CHILL:
7801 if (dtrace_priv_kernel_destructive(state))
7802 dtrace_action_chill(&mstate, val);
7803 continue;
7804
7805 case DTRACEACT_RAISE:
7806 if (dtrace_priv_proc_destructive(state))
7807 dtrace_action_raise(val);
7808 continue;
7809
7810 case DTRACEACT_COMMIT:
7811 ASSERT(!committed);
7812
7813 /*
7814 * We need to commit our buffer state.
7815 */
7816 if (ecb->dte_size)
7817 buf->dtb_offset = offs + ecb->dte_size;
7818 buf = &state->dts_buffer[cpuid];
7819 dtrace_speculation_commit(state, cpuid, val);
7820 committed = 1;
7821 continue;
7822
7823 case DTRACEACT_DISCARD:
7824 dtrace_speculation_discard(state, cpuid, val);
7825 continue;
7826
7827 case DTRACEACT_DIFEXPR:
7828 case DTRACEACT_LIBACT:
7829 case DTRACEACT_PRINTF:
7830 case DTRACEACT_PRINTA:
7831 case DTRACEACT_SYSTEM:
7832 case DTRACEACT_FREOPEN:
7833 case DTRACEACT_TRACEMEM:
7834 break;
7835
7836 case DTRACEACT_TRACEMEM_DYNSIZE:
7837 tracememsize = val;
7838 break;
7839
7840 case DTRACEACT_SYM:
7841 case DTRACEACT_MOD:
7842 if (!dtrace_priv_kernel(state))
7843 continue;
7844 break;
7845
7846 case DTRACEACT_USYM:
7847 case DTRACEACT_UMOD:
7848 case DTRACEACT_UADDR: {
7849 #ifdef illumos
7850 struct pid *pid = curthread->t_procp->p_pidp;
7851 #endif
7852
7853 if (!dtrace_priv_proc(state))
7854 continue;
7855
7856 DTRACE_STORE(uint64_t, tomax,
7857 #ifdef illumos
7858 valoffs, (uint64_t)pid->pid_id);
7859 #else
7860 valoffs, (uint64_t) curproc->p_pid);
7861 #endif
7862 DTRACE_STORE(uint64_t, tomax,
7863 valoffs + sizeof (uint64_t), val);
7864
7865 continue;
7866 }
7867
7868 case DTRACEACT_EXIT: {
7869 /*
7870 * For the exit action, we are going to attempt
7871 * to atomically set our activity to be
7872 * draining. If this fails (either because
7873 * another CPU has beat us to the exit action,
7874 * or because our current activity is something
7875 * other than ACTIVE or WARMUP), we will
7876 * continue. This assures that the exit action
7877 * can be successfully recorded at most once
7878 * when we're in the ACTIVE state. If we're
7879 * encountering the exit() action while in
7880 * COOLDOWN, however, we want to honor the new
7881 * status code. (We know that we're the only
7882 * thread in COOLDOWN, so there is no race.)
7883 */
7884 void *activity = &state->dts_activity;
7885 dtrace_activity_t curstate = state->dts_activity;
7886
7887 if (curstate == DTRACE_ACTIVITY_COOLDOWN)
7888 break;
7889
7890 if (curstate != DTRACE_ACTIVITY_WARMUP)
7891 curstate = DTRACE_ACTIVITY_ACTIVE;
7892
7893 if (dtrace_cas32(activity, curstate,
7894 DTRACE_ACTIVITY_DRAINING) != curstate) {
7895 *flags |= CPU_DTRACE_DROP;
7896 continue;
7897 }
7898
7899 break;
7900 }
7901
7902 default:
7903 ASSERT(0);
7904 }
7905
7906 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7907 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7908 uintptr_t end = valoffs + size;
7909
7910 if (tracememsize != 0 &&
7911 valoffs + tracememsize < end) {
7912 end = valoffs + tracememsize;
7913 tracememsize = 0;
7914 }
7915
7916 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7917 !dtrace_vcanload((void *)(uintptr_t)val,
7918 &dp->dtdo_rtype, NULL, &mstate, vstate))
7919 continue;
7920
7921 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7922 &val, end, act->dta_intuple,
7923 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7924 DIF_TF_BYREF: DIF_TF_BYUREF);
7925 continue;
7926 }
7927
7928 switch (size) {
7929 case 0:
7930 break;
7931
7932 case sizeof (uint8_t):
7933 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7934 break;
7935 case sizeof (uint16_t):
7936 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7937 break;
7938 case sizeof (uint32_t):
7939 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7940 break;
7941 case sizeof (uint64_t):
7942 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7943 break;
7944 default:
7945 /*
7946 * Any other size should have been returned by
7947 * reference, not by value.
7948 */
7949 ASSERT(0);
7950 break;
7951 }
7952 }
7953
7954 if (*flags & CPU_DTRACE_DROP)
7955 continue;
7956
7957 if (*flags & CPU_DTRACE_FAULT) {
7958 int ndx;
7959 dtrace_action_t *err;
7960
7961 buf->dtb_errors++;
7962
7963 if (probe->dtpr_id == dtrace_probeid_error) {
7964 /*
7965 * There's nothing we can do -- we had an
7966 * error on the error probe. We bump an
7967 * error counter to at least indicate that
7968 * this condition happened.
7969 */
7970 dtrace_error(&state->dts_dblerrors);
7971 continue;
7972 }
7973
7974 if (vtime) {
7975 /*
7976 * Before recursing on dtrace_probe(), we
7977 * need to explicitly clear out our start
7978 * time to prevent it from being accumulated
7979 * into t_dtrace_vtime.
7980 */
7981 curthread->t_dtrace_start = 0;
7982 }
7983
7984 /*
7985 * Iterate over the actions to figure out which action
7986 * we were processing when we experienced the error.
7987 * Note that act points _past_ the faulting action; if
7988 * act is ecb->dte_action, the fault was in the
7989 * predicate, if it's ecb->dte_action->dta_next it's
7990 * in action #1, and so on.
7991 */
7992 for (err = ecb->dte_action, ndx = 0;
7993 err != act; err = err->dta_next, ndx++)
7994 continue;
7995
7996 dtrace_probe_error(state, ecb->dte_epid, ndx,
7997 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7998 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7999 cpu_core[cpuid].cpuc_dtrace_illval);
8000
8001 continue;
8002 }
8003
8004 if (!committed)
8005 buf->dtb_offset = offs + ecb->dte_size;
8006 }
8007
8008 if (vtime)
8009 curthread->t_dtrace_start = dtrace_gethrtime();
8010
8011 dtrace_probe_exit(cookie);
8012 }
8013
8014 /*
8015 * DTrace Probe Hashing Functions
8016 *
8017 * The functions in this section (and indeed, the functions in remaining
8018 * sections) are not _called_ from probe context. (Any exceptions to this are
8019 * marked with a "Note:".) Rather, they are called from elsewhere in the
8020 * DTrace framework to look-up probes in, add probes to and remove probes from
8021 * the DTrace probe hashes. (Each probe is hashed by each element of the
8022 * probe tuple -- allowing for fast lookups, regardless of what was
8023 * specified.)
8024 */
8025 static uint_t
8026 dtrace_hash_str(const char *p)
8027 {
8028 unsigned int g;
8029 uint_t hval = 0;
8030
8031 while (*p) {
8032 hval = (hval << 4) + *p++;
8033 if ((g = (hval & 0xf0000000)) != 0)
8034 hval ^= g >> 24;
8035 hval &= ~g;
8036 }
8037 return (hval);
8038 }
8039
8040 static dtrace_hash_t *
8041 dtrace_hash_create(size_t stroffs, size_t nextoffs, size_t prevoffs)
8042 {
8043 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
8044
8045 hash->dth_stroffs = stroffs;
8046 hash->dth_nextoffs = nextoffs;
8047 hash->dth_prevoffs = prevoffs;
8048
8049 hash->dth_size = 1;
8050 hash->dth_mask = hash->dth_size - 1;
8051
8052 hash->dth_tab = kmem_zalloc(hash->dth_size *
8053 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
8054
8055 return (hash);
8056 }
8057
8058 static void
8059 dtrace_hash_destroy(dtrace_hash_t *hash)
8060 {
8061 #ifdef DEBUG
8062 int i;
8063
8064 for (i = 0; i < hash->dth_size; i++)
8065 ASSERT(hash->dth_tab[i] == NULL);
8066 #endif
8067
8068 kmem_free(hash->dth_tab,
8069 hash->dth_size * sizeof (dtrace_hashbucket_t *));
8070 kmem_free(hash, sizeof (dtrace_hash_t));
8071 }
8072
8073 static void
8074 dtrace_hash_resize(dtrace_hash_t *hash)
8075 {
8076 int size = hash->dth_size, i, ndx;
8077 int new_size = hash->dth_size << 1;
8078 int new_mask = new_size - 1;
8079 dtrace_hashbucket_t **new_tab, *bucket, *next;
8080
8081 ASSERT((new_size & new_mask) == 0);
8082
8083 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
8084
8085 for (i = 0; i < size; i++) {
8086 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
8087 dtrace_probe_t *probe = bucket->dthb_chain;
8088
8089 ASSERT(probe != NULL);
8090 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
8091
8092 next = bucket->dthb_next;
8093 bucket->dthb_next = new_tab[ndx];
8094 new_tab[ndx] = bucket;
8095 }
8096 }
8097
8098 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
8099 hash->dth_tab = new_tab;
8100 hash->dth_size = new_size;
8101 hash->dth_mask = new_mask;
8102 }
8103
8104 static void
8105 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
8106 {
8107 int hashval = DTRACE_HASHSTR(hash, new);
8108 int ndx = hashval & hash->dth_mask;
8109 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8110 dtrace_probe_t **nextp, **prevp;
8111
8112 for (; bucket != NULL; bucket = bucket->dthb_next) {
8113 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
8114 goto add;
8115 }
8116
8117 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
8118 dtrace_hash_resize(hash);
8119 dtrace_hash_add(hash, new);
8120 return;
8121 }
8122
8123 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
8124 bucket->dthb_next = hash->dth_tab[ndx];
8125 hash->dth_tab[ndx] = bucket;
8126 hash->dth_nbuckets++;
8127
8128 add:
8129 nextp = DTRACE_HASHNEXT(hash, new);
8130 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
8131 *nextp = bucket->dthb_chain;
8132
8133 if (bucket->dthb_chain != NULL) {
8134 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
8135 ASSERT(*prevp == NULL);
8136 *prevp = new;
8137 }
8138
8139 bucket->dthb_chain = new;
8140 bucket->dthb_len++;
8141 }
8142
8143 static dtrace_probe_t *
8144 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
8145 {
8146 int hashval = DTRACE_HASHSTR(hash, template);
8147 int ndx = hashval & hash->dth_mask;
8148 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8149
8150 for (; bucket != NULL; bucket = bucket->dthb_next) {
8151 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8152 return (bucket->dthb_chain);
8153 }
8154
8155 return (NULL);
8156 }
8157
8158 static int
8159 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
8160 {
8161 int hashval = DTRACE_HASHSTR(hash, template);
8162 int ndx = hashval & hash->dth_mask;
8163 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8164
8165 for (; bucket != NULL; bucket = bucket->dthb_next) {
8166 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
8167 return (bucket->dthb_len);
8168 }
8169
8170 return (0);
8171 }
8172
8173 static void
8174 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
8175 {
8176 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
8177 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
8178
8179 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
8180 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
8181
8182 /*
8183 * Find the bucket that we're removing this probe from.
8184 */
8185 for (; bucket != NULL; bucket = bucket->dthb_next) {
8186 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
8187 break;
8188 }
8189
8190 ASSERT(bucket != NULL);
8191
8192 if (*prevp == NULL) {
8193 if (*nextp == NULL) {
8194 /*
8195 * The removed probe was the only probe on this
8196 * bucket; we need to remove the bucket.
8197 */
8198 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
8199
8200 ASSERT(bucket->dthb_chain == probe);
8201 ASSERT(b != NULL);
8202
8203 if (b == bucket) {
8204 hash->dth_tab[ndx] = bucket->dthb_next;
8205 } else {
8206 while (b->dthb_next != bucket)
8207 b = b->dthb_next;
8208 b->dthb_next = bucket->dthb_next;
8209 }
8210
8211 ASSERT(hash->dth_nbuckets > 0);
8212 hash->dth_nbuckets--;
8213 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
8214 return;
8215 }
8216
8217 bucket->dthb_chain = *nextp;
8218 } else {
8219 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
8220 }
8221
8222 if (*nextp != NULL)
8223 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
8224 }
8225
8226 /*
8227 * DTrace Utility Functions
8228 *
8229 * These are random utility functions that are _not_ called from probe context.
8230 */
8231 static int
8232 dtrace_badattr(const dtrace_attribute_t *a)
8233 {
8234 return (a->dtat_name > DTRACE_STABILITY_MAX ||
8235 a->dtat_data > DTRACE_STABILITY_MAX ||
8236 a->dtat_class > DTRACE_CLASS_MAX);
8237 }
8238
8239 /*
8240 * Return a duplicate copy of a string. If the specified string is NULL,
8241 * this function returns a zero-length string.
8242 */
8243 static char *
8244 dtrace_strdup(const char *str)
8245 {
8246 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
8247
8248 if (str != NULL)
8249 (void) strcpy(new, str);
8250
8251 return (new);
8252 }
8253
8254 #define DTRACE_ISALPHA(c) \
8255 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
8256
8257 static int
8258 dtrace_badname(const char *s)
8259 {
8260 char c;
8261
8262 if (s == NULL || (c = *s++) == '\0')
8263 return (0);
8264
8265 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
8266 return (1);
8267
8268 while ((c = *s++) != '\0') {
8269 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
8270 c != '-' && c != '_' && c != '.' && c != '`')
8271 return (1);
8272 }
8273
8274 return (0);
8275 }
8276
8277 static void
8278 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
8279 {
8280 uint32_t priv;
8281
8282 #ifdef illumos
8283 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
8284 /*
8285 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
8286 */
8287 priv = DTRACE_PRIV_ALL;
8288 } else {
8289 *uidp = crgetuid(cr);
8290 *zoneidp = crgetzoneid(cr);
8291
8292 priv = 0;
8293 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
8294 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
8295 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
8296 priv |= DTRACE_PRIV_USER;
8297 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
8298 priv |= DTRACE_PRIV_PROC;
8299 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
8300 priv |= DTRACE_PRIV_OWNER;
8301 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
8302 priv |= DTRACE_PRIV_ZONEOWNER;
8303 }
8304 #else
8305 priv = DTRACE_PRIV_ALL;
8306 #endif
8307
8308 *privp = priv;
8309 }
8310
8311 #ifdef DTRACE_ERRDEBUG
8312 static void
8313 dtrace_errdebug(const char *str)
8314 {
8315 int hval = dtrace_hash_str(str) % DTRACE_ERRHASHSZ;
8316 int occupied = 0;
8317
8318 mutex_enter(&dtrace_errlock);
8319 dtrace_errlast = str;
8320 dtrace_errthread = curthread;
8321
8322 while (occupied++ < DTRACE_ERRHASHSZ) {
8323 if (dtrace_errhash[hval].dter_msg == str) {
8324 dtrace_errhash[hval].dter_count++;
8325 goto out;
8326 }
8327
8328 if (dtrace_errhash[hval].dter_msg != NULL) {
8329 hval = (hval + 1) % DTRACE_ERRHASHSZ;
8330 continue;
8331 }
8332
8333 dtrace_errhash[hval].dter_msg = str;
8334 dtrace_errhash[hval].dter_count = 1;
8335 goto out;
8336 }
8337
8338 panic("dtrace: undersized error hash");
8339 out:
8340 mutex_exit(&dtrace_errlock);
8341 }
8342 #endif
8343
8344 /*
8345 * DTrace Matching Functions
8346 *
8347 * These functions are used to match groups of probes, given some elements of
8348 * a probe tuple, or some globbed expressions for elements of a probe tuple.
8349 */
8350 static int
8351 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
8352 zoneid_t zoneid)
8353 {
8354 if (priv != DTRACE_PRIV_ALL) {
8355 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
8356 uint32_t match = priv & ppriv;
8357
8358 /*
8359 * No PRIV_DTRACE_* privileges...
8360 */
8361 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
8362 DTRACE_PRIV_KERNEL)) == 0)
8363 return (0);
8364
8365 /*
8366 * No matching bits, but there were bits to match...
8367 */
8368 if (match == 0 && ppriv != 0)
8369 return (0);
8370
8371 /*
8372 * Need to have permissions to the process, but don't...
8373 */
8374 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
8375 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
8376 return (0);
8377 }
8378
8379 /*
8380 * Need to be in the same zone unless we possess the
8381 * privilege to examine all zones.
8382 */
8383 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
8384 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
8385 return (0);
8386 }
8387 }
8388
8389 return (1);
8390 }
8391
8392 /*
8393 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
8394 * consists of input pattern strings and an ops-vector to evaluate them.
8395 * This function returns >0 for match, 0 for no match, and <0 for error.
8396 */
8397 static int
8398 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
8399 uint32_t priv, uid_t uid, zoneid_t zoneid)
8400 {
8401 dtrace_provider_t *pvp = prp->dtpr_provider;
8402 int rv;
8403
8404 if (pvp->dtpv_defunct)
8405 return (0);
8406
8407 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
8408 return (rv);
8409
8410 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
8411 return (rv);
8412
8413 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
8414 return (rv);
8415
8416 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
8417 return (rv);
8418
8419 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
8420 return (0);
8421
8422 return (rv);
8423 }
8424
8425 /*
8426 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
8427 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
8428 * libc's version, the kernel version only applies to 8-bit ASCII strings.
8429 * In addition, all of the recursion cases except for '*' matching have been
8430 * unwound. For '*', we still implement recursive evaluation, but a depth
8431 * counter is maintained and matching is aborted if we recurse too deep.
8432 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
8433 */
8434 static int
8435 dtrace_match_glob(const char *s, const char *p, int depth)
8436 {
8437 const char *olds;
8438 char s1, c;
8439 int gs;
8440
8441 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
8442 return (-1);
8443
8444 if (s == NULL)
8445 s = ""; /* treat NULL as empty string */
8446
8447 top:
8448 olds = s;
8449 s1 = *s++;
8450
8451 if (p == NULL)
8452 return (0);
8453
8454 if ((c = *p++) == '\0')
8455 return (s1 == '\0');
8456
8457 switch (c) {
8458 case '[': {
8459 int ok = 0, notflag = 0;
8460 char lc = '\0';
8461
8462 if (s1 == '\0')
8463 return (0);
8464
8465 if (*p == '!') {
8466 notflag = 1;
8467 p++;
8468 }
8469
8470 if ((c = *p++) == '\0')
8471 return (0);
8472
8473 do {
8474 if (c == '-' && lc != '\0' && *p != ']') {
8475 if ((c = *p++) == '\0')
8476 return (0);
8477 if (c == '\\' && (c = *p++) == '\0')
8478 return (0);
8479
8480 if (notflag) {
8481 if (s1 < lc || s1 > c)
8482 ok++;
8483 else
8484 return (0);
8485 } else if (lc <= s1 && s1 <= c)
8486 ok++;
8487
8488 } else if (c == '\\' && (c = *p++) == '\0')
8489 return (0);
8490
8491 lc = c; /* save left-hand 'c' for next iteration */
8492
8493 if (notflag) {
8494 if (s1 != c)
8495 ok++;
8496 else
8497 return (0);
8498 } else if (s1 == c)
8499 ok++;
8500
8501 if ((c = *p++) == '\0')
8502 return (0);
8503
8504 } while (c != ']');
8505
8506 if (ok)
8507 goto top;
8508
8509 return (0);
8510 }
8511
8512 case '\\':
8513 if ((c = *p++) == '\0')
8514 return (0);
8515 /*FALLTHRU*/
8516
8517 default:
8518 if (c != s1)
8519 return (0);
8520 /*FALLTHRU*/
8521
8522 case '?':
8523 if (s1 != '\0')
8524 goto top;
8525 return (0);
8526
8527 case '*':
8528 while (*p == '*')
8529 p++; /* consecutive *'s are identical to a single one */
8530
8531 if (*p == '\0')
8532 return (1);
8533
8534 for (s = olds; *s != '\0'; s++) {
8535 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
8536 return (gs);
8537 }
8538
8539 return (0);
8540 }
8541 }
8542
8543 /*ARGSUSED*/
8544 static int
8545 dtrace_match_string(const char *s, const char *p, int depth)
8546 {
8547 return (s != NULL && strcmp(s, p) == 0);
8548 }
8549
8550 /*ARGSUSED*/
8551 static int
8552 dtrace_match_nul(const char *s, const char *p, int depth)
8553 {
8554 return (1); /* always match the empty pattern */
8555 }
8556
8557 /*ARGSUSED*/
8558 static int
8559 dtrace_match_nonzero(const char *s, const char *p, int depth)
8560 {
8561 return (s != NULL && s[0] != '\0');
8562 }
8563
8564 static int
8565 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
8566 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
8567 {
8568 dtrace_probe_t template, *probe;
8569 dtrace_hash_t *hash = NULL;
8570 int len, best = INT_MAX, nmatched = 0;
8571 dtrace_id_t i;
8572
8573 ASSERT(MUTEX_HELD(&dtrace_lock));
8574
8575 /*
8576 * If the probe ID is specified in the key, just lookup by ID and
8577 * invoke the match callback once if a matching probe is found.
8578 */
8579 if (pkp->dtpk_id != DTRACE_IDNONE) {
8580 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
8581 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
8582 (void) (*matched)(probe, arg);
8583 nmatched++;
8584 }
8585 return (nmatched);
8586 }
8587
8588 template.dtpr_mod = (char *)pkp->dtpk_mod;
8589 template.dtpr_func = (char *)pkp->dtpk_func;
8590 template.dtpr_name = (char *)pkp->dtpk_name;
8591
8592 /*
8593 * We want to find the most distinct of the module name, function
8594 * name, and name. So for each one that is not a glob pattern or
8595 * empty string, we perform a lookup in the corresponding hash and
8596 * use the hash table with the fewest collisions to do our search.
8597 */
8598 if (pkp->dtpk_mmatch == &dtrace_match_string &&
8599 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
8600 best = len;
8601 hash = dtrace_bymod;
8602 }
8603
8604 if (pkp->dtpk_fmatch == &dtrace_match_string &&
8605 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
8606 best = len;
8607 hash = dtrace_byfunc;
8608 }
8609
8610 if (pkp->dtpk_nmatch == &dtrace_match_string &&
8611 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
8612 best = len;
8613 hash = dtrace_byname;
8614 }
8615
8616 /*
8617 * If we did not select a hash table, iterate over every probe and
8618 * invoke our callback for each one that matches our input probe key.
8619 */
8620 if (hash == NULL) {
8621 for (i = 0; i < dtrace_nprobes; i++) {
8622 if ((probe = dtrace_probes[i]) == NULL ||
8623 dtrace_match_probe(probe, pkp, priv, uid,
8624 zoneid) <= 0)
8625 continue;
8626
8627 nmatched++;
8628
8629 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8630 break;
8631 }
8632
8633 return (nmatched);
8634 }
8635
8636 /*
8637 * If we selected a hash table, iterate over each probe of the same key
8638 * name and invoke the callback for every probe that matches the other
8639 * attributes of our input probe key.
8640 */
8641 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
8642 probe = *(DTRACE_HASHNEXT(hash, probe))) {
8643
8644 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
8645 continue;
8646
8647 nmatched++;
8648
8649 if ((*matched)(probe, arg) != DTRACE_MATCH_NEXT)
8650 break;
8651 }
8652
8653 return (nmatched);
8654 }
8655
8656 /*
8657 * Return the function pointer dtrace_probecmp() should use to compare the
8658 * specified pattern with a string. For NULL or empty patterns, we select
8659 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
8660 * For non-empty non-glob strings, we use dtrace_match_string().
8661 */
8662 static dtrace_probekey_f *
8663 dtrace_probekey_func(const char *p)
8664 {
8665 char c;
8666
8667 if (p == NULL || *p == '\0')
8668 return (&dtrace_match_nul);
8669
8670 while ((c = *p++) != '\0') {
8671 if (c == '[' || c == '?' || c == '*' || c == '\\')
8672 return (&dtrace_match_glob);
8673 }
8674
8675 return (&dtrace_match_string);
8676 }
8677
8678 /*
8679 * Build a probe comparison key for use with dtrace_match_probe() from the
8680 * given probe description. By convention, a null key only matches anchored
8681 * probes: if each field is the empty string, reset dtpk_fmatch to
8682 * dtrace_match_nonzero().
8683 */
8684 static void
8685 dtrace_probekey(dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
8686 {
8687 pkp->dtpk_prov = pdp->dtpd_provider;
8688 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
8689
8690 pkp->dtpk_mod = pdp->dtpd_mod;
8691 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
8692
8693 pkp->dtpk_func = pdp->dtpd_func;
8694 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
8695
8696 pkp->dtpk_name = pdp->dtpd_name;
8697 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
8698
8699 pkp->dtpk_id = pdp->dtpd_id;
8700
8701 if (pkp->dtpk_id == DTRACE_IDNONE &&
8702 pkp->dtpk_pmatch == &dtrace_match_nul &&
8703 pkp->dtpk_mmatch == &dtrace_match_nul &&
8704 pkp->dtpk_fmatch == &dtrace_match_nul &&
8705 pkp->dtpk_nmatch == &dtrace_match_nul)
8706 pkp->dtpk_fmatch = &dtrace_match_nonzero;
8707 }
8708
8709 /*
8710 * DTrace Provider-to-Framework API Functions
8711 *
8712 * These functions implement much of the Provider-to-Framework API, as
8713 * described in <sys/dtrace.h>. The parts of the API not in this section are
8714 * the functions in the API for probe management (found below), and
8715 * dtrace_probe() itself (found above).
8716 */
8717
8718 /*
8719 * Register the calling provider with the DTrace framework. This should
8720 * generally be called by DTrace providers in their attach(9E) entry point.
8721 */
8722 int
8723 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8724 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8725 {
8726 dtrace_provider_t *provider;
8727
8728 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8729 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8730 "arguments", name ? name : "<NULL>");
8731 return (EINVAL);
8732 }
8733
8734 if (name[0] == '\0' || dtrace_badname(name)) {
8735 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8736 "provider name", name);
8737 return (EINVAL);
8738 }
8739
8740 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8741 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8742 pops->dtps_destroy == NULL ||
8743 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8744 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8745 "provider ops", name);
8746 return (EINVAL);
8747 }
8748
8749 if (dtrace_badattr(&pap->dtpa_provider) ||
8750 dtrace_badattr(&pap->dtpa_mod) ||
8751 dtrace_badattr(&pap->dtpa_func) ||
8752 dtrace_badattr(&pap->dtpa_name) ||
8753 dtrace_badattr(&pap->dtpa_args)) {
8754 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8755 "provider attributes", name);
8756 return (EINVAL);
8757 }
8758
8759 if (priv & ~DTRACE_PRIV_ALL) {
8760 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8761 "privilege attributes", name);
8762 return (EINVAL);
8763 }
8764
8765 if ((priv & DTRACE_PRIV_KERNEL) &&
8766 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8767 pops->dtps_usermode == NULL) {
8768 cmn_err(CE_WARN, "failed to register provider '%s': need "
8769 "dtps_usermode() op for given privilege attributes", name);
8770 return (EINVAL);
8771 }
8772
8773 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8774 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8775 (void) strcpy(provider->dtpv_name, name);
8776
8777 provider->dtpv_attr = *pap;
8778 provider->dtpv_priv.dtpp_flags = priv;
8779 if (cr != NULL) {
8780 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8781 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8782 }
8783 provider->dtpv_pops = *pops;
8784
8785 if (pops->dtps_provide == NULL) {
8786 ASSERT(pops->dtps_provide_module != NULL);
8787 provider->dtpv_pops.dtps_provide =
8788 (void (*)(void *, dtrace_probedesc_t *))dtrace_nullop;
8789 }
8790
8791 if (pops->dtps_provide_module == NULL) {
8792 ASSERT(pops->dtps_provide != NULL);
8793 provider->dtpv_pops.dtps_provide_module =
8794 (void (*)(void *, modctl_t *))dtrace_nullop;
8795 }
8796
8797 if (pops->dtps_suspend == NULL) {
8798 ASSERT(pops->dtps_resume == NULL);
8799 provider->dtpv_pops.dtps_suspend =
8800 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8801 provider->dtpv_pops.dtps_resume =
8802 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8803 }
8804
8805 provider->dtpv_arg = arg;
8806 *idp = (dtrace_provider_id_t)provider;
8807
8808 if (pops == &dtrace_provider_ops) {
8809 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8810 ASSERT(MUTEX_HELD(&dtrace_lock));
8811 ASSERT(dtrace_anon.dta_enabling == NULL);
8812
8813 /*
8814 * We make sure that the DTrace provider is at the head of
8815 * the provider chain.
8816 */
8817 provider->dtpv_next = dtrace_provider;
8818 dtrace_provider = provider;
8819 return (0);
8820 }
8821
8822 mutex_enter(&dtrace_provider_lock);
8823 mutex_enter(&dtrace_lock);
8824
8825 /*
8826 * If there is at least one provider registered, we'll add this
8827 * provider after the first provider.
8828 */
8829 if (dtrace_provider != NULL) {
8830 provider->dtpv_next = dtrace_provider->dtpv_next;
8831 dtrace_provider->dtpv_next = provider;
8832 } else {
8833 dtrace_provider = provider;
8834 }
8835
8836 if (dtrace_retained != NULL) {
8837 dtrace_enabling_provide(provider);
8838
8839 /*
8840 * Now we need to call dtrace_enabling_matchall() -- which
8841 * will acquire cpu_lock and dtrace_lock. We therefore need
8842 * to drop all of our locks before calling into it...
8843 */
8844 mutex_exit(&dtrace_lock);
8845 mutex_exit(&dtrace_provider_lock);
8846 dtrace_enabling_matchall();
8847
8848 return (0);
8849 }
8850
8851 mutex_exit(&dtrace_lock);
8852 mutex_exit(&dtrace_provider_lock);
8853
8854 return (0);
8855 }
8856
8857 /*
8858 * Unregister the specified provider from the DTrace framework. This should
8859 * generally be called by DTrace providers in their detach(9E) entry point.
8860 */
8861 int
8862 dtrace_unregister(dtrace_provider_id_t id)
8863 {
8864 dtrace_provider_t *old = (dtrace_provider_t *)id;
8865 dtrace_provider_t *prev = NULL;
8866 int i, self = 0, noreap = 0;
8867 dtrace_probe_t *probe, *first = NULL;
8868
8869 if (old->dtpv_pops.dtps_enable ==
8870 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop) {
8871 /*
8872 * If DTrace itself is the provider, we're called with locks
8873 * already held.
8874 */
8875 ASSERT(old == dtrace_provider);
8876 #ifdef illumos
8877 ASSERT(dtrace_devi != NULL);
8878 #endif
8879 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8880 ASSERT(MUTEX_HELD(&dtrace_lock));
8881 self = 1;
8882
8883 if (dtrace_provider->dtpv_next != NULL) {
8884 /*
8885 * There's another provider here; return failure.
8886 */
8887 return (EBUSY);
8888 }
8889 } else {
8890 mutex_enter(&dtrace_provider_lock);
8891 #ifdef illumos
8892 mutex_enter(&mod_lock);
8893 #endif
8894 mutex_enter(&dtrace_lock);
8895 }
8896
8897 /*
8898 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8899 * probes, we refuse to let providers slither away, unless this
8900 * provider has already been explicitly invalidated.
8901 */
8902 if (!old->dtpv_defunct &&
8903 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8904 dtrace_anon.dta_state->dts_necbs > 0))) {
8905 if (!self) {
8906 mutex_exit(&dtrace_lock);
8907 #ifdef illumos
8908 mutex_exit(&mod_lock);
8909 #endif
8910 mutex_exit(&dtrace_provider_lock);
8911 }
8912 return (EBUSY);
8913 }
8914
8915 /*
8916 * Attempt to destroy the probes associated with this provider.
8917 */
8918 for (i = 0; i < dtrace_nprobes; i++) {
8919 if ((probe = dtrace_probes[i]) == NULL)
8920 continue;
8921
8922 if (probe->dtpr_provider != old)
8923 continue;
8924
8925 if (probe->dtpr_ecb == NULL)
8926 continue;
8927
8928 /*
8929 * If we are trying to unregister a defunct provider, and the
8930 * provider was made defunct within the interval dictated by
8931 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8932 * attempt to reap our enablings. To denote that the provider
8933 * should reattempt to unregister itself at some point in the
8934 * future, we will return a differentiable error code (EAGAIN
8935 * instead of EBUSY) in this case.
8936 */
8937 if (dtrace_gethrtime() - old->dtpv_defunct >
8938 dtrace_unregister_defunct_reap)
8939 noreap = 1;
8940
8941 if (!self) {
8942 mutex_exit(&dtrace_lock);
8943 #ifdef illumos
8944 mutex_exit(&mod_lock);
8945 #endif
8946 mutex_exit(&dtrace_provider_lock);
8947 }
8948
8949 if (noreap)
8950 return (EBUSY);
8951
8952 (void) taskq_dispatch(dtrace_taskq,
8953 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8954
8955 return (EAGAIN);
8956 }
8957
8958 /*
8959 * All of the probes for this provider are disabled; we can safely
8960 * remove all of them from their hash chains and from the probe array.
8961 */
8962 for (i = 0; i < dtrace_nprobes; i++) {
8963 if ((probe = dtrace_probes[i]) == NULL)
8964 continue;
8965
8966 if (probe->dtpr_provider != old)
8967 continue;
8968
8969 dtrace_probes[i] = NULL;
8970
8971 dtrace_hash_remove(dtrace_bymod, probe);
8972 dtrace_hash_remove(dtrace_byfunc, probe);
8973 dtrace_hash_remove(dtrace_byname, probe);
8974
8975 if (first == NULL) {
8976 first = probe;
8977 probe->dtpr_nextmod = NULL;
8978 } else {
8979 probe->dtpr_nextmod = first;
8980 first = probe;
8981 }
8982 }
8983
8984 /*
8985 * The provider's probes have been removed from the hash chains and
8986 * from the probe array. Now issue a dtrace_sync() to be sure that
8987 * everyone has cleared out from any probe array processing.
8988 */
8989 dtrace_sync();
8990
8991 for (probe = first; probe != NULL; probe = first) {
8992 first = probe->dtpr_nextmod;
8993
8994 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8995 probe->dtpr_arg);
8996 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8997 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8998 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8999 #ifdef illumos
9000 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
9001 #else
9002 free_unr(dtrace_arena, probe->dtpr_id);
9003 #endif
9004 kmem_free(probe, sizeof (dtrace_probe_t));
9005 }
9006
9007 if ((prev = dtrace_provider) == old) {
9008 #ifdef illumos
9009 ASSERT(self || dtrace_devi == NULL);
9010 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
9011 #endif
9012 dtrace_provider = old->dtpv_next;
9013 } else {
9014 while (prev != NULL && prev->dtpv_next != old)
9015 prev = prev->dtpv_next;
9016
9017 if (prev == NULL) {
9018 panic("attempt to unregister non-existent "
9019 "dtrace provider %p\n", (void *)id);
9020 }
9021
9022 prev->dtpv_next = old->dtpv_next;
9023 }
9024
9025 if (!self) {
9026 mutex_exit(&dtrace_lock);
9027 #ifdef illumos
9028 mutex_exit(&mod_lock);
9029 #endif
9030 mutex_exit(&dtrace_provider_lock);
9031 }
9032
9033 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
9034 kmem_free(old, sizeof (dtrace_provider_t));
9035
9036 return (0);
9037 }
9038
9039 /*
9040 * Invalidate the specified provider. All subsequent probe lookups for the
9041 * specified provider will fail, but its probes will not be removed.
9042 */
9043 void
9044 dtrace_invalidate(dtrace_provider_id_t id)
9045 {
9046 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
9047
9048 ASSERT(pvp->dtpv_pops.dtps_enable !=
9049 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9050
9051 mutex_enter(&dtrace_provider_lock);
9052 mutex_enter(&dtrace_lock);
9053
9054 pvp->dtpv_defunct = dtrace_gethrtime();
9055
9056 mutex_exit(&dtrace_lock);
9057 mutex_exit(&dtrace_provider_lock);
9058 }
9059
9060 /*
9061 * Indicate whether or not DTrace has attached.
9062 */
9063 int
9064 dtrace_attached(void)
9065 {
9066 /*
9067 * dtrace_provider will be non-NULL iff the DTrace driver has
9068 * attached. (It's non-NULL because DTrace is always itself a
9069 * provider.)
9070 */
9071 return (dtrace_provider != NULL);
9072 }
9073
9074 /*
9075 * Remove all the unenabled probes for the given provider. This function is
9076 * not unlike dtrace_unregister(), except that it doesn't remove the provider
9077 * -- just as many of its associated probes as it can.
9078 */
9079 int
9080 dtrace_condense(dtrace_provider_id_t id)
9081 {
9082 dtrace_provider_t *prov = (dtrace_provider_t *)id;
9083 int i;
9084 dtrace_probe_t *probe;
9085
9086 /*
9087 * Make sure this isn't the dtrace provider itself.
9088 */
9089 ASSERT(prov->dtpv_pops.dtps_enable !=
9090 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop);
9091
9092 mutex_enter(&dtrace_provider_lock);
9093 mutex_enter(&dtrace_lock);
9094
9095 /*
9096 * Attempt to destroy the probes associated with this provider.
9097 */
9098 for (i = 0; i < dtrace_nprobes; i++) {
9099 if ((probe = dtrace_probes[i]) == NULL)
9100 continue;
9101
9102 if (probe->dtpr_provider != prov)
9103 continue;
9104
9105 if (probe->dtpr_ecb != NULL)
9106 continue;
9107
9108 dtrace_probes[i] = NULL;
9109
9110 dtrace_hash_remove(dtrace_bymod, probe);
9111 dtrace_hash_remove(dtrace_byfunc, probe);
9112 dtrace_hash_remove(dtrace_byname, probe);
9113
9114 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
9115 probe->dtpr_arg);
9116 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
9117 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
9118 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
9119 kmem_free(probe, sizeof (dtrace_probe_t));
9120 #ifdef illumos
9121 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
9122 #else
9123 free_unr(dtrace_arena, i + 1);
9124 #endif
9125 }
9126
9127 mutex_exit(&dtrace_lock);
9128 mutex_exit(&dtrace_provider_lock);
9129
9130 return (0);
9131 }
9132
9133 /*
9134 * DTrace Probe Management Functions
9135 *
9136 * The functions in this section perform the DTrace probe management,
9137 * including functions to create probes, look-up probes, and call into the
9138 * providers to request that probes be provided. Some of these functions are
9139 * in the Provider-to-Framework API; these functions can be identified by the
9140 * fact that they are not declared "static".
9141 */
9142
9143 /*
9144 * Create a probe with the specified module name, function name, and name.
9145 */
9146 dtrace_id_t
9147 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
9148 const char *func, const char *name, int aframes, void *arg)
9149 {
9150 dtrace_probe_t *probe, **probes;
9151 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
9152 dtrace_id_t id;
9153
9154 if (provider == dtrace_provider) {
9155 ASSERT(MUTEX_HELD(&dtrace_lock));
9156 } else {
9157 mutex_enter(&dtrace_lock);
9158 }
9159
9160 #ifdef illumos
9161 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
9162 VM_BESTFIT | VM_SLEEP);
9163 #else
9164 id = alloc_unr(dtrace_arena);
9165 #endif
9166 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
9167
9168 probe->dtpr_id = id;
9169 probe->dtpr_gen = dtrace_probegen++;
9170 probe->dtpr_mod = dtrace_strdup(mod);
9171 probe->dtpr_func = dtrace_strdup(func);
9172 probe->dtpr_name = dtrace_strdup(name);
9173 probe->dtpr_arg = arg;
9174 probe->dtpr_aframes = aframes;
9175 probe->dtpr_provider = provider;
9176
9177 dtrace_hash_add(dtrace_bymod, probe);
9178 dtrace_hash_add(dtrace_byfunc, probe);
9179 dtrace_hash_add(dtrace_byname, probe);
9180
9181 if (id - 1 >= dtrace_nprobes) {
9182 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
9183 size_t nsize = osize << 1;
9184
9185 if (nsize == 0) {
9186 ASSERT(osize == 0);
9187 ASSERT(dtrace_probes == NULL);
9188 nsize = sizeof (dtrace_probe_t *);
9189 }
9190
9191 probes = kmem_zalloc(nsize, KM_SLEEP);
9192
9193 if (dtrace_probes == NULL) {
9194 ASSERT(osize == 0);
9195 dtrace_probes = probes;
9196 dtrace_nprobes = 1;
9197 } else {
9198 dtrace_probe_t **oprobes = dtrace_probes;
9199
9200 bcopy(oprobes, probes, osize);
9201 dtrace_membar_producer();
9202 dtrace_probes = probes;
9203
9204 dtrace_sync();
9205
9206 /*
9207 * All CPUs are now seeing the new probes array; we can
9208 * safely free the old array.
9209 */
9210 kmem_free(oprobes, osize);
9211 dtrace_nprobes <<= 1;
9212 }
9213
9214 ASSERT(id - 1 < dtrace_nprobes);
9215 }
9216
9217 ASSERT(dtrace_probes[id - 1] == NULL);
9218 dtrace_probes[id - 1] = probe;
9219
9220 if (provider != dtrace_provider)
9221 mutex_exit(&dtrace_lock);
9222
9223 return (id);
9224 }
9225
9226 static dtrace_probe_t *
9227 dtrace_probe_lookup_id(dtrace_id_t id)
9228 {
9229 ASSERT(MUTEX_HELD(&dtrace_lock));
9230
9231 if (id == 0 || id > dtrace_nprobes)
9232 return (NULL);
9233
9234 return (dtrace_probes[id - 1]);
9235 }
9236
9237 static int
9238 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
9239 {
9240 *((dtrace_id_t *)arg) = probe->dtpr_id;
9241
9242 return (DTRACE_MATCH_DONE);
9243 }
9244
9245 /*
9246 * Look up a probe based on provider and one or more of module name, function
9247 * name and probe name.
9248 */
9249 dtrace_id_t
9250 dtrace_probe_lookup(dtrace_provider_id_t prid, char *mod,
9251 char *func, char *name)
9252 {
9253 dtrace_probekey_t pkey;
9254 dtrace_id_t id;
9255 int match;
9256
9257 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
9258 pkey.dtpk_pmatch = &dtrace_match_string;
9259 pkey.dtpk_mod = mod;
9260 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
9261 pkey.dtpk_func = func;
9262 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
9263 pkey.dtpk_name = name;
9264 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
9265 pkey.dtpk_id = DTRACE_IDNONE;
9266
9267 mutex_enter(&dtrace_lock);
9268 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
9269 dtrace_probe_lookup_match, &id);
9270 mutex_exit(&dtrace_lock);
9271
9272 ASSERT(match == 1 || match == 0);
9273 return (match ? id : 0);
9274 }
9275
9276 /*
9277 * Returns the probe argument associated with the specified probe.
9278 */
9279 void *
9280 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
9281 {
9282 dtrace_probe_t *probe;
9283 void *rval = NULL;
9284
9285 mutex_enter(&dtrace_lock);
9286
9287 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
9288 probe->dtpr_provider == (dtrace_provider_t *)id)
9289 rval = probe->dtpr_arg;
9290
9291 mutex_exit(&dtrace_lock);
9292
9293 return (rval);
9294 }
9295
9296 /*
9297 * Copy a probe into a probe description.
9298 */
9299 static void
9300 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
9301 {
9302 bzero(pdp, sizeof (dtrace_probedesc_t));
9303 pdp->dtpd_id = prp->dtpr_id;
9304
9305 (void) strncpy(pdp->dtpd_provider,
9306 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
9307
9308 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
9309 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
9310 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
9311 }
9312
9313 /*
9314 * Called to indicate that a probe -- or probes -- should be provided by a
9315 * specfied provider. If the specified description is NULL, the provider will
9316 * be told to provide all of its probes. (This is done whenever a new
9317 * consumer comes along, or whenever a retained enabling is to be matched.) If
9318 * the specified description is non-NULL, the provider is given the
9319 * opportunity to dynamically provide the specified probe, allowing providers
9320 * to support the creation of probes on-the-fly. (So-called _autocreated_
9321 * probes.) If the provider is NULL, the operations will be applied to all
9322 * providers; if the provider is non-NULL the operations will only be applied
9323 * to the specified provider. The dtrace_provider_lock must be held, and the
9324 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
9325 * will need to grab the dtrace_lock when it reenters the framework through
9326 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
9327 */
9328 static void
9329 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
9330 {
9331 #ifdef illumos
9332 modctl_t *ctl;
9333 #endif
9334 int all = 0;
9335
9336 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
9337
9338 if (prv == NULL) {
9339 all = 1;
9340 prv = dtrace_provider;
9341 }
9342
9343 do {
9344 /*
9345 * First, call the blanket provide operation.
9346 */
9347 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
9348
9349 #ifdef illumos
9350 /*
9351 * Now call the per-module provide operation. We will grab
9352 * mod_lock to prevent the list from being modified. Note
9353 * that this also prevents the mod_busy bits from changing.
9354 * (mod_busy can only be changed with mod_lock held.)
9355 */
9356 mutex_enter(&mod_lock);
9357
9358 ctl = &modules;
9359 do {
9360 if (ctl->mod_busy || ctl->mod_mp == NULL)
9361 continue;
9362
9363 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
9364
9365 } while ((ctl = ctl->mod_next) != &modules);
9366
9367 mutex_exit(&mod_lock);
9368 #endif
9369 } while (all && (prv = prv->dtpv_next) != NULL);
9370 }
9371
9372 #ifdef illumos
9373 /*
9374 * Iterate over each probe, and call the Framework-to-Provider API function
9375 * denoted by offs.
9376 */
9377 static void
9378 dtrace_probe_foreach(uintptr_t offs)
9379 {
9380 dtrace_provider_t *prov;
9381 void (*func)(void *, dtrace_id_t, void *);
9382 dtrace_probe_t *probe;
9383 dtrace_icookie_t cookie;
9384 int i;
9385
9386 /*
9387 * We disable interrupts to walk through the probe array. This is
9388 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
9389 * won't see stale data.
9390 */
9391 cookie = dtrace_interrupt_disable();
9392
9393 for (i = 0; i < dtrace_nprobes; i++) {
9394 if ((probe = dtrace_probes[i]) == NULL)
9395 continue;
9396
9397 if (probe->dtpr_ecb == NULL) {
9398 /*
9399 * This probe isn't enabled -- don't call the function.
9400 */
9401 continue;
9402 }
9403
9404 prov = probe->dtpr_provider;
9405 func = *((void(**)(void *, dtrace_id_t, void *))
9406 ((uintptr_t)&prov->dtpv_pops + offs));
9407
9408 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
9409 }
9410
9411 dtrace_interrupt_enable(cookie);
9412 }
9413 #endif
9414
9415 static int
9416 dtrace_probe_enable(dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
9417 {
9418 dtrace_probekey_t pkey;
9419 uint32_t priv;
9420 uid_t uid;
9421 zoneid_t zoneid;
9422
9423 ASSERT(MUTEX_HELD(&dtrace_lock));
9424 dtrace_ecb_create_cache = NULL;
9425
9426 if (desc == NULL) {
9427 /*
9428 * If we're passed a NULL description, we're being asked to
9429 * create an ECB with a NULL probe.
9430 */
9431 (void) dtrace_ecb_create_enable(NULL, enab);
9432 return (0);
9433 }
9434
9435 dtrace_probekey(desc, &pkey);
9436 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
9437 &priv, &uid, &zoneid);
9438
9439 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
9440 enab));
9441 }
9442
9443 /*
9444 * DTrace Helper Provider Functions
9445 */
9446 static void
9447 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
9448 {
9449 attr->dtat_name = DOF_ATTR_NAME(dofattr);
9450 attr->dtat_data = DOF_ATTR_DATA(dofattr);
9451 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
9452 }
9453
9454 static void
9455 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
9456 const dof_provider_t *dofprov, char *strtab)
9457 {
9458 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
9459 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
9460 dofprov->dofpv_provattr);
9461 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
9462 dofprov->dofpv_modattr);
9463 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
9464 dofprov->dofpv_funcattr);
9465 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
9466 dofprov->dofpv_nameattr);
9467 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
9468 dofprov->dofpv_argsattr);
9469 }
9470
9471 static void
9472 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9473 {
9474 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9475 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9476 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
9477 dof_provider_t *provider;
9478 dof_probe_t *probe;
9479 uint32_t *off, *enoff;
9480 uint8_t *arg;
9481 char *strtab;
9482 uint_t i, nprobes;
9483 dtrace_helper_provdesc_t dhpv;
9484 dtrace_helper_probedesc_t dhpb;
9485 dtrace_meta_t *meta = dtrace_meta_pid;
9486 dtrace_mops_t *mops = &meta->dtm_mops;
9487 void *parg;
9488
9489 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9490 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9491 provider->dofpv_strtab * dof->dofh_secsize);
9492 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9493 provider->dofpv_probes * dof->dofh_secsize);
9494 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9495 provider->dofpv_prargs * dof->dofh_secsize);
9496 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9497 provider->dofpv_proffs * dof->dofh_secsize);
9498
9499 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9500 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
9501 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
9502 enoff = NULL;
9503
9504 /*
9505 * See dtrace_helper_provider_validate().
9506 */
9507 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
9508 provider->dofpv_prenoffs != DOF_SECT_NONE) {
9509 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9510 provider->dofpv_prenoffs * dof->dofh_secsize);
9511 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
9512 }
9513
9514 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
9515
9516 /*
9517 * Create the provider.
9518 */
9519 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9520
9521 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
9522 return;
9523
9524 meta->dtm_count++;
9525
9526 /*
9527 * Create the probes.
9528 */
9529 for (i = 0; i < nprobes; i++) {
9530 probe = (dof_probe_t *)(uintptr_t)(daddr +
9531 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
9532
9533 /* See the check in dtrace_helper_provider_validate(). */
9534 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN)
9535 continue;
9536
9537 dhpb.dthpb_mod = dhp->dofhp_mod;
9538 dhpb.dthpb_func = strtab + probe->dofpr_func;
9539 dhpb.dthpb_name = strtab + probe->dofpr_name;
9540 dhpb.dthpb_base = probe->dofpr_addr;
9541 dhpb.dthpb_offs = off + probe->dofpr_offidx;
9542 dhpb.dthpb_noffs = probe->dofpr_noffs;
9543 if (enoff != NULL) {
9544 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
9545 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
9546 } else {
9547 dhpb.dthpb_enoffs = NULL;
9548 dhpb.dthpb_nenoffs = 0;
9549 }
9550 dhpb.dthpb_args = arg + probe->dofpr_argidx;
9551 dhpb.dthpb_nargc = probe->dofpr_nargc;
9552 dhpb.dthpb_xargc = probe->dofpr_xargc;
9553 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
9554 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
9555
9556 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
9557 }
9558 }
9559
9560 static void
9561 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
9562 {
9563 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9564 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9565 int i;
9566
9567 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9568
9569 for (i = 0; i < dof->dofh_secnum; i++) {
9570 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9571 dof->dofh_secoff + i * dof->dofh_secsize);
9572
9573 if (sec->dofs_type != DOF_SECT_PROVIDER)
9574 continue;
9575
9576 dtrace_helper_provide_one(dhp, sec, pid);
9577 }
9578
9579 /*
9580 * We may have just created probes, so we must now rematch against
9581 * any retained enablings. Note that this call will acquire both
9582 * cpu_lock and dtrace_lock; the fact that we are holding
9583 * dtrace_meta_lock now is what defines the ordering with respect to
9584 * these three locks.
9585 */
9586 dtrace_enabling_matchall();
9587 }
9588
9589 static void
9590 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
9591 {
9592 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9593 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9594 dof_sec_t *str_sec;
9595 dof_provider_t *provider;
9596 char *strtab;
9597 dtrace_helper_provdesc_t dhpv;
9598 dtrace_meta_t *meta = dtrace_meta_pid;
9599 dtrace_mops_t *mops = &meta->dtm_mops;
9600
9601 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
9602 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
9603 provider->dofpv_strtab * dof->dofh_secsize);
9604
9605 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
9606
9607 /*
9608 * Create the provider.
9609 */
9610 dtrace_dofprov2hprov(&dhpv, provider, strtab);
9611
9612 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
9613
9614 meta->dtm_count--;
9615 }
9616
9617 static void
9618 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
9619 {
9620 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
9621 dof_hdr_t *dof = (dof_hdr_t *)daddr;
9622 int i;
9623
9624 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
9625
9626 for (i = 0; i < dof->dofh_secnum; i++) {
9627 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
9628 dof->dofh_secoff + i * dof->dofh_secsize);
9629
9630 if (sec->dofs_type != DOF_SECT_PROVIDER)
9631 continue;
9632
9633 dtrace_helper_provider_remove_one(dhp, sec, pid);
9634 }
9635 }
9636
9637 /*
9638 * DTrace Meta Provider-to-Framework API Functions
9639 *
9640 * These functions implement the Meta Provider-to-Framework API, as described
9641 * in <sys/dtrace.h>.
9642 */
9643 int
9644 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
9645 dtrace_meta_provider_id_t *idp)
9646 {
9647 dtrace_meta_t *meta;
9648 dtrace_helpers_t *help, *next;
9649 int i;
9650
9651 *idp = DTRACE_METAPROVNONE;
9652
9653 /*
9654 * We strictly don't need the name, but we hold onto it for
9655 * debuggability. All hail error queues!
9656 */
9657 if (name == NULL) {
9658 cmn_err(CE_WARN, "failed to register meta-provider: "
9659 "invalid name");
9660 return (EINVAL);
9661 }
9662
9663 if (mops == NULL ||
9664 mops->dtms_create_probe == NULL ||
9665 mops->dtms_provide_pid == NULL ||
9666 mops->dtms_remove_pid == NULL) {
9667 cmn_err(CE_WARN, "failed to register meta-register %s: "
9668 "invalid ops", name);
9669 return (EINVAL);
9670 }
9671
9672 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
9673 meta->dtm_mops = *mops;
9674 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
9675 (void) strcpy(meta->dtm_name, name);
9676 meta->dtm_arg = arg;
9677
9678 mutex_enter(&dtrace_meta_lock);
9679 mutex_enter(&dtrace_lock);
9680
9681 if (dtrace_meta_pid != NULL) {
9682 mutex_exit(&dtrace_lock);
9683 mutex_exit(&dtrace_meta_lock);
9684 cmn_err(CE_WARN, "failed to register meta-register %s: "
9685 "user-land meta-provider exists", name);
9686 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
9687 kmem_free(meta, sizeof (dtrace_meta_t));
9688 return (EINVAL);
9689 }
9690
9691 dtrace_meta_pid = meta;
9692 *idp = (dtrace_meta_provider_id_t)meta;
9693
9694 /*
9695 * If there are providers and probes ready to go, pass them
9696 * off to the new meta provider now.
9697 */
9698
9699 help = dtrace_deferred_pid;
9700 dtrace_deferred_pid = NULL;
9701
9702 mutex_exit(&dtrace_lock);
9703
9704 while (help != NULL) {
9705 for (i = 0; i < help->dthps_nprovs; i++) {
9706 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
9707 help->dthps_pid);
9708 }
9709
9710 next = help->dthps_next;
9711 help->dthps_next = NULL;
9712 help->dthps_prev = NULL;
9713 help->dthps_deferred = 0;
9714 help = next;
9715 }
9716
9717 mutex_exit(&dtrace_meta_lock);
9718
9719 return (0);
9720 }
9721
9722 int
9723 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
9724 {
9725 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
9726
9727 mutex_enter(&dtrace_meta_lock);
9728 mutex_enter(&dtrace_lock);
9729
9730 if (old == dtrace_meta_pid) {
9731 pp = &dtrace_meta_pid;
9732 } else {
9733 panic("attempt to unregister non-existent "
9734 "dtrace meta-provider %p\n", (void *)old);
9735 }
9736
9737 if (old->dtm_count != 0) {
9738 mutex_exit(&dtrace_lock);
9739 mutex_exit(&dtrace_meta_lock);
9740 return (EBUSY);
9741 }
9742
9743 *pp = NULL;
9744
9745 mutex_exit(&dtrace_lock);
9746 mutex_exit(&dtrace_meta_lock);
9747
9748 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
9749 kmem_free(old, sizeof (dtrace_meta_t));
9750
9751 return (0);
9752 }
9753
9754
9755 /*
9756 * DTrace DIF Object Functions
9757 */
9758 static int
9759 dtrace_difo_err(uint_t pc, const char *format, ...)
9760 {
9761 if (dtrace_err_verbose) {
9762 va_list alist;
9763
9764 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9765 va_start(alist, format);
9766 (void) vuprintf(format, alist);
9767 va_end(alist);
9768 }
9769
9770 #ifdef DTRACE_ERRDEBUG
9771 dtrace_errdebug(format);
9772 #endif
9773 return (1);
9774 }
9775
9776 /*
9777 * Validate a DTrace DIF object by checking the IR instructions. The following
9778 * rules are currently enforced by dtrace_difo_validate():
9779 *
9780 * 1. Each instruction must have a valid opcode
9781 * 2. Each register, string, variable, or subroutine reference must be valid
9782 * 3. No instruction can modify register %r0 (must be zero)
9783 * 4. All instruction reserved bits must be set to zero
9784 * 5. The last instruction must be a "ret" instruction
9785 * 6. All branch targets must reference a valid instruction _after_ the branch
9786 */
9787 static int
9788 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9789 cred_t *cr)
9790 {
9791 int err = 0, i;
9792 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9793 int kcheckload;
9794 uint_t pc;
9795 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9796
9797 kcheckload = cr == NULL ||
9798 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9799
9800 dp->dtdo_destructive = 0;
9801
9802 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9803 dif_instr_t instr = dp->dtdo_buf[pc];
9804
9805 uint_t r1 = DIF_INSTR_R1(instr);
9806 uint_t r2 = DIF_INSTR_R2(instr);
9807 uint_t rd = DIF_INSTR_RD(instr);
9808 uint_t rs = DIF_INSTR_RS(instr);
9809 uint_t label = DIF_INSTR_LABEL(instr);
9810 uint_t v = DIF_INSTR_VAR(instr);
9811 uint_t subr = DIF_INSTR_SUBR(instr);
9812 uint_t type = DIF_INSTR_TYPE(instr);
9813 uint_t op = DIF_INSTR_OP(instr);
9814
9815 switch (op) {
9816 case DIF_OP_OR:
9817 case DIF_OP_XOR:
9818 case DIF_OP_AND:
9819 case DIF_OP_SLL:
9820 case DIF_OP_SRL:
9821 case DIF_OP_SRA:
9822 case DIF_OP_SUB:
9823 case DIF_OP_ADD:
9824 case DIF_OP_MUL:
9825 case DIF_OP_SDIV:
9826 case DIF_OP_UDIV:
9827 case DIF_OP_SREM:
9828 case DIF_OP_UREM:
9829 case DIF_OP_COPYS:
9830 if (r1 >= nregs)
9831 err += efunc(pc, "invalid register %u\n", r1);
9832 if (r2 >= nregs)
9833 err += efunc(pc, "invalid register %u\n", r2);
9834 if (rd >= nregs)
9835 err += efunc(pc, "invalid register %u\n", rd);
9836 if (rd == 0)
9837 err += efunc(pc, "cannot write to %%r0\n");
9838 break;
9839 case DIF_OP_NOT:
9840 case DIF_OP_MOV:
9841 case DIF_OP_ALLOCS:
9842 if (r1 >= nregs)
9843 err += efunc(pc, "invalid register %u\n", r1);
9844 if (r2 != 0)
9845 err += efunc(pc, "non-zero reserved bits\n");
9846 if (rd >= nregs)
9847 err += efunc(pc, "invalid register %u\n", rd);
9848 if (rd == 0)
9849 err += efunc(pc, "cannot write to %%r0\n");
9850 break;
9851 case DIF_OP_LDSB:
9852 case DIF_OP_LDSH:
9853 case DIF_OP_LDSW:
9854 case DIF_OP_LDUB:
9855 case DIF_OP_LDUH:
9856 case DIF_OP_LDUW:
9857 case DIF_OP_LDX:
9858 if (r1 >= nregs)
9859 err += efunc(pc, "invalid register %u\n", r1);
9860 if (r2 != 0)
9861 err += efunc(pc, "non-zero reserved bits\n");
9862 if (rd >= nregs)
9863 err += efunc(pc, "invalid register %u\n", rd);
9864 if (rd == 0)
9865 err += efunc(pc, "cannot write to %%r0\n");
9866 if (kcheckload)
9867 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9868 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9869 break;
9870 case DIF_OP_RLDSB:
9871 case DIF_OP_RLDSH:
9872 case DIF_OP_RLDSW:
9873 case DIF_OP_RLDUB:
9874 case DIF_OP_RLDUH:
9875 case DIF_OP_RLDUW:
9876 case DIF_OP_RLDX:
9877 if (r1 >= nregs)
9878 err += efunc(pc, "invalid register %u\n", r1);
9879 if (r2 != 0)
9880 err += efunc(pc, "non-zero reserved bits\n");
9881 if (rd >= nregs)
9882 err += efunc(pc, "invalid register %u\n", rd);
9883 if (rd == 0)
9884 err += efunc(pc, "cannot write to %%r0\n");
9885 break;
9886 case DIF_OP_ULDSB:
9887 case DIF_OP_ULDSH:
9888 case DIF_OP_ULDSW:
9889 case DIF_OP_ULDUB:
9890 case DIF_OP_ULDUH:
9891 case DIF_OP_ULDUW:
9892 case DIF_OP_ULDX:
9893 if (r1 >= nregs)
9894 err += efunc(pc, "invalid register %u\n", r1);
9895 if (r2 != 0)
9896 err += efunc(pc, "non-zero reserved bits\n");
9897 if (rd >= nregs)
9898 err += efunc(pc, "invalid register %u\n", rd);
9899 if (rd == 0)
9900 err += efunc(pc, "cannot write to %%r0\n");
9901 break;
9902 case DIF_OP_STB:
9903 case DIF_OP_STH:
9904 case DIF_OP_STW:
9905 case DIF_OP_STX:
9906 if (r1 >= nregs)
9907 err += efunc(pc, "invalid register %u\n", r1);
9908 if (r2 != 0)
9909 err += efunc(pc, "non-zero reserved bits\n");
9910 if (rd >= nregs)
9911 err += efunc(pc, "invalid register %u\n", rd);
9912 if (rd == 0)
9913 err += efunc(pc, "cannot write to 0 address\n");
9914 break;
9915 case DIF_OP_CMP:
9916 case DIF_OP_SCMP:
9917 if (r1 >= nregs)
9918 err += efunc(pc, "invalid register %u\n", r1);
9919 if (r2 >= nregs)
9920 err += efunc(pc, "invalid register %u\n", r2);
9921 if (rd != 0)
9922 err += efunc(pc, "non-zero reserved bits\n");
9923 break;
9924 case DIF_OP_TST:
9925 if (r1 >= nregs)
9926 err += efunc(pc, "invalid register %u\n", r1);
9927 if (r2 != 0 || rd != 0)
9928 err += efunc(pc, "non-zero reserved bits\n");
9929 break;
9930 case DIF_OP_BA:
9931 case DIF_OP_BE:
9932 case DIF_OP_BNE:
9933 case DIF_OP_BG:
9934 case DIF_OP_BGU:
9935 case DIF_OP_BGE:
9936 case DIF_OP_BGEU:
9937 case DIF_OP_BL:
9938 case DIF_OP_BLU:
9939 case DIF_OP_BLE:
9940 case DIF_OP_BLEU:
9941 if (label >= dp->dtdo_len) {
9942 err += efunc(pc, "invalid branch target %u\n",
9943 label);
9944 }
9945 if (label <= pc) {
9946 err += efunc(pc, "backward branch to %u\n",
9947 label);
9948 }
9949 break;
9950 case DIF_OP_RET:
9951 if (r1 != 0 || r2 != 0)
9952 err += efunc(pc, "non-zero reserved bits\n");
9953 if (rd >= nregs)
9954 err += efunc(pc, "invalid register %u\n", rd);
9955 break;
9956 case DIF_OP_NOP:
9957 case DIF_OP_POPTS:
9958 case DIF_OP_FLUSHTS:
9959 if (r1 != 0 || r2 != 0 || rd != 0)
9960 err += efunc(pc, "non-zero reserved bits\n");
9961 break;
9962 case DIF_OP_SETX:
9963 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9964 err += efunc(pc, "invalid integer ref %u\n",
9965 DIF_INSTR_INTEGER(instr));
9966 }
9967 if (rd >= nregs)
9968 err += efunc(pc, "invalid register %u\n", rd);
9969 if (rd == 0)
9970 err += efunc(pc, "cannot write to %%r0\n");
9971 break;
9972 case DIF_OP_SETS:
9973 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9974 err += efunc(pc, "invalid string ref %u\n",
9975 DIF_INSTR_STRING(instr));
9976 }
9977 if (rd >= nregs)
9978 err += efunc(pc, "invalid register %u\n", rd);
9979 if (rd == 0)
9980 err += efunc(pc, "cannot write to %%r0\n");
9981 break;
9982 case DIF_OP_LDGA:
9983 case DIF_OP_LDTA:
9984 if (r1 > DIF_VAR_ARRAY_MAX)
9985 err += efunc(pc, "invalid array %u\n", r1);
9986 if (r2 >= nregs)
9987 err += efunc(pc, "invalid register %u\n", r2);
9988 if (rd >= nregs)
9989 err += efunc(pc, "invalid register %u\n", rd);
9990 if (rd == 0)
9991 err += efunc(pc, "cannot write to %%r0\n");
9992 break;
9993 case DIF_OP_LDGS:
9994 case DIF_OP_LDTS:
9995 case DIF_OP_LDLS:
9996 case DIF_OP_LDGAA:
9997 case DIF_OP_LDTAA:
9998 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9999 err += efunc(pc, "invalid variable %u\n", v);
10000 if (rd >= nregs)
10001 err += efunc(pc, "invalid register %u\n", rd);
10002 if (rd == 0)
10003 err += efunc(pc, "cannot write to %%r0\n");
10004 break;
10005 case DIF_OP_STGS:
10006 case DIF_OP_STTS:
10007 case DIF_OP_STLS:
10008 case DIF_OP_STGAA:
10009 case DIF_OP_STTAA:
10010 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
10011 err += efunc(pc, "invalid variable %u\n", v);
10012 if (rs >= nregs)
10013 err += efunc(pc, "invalid register %u\n", rd);
10014 break;
10015 case DIF_OP_CALL:
10016 if (subr > DIF_SUBR_MAX)
10017 err += efunc(pc, "invalid subr %u\n", subr);
10018 if (rd >= nregs)
10019 err += efunc(pc, "invalid register %u\n", rd);
10020 if (rd == 0)
10021 err += efunc(pc, "cannot write to %%r0\n");
10022
10023 if (subr == DIF_SUBR_COPYOUT ||
10024 subr == DIF_SUBR_COPYOUTSTR) {
10025 dp->dtdo_destructive = 1;
10026 }
10027
10028 if (subr == DIF_SUBR_GETF) {
10029 #ifdef __FreeBSD__
10030 err += efunc(pc, "getf() not supported");
10031 #else
10032 /*
10033 * If we have a getf() we need to record that
10034 * in our state. Note that our state can be
10035 * NULL if this is a helper -- but in that
10036 * case, the call to getf() is itself illegal,
10037 * and will be caught (slightly later) when
10038 * the helper is validated.
10039 */
10040 if (vstate->dtvs_state != NULL)
10041 vstate->dtvs_state->dts_getf++;
10042 #endif
10043 }
10044
10045 break;
10046 case DIF_OP_PUSHTR:
10047 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
10048 err += efunc(pc, "invalid ref type %u\n", type);
10049 if (r2 >= nregs)
10050 err += efunc(pc, "invalid register %u\n", r2);
10051 if (rs >= nregs)
10052 err += efunc(pc, "invalid register %u\n", rs);
10053 break;
10054 case DIF_OP_PUSHTV:
10055 if (type != DIF_TYPE_CTF)
10056 err += efunc(pc, "invalid val type %u\n", type);
10057 if (r2 >= nregs)
10058 err += efunc(pc, "invalid register %u\n", r2);
10059 if (rs >= nregs)
10060 err += efunc(pc, "invalid register %u\n", rs);
10061 break;
10062 default:
10063 err += efunc(pc, "invalid opcode %u\n",
10064 DIF_INSTR_OP(instr));
10065 }
10066 }
10067
10068 if (dp->dtdo_len != 0 &&
10069 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
10070 err += efunc(dp->dtdo_len - 1,
10071 "expected 'ret' as last DIF instruction\n");
10072 }
10073
10074 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
10075 /*
10076 * If we're not returning by reference, the size must be either
10077 * 0 or the size of one of the base types.
10078 */
10079 switch (dp->dtdo_rtype.dtdt_size) {
10080 case 0:
10081 case sizeof (uint8_t):
10082 case sizeof (uint16_t):
10083 case sizeof (uint32_t):
10084 case sizeof (uint64_t):
10085 break;
10086
10087 default:
10088 err += efunc(dp->dtdo_len - 1, "bad return size\n");
10089 }
10090 }
10091
10092 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
10093 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
10094 dtrace_diftype_t *vt, *et;
10095 uint_t id, ndx;
10096
10097 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
10098 v->dtdv_scope != DIFV_SCOPE_THREAD &&
10099 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
10100 err += efunc(i, "unrecognized variable scope %d\n",
10101 v->dtdv_scope);
10102 break;
10103 }
10104
10105 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
10106 v->dtdv_kind != DIFV_KIND_SCALAR) {
10107 err += efunc(i, "unrecognized variable type %d\n",
10108 v->dtdv_kind);
10109 break;
10110 }
10111
10112 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
10113 err += efunc(i, "%d exceeds variable id limit\n", id);
10114 break;
10115 }
10116
10117 if (id < DIF_VAR_OTHER_UBASE)
10118 continue;
10119
10120 /*
10121 * For user-defined variables, we need to check that this
10122 * definition is identical to any previous definition that we
10123 * encountered.
10124 */
10125 ndx = id - DIF_VAR_OTHER_UBASE;
10126
10127 switch (v->dtdv_scope) {
10128 case DIFV_SCOPE_GLOBAL:
10129 if (maxglobal == -1 || ndx > maxglobal)
10130 maxglobal = ndx;
10131
10132 if (ndx < vstate->dtvs_nglobals) {
10133 dtrace_statvar_t *svar;
10134
10135 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
10136 existing = &svar->dtsv_var;
10137 }
10138
10139 break;
10140
10141 case DIFV_SCOPE_THREAD:
10142 if (maxtlocal == -1 || ndx > maxtlocal)
10143 maxtlocal = ndx;
10144
10145 if (ndx < vstate->dtvs_ntlocals)
10146 existing = &vstate->dtvs_tlocals[ndx];
10147 break;
10148
10149 case DIFV_SCOPE_LOCAL:
10150 if (maxlocal == -1 || ndx > maxlocal)
10151 maxlocal = ndx;
10152
10153 if (ndx < vstate->dtvs_nlocals) {
10154 dtrace_statvar_t *svar;
10155
10156 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
10157 existing = &svar->dtsv_var;
10158 }
10159
10160 break;
10161 }
10162
10163 vt = &v->dtdv_type;
10164
10165 if (vt->dtdt_flags & DIF_TF_BYREF) {
10166 if (vt->dtdt_size == 0) {
10167 err += efunc(i, "zero-sized variable\n");
10168 break;
10169 }
10170
10171 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
10172 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
10173 vt->dtdt_size > dtrace_statvar_maxsize) {
10174 err += efunc(i, "oversized by-ref static\n");
10175 break;
10176 }
10177 }
10178
10179 if (existing == NULL || existing->dtdv_id == 0)
10180 continue;
10181
10182 ASSERT(existing->dtdv_id == v->dtdv_id);
10183 ASSERT(existing->dtdv_scope == v->dtdv_scope);
10184
10185 if (existing->dtdv_kind != v->dtdv_kind)
10186 err += efunc(i, "%d changed variable kind\n", id);
10187
10188 et = &existing->dtdv_type;
10189
10190 if (vt->dtdt_flags != et->dtdt_flags) {
10191 err += efunc(i, "%d changed variable type flags\n", id);
10192 break;
10193 }
10194
10195 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
10196 err += efunc(i, "%d changed variable type size\n", id);
10197 break;
10198 }
10199 }
10200
10201 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
10202 dif_instr_t instr = dp->dtdo_buf[pc];
10203
10204 uint_t v = DIF_INSTR_VAR(instr);
10205 uint_t op = DIF_INSTR_OP(instr);
10206
10207 switch (op) {
10208 case DIF_OP_LDGS:
10209 case DIF_OP_LDGAA:
10210 case DIF_OP_STGS:
10211 case DIF_OP_STGAA:
10212 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
10213 err += efunc(pc, "invalid variable %u\n", v);
10214 break;
10215 case DIF_OP_LDTS:
10216 case DIF_OP_LDTAA:
10217 case DIF_OP_STTS:
10218 case DIF_OP_STTAA:
10219 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
10220 err += efunc(pc, "invalid variable %u\n", v);
10221 break;
10222 case DIF_OP_LDLS:
10223 case DIF_OP_STLS:
10224 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
10225 err += efunc(pc, "invalid variable %u\n", v);
10226 break;
10227 default:
10228 break;
10229 }
10230 }
10231
10232 return (err);
10233 }
10234
10235 /*
10236 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
10237 * are much more constrained than normal DIFOs. Specifically, they may
10238 * not:
10239 *
10240 * 1. Make calls to subroutines other than copyin(), copyinstr() or
10241 * miscellaneous string routines
10242 * 2. Access DTrace variables other than the args[] array, and the
10243 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
10244 * 3. Have thread-local variables.
10245 * 4. Have dynamic variables.
10246 */
10247 static int
10248 dtrace_difo_validate_helper(dtrace_difo_t *dp)
10249 {
10250 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
10251 int err = 0;
10252 uint_t pc;
10253
10254 for (pc = 0; pc < dp->dtdo_len; pc++) {
10255 dif_instr_t instr = dp->dtdo_buf[pc];
10256
10257 uint_t v = DIF_INSTR_VAR(instr);
10258 uint_t subr = DIF_INSTR_SUBR(instr);
10259 uint_t op = DIF_INSTR_OP(instr);
10260
10261 switch (op) {
10262 case DIF_OP_OR:
10263 case DIF_OP_XOR:
10264 case DIF_OP_AND:
10265 case DIF_OP_SLL:
10266 case DIF_OP_SRL:
10267 case DIF_OP_SRA:
10268 case DIF_OP_SUB:
10269 case DIF_OP_ADD:
10270 case DIF_OP_MUL:
10271 case DIF_OP_SDIV:
10272 case DIF_OP_UDIV:
10273 case DIF_OP_SREM:
10274 case DIF_OP_UREM:
10275 case DIF_OP_COPYS:
10276 case DIF_OP_NOT:
10277 case DIF_OP_MOV:
10278 case DIF_OP_RLDSB:
10279 case DIF_OP_RLDSH:
10280 case DIF_OP_RLDSW:
10281 case DIF_OP_RLDUB:
10282 case DIF_OP_RLDUH:
10283 case DIF_OP_RLDUW:
10284 case DIF_OP_RLDX:
10285 case DIF_OP_ULDSB:
10286 case DIF_OP_ULDSH:
10287 case DIF_OP_ULDSW:
10288 case DIF_OP_ULDUB:
10289 case DIF_OP_ULDUH:
10290 case DIF_OP_ULDUW:
10291 case DIF_OP_ULDX:
10292 case DIF_OP_STB:
10293 case DIF_OP_STH:
10294 case DIF_OP_STW:
10295 case DIF_OP_STX:
10296 case DIF_OP_ALLOCS:
10297 case DIF_OP_CMP:
10298 case DIF_OP_SCMP:
10299 case DIF_OP_TST:
10300 case DIF_OP_BA:
10301 case DIF_OP_BE:
10302 case DIF_OP_BNE:
10303 case DIF_OP_BG:
10304 case DIF_OP_BGU:
10305 case DIF_OP_BGE:
10306 case DIF_OP_BGEU:
10307 case DIF_OP_BL:
10308 case DIF_OP_BLU:
10309 case DIF_OP_BLE:
10310 case DIF_OP_BLEU:
10311 case DIF_OP_RET:
10312 case DIF_OP_NOP:
10313 case DIF_OP_POPTS:
10314 case DIF_OP_FLUSHTS:
10315 case DIF_OP_SETX:
10316 case DIF_OP_SETS:
10317 case DIF_OP_LDGA:
10318 case DIF_OP_LDLS:
10319 case DIF_OP_STGS:
10320 case DIF_OP_STLS:
10321 case DIF_OP_PUSHTR:
10322 case DIF_OP_PUSHTV:
10323 break;
10324
10325 case DIF_OP_LDGS:
10326 if (v >= DIF_VAR_OTHER_UBASE)
10327 break;
10328
10329 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
10330 break;
10331
10332 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
10333 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
10334 v == DIF_VAR_EXECARGS ||
10335 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
10336 v == DIF_VAR_UID || v == DIF_VAR_GID)
10337 break;
10338
10339 err += efunc(pc, "illegal variable %u\n", v);
10340 break;
10341
10342 case DIF_OP_LDTA:
10343 case DIF_OP_LDTS:
10344 case DIF_OP_LDGAA:
10345 case DIF_OP_LDTAA:
10346 err += efunc(pc, "illegal dynamic variable load\n");
10347 break;
10348
10349 case DIF_OP_STTS:
10350 case DIF_OP_STGAA:
10351 case DIF_OP_STTAA:
10352 err += efunc(pc, "illegal dynamic variable store\n");
10353 break;
10354
10355 case DIF_OP_CALL:
10356 if (subr == DIF_SUBR_ALLOCA ||
10357 subr == DIF_SUBR_BCOPY ||
10358 subr == DIF_SUBR_COPYIN ||
10359 subr == DIF_SUBR_COPYINTO ||
10360 subr == DIF_SUBR_COPYINSTR ||
10361 subr == DIF_SUBR_INDEX ||
10362 subr == DIF_SUBR_INET_NTOA ||
10363 subr == DIF_SUBR_INET_NTOA6 ||
10364 subr == DIF_SUBR_INET_NTOP ||
10365 subr == DIF_SUBR_JSON ||
10366 subr == DIF_SUBR_LLTOSTR ||
10367 subr == DIF_SUBR_STRTOLL ||
10368 subr == DIF_SUBR_RINDEX ||
10369 subr == DIF_SUBR_STRCHR ||
10370 subr == DIF_SUBR_STRJOIN ||
10371 subr == DIF_SUBR_STRRCHR ||
10372 subr == DIF_SUBR_STRSTR ||
10373 subr == DIF_SUBR_HTONS ||
10374 subr == DIF_SUBR_HTONL ||
10375 subr == DIF_SUBR_HTONLL ||
10376 subr == DIF_SUBR_NTOHS ||
10377 subr == DIF_SUBR_NTOHL ||
10378 subr == DIF_SUBR_NTOHLL ||
10379 subr == DIF_SUBR_MEMREF)
10380 break;
10381 #ifdef __FreeBSD__
10382 if (subr == DIF_SUBR_MEMSTR)
10383 break;
10384 #endif
10385
10386 err += efunc(pc, "invalid subr %u\n", subr);
10387 break;
10388
10389 default:
10390 err += efunc(pc, "invalid opcode %u\n",
10391 DIF_INSTR_OP(instr));
10392 }
10393 }
10394
10395 return (err);
10396 }
10397
10398 /*
10399 * Returns 1 if the expression in the DIF object can be cached on a per-thread
10400 * basis; 0 if not.
10401 */
10402 static int
10403 dtrace_difo_cacheable(dtrace_difo_t *dp)
10404 {
10405 int i;
10406
10407 if (dp == NULL)
10408 return (0);
10409
10410 for (i = 0; i < dp->dtdo_varlen; i++) {
10411 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10412
10413 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
10414 continue;
10415
10416 switch (v->dtdv_id) {
10417 case DIF_VAR_CURTHREAD:
10418 case DIF_VAR_PID:
10419 case DIF_VAR_TID:
10420 case DIF_VAR_EXECARGS:
10421 case DIF_VAR_EXECNAME:
10422 case DIF_VAR_ZONENAME:
10423 break;
10424
10425 default:
10426 return (0);
10427 }
10428 }
10429
10430 /*
10431 * This DIF object may be cacheable. Now we need to look for any
10432 * array loading instructions, any memory loading instructions, or
10433 * any stores to thread-local variables.
10434 */
10435 for (i = 0; i < dp->dtdo_len; i++) {
10436 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
10437
10438 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
10439 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
10440 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
10441 op == DIF_OP_LDGA || op == DIF_OP_STTS)
10442 return (0);
10443 }
10444
10445 return (1);
10446 }
10447
10448 static void
10449 dtrace_difo_hold(dtrace_difo_t *dp)
10450 {
10451 int i;
10452
10453 ASSERT(MUTEX_HELD(&dtrace_lock));
10454
10455 dp->dtdo_refcnt++;
10456 ASSERT(dp->dtdo_refcnt != 0);
10457
10458 /*
10459 * We need to check this DIF object for references to the variable
10460 * DIF_VAR_VTIMESTAMP.
10461 */
10462 for (i = 0; i < dp->dtdo_varlen; i++) {
10463 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10464
10465 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10466 continue;
10467
10468 if (dtrace_vtime_references++ == 0)
10469 dtrace_vtime_enable();
10470 }
10471 }
10472
10473 /*
10474 * This routine calculates the dynamic variable chunksize for a given DIF
10475 * object. The calculation is not fool-proof, and can probably be tricked by
10476 * malicious DIF -- but it works for all compiler-generated DIF. Because this
10477 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
10478 * if a dynamic variable size exceeds the chunksize.
10479 */
10480 static void
10481 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10482 {
10483 uint64_t sval = 0;
10484 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
10485 const dif_instr_t *text = dp->dtdo_buf;
10486 uint_t pc, srd = 0;
10487 uint_t ttop = 0;
10488 size_t size, ksize;
10489 uint_t id, i;
10490
10491 for (pc = 0; pc < dp->dtdo_len; pc++) {
10492 dif_instr_t instr = text[pc];
10493 uint_t op = DIF_INSTR_OP(instr);
10494 uint_t rd = DIF_INSTR_RD(instr);
10495 uint_t r1 = DIF_INSTR_R1(instr);
10496 uint_t nkeys = 0;
10497 uchar_t scope = 0;
10498
10499 dtrace_key_t *key = tupregs;
10500
10501 switch (op) {
10502 case DIF_OP_SETX:
10503 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
10504 srd = rd;
10505 continue;
10506
10507 case DIF_OP_STTS:
10508 key = &tupregs[DIF_DTR_NREGS];
10509 key[0].dttk_size = 0;
10510 key[1].dttk_size = 0;
10511 nkeys = 2;
10512 scope = DIFV_SCOPE_THREAD;
10513 break;
10514
10515 case DIF_OP_STGAA:
10516 case DIF_OP_STTAA:
10517 nkeys = ttop;
10518
10519 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
10520 key[nkeys++].dttk_size = 0;
10521
10522 key[nkeys++].dttk_size = 0;
10523
10524 if (op == DIF_OP_STTAA) {
10525 scope = DIFV_SCOPE_THREAD;
10526 } else {
10527 scope = DIFV_SCOPE_GLOBAL;
10528 }
10529
10530 break;
10531
10532 case DIF_OP_PUSHTR:
10533 if (ttop == DIF_DTR_NREGS)
10534 return;
10535
10536 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
10537 /*
10538 * If the register for the size of the "pushtr"
10539 * is %r0 (or the value is 0) and the type is
10540 * a string, we'll use the system-wide default
10541 * string size.
10542 */
10543 tupregs[ttop++].dttk_size =
10544 dtrace_strsize_default;
10545 } else {
10546 if (srd == 0)
10547 return;
10548
10549 if (sval > LONG_MAX)
10550 return;
10551
10552 tupregs[ttop++].dttk_size = sval;
10553 }
10554
10555 break;
10556
10557 case DIF_OP_PUSHTV:
10558 if (ttop == DIF_DTR_NREGS)
10559 return;
10560
10561 tupregs[ttop++].dttk_size = 0;
10562 break;
10563
10564 case DIF_OP_FLUSHTS:
10565 ttop = 0;
10566 break;
10567
10568 case DIF_OP_POPTS:
10569 if (ttop != 0)
10570 ttop--;
10571 break;
10572 }
10573
10574 sval = 0;
10575 srd = 0;
10576
10577 if (nkeys == 0)
10578 continue;
10579
10580 /*
10581 * We have a dynamic variable allocation; calculate its size.
10582 */
10583 for (ksize = 0, i = 0; i < nkeys; i++)
10584 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
10585
10586 size = sizeof (dtrace_dynvar_t);
10587 size += sizeof (dtrace_key_t) * (nkeys - 1);
10588 size += ksize;
10589
10590 /*
10591 * Now we need to determine the size of the stored data.
10592 */
10593 id = DIF_INSTR_VAR(instr);
10594
10595 for (i = 0; i < dp->dtdo_varlen; i++) {
10596 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10597
10598 if (v->dtdv_id == id && v->dtdv_scope == scope) {
10599 size += v->dtdv_type.dtdt_size;
10600 break;
10601 }
10602 }
10603
10604 if (i == dp->dtdo_varlen)
10605 return;
10606
10607 /*
10608 * We have the size. If this is larger than the chunk size
10609 * for our dynamic variable state, reset the chunk size.
10610 */
10611 size = P2ROUNDUP(size, sizeof (uint64_t));
10612
10613 /*
10614 * Before setting the chunk size, check that we're not going
10615 * to set it to a negative value...
10616 */
10617 if (size > LONG_MAX)
10618 return;
10619
10620 /*
10621 * ...and make certain that we didn't badly overflow.
10622 */
10623 if (size < ksize || size < sizeof (dtrace_dynvar_t))
10624 return;
10625
10626 if (size > vstate->dtvs_dynvars.dtds_chunksize)
10627 vstate->dtvs_dynvars.dtds_chunksize = size;
10628 }
10629 }
10630
10631 static void
10632 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10633 {
10634 int i, oldsvars, osz, nsz, otlocals, ntlocals;
10635 uint_t id;
10636
10637 ASSERT(MUTEX_HELD(&dtrace_lock));
10638 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
10639
10640 for (i = 0; i < dp->dtdo_varlen; i++) {
10641 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10642 dtrace_statvar_t *svar, ***svarp = NULL;
10643 size_t dsize = 0;
10644 uint8_t scope = v->dtdv_scope;
10645 int *np = NULL;
10646
10647 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10648 continue;
10649
10650 id -= DIF_VAR_OTHER_UBASE;
10651
10652 switch (scope) {
10653 case DIFV_SCOPE_THREAD:
10654 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
10655 dtrace_difv_t *tlocals;
10656
10657 if ((ntlocals = (otlocals << 1)) == 0)
10658 ntlocals = 1;
10659
10660 osz = otlocals * sizeof (dtrace_difv_t);
10661 nsz = ntlocals * sizeof (dtrace_difv_t);
10662
10663 tlocals = kmem_zalloc(nsz, KM_SLEEP);
10664
10665 if (osz != 0) {
10666 bcopy(vstate->dtvs_tlocals,
10667 tlocals, osz);
10668 kmem_free(vstate->dtvs_tlocals, osz);
10669 }
10670
10671 vstate->dtvs_tlocals = tlocals;
10672 vstate->dtvs_ntlocals = ntlocals;
10673 }
10674
10675 vstate->dtvs_tlocals[id] = *v;
10676 continue;
10677
10678 case DIFV_SCOPE_LOCAL:
10679 np = &vstate->dtvs_nlocals;
10680 svarp = &vstate->dtvs_locals;
10681
10682 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10683 dsize = (mp_maxid + 1) *
10684 (v->dtdv_type.dtdt_size +
10685 sizeof (uint64_t));
10686 else
10687 dsize = (mp_maxid + 1) * sizeof (uint64_t);
10688
10689 break;
10690
10691 case DIFV_SCOPE_GLOBAL:
10692 np = &vstate->dtvs_nglobals;
10693 svarp = &vstate->dtvs_globals;
10694
10695 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
10696 dsize = v->dtdv_type.dtdt_size +
10697 sizeof (uint64_t);
10698
10699 break;
10700
10701 default:
10702 ASSERT(0);
10703 }
10704
10705 while (id >= (oldsvars = *np)) {
10706 dtrace_statvar_t **statics;
10707 int newsvars, oldsize, newsize;
10708
10709 if ((newsvars = (oldsvars << 1)) == 0)
10710 newsvars = 1;
10711
10712 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
10713 newsize = newsvars * sizeof (dtrace_statvar_t *);
10714
10715 statics = kmem_zalloc(newsize, KM_SLEEP);
10716
10717 if (oldsize != 0) {
10718 bcopy(*svarp, statics, oldsize);
10719 kmem_free(*svarp, oldsize);
10720 }
10721
10722 *svarp = statics;
10723 *np = newsvars;
10724 }
10725
10726 if ((svar = (*svarp)[id]) == NULL) {
10727 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
10728 svar->dtsv_var = *v;
10729
10730 if ((svar->dtsv_size = dsize) != 0) {
10731 svar->dtsv_data = (uint64_t)(uintptr_t)
10732 kmem_zalloc(dsize, KM_SLEEP);
10733 }
10734
10735 (*svarp)[id] = svar;
10736 }
10737
10738 svar->dtsv_refcnt++;
10739 }
10740
10741 dtrace_difo_chunksize(dp, vstate);
10742 dtrace_difo_hold(dp);
10743 }
10744
10745 static dtrace_difo_t *
10746 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10747 {
10748 dtrace_difo_t *new;
10749 size_t sz;
10750
10751 ASSERT(dp->dtdo_buf != NULL);
10752 ASSERT(dp->dtdo_refcnt != 0);
10753
10754 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
10755
10756 ASSERT(dp->dtdo_buf != NULL);
10757 sz = dp->dtdo_len * sizeof (dif_instr_t);
10758 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
10759 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
10760 new->dtdo_len = dp->dtdo_len;
10761
10762 if (dp->dtdo_strtab != NULL) {
10763 ASSERT(dp->dtdo_strlen != 0);
10764 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10765 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10766 new->dtdo_strlen = dp->dtdo_strlen;
10767 }
10768
10769 if (dp->dtdo_inttab != NULL) {
10770 ASSERT(dp->dtdo_intlen != 0);
10771 sz = dp->dtdo_intlen * sizeof (uint64_t);
10772 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10773 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10774 new->dtdo_intlen = dp->dtdo_intlen;
10775 }
10776
10777 if (dp->dtdo_vartab != NULL) {
10778 ASSERT(dp->dtdo_varlen != 0);
10779 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10780 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10781 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10782 new->dtdo_varlen = dp->dtdo_varlen;
10783 }
10784
10785 dtrace_difo_init(new, vstate);
10786 return (new);
10787 }
10788
10789 static void
10790 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10791 {
10792 int i;
10793
10794 ASSERT(dp->dtdo_refcnt == 0);
10795
10796 for (i = 0; i < dp->dtdo_varlen; i++) {
10797 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10798 dtrace_statvar_t *svar, **svarp = NULL;
10799 uint_t id;
10800 uint8_t scope = v->dtdv_scope;
10801 int *np = NULL;
10802
10803 switch (scope) {
10804 case DIFV_SCOPE_THREAD:
10805 continue;
10806
10807 case DIFV_SCOPE_LOCAL:
10808 np = &vstate->dtvs_nlocals;
10809 svarp = vstate->dtvs_locals;
10810 break;
10811
10812 case DIFV_SCOPE_GLOBAL:
10813 np = &vstate->dtvs_nglobals;
10814 svarp = vstate->dtvs_globals;
10815 break;
10816
10817 default:
10818 ASSERT(0);
10819 }
10820
10821 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10822 continue;
10823
10824 id -= DIF_VAR_OTHER_UBASE;
10825 ASSERT(id < *np);
10826
10827 svar = svarp[id];
10828 ASSERT(svar != NULL);
10829 ASSERT(svar->dtsv_refcnt > 0);
10830
10831 if (--svar->dtsv_refcnt > 0)
10832 continue;
10833
10834 if (svar->dtsv_size != 0) {
10835 ASSERT(svar->dtsv_data != 0);
10836 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10837 svar->dtsv_size);
10838 }
10839
10840 kmem_free(svar, sizeof (dtrace_statvar_t));
10841 svarp[id] = NULL;
10842 }
10843
10844 if (dp->dtdo_buf != NULL)
10845 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10846 if (dp->dtdo_inttab != NULL)
10847 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10848 if (dp->dtdo_strtab != NULL)
10849 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10850 if (dp->dtdo_vartab != NULL)
10851 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10852
10853 kmem_free(dp, sizeof (dtrace_difo_t));
10854 }
10855
10856 static void
10857 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10858 {
10859 int i;
10860
10861 ASSERT(MUTEX_HELD(&dtrace_lock));
10862 ASSERT(dp->dtdo_refcnt != 0);
10863
10864 for (i = 0; i < dp->dtdo_varlen; i++) {
10865 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10866
10867 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10868 continue;
10869
10870 ASSERT(dtrace_vtime_references > 0);
10871 if (--dtrace_vtime_references == 0)
10872 dtrace_vtime_disable();
10873 }
10874
10875 if (--dp->dtdo_refcnt == 0)
10876 dtrace_difo_destroy(dp, vstate);
10877 }
10878
10879 /*
10880 * DTrace Format Functions
10881 */
10882 static uint16_t
10883 dtrace_format_add(dtrace_state_t *state, char *str)
10884 {
10885 char *fmt, **new;
10886 uint16_t ndx, len = strlen(str) + 1;
10887
10888 fmt = kmem_zalloc(len, KM_SLEEP);
10889 bcopy(str, fmt, len);
10890
10891 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10892 if (state->dts_formats[ndx] == NULL) {
10893 state->dts_formats[ndx] = fmt;
10894 return (ndx + 1);
10895 }
10896 }
10897
10898 if (state->dts_nformats == USHRT_MAX) {
10899 /*
10900 * This is only likely if a denial-of-service attack is being
10901 * attempted. As such, it's okay to fail silently here.
10902 */
10903 kmem_free(fmt, len);
10904 return (0);
10905 }
10906
10907 /*
10908 * For simplicity, we always resize the formats array to be exactly the
10909 * number of formats.
10910 */
10911 ndx = state->dts_nformats++;
10912 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10913
10914 if (state->dts_formats != NULL) {
10915 ASSERT(ndx != 0);
10916 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10917 kmem_free(state->dts_formats, ndx * sizeof (char *));
10918 }
10919
10920 state->dts_formats = new;
10921 state->dts_formats[ndx] = fmt;
10922
10923 return (ndx + 1);
10924 }
10925
10926 static void
10927 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10928 {
10929 char *fmt;
10930
10931 ASSERT(state->dts_formats != NULL);
10932 ASSERT(format <= state->dts_nformats);
10933 ASSERT(state->dts_formats[format - 1] != NULL);
10934
10935 fmt = state->dts_formats[format - 1];
10936 kmem_free(fmt, strlen(fmt) + 1);
10937 state->dts_formats[format - 1] = NULL;
10938 }
10939
10940 static void
10941 dtrace_format_destroy(dtrace_state_t *state)
10942 {
10943 int i;
10944
10945 if (state->dts_nformats == 0) {
10946 ASSERT(state->dts_formats == NULL);
10947 return;
10948 }
10949
10950 ASSERT(state->dts_formats != NULL);
10951
10952 for (i = 0; i < state->dts_nformats; i++) {
10953 char *fmt = state->dts_formats[i];
10954
10955 if (fmt == NULL)
10956 continue;
10957
10958 kmem_free(fmt, strlen(fmt) + 1);
10959 }
10960
10961 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10962 state->dts_nformats = 0;
10963 state->dts_formats = NULL;
10964 }
10965
10966 /*
10967 * DTrace Predicate Functions
10968 */
10969 static dtrace_predicate_t *
10970 dtrace_predicate_create(dtrace_difo_t *dp)
10971 {
10972 dtrace_predicate_t *pred;
10973
10974 ASSERT(MUTEX_HELD(&dtrace_lock));
10975 ASSERT(dp->dtdo_refcnt != 0);
10976
10977 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10978 pred->dtp_difo = dp;
10979 pred->dtp_refcnt = 1;
10980
10981 if (!dtrace_difo_cacheable(dp))
10982 return (pred);
10983
10984 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10985 /*
10986 * This is only theoretically possible -- we have had 2^32
10987 * cacheable predicates on this machine. We cannot allow any
10988 * more predicates to become cacheable: as unlikely as it is,
10989 * there may be a thread caching a (now stale) predicate cache
10990 * ID. (N.B.: the temptation is being successfully resisted to
10991 * have this cmn_err() "Holy shit -- we executed this code!")
10992 */
10993 return (pred);
10994 }
10995
10996 pred->dtp_cacheid = dtrace_predcache_id++;
10997
10998 return (pred);
10999 }
11000
11001 static void
11002 dtrace_predicate_hold(dtrace_predicate_t *pred)
11003 {
11004 ASSERT(MUTEX_HELD(&dtrace_lock));
11005 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
11006 ASSERT(pred->dtp_refcnt > 0);
11007
11008 pred->dtp_refcnt++;
11009 }
11010
11011 static void
11012 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
11013 {
11014 dtrace_difo_t *dp = pred->dtp_difo;
11015
11016 ASSERT(MUTEX_HELD(&dtrace_lock));
11017 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
11018 ASSERT(pred->dtp_refcnt > 0);
11019
11020 if (--pred->dtp_refcnt == 0) {
11021 dtrace_difo_release(pred->dtp_difo, vstate);
11022 kmem_free(pred, sizeof (dtrace_predicate_t));
11023 }
11024 }
11025
11026 /*
11027 * DTrace Action Description Functions
11028 */
11029 static dtrace_actdesc_t *
11030 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
11031 uint64_t uarg, uint64_t arg)
11032 {
11033 dtrace_actdesc_t *act;
11034
11035 #ifdef illumos
11036 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
11037 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
11038 #endif
11039
11040 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
11041 act->dtad_kind = kind;
11042 act->dtad_ntuple = ntuple;
11043 act->dtad_uarg = uarg;
11044 act->dtad_arg = arg;
11045 act->dtad_refcnt = 1;
11046
11047 return (act);
11048 }
11049
11050 static void
11051 dtrace_actdesc_hold(dtrace_actdesc_t *act)
11052 {
11053 ASSERT(act->dtad_refcnt >= 1);
11054 act->dtad_refcnt++;
11055 }
11056
11057 static void
11058 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
11059 {
11060 dtrace_actkind_t kind = act->dtad_kind;
11061 dtrace_difo_t *dp;
11062
11063 ASSERT(act->dtad_refcnt >= 1);
11064
11065 if (--act->dtad_refcnt != 0)
11066 return;
11067
11068 if ((dp = act->dtad_difo) != NULL)
11069 dtrace_difo_release(dp, vstate);
11070
11071 if (DTRACEACT_ISPRINTFLIKE(kind)) {
11072 char *str = (char *)(uintptr_t)act->dtad_arg;
11073
11074 #ifdef illumos
11075 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
11076 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
11077 #endif
11078
11079 if (str != NULL)
11080 kmem_free(str, strlen(str) + 1);
11081 }
11082
11083 kmem_free(act, sizeof (dtrace_actdesc_t));
11084 }
11085
11086 /*
11087 * DTrace ECB Functions
11088 */
11089 static dtrace_ecb_t *
11090 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
11091 {
11092 dtrace_ecb_t *ecb;
11093 dtrace_epid_t epid;
11094
11095 ASSERT(MUTEX_HELD(&dtrace_lock));
11096
11097 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
11098 ecb->dte_predicate = NULL;
11099 ecb->dte_probe = probe;
11100
11101 /*
11102 * The default size is the size of the default action: recording
11103 * the header.
11104 */
11105 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
11106 ecb->dte_alignment = sizeof (dtrace_epid_t);
11107
11108 epid = state->dts_epid++;
11109
11110 if (epid - 1 >= state->dts_necbs) {
11111 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
11112 int necbs = state->dts_necbs << 1;
11113
11114 ASSERT(epid == state->dts_necbs + 1);
11115
11116 if (necbs == 0) {
11117 ASSERT(oecbs == NULL);
11118 necbs = 1;
11119 }
11120
11121 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
11122
11123 if (oecbs != NULL)
11124 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
11125
11126 dtrace_membar_producer();
11127 state->dts_ecbs = ecbs;
11128
11129 if (oecbs != NULL) {
11130 /*
11131 * If this state is active, we must dtrace_sync()
11132 * before we can free the old dts_ecbs array: we're
11133 * coming in hot, and there may be active ring
11134 * buffer processing (which indexes into the dts_ecbs
11135 * array) on another CPU.
11136 */
11137 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
11138 dtrace_sync();
11139
11140 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
11141 }
11142
11143 dtrace_membar_producer();
11144 state->dts_necbs = necbs;
11145 }
11146
11147 ecb->dte_state = state;
11148
11149 ASSERT(state->dts_ecbs[epid - 1] == NULL);
11150 dtrace_membar_producer();
11151 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
11152
11153 return (ecb);
11154 }
11155
11156 static void
11157 dtrace_ecb_enable(dtrace_ecb_t *ecb)
11158 {
11159 dtrace_probe_t *probe = ecb->dte_probe;
11160
11161 ASSERT(MUTEX_HELD(&cpu_lock));
11162 ASSERT(MUTEX_HELD(&dtrace_lock));
11163 ASSERT(ecb->dte_next == NULL);
11164
11165 if (probe == NULL) {
11166 /*
11167 * This is the NULL probe -- there's nothing to do.
11168 */
11169 return;
11170 }
11171
11172 if (probe->dtpr_ecb == NULL) {
11173 dtrace_provider_t *prov = probe->dtpr_provider;
11174
11175 /*
11176 * We're the first ECB on this probe.
11177 */
11178 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
11179
11180 if (ecb->dte_predicate != NULL)
11181 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
11182
11183 prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
11184 probe->dtpr_id, probe->dtpr_arg);
11185 } else {
11186 /*
11187 * This probe is already active. Swing the last pointer to
11188 * point to the new ECB, and issue a dtrace_sync() to assure
11189 * that all CPUs have seen the change.
11190 */
11191 ASSERT(probe->dtpr_ecb_last != NULL);
11192 probe->dtpr_ecb_last->dte_next = ecb;
11193 probe->dtpr_ecb_last = ecb;
11194 probe->dtpr_predcache = 0;
11195
11196 dtrace_sync();
11197 }
11198 }
11199
11200 static int
11201 dtrace_ecb_resize(dtrace_ecb_t *ecb)
11202 {
11203 dtrace_action_t *act;
11204 uint32_t curneeded = UINT32_MAX;
11205 uint32_t aggbase = UINT32_MAX;
11206
11207 /*
11208 * If we record anything, we always record the dtrace_rechdr_t. (And
11209 * we always record it first.)
11210 */
11211 ecb->dte_size = sizeof (dtrace_rechdr_t);
11212 ecb->dte_alignment = sizeof (dtrace_epid_t);
11213
11214 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11215 dtrace_recdesc_t *rec = &act->dta_rec;
11216 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
11217
11218 ecb->dte_alignment = MAX(ecb->dte_alignment,
11219 rec->dtrd_alignment);
11220
11221 if (DTRACEACT_ISAGG(act->dta_kind)) {
11222 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11223
11224 ASSERT(rec->dtrd_size != 0);
11225 ASSERT(agg->dtag_first != NULL);
11226 ASSERT(act->dta_prev->dta_intuple);
11227 ASSERT(aggbase != UINT32_MAX);
11228 ASSERT(curneeded != UINT32_MAX);
11229
11230 agg->dtag_base = aggbase;
11231
11232 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11233 rec->dtrd_offset = curneeded;
11234 if (curneeded + rec->dtrd_size < curneeded)
11235 return (EINVAL);
11236 curneeded += rec->dtrd_size;
11237 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
11238
11239 aggbase = UINT32_MAX;
11240 curneeded = UINT32_MAX;
11241 } else if (act->dta_intuple) {
11242 if (curneeded == UINT32_MAX) {
11243 /*
11244 * This is the first record in a tuple. Align
11245 * curneeded to be at offset 4 in an 8-byte
11246 * aligned block.
11247 */
11248 ASSERT(act->dta_prev == NULL ||
11249 !act->dta_prev->dta_intuple);
11250 ASSERT3U(aggbase, ==, UINT32_MAX);
11251 curneeded = P2PHASEUP(ecb->dte_size,
11252 sizeof (uint64_t), sizeof (dtrace_aggid_t));
11253
11254 aggbase = curneeded - sizeof (dtrace_aggid_t);
11255 ASSERT(IS_P2ALIGNED(aggbase,
11256 sizeof (uint64_t)));
11257 }
11258 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
11259 rec->dtrd_offset = curneeded;
11260 if (curneeded + rec->dtrd_size < curneeded)
11261 return (EINVAL);
11262 curneeded += rec->dtrd_size;
11263 } else {
11264 /* tuples must be followed by an aggregation */
11265 ASSERT(act->dta_prev == NULL ||
11266 !act->dta_prev->dta_intuple);
11267
11268 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
11269 rec->dtrd_alignment);
11270 rec->dtrd_offset = ecb->dte_size;
11271 if (ecb->dte_size + rec->dtrd_size < ecb->dte_size)
11272 return (EINVAL);
11273 ecb->dte_size += rec->dtrd_size;
11274 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
11275 }
11276 }
11277
11278 if ((act = ecb->dte_action) != NULL &&
11279 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
11280 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
11281 /*
11282 * If the size is still sizeof (dtrace_rechdr_t), then all
11283 * actions store no data; set the size to 0.
11284 */
11285 ecb->dte_size = 0;
11286 }
11287
11288 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
11289 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
11290 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
11291 ecb->dte_needed);
11292 return (0);
11293 }
11294
11295 static dtrace_action_t *
11296 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11297 {
11298 dtrace_aggregation_t *agg;
11299 size_t size = sizeof (uint64_t);
11300 int ntuple = desc->dtad_ntuple;
11301 dtrace_action_t *act;
11302 dtrace_recdesc_t *frec;
11303 dtrace_aggid_t aggid;
11304 dtrace_state_t *state = ecb->dte_state;
11305
11306 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
11307 agg->dtag_ecb = ecb;
11308
11309 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
11310
11311 switch (desc->dtad_kind) {
11312 case DTRACEAGG_MIN:
11313 agg->dtag_initial = INT64_MAX;
11314 agg->dtag_aggregate = dtrace_aggregate_min;
11315 break;
11316
11317 case DTRACEAGG_MAX:
11318 agg->dtag_initial = INT64_MIN;
11319 agg->dtag_aggregate = dtrace_aggregate_max;
11320 break;
11321
11322 case DTRACEAGG_COUNT:
11323 agg->dtag_aggregate = dtrace_aggregate_count;
11324 break;
11325
11326 case DTRACEAGG_QUANTIZE:
11327 agg->dtag_aggregate = dtrace_aggregate_quantize;
11328 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
11329 sizeof (uint64_t);
11330 break;
11331
11332 case DTRACEAGG_LQUANTIZE: {
11333 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
11334 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
11335
11336 agg->dtag_initial = desc->dtad_arg;
11337 agg->dtag_aggregate = dtrace_aggregate_lquantize;
11338
11339 if (step == 0 || levels == 0)
11340 goto err;
11341
11342 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
11343 break;
11344 }
11345
11346 case DTRACEAGG_LLQUANTIZE: {
11347 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
11348 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
11349 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
11350 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
11351 int64_t v;
11352
11353 agg->dtag_initial = desc->dtad_arg;
11354 agg->dtag_aggregate = dtrace_aggregate_llquantize;
11355
11356 if (factor < 2 || low >= high || nsteps < factor)
11357 goto err;
11358
11359 /*
11360 * Now check that the number of steps evenly divides a power
11361 * of the factor. (This assures both integer bucket size and
11362 * linearity within each magnitude.)
11363 */
11364 for (v = factor; v < nsteps; v *= factor)
11365 continue;
11366
11367 if ((v % nsteps) || (nsteps % factor))
11368 goto err;
11369
11370 size = (dtrace_aggregate_llquantize_bucket(factor,
11371 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
11372 break;
11373 }
11374
11375 case DTRACEAGG_AVG:
11376 agg->dtag_aggregate = dtrace_aggregate_avg;
11377 size = sizeof (uint64_t) * 2;
11378 break;
11379
11380 case DTRACEAGG_STDDEV:
11381 agg->dtag_aggregate = dtrace_aggregate_stddev;
11382 size = sizeof (uint64_t) * 4;
11383 break;
11384
11385 case DTRACEAGG_SUM:
11386 agg->dtag_aggregate = dtrace_aggregate_sum;
11387 break;
11388
11389 default:
11390 goto err;
11391 }
11392
11393 agg->dtag_action.dta_rec.dtrd_size = size;
11394
11395 if (ntuple == 0)
11396 goto err;
11397
11398 /*
11399 * We must make sure that we have enough actions for the n-tuple.
11400 */
11401 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
11402 if (DTRACEACT_ISAGG(act->dta_kind))
11403 break;
11404
11405 if (--ntuple == 0) {
11406 /*
11407 * This is the action with which our n-tuple begins.
11408 */
11409 agg->dtag_first = act;
11410 goto success;
11411 }
11412 }
11413
11414 /*
11415 * This n-tuple is short by ntuple elements. Return failure.
11416 */
11417 ASSERT(ntuple != 0);
11418 err:
11419 kmem_free(agg, sizeof (dtrace_aggregation_t));
11420 return (NULL);
11421
11422 success:
11423 /*
11424 * If the last action in the tuple has a size of zero, it's actually
11425 * an expression argument for the aggregating action.
11426 */
11427 ASSERT(ecb->dte_action_last != NULL);
11428 act = ecb->dte_action_last;
11429
11430 if (act->dta_kind == DTRACEACT_DIFEXPR) {
11431 ASSERT(act->dta_difo != NULL);
11432
11433 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
11434 agg->dtag_hasarg = 1;
11435 }
11436
11437 /*
11438 * We need to allocate an id for this aggregation.
11439 */
11440 #ifdef illumos
11441 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
11442 VM_BESTFIT | VM_SLEEP);
11443 #else
11444 aggid = alloc_unr(state->dts_aggid_arena);
11445 #endif
11446
11447 if (aggid - 1 >= state->dts_naggregations) {
11448 dtrace_aggregation_t **oaggs = state->dts_aggregations;
11449 dtrace_aggregation_t **aggs;
11450 int naggs = state->dts_naggregations << 1;
11451 int onaggs = state->dts_naggregations;
11452
11453 ASSERT(aggid == state->dts_naggregations + 1);
11454
11455 if (naggs == 0) {
11456 ASSERT(oaggs == NULL);
11457 naggs = 1;
11458 }
11459
11460 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
11461
11462 if (oaggs != NULL) {
11463 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
11464 kmem_free(oaggs, onaggs * sizeof (*aggs));
11465 }
11466
11467 state->dts_aggregations = aggs;
11468 state->dts_naggregations = naggs;
11469 }
11470
11471 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
11472 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
11473
11474 frec = &agg->dtag_first->dta_rec;
11475 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
11476 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
11477
11478 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
11479 ASSERT(!act->dta_intuple);
11480 act->dta_intuple = 1;
11481 }
11482
11483 return (&agg->dtag_action);
11484 }
11485
11486 static void
11487 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
11488 {
11489 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
11490 dtrace_state_t *state = ecb->dte_state;
11491 dtrace_aggid_t aggid = agg->dtag_id;
11492
11493 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
11494 #ifdef illumos
11495 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
11496 #else
11497 free_unr(state->dts_aggid_arena, aggid);
11498 #endif
11499
11500 ASSERT(state->dts_aggregations[aggid - 1] == agg);
11501 state->dts_aggregations[aggid - 1] = NULL;
11502
11503 kmem_free(agg, sizeof (dtrace_aggregation_t));
11504 }
11505
11506 static int
11507 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
11508 {
11509 dtrace_action_t *action, *last;
11510 dtrace_difo_t *dp = desc->dtad_difo;
11511 uint32_t size = 0, align = sizeof (uint8_t), mask;
11512 uint16_t format = 0;
11513 dtrace_recdesc_t *rec;
11514 dtrace_state_t *state = ecb->dte_state;
11515 dtrace_optval_t *opt = state->dts_options, nframes = 0, strsize;
11516 uint64_t arg = desc->dtad_arg;
11517
11518 ASSERT(MUTEX_HELD(&dtrace_lock));
11519 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
11520
11521 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
11522 /*
11523 * If this is an aggregating action, there must be neither
11524 * a speculate nor a commit on the action chain.
11525 */
11526 dtrace_action_t *act;
11527
11528 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
11529 if (act->dta_kind == DTRACEACT_COMMIT)
11530 return (EINVAL);
11531
11532 if (act->dta_kind == DTRACEACT_SPECULATE)
11533 return (EINVAL);
11534 }
11535
11536 action = dtrace_ecb_aggregation_create(ecb, desc);
11537
11538 if (action == NULL)
11539 return (EINVAL);
11540 } else {
11541 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
11542 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
11543 dp != NULL && dp->dtdo_destructive)) {
11544 state->dts_destructive = 1;
11545 }
11546
11547 switch (desc->dtad_kind) {
11548 case DTRACEACT_PRINTF:
11549 case DTRACEACT_PRINTA:
11550 case DTRACEACT_SYSTEM:
11551 case DTRACEACT_FREOPEN:
11552 case DTRACEACT_DIFEXPR:
11553 /*
11554 * We know that our arg is a string -- turn it into a
11555 * format.
11556 */
11557 if (arg == 0) {
11558 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
11559 desc->dtad_kind == DTRACEACT_DIFEXPR);
11560 format = 0;
11561 } else {
11562 ASSERT(arg != 0);
11563 #ifdef illumos
11564 ASSERT(arg > KERNELBASE);
11565 #endif
11566 format = dtrace_format_add(state,
11567 (char *)(uintptr_t)arg);
11568 }
11569
11570 /*FALLTHROUGH*/
11571 case DTRACEACT_LIBACT:
11572 case DTRACEACT_TRACEMEM:
11573 case DTRACEACT_TRACEMEM_DYNSIZE:
11574 if (dp == NULL)
11575 return (EINVAL);
11576
11577 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
11578 break;
11579
11580 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
11581 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11582 return (EINVAL);
11583
11584 size = opt[DTRACEOPT_STRSIZE];
11585 }
11586
11587 break;
11588
11589 case DTRACEACT_STACK:
11590 if ((nframes = arg) == 0) {
11591 nframes = opt[DTRACEOPT_STACKFRAMES];
11592 ASSERT(nframes > 0);
11593 arg = nframes;
11594 }
11595
11596 size = nframes * sizeof (pc_t);
11597 break;
11598
11599 case DTRACEACT_JSTACK:
11600 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
11601 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
11602
11603 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
11604 nframes = opt[DTRACEOPT_JSTACKFRAMES];
11605
11606 arg = DTRACE_USTACK_ARG(nframes, strsize);
11607
11608 /*FALLTHROUGH*/
11609 case DTRACEACT_USTACK:
11610 if (desc->dtad_kind != DTRACEACT_JSTACK &&
11611 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
11612 strsize = DTRACE_USTACK_STRSIZE(arg);
11613 nframes = opt[DTRACEOPT_USTACKFRAMES];
11614 ASSERT(nframes > 0);
11615 arg = DTRACE_USTACK_ARG(nframes, strsize);
11616 }
11617
11618 /*
11619 * Save a slot for the pid.
11620 */
11621 size = (nframes + 1) * sizeof (uint64_t);
11622 size += DTRACE_USTACK_STRSIZE(arg);
11623 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
11624
11625 break;
11626
11627 case DTRACEACT_SYM:
11628 case DTRACEACT_MOD:
11629 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
11630 sizeof (uint64_t)) ||
11631 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11632 return (EINVAL);
11633 break;
11634
11635 case DTRACEACT_USYM:
11636 case DTRACEACT_UMOD:
11637 case DTRACEACT_UADDR:
11638 if (dp == NULL ||
11639 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
11640 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11641 return (EINVAL);
11642
11643 /*
11644 * We have a slot for the pid, plus a slot for the
11645 * argument. To keep things simple (aligned with
11646 * bitness-neutral sizing), we store each as a 64-bit
11647 * quantity.
11648 */
11649 size = 2 * sizeof (uint64_t);
11650 break;
11651
11652 case DTRACEACT_STOP:
11653 case DTRACEACT_BREAKPOINT:
11654 case DTRACEACT_PANIC:
11655 break;
11656
11657 case DTRACEACT_CHILL:
11658 case DTRACEACT_DISCARD:
11659 case DTRACEACT_RAISE:
11660 if (dp == NULL)
11661 return (EINVAL);
11662 break;
11663
11664 case DTRACEACT_EXIT:
11665 if (dp == NULL ||
11666 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
11667 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
11668 return (EINVAL);
11669 break;
11670
11671 case DTRACEACT_SPECULATE:
11672 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
11673 return (EINVAL);
11674
11675 if (dp == NULL)
11676 return (EINVAL);
11677
11678 state->dts_speculates = 1;
11679 break;
11680
11681 case DTRACEACT_PRINTM:
11682 size = dp->dtdo_rtype.dtdt_size;
11683 break;
11684
11685 case DTRACEACT_COMMIT: {
11686 dtrace_action_t *act = ecb->dte_action;
11687
11688 for (; act != NULL; act = act->dta_next) {
11689 if (act->dta_kind == DTRACEACT_COMMIT)
11690 return (EINVAL);
11691 }
11692
11693 if (dp == NULL)
11694 return (EINVAL);
11695 break;
11696 }
11697
11698 default:
11699 return (EINVAL);
11700 }
11701
11702 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
11703 /*
11704 * If this is a data-storing action or a speculate,
11705 * we must be sure that there isn't a commit on the
11706 * action chain.
11707 */
11708 dtrace_action_t *act = ecb->dte_action;
11709
11710 for (; act != NULL; act = act->dta_next) {
11711 if (act->dta_kind == DTRACEACT_COMMIT)
11712 return (EINVAL);
11713 }
11714 }
11715
11716 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
11717 action->dta_rec.dtrd_size = size;
11718 }
11719
11720 action->dta_refcnt = 1;
11721 rec = &action->dta_rec;
11722 size = rec->dtrd_size;
11723
11724 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
11725 if (!(size & mask)) {
11726 align = mask + 1;
11727 break;
11728 }
11729 }
11730
11731 action->dta_kind = desc->dtad_kind;
11732
11733 if ((action->dta_difo = dp) != NULL)
11734 dtrace_difo_hold(dp);
11735
11736 rec->dtrd_action = action->dta_kind;
11737 rec->dtrd_arg = arg;
11738 rec->dtrd_uarg = desc->dtad_uarg;
11739 rec->dtrd_alignment = (uint16_t)align;
11740 rec->dtrd_format = format;
11741
11742 if ((last = ecb->dte_action_last) != NULL) {
11743 ASSERT(ecb->dte_action != NULL);
11744 action->dta_prev = last;
11745 last->dta_next = action;
11746 } else {
11747 ASSERT(ecb->dte_action == NULL);
11748 ecb->dte_action = action;
11749 }
11750
11751 ecb->dte_action_last = action;
11752
11753 return (0);
11754 }
11755
11756 static void
11757 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
11758 {
11759 dtrace_action_t *act = ecb->dte_action, *next;
11760 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
11761 dtrace_difo_t *dp;
11762 uint16_t format;
11763
11764 if (act != NULL && act->dta_refcnt > 1) {
11765 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
11766 act->dta_refcnt--;
11767 } else {
11768 for (; act != NULL; act = next) {
11769 next = act->dta_next;
11770 ASSERT(next != NULL || act == ecb->dte_action_last);
11771 ASSERT(act->dta_refcnt == 1);
11772
11773 if ((format = act->dta_rec.dtrd_format) != 0)
11774 dtrace_format_remove(ecb->dte_state, format);
11775
11776 if ((dp = act->dta_difo) != NULL)
11777 dtrace_difo_release(dp, vstate);
11778
11779 if (DTRACEACT_ISAGG(act->dta_kind)) {
11780 dtrace_ecb_aggregation_destroy(ecb, act);
11781 } else {
11782 kmem_free(act, sizeof (dtrace_action_t));
11783 }
11784 }
11785 }
11786
11787 ecb->dte_action = NULL;
11788 ecb->dte_action_last = NULL;
11789 ecb->dte_size = 0;
11790 }
11791
11792 static void
11793 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11794 {
11795 /*
11796 * We disable the ECB by removing it from its probe.
11797 */
11798 dtrace_ecb_t *pecb, *prev = NULL;
11799 dtrace_probe_t *probe = ecb->dte_probe;
11800
11801 ASSERT(MUTEX_HELD(&dtrace_lock));
11802
11803 if (probe == NULL) {
11804 /*
11805 * This is the NULL probe; there is nothing to disable.
11806 */
11807 return;
11808 }
11809
11810 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11811 if (pecb == ecb)
11812 break;
11813 prev = pecb;
11814 }
11815
11816 ASSERT(pecb != NULL);
11817
11818 if (prev == NULL) {
11819 probe->dtpr_ecb = ecb->dte_next;
11820 } else {
11821 prev->dte_next = ecb->dte_next;
11822 }
11823
11824 if (ecb == probe->dtpr_ecb_last) {
11825 ASSERT(ecb->dte_next == NULL);
11826 probe->dtpr_ecb_last = prev;
11827 }
11828
11829 /*
11830 * The ECB has been disconnected from the probe; now sync to assure
11831 * that all CPUs have seen the change before returning.
11832 */
11833 dtrace_sync();
11834
11835 if (probe->dtpr_ecb == NULL) {
11836 /*
11837 * That was the last ECB on the probe; clear the predicate
11838 * cache ID for the probe, disable it and sync one more time
11839 * to assure that we'll never hit it again.
11840 */
11841 dtrace_provider_t *prov = probe->dtpr_provider;
11842
11843 ASSERT(ecb->dte_next == NULL);
11844 ASSERT(probe->dtpr_ecb_last == NULL);
11845 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11846 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11847 probe->dtpr_id, probe->dtpr_arg);
11848 dtrace_sync();
11849 } else {
11850 /*
11851 * There is at least one ECB remaining on the probe. If there
11852 * is _exactly_ one, set the probe's predicate cache ID to be
11853 * the predicate cache ID of the remaining ECB.
11854 */
11855 ASSERT(probe->dtpr_ecb_last != NULL);
11856 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11857
11858 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11859 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11860
11861 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11862
11863 if (p != NULL)
11864 probe->dtpr_predcache = p->dtp_cacheid;
11865 }
11866
11867 ecb->dte_next = NULL;
11868 }
11869 }
11870
11871 static void
11872 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11873 {
11874 dtrace_state_t *state = ecb->dte_state;
11875 dtrace_vstate_t *vstate = &state->dts_vstate;
11876 dtrace_predicate_t *pred;
11877 dtrace_epid_t epid = ecb->dte_epid;
11878
11879 ASSERT(MUTEX_HELD(&dtrace_lock));
11880 ASSERT(ecb->dte_next == NULL);
11881 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11882
11883 if ((pred = ecb->dte_predicate) != NULL)
11884 dtrace_predicate_release(pred, vstate);
11885
11886 dtrace_ecb_action_remove(ecb);
11887
11888 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11889 state->dts_ecbs[epid - 1] = NULL;
11890
11891 kmem_free(ecb, sizeof (dtrace_ecb_t));
11892 }
11893
11894 static dtrace_ecb_t *
11895 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11896 dtrace_enabling_t *enab)
11897 {
11898 dtrace_ecb_t *ecb;
11899 dtrace_predicate_t *pred;
11900 dtrace_actdesc_t *act;
11901 dtrace_provider_t *prov;
11902 dtrace_ecbdesc_t *desc = enab->dten_current;
11903
11904 ASSERT(MUTEX_HELD(&dtrace_lock));
11905 ASSERT(state != NULL);
11906
11907 ecb = dtrace_ecb_add(state, probe);
11908 ecb->dte_uarg = desc->dted_uarg;
11909
11910 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11911 dtrace_predicate_hold(pred);
11912 ecb->dte_predicate = pred;
11913 }
11914
11915 if (probe != NULL) {
11916 /*
11917 * If the provider shows more leg than the consumer is old
11918 * enough to see, we need to enable the appropriate implicit
11919 * predicate bits to prevent the ecb from activating at
11920 * revealing times.
11921 *
11922 * Providers specifying DTRACE_PRIV_USER at register time
11923 * are stating that they need the /proc-style privilege
11924 * model to be enforced, and this is what DTRACE_COND_OWNER
11925 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11926 */
11927 prov = probe->dtpr_provider;
11928 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11929 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11930 ecb->dte_cond |= DTRACE_COND_OWNER;
11931
11932 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11933 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11934 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11935
11936 /*
11937 * If the provider shows us kernel innards and the user
11938 * is lacking sufficient privilege, enable the
11939 * DTRACE_COND_USERMODE implicit predicate.
11940 */
11941 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11942 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11943 ecb->dte_cond |= DTRACE_COND_USERMODE;
11944 }
11945
11946 if (dtrace_ecb_create_cache != NULL) {
11947 /*
11948 * If we have a cached ecb, we'll use its action list instead
11949 * of creating our own (saving both time and space).
11950 */
11951 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11952 dtrace_action_t *act = cached->dte_action;
11953
11954 if (act != NULL) {
11955 ASSERT(act->dta_refcnt > 0);
11956 act->dta_refcnt++;
11957 ecb->dte_action = act;
11958 ecb->dte_action_last = cached->dte_action_last;
11959 ecb->dte_needed = cached->dte_needed;
11960 ecb->dte_size = cached->dte_size;
11961 ecb->dte_alignment = cached->dte_alignment;
11962 }
11963
11964 return (ecb);
11965 }
11966
11967 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11968 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11969 dtrace_ecb_destroy(ecb);
11970 return (NULL);
11971 }
11972 }
11973
11974 if ((enab->dten_error = dtrace_ecb_resize(ecb)) != 0) {
11975 dtrace_ecb_destroy(ecb);
11976 return (NULL);
11977 }
11978
11979 return (dtrace_ecb_create_cache = ecb);
11980 }
11981
11982 static int
11983 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11984 {
11985 dtrace_ecb_t *ecb;
11986 dtrace_enabling_t *enab = arg;
11987 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11988
11989 ASSERT(state != NULL);
11990
11991 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11992 /*
11993 * This probe was created in a generation for which this
11994 * enabling has previously created ECBs; we don't want to
11995 * enable it again, so just kick out.
11996 */
11997 return (DTRACE_MATCH_NEXT);
11998 }
11999
12000 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
12001 return (DTRACE_MATCH_DONE);
12002
12003 dtrace_ecb_enable(ecb);
12004 return (DTRACE_MATCH_NEXT);
12005 }
12006
12007 static dtrace_ecb_t *
12008 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
12009 {
12010 dtrace_ecb_t *ecb;
12011
12012 ASSERT(MUTEX_HELD(&dtrace_lock));
12013
12014 if (id == 0 || id > state->dts_necbs)
12015 return (NULL);
12016
12017 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
12018 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
12019
12020 return (state->dts_ecbs[id - 1]);
12021 }
12022
12023 static dtrace_aggregation_t *
12024 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
12025 {
12026 dtrace_aggregation_t *agg;
12027
12028 ASSERT(MUTEX_HELD(&dtrace_lock));
12029
12030 if (id == 0 || id > state->dts_naggregations)
12031 return (NULL);
12032
12033 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
12034 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
12035 agg->dtag_id == id);
12036
12037 return (state->dts_aggregations[id - 1]);
12038 }
12039
12040 /*
12041 * DTrace Buffer Functions
12042 *
12043 * The following functions manipulate DTrace buffers. Most of these functions
12044 * are called in the context of establishing or processing consumer state;
12045 * exceptions are explicitly noted.
12046 */
12047
12048 /*
12049 * Note: called from cross call context. This function switches the two
12050 * buffers on a given CPU. The atomicity of this operation is assured by
12051 * disabling interrupts while the actual switch takes place; the disabling of
12052 * interrupts serializes the execution with any execution of dtrace_probe() on
12053 * the same CPU.
12054 */
12055 static void
12056 dtrace_buffer_switch(dtrace_buffer_t *buf)
12057 {
12058 caddr_t tomax = buf->dtb_tomax;
12059 caddr_t xamot = buf->dtb_xamot;
12060 dtrace_icookie_t cookie;
12061 hrtime_t now;
12062
12063 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12064 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
12065
12066 cookie = dtrace_interrupt_disable();
12067 now = dtrace_gethrtime();
12068 buf->dtb_tomax = xamot;
12069 buf->dtb_xamot = tomax;
12070 buf->dtb_xamot_drops = buf->dtb_drops;
12071 buf->dtb_xamot_offset = buf->dtb_offset;
12072 buf->dtb_xamot_errors = buf->dtb_errors;
12073 buf->dtb_xamot_flags = buf->dtb_flags;
12074 buf->dtb_offset = 0;
12075 buf->dtb_drops = 0;
12076 buf->dtb_errors = 0;
12077 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
12078 buf->dtb_interval = now - buf->dtb_switched;
12079 buf->dtb_switched = now;
12080 dtrace_interrupt_enable(cookie);
12081 }
12082
12083 /*
12084 * Note: called from cross call context. This function activates a buffer
12085 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
12086 * is guaranteed by the disabling of interrupts.
12087 */
12088 static void
12089 dtrace_buffer_activate(dtrace_state_t *state)
12090 {
12091 dtrace_buffer_t *buf;
12092 dtrace_icookie_t cookie = dtrace_interrupt_disable();
12093
12094 buf = &state->dts_buffer[curcpu];
12095
12096 if (buf->dtb_tomax != NULL) {
12097 /*
12098 * We might like to assert that the buffer is marked inactive,
12099 * but this isn't necessarily true: the buffer for the CPU
12100 * that processes the BEGIN probe has its buffer activated
12101 * manually. In this case, we take the (harmless) action
12102 * re-clearing the bit INACTIVE bit.
12103 */
12104 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
12105 }
12106
12107 dtrace_interrupt_enable(cookie);
12108 }
12109
12110 #ifdef __FreeBSD__
12111 /*
12112 * Activate the specified per-CPU buffer. This is used instead of
12113 * dtrace_buffer_activate() when APs have not yet started, i.e. when
12114 * activating anonymous state.
12115 */
12116 static void
12117 dtrace_buffer_activate_cpu(dtrace_state_t *state, int cpu)
12118 {
12119
12120 if (state->dts_buffer[cpu].dtb_tomax != NULL)
12121 state->dts_buffer[cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
12122 }
12123 #endif
12124
12125 static int
12126 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
12127 processorid_t cpu, int *factor)
12128 {
12129 #ifdef illumos
12130 cpu_t *cp;
12131 #endif
12132 dtrace_buffer_t *buf;
12133 int allocated = 0, desired = 0;
12134
12135 #ifdef illumos
12136 ASSERT(MUTEX_HELD(&cpu_lock));
12137 ASSERT(MUTEX_HELD(&dtrace_lock));
12138
12139 *factor = 1;
12140
12141 if (size > dtrace_nonroot_maxsize &&
12142 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
12143 return (EFBIG);
12144
12145 cp = cpu_list;
12146
12147 do {
12148 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12149 continue;
12150
12151 buf = &bufs[cp->cpu_id];
12152
12153 /*
12154 * If there is already a buffer allocated for this CPU, it
12155 * is only possible that this is a DR event. In this case,
12156 */
12157 if (buf->dtb_tomax != NULL) {
12158 ASSERT(buf->dtb_size == size);
12159 continue;
12160 }
12161
12162 ASSERT(buf->dtb_xamot == NULL);
12163
12164 if ((buf->dtb_tomax = kmem_zalloc(size,
12165 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12166 goto err;
12167
12168 buf->dtb_size = size;
12169 buf->dtb_flags = flags;
12170 buf->dtb_offset = 0;
12171 buf->dtb_drops = 0;
12172
12173 if (flags & DTRACEBUF_NOSWITCH)
12174 continue;
12175
12176 if ((buf->dtb_xamot = kmem_zalloc(size,
12177 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12178 goto err;
12179 } while ((cp = cp->cpu_next) != cpu_list);
12180
12181 return (0);
12182
12183 err:
12184 cp = cpu_list;
12185
12186 do {
12187 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
12188 continue;
12189
12190 buf = &bufs[cp->cpu_id];
12191 desired += 2;
12192
12193 if (buf->dtb_xamot != NULL) {
12194 ASSERT(buf->dtb_tomax != NULL);
12195 ASSERT(buf->dtb_size == size);
12196 kmem_free(buf->dtb_xamot, size);
12197 allocated++;
12198 }
12199
12200 if (buf->dtb_tomax != NULL) {
12201 ASSERT(buf->dtb_size == size);
12202 kmem_free(buf->dtb_tomax, size);
12203 allocated++;
12204 }
12205
12206 buf->dtb_tomax = NULL;
12207 buf->dtb_xamot = NULL;
12208 buf->dtb_size = 0;
12209 } while ((cp = cp->cpu_next) != cpu_list);
12210 #else
12211 int i;
12212
12213 *factor = 1;
12214 #if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
12215 defined(__mips__) || defined(__powerpc__) || defined(__riscv)
12216 /*
12217 * FreeBSD isn't good at limiting the amount of memory we
12218 * ask to malloc, so let's place a limit here before trying
12219 * to do something that might well end in tears at bedtime.
12220 */
12221 int bufsize_percpu_frac = dtrace_bufsize_max_frac * mp_ncpus;
12222 if (size > physmem * PAGE_SIZE / bufsize_percpu_frac)
12223 return (ENOMEM);
12224 #endif
12225
12226 ASSERT(MUTEX_HELD(&dtrace_lock));
12227 CPU_FOREACH(i) {
12228 if (cpu != DTRACE_CPUALL && cpu != i)
12229 continue;
12230
12231 buf = &bufs[i];
12232
12233 /*
12234 * If there is already a buffer allocated for this CPU, it
12235 * is only possible that this is a DR event. In this case,
12236 * the buffer size must match our specified size.
12237 */
12238 if (buf->dtb_tomax != NULL) {
12239 ASSERT(buf->dtb_size == size);
12240 continue;
12241 }
12242
12243 ASSERT(buf->dtb_xamot == NULL);
12244
12245 if ((buf->dtb_tomax = kmem_zalloc(size,
12246 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12247 goto err;
12248
12249 buf->dtb_size = size;
12250 buf->dtb_flags = flags;
12251 buf->dtb_offset = 0;
12252 buf->dtb_drops = 0;
12253
12254 if (flags & DTRACEBUF_NOSWITCH)
12255 continue;
12256
12257 if ((buf->dtb_xamot = kmem_zalloc(size,
12258 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
12259 goto err;
12260 }
12261
12262 return (0);
12263
12264 err:
12265 /*
12266 * Error allocating memory, so free the buffers that were
12267 * allocated before the failed allocation.
12268 */
12269 CPU_FOREACH(i) {
12270 if (cpu != DTRACE_CPUALL && cpu != i)
12271 continue;
12272
12273 buf = &bufs[i];
12274 desired += 2;
12275
12276 if (buf->dtb_xamot != NULL) {
12277 ASSERT(buf->dtb_tomax != NULL);
12278 ASSERT(buf->dtb_size == size);
12279 kmem_free(buf->dtb_xamot, size);
12280 allocated++;
12281 }
12282
12283 if (buf->dtb_tomax != NULL) {
12284 ASSERT(buf->dtb_size == size);
12285 kmem_free(buf->dtb_tomax, size);
12286 allocated++;
12287 }
12288
12289 buf->dtb_tomax = NULL;
12290 buf->dtb_xamot = NULL;
12291 buf->dtb_size = 0;
12292
12293 }
12294 #endif
12295 *factor = desired / (allocated > 0 ? allocated : 1);
12296
12297 return (ENOMEM);
12298 }
12299
12300 /*
12301 * Note: called from probe context. This function just increments the drop
12302 * count on a buffer. It has been made a function to allow for the
12303 * possibility of understanding the source of mysterious drop counts. (A
12304 * problem for which one may be particularly disappointed that DTrace cannot
12305 * be used to understand DTrace.)
12306 */
12307 static void
12308 dtrace_buffer_drop(dtrace_buffer_t *buf)
12309 {
12310 buf->dtb_drops++;
12311 }
12312
12313 /*
12314 * Note: called from probe context. This function is called to reserve space
12315 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
12316 * mstate. Returns the new offset in the buffer, or a negative value if an
12317 * error has occurred.
12318 */
12319 static ssize_t
12320 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
12321 dtrace_state_t *state, dtrace_mstate_t *mstate)
12322 {
12323 ssize_t offs = buf->dtb_offset, soffs;
12324 intptr_t woffs;
12325 caddr_t tomax;
12326 size_t total;
12327
12328 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
12329 return (-1);
12330
12331 if ((tomax = buf->dtb_tomax) == NULL) {
12332 dtrace_buffer_drop(buf);
12333 return (-1);
12334 }
12335
12336 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
12337 while (offs & (align - 1)) {
12338 /*
12339 * Assert that our alignment is off by a number which
12340 * is itself sizeof (uint32_t) aligned.
12341 */
12342 ASSERT(!((align - (offs & (align - 1))) &
12343 (sizeof (uint32_t) - 1)));
12344 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12345 offs += sizeof (uint32_t);
12346 }
12347
12348 if ((soffs = offs + needed) > buf->dtb_size) {
12349 dtrace_buffer_drop(buf);
12350 return (-1);
12351 }
12352
12353 if (mstate == NULL)
12354 return (offs);
12355
12356 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
12357 mstate->dtms_scratch_size = buf->dtb_size - soffs;
12358 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12359
12360 return (offs);
12361 }
12362
12363 if (buf->dtb_flags & DTRACEBUF_FILL) {
12364 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
12365 (buf->dtb_flags & DTRACEBUF_FULL))
12366 return (-1);
12367 goto out;
12368 }
12369
12370 total = needed + (offs & (align - 1));
12371
12372 /*
12373 * For a ring buffer, life is quite a bit more complicated. Before
12374 * we can store any padding, we need to adjust our wrapping offset.
12375 * (If we've never before wrapped or we're not about to, no adjustment
12376 * is required.)
12377 */
12378 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
12379 offs + total > buf->dtb_size) {
12380 woffs = buf->dtb_xamot_offset;
12381
12382 if (offs + total > buf->dtb_size) {
12383 /*
12384 * We can't fit in the end of the buffer. First, a
12385 * sanity check that we can fit in the buffer at all.
12386 */
12387 if (total > buf->dtb_size) {
12388 dtrace_buffer_drop(buf);
12389 return (-1);
12390 }
12391
12392 /*
12393 * We're going to be storing at the top of the buffer,
12394 * so now we need to deal with the wrapped offset. We
12395 * only reset our wrapped offset to 0 if it is
12396 * currently greater than the current offset. If it
12397 * is less than the current offset, it is because a
12398 * previous allocation induced a wrap -- but the
12399 * allocation didn't subsequently take the space due
12400 * to an error or false predicate evaluation. In this
12401 * case, we'll just leave the wrapped offset alone: if
12402 * the wrapped offset hasn't been advanced far enough
12403 * for this allocation, it will be adjusted in the
12404 * lower loop.
12405 */
12406 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
12407 if (woffs >= offs)
12408 woffs = 0;
12409 } else {
12410 woffs = 0;
12411 }
12412
12413 /*
12414 * Now we know that we're going to be storing to the
12415 * top of the buffer and that there is room for us
12416 * there. We need to clear the buffer from the current
12417 * offset to the end (there may be old gunk there).
12418 */
12419 while (offs < buf->dtb_size)
12420 tomax[offs++] = 0;
12421
12422 /*
12423 * We need to set our offset to zero. And because we
12424 * are wrapping, we need to set the bit indicating as
12425 * much. We can also adjust our needed space back
12426 * down to the space required by the ECB -- we know
12427 * that the top of the buffer is aligned.
12428 */
12429 offs = 0;
12430 total = needed;
12431 buf->dtb_flags |= DTRACEBUF_WRAPPED;
12432 } else {
12433 /*
12434 * There is room for us in the buffer, so we simply
12435 * need to check the wrapped offset.
12436 */
12437 if (woffs < offs) {
12438 /*
12439 * The wrapped offset is less than the offset.
12440 * This can happen if we allocated buffer space
12441 * that induced a wrap, but then we didn't
12442 * subsequently take the space due to an error
12443 * or false predicate evaluation. This is
12444 * okay; we know that _this_ allocation isn't
12445 * going to induce a wrap. We still can't
12446 * reset the wrapped offset to be zero,
12447 * however: the space may have been trashed in
12448 * the previous failed probe attempt. But at
12449 * least the wrapped offset doesn't need to
12450 * be adjusted at all...
12451 */
12452 goto out;
12453 }
12454 }
12455
12456 while (offs + total > woffs) {
12457 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
12458 size_t size;
12459
12460 if (epid == DTRACE_EPIDNONE) {
12461 size = sizeof (uint32_t);
12462 } else {
12463 ASSERT3U(epid, <=, state->dts_necbs);
12464 ASSERT(state->dts_ecbs[epid - 1] != NULL);
12465
12466 size = state->dts_ecbs[epid - 1]->dte_size;
12467 }
12468
12469 ASSERT(woffs + size <= buf->dtb_size);
12470 ASSERT(size != 0);
12471
12472 if (woffs + size == buf->dtb_size) {
12473 /*
12474 * We've reached the end of the buffer; we want
12475 * to set the wrapped offset to 0 and break
12476 * out. However, if the offs is 0, then we're
12477 * in a strange edge-condition: the amount of
12478 * space that we want to reserve plus the size
12479 * of the record that we're overwriting is
12480 * greater than the size of the buffer. This
12481 * is problematic because if we reserve the
12482 * space but subsequently don't consume it (due
12483 * to a failed predicate or error) the wrapped
12484 * offset will be 0 -- yet the EPID at offset 0
12485 * will not be committed. This situation is
12486 * relatively easy to deal with: if we're in
12487 * this case, the buffer is indistinguishable
12488 * from one that hasn't wrapped; we need only
12489 * finish the job by clearing the wrapped bit,
12490 * explicitly setting the offset to be 0, and
12491 * zero'ing out the old data in the buffer.
12492 */
12493 if (offs == 0) {
12494 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
12495 buf->dtb_offset = 0;
12496 woffs = total;
12497
12498 while (woffs < buf->dtb_size)
12499 tomax[woffs++] = 0;
12500 }
12501
12502 woffs = 0;
12503 break;
12504 }
12505
12506 woffs += size;
12507 }
12508
12509 /*
12510 * We have a wrapped offset. It may be that the wrapped offset
12511 * has become zero -- that's okay.
12512 */
12513 buf->dtb_xamot_offset = woffs;
12514 }
12515
12516 out:
12517 /*
12518 * Now we can plow the buffer with any necessary padding.
12519 */
12520 while (offs & (align - 1)) {
12521 /*
12522 * Assert that our alignment is off by a number which
12523 * is itself sizeof (uint32_t) aligned.
12524 */
12525 ASSERT(!((align - (offs & (align - 1))) &
12526 (sizeof (uint32_t) - 1)));
12527 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
12528 offs += sizeof (uint32_t);
12529 }
12530
12531 if (buf->dtb_flags & DTRACEBUF_FILL) {
12532 if (offs + needed > buf->dtb_size - state->dts_reserve) {
12533 buf->dtb_flags |= DTRACEBUF_FULL;
12534 return (-1);
12535 }
12536 }
12537
12538 if (mstate == NULL)
12539 return (offs);
12540
12541 /*
12542 * For ring buffers and fill buffers, the scratch space is always
12543 * the inactive buffer.
12544 */
12545 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
12546 mstate->dtms_scratch_size = buf->dtb_size;
12547 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
12548
12549 return (offs);
12550 }
12551
12552 static void
12553 dtrace_buffer_polish(dtrace_buffer_t *buf)
12554 {
12555 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
12556 ASSERT(MUTEX_HELD(&dtrace_lock));
12557
12558 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
12559 return;
12560
12561 /*
12562 * We need to polish the ring buffer. There are three cases:
12563 *
12564 * - The first (and presumably most common) is that there is no gap
12565 * between the buffer offset and the wrapped offset. In this case,
12566 * there is nothing in the buffer that isn't valid data; we can
12567 * mark the buffer as polished and return.
12568 *
12569 * - The second (less common than the first but still more common
12570 * than the third) is that there is a gap between the buffer offset
12571 * and the wrapped offset, and the wrapped offset is larger than the
12572 * buffer offset. This can happen because of an alignment issue, or
12573 * can happen because of a call to dtrace_buffer_reserve() that
12574 * didn't subsequently consume the buffer space. In this case,
12575 * we need to zero the data from the buffer offset to the wrapped
12576 * offset.
12577 *
12578 * - The third (and least common) is that there is a gap between the
12579 * buffer offset and the wrapped offset, but the wrapped offset is
12580 * _less_ than the buffer offset. This can only happen because a
12581 * call to dtrace_buffer_reserve() induced a wrap, but the space
12582 * was not subsequently consumed. In this case, we need to zero the
12583 * space from the offset to the end of the buffer _and_ from the
12584 * top of the buffer to the wrapped offset.
12585 */
12586 if (buf->dtb_offset < buf->dtb_xamot_offset) {
12587 bzero(buf->dtb_tomax + buf->dtb_offset,
12588 buf->dtb_xamot_offset - buf->dtb_offset);
12589 }
12590
12591 if (buf->dtb_offset > buf->dtb_xamot_offset) {
12592 bzero(buf->dtb_tomax + buf->dtb_offset,
12593 buf->dtb_size - buf->dtb_offset);
12594 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
12595 }
12596 }
12597
12598 /*
12599 * This routine determines if data generated at the specified time has likely
12600 * been entirely consumed at user-level. This routine is called to determine
12601 * if an ECB on a defunct probe (but for an active enabling) can be safely
12602 * disabled and destroyed.
12603 */
12604 static int
12605 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
12606 {
12607 int i;
12608
12609 CPU_FOREACH(i) {
12610 dtrace_buffer_t *buf = &bufs[i];
12611
12612 if (buf->dtb_size == 0)
12613 continue;
12614
12615 if (buf->dtb_flags & DTRACEBUF_RING)
12616 return (0);
12617
12618 if (!buf->dtb_switched && buf->dtb_offset != 0)
12619 return (0);
12620
12621 if (buf->dtb_switched - buf->dtb_interval < when)
12622 return (0);
12623 }
12624
12625 return (1);
12626 }
12627
12628 static void
12629 dtrace_buffer_free(dtrace_buffer_t *bufs)
12630 {
12631 int i;
12632
12633 CPU_FOREACH(i) {
12634 dtrace_buffer_t *buf = &bufs[i];
12635
12636 if (buf->dtb_tomax == NULL) {
12637 ASSERT(buf->dtb_xamot == NULL);
12638 ASSERT(buf->dtb_size == 0);
12639 continue;
12640 }
12641
12642 if (buf->dtb_xamot != NULL) {
12643 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
12644 kmem_free(buf->dtb_xamot, buf->dtb_size);
12645 }
12646
12647 kmem_free(buf->dtb_tomax, buf->dtb_size);
12648 buf->dtb_size = 0;
12649 buf->dtb_tomax = NULL;
12650 buf->dtb_xamot = NULL;
12651 }
12652 }
12653
12654 /*
12655 * DTrace Enabling Functions
12656 */
12657 static dtrace_enabling_t *
12658 dtrace_enabling_create(dtrace_vstate_t *vstate)
12659 {
12660 dtrace_enabling_t *enab;
12661
12662 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
12663 enab->dten_vstate = vstate;
12664
12665 return (enab);
12666 }
12667
12668 static void
12669 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
12670 {
12671 dtrace_ecbdesc_t **ndesc;
12672 size_t osize, nsize;
12673
12674 /*
12675 * We can't add to enablings after we've enabled them, or after we've
12676 * retained them.
12677 */
12678 ASSERT(enab->dten_probegen == 0);
12679 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12680
12681 if (enab->dten_ndesc < enab->dten_maxdesc) {
12682 enab->dten_desc[enab->dten_ndesc++] = ecb;
12683 return;
12684 }
12685
12686 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12687
12688 if (enab->dten_maxdesc == 0) {
12689 enab->dten_maxdesc = 1;
12690 } else {
12691 enab->dten_maxdesc <<= 1;
12692 }
12693
12694 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
12695
12696 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
12697 ndesc = kmem_zalloc(nsize, KM_SLEEP);
12698 bcopy(enab->dten_desc, ndesc, osize);
12699 if (enab->dten_desc != NULL)
12700 kmem_free(enab->dten_desc, osize);
12701
12702 enab->dten_desc = ndesc;
12703 enab->dten_desc[enab->dten_ndesc++] = ecb;
12704 }
12705
12706 static void
12707 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
12708 dtrace_probedesc_t *pd)
12709 {
12710 dtrace_ecbdesc_t *new;
12711 dtrace_predicate_t *pred;
12712 dtrace_actdesc_t *act;
12713
12714 /*
12715 * We're going to create a new ECB description that matches the
12716 * specified ECB in every way, but has the specified probe description.
12717 */
12718 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12719
12720 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
12721 dtrace_predicate_hold(pred);
12722
12723 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
12724 dtrace_actdesc_hold(act);
12725
12726 new->dted_action = ecb->dted_action;
12727 new->dted_pred = ecb->dted_pred;
12728 new->dted_probe = *pd;
12729 new->dted_uarg = ecb->dted_uarg;
12730
12731 dtrace_enabling_add(enab, new);
12732 }
12733
12734 static void
12735 dtrace_enabling_dump(dtrace_enabling_t *enab)
12736 {
12737 int i;
12738
12739 for (i = 0; i < enab->dten_ndesc; i++) {
12740 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
12741
12742 #ifdef __FreeBSD__
12743 printf("dtrace: enabling probe %d (%s:%s:%s:%s)\n", i,
12744 desc->dtpd_provider, desc->dtpd_mod,
12745 desc->dtpd_func, desc->dtpd_name);
12746 #else
12747 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
12748 desc->dtpd_provider, desc->dtpd_mod,
12749 desc->dtpd_func, desc->dtpd_name);
12750 #endif
12751 }
12752 }
12753
12754 static void
12755 dtrace_enabling_destroy(dtrace_enabling_t *enab)
12756 {
12757 int i;
12758 dtrace_ecbdesc_t *ep;
12759 dtrace_vstate_t *vstate = enab->dten_vstate;
12760
12761 ASSERT(MUTEX_HELD(&dtrace_lock));
12762
12763 for (i = 0; i < enab->dten_ndesc; i++) {
12764 dtrace_actdesc_t *act, *next;
12765 dtrace_predicate_t *pred;
12766
12767 ep = enab->dten_desc[i];
12768
12769 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
12770 dtrace_predicate_release(pred, vstate);
12771
12772 for (act = ep->dted_action; act != NULL; act = next) {
12773 next = act->dtad_next;
12774 dtrace_actdesc_release(act, vstate);
12775 }
12776
12777 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12778 }
12779
12780 if (enab->dten_desc != NULL)
12781 kmem_free(enab->dten_desc,
12782 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
12783
12784 /*
12785 * If this was a retained enabling, decrement the dts_nretained count
12786 * and take it off of the dtrace_retained list.
12787 */
12788 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
12789 dtrace_retained == enab) {
12790 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12791 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
12792 enab->dten_vstate->dtvs_state->dts_nretained--;
12793 dtrace_retained_gen++;
12794 }
12795
12796 if (enab->dten_prev == NULL) {
12797 if (dtrace_retained == enab) {
12798 dtrace_retained = enab->dten_next;
12799
12800 if (dtrace_retained != NULL)
12801 dtrace_retained->dten_prev = NULL;
12802 }
12803 } else {
12804 ASSERT(enab != dtrace_retained);
12805 ASSERT(dtrace_retained != NULL);
12806 enab->dten_prev->dten_next = enab->dten_next;
12807 }
12808
12809 if (enab->dten_next != NULL) {
12810 ASSERT(dtrace_retained != NULL);
12811 enab->dten_next->dten_prev = enab->dten_prev;
12812 }
12813
12814 kmem_free(enab, sizeof (dtrace_enabling_t));
12815 }
12816
12817 static int
12818 dtrace_enabling_retain(dtrace_enabling_t *enab)
12819 {
12820 dtrace_state_t *state;
12821
12822 ASSERT(MUTEX_HELD(&dtrace_lock));
12823 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
12824 ASSERT(enab->dten_vstate != NULL);
12825
12826 state = enab->dten_vstate->dtvs_state;
12827 ASSERT(state != NULL);
12828
12829 /*
12830 * We only allow each state to retain dtrace_retain_max enablings.
12831 */
12832 if (state->dts_nretained >= dtrace_retain_max)
12833 return (ENOSPC);
12834
12835 state->dts_nretained++;
12836 dtrace_retained_gen++;
12837
12838 if (dtrace_retained == NULL) {
12839 dtrace_retained = enab;
12840 return (0);
12841 }
12842
12843 enab->dten_next = dtrace_retained;
12844 dtrace_retained->dten_prev = enab;
12845 dtrace_retained = enab;
12846
12847 return (0);
12848 }
12849
12850 static int
12851 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
12852 dtrace_probedesc_t *create)
12853 {
12854 dtrace_enabling_t *new, *enab;
12855 int found = 0, err = ENOENT;
12856
12857 ASSERT(MUTEX_HELD(&dtrace_lock));
12858 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
12859 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
12860 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
12861 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
12862
12863 new = dtrace_enabling_create(&state->dts_vstate);
12864
12865 /*
12866 * Iterate over all retained enablings, looking for enablings that
12867 * match the specified state.
12868 */
12869 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12870 int i;
12871
12872 /*
12873 * dtvs_state can only be NULL for helper enablings -- and
12874 * helper enablings can't be retained.
12875 */
12876 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12877
12878 if (enab->dten_vstate->dtvs_state != state)
12879 continue;
12880
12881 /*
12882 * Now iterate over each probe description; we're looking for
12883 * an exact match to the specified probe description.
12884 */
12885 for (i = 0; i < enab->dten_ndesc; i++) {
12886 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12887 dtrace_probedesc_t *pd = &ep->dted_probe;
12888
12889 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
12890 continue;
12891
12892 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
12893 continue;
12894
12895 if (strcmp(pd->dtpd_func, match->dtpd_func))
12896 continue;
12897
12898 if (strcmp(pd->dtpd_name, match->dtpd_name))
12899 continue;
12900
12901 /*
12902 * We have a winning probe! Add it to our growing
12903 * enabling.
12904 */
12905 found = 1;
12906 dtrace_enabling_addlike(new, ep, create);
12907 }
12908 }
12909
12910 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12911 dtrace_enabling_destroy(new);
12912 return (err);
12913 }
12914
12915 return (0);
12916 }
12917
12918 static void
12919 dtrace_enabling_retract(dtrace_state_t *state)
12920 {
12921 dtrace_enabling_t *enab, *next;
12922
12923 ASSERT(MUTEX_HELD(&dtrace_lock));
12924
12925 /*
12926 * Iterate over all retained enablings, destroy the enablings retained
12927 * for the specified state.
12928 */
12929 for (enab = dtrace_retained; enab != NULL; enab = next) {
12930 next = enab->dten_next;
12931
12932 /*
12933 * dtvs_state can only be NULL for helper enablings -- and
12934 * helper enablings can't be retained.
12935 */
12936 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12937
12938 if (enab->dten_vstate->dtvs_state == state) {
12939 ASSERT(state->dts_nretained > 0);
12940 dtrace_enabling_destroy(enab);
12941 }
12942 }
12943
12944 ASSERT(state->dts_nretained == 0);
12945 }
12946
12947 static int
12948 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12949 {
12950 int i = 0;
12951 int matched = 0;
12952
12953 ASSERT(MUTEX_HELD(&cpu_lock));
12954 ASSERT(MUTEX_HELD(&dtrace_lock));
12955
12956 for (i = 0; i < enab->dten_ndesc; i++) {
12957 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12958
12959 enab->dten_current = ep;
12960 enab->dten_error = 0;
12961
12962 matched += dtrace_probe_enable(&ep->dted_probe, enab);
12963
12964 if (enab->dten_error != 0) {
12965 /*
12966 * If we get an error half-way through enabling the
12967 * probes, we kick out -- perhaps with some number of
12968 * them enabled. Leaving enabled probes enabled may
12969 * be slightly confusing for user-level, but we expect
12970 * that no one will attempt to actually drive on in
12971 * the face of such errors. If this is an anonymous
12972 * enabling (indicated with a NULL nmatched pointer),
12973 * we cmn_err() a message. We aren't expecting to
12974 * get such an error -- such as it can exist at all,
12975 * it would be a result of corrupted DOF in the driver
12976 * properties.
12977 */
12978 if (nmatched == NULL) {
12979 cmn_err(CE_WARN, "dtrace_enabling_match() "
12980 "error on %p: %d", (void *)ep,
12981 enab->dten_error);
12982 }
12983
12984 return (enab->dten_error);
12985 }
12986 }
12987
12988 enab->dten_probegen = dtrace_probegen;
12989 if (nmatched != NULL)
12990 *nmatched = matched;
12991
12992 return (0);
12993 }
12994
12995 static void
12996 dtrace_enabling_matchall_task(void *args __unused)
12997 {
12998 dtrace_enabling_matchall();
12999 }
13000
13001 static void
13002 dtrace_enabling_matchall(void)
13003 {
13004 dtrace_enabling_t *enab;
13005
13006 mutex_enter(&cpu_lock);
13007 mutex_enter(&dtrace_lock);
13008
13009 /*
13010 * Iterate over all retained enablings to see if any probes match
13011 * against them. We only perform this operation on enablings for which
13012 * we have sufficient permissions by virtue of being in the global zone
13013 * or in the same zone as the DTrace client. Because we can be called
13014 * after dtrace_detach() has been called, we cannot assert that there
13015 * are retained enablings. We can safely load from dtrace_retained,
13016 * however: the taskq_destroy() at the end of dtrace_detach() will
13017 * block pending our completion.
13018 */
13019 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13020 #ifdef illumos
13021 cred_t *cr = enab->dten_vstate->dtvs_state->dts_cred.dcr_cred;
13022
13023 if (INGLOBALZONE(curproc) ||
13024 cr != NULL && getzoneid() == crgetzoneid(cr))
13025 #endif
13026 (void) dtrace_enabling_match(enab, NULL);
13027 }
13028
13029 mutex_exit(&dtrace_lock);
13030 mutex_exit(&cpu_lock);
13031 }
13032
13033 /*
13034 * If an enabling is to be enabled without having matched probes (that is, if
13035 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
13036 * enabling must be _primed_ by creating an ECB for every ECB description.
13037 * This must be done to assure that we know the number of speculations, the
13038 * number of aggregations, the minimum buffer size needed, etc. before we
13039 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
13040 * enabling any probes, we create ECBs for every ECB decription, but with a
13041 * NULL probe -- which is exactly what this function does.
13042 */
13043 static void
13044 dtrace_enabling_prime(dtrace_state_t *state)
13045 {
13046 dtrace_enabling_t *enab;
13047 int i;
13048
13049 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
13050 ASSERT(enab->dten_vstate->dtvs_state != NULL);
13051
13052 if (enab->dten_vstate->dtvs_state != state)
13053 continue;
13054
13055 /*
13056 * We don't want to prime an enabling more than once, lest
13057 * we allow a malicious user to induce resource exhaustion.
13058 * (The ECBs that result from priming an enabling aren't
13059 * leaked -- but they also aren't deallocated until the
13060 * consumer state is destroyed.)
13061 */
13062 if (enab->dten_primed)
13063 continue;
13064
13065 for (i = 0; i < enab->dten_ndesc; i++) {
13066 enab->dten_current = enab->dten_desc[i];
13067 (void) dtrace_probe_enable(NULL, enab);
13068 }
13069
13070 enab->dten_primed = 1;
13071 }
13072 }
13073
13074 /*
13075 * Called to indicate that probes should be provided due to retained
13076 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
13077 * must take an initial lap through the enabling calling the dtps_provide()
13078 * entry point explicitly to allow for autocreated probes.
13079 */
13080 static void
13081 dtrace_enabling_provide(dtrace_provider_t *prv)
13082 {
13083 int i, all = 0;
13084 dtrace_probedesc_t desc;
13085 dtrace_genid_t gen;
13086
13087 ASSERT(MUTEX_HELD(&dtrace_lock));
13088 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
13089
13090 if (prv == NULL) {
13091 all = 1;
13092 prv = dtrace_provider;
13093 }
13094
13095 do {
13096 dtrace_enabling_t *enab;
13097 void *parg = prv->dtpv_arg;
13098
13099 retry:
13100 gen = dtrace_retained_gen;
13101 for (enab = dtrace_retained; enab != NULL;
13102 enab = enab->dten_next) {
13103 for (i = 0; i < enab->dten_ndesc; i++) {
13104 desc = enab->dten_desc[i]->dted_probe;
13105 mutex_exit(&dtrace_lock);
13106 prv->dtpv_pops.dtps_provide(parg, &desc);
13107 mutex_enter(&dtrace_lock);
13108 /*
13109 * Process the retained enablings again if
13110 * they have changed while we weren't holding
13111 * dtrace_lock.
13112 */
13113 if (gen != dtrace_retained_gen)
13114 goto retry;
13115 }
13116 }
13117 } while (all && (prv = prv->dtpv_next) != NULL);
13118
13119 mutex_exit(&dtrace_lock);
13120 dtrace_probe_provide(NULL, all ? NULL : prv);
13121 mutex_enter(&dtrace_lock);
13122 }
13123
13124 /*
13125 * Called to reap ECBs that are attached to probes from defunct providers.
13126 */
13127 static void
13128 dtrace_enabling_reap(void *args __unused)
13129 {
13130 dtrace_provider_t *prov;
13131 dtrace_probe_t *probe;
13132 dtrace_ecb_t *ecb;
13133 hrtime_t when;
13134 int i;
13135
13136 mutex_enter(&cpu_lock);
13137 mutex_enter(&dtrace_lock);
13138
13139 for (i = 0; i < dtrace_nprobes; i++) {
13140 if ((probe = dtrace_probes[i]) == NULL)
13141 continue;
13142
13143 if (probe->dtpr_ecb == NULL)
13144 continue;
13145
13146 prov = probe->dtpr_provider;
13147
13148 if ((when = prov->dtpv_defunct) == 0)
13149 continue;
13150
13151 /*
13152 * We have ECBs on a defunct provider: we want to reap these
13153 * ECBs to allow the provider to unregister. The destruction
13154 * of these ECBs must be done carefully: if we destroy the ECB
13155 * and the consumer later wishes to consume an EPID that
13156 * corresponds to the destroyed ECB (and if the EPID metadata
13157 * has not been previously consumed), the consumer will abort
13158 * processing on the unknown EPID. To reduce (but not, sadly,
13159 * eliminate) the possibility of this, we will only destroy an
13160 * ECB for a defunct provider if, for the state that
13161 * corresponds to the ECB:
13162 *
13163 * (a) There is no speculative tracing (which can effectively
13164 * cache an EPID for an arbitrary amount of time).
13165 *
13166 * (b) The principal buffers have been switched twice since the
13167 * provider became defunct.
13168 *
13169 * (c) The aggregation buffers are of zero size or have been
13170 * switched twice since the provider became defunct.
13171 *
13172 * We use dts_speculates to determine (a) and call a function
13173 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
13174 * that as soon as we've been unable to destroy one of the ECBs
13175 * associated with the probe, we quit trying -- reaping is only
13176 * fruitful in as much as we can destroy all ECBs associated
13177 * with the defunct provider's probes.
13178 */
13179 while ((ecb = probe->dtpr_ecb) != NULL) {
13180 dtrace_state_t *state = ecb->dte_state;
13181 dtrace_buffer_t *buf = state->dts_buffer;
13182 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
13183
13184 if (state->dts_speculates)
13185 break;
13186
13187 if (!dtrace_buffer_consumed(buf, when))
13188 break;
13189
13190 if (!dtrace_buffer_consumed(aggbuf, when))
13191 break;
13192
13193 dtrace_ecb_disable(ecb);
13194 ASSERT(probe->dtpr_ecb != ecb);
13195 dtrace_ecb_destroy(ecb);
13196 }
13197 }
13198
13199 mutex_exit(&dtrace_lock);
13200 mutex_exit(&cpu_lock);
13201 }
13202
13203 /*
13204 * DTrace DOF Functions
13205 */
13206 /*ARGSUSED*/
13207 static void
13208 dtrace_dof_error(dof_hdr_t *dof, const char *str)
13209 {
13210 if (dtrace_err_verbose)
13211 cmn_err(CE_WARN, "failed to process DOF: %s", str);
13212
13213 #ifdef DTRACE_ERRDEBUG
13214 dtrace_errdebug(str);
13215 #endif
13216 }
13217
13218 /*
13219 * Create DOF out of a currently enabled state. Right now, we only create
13220 * DOF containing the run-time options -- but this could be expanded to create
13221 * complete DOF representing the enabled state.
13222 */
13223 static dof_hdr_t *
13224 dtrace_dof_create(dtrace_state_t *state)
13225 {
13226 dof_hdr_t *dof;
13227 dof_sec_t *sec;
13228 dof_optdesc_t *opt;
13229 int i, len = sizeof (dof_hdr_t) +
13230 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
13231 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13232
13233 ASSERT(MUTEX_HELD(&dtrace_lock));
13234
13235 dof = kmem_zalloc(len, KM_SLEEP);
13236 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
13237 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
13238 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
13239 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
13240
13241 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
13242 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
13243 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
13244 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
13245 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
13246 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
13247
13248 dof->dofh_flags = 0;
13249 dof->dofh_hdrsize = sizeof (dof_hdr_t);
13250 dof->dofh_secsize = sizeof (dof_sec_t);
13251 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
13252 dof->dofh_secoff = sizeof (dof_hdr_t);
13253 dof->dofh_loadsz = len;
13254 dof->dofh_filesz = len;
13255 dof->dofh_pad = 0;
13256
13257 /*
13258 * Fill in the option section header...
13259 */
13260 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
13261 sec->dofs_type = DOF_SECT_OPTDESC;
13262 sec->dofs_align = sizeof (uint64_t);
13263 sec->dofs_flags = DOF_SECF_LOAD;
13264 sec->dofs_entsize = sizeof (dof_optdesc_t);
13265
13266 opt = (dof_optdesc_t *)((uintptr_t)sec +
13267 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
13268
13269 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
13270 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
13271
13272 for (i = 0; i < DTRACEOPT_MAX; i++) {
13273 opt[i].dofo_option = i;
13274 opt[i].dofo_strtab = DOF_SECIDX_NONE;
13275 opt[i].dofo_value = state->dts_options[i];
13276 }
13277
13278 return (dof);
13279 }
13280
13281 static dof_hdr_t *
13282 dtrace_dof_copyin(uintptr_t uarg, int *errp)
13283 {
13284 dof_hdr_t hdr, *dof;
13285
13286 ASSERT(!MUTEX_HELD(&dtrace_lock));
13287
13288 /*
13289 * First, we're going to copyin() the sizeof (dof_hdr_t).
13290 */
13291 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
13292 dtrace_dof_error(NULL, "failed to copyin DOF header");
13293 *errp = EFAULT;
13294 return (NULL);
13295 }
13296
13297 /*
13298 * Now we'll allocate the entire DOF and copy it in -- provided
13299 * that the length isn't outrageous.
13300 */
13301 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13302 dtrace_dof_error(&hdr, "load size exceeds maximum");
13303 *errp = E2BIG;
13304 return (NULL);
13305 }
13306
13307 if (hdr.dofh_loadsz < sizeof (hdr)) {
13308 dtrace_dof_error(&hdr, "invalid load size");
13309 *errp = EINVAL;
13310 return (NULL);
13311 }
13312
13313 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
13314
13315 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
13316 dof->dofh_loadsz != hdr.dofh_loadsz) {
13317 kmem_free(dof, hdr.dofh_loadsz);
13318 *errp = EFAULT;
13319 return (NULL);
13320 }
13321
13322 return (dof);
13323 }
13324
13325 #ifdef __FreeBSD__
13326 static dof_hdr_t *
13327 dtrace_dof_copyin_proc(struct proc *p, uintptr_t uarg, int *errp)
13328 {
13329 dof_hdr_t hdr, *dof;
13330 struct thread *td;
13331 size_t loadsz;
13332
13333 ASSERT(!MUTEX_HELD(&dtrace_lock));
13334
13335 td = curthread;
13336
13337 /*
13338 * First, we're going to copyin() the sizeof (dof_hdr_t).
13339 */
13340 if (proc_readmem(td, p, uarg, &hdr, sizeof(hdr)) != sizeof(hdr)) {
13341 dtrace_dof_error(NULL, "failed to copyin DOF header");
13342 *errp = EFAULT;
13343 return (NULL);
13344 }
13345
13346 /*
13347 * Now we'll allocate the entire DOF and copy it in -- provided
13348 * that the length isn't outrageous.
13349 */
13350 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
13351 dtrace_dof_error(&hdr, "load size exceeds maximum");
13352 *errp = E2BIG;
13353 return (NULL);
13354 }
13355 loadsz = (size_t)hdr.dofh_loadsz;
13356
13357 if (loadsz < sizeof (hdr)) {
13358 dtrace_dof_error(&hdr, "invalid load size");
13359 *errp = EINVAL;
13360 return (NULL);
13361 }
13362
13363 dof = kmem_alloc(loadsz, KM_SLEEP);
13364
13365 if (proc_readmem(td, p, uarg, dof, loadsz) != loadsz ||
13366 dof->dofh_loadsz != loadsz) {
13367 kmem_free(dof, hdr.dofh_loadsz);
13368 *errp = EFAULT;
13369 return (NULL);
13370 }
13371
13372 return (dof);
13373 }
13374
13375 static __inline uchar_t
13376 dtrace_dof_char(char c)
13377 {
13378
13379 switch (c) {
13380 case '0':
13381 case '1':
13382 case '2':
13383 case '3':
13384 case '4':
13385 case '5':
13386 case '6':
13387 case '7':
13388 case '8':
13389 case '9':
13390 return (c - '0');
13391 case 'A':
13392 case 'B':
13393 case 'C':
13394 case 'D':
13395 case 'E':
13396 case 'F':
13397 return (c - 'A' + 10);
13398 case 'a':
13399 case 'b':
13400 case 'c':
13401 case 'd':
13402 case 'e':
13403 case 'f':
13404 return (c - 'a' + 10);
13405 }
13406 /* Should not reach here. */
13407 return (UCHAR_MAX);
13408 }
13409 #endif /* __FreeBSD__ */
13410
13411 static dof_hdr_t *
13412 dtrace_dof_property(const char *name)
13413 {
13414 #ifdef __FreeBSD__
13415 uint8_t *dofbuf;
13416 u_char *data, *eol;
13417 caddr_t doffile;
13418 size_t bytes, len, i;
13419 dof_hdr_t *dof;
13420 u_char c1, c2;
13421
13422 dof = NULL;
13423
13424 doffile = preload_search_by_type("dtrace_dof");
13425 if (doffile == NULL)
13426 return (NULL);
13427
13428 data = preload_fetch_addr(doffile);
13429 len = preload_fetch_size(doffile);
13430 for (;;) {
13431 /* Look for the end of the line. All lines end in a newline. */
13432 eol = memchr(data, '\n', len);
13433 if (eol == NULL)
13434 return (NULL);
13435
13436 if (strncmp(name, data, strlen(name)) == 0)
13437 break;
13438
13439 eol++; /* skip past the newline */
13440 len -= eol - data;
13441 data = eol;
13442 }
13443
13444 /* We've found the data corresponding to the specified key. */
13445
13446 data += strlen(name) + 1; /* skip past the '=' */
13447 len = eol - data;
13448 if (len % 2 != 0) {
13449 dtrace_dof_error(NULL, "invalid DOF encoding length");
13450 goto doferr;
13451 }
13452 bytes = len / 2;
13453 if (bytes < sizeof(dof_hdr_t)) {
13454 dtrace_dof_error(NULL, "truncated header");
13455 goto doferr;
13456 }
13457
13458 /*
13459 * Each byte is represented by the two ASCII characters in its hex
13460 * representation.
13461 */
13462 dofbuf = malloc(bytes, M_SOLARIS, M_WAITOK);
13463 for (i = 0; i < bytes; i++) {
13464 c1 = dtrace_dof_char(data[i * 2]);
13465 c2 = dtrace_dof_char(data[i * 2 + 1]);
13466 if (c1 == UCHAR_MAX || c2 == UCHAR_MAX) {
13467 dtrace_dof_error(NULL, "invalid hex char in DOF");
13468 goto doferr;
13469 }
13470 dofbuf[i] = c1 * 16 + c2;
13471 }
13472
13473 dof = (dof_hdr_t *)dofbuf;
13474 if (bytes < dof->dofh_loadsz) {
13475 dtrace_dof_error(NULL, "truncated DOF");
13476 goto doferr;
13477 }
13478
13479 if (dof->dofh_loadsz >= dtrace_dof_maxsize) {
13480 dtrace_dof_error(NULL, "oversized DOF");
13481 goto doferr;
13482 }
13483
13484 return (dof);
13485
13486 doferr:
13487 free(dof, M_SOLARIS);
13488 return (NULL);
13489 #else /* __FreeBSD__ */
13490 uchar_t *buf;
13491 uint64_t loadsz;
13492 unsigned int len, i;
13493 dof_hdr_t *dof;
13494
13495 /*
13496 * Unfortunately, array of values in .conf files are always (and
13497 * only) interpreted to be integer arrays. We must read our DOF
13498 * as an integer array, and then squeeze it into a byte array.
13499 */
13500 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
13501 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
13502 return (NULL);
13503
13504 for (i = 0; i < len; i++)
13505 buf[i] = (uchar_t)(((int *)buf)[i]);
13506
13507 if (len < sizeof (dof_hdr_t)) {
13508 ddi_prop_free(buf);
13509 dtrace_dof_error(NULL, "truncated header");
13510 return (NULL);
13511 }
13512
13513 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
13514 ddi_prop_free(buf);
13515 dtrace_dof_error(NULL, "truncated DOF");
13516 return (NULL);
13517 }
13518
13519 if (loadsz >= dtrace_dof_maxsize) {
13520 ddi_prop_free(buf);
13521 dtrace_dof_error(NULL, "oversized DOF");
13522 return (NULL);
13523 }
13524
13525 dof = kmem_alloc(loadsz, KM_SLEEP);
13526 bcopy(buf, dof, loadsz);
13527 ddi_prop_free(buf);
13528
13529 return (dof);
13530 #endif /* !__FreeBSD__ */
13531 }
13532
13533 static void
13534 dtrace_dof_destroy(dof_hdr_t *dof)
13535 {
13536 kmem_free(dof, dof->dofh_loadsz);
13537 }
13538
13539 /*
13540 * Return the dof_sec_t pointer corresponding to a given section index. If the
13541 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
13542 * a type other than DOF_SECT_NONE is specified, the header is checked against
13543 * this type and NULL is returned if the types do not match.
13544 */
13545 static dof_sec_t *
13546 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
13547 {
13548 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
13549 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
13550
13551 if (i >= dof->dofh_secnum) {
13552 dtrace_dof_error(dof, "referenced section index is invalid");
13553 return (NULL);
13554 }
13555
13556 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
13557 dtrace_dof_error(dof, "referenced section is not loadable");
13558 return (NULL);
13559 }
13560
13561 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
13562 dtrace_dof_error(dof, "referenced section is the wrong type");
13563 return (NULL);
13564 }
13565
13566 return (sec);
13567 }
13568
13569 static dtrace_probedesc_t *
13570 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
13571 {
13572 dof_probedesc_t *probe;
13573 dof_sec_t *strtab;
13574 uintptr_t daddr = (uintptr_t)dof;
13575 uintptr_t str;
13576 size_t size;
13577
13578 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
13579 dtrace_dof_error(dof, "invalid probe section");
13580 return (NULL);
13581 }
13582
13583 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13584 dtrace_dof_error(dof, "bad alignment in probe description");
13585 return (NULL);
13586 }
13587
13588 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
13589 dtrace_dof_error(dof, "truncated probe description");
13590 return (NULL);
13591 }
13592
13593 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
13594 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
13595
13596 if (strtab == NULL)
13597 return (NULL);
13598
13599 str = daddr + strtab->dofs_offset;
13600 size = strtab->dofs_size;
13601
13602 if (probe->dofp_provider >= strtab->dofs_size) {
13603 dtrace_dof_error(dof, "corrupt probe provider");
13604 return (NULL);
13605 }
13606
13607 (void) strncpy(desc->dtpd_provider,
13608 (char *)(str + probe->dofp_provider),
13609 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
13610
13611 if (probe->dofp_mod >= strtab->dofs_size) {
13612 dtrace_dof_error(dof, "corrupt probe module");
13613 return (NULL);
13614 }
13615
13616 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
13617 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
13618
13619 if (probe->dofp_func >= strtab->dofs_size) {
13620 dtrace_dof_error(dof, "corrupt probe function");
13621 return (NULL);
13622 }
13623
13624 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
13625 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
13626
13627 if (probe->dofp_name >= strtab->dofs_size) {
13628 dtrace_dof_error(dof, "corrupt probe name");
13629 return (NULL);
13630 }
13631
13632 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
13633 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
13634
13635 return (desc);
13636 }
13637
13638 static dtrace_difo_t *
13639 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13640 cred_t *cr)
13641 {
13642 dtrace_difo_t *dp;
13643 size_t ttl = 0;
13644 dof_difohdr_t *dofd;
13645 uintptr_t daddr = (uintptr_t)dof;
13646 size_t max = dtrace_difo_maxsize;
13647 int i, l, n;
13648
13649 static const struct {
13650 int section;
13651 int bufoffs;
13652 int lenoffs;
13653 int entsize;
13654 int align;
13655 const char *msg;
13656 } difo[] = {
13657 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
13658 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
13659 sizeof (dif_instr_t), "multiple DIF sections" },
13660
13661 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
13662 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
13663 sizeof (uint64_t), "multiple integer tables" },
13664
13665 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
13666 offsetof(dtrace_difo_t, dtdo_strlen), 0,
13667 sizeof (char), "multiple string tables" },
13668
13669 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
13670 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
13671 sizeof (uint_t), "multiple variable tables" },
13672
13673 { DOF_SECT_NONE, 0, 0, 0, 0, NULL }
13674 };
13675
13676 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
13677 dtrace_dof_error(dof, "invalid DIFO header section");
13678 return (NULL);
13679 }
13680
13681 if (sec->dofs_align != sizeof (dof_secidx_t)) {
13682 dtrace_dof_error(dof, "bad alignment in DIFO header");
13683 return (NULL);
13684 }
13685
13686 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
13687 sec->dofs_size % sizeof (dof_secidx_t)) {
13688 dtrace_dof_error(dof, "bad size in DIFO header");
13689 return (NULL);
13690 }
13691
13692 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
13693 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
13694
13695 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
13696 dp->dtdo_rtype = dofd->dofd_rtype;
13697
13698 for (l = 0; l < n; l++) {
13699 dof_sec_t *subsec;
13700 void **bufp;
13701 uint32_t *lenp;
13702
13703 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
13704 dofd->dofd_links[l])) == NULL)
13705 goto err; /* invalid section link */
13706
13707 if (ttl + subsec->dofs_size > max) {
13708 dtrace_dof_error(dof, "exceeds maximum size");
13709 goto err;
13710 }
13711
13712 ttl += subsec->dofs_size;
13713
13714 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
13715 if (subsec->dofs_type != difo[i].section)
13716 continue;
13717
13718 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
13719 dtrace_dof_error(dof, "section not loaded");
13720 goto err;
13721 }
13722
13723 if (subsec->dofs_align != difo[i].align) {
13724 dtrace_dof_error(dof, "bad alignment");
13725 goto err;
13726 }
13727
13728 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
13729 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
13730
13731 if (*bufp != NULL) {
13732 dtrace_dof_error(dof, difo[i].msg);
13733 goto err;
13734 }
13735
13736 if (difo[i].entsize != subsec->dofs_entsize) {
13737 dtrace_dof_error(dof, "entry size mismatch");
13738 goto err;
13739 }
13740
13741 if (subsec->dofs_entsize != 0 &&
13742 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
13743 dtrace_dof_error(dof, "corrupt entry size");
13744 goto err;
13745 }
13746
13747 *lenp = subsec->dofs_size;
13748 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
13749 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
13750 *bufp, subsec->dofs_size);
13751
13752 if (subsec->dofs_entsize != 0)
13753 *lenp /= subsec->dofs_entsize;
13754
13755 break;
13756 }
13757
13758 /*
13759 * If we encounter a loadable DIFO sub-section that is not
13760 * known to us, assume this is a broken program and fail.
13761 */
13762 if (difo[i].section == DOF_SECT_NONE &&
13763 (subsec->dofs_flags & DOF_SECF_LOAD)) {
13764 dtrace_dof_error(dof, "unrecognized DIFO subsection");
13765 goto err;
13766 }
13767 }
13768
13769 if (dp->dtdo_buf == NULL) {
13770 /*
13771 * We can't have a DIF object without DIF text.
13772 */
13773 dtrace_dof_error(dof, "missing DIF text");
13774 goto err;
13775 }
13776
13777 /*
13778 * Before we validate the DIF object, run through the variable table
13779 * looking for the strings -- if any of their size are under, we'll set
13780 * their size to be the system-wide default string size. Note that
13781 * this should _not_ happen if the "strsize" option has been set --
13782 * in this case, the compiler should have set the size to reflect the
13783 * setting of the option.
13784 */
13785 for (i = 0; i < dp->dtdo_varlen; i++) {
13786 dtrace_difv_t *v = &dp->dtdo_vartab[i];
13787 dtrace_diftype_t *t = &v->dtdv_type;
13788
13789 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
13790 continue;
13791
13792 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
13793 t->dtdt_size = dtrace_strsize_default;
13794 }
13795
13796 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
13797 goto err;
13798
13799 dtrace_difo_init(dp, vstate);
13800 return (dp);
13801
13802 err:
13803 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
13804 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
13805 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
13806 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
13807
13808 kmem_free(dp, sizeof (dtrace_difo_t));
13809 return (NULL);
13810 }
13811
13812 static dtrace_predicate_t *
13813 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13814 cred_t *cr)
13815 {
13816 dtrace_difo_t *dp;
13817
13818 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
13819 return (NULL);
13820
13821 return (dtrace_predicate_create(dp));
13822 }
13823
13824 static dtrace_actdesc_t *
13825 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13826 cred_t *cr)
13827 {
13828 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
13829 dof_actdesc_t *desc;
13830 dof_sec_t *difosec;
13831 size_t offs;
13832 uintptr_t daddr = (uintptr_t)dof;
13833 uint64_t arg;
13834 dtrace_actkind_t kind;
13835
13836 if (sec->dofs_type != DOF_SECT_ACTDESC) {
13837 dtrace_dof_error(dof, "invalid action section");
13838 return (NULL);
13839 }
13840
13841 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
13842 dtrace_dof_error(dof, "truncated action description");
13843 return (NULL);
13844 }
13845
13846 if (sec->dofs_align != sizeof (uint64_t)) {
13847 dtrace_dof_error(dof, "bad alignment in action description");
13848 return (NULL);
13849 }
13850
13851 if (sec->dofs_size < sec->dofs_entsize) {
13852 dtrace_dof_error(dof, "section entry size exceeds total size");
13853 return (NULL);
13854 }
13855
13856 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
13857 dtrace_dof_error(dof, "bad entry size in action description");
13858 return (NULL);
13859 }
13860
13861 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
13862 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
13863 return (NULL);
13864 }
13865
13866 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
13867 desc = (dof_actdesc_t *)(daddr +
13868 (uintptr_t)sec->dofs_offset + offs);
13869 kind = (dtrace_actkind_t)desc->dofa_kind;
13870
13871 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
13872 (kind != DTRACEACT_PRINTA ||
13873 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
13874 (kind == DTRACEACT_DIFEXPR &&
13875 desc->dofa_strtab != DOF_SECIDX_NONE)) {
13876 dof_sec_t *strtab;
13877 char *str, *fmt;
13878 uint64_t i;
13879
13880 /*
13881 * The argument to these actions is an index into the
13882 * DOF string table. For printf()-like actions, this
13883 * is the format string. For print(), this is the
13884 * CTF type of the expression result.
13885 */
13886 if ((strtab = dtrace_dof_sect(dof,
13887 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
13888 goto err;
13889
13890 str = (char *)((uintptr_t)dof +
13891 (uintptr_t)strtab->dofs_offset);
13892
13893 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
13894 if (str[i] == '\0')
13895 break;
13896 }
13897
13898 if (i >= strtab->dofs_size) {
13899 dtrace_dof_error(dof, "bogus format string");
13900 goto err;
13901 }
13902
13903 if (i == desc->dofa_arg) {
13904 dtrace_dof_error(dof, "empty format string");
13905 goto err;
13906 }
13907
13908 i -= desc->dofa_arg;
13909 fmt = kmem_alloc(i + 1, KM_SLEEP);
13910 bcopy(&str[desc->dofa_arg], fmt, i + 1);
13911 arg = (uint64_t)(uintptr_t)fmt;
13912 } else {
13913 if (kind == DTRACEACT_PRINTA) {
13914 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
13915 arg = 0;
13916 } else {
13917 arg = desc->dofa_arg;
13918 }
13919 }
13920
13921 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
13922 desc->dofa_uarg, arg);
13923
13924 if (last != NULL) {
13925 last->dtad_next = act;
13926 } else {
13927 first = act;
13928 }
13929
13930 last = act;
13931
13932 if (desc->dofa_difo == DOF_SECIDX_NONE)
13933 continue;
13934
13935 if ((difosec = dtrace_dof_sect(dof,
13936 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
13937 goto err;
13938
13939 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
13940
13941 if (act->dtad_difo == NULL)
13942 goto err;
13943 }
13944
13945 ASSERT(first != NULL);
13946 return (first);
13947
13948 err:
13949 for (act = first; act != NULL; act = next) {
13950 next = act->dtad_next;
13951 dtrace_actdesc_release(act, vstate);
13952 }
13953
13954 return (NULL);
13955 }
13956
13957 static dtrace_ecbdesc_t *
13958 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
13959 cred_t *cr)
13960 {
13961 dtrace_ecbdesc_t *ep;
13962 dof_ecbdesc_t *ecb;
13963 dtrace_probedesc_t *desc;
13964 dtrace_predicate_t *pred = NULL;
13965
13966 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
13967 dtrace_dof_error(dof, "truncated ECB description");
13968 return (NULL);
13969 }
13970
13971 if (sec->dofs_align != sizeof (uint64_t)) {
13972 dtrace_dof_error(dof, "bad alignment in ECB description");
13973 return (NULL);
13974 }
13975
13976 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
13977 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
13978
13979 if (sec == NULL)
13980 return (NULL);
13981
13982 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
13983 ep->dted_uarg = ecb->dofe_uarg;
13984 desc = &ep->dted_probe;
13985
13986 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
13987 goto err;
13988
13989 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
13990 if ((sec = dtrace_dof_sect(dof,
13991 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
13992 goto err;
13993
13994 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
13995 goto err;
13996
13997 ep->dted_pred.dtpdd_predicate = pred;
13998 }
13999
14000 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
14001 if ((sec = dtrace_dof_sect(dof,
14002 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
14003 goto err;
14004
14005 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
14006
14007 if (ep->dted_action == NULL)
14008 goto err;
14009 }
14010
14011 return (ep);
14012
14013 err:
14014 if (pred != NULL)
14015 dtrace_predicate_release(pred, vstate);
14016 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
14017 return (NULL);
14018 }
14019
14020 /*
14021 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
14022 * specified DOF. SETX relocations are computed using 'ubase', the base load
14023 * address of the object containing the DOF, and DOFREL relocations are relative
14024 * to the relocation offset within the DOF.
14025 */
14026 static int
14027 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase,
14028 uint64_t udaddr)
14029 {
14030 uintptr_t daddr = (uintptr_t)dof;
14031 uintptr_t ts_end;
14032 dof_relohdr_t *dofr =
14033 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
14034 dof_sec_t *ss, *rs, *ts;
14035 dof_relodesc_t *r;
14036 uint_t i, n;
14037
14038 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
14039 sec->dofs_align != sizeof (dof_secidx_t)) {
14040 dtrace_dof_error(dof, "invalid relocation header");
14041 return (-1);
14042 }
14043
14044 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
14045 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
14046 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
14047 ts_end = (uintptr_t)ts + sizeof (dof_sec_t);
14048
14049 if (ss == NULL || rs == NULL || ts == NULL)
14050 return (-1); /* dtrace_dof_error() has been called already */
14051
14052 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
14053 rs->dofs_align != sizeof (uint64_t)) {
14054 dtrace_dof_error(dof, "invalid relocation section");
14055 return (-1);
14056 }
14057
14058 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
14059 n = rs->dofs_size / rs->dofs_entsize;
14060
14061 for (i = 0; i < n; i++) {
14062 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
14063
14064 switch (r->dofr_type) {
14065 case DOF_RELO_NONE:
14066 break;
14067 case DOF_RELO_SETX:
14068 case DOF_RELO_DOFREL:
14069 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
14070 sizeof (uint64_t) > ts->dofs_size) {
14071 dtrace_dof_error(dof, "bad relocation offset");
14072 return (-1);
14073 }
14074
14075 if (taddr >= (uintptr_t)ts && taddr < ts_end) {
14076 dtrace_dof_error(dof, "bad relocation offset");
14077 return (-1);
14078 }
14079
14080 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
14081 dtrace_dof_error(dof, "misaligned setx relo");
14082 return (-1);
14083 }
14084
14085 if (r->dofr_type == DOF_RELO_SETX)
14086 *(uint64_t *)taddr += ubase;
14087 else
14088 *(uint64_t *)taddr +=
14089 udaddr + ts->dofs_offset + r->dofr_offset;
14090 break;
14091 default:
14092 dtrace_dof_error(dof, "invalid relocation type");
14093 return (-1);
14094 }
14095
14096 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
14097 }
14098
14099 return (0);
14100 }
14101
14102 /*
14103 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
14104 * header: it should be at the front of a memory region that is at least
14105 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
14106 * size. It need not be validated in any other way.
14107 */
14108 static int
14109 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
14110 dtrace_enabling_t **enabp, uint64_t ubase, uint64_t udaddr, int noprobes)
14111 {
14112 uint64_t len = dof->dofh_loadsz, seclen;
14113 uintptr_t daddr = (uintptr_t)dof;
14114 dtrace_ecbdesc_t *ep;
14115 dtrace_enabling_t *enab;
14116 uint_t i;
14117
14118 ASSERT(MUTEX_HELD(&dtrace_lock));
14119 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
14120
14121 /*
14122 * Check the DOF header identification bytes. In addition to checking
14123 * valid settings, we also verify that unused bits/bytes are zeroed so
14124 * we can use them later without fear of regressing existing binaries.
14125 */
14126 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
14127 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
14128 dtrace_dof_error(dof, "DOF magic string mismatch");
14129 return (-1);
14130 }
14131
14132 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
14133 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
14134 dtrace_dof_error(dof, "DOF has invalid data model");
14135 return (-1);
14136 }
14137
14138 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
14139 dtrace_dof_error(dof, "DOF encoding mismatch");
14140 return (-1);
14141 }
14142
14143 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14144 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
14145 dtrace_dof_error(dof, "DOF version mismatch");
14146 return (-1);
14147 }
14148
14149 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
14150 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
14151 return (-1);
14152 }
14153
14154 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
14155 dtrace_dof_error(dof, "DOF uses too many integer registers");
14156 return (-1);
14157 }
14158
14159 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
14160 dtrace_dof_error(dof, "DOF uses too many tuple registers");
14161 return (-1);
14162 }
14163
14164 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
14165 if (dof->dofh_ident[i] != 0) {
14166 dtrace_dof_error(dof, "DOF has invalid ident byte set");
14167 return (-1);
14168 }
14169 }
14170
14171 if (dof->dofh_flags & ~DOF_FL_VALID) {
14172 dtrace_dof_error(dof, "DOF has invalid flag bits set");
14173 return (-1);
14174 }
14175
14176 if (dof->dofh_secsize == 0) {
14177 dtrace_dof_error(dof, "zero section header size");
14178 return (-1);
14179 }
14180
14181 /*
14182 * Check that the section headers don't exceed the amount of DOF
14183 * data. Note that we cast the section size and number of sections
14184 * to uint64_t's to prevent possible overflow in the multiplication.
14185 */
14186 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
14187
14188 if (dof->dofh_secoff > len || seclen > len ||
14189 dof->dofh_secoff + seclen > len) {
14190 dtrace_dof_error(dof, "truncated section headers");
14191 return (-1);
14192 }
14193
14194 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
14195 dtrace_dof_error(dof, "misaligned section headers");
14196 return (-1);
14197 }
14198
14199 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
14200 dtrace_dof_error(dof, "misaligned section size");
14201 return (-1);
14202 }
14203
14204 /*
14205 * Take an initial pass through the section headers to be sure that
14206 * the headers don't have stray offsets. If the 'noprobes' flag is
14207 * set, do not permit sections relating to providers, probes, or args.
14208 */
14209 for (i = 0; i < dof->dofh_secnum; i++) {
14210 dof_sec_t *sec = (dof_sec_t *)(daddr +
14211 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14212
14213 if (noprobes) {
14214 switch (sec->dofs_type) {
14215 case DOF_SECT_PROVIDER:
14216 case DOF_SECT_PROBES:
14217 case DOF_SECT_PRARGS:
14218 case DOF_SECT_PROFFS:
14219 dtrace_dof_error(dof, "illegal sections "
14220 "for enabling");
14221 return (-1);
14222 }
14223 }
14224
14225 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
14226 !(sec->dofs_flags & DOF_SECF_LOAD)) {
14227 dtrace_dof_error(dof, "loadable section with load "
14228 "flag unset");
14229 return (-1);
14230 }
14231
14232 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14233 continue; /* just ignore non-loadable sections */
14234
14235 if (!ISP2(sec->dofs_align)) {
14236 dtrace_dof_error(dof, "bad section alignment");
14237 return (-1);
14238 }
14239
14240 if (sec->dofs_offset & (sec->dofs_align - 1)) {
14241 dtrace_dof_error(dof, "misaligned section");
14242 return (-1);
14243 }
14244
14245 if (sec->dofs_offset > len || sec->dofs_size > len ||
14246 sec->dofs_offset + sec->dofs_size > len) {
14247 dtrace_dof_error(dof, "corrupt section header");
14248 return (-1);
14249 }
14250
14251 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
14252 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
14253 dtrace_dof_error(dof, "non-terminating string table");
14254 return (-1);
14255 }
14256 }
14257
14258 /*
14259 * Take a second pass through the sections and locate and perform any
14260 * relocations that are present. We do this after the first pass to
14261 * be sure that all sections have had their headers validated.
14262 */
14263 for (i = 0; i < dof->dofh_secnum; i++) {
14264 dof_sec_t *sec = (dof_sec_t *)(daddr +
14265 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14266
14267 if (!(sec->dofs_flags & DOF_SECF_LOAD))
14268 continue; /* skip sections that are not loadable */
14269
14270 switch (sec->dofs_type) {
14271 case DOF_SECT_URELHDR:
14272 if (dtrace_dof_relocate(dof, sec, ubase, udaddr) != 0)
14273 return (-1);
14274 break;
14275 }
14276 }
14277
14278 if ((enab = *enabp) == NULL)
14279 enab = *enabp = dtrace_enabling_create(vstate);
14280
14281 for (i = 0; i < dof->dofh_secnum; i++) {
14282 dof_sec_t *sec = (dof_sec_t *)(daddr +
14283 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14284
14285 if (sec->dofs_type != DOF_SECT_ECBDESC)
14286 continue;
14287
14288 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
14289 dtrace_enabling_destroy(enab);
14290 *enabp = NULL;
14291 return (-1);
14292 }
14293
14294 dtrace_enabling_add(enab, ep);
14295 }
14296
14297 return (0);
14298 }
14299
14300 /*
14301 * Process DOF for any options. This routine assumes that the DOF has been
14302 * at least processed by dtrace_dof_slurp().
14303 */
14304 static int
14305 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
14306 {
14307 int i, rval;
14308 uint32_t entsize;
14309 size_t offs;
14310 dof_optdesc_t *desc;
14311
14312 for (i = 0; i < dof->dofh_secnum; i++) {
14313 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
14314 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
14315
14316 if (sec->dofs_type != DOF_SECT_OPTDESC)
14317 continue;
14318
14319 if (sec->dofs_align != sizeof (uint64_t)) {
14320 dtrace_dof_error(dof, "bad alignment in "
14321 "option description");
14322 return (EINVAL);
14323 }
14324
14325 if ((entsize = sec->dofs_entsize) == 0) {
14326 dtrace_dof_error(dof, "zeroed option entry size");
14327 return (EINVAL);
14328 }
14329
14330 if (entsize < sizeof (dof_optdesc_t)) {
14331 dtrace_dof_error(dof, "bad option entry size");
14332 return (EINVAL);
14333 }
14334
14335 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
14336 desc = (dof_optdesc_t *)((uintptr_t)dof +
14337 (uintptr_t)sec->dofs_offset + offs);
14338
14339 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
14340 dtrace_dof_error(dof, "non-zero option string");
14341 return (EINVAL);
14342 }
14343
14344 if (desc->dofo_value == DTRACEOPT_UNSET) {
14345 dtrace_dof_error(dof, "unset option");
14346 return (EINVAL);
14347 }
14348
14349 if ((rval = dtrace_state_option(state,
14350 desc->dofo_option, desc->dofo_value)) != 0) {
14351 dtrace_dof_error(dof, "rejected option");
14352 return (rval);
14353 }
14354 }
14355 }
14356
14357 return (0);
14358 }
14359
14360 /*
14361 * DTrace Consumer State Functions
14362 */
14363 static int
14364 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
14365 {
14366 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
14367 void *base;
14368 uintptr_t limit;
14369 dtrace_dynvar_t *dvar, *next, *start;
14370 int i;
14371
14372 ASSERT(MUTEX_HELD(&dtrace_lock));
14373 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
14374
14375 bzero(dstate, sizeof (dtrace_dstate_t));
14376
14377 if ((dstate->dtds_chunksize = chunksize) == 0)
14378 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
14379
14380 VERIFY(dstate->dtds_chunksize < LONG_MAX);
14381
14382 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
14383 size = min;
14384
14385 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
14386 return (ENOMEM);
14387
14388 dstate->dtds_size = size;
14389 dstate->dtds_base = base;
14390 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
14391 bzero(dstate->dtds_percpu,
14392 (mp_maxid + 1) * sizeof (dtrace_dstate_percpu_t));
14393
14394 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
14395
14396 if (hashsize != 1 && (hashsize & 1))
14397 hashsize--;
14398
14399 dstate->dtds_hashsize = hashsize;
14400 dstate->dtds_hash = dstate->dtds_base;
14401
14402 /*
14403 * Set all of our hash buckets to point to the single sink, and (if
14404 * it hasn't already been set), set the sink's hash value to be the
14405 * sink sentinel value. The sink is needed for dynamic variable
14406 * lookups to know that they have iterated over an entire, valid hash
14407 * chain.
14408 */
14409 for (i = 0; i < hashsize; i++)
14410 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
14411
14412 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
14413 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
14414
14415 /*
14416 * Determine number of active CPUs. Divide free list evenly among
14417 * active CPUs.
14418 */
14419 start = (dtrace_dynvar_t *)
14420 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
14421 limit = (uintptr_t)base + size;
14422
14423 VERIFY((uintptr_t)start < limit);
14424 VERIFY((uintptr_t)start >= (uintptr_t)base);
14425
14426 maxper = (limit - (uintptr_t)start) / (mp_maxid + 1);
14427 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
14428
14429 CPU_FOREACH(i) {
14430 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
14431
14432 /*
14433 * If we don't even have enough chunks to make it once through
14434 * NCPUs, we're just going to allocate everything to the first
14435 * CPU. And if we're on the last CPU, we're going to allocate
14436 * whatever is left over. In either case, we set the limit to
14437 * be the limit of the dynamic variable space.
14438 */
14439 if (maxper == 0 || i == mp_maxid) {
14440 limit = (uintptr_t)base + size;
14441 start = NULL;
14442 } else {
14443 limit = (uintptr_t)start + maxper;
14444 start = (dtrace_dynvar_t *)limit;
14445 }
14446
14447 VERIFY(limit <= (uintptr_t)base + size);
14448
14449 for (;;) {
14450 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
14451 dstate->dtds_chunksize);
14452
14453 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
14454 break;
14455
14456 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
14457 (uintptr_t)dvar <= (uintptr_t)base + size);
14458 dvar->dtdv_next = next;
14459 dvar = next;
14460 }
14461
14462 if (maxper == 0)
14463 break;
14464 }
14465
14466 return (0);
14467 }
14468
14469 static void
14470 dtrace_dstate_fini(dtrace_dstate_t *dstate)
14471 {
14472 ASSERT(MUTEX_HELD(&cpu_lock));
14473
14474 if (dstate->dtds_base == NULL)
14475 return;
14476
14477 kmem_free(dstate->dtds_base, dstate->dtds_size);
14478 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
14479 }
14480
14481 static void
14482 dtrace_vstate_fini(dtrace_vstate_t *vstate)
14483 {
14484 /*
14485 * Logical XOR, where are you?
14486 */
14487 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
14488
14489 if (vstate->dtvs_nglobals > 0) {
14490 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
14491 sizeof (dtrace_statvar_t *));
14492 }
14493
14494 if (vstate->dtvs_ntlocals > 0) {
14495 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
14496 sizeof (dtrace_difv_t));
14497 }
14498
14499 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
14500
14501 if (vstate->dtvs_nlocals > 0) {
14502 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
14503 sizeof (dtrace_statvar_t *));
14504 }
14505 }
14506
14507 #ifdef illumos
14508 static void
14509 dtrace_state_clean(dtrace_state_t *state)
14510 {
14511 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14512 return;
14513
14514 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14515 dtrace_speculation_clean(state);
14516 }
14517
14518 static void
14519 dtrace_state_deadman(dtrace_state_t *state)
14520 {
14521 hrtime_t now;
14522
14523 dtrace_sync();
14524
14525 now = dtrace_gethrtime();
14526
14527 if (state != dtrace_anon.dta_state &&
14528 now - state->dts_laststatus >= dtrace_deadman_user)
14529 return;
14530
14531 /*
14532 * We must be sure that dts_alive never appears to be less than the
14533 * value upon entry to dtrace_state_deadman(), and because we lack a
14534 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14535 * store INT64_MAX to it, followed by a memory barrier, followed by
14536 * the new value. This assures that dts_alive never appears to be
14537 * less than its true value, regardless of the order in which the
14538 * stores to the underlying storage are issued.
14539 */
14540 state->dts_alive = INT64_MAX;
14541 dtrace_membar_producer();
14542 state->dts_alive = now;
14543 }
14544 #else /* !illumos */
14545 static void
14546 dtrace_state_clean(void *arg)
14547 {
14548 dtrace_state_t *state = arg;
14549 dtrace_optval_t *opt = state->dts_options;
14550
14551 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
14552 return;
14553
14554 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
14555 dtrace_speculation_clean(state);
14556
14557 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
14558 dtrace_state_clean, state);
14559 }
14560
14561 static void
14562 dtrace_state_deadman(void *arg)
14563 {
14564 dtrace_state_t *state = arg;
14565 hrtime_t now;
14566
14567 dtrace_sync();
14568
14569 dtrace_debug_output();
14570
14571 now = dtrace_gethrtime();
14572
14573 if (state != dtrace_anon.dta_state &&
14574 now - state->dts_laststatus >= dtrace_deadman_user)
14575 return;
14576
14577 /*
14578 * We must be sure that dts_alive never appears to be less than the
14579 * value upon entry to dtrace_state_deadman(), and because we lack a
14580 * dtrace_cas64(), we cannot store to it atomically. We thus instead
14581 * store INT64_MAX to it, followed by a memory barrier, followed by
14582 * the new value. This assures that dts_alive never appears to be
14583 * less than its true value, regardless of the order in which the
14584 * stores to the underlying storage are issued.
14585 */
14586 state->dts_alive = INT64_MAX;
14587 dtrace_membar_producer();
14588 state->dts_alive = now;
14589
14590 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
14591 dtrace_state_deadman, state);
14592 }
14593 #endif /* illumos */
14594
14595 static dtrace_state_t *
14596 #ifdef illumos
14597 dtrace_state_create(dev_t *devp, cred_t *cr)
14598 #else
14599 dtrace_state_create(struct cdev *dev, struct ucred *cred __unused)
14600 #endif
14601 {
14602 #ifdef illumos
14603 minor_t minor;
14604 major_t major;
14605 #else
14606 cred_t *cr = NULL;
14607 int m = 0;
14608 #endif
14609 char c[30];
14610 dtrace_state_t *state;
14611 dtrace_optval_t *opt;
14612 int bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t), i;
14613 int cpu_it;
14614
14615 ASSERT(MUTEX_HELD(&dtrace_lock));
14616 ASSERT(MUTEX_HELD(&cpu_lock));
14617
14618 #ifdef illumos
14619 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
14620 VM_BESTFIT | VM_SLEEP);
14621
14622 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
14623 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14624 return (NULL);
14625 }
14626
14627 state = ddi_get_soft_state(dtrace_softstate, minor);
14628 #else
14629 if (dev != NULL) {
14630 cr = dev->si_cred;
14631 m = dev2unit(dev);
14632 }
14633
14634 /* Allocate memory for the state. */
14635 state = kmem_zalloc(sizeof(dtrace_state_t), KM_SLEEP);
14636 #endif
14637
14638 state->dts_epid = DTRACE_EPIDNONE + 1;
14639
14640 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", m);
14641 #ifdef illumos
14642 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
14643 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
14644
14645 if (devp != NULL) {
14646 major = getemajor(*devp);
14647 } else {
14648 major = ddi_driver_major(dtrace_devi);
14649 }
14650
14651 state->dts_dev = makedevice(major, minor);
14652
14653 if (devp != NULL)
14654 *devp = state->dts_dev;
14655 #else
14656 state->dts_aggid_arena = new_unrhdr(1, INT_MAX, &dtrace_unr_mtx);
14657 state->dts_dev = dev;
14658 #endif
14659
14660 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
14661 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
14662
14663 /*
14664 * Allocate and initialise the per-process per-CPU random state.
14665 * SI_SUB_RANDOM < SI_SUB_DTRACE_ANON therefore entropy device is
14666 * assumed to be seeded at this point (if from Fortuna seed file).
14667 */
14668 arc4random_buf(&state->dts_rstate[0], 2 * sizeof(uint64_t));
14669 for (cpu_it = 1; cpu_it <= mp_maxid; cpu_it++) {
14670 /*
14671 * Each CPU is assigned a 2^64 period, non-overlapping
14672 * subsequence.
14673 */
14674 dtrace_xoroshiro128_plus_jump(state->dts_rstate[cpu_it - 1],
14675 state->dts_rstate[cpu_it]);
14676 }
14677
14678 #ifdef illumos
14679 state->dts_cleaner = CYCLIC_NONE;
14680 state->dts_deadman = CYCLIC_NONE;
14681 #else
14682 callout_init(&state->dts_cleaner, 1);
14683 callout_init(&state->dts_deadman, 1);
14684 #endif
14685 state->dts_vstate.dtvs_state = state;
14686
14687 for (i = 0; i < DTRACEOPT_MAX; i++)
14688 state->dts_options[i] = DTRACEOPT_UNSET;
14689
14690 /*
14691 * Set the default options.
14692 */
14693 opt = state->dts_options;
14694 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
14695 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
14696 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
14697 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
14698 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
14699 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
14700 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
14701 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
14702 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
14703 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
14704 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
14705 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
14706 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
14707 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
14708
14709 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
14710
14711 /*
14712 * Depending on the user credentials, we set flag bits which alter probe
14713 * visibility or the amount of destructiveness allowed. In the case of
14714 * actual anonymous tracing, or the possession of all privileges, all of
14715 * the normal checks are bypassed.
14716 */
14717 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
14718 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
14719 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
14720 } else {
14721 /*
14722 * Set up the credentials for this instantiation. We take a
14723 * hold on the credential to prevent it from disappearing on
14724 * us; this in turn prevents the zone_t referenced by this
14725 * credential from disappearing. This means that we can
14726 * examine the credential and the zone from probe context.
14727 */
14728 crhold(cr);
14729 state->dts_cred.dcr_cred = cr;
14730
14731 /*
14732 * CRA_PROC means "we have *some* privilege for dtrace" and
14733 * unlocks the use of variables like pid, zonename, etc.
14734 */
14735 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
14736 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14737 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
14738 }
14739
14740 /*
14741 * dtrace_user allows use of syscall and profile providers.
14742 * If the user also has proc_owner and/or proc_zone, we
14743 * extend the scope to include additional visibility and
14744 * destructive power.
14745 */
14746 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
14747 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
14748 state->dts_cred.dcr_visible |=
14749 DTRACE_CRV_ALLPROC;
14750
14751 state->dts_cred.dcr_action |=
14752 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14753 }
14754
14755 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
14756 state->dts_cred.dcr_visible |=
14757 DTRACE_CRV_ALLZONE;
14758
14759 state->dts_cred.dcr_action |=
14760 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14761 }
14762
14763 /*
14764 * If we have all privs in whatever zone this is,
14765 * we can do destructive things to processes which
14766 * have altered credentials.
14767 */
14768 #ifdef illumos
14769 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14770 cr->cr_zone->zone_privset)) {
14771 state->dts_cred.dcr_action |=
14772 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14773 }
14774 #endif
14775 }
14776
14777 /*
14778 * Holding the dtrace_kernel privilege also implies that
14779 * the user has the dtrace_user privilege from a visibility
14780 * perspective. But without further privileges, some
14781 * destructive actions are not available.
14782 */
14783 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
14784 /*
14785 * Make all probes in all zones visible. However,
14786 * this doesn't mean that all actions become available
14787 * to all zones.
14788 */
14789 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
14790 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
14791
14792 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
14793 DTRACE_CRA_PROC;
14794 /*
14795 * Holding proc_owner means that destructive actions
14796 * for *this* zone are allowed.
14797 */
14798 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14799 state->dts_cred.dcr_action |=
14800 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14801
14802 /*
14803 * Holding proc_zone means that destructive actions
14804 * for this user/group ID in all zones is allowed.
14805 */
14806 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14807 state->dts_cred.dcr_action |=
14808 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14809
14810 #ifdef illumos
14811 /*
14812 * If we have all privs in whatever zone this is,
14813 * we can do destructive things to processes which
14814 * have altered credentials.
14815 */
14816 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
14817 cr->cr_zone->zone_privset)) {
14818 state->dts_cred.dcr_action |=
14819 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
14820 }
14821 #endif
14822 }
14823
14824 /*
14825 * Holding the dtrace_proc privilege gives control over fasttrap
14826 * and pid providers. We need to grant wider destructive
14827 * privileges in the event that the user has proc_owner and/or
14828 * proc_zone.
14829 */
14830 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
14831 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
14832 state->dts_cred.dcr_action |=
14833 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
14834
14835 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
14836 state->dts_cred.dcr_action |=
14837 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
14838 }
14839 }
14840
14841 return (state);
14842 }
14843
14844 static int
14845 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
14846 {
14847 dtrace_optval_t *opt = state->dts_options, size;
14848 processorid_t cpu = 0;
14849 int flags = 0, rval, factor, divisor = 1;
14850
14851 ASSERT(MUTEX_HELD(&dtrace_lock));
14852 ASSERT(MUTEX_HELD(&cpu_lock));
14853 ASSERT(which < DTRACEOPT_MAX);
14854 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
14855 (state == dtrace_anon.dta_state &&
14856 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
14857
14858 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
14859 return (0);
14860
14861 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
14862 cpu = opt[DTRACEOPT_CPU];
14863
14864 if (which == DTRACEOPT_SPECSIZE)
14865 flags |= DTRACEBUF_NOSWITCH;
14866
14867 if (which == DTRACEOPT_BUFSIZE) {
14868 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
14869 flags |= DTRACEBUF_RING;
14870
14871 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
14872 flags |= DTRACEBUF_FILL;
14873
14874 if (state != dtrace_anon.dta_state ||
14875 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
14876 flags |= DTRACEBUF_INACTIVE;
14877 }
14878
14879 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
14880 /*
14881 * The size must be 8-byte aligned. If the size is not 8-byte
14882 * aligned, drop it down by the difference.
14883 */
14884 if (size & (sizeof (uint64_t) - 1))
14885 size -= size & (sizeof (uint64_t) - 1);
14886
14887 if (size < state->dts_reserve) {
14888 /*
14889 * Buffers always must be large enough to accommodate
14890 * their prereserved space. We return E2BIG instead
14891 * of ENOMEM in this case to allow for user-level
14892 * software to differentiate the cases.
14893 */
14894 return (E2BIG);
14895 }
14896
14897 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
14898
14899 if (rval != ENOMEM) {
14900 opt[which] = size;
14901 return (rval);
14902 }
14903
14904 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
14905 return (rval);
14906
14907 for (divisor = 2; divisor < factor; divisor <<= 1)
14908 continue;
14909 }
14910
14911 return (ENOMEM);
14912 }
14913
14914 static int
14915 dtrace_state_buffers(dtrace_state_t *state)
14916 {
14917 dtrace_speculation_t *spec = state->dts_speculations;
14918 int rval, i;
14919
14920 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
14921 DTRACEOPT_BUFSIZE)) != 0)
14922 return (rval);
14923
14924 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
14925 DTRACEOPT_AGGSIZE)) != 0)
14926 return (rval);
14927
14928 for (i = 0; i < state->dts_nspeculations; i++) {
14929 if ((rval = dtrace_state_buffer(state,
14930 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
14931 return (rval);
14932 }
14933
14934 return (0);
14935 }
14936
14937 static void
14938 dtrace_state_prereserve(dtrace_state_t *state)
14939 {
14940 dtrace_ecb_t *ecb;
14941 dtrace_probe_t *probe;
14942
14943 state->dts_reserve = 0;
14944
14945 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
14946 return;
14947
14948 /*
14949 * If our buffer policy is a "fill" buffer policy, we need to set the
14950 * prereserved space to be the space required by the END probes.
14951 */
14952 probe = dtrace_probes[dtrace_probeid_end - 1];
14953 ASSERT(probe != NULL);
14954
14955 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
14956 if (ecb->dte_state != state)
14957 continue;
14958
14959 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
14960 }
14961 }
14962
14963 static int
14964 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
14965 {
14966 dtrace_optval_t *opt = state->dts_options, sz, nspec;
14967 dtrace_speculation_t *spec;
14968 dtrace_buffer_t *buf;
14969 #ifdef illumos
14970 cyc_handler_t hdlr;
14971 cyc_time_t when;
14972 #endif
14973 int rval = 0, i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
14974 dtrace_icookie_t cookie;
14975
14976 mutex_enter(&cpu_lock);
14977 mutex_enter(&dtrace_lock);
14978
14979 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
14980 rval = EBUSY;
14981 goto out;
14982 }
14983
14984 /*
14985 * Before we can perform any checks, we must prime all of the
14986 * retained enablings that correspond to this state.
14987 */
14988 dtrace_enabling_prime(state);
14989
14990 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
14991 rval = EACCES;
14992 goto out;
14993 }
14994
14995 dtrace_state_prereserve(state);
14996
14997 /*
14998 * Now we want to do is try to allocate our speculations.
14999 * We do not automatically resize the number of speculations; if
15000 * this fails, we will fail the operation.
15001 */
15002 nspec = opt[DTRACEOPT_NSPEC];
15003 ASSERT(nspec != DTRACEOPT_UNSET);
15004
15005 if (nspec > INT_MAX) {
15006 rval = ENOMEM;
15007 goto out;
15008 }
15009
15010 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
15011 KM_NOSLEEP | KM_NORMALPRI);
15012
15013 if (spec == NULL) {
15014 rval = ENOMEM;
15015 goto out;
15016 }
15017
15018 state->dts_speculations = spec;
15019 state->dts_nspeculations = (int)nspec;
15020
15021 for (i = 0; i < nspec; i++) {
15022 if ((buf = kmem_zalloc(bufsize,
15023 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
15024 rval = ENOMEM;
15025 goto err;
15026 }
15027
15028 spec[i].dtsp_buffer = buf;
15029 }
15030
15031 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
15032 if (dtrace_anon.dta_state == NULL) {
15033 rval = ENOENT;
15034 goto out;
15035 }
15036
15037 if (state->dts_necbs != 0) {
15038 rval = EALREADY;
15039 goto out;
15040 }
15041
15042 state->dts_anon = dtrace_anon_grab();
15043 ASSERT(state->dts_anon != NULL);
15044 state = state->dts_anon;
15045
15046 /*
15047 * We want "grabanon" to be set in the grabbed state, so we'll
15048 * copy that option value from the grabbing state into the
15049 * grabbed state.
15050 */
15051 state->dts_options[DTRACEOPT_GRABANON] =
15052 opt[DTRACEOPT_GRABANON];
15053
15054 *cpu = dtrace_anon.dta_beganon;
15055
15056 /*
15057 * If the anonymous state is active (as it almost certainly
15058 * is if the anonymous enabling ultimately matched anything),
15059 * we don't allow any further option processing -- but we
15060 * don't return failure.
15061 */
15062 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15063 goto out;
15064 }
15065
15066 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
15067 opt[DTRACEOPT_AGGSIZE] != 0) {
15068 if (state->dts_aggregations == NULL) {
15069 /*
15070 * We're not going to create an aggregation buffer
15071 * because we don't have any ECBs that contain
15072 * aggregations -- set this option to 0.
15073 */
15074 opt[DTRACEOPT_AGGSIZE] = 0;
15075 } else {
15076 /*
15077 * If we have an aggregation buffer, we must also have
15078 * a buffer to use as scratch.
15079 */
15080 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
15081 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
15082 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
15083 }
15084 }
15085 }
15086
15087 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
15088 opt[DTRACEOPT_SPECSIZE] != 0) {
15089 if (!state->dts_speculates) {
15090 /*
15091 * We're not going to create speculation buffers
15092 * because we don't have any ECBs that actually
15093 * speculate -- set the speculation size to 0.
15094 */
15095 opt[DTRACEOPT_SPECSIZE] = 0;
15096 }
15097 }
15098
15099 /*
15100 * The bare minimum size for any buffer that we're actually going to
15101 * do anything to is sizeof (uint64_t).
15102 */
15103 sz = sizeof (uint64_t);
15104
15105 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
15106 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
15107 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
15108 /*
15109 * A buffer size has been explicitly set to 0 (or to a size
15110 * that will be adjusted to 0) and we need the space -- we
15111 * need to return failure. We return ENOSPC to differentiate
15112 * it from failing to allocate a buffer due to failure to meet
15113 * the reserve (for which we return E2BIG).
15114 */
15115 rval = ENOSPC;
15116 goto out;
15117 }
15118
15119 if ((rval = dtrace_state_buffers(state)) != 0)
15120 goto err;
15121
15122 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
15123 sz = dtrace_dstate_defsize;
15124
15125 do {
15126 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
15127
15128 if (rval == 0)
15129 break;
15130
15131 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
15132 goto err;
15133 } while (sz >>= 1);
15134
15135 opt[DTRACEOPT_DYNVARSIZE] = sz;
15136
15137 if (rval != 0)
15138 goto err;
15139
15140 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
15141 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
15142
15143 if (opt[DTRACEOPT_CLEANRATE] == 0)
15144 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15145
15146 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
15147 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
15148
15149 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
15150 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
15151
15152 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
15153 #ifdef illumos
15154 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
15155 hdlr.cyh_arg = state;
15156 hdlr.cyh_level = CY_LOW_LEVEL;
15157
15158 when.cyt_when = 0;
15159 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
15160
15161 state->dts_cleaner = cyclic_add(&hdlr, &when);
15162
15163 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
15164 hdlr.cyh_arg = state;
15165 hdlr.cyh_level = CY_LOW_LEVEL;
15166
15167 when.cyt_when = 0;
15168 when.cyt_interval = dtrace_deadman_interval;
15169
15170 state->dts_deadman = cyclic_add(&hdlr, &when);
15171 #else
15172 callout_reset(&state->dts_cleaner, hz * opt[DTRACEOPT_CLEANRATE] / NANOSEC,
15173 dtrace_state_clean, state);
15174 callout_reset(&state->dts_deadman, hz * dtrace_deadman_interval / NANOSEC,
15175 dtrace_state_deadman, state);
15176 #endif
15177
15178 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
15179
15180 #ifdef illumos
15181 if (state->dts_getf != 0 &&
15182 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15183 /*
15184 * We don't have kernel privs but we have at least one call
15185 * to getf(); we need to bump our zone's count, and (if
15186 * this is the first enabling to have an unprivileged call
15187 * to getf()) we need to hook into closef().
15188 */
15189 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
15190
15191 if (dtrace_getf++ == 0) {
15192 ASSERT(dtrace_closef == NULL);
15193 dtrace_closef = dtrace_getf_barrier;
15194 }
15195 }
15196 #endif
15197
15198 /*
15199 * Now it's time to actually fire the BEGIN probe. We need to disable
15200 * interrupts here both to record the CPU on which we fired the BEGIN
15201 * probe (the data from this CPU will be processed first at user
15202 * level) and to manually activate the buffer for this CPU.
15203 */
15204 cookie = dtrace_interrupt_disable();
15205 *cpu = curcpu;
15206 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
15207 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
15208
15209 dtrace_probe(dtrace_probeid_begin,
15210 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15211 dtrace_interrupt_enable(cookie);
15212 /*
15213 * We may have had an exit action from a BEGIN probe; only change our
15214 * state to ACTIVE if we're still in WARMUP.
15215 */
15216 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
15217 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
15218
15219 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
15220 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
15221
15222 #ifdef __FreeBSD__
15223 /*
15224 * We enable anonymous tracing before APs are started, so we must
15225 * activate buffers using the current CPU.
15226 */
15227 if (state == dtrace_anon.dta_state) {
15228 CPU_FOREACH(i)
15229 dtrace_buffer_activate_cpu(state, i);
15230 } else
15231 dtrace_xcall(DTRACE_CPUALL,
15232 (dtrace_xcall_t)dtrace_buffer_activate, state);
15233 #else
15234 /*
15235 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
15236 * want each CPU to transition its principal buffer out of the
15237 * INACTIVE state. Doing this assures that no CPU will suddenly begin
15238 * processing an ECB halfway down a probe's ECB chain; all CPUs will
15239 * atomically transition from processing none of a state's ECBs to
15240 * processing all of them.
15241 */
15242 dtrace_xcall(DTRACE_CPUALL,
15243 (dtrace_xcall_t)dtrace_buffer_activate, state);
15244 #endif
15245 goto out;
15246
15247 err:
15248 dtrace_buffer_free(state->dts_buffer);
15249 dtrace_buffer_free(state->dts_aggbuffer);
15250
15251 if ((nspec = state->dts_nspeculations) == 0) {
15252 ASSERT(state->dts_speculations == NULL);
15253 goto out;
15254 }
15255
15256 spec = state->dts_speculations;
15257 ASSERT(spec != NULL);
15258
15259 for (i = 0; i < state->dts_nspeculations; i++) {
15260 if ((buf = spec[i].dtsp_buffer) == NULL)
15261 break;
15262
15263 dtrace_buffer_free(buf);
15264 kmem_free(buf, bufsize);
15265 }
15266
15267 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15268 state->dts_nspeculations = 0;
15269 state->dts_speculations = NULL;
15270
15271 out:
15272 mutex_exit(&dtrace_lock);
15273 mutex_exit(&cpu_lock);
15274
15275 return (rval);
15276 }
15277
15278 static int
15279 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
15280 {
15281 dtrace_icookie_t cookie;
15282
15283 ASSERT(MUTEX_HELD(&dtrace_lock));
15284
15285 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
15286 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
15287 return (EINVAL);
15288
15289 /*
15290 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
15291 * to be sure that every CPU has seen it. See below for the details
15292 * on why this is done.
15293 */
15294 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
15295 dtrace_sync();
15296
15297 /*
15298 * By this point, it is impossible for any CPU to be still processing
15299 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
15300 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
15301 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
15302 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
15303 * iff we're in the END probe.
15304 */
15305 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
15306 dtrace_sync();
15307 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
15308
15309 /*
15310 * Finally, we can release the reserve and call the END probe. We
15311 * disable interrupts across calling the END probe to allow us to
15312 * return the CPU on which we actually called the END probe. This
15313 * allows user-land to be sure that this CPU's principal buffer is
15314 * processed last.
15315 */
15316 state->dts_reserve = 0;
15317
15318 cookie = dtrace_interrupt_disable();
15319 *cpu = curcpu;
15320 dtrace_probe(dtrace_probeid_end,
15321 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
15322 dtrace_interrupt_enable(cookie);
15323
15324 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
15325 dtrace_sync();
15326
15327 #ifdef illumos
15328 if (state->dts_getf != 0 &&
15329 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
15330 /*
15331 * We don't have kernel privs but we have at least one call
15332 * to getf(); we need to lower our zone's count, and (if
15333 * this is the last enabling to have an unprivileged call
15334 * to getf()) we need to clear the closef() hook.
15335 */
15336 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
15337 ASSERT(dtrace_closef == dtrace_getf_barrier);
15338 ASSERT(dtrace_getf > 0);
15339
15340 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
15341
15342 if (--dtrace_getf == 0)
15343 dtrace_closef = NULL;
15344 }
15345 #endif
15346
15347 return (0);
15348 }
15349
15350 static int
15351 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
15352 dtrace_optval_t val)
15353 {
15354 ASSERT(MUTEX_HELD(&dtrace_lock));
15355
15356 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
15357 return (EBUSY);
15358
15359 if (option >= DTRACEOPT_MAX)
15360 return (EINVAL);
15361
15362 if (option != DTRACEOPT_CPU && val < 0)
15363 return (EINVAL);
15364
15365 switch (option) {
15366 case DTRACEOPT_DESTRUCTIVE:
15367 if (dtrace_destructive_disallow)
15368 return (EACCES);
15369
15370 state->dts_cred.dcr_destructive = 1;
15371 break;
15372
15373 case DTRACEOPT_BUFSIZE:
15374 case DTRACEOPT_DYNVARSIZE:
15375 case DTRACEOPT_AGGSIZE:
15376 case DTRACEOPT_SPECSIZE:
15377 case DTRACEOPT_STRSIZE:
15378 if (val < 0)
15379 return (EINVAL);
15380
15381 if (val >= LONG_MAX) {
15382 /*
15383 * If this is an otherwise negative value, set it to
15384 * the highest multiple of 128m less than LONG_MAX.
15385 * Technically, we're adjusting the size without
15386 * regard to the buffer resizing policy, but in fact,
15387 * this has no effect -- if we set the buffer size to
15388 * ~LONG_MAX and the buffer policy is ultimately set to
15389 * be "manual", the buffer allocation is guaranteed to
15390 * fail, if only because the allocation requires two
15391 * buffers. (We set the the size to the highest
15392 * multiple of 128m because it ensures that the size
15393 * will remain a multiple of a megabyte when
15394 * repeatedly halved -- all the way down to 15m.)
15395 */
15396 val = LONG_MAX - (1 << 27) + 1;
15397 }
15398 }
15399
15400 state->dts_options[option] = val;
15401
15402 return (0);
15403 }
15404
15405 static void
15406 dtrace_state_destroy(dtrace_state_t *state)
15407 {
15408 dtrace_ecb_t *ecb;
15409 dtrace_vstate_t *vstate = &state->dts_vstate;
15410 #ifdef illumos
15411 minor_t minor = getminor(state->dts_dev);
15412 #endif
15413 int i, bufsize = (mp_maxid + 1) * sizeof (dtrace_buffer_t);
15414 dtrace_speculation_t *spec = state->dts_speculations;
15415 int nspec = state->dts_nspeculations;
15416 uint32_t match;
15417
15418 ASSERT(MUTEX_HELD(&dtrace_lock));
15419 ASSERT(MUTEX_HELD(&cpu_lock));
15420
15421 /*
15422 * First, retract any retained enablings for this state.
15423 */
15424 dtrace_enabling_retract(state);
15425 ASSERT(state->dts_nretained == 0);
15426
15427 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
15428 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
15429 /*
15430 * We have managed to come into dtrace_state_destroy() on a
15431 * hot enabling -- almost certainly because of a disorderly
15432 * shutdown of a consumer. (That is, a consumer that is
15433 * exiting without having called dtrace_stop().) In this case,
15434 * we're going to set our activity to be KILLED, and then
15435 * issue a sync to be sure that everyone is out of probe
15436 * context before we start blowing away ECBs.
15437 */
15438 state->dts_activity = DTRACE_ACTIVITY_KILLED;
15439 dtrace_sync();
15440 }
15441
15442 /*
15443 * Release the credential hold we took in dtrace_state_create().
15444 */
15445 if (state->dts_cred.dcr_cred != NULL)
15446 crfree(state->dts_cred.dcr_cred);
15447
15448 /*
15449 * Now we can safely disable and destroy any enabled probes. Because
15450 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
15451 * (especially if they're all enabled), we take two passes through the
15452 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
15453 * in the second we disable whatever is left over.
15454 */
15455 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
15456 for (i = 0; i < state->dts_necbs; i++) {
15457 if ((ecb = state->dts_ecbs[i]) == NULL)
15458 continue;
15459
15460 if (match && ecb->dte_probe != NULL) {
15461 dtrace_probe_t *probe = ecb->dte_probe;
15462 dtrace_provider_t *prov = probe->dtpr_provider;
15463
15464 if (!(prov->dtpv_priv.dtpp_flags & match))
15465 continue;
15466 }
15467
15468 dtrace_ecb_disable(ecb);
15469 dtrace_ecb_destroy(ecb);
15470 }
15471
15472 if (!match)
15473 break;
15474 }
15475
15476 /*
15477 * Before we free the buffers, perform one more sync to assure that
15478 * every CPU is out of probe context.
15479 */
15480 dtrace_sync();
15481
15482 dtrace_buffer_free(state->dts_buffer);
15483 dtrace_buffer_free(state->dts_aggbuffer);
15484
15485 for (i = 0; i < nspec; i++)
15486 dtrace_buffer_free(spec[i].dtsp_buffer);
15487
15488 #ifdef illumos
15489 if (state->dts_cleaner != CYCLIC_NONE)
15490 cyclic_remove(state->dts_cleaner);
15491
15492 if (state->dts_deadman != CYCLIC_NONE)
15493 cyclic_remove(state->dts_deadman);
15494 #else
15495 callout_stop(&state->dts_cleaner);
15496 callout_drain(&state->dts_cleaner);
15497 callout_stop(&state->dts_deadman);
15498 callout_drain(&state->dts_deadman);
15499 #endif
15500
15501 dtrace_dstate_fini(&vstate->dtvs_dynvars);
15502 dtrace_vstate_fini(vstate);
15503 if (state->dts_ecbs != NULL)
15504 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
15505
15506 if (state->dts_aggregations != NULL) {
15507 #ifdef DEBUG
15508 for (i = 0; i < state->dts_naggregations; i++)
15509 ASSERT(state->dts_aggregations[i] == NULL);
15510 #endif
15511 ASSERT(state->dts_naggregations > 0);
15512 kmem_free(state->dts_aggregations,
15513 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
15514 }
15515
15516 kmem_free(state->dts_buffer, bufsize);
15517 kmem_free(state->dts_aggbuffer, bufsize);
15518
15519 for (i = 0; i < nspec; i++)
15520 kmem_free(spec[i].dtsp_buffer, bufsize);
15521
15522 if (spec != NULL)
15523 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
15524
15525 dtrace_format_destroy(state);
15526
15527 if (state->dts_aggid_arena != NULL) {
15528 #ifdef illumos
15529 vmem_destroy(state->dts_aggid_arena);
15530 #else
15531 delete_unrhdr(state->dts_aggid_arena);
15532 #endif
15533 state->dts_aggid_arena = NULL;
15534 }
15535 #ifdef illumos
15536 ddi_soft_state_free(dtrace_softstate, minor);
15537 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
15538 #endif
15539 }
15540
15541 /*
15542 * DTrace Anonymous Enabling Functions
15543 */
15544 static dtrace_state_t *
15545 dtrace_anon_grab(void)
15546 {
15547 dtrace_state_t *state;
15548
15549 ASSERT(MUTEX_HELD(&dtrace_lock));
15550
15551 if ((state = dtrace_anon.dta_state) == NULL) {
15552 ASSERT(dtrace_anon.dta_enabling == NULL);
15553 return (NULL);
15554 }
15555
15556 ASSERT(dtrace_anon.dta_enabling != NULL);
15557 ASSERT(dtrace_retained != NULL);
15558
15559 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
15560 dtrace_anon.dta_enabling = NULL;
15561 dtrace_anon.dta_state = NULL;
15562
15563 return (state);
15564 }
15565
15566 static void
15567 dtrace_anon_property(void)
15568 {
15569 int i, rv;
15570 dtrace_state_t *state;
15571 dof_hdr_t *dof;
15572 char c[32]; /* enough for "dof-data-" + digits */
15573
15574 ASSERT(MUTEX_HELD(&dtrace_lock));
15575 ASSERT(MUTEX_HELD(&cpu_lock));
15576
15577 for (i = 0; ; i++) {
15578 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
15579
15580 dtrace_err_verbose = 1;
15581
15582 if ((dof = dtrace_dof_property(c)) == NULL) {
15583 dtrace_err_verbose = 0;
15584 break;
15585 }
15586
15587 #ifdef illumos
15588 /*
15589 * We want to create anonymous state, so we need to transition
15590 * the kernel debugger to indicate that DTrace is active. If
15591 * this fails (e.g. because the debugger has modified text in
15592 * some way), we won't continue with the processing.
15593 */
15594 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15595 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
15596 "enabling ignored.");
15597 dtrace_dof_destroy(dof);
15598 break;
15599 }
15600 #endif
15601
15602 /*
15603 * If we haven't allocated an anonymous state, we'll do so now.
15604 */
15605 if ((state = dtrace_anon.dta_state) == NULL) {
15606 state = dtrace_state_create(NULL, NULL);
15607 dtrace_anon.dta_state = state;
15608
15609 if (state == NULL) {
15610 /*
15611 * This basically shouldn't happen: the only
15612 * failure mode from dtrace_state_create() is a
15613 * failure of ddi_soft_state_zalloc() that
15614 * itself should never happen. Still, the
15615 * interface allows for a failure mode, and
15616 * we want to fail as gracefully as possible:
15617 * we'll emit an error message and cease
15618 * processing anonymous state in this case.
15619 */
15620 cmn_err(CE_WARN, "failed to create "
15621 "anonymous state");
15622 dtrace_dof_destroy(dof);
15623 break;
15624 }
15625 }
15626
15627 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
15628 &dtrace_anon.dta_enabling, 0, 0, B_TRUE);
15629
15630 if (rv == 0)
15631 rv = dtrace_dof_options(dof, state);
15632
15633 dtrace_err_verbose = 0;
15634 dtrace_dof_destroy(dof);
15635
15636 if (rv != 0) {
15637 /*
15638 * This is malformed DOF; chuck any anonymous state
15639 * that we created.
15640 */
15641 ASSERT(dtrace_anon.dta_enabling == NULL);
15642 dtrace_state_destroy(state);
15643 dtrace_anon.dta_state = NULL;
15644 break;
15645 }
15646
15647 ASSERT(dtrace_anon.dta_enabling != NULL);
15648 }
15649
15650 if (dtrace_anon.dta_enabling != NULL) {
15651 int rval;
15652
15653 /*
15654 * dtrace_enabling_retain() can only fail because we are
15655 * trying to retain more enablings than are allowed -- but
15656 * we only have one anonymous enabling, and we are guaranteed
15657 * to be allowed at least one retained enabling; we assert
15658 * that dtrace_enabling_retain() returns success.
15659 */
15660 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
15661 ASSERT(rval == 0);
15662
15663 dtrace_enabling_dump(dtrace_anon.dta_enabling);
15664 }
15665 }
15666
15667 /*
15668 * DTrace Helper Functions
15669 */
15670 static void
15671 dtrace_helper_trace(dtrace_helper_action_t *helper,
15672 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
15673 {
15674 uint32_t size, next, nnext, i;
15675 dtrace_helptrace_t *ent, *buffer;
15676 uint16_t flags = cpu_core[curcpu].cpuc_dtrace_flags;
15677
15678 if ((buffer = dtrace_helptrace_buffer) == NULL)
15679 return;
15680
15681 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
15682
15683 /*
15684 * What would a tracing framework be without its own tracing
15685 * framework? (Well, a hell of a lot simpler, for starters...)
15686 */
15687 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
15688 sizeof (uint64_t) - sizeof (uint64_t);
15689
15690 /*
15691 * Iterate until we can allocate a slot in the trace buffer.
15692 */
15693 do {
15694 next = dtrace_helptrace_next;
15695
15696 if (next + size < dtrace_helptrace_bufsize) {
15697 nnext = next + size;
15698 } else {
15699 nnext = size;
15700 }
15701 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
15702
15703 /*
15704 * We have our slot; fill it in.
15705 */
15706 if (nnext == size) {
15707 dtrace_helptrace_wrapped++;
15708 next = 0;
15709 }
15710
15711 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
15712 ent->dtht_helper = helper;
15713 ent->dtht_where = where;
15714 ent->dtht_nlocals = vstate->dtvs_nlocals;
15715
15716 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
15717 mstate->dtms_fltoffs : -1;
15718 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
15719 ent->dtht_illval = cpu_core[curcpu].cpuc_dtrace_illval;
15720
15721 for (i = 0; i < vstate->dtvs_nlocals; i++) {
15722 dtrace_statvar_t *svar;
15723
15724 if ((svar = vstate->dtvs_locals[i]) == NULL)
15725 continue;
15726
15727 ASSERT(svar->dtsv_size >= (mp_maxid + 1) * sizeof (uint64_t));
15728 ent->dtht_locals[i] =
15729 ((uint64_t *)(uintptr_t)svar->dtsv_data)[curcpu];
15730 }
15731 }
15732
15733 static uint64_t
15734 dtrace_helper(int which, dtrace_mstate_t *mstate,
15735 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
15736 {
15737 uint16_t *flags = &cpu_core[curcpu].cpuc_dtrace_flags;
15738 uint64_t sarg0 = mstate->dtms_arg[0];
15739 uint64_t sarg1 = mstate->dtms_arg[1];
15740 uint64_t rval = 0;
15741 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
15742 dtrace_helper_action_t *helper;
15743 dtrace_vstate_t *vstate;
15744 dtrace_difo_t *pred;
15745 int i, trace = dtrace_helptrace_buffer != NULL;
15746
15747 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
15748
15749 if (helpers == NULL)
15750 return (0);
15751
15752 if ((helper = helpers->dthps_actions[which]) == NULL)
15753 return (0);
15754
15755 vstate = &helpers->dthps_vstate;
15756 mstate->dtms_arg[0] = arg0;
15757 mstate->dtms_arg[1] = arg1;
15758
15759 /*
15760 * Now iterate over each helper. If its predicate evaluates to 'true',
15761 * we'll call the corresponding actions. Note that the below calls
15762 * to dtrace_dif_emulate() may set faults in machine state. This is
15763 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
15764 * the stored DIF offset with its own (which is the desired behavior).
15765 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
15766 * from machine state; this is okay, too.
15767 */
15768 for (; helper != NULL; helper = helper->dtha_next) {
15769 if ((pred = helper->dtha_predicate) != NULL) {
15770 if (trace)
15771 dtrace_helper_trace(helper, mstate, vstate, 0);
15772
15773 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
15774 goto next;
15775
15776 if (*flags & CPU_DTRACE_FAULT)
15777 goto err;
15778 }
15779
15780 for (i = 0; i < helper->dtha_nactions; i++) {
15781 if (trace)
15782 dtrace_helper_trace(helper,
15783 mstate, vstate, i + 1);
15784
15785 rval = dtrace_dif_emulate(helper->dtha_actions[i],
15786 mstate, vstate, state);
15787
15788 if (*flags & CPU_DTRACE_FAULT)
15789 goto err;
15790 }
15791
15792 next:
15793 if (trace)
15794 dtrace_helper_trace(helper, mstate, vstate,
15795 DTRACE_HELPTRACE_NEXT);
15796 }
15797
15798 if (trace)
15799 dtrace_helper_trace(helper, mstate, vstate,
15800 DTRACE_HELPTRACE_DONE);
15801
15802 /*
15803 * Restore the arg0 that we saved upon entry.
15804 */
15805 mstate->dtms_arg[0] = sarg0;
15806 mstate->dtms_arg[1] = sarg1;
15807
15808 return (rval);
15809
15810 err:
15811 if (trace)
15812 dtrace_helper_trace(helper, mstate, vstate,
15813 DTRACE_HELPTRACE_ERR);
15814
15815 /*
15816 * Restore the arg0 that we saved upon entry.
15817 */
15818 mstate->dtms_arg[0] = sarg0;
15819 mstate->dtms_arg[1] = sarg1;
15820
15821 return (0);
15822 }
15823
15824 static void
15825 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
15826 dtrace_vstate_t *vstate)
15827 {
15828 int i;
15829
15830 if (helper->dtha_predicate != NULL)
15831 dtrace_difo_release(helper->dtha_predicate, vstate);
15832
15833 for (i = 0; i < helper->dtha_nactions; i++) {
15834 ASSERT(helper->dtha_actions[i] != NULL);
15835 dtrace_difo_release(helper->dtha_actions[i], vstate);
15836 }
15837
15838 kmem_free(helper->dtha_actions,
15839 helper->dtha_nactions * sizeof (dtrace_difo_t *));
15840 kmem_free(helper, sizeof (dtrace_helper_action_t));
15841 }
15842
15843 static int
15844 dtrace_helper_destroygen(dtrace_helpers_t *help, int gen)
15845 {
15846 proc_t *p = curproc;
15847 dtrace_vstate_t *vstate;
15848 int i;
15849
15850 if (help == NULL)
15851 help = p->p_dtrace_helpers;
15852
15853 ASSERT(MUTEX_HELD(&dtrace_lock));
15854
15855 if (help == NULL || gen > help->dthps_generation)
15856 return (EINVAL);
15857
15858 vstate = &help->dthps_vstate;
15859
15860 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15861 dtrace_helper_action_t *last = NULL, *h, *next;
15862
15863 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15864 next = h->dtha_next;
15865
15866 if (h->dtha_generation == gen) {
15867 if (last != NULL) {
15868 last->dtha_next = next;
15869 } else {
15870 help->dthps_actions[i] = next;
15871 }
15872
15873 dtrace_helper_action_destroy(h, vstate);
15874 } else {
15875 last = h;
15876 }
15877 }
15878 }
15879
15880 /*
15881 * Interate until we've cleared out all helper providers with the
15882 * given generation number.
15883 */
15884 for (;;) {
15885 dtrace_helper_provider_t *prov;
15886
15887 /*
15888 * Look for a helper provider with the right generation. We
15889 * have to start back at the beginning of the list each time
15890 * because we drop dtrace_lock. It's unlikely that we'll make
15891 * more than two passes.
15892 */
15893 for (i = 0; i < help->dthps_nprovs; i++) {
15894 prov = help->dthps_provs[i];
15895
15896 if (prov->dthp_generation == gen)
15897 break;
15898 }
15899
15900 /*
15901 * If there were no matches, we're done.
15902 */
15903 if (i == help->dthps_nprovs)
15904 break;
15905
15906 /*
15907 * Move the last helper provider into this slot.
15908 */
15909 help->dthps_nprovs--;
15910 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
15911 help->dthps_provs[help->dthps_nprovs] = NULL;
15912
15913 mutex_exit(&dtrace_lock);
15914
15915 /*
15916 * If we have a meta provider, remove this helper provider.
15917 */
15918 mutex_enter(&dtrace_meta_lock);
15919 if (dtrace_meta_pid != NULL) {
15920 ASSERT(dtrace_deferred_pid == NULL);
15921 dtrace_helper_provider_remove(&prov->dthp_prov,
15922 p->p_pid);
15923 }
15924 mutex_exit(&dtrace_meta_lock);
15925
15926 dtrace_helper_provider_destroy(prov);
15927
15928 mutex_enter(&dtrace_lock);
15929 }
15930
15931 return (0);
15932 }
15933
15934 static int
15935 dtrace_helper_validate(dtrace_helper_action_t *helper)
15936 {
15937 int err = 0, i;
15938 dtrace_difo_t *dp;
15939
15940 if ((dp = helper->dtha_predicate) != NULL)
15941 err += dtrace_difo_validate_helper(dp);
15942
15943 for (i = 0; i < helper->dtha_nactions; i++)
15944 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
15945
15946 return (err == 0);
15947 }
15948
15949 static int
15950 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep,
15951 dtrace_helpers_t *help)
15952 {
15953 dtrace_helper_action_t *helper, *last;
15954 dtrace_actdesc_t *act;
15955 dtrace_vstate_t *vstate;
15956 dtrace_predicate_t *pred;
15957 int count = 0, nactions = 0, i;
15958
15959 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
15960 return (EINVAL);
15961
15962 last = help->dthps_actions[which];
15963 vstate = &help->dthps_vstate;
15964
15965 for (count = 0; last != NULL; last = last->dtha_next) {
15966 count++;
15967 if (last->dtha_next == NULL)
15968 break;
15969 }
15970
15971 /*
15972 * If we already have dtrace_helper_actions_max helper actions for this
15973 * helper action type, we'll refuse to add a new one.
15974 */
15975 if (count >= dtrace_helper_actions_max)
15976 return (ENOSPC);
15977
15978 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
15979 helper->dtha_generation = help->dthps_generation;
15980
15981 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
15982 ASSERT(pred->dtp_difo != NULL);
15983 dtrace_difo_hold(pred->dtp_difo);
15984 helper->dtha_predicate = pred->dtp_difo;
15985 }
15986
15987 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
15988 if (act->dtad_kind != DTRACEACT_DIFEXPR)
15989 goto err;
15990
15991 if (act->dtad_difo == NULL)
15992 goto err;
15993
15994 nactions++;
15995 }
15996
15997 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
15998 (helper->dtha_nactions = nactions), KM_SLEEP);
15999
16000 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
16001 dtrace_difo_hold(act->dtad_difo);
16002 helper->dtha_actions[i++] = act->dtad_difo;
16003 }
16004
16005 if (!dtrace_helper_validate(helper))
16006 goto err;
16007
16008 if (last == NULL) {
16009 help->dthps_actions[which] = helper;
16010 } else {
16011 last->dtha_next = helper;
16012 }
16013
16014 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
16015 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
16016 dtrace_helptrace_next = 0;
16017 }
16018
16019 return (0);
16020 err:
16021 dtrace_helper_action_destroy(helper, vstate);
16022 return (EINVAL);
16023 }
16024
16025 static void
16026 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
16027 dof_helper_t *dofhp)
16028 {
16029 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
16030
16031 mutex_enter(&dtrace_meta_lock);
16032 mutex_enter(&dtrace_lock);
16033
16034 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
16035 /*
16036 * If the dtrace module is loaded but not attached, or if
16037 * there aren't isn't a meta provider registered to deal with
16038 * these provider descriptions, we need to postpone creating
16039 * the actual providers until later.
16040 */
16041
16042 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
16043 dtrace_deferred_pid != help) {
16044 help->dthps_deferred = 1;
16045 help->dthps_pid = p->p_pid;
16046 help->dthps_next = dtrace_deferred_pid;
16047 help->dthps_prev = NULL;
16048 if (dtrace_deferred_pid != NULL)
16049 dtrace_deferred_pid->dthps_prev = help;
16050 dtrace_deferred_pid = help;
16051 }
16052
16053 mutex_exit(&dtrace_lock);
16054
16055 } else if (dofhp != NULL) {
16056 /*
16057 * If the dtrace module is loaded and we have a particular
16058 * helper provider description, pass that off to the
16059 * meta provider.
16060 */
16061
16062 mutex_exit(&dtrace_lock);
16063
16064 dtrace_helper_provide(dofhp, p->p_pid);
16065
16066 } else {
16067 /*
16068 * Otherwise, just pass all the helper provider descriptions
16069 * off to the meta provider.
16070 */
16071
16072 int i;
16073 mutex_exit(&dtrace_lock);
16074
16075 for (i = 0; i < help->dthps_nprovs; i++) {
16076 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
16077 p->p_pid);
16078 }
16079 }
16080
16081 mutex_exit(&dtrace_meta_lock);
16082 }
16083
16084 static int
16085 dtrace_helper_provider_add(dof_helper_t *dofhp, dtrace_helpers_t *help, int gen)
16086 {
16087 dtrace_helper_provider_t *hprov, **tmp_provs;
16088 uint_t tmp_maxprovs, i;
16089
16090 ASSERT(MUTEX_HELD(&dtrace_lock));
16091 ASSERT(help != NULL);
16092
16093 /*
16094 * If we already have dtrace_helper_providers_max helper providers,
16095 * we're refuse to add a new one.
16096 */
16097 if (help->dthps_nprovs >= dtrace_helper_providers_max)
16098 return (ENOSPC);
16099
16100 /*
16101 * Check to make sure this isn't a duplicate.
16102 */
16103 for (i = 0; i < help->dthps_nprovs; i++) {
16104 if (dofhp->dofhp_addr ==
16105 help->dthps_provs[i]->dthp_prov.dofhp_addr)
16106 return (EALREADY);
16107 }
16108
16109 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
16110 hprov->dthp_prov = *dofhp;
16111 hprov->dthp_ref = 1;
16112 hprov->dthp_generation = gen;
16113
16114 /*
16115 * Allocate a bigger table for helper providers if it's already full.
16116 */
16117 if (help->dthps_maxprovs == help->dthps_nprovs) {
16118 tmp_maxprovs = help->dthps_maxprovs;
16119 tmp_provs = help->dthps_provs;
16120
16121 if (help->dthps_maxprovs == 0)
16122 help->dthps_maxprovs = 2;
16123 else
16124 help->dthps_maxprovs *= 2;
16125 if (help->dthps_maxprovs > dtrace_helper_providers_max)
16126 help->dthps_maxprovs = dtrace_helper_providers_max;
16127
16128 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
16129
16130 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
16131 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16132
16133 if (tmp_provs != NULL) {
16134 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
16135 sizeof (dtrace_helper_provider_t *));
16136 kmem_free(tmp_provs, tmp_maxprovs *
16137 sizeof (dtrace_helper_provider_t *));
16138 }
16139 }
16140
16141 help->dthps_provs[help->dthps_nprovs] = hprov;
16142 help->dthps_nprovs++;
16143
16144 return (0);
16145 }
16146
16147 static void
16148 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
16149 {
16150 mutex_enter(&dtrace_lock);
16151
16152 if (--hprov->dthp_ref == 0) {
16153 dof_hdr_t *dof;
16154 mutex_exit(&dtrace_lock);
16155 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
16156 dtrace_dof_destroy(dof);
16157 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
16158 } else {
16159 mutex_exit(&dtrace_lock);
16160 }
16161 }
16162
16163 static int
16164 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
16165 {
16166 uintptr_t daddr = (uintptr_t)dof;
16167 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
16168 dof_provider_t *provider;
16169 dof_probe_t *probe;
16170 uint8_t *arg;
16171 char *strtab, *typestr;
16172 dof_stridx_t typeidx;
16173 size_t typesz;
16174 uint_t nprobes, j, k;
16175
16176 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
16177
16178 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
16179 dtrace_dof_error(dof, "misaligned section offset");
16180 return (-1);
16181 }
16182
16183 /*
16184 * The section needs to be large enough to contain the DOF provider
16185 * structure appropriate for the given version.
16186 */
16187 if (sec->dofs_size <
16188 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
16189 offsetof(dof_provider_t, dofpv_prenoffs) :
16190 sizeof (dof_provider_t))) {
16191 dtrace_dof_error(dof, "provider section too small");
16192 return (-1);
16193 }
16194
16195 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
16196 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
16197 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
16198 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
16199 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
16200
16201 if (str_sec == NULL || prb_sec == NULL ||
16202 arg_sec == NULL || off_sec == NULL)
16203 return (-1);
16204
16205 enoff_sec = NULL;
16206
16207 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
16208 provider->dofpv_prenoffs != DOF_SECT_NONE &&
16209 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
16210 provider->dofpv_prenoffs)) == NULL)
16211 return (-1);
16212
16213 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
16214
16215 if (provider->dofpv_name >= str_sec->dofs_size ||
16216 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
16217 dtrace_dof_error(dof, "invalid provider name");
16218 return (-1);
16219 }
16220
16221 if (prb_sec->dofs_entsize == 0 ||
16222 prb_sec->dofs_entsize > prb_sec->dofs_size) {
16223 dtrace_dof_error(dof, "invalid entry size");
16224 return (-1);
16225 }
16226
16227 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
16228 dtrace_dof_error(dof, "misaligned entry size");
16229 return (-1);
16230 }
16231
16232 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
16233 dtrace_dof_error(dof, "invalid entry size");
16234 return (-1);
16235 }
16236
16237 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
16238 dtrace_dof_error(dof, "misaligned section offset");
16239 return (-1);
16240 }
16241
16242 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
16243 dtrace_dof_error(dof, "invalid entry size");
16244 return (-1);
16245 }
16246
16247 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
16248
16249 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
16250
16251 /*
16252 * Take a pass through the probes to check for errors.
16253 */
16254 for (j = 0; j < nprobes; j++) {
16255 probe = (dof_probe_t *)(uintptr_t)(daddr +
16256 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
16257
16258 if (probe->dofpr_func >= str_sec->dofs_size) {
16259 dtrace_dof_error(dof, "invalid function name");
16260 return (-1);
16261 }
16262
16263 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
16264 dtrace_dof_error(dof, "function name too long");
16265 /*
16266 * Keep going if the function name is too long.
16267 * Unlike provider and probe names, we cannot reasonably
16268 * impose restrictions on function names, since they're
16269 * a property of the code being instrumented. We will
16270 * skip this probe in dtrace_helper_provide_one().
16271 */
16272 }
16273
16274 if (probe->dofpr_name >= str_sec->dofs_size ||
16275 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
16276 dtrace_dof_error(dof, "invalid probe name");
16277 return (-1);
16278 }
16279
16280 /*
16281 * The offset count must not wrap the index, and the offsets
16282 * must also not overflow the section's data.
16283 */
16284 if (probe->dofpr_offidx + probe->dofpr_noffs <
16285 probe->dofpr_offidx ||
16286 (probe->dofpr_offidx + probe->dofpr_noffs) *
16287 off_sec->dofs_entsize > off_sec->dofs_size) {
16288 dtrace_dof_error(dof, "invalid probe offset");
16289 return (-1);
16290 }
16291
16292 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
16293 /*
16294 * If there's no is-enabled offset section, make sure
16295 * there aren't any is-enabled offsets. Otherwise
16296 * perform the same checks as for probe offsets
16297 * (immediately above).
16298 */
16299 if (enoff_sec == NULL) {
16300 if (probe->dofpr_enoffidx != 0 ||
16301 probe->dofpr_nenoffs != 0) {
16302 dtrace_dof_error(dof, "is-enabled "
16303 "offsets with null section");
16304 return (-1);
16305 }
16306 } else if (probe->dofpr_enoffidx +
16307 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
16308 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
16309 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
16310 dtrace_dof_error(dof, "invalid is-enabled "
16311 "offset");
16312 return (-1);
16313 }
16314
16315 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
16316 dtrace_dof_error(dof, "zero probe and "
16317 "is-enabled offsets");
16318 return (-1);
16319 }
16320 } else if (probe->dofpr_noffs == 0) {
16321 dtrace_dof_error(dof, "zero probe offsets");
16322 return (-1);
16323 }
16324
16325 if (probe->dofpr_argidx + probe->dofpr_xargc <
16326 probe->dofpr_argidx ||
16327 (probe->dofpr_argidx + probe->dofpr_xargc) *
16328 arg_sec->dofs_entsize > arg_sec->dofs_size) {
16329 dtrace_dof_error(dof, "invalid args");
16330 return (-1);
16331 }
16332
16333 typeidx = probe->dofpr_nargv;
16334 typestr = strtab + probe->dofpr_nargv;
16335 for (k = 0; k < probe->dofpr_nargc; k++) {
16336 if (typeidx >= str_sec->dofs_size) {
16337 dtrace_dof_error(dof, "bad "
16338 "native argument type");
16339 return (-1);
16340 }
16341
16342 typesz = strlen(typestr) + 1;
16343 if (typesz > DTRACE_ARGTYPELEN) {
16344 dtrace_dof_error(dof, "native "
16345 "argument type too long");
16346 return (-1);
16347 }
16348 typeidx += typesz;
16349 typestr += typesz;
16350 }
16351
16352 typeidx = probe->dofpr_xargv;
16353 typestr = strtab + probe->dofpr_xargv;
16354 for (k = 0; k < probe->dofpr_xargc; k++) {
16355 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
16356 dtrace_dof_error(dof, "bad "
16357 "native argument index");
16358 return (-1);
16359 }
16360
16361 if (typeidx >= str_sec->dofs_size) {
16362 dtrace_dof_error(dof, "bad "
16363 "translated argument type");
16364 return (-1);
16365 }
16366
16367 typesz = strlen(typestr) + 1;
16368 if (typesz > DTRACE_ARGTYPELEN) {
16369 dtrace_dof_error(dof, "translated argument "
16370 "type too long");
16371 return (-1);
16372 }
16373
16374 typeidx += typesz;
16375 typestr += typesz;
16376 }
16377 }
16378
16379 return (0);
16380 }
16381
16382 static int
16383 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp, struct proc *p)
16384 {
16385 dtrace_helpers_t *help;
16386 dtrace_vstate_t *vstate;
16387 dtrace_enabling_t *enab = NULL;
16388 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
16389 uintptr_t daddr = (uintptr_t)dof;
16390
16391 ASSERT(MUTEX_HELD(&dtrace_lock));
16392
16393 if ((help = p->p_dtrace_helpers) == NULL)
16394 help = dtrace_helpers_create(p);
16395
16396 vstate = &help->dthps_vstate;
16397
16398 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab, dhp->dofhp_addr,
16399 dhp->dofhp_dof, B_FALSE)) != 0) {
16400 dtrace_dof_destroy(dof);
16401 return (rv);
16402 }
16403
16404 /*
16405 * Look for helper providers and validate their descriptions.
16406 */
16407 for (i = 0; i < dof->dofh_secnum; i++) {
16408 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
16409 dof->dofh_secoff + i * dof->dofh_secsize);
16410
16411 if (sec->dofs_type != DOF_SECT_PROVIDER)
16412 continue;
16413
16414 if (dtrace_helper_provider_validate(dof, sec) != 0) {
16415 dtrace_enabling_destroy(enab);
16416 dtrace_dof_destroy(dof);
16417 return (-1);
16418 }
16419
16420 nprovs++;
16421 }
16422
16423 /*
16424 * Now we need to walk through the ECB descriptions in the enabling.
16425 */
16426 for (i = 0; i < enab->dten_ndesc; i++) {
16427 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
16428 dtrace_probedesc_t *desc = &ep->dted_probe;
16429
16430 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
16431 continue;
16432
16433 if (strcmp(desc->dtpd_mod, "helper") != 0)
16434 continue;
16435
16436 if (strcmp(desc->dtpd_func, "ustack") != 0)
16437 continue;
16438
16439 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
16440 ep, help)) != 0) {
16441 /*
16442 * Adding this helper action failed -- we are now going
16443 * to rip out the entire generation and return failure.
16444 */
16445 (void) dtrace_helper_destroygen(help,
16446 help->dthps_generation);
16447 dtrace_enabling_destroy(enab);
16448 dtrace_dof_destroy(dof);
16449 return (-1);
16450 }
16451
16452 nhelpers++;
16453 }
16454
16455 if (nhelpers < enab->dten_ndesc)
16456 dtrace_dof_error(dof, "unmatched helpers");
16457
16458 gen = help->dthps_generation++;
16459 dtrace_enabling_destroy(enab);
16460
16461 if (nprovs > 0) {
16462 /*
16463 * Now that this is in-kernel, we change the sense of the
16464 * members: dofhp_dof denotes the in-kernel copy of the DOF
16465 * and dofhp_addr denotes the address at user-level.
16466 */
16467 dhp->dofhp_addr = dhp->dofhp_dof;
16468 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
16469
16470 if (dtrace_helper_provider_add(dhp, help, gen) == 0) {
16471 mutex_exit(&dtrace_lock);
16472 dtrace_helper_provider_register(p, help, dhp);
16473 mutex_enter(&dtrace_lock);
16474
16475 destroy = 0;
16476 }
16477 }
16478
16479 if (destroy)
16480 dtrace_dof_destroy(dof);
16481
16482 return (gen);
16483 }
16484
16485 static dtrace_helpers_t *
16486 dtrace_helpers_create(proc_t *p)
16487 {
16488 dtrace_helpers_t *help;
16489
16490 ASSERT(MUTEX_HELD(&dtrace_lock));
16491 ASSERT(p->p_dtrace_helpers == NULL);
16492
16493 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
16494 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
16495 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
16496
16497 p->p_dtrace_helpers = help;
16498 dtrace_helpers++;
16499
16500 return (help);
16501 }
16502
16503 #ifdef illumos
16504 static
16505 #endif
16506 void
16507 dtrace_helpers_destroy(proc_t *p)
16508 {
16509 dtrace_helpers_t *help;
16510 dtrace_vstate_t *vstate;
16511 #ifdef illumos
16512 proc_t *p = curproc;
16513 #endif
16514 int i;
16515
16516 mutex_enter(&dtrace_lock);
16517
16518 ASSERT(p->p_dtrace_helpers != NULL);
16519 ASSERT(dtrace_helpers > 0);
16520
16521 help = p->p_dtrace_helpers;
16522 vstate = &help->dthps_vstate;
16523
16524 /*
16525 * We're now going to lose the help from this process.
16526 */
16527 p->p_dtrace_helpers = NULL;
16528 dtrace_sync();
16529
16530 /*
16531 * Destory the helper actions.
16532 */
16533 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16534 dtrace_helper_action_t *h, *next;
16535
16536 for (h = help->dthps_actions[i]; h != NULL; h = next) {
16537 next = h->dtha_next;
16538 dtrace_helper_action_destroy(h, vstate);
16539 h = next;
16540 }
16541 }
16542
16543 mutex_exit(&dtrace_lock);
16544
16545 /*
16546 * Destroy the helper providers.
16547 */
16548 if (help->dthps_maxprovs > 0) {
16549 mutex_enter(&dtrace_meta_lock);
16550 if (dtrace_meta_pid != NULL) {
16551 ASSERT(dtrace_deferred_pid == NULL);
16552
16553 for (i = 0; i < help->dthps_nprovs; i++) {
16554 dtrace_helper_provider_remove(
16555 &help->dthps_provs[i]->dthp_prov, p->p_pid);
16556 }
16557 } else {
16558 mutex_enter(&dtrace_lock);
16559 ASSERT(help->dthps_deferred == 0 ||
16560 help->dthps_next != NULL ||
16561 help->dthps_prev != NULL ||
16562 help == dtrace_deferred_pid);
16563
16564 /*
16565 * Remove the helper from the deferred list.
16566 */
16567 if (help->dthps_next != NULL)
16568 help->dthps_next->dthps_prev = help->dthps_prev;
16569 if (help->dthps_prev != NULL)
16570 help->dthps_prev->dthps_next = help->dthps_next;
16571 if (dtrace_deferred_pid == help) {
16572 dtrace_deferred_pid = help->dthps_next;
16573 ASSERT(help->dthps_prev == NULL);
16574 }
16575
16576 mutex_exit(&dtrace_lock);
16577 }
16578
16579 mutex_exit(&dtrace_meta_lock);
16580
16581 for (i = 0; i < help->dthps_nprovs; i++) {
16582 dtrace_helper_provider_destroy(help->dthps_provs[i]);
16583 }
16584
16585 kmem_free(help->dthps_provs, help->dthps_maxprovs *
16586 sizeof (dtrace_helper_provider_t *));
16587 }
16588
16589 mutex_enter(&dtrace_lock);
16590
16591 dtrace_vstate_fini(&help->dthps_vstate);
16592 kmem_free(help->dthps_actions,
16593 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
16594 kmem_free(help, sizeof (dtrace_helpers_t));
16595
16596 --dtrace_helpers;
16597 mutex_exit(&dtrace_lock);
16598 }
16599
16600 #ifdef illumos
16601 static
16602 #endif
16603 void
16604 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
16605 {
16606 dtrace_helpers_t *help, *newhelp;
16607 dtrace_helper_action_t *helper, *new, *last;
16608 dtrace_difo_t *dp;
16609 dtrace_vstate_t *vstate;
16610 int i, j, sz, hasprovs = 0;
16611
16612 mutex_enter(&dtrace_lock);
16613 ASSERT(from->p_dtrace_helpers != NULL);
16614 ASSERT(dtrace_helpers > 0);
16615
16616 help = from->p_dtrace_helpers;
16617 newhelp = dtrace_helpers_create(to);
16618 ASSERT(to->p_dtrace_helpers != NULL);
16619
16620 newhelp->dthps_generation = help->dthps_generation;
16621 vstate = &newhelp->dthps_vstate;
16622
16623 /*
16624 * Duplicate the helper actions.
16625 */
16626 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
16627 if ((helper = help->dthps_actions[i]) == NULL)
16628 continue;
16629
16630 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
16631 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
16632 KM_SLEEP);
16633 new->dtha_generation = helper->dtha_generation;
16634
16635 if ((dp = helper->dtha_predicate) != NULL) {
16636 dp = dtrace_difo_duplicate(dp, vstate);
16637 new->dtha_predicate = dp;
16638 }
16639
16640 new->dtha_nactions = helper->dtha_nactions;
16641 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
16642 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
16643
16644 for (j = 0; j < new->dtha_nactions; j++) {
16645 dtrace_difo_t *dp = helper->dtha_actions[j];
16646
16647 ASSERT(dp != NULL);
16648 dp = dtrace_difo_duplicate(dp, vstate);
16649 new->dtha_actions[j] = dp;
16650 }
16651
16652 if (last != NULL) {
16653 last->dtha_next = new;
16654 } else {
16655 newhelp->dthps_actions[i] = new;
16656 }
16657
16658 last = new;
16659 }
16660 }
16661
16662 /*
16663 * Duplicate the helper providers and register them with the
16664 * DTrace framework.
16665 */
16666 if (help->dthps_nprovs > 0) {
16667 newhelp->dthps_nprovs = help->dthps_nprovs;
16668 newhelp->dthps_maxprovs = help->dthps_nprovs;
16669 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
16670 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
16671 for (i = 0; i < newhelp->dthps_nprovs; i++) {
16672 newhelp->dthps_provs[i] = help->dthps_provs[i];
16673 newhelp->dthps_provs[i]->dthp_ref++;
16674 }
16675
16676 hasprovs = 1;
16677 }
16678
16679 mutex_exit(&dtrace_lock);
16680
16681 if (hasprovs)
16682 dtrace_helper_provider_register(to, newhelp, NULL);
16683 }
16684
16685 /*
16686 * DTrace Hook Functions
16687 */
16688 static void
16689 dtrace_module_loaded(modctl_t *ctl)
16690 {
16691 dtrace_provider_t *prv;
16692
16693 mutex_enter(&dtrace_provider_lock);
16694 #ifdef illumos
16695 mutex_enter(&mod_lock);
16696 #endif
16697
16698 #ifdef illumos
16699 ASSERT(ctl->mod_busy);
16700 #endif
16701
16702 /*
16703 * We're going to call each providers per-module provide operation
16704 * specifying only this module.
16705 */
16706 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
16707 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
16708
16709 #ifdef illumos
16710 mutex_exit(&mod_lock);
16711 #endif
16712 mutex_exit(&dtrace_provider_lock);
16713
16714 /*
16715 * If we have any retained enablings, we need to match against them.
16716 * Enabling probes requires that cpu_lock be held, and we cannot hold
16717 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
16718 * module. (In particular, this happens when loading scheduling
16719 * classes.) So if we have any retained enablings, we need to dispatch
16720 * our task queue to do the match for us.
16721 */
16722 mutex_enter(&dtrace_lock);
16723
16724 if (dtrace_retained == NULL) {
16725 mutex_exit(&dtrace_lock);
16726 return;
16727 }
16728
16729 (void)taskq_dispatch(dtrace_taskq,
16730 (task_func_t *)dtrace_enabling_matchall_task, NULL, TQ_SLEEP);
16731
16732 mutex_exit(&dtrace_lock);
16733
16734 /*
16735 * And now, for a little heuristic sleaze: in general, we want to
16736 * match modules as soon as they load. However, we cannot guarantee
16737 * this, because it would lead us to the lock ordering violation
16738 * outlined above. The common case, of course, is that cpu_lock is
16739 * _not_ held -- so we delay here for a clock tick, hoping that that's
16740 * long enough for the task queue to do its work. If it's not, it's
16741 * not a serious problem -- it just means that the module that we
16742 * just loaded may not be immediately instrumentable.
16743 */
16744 delay(1);
16745 }
16746
16747 static void
16748 #ifdef illumos
16749 dtrace_module_unloaded(modctl_t *ctl)
16750 #else
16751 dtrace_module_unloaded(modctl_t *ctl, int *error)
16752 #endif
16753 {
16754 dtrace_probe_t template, *probe, *first, *next;
16755 dtrace_provider_t *prov;
16756 #ifndef illumos
16757 char modname[DTRACE_MODNAMELEN];
16758 size_t len;
16759 #endif
16760
16761 #ifdef illumos
16762 template.dtpr_mod = ctl->mod_modname;
16763 #else
16764 /* Handle the fact that ctl->filename may end in ".ko". */
16765 strlcpy(modname, ctl->filename, sizeof(modname));
16766 len = strlen(ctl->filename);
16767 if (len > 3 && strcmp(modname + len - 3, ".ko") == 0)
16768 modname[len - 3] = '\0';
16769 template.dtpr_mod = modname;
16770 #endif
16771
16772 mutex_enter(&dtrace_provider_lock);
16773 #ifdef illumos
16774 mutex_enter(&mod_lock);
16775 #endif
16776 mutex_enter(&dtrace_lock);
16777
16778 #ifndef illumos
16779 if (ctl->nenabled > 0) {
16780 /* Don't allow unloads if a probe is enabled. */
16781 mutex_exit(&dtrace_provider_lock);
16782 mutex_exit(&dtrace_lock);
16783 *error = -1;
16784 printf(
16785 "kldunload: attempt to unload module that has DTrace probes enabled\n");
16786 return;
16787 }
16788 #endif
16789
16790 if (dtrace_bymod == NULL) {
16791 /*
16792 * The DTrace module is loaded (obviously) but not attached;
16793 * we don't have any work to do.
16794 */
16795 mutex_exit(&dtrace_provider_lock);
16796 #ifdef illumos
16797 mutex_exit(&mod_lock);
16798 #endif
16799 mutex_exit(&dtrace_lock);
16800 return;
16801 }
16802
16803 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
16804 probe != NULL; probe = probe->dtpr_nextmod) {
16805 if (probe->dtpr_ecb != NULL) {
16806 mutex_exit(&dtrace_provider_lock);
16807 #ifdef illumos
16808 mutex_exit(&mod_lock);
16809 #endif
16810 mutex_exit(&dtrace_lock);
16811
16812 /*
16813 * This shouldn't _actually_ be possible -- we're
16814 * unloading a module that has an enabled probe in it.
16815 * (It's normally up to the provider to make sure that
16816 * this can't happen.) However, because dtps_enable()
16817 * doesn't have a failure mode, there can be an
16818 * enable/unload race. Upshot: we don't want to
16819 * assert, but we're not going to disable the
16820 * probe, either.
16821 */
16822 if (dtrace_err_verbose) {
16823 #ifdef illumos
16824 cmn_err(CE_WARN, "unloaded module '%s' had "
16825 "enabled probes", ctl->mod_modname);
16826 #else
16827 cmn_err(CE_WARN, "unloaded module '%s' had "
16828 "enabled probes", modname);
16829 #endif
16830 }
16831
16832 return;
16833 }
16834 }
16835
16836 probe = first;
16837
16838 for (first = NULL; probe != NULL; probe = next) {
16839 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
16840
16841 dtrace_probes[probe->dtpr_id - 1] = NULL;
16842
16843 next = probe->dtpr_nextmod;
16844 dtrace_hash_remove(dtrace_bymod, probe);
16845 dtrace_hash_remove(dtrace_byfunc, probe);
16846 dtrace_hash_remove(dtrace_byname, probe);
16847
16848 if (first == NULL) {
16849 first = probe;
16850 probe->dtpr_nextmod = NULL;
16851 } else {
16852 probe->dtpr_nextmod = first;
16853 first = probe;
16854 }
16855 }
16856
16857 /*
16858 * We've removed all of the module's probes from the hash chains and
16859 * from the probe array. Now issue a dtrace_sync() to be sure that
16860 * everyone has cleared out from any probe array processing.
16861 */
16862 dtrace_sync();
16863
16864 for (probe = first; probe != NULL; probe = first) {
16865 first = probe->dtpr_nextmod;
16866 prov = probe->dtpr_provider;
16867 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
16868 probe->dtpr_arg);
16869 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
16870 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
16871 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
16872 #ifdef illumos
16873 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
16874 #else
16875 free_unr(dtrace_arena, probe->dtpr_id);
16876 #endif
16877 kmem_free(probe, sizeof (dtrace_probe_t));
16878 }
16879
16880 mutex_exit(&dtrace_lock);
16881 #ifdef illumos
16882 mutex_exit(&mod_lock);
16883 #endif
16884 mutex_exit(&dtrace_provider_lock);
16885 }
16886
16887 #ifndef illumos
16888 static void
16889 dtrace_kld_load(void *arg __unused, linker_file_t lf)
16890 {
16891
16892 dtrace_module_loaded(lf);
16893 }
16894
16895 static void
16896 dtrace_kld_unload_try(void *arg __unused, linker_file_t lf, int *error)
16897 {
16898
16899 if (*error != 0)
16900 /* We already have an error, so don't do anything. */
16901 return;
16902 dtrace_module_unloaded(lf, error);
16903 }
16904 #endif
16905
16906 #ifdef illumos
16907 static void
16908 dtrace_suspend(void)
16909 {
16910 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
16911 }
16912
16913 static void
16914 dtrace_resume(void)
16915 {
16916 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
16917 }
16918 #endif
16919
16920 static int
16921 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
16922 {
16923 ASSERT(MUTEX_HELD(&cpu_lock));
16924 mutex_enter(&dtrace_lock);
16925
16926 switch (what) {
16927 case CPU_CONFIG: {
16928 dtrace_state_t *state;
16929 dtrace_optval_t *opt, rs, c;
16930
16931 /*
16932 * For now, we only allocate a new buffer for anonymous state.
16933 */
16934 if ((state = dtrace_anon.dta_state) == NULL)
16935 break;
16936
16937 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
16938 break;
16939
16940 opt = state->dts_options;
16941 c = opt[DTRACEOPT_CPU];
16942
16943 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
16944 break;
16945
16946 /*
16947 * Regardless of what the actual policy is, we're going to
16948 * temporarily set our resize policy to be manual. We're
16949 * also going to temporarily set our CPU option to denote
16950 * the newly configured CPU.
16951 */
16952 rs = opt[DTRACEOPT_BUFRESIZE];
16953 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
16954 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
16955
16956 (void) dtrace_state_buffers(state);
16957
16958 opt[DTRACEOPT_BUFRESIZE] = rs;
16959 opt[DTRACEOPT_CPU] = c;
16960
16961 break;
16962 }
16963
16964 case CPU_UNCONFIG:
16965 /*
16966 * We don't free the buffer in the CPU_UNCONFIG case. (The
16967 * buffer will be freed when the consumer exits.)
16968 */
16969 break;
16970
16971 default:
16972 break;
16973 }
16974
16975 mutex_exit(&dtrace_lock);
16976 return (0);
16977 }
16978
16979 #ifdef illumos
16980 static void
16981 dtrace_cpu_setup_initial(processorid_t cpu)
16982 {
16983 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
16984 }
16985 #endif
16986
16987 static void
16988 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
16989 {
16990 if (dtrace_toxranges >= dtrace_toxranges_max) {
16991 int osize, nsize;
16992 dtrace_toxrange_t *range;
16993
16994 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
16995
16996 if (osize == 0) {
16997 ASSERT(dtrace_toxrange == NULL);
16998 ASSERT(dtrace_toxranges_max == 0);
16999 dtrace_toxranges_max = 1;
17000 } else {
17001 dtrace_toxranges_max <<= 1;
17002 }
17003
17004 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
17005 range = kmem_zalloc(nsize, KM_SLEEP);
17006
17007 if (dtrace_toxrange != NULL) {
17008 ASSERT(osize != 0);
17009 bcopy(dtrace_toxrange, range, osize);
17010 kmem_free(dtrace_toxrange, osize);
17011 }
17012
17013 dtrace_toxrange = range;
17014 }
17015
17016 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == 0);
17017 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == 0);
17018
17019 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
17020 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
17021 dtrace_toxranges++;
17022 }
17023
17024 static void
17025 dtrace_getf_barrier(void)
17026 {
17027 #ifdef illumos
17028 /*
17029 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
17030 * that contain calls to getf(), this routine will be called on every
17031 * closef() before either the underlying vnode is released or the
17032 * file_t itself is freed. By the time we are here, it is essential
17033 * that the file_t can no longer be accessed from a call to getf()
17034 * in probe context -- that assures that a dtrace_sync() can be used
17035 * to clear out any enablings referring to the old structures.
17036 */
17037 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
17038 kcred->cr_zone->zone_dtrace_getf != 0)
17039 dtrace_sync();
17040 #endif
17041 }
17042
17043 /*
17044 * DTrace Driver Cookbook Functions
17045 */
17046 #ifdef illumos
17047 /*ARGSUSED*/
17048 static int
17049 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
17050 {
17051 dtrace_provider_id_t id;
17052 dtrace_state_t *state = NULL;
17053 dtrace_enabling_t *enab;
17054
17055 mutex_enter(&cpu_lock);
17056 mutex_enter(&dtrace_provider_lock);
17057 mutex_enter(&dtrace_lock);
17058
17059 if (ddi_soft_state_init(&dtrace_softstate,
17060 sizeof (dtrace_state_t), 0) != 0) {
17061 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
17062 mutex_exit(&cpu_lock);
17063 mutex_exit(&dtrace_provider_lock);
17064 mutex_exit(&dtrace_lock);
17065 return (DDI_FAILURE);
17066 }
17067
17068 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
17069 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
17070 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
17071 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
17072 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
17073 ddi_remove_minor_node(devi, NULL);
17074 ddi_soft_state_fini(&dtrace_softstate);
17075 mutex_exit(&cpu_lock);
17076 mutex_exit(&dtrace_provider_lock);
17077 mutex_exit(&dtrace_lock);
17078 return (DDI_FAILURE);
17079 }
17080
17081 ddi_report_dev(devi);
17082 dtrace_devi = devi;
17083
17084 dtrace_modload = dtrace_module_loaded;
17085 dtrace_modunload = dtrace_module_unloaded;
17086 dtrace_cpu_init = dtrace_cpu_setup_initial;
17087 dtrace_helpers_cleanup = dtrace_helpers_destroy;
17088 dtrace_helpers_fork = dtrace_helpers_duplicate;
17089 dtrace_cpustart_init = dtrace_suspend;
17090 dtrace_cpustart_fini = dtrace_resume;
17091 dtrace_debugger_init = dtrace_suspend;
17092 dtrace_debugger_fini = dtrace_resume;
17093
17094 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
17095
17096 ASSERT(MUTEX_HELD(&cpu_lock));
17097
17098 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
17099 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
17100 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
17101 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
17102 VM_SLEEP | VMC_IDENTIFIER);
17103 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
17104 1, INT_MAX, 0);
17105
17106 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
17107 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
17108 NULL, NULL, NULL, NULL, NULL, 0);
17109
17110 ASSERT(MUTEX_HELD(&cpu_lock));
17111 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
17112 offsetof(dtrace_probe_t, dtpr_nextmod),
17113 offsetof(dtrace_probe_t, dtpr_prevmod));
17114
17115 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
17116 offsetof(dtrace_probe_t, dtpr_nextfunc),
17117 offsetof(dtrace_probe_t, dtpr_prevfunc));
17118
17119 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
17120 offsetof(dtrace_probe_t, dtpr_nextname),
17121 offsetof(dtrace_probe_t, dtpr_prevname));
17122
17123 if (dtrace_retain_max < 1) {
17124 cmn_err(CE_WARN, "illegal value (%zu) for dtrace_retain_max; "
17125 "setting to 1", dtrace_retain_max);
17126 dtrace_retain_max = 1;
17127 }
17128
17129 /*
17130 * Now discover our toxic ranges.
17131 */
17132 dtrace_toxic_ranges(dtrace_toxrange_add);
17133
17134 /*
17135 * Before we register ourselves as a provider to our own framework,
17136 * we would like to assert that dtrace_provider is NULL -- but that's
17137 * not true if we were loaded as a dependency of a DTrace provider.
17138 * Once we've registered, we can assert that dtrace_provider is our
17139 * pseudo provider.
17140 */
17141 (void) dtrace_register("dtrace", &dtrace_provider_attr,
17142 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
17143
17144 ASSERT(dtrace_provider != NULL);
17145 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
17146
17147 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
17148 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
17149 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
17150 dtrace_provider, NULL, NULL, "END", 0, NULL);
17151 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
17152 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
17153
17154 dtrace_anon_property();
17155 mutex_exit(&cpu_lock);
17156
17157 /*
17158 * If there are already providers, we must ask them to provide their
17159 * probes, and then match any anonymous enabling against them. Note
17160 * that there should be no other retained enablings at this time:
17161 * the only retained enablings at this time should be the anonymous
17162 * enabling.
17163 */
17164 if (dtrace_anon.dta_enabling != NULL) {
17165 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
17166
17167 dtrace_enabling_provide(NULL);
17168 state = dtrace_anon.dta_state;
17169
17170 /*
17171 * We couldn't hold cpu_lock across the above call to
17172 * dtrace_enabling_provide(), but we must hold it to actually
17173 * enable the probes. We have to drop all of our locks, pick
17174 * up cpu_lock, and regain our locks before matching the
17175 * retained anonymous enabling.
17176 */
17177 mutex_exit(&dtrace_lock);
17178 mutex_exit(&dtrace_provider_lock);
17179
17180 mutex_enter(&cpu_lock);
17181 mutex_enter(&dtrace_provider_lock);
17182 mutex_enter(&dtrace_lock);
17183
17184 if ((enab = dtrace_anon.dta_enabling) != NULL)
17185 (void) dtrace_enabling_match(enab, NULL);
17186
17187 mutex_exit(&cpu_lock);
17188 }
17189
17190 mutex_exit(&dtrace_lock);
17191 mutex_exit(&dtrace_provider_lock);
17192
17193 if (state != NULL) {
17194 /*
17195 * If we created any anonymous state, set it going now.
17196 */
17197 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
17198 }
17199
17200 return (DDI_SUCCESS);
17201 }
17202 #endif /* illumos */
17203
17204 #ifndef illumos
17205 static void dtrace_dtr(void *);
17206 #endif
17207
17208 /*ARGSUSED*/
17209 static int
17210 #ifdef illumos
17211 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
17212 #else
17213 dtrace_open(struct cdev *dev, int oflags, int devtype, struct thread *td)
17214 #endif
17215 {
17216 dtrace_state_t *state;
17217 uint32_t priv;
17218 uid_t uid;
17219 zoneid_t zoneid;
17220
17221 #ifdef illumos
17222 if (getminor(*devp) == DTRACEMNRN_HELPER)
17223 return (0);
17224
17225 /*
17226 * If this wasn't an open with the "helper" minor, then it must be
17227 * the "dtrace" minor.
17228 */
17229 if (getminor(*devp) == DTRACEMNRN_DTRACE)
17230 return (ENXIO);
17231 #else
17232 cred_t *cred_p = NULL;
17233 cred_p = dev->si_cred;
17234
17235 /*
17236 * If no DTRACE_PRIV_* bits are set in the credential, then the
17237 * caller lacks sufficient permission to do anything with DTrace.
17238 */
17239 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
17240 if (priv == DTRACE_PRIV_NONE) {
17241 #endif
17242
17243 return (EACCES);
17244 }
17245
17246 /*
17247 * Ask all providers to provide all their probes.
17248 */
17249 mutex_enter(&dtrace_provider_lock);
17250 dtrace_probe_provide(NULL, NULL);
17251 mutex_exit(&dtrace_provider_lock);
17252
17253 mutex_enter(&cpu_lock);
17254 mutex_enter(&dtrace_lock);
17255 dtrace_opens++;
17256 dtrace_membar_producer();
17257
17258 #ifdef illumos
17259 /*
17260 * If the kernel debugger is active (that is, if the kernel debugger
17261 * modified text in some way), we won't allow the open.
17262 */
17263 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
17264 dtrace_opens--;
17265 mutex_exit(&cpu_lock);
17266 mutex_exit(&dtrace_lock);
17267 return (EBUSY);
17268 }
17269
17270 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
17271 /*
17272 * If DTrace helper tracing is enabled, we need to allocate the
17273 * trace buffer and initialize the values.
17274 */
17275 dtrace_helptrace_buffer =
17276 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
17277 dtrace_helptrace_next = 0;
17278 dtrace_helptrace_wrapped = 0;
17279 dtrace_helptrace_enable = 0;
17280 }
17281
17282 state = dtrace_state_create(devp, cred_p);
17283 #else
17284 state = dtrace_state_create(dev, NULL);
17285 devfs_set_cdevpriv(state, dtrace_dtr);
17286 #endif
17287
17288 mutex_exit(&cpu_lock);
17289
17290 if (state == NULL) {
17291 #ifdef illumos
17292 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17293 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17294 #else
17295 --dtrace_opens;
17296 #endif
17297 mutex_exit(&dtrace_lock);
17298 return (EAGAIN);
17299 }
17300
17301 mutex_exit(&dtrace_lock);
17302
17303 return (0);
17304 }
17305
17306 /*ARGSUSED*/
17307 #ifdef illumos
17308 static int
17309 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
17310 #else
17311 static void
17312 dtrace_dtr(void *data)
17313 #endif
17314 {
17315 #ifdef illumos
17316 minor_t minor = getminor(dev);
17317 dtrace_state_t *state;
17318 #endif
17319 dtrace_helptrace_t *buf = NULL;
17320
17321 #ifdef illumos
17322 if (minor == DTRACEMNRN_HELPER)
17323 return (0);
17324
17325 state = ddi_get_soft_state(dtrace_softstate, minor);
17326 #else
17327 dtrace_state_t *state = data;
17328 #endif
17329
17330 mutex_enter(&cpu_lock);
17331 mutex_enter(&dtrace_lock);
17332
17333 #ifdef illumos
17334 if (state->dts_anon)
17335 #else
17336 if (state != NULL && state->dts_anon)
17337 #endif
17338 {
17339 /*
17340 * There is anonymous state. Destroy that first.
17341 */
17342 ASSERT(dtrace_anon.dta_state == NULL);
17343 dtrace_state_destroy(state->dts_anon);
17344 }
17345
17346 if (dtrace_helptrace_disable) {
17347 /*
17348 * If we have been told to disable helper tracing, set the
17349 * buffer to NULL before calling into dtrace_state_destroy();
17350 * we take advantage of its dtrace_sync() to know that no
17351 * CPU is in probe context with enabled helper tracing
17352 * after it returns.
17353 */
17354 buf = dtrace_helptrace_buffer;
17355 dtrace_helptrace_buffer = NULL;
17356 }
17357
17358 #ifdef illumos
17359 dtrace_state_destroy(state);
17360 #else
17361 if (state != NULL) {
17362 dtrace_state_destroy(state);
17363 kmem_free(state, 0);
17364 }
17365 #endif
17366 ASSERT(dtrace_opens > 0);
17367
17368 #ifdef illumos
17369 /*
17370 * Only relinquish control of the kernel debugger interface when there
17371 * are no consumers and no anonymous enablings.
17372 */
17373 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
17374 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
17375 #else
17376 --dtrace_opens;
17377 #endif
17378
17379 if (buf != NULL) {
17380 kmem_free(buf, dtrace_helptrace_bufsize);
17381 dtrace_helptrace_disable = 0;
17382 }
17383
17384 mutex_exit(&dtrace_lock);
17385 mutex_exit(&cpu_lock);
17386
17387 #ifdef illumos
17388 return (0);
17389 #endif
17390 }
17391
17392 #ifdef illumos
17393 /*ARGSUSED*/
17394 static int
17395 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
17396 {
17397 int rval;
17398 dof_helper_t help, *dhp = NULL;
17399
17400 switch (cmd) {
17401 case DTRACEHIOC_ADDDOF:
17402 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
17403 dtrace_dof_error(NULL, "failed to copyin DOF helper");
17404 return (EFAULT);
17405 }
17406
17407 dhp = &help;
17408 arg = (intptr_t)help.dofhp_dof;
17409 /*FALLTHROUGH*/
17410
17411 case DTRACEHIOC_ADD: {
17412 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
17413
17414 if (dof == NULL)
17415 return (rval);
17416
17417 mutex_enter(&dtrace_lock);
17418
17419 /*
17420 * dtrace_helper_slurp() takes responsibility for the dof --
17421 * it may free it now or it may save it and free it later.
17422 */
17423 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
17424 *rv = rval;
17425 rval = 0;
17426 } else {
17427 rval = EINVAL;
17428 }
17429
17430 mutex_exit(&dtrace_lock);
17431 return (rval);
17432 }
17433
17434 case DTRACEHIOC_REMOVE: {
17435 mutex_enter(&dtrace_lock);
17436 rval = dtrace_helper_destroygen(NULL, arg);
17437 mutex_exit(&dtrace_lock);
17438
17439 return (rval);
17440 }
17441
17442 default:
17443 break;
17444 }
17445
17446 return (ENOTTY);
17447 }
17448
17449 /*ARGSUSED*/
17450 static int
17451 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
17452 {
17453 minor_t minor = getminor(dev);
17454 dtrace_state_t *state;
17455 int rval;
17456
17457 if (minor == DTRACEMNRN_HELPER)
17458 return (dtrace_ioctl_helper(cmd, arg, rv));
17459
17460 state = ddi_get_soft_state(dtrace_softstate, minor);
17461
17462 if (state->dts_anon) {
17463 ASSERT(dtrace_anon.dta_state == NULL);
17464 state = state->dts_anon;
17465 }
17466
17467 switch (cmd) {
17468 case DTRACEIOC_PROVIDER: {
17469 dtrace_providerdesc_t pvd;
17470 dtrace_provider_t *pvp;
17471
17472 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
17473 return (EFAULT);
17474
17475 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
17476 mutex_enter(&dtrace_provider_lock);
17477
17478 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
17479 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
17480 break;
17481 }
17482
17483 mutex_exit(&dtrace_provider_lock);
17484
17485 if (pvp == NULL)
17486 return (ESRCH);
17487
17488 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
17489 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
17490
17491 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
17492 return (EFAULT);
17493
17494 return (0);
17495 }
17496
17497 case DTRACEIOC_EPROBE: {
17498 dtrace_eprobedesc_t epdesc;
17499 dtrace_ecb_t *ecb;
17500 dtrace_action_t *act;
17501 void *buf;
17502 size_t size;
17503 uintptr_t dest;
17504 int nrecs;
17505
17506 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
17507 return (EFAULT);
17508
17509 mutex_enter(&dtrace_lock);
17510
17511 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
17512 mutex_exit(&dtrace_lock);
17513 return (EINVAL);
17514 }
17515
17516 if (ecb->dte_probe == NULL) {
17517 mutex_exit(&dtrace_lock);
17518 return (EINVAL);
17519 }
17520
17521 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
17522 epdesc.dtepd_uarg = ecb->dte_uarg;
17523 epdesc.dtepd_size = ecb->dte_size;
17524
17525 nrecs = epdesc.dtepd_nrecs;
17526 epdesc.dtepd_nrecs = 0;
17527 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17528 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17529 continue;
17530
17531 epdesc.dtepd_nrecs++;
17532 }
17533
17534 /*
17535 * Now that we have the size, we need to allocate a temporary
17536 * buffer in which to store the complete description. We need
17537 * the temporary buffer to be able to drop dtrace_lock()
17538 * across the copyout(), below.
17539 */
17540 size = sizeof (dtrace_eprobedesc_t) +
17541 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
17542
17543 buf = kmem_alloc(size, KM_SLEEP);
17544 dest = (uintptr_t)buf;
17545
17546 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
17547 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
17548
17549 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
17550 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
17551 continue;
17552
17553 if (nrecs-- == 0)
17554 break;
17555
17556 bcopy(&act->dta_rec, (void *)dest,
17557 sizeof (dtrace_recdesc_t));
17558 dest += sizeof (dtrace_recdesc_t);
17559 }
17560
17561 mutex_exit(&dtrace_lock);
17562
17563 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17564 kmem_free(buf, size);
17565 return (EFAULT);
17566 }
17567
17568 kmem_free(buf, size);
17569 return (0);
17570 }
17571
17572 case DTRACEIOC_AGGDESC: {
17573 dtrace_aggdesc_t aggdesc;
17574 dtrace_action_t *act;
17575 dtrace_aggregation_t *agg;
17576 int nrecs;
17577 uint32_t offs;
17578 dtrace_recdesc_t *lrec;
17579 void *buf;
17580 size_t size;
17581 uintptr_t dest;
17582
17583 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
17584 return (EFAULT);
17585
17586 mutex_enter(&dtrace_lock);
17587
17588 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
17589 mutex_exit(&dtrace_lock);
17590 return (EINVAL);
17591 }
17592
17593 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
17594
17595 nrecs = aggdesc.dtagd_nrecs;
17596 aggdesc.dtagd_nrecs = 0;
17597
17598 offs = agg->dtag_base;
17599 lrec = &agg->dtag_action.dta_rec;
17600 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
17601
17602 for (act = agg->dtag_first; ; act = act->dta_next) {
17603 ASSERT(act->dta_intuple ||
17604 DTRACEACT_ISAGG(act->dta_kind));
17605
17606 /*
17607 * If this action has a record size of zero, it
17608 * denotes an argument to the aggregating action.
17609 * Because the presence of this record doesn't (or
17610 * shouldn't) affect the way the data is interpreted,
17611 * we don't copy it out to save user-level the
17612 * confusion of dealing with a zero-length record.
17613 */
17614 if (act->dta_rec.dtrd_size == 0) {
17615 ASSERT(agg->dtag_hasarg);
17616 continue;
17617 }
17618
17619 aggdesc.dtagd_nrecs++;
17620
17621 if (act == &agg->dtag_action)
17622 break;
17623 }
17624
17625 /*
17626 * Now that we have the size, we need to allocate a temporary
17627 * buffer in which to store the complete description. We need
17628 * the temporary buffer to be able to drop dtrace_lock()
17629 * across the copyout(), below.
17630 */
17631 size = sizeof (dtrace_aggdesc_t) +
17632 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
17633
17634 buf = kmem_alloc(size, KM_SLEEP);
17635 dest = (uintptr_t)buf;
17636
17637 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
17638 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
17639
17640 for (act = agg->dtag_first; ; act = act->dta_next) {
17641 dtrace_recdesc_t rec = act->dta_rec;
17642
17643 /*
17644 * See the comment in the above loop for why we pass
17645 * over zero-length records.
17646 */
17647 if (rec.dtrd_size == 0) {
17648 ASSERT(agg->dtag_hasarg);
17649 continue;
17650 }
17651
17652 if (nrecs-- == 0)
17653 break;
17654
17655 rec.dtrd_offset -= offs;
17656 bcopy(&rec, (void *)dest, sizeof (rec));
17657 dest += sizeof (dtrace_recdesc_t);
17658
17659 if (act == &agg->dtag_action)
17660 break;
17661 }
17662
17663 mutex_exit(&dtrace_lock);
17664
17665 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
17666 kmem_free(buf, size);
17667 return (EFAULT);
17668 }
17669
17670 kmem_free(buf, size);
17671 return (0);
17672 }
17673
17674 case DTRACEIOC_ENABLE: {
17675 dof_hdr_t *dof;
17676 dtrace_enabling_t *enab = NULL;
17677 dtrace_vstate_t *vstate;
17678 int err = 0;
17679
17680 *rv = 0;
17681
17682 /*
17683 * If a NULL argument has been passed, we take this as our
17684 * cue to reevaluate our enablings.
17685 */
17686 if (arg == NULL) {
17687 dtrace_enabling_matchall();
17688
17689 return (0);
17690 }
17691
17692 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
17693 return (rval);
17694
17695 mutex_enter(&cpu_lock);
17696 mutex_enter(&dtrace_lock);
17697 vstate = &state->dts_vstate;
17698
17699 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
17700 mutex_exit(&dtrace_lock);
17701 mutex_exit(&cpu_lock);
17702 dtrace_dof_destroy(dof);
17703 return (EBUSY);
17704 }
17705
17706 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
17707 mutex_exit(&dtrace_lock);
17708 mutex_exit(&cpu_lock);
17709 dtrace_dof_destroy(dof);
17710 return (EINVAL);
17711 }
17712
17713 if ((rval = dtrace_dof_options(dof, state)) != 0) {
17714 dtrace_enabling_destroy(enab);
17715 mutex_exit(&dtrace_lock);
17716 mutex_exit(&cpu_lock);
17717 dtrace_dof_destroy(dof);
17718 return (rval);
17719 }
17720
17721 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
17722 err = dtrace_enabling_retain(enab);
17723 } else {
17724 dtrace_enabling_destroy(enab);
17725 }
17726
17727 mutex_exit(&cpu_lock);
17728 mutex_exit(&dtrace_lock);
17729 dtrace_dof_destroy(dof);
17730
17731 return (err);
17732 }
17733
17734 case DTRACEIOC_REPLICATE: {
17735 dtrace_repldesc_t desc;
17736 dtrace_probedesc_t *match = &desc.dtrpd_match;
17737 dtrace_probedesc_t *create = &desc.dtrpd_create;
17738 int err;
17739
17740 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17741 return (EFAULT);
17742
17743 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17744 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17745 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17746 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17747
17748 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17749 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17750 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17751 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17752
17753 mutex_enter(&dtrace_lock);
17754 err = dtrace_enabling_replicate(state, match, create);
17755 mutex_exit(&dtrace_lock);
17756
17757 return (err);
17758 }
17759
17760 case DTRACEIOC_PROBEMATCH:
17761 case DTRACEIOC_PROBES: {
17762 dtrace_probe_t *probe = NULL;
17763 dtrace_probedesc_t desc;
17764 dtrace_probekey_t pkey;
17765 dtrace_id_t i;
17766 int m = 0;
17767 uint32_t priv;
17768 uid_t uid;
17769 zoneid_t zoneid;
17770
17771 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17772 return (EFAULT);
17773
17774 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
17775 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
17776 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
17777 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
17778
17779 /*
17780 * Before we attempt to match this probe, we want to give
17781 * all providers the opportunity to provide it.
17782 */
17783 if (desc.dtpd_id == DTRACE_IDNONE) {
17784 mutex_enter(&dtrace_provider_lock);
17785 dtrace_probe_provide(&desc, NULL);
17786 mutex_exit(&dtrace_provider_lock);
17787 desc.dtpd_id++;
17788 }
17789
17790 if (cmd == DTRACEIOC_PROBEMATCH) {
17791 dtrace_probekey(&desc, &pkey);
17792 pkey.dtpk_id = DTRACE_IDNONE;
17793 }
17794
17795 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
17796
17797 mutex_enter(&dtrace_lock);
17798
17799 if (cmd == DTRACEIOC_PROBEMATCH) {
17800 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17801 if ((probe = dtrace_probes[i - 1]) != NULL &&
17802 (m = dtrace_match_probe(probe, &pkey,
17803 priv, uid, zoneid)) != 0)
17804 break;
17805 }
17806
17807 if (m < 0) {
17808 mutex_exit(&dtrace_lock);
17809 return (EINVAL);
17810 }
17811
17812 } else {
17813 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
17814 if ((probe = dtrace_probes[i - 1]) != NULL &&
17815 dtrace_match_priv(probe, priv, uid, zoneid))
17816 break;
17817 }
17818 }
17819
17820 if (probe == NULL) {
17821 mutex_exit(&dtrace_lock);
17822 return (ESRCH);
17823 }
17824
17825 dtrace_probe_description(probe, &desc);
17826 mutex_exit(&dtrace_lock);
17827
17828 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17829 return (EFAULT);
17830
17831 return (0);
17832 }
17833
17834 case DTRACEIOC_PROBEARG: {
17835 dtrace_argdesc_t desc;
17836 dtrace_probe_t *probe;
17837 dtrace_provider_t *prov;
17838
17839 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17840 return (EFAULT);
17841
17842 if (desc.dtargd_id == DTRACE_IDNONE)
17843 return (EINVAL);
17844
17845 if (desc.dtargd_ndx == DTRACE_ARGNONE)
17846 return (EINVAL);
17847
17848 mutex_enter(&dtrace_provider_lock);
17849 mutex_enter(&mod_lock);
17850 mutex_enter(&dtrace_lock);
17851
17852 if (desc.dtargd_id > dtrace_nprobes) {
17853 mutex_exit(&dtrace_lock);
17854 mutex_exit(&mod_lock);
17855 mutex_exit(&dtrace_provider_lock);
17856 return (EINVAL);
17857 }
17858
17859 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
17860 mutex_exit(&dtrace_lock);
17861 mutex_exit(&mod_lock);
17862 mutex_exit(&dtrace_provider_lock);
17863 return (EINVAL);
17864 }
17865
17866 mutex_exit(&dtrace_lock);
17867
17868 prov = probe->dtpr_provider;
17869
17870 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
17871 /*
17872 * There isn't any typed information for this probe.
17873 * Set the argument number to DTRACE_ARGNONE.
17874 */
17875 desc.dtargd_ndx = DTRACE_ARGNONE;
17876 } else {
17877 desc.dtargd_native[0] = '\0';
17878 desc.dtargd_xlate[0] = '\0';
17879 desc.dtargd_mapping = desc.dtargd_ndx;
17880
17881 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
17882 probe->dtpr_id, probe->dtpr_arg, &desc);
17883 }
17884
17885 mutex_exit(&mod_lock);
17886 mutex_exit(&dtrace_provider_lock);
17887
17888 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
17889 return (EFAULT);
17890
17891 return (0);
17892 }
17893
17894 case DTRACEIOC_GO: {
17895 processorid_t cpuid;
17896 rval = dtrace_state_go(state, &cpuid);
17897
17898 if (rval != 0)
17899 return (rval);
17900
17901 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17902 return (EFAULT);
17903
17904 return (0);
17905 }
17906
17907 case DTRACEIOC_STOP: {
17908 processorid_t cpuid;
17909
17910 mutex_enter(&dtrace_lock);
17911 rval = dtrace_state_stop(state, &cpuid);
17912 mutex_exit(&dtrace_lock);
17913
17914 if (rval != 0)
17915 return (rval);
17916
17917 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
17918 return (EFAULT);
17919
17920 return (0);
17921 }
17922
17923 case DTRACEIOC_DOFGET: {
17924 dof_hdr_t hdr, *dof;
17925 uint64_t len;
17926
17927 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
17928 return (EFAULT);
17929
17930 mutex_enter(&dtrace_lock);
17931 dof = dtrace_dof_create(state);
17932 mutex_exit(&dtrace_lock);
17933
17934 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
17935 rval = copyout(dof, (void *)arg, len);
17936 dtrace_dof_destroy(dof);
17937
17938 return (rval == 0 ? 0 : EFAULT);
17939 }
17940
17941 case DTRACEIOC_AGGSNAP:
17942 case DTRACEIOC_BUFSNAP: {
17943 dtrace_bufdesc_t desc;
17944 caddr_t cached;
17945 dtrace_buffer_t *buf;
17946
17947 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
17948 return (EFAULT);
17949
17950 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
17951 return (EINVAL);
17952
17953 mutex_enter(&dtrace_lock);
17954
17955 if (cmd == DTRACEIOC_BUFSNAP) {
17956 buf = &state->dts_buffer[desc.dtbd_cpu];
17957 } else {
17958 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
17959 }
17960
17961 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
17962 size_t sz = buf->dtb_offset;
17963
17964 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
17965 mutex_exit(&dtrace_lock);
17966 return (EBUSY);
17967 }
17968
17969 /*
17970 * If this buffer has already been consumed, we're
17971 * going to indicate that there's nothing left here
17972 * to consume.
17973 */
17974 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
17975 mutex_exit(&dtrace_lock);
17976
17977 desc.dtbd_size = 0;
17978 desc.dtbd_drops = 0;
17979 desc.dtbd_errors = 0;
17980 desc.dtbd_oldest = 0;
17981 sz = sizeof (desc);
17982
17983 if (copyout(&desc, (void *)arg, sz) != 0)
17984 return (EFAULT);
17985
17986 return (0);
17987 }
17988
17989 /*
17990 * If this is a ring buffer that has wrapped, we want
17991 * to copy the whole thing out.
17992 */
17993 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
17994 dtrace_buffer_polish(buf);
17995 sz = buf->dtb_size;
17996 }
17997
17998 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
17999 mutex_exit(&dtrace_lock);
18000 return (EFAULT);
18001 }
18002
18003 desc.dtbd_size = sz;
18004 desc.dtbd_drops = buf->dtb_drops;
18005 desc.dtbd_errors = buf->dtb_errors;
18006 desc.dtbd_oldest = buf->dtb_xamot_offset;
18007 desc.dtbd_timestamp = dtrace_gethrtime();
18008
18009 mutex_exit(&dtrace_lock);
18010
18011 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18012 return (EFAULT);
18013
18014 buf->dtb_flags |= DTRACEBUF_CONSUMED;
18015
18016 return (0);
18017 }
18018
18019 if (buf->dtb_tomax == NULL) {
18020 ASSERT(buf->dtb_xamot == NULL);
18021 mutex_exit(&dtrace_lock);
18022 return (ENOENT);
18023 }
18024
18025 cached = buf->dtb_tomax;
18026 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
18027
18028 dtrace_xcall(desc.dtbd_cpu,
18029 (dtrace_xcall_t)dtrace_buffer_switch, buf);
18030
18031 state->dts_errors += buf->dtb_xamot_errors;
18032
18033 /*
18034 * If the buffers did not actually switch, then the cross call
18035 * did not take place -- presumably because the given CPU is
18036 * not in the ready set. If this is the case, we'll return
18037 * ENOENT.
18038 */
18039 if (buf->dtb_tomax == cached) {
18040 ASSERT(buf->dtb_xamot != cached);
18041 mutex_exit(&dtrace_lock);
18042 return (ENOENT);
18043 }
18044
18045 ASSERT(cached == buf->dtb_xamot);
18046
18047 /*
18048 * We have our snapshot; now copy it out.
18049 */
18050 if (copyout(buf->dtb_xamot, desc.dtbd_data,
18051 buf->dtb_xamot_offset) != 0) {
18052 mutex_exit(&dtrace_lock);
18053 return (EFAULT);
18054 }
18055
18056 desc.dtbd_size = buf->dtb_xamot_offset;
18057 desc.dtbd_drops = buf->dtb_xamot_drops;
18058 desc.dtbd_errors = buf->dtb_xamot_errors;
18059 desc.dtbd_oldest = 0;
18060 desc.dtbd_timestamp = buf->dtb_switched;
18061
18062 mutex_exit(&dtrace_lock);
18063
18064 /*
18065 * Finally, copy out the buffer description.
18066 */
18067 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
18068 return (EFAULT);
18069
18070 return (0);
18071 }
18072
18073 case DTRACEIOC_CONF: {
18074 dtrace_conf_t conf;
18075
18076 bzero(&conf, sizeof (conf));
18077 conf.dtc_difversion = DIF_VERSION;
18078 conf.dtc_difintregs = DIF_DIR_NREGS;
18079 conf.dtc_diftupregs = DIF_DTR_NREGS;
18080 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
18081
18082 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
18083 return (EFAULT);
18084
18085 return (0);
18086 }
18087
18088 case DTRACEIOC_STATUS: {
18089 dtrace_status_t stat;
18090 dtrace_dstate_t *dstate;
18091 int i, j;
18092 uint64_t nerrs;
18093
18094 /*
18095 * See the comment in dtrace_state_deadman() for the reason
18096 * for setting dts_laststatus to INT64_MAX before setting
18097 * it to the correct value.
18098 */
18099 state->dts_laststatus = INT64_MAX;
18100 dtrace_membar_producer();
18101 state->dts_laststatus = dtrace_gethrtime();
18102
18103 bzero(&stat, sizeof (stat));
18104
18105 mutex_enter(&dtrace_lock);
18106
18107 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
18108 mutex_exit(&dtrace_lock);
18109 return (ENOENT);
18110 }
18111
18112 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
18113 stat.dtst_exiting = 1;
18114
18115 nerrs = state->dts_errors;
18116 dstate = &state->dts_vstate.dtvs_dynvars;
18117
18118 for (i = 0; i < NCPU; i++) {
18119 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
18120
18121 stat.dtst_dyndrops += dcpu->dtdsc_drops;
18122 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
18123 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
18124
18125 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
18126 stat.dtst_filled++;
18127
18128 nerrs += state->dts_buffer[i].dtb_errors;
18129
18130 for (j = 0; j < state->dts_nspeculations; j++) {
18131 dtrace_speculation_t *spec;
18132 dtrace_buffer_t *buf;
18133
18134 spec = &state->dts_speculations[j];
18135 buf = &spec->dtsp_buffer[i];
18136 stat.dtst_specdrops += buf->dtb_xamot_drops;
18137 }
18138 }
18139
18140 stat.dtst_specdrops_busy = state->dts_speculations_busy;
18141 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
18142 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
18143 stat.dtst_dblerrors = state->dts_dblerrors;
18144 stat.dtst_killed =
18145 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
18146 stat.dtst_errors = nerrs;
18147
18148 mutex_exit(&dtrace_lock);
18149
18150 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
18151 return (EFAULT);
18152
18153 return (0);
18154 }
18155
18156 case DTRACEIOC_FORMAT: {
18157 dtrace_fmtdesc_t fmt;
18158 char *str;
18159 int len;
18160
18161 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
18162 return (EFAULT);
18163
18164 mutex_enter(&dtrace_lock);
18165
18166 if (fmt.dtfd_format == 0 ||
18167 fmt.dtfd_format > state->dts_nformats) {
18168 mutex_exit(&dtrace_lock);
18169 return (EINVAL);
18170 }
18171
18172 /*
18173 * Format strings are allocated contiguously and they are
18174 * never freed; if a format index is less than the number
18175 * of formats, we can assert that the format map is non-NULL
18176 * and that the format for the specified index is non-NULL.
18177 */
18178 ASSERT(state->dts_formats != NULL);
18179 str = state->dts_formats[fmt.dtfd_format - 1];
18180 ASSERT(str != NULL);
18181
18182 len = strlen(str) + 1;
18183
18184 if (len > fmt.dtfd_length) {
18185 fmt.dtfd_length = len;
18186
18187 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
18188 mutex_exit(&dtrace_lock);
18189 return (EINVAL);
18190 }
18191 } else {
18192 if (copyout(str, fmt.dtfd_string, len) != 0) {
18193 mutex_exit(&dtrace_lock);
18194 return (EINVAL);
18195 }
18196 }
18197
18198 mutex_exit(&dtrace_lock);
18199 return (0);
18200 }
18201
18202 default:
18203 break;
18204 }
18205
18206 return (ENOTTY);
18207 }
18208
18209 /*ARGSUSED*/
18210 static int
18211 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
18212 {
18213 dtrace_state_t *state;
18214
18215 switch (cmd) {
18216 case DDI_DETACH:
18217 break;
18218
18219 case DDI_SUSPEND:
18220 return (DDI_SUCCESS);
18221
18222 default:
18223 return (DDI_FAILURE);
18224 }
18225
18226 mutex_enter(&cpu_lock);
18227 mutex_enter(&dtrace_provider_lock);
18228 mutex_enter(&dtrace_lock);
18229
18230 ASSERT(dtrace_opens == 0);
18231
18232 if (dtrace_helpers > 0) {
18233 mutex_exit(&dtrace_provider_lock);
18234 mutex_exit(&dtrace_lock);
18235 mutex_exit(&cpu_lock);
18236 return (DDI_FAILURE);
18237 }
18238
18239 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
18240 mutex_exit(&dtrace_provider_lock);
18241 mutex_exit(&dtrace_lock);
18242 mutex_exit(&cpu_lock);
18243 return (DDI_FAILURE);
18244 }
18245
18246 dtrace_provider = NULL;
18247
18248 if ((state = dtrace_anon_grab()) != NULL) {
18249 /*
18250 * If there were ECBs on this state, the provider should
18251 * have not been allowed to detach; assert that there is
18252 * none.
18253 */
18254 ASSERT(state->dts_necbs == 0);
18255 dtrace_state_destroy(state);
18256
18257 /*
18258 * If we're being detached with anonymous state, we need to
18259 * indicate to the kernel debugger that DTrace is now inactive.
18260 */
18261 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
18262 }
18263
18264 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
18265 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
18266 dtrace_cpu_init = NULL;
18267 dtrace_helpers_cleanup = NULL;
18268 dtrace_helpers_fork = NULL;
18269 dtrace_cpustart_init = NULL;
18270 dtrace_cpustart_fini = NULL;
18271 dtrace_debugger_init = NULL;
18272 dtrace_debugger_fini = NULL;
18273 dtrace_modload = NULL;
18274 dtrace_modunload = NULL;
18275
18276 ASSERT(dtrace_getf == 0);
18277 ASSERT(dtrace_closef == NULL);
18278
18279 mutex_exit(&cpu_lock);
18280
18281 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
18282 dtrace_probes = NULL;
18283 dtrace_nprobes = 0;
18284
18285 dtrace_hash_destroy(dtrace_bymod);
18286 dtrace_hash_destroy(dtrace_byfunc);
18287 dtrace_hash_destroy(dtrace_byname);
18288 dtrace_bymod = NULL;
18289 dtrace_byfunc = NULL;
18290 dtrace_byname = NULL;
18291
18292 kmem_cache_destroy(dtrace_state_cache);
18293 vmem_destroy(dtrace_minor);
18294 vmem_destroy(dtrace_arena);
18295
18296 if (dtrace_toxrange != NULL) {
18297 kmem_free(dtrace_toxrange,
18298 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
18299 dtrace_toxrange = NULL;
18300 dtrace_toxranges = 0;
18301 dtrace_toxranges_max = 0;
18302 }
18303
18304 ddi_remove_minor_node(dtrace_devi, NULL);
18305 dtrace_devi = NULL;
18306
18307 ddi_soft_state_fini(&dtrace_softstate);
18308
18309 ASSERT(dtrace_vtime_references == 0);
18310 ASSERT(dtrace_opens == 0);
18311 ASSERT(dtrace_retained == NULL);
18312
18313 mutex_exit(&dtrace_lock);
18314 mutex_exit(&dtrace_provider_lock);
18315
18316 /*
18317 * We don't destroy the task queue until after we have dropped our
18318 * locks (taskq_destroy() may block on running tasks). To prevent
18319 * attempting to do work after we have effectively detached but before
18320 * the task queue has been destroyed, all tasks dispatched via the
18321 * task queue must check that DTrace is still attached before
18322 * performing any operation.
18323 */
18324 taskq_destroy(dtrace_taskq);
18325 dtrace_taskq = NULL;
18326
18327 return (DDI_SUCCESS);
18328 }
18329 #endif
18330
18331 #ifdef illumos
18332 /*ARGSUSED*/
18333 static int
18334 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
18335 {
18336 int error;
18337
18338 switch (infocmd) {
18339 case DDI_INFO_DEVT2DEVINFO:
18340 *result = (void *)dtrace_devi;
18341 error = DDI_SUCCESS;
18342 break;
18343 case DDI_INFO_DEVT2INSTANCE:
18344 *result = (void *)0;
18345 error = DDI_SUCCESS;
18346 break;
18347 default:
18348 error = DDI_FAILURE;
18349 }
18350 return (error);
18351 }
18352 #endif
18353
18354 #ifdef illumos
18355 static struct cb_ops dtrace_cb_ops = {
18356 dtrace_open, /* open */
18357 dtrace_close, /* close */
18358 nulldev, /* strategy */
18359 nulldev, /* print */
18360 nodev, /* dump */
18361 nodev, /* read */
18362 nodev, /* write */
18363 dtrace_ioctl, /* ioctl */
18364 nodev, /* devmap */
18365 nodev, /* mmap */
18366 nodev, /* segmap */
18367 nochpoll, /* poll */
18368 ddi_prop_op, /* cb_prop_op */
18369 0, /* streamtab */
18370 D_NEW | D_MP /* Driver compatibility flag */
18371 };
18372
18373 static struct dev_ops dtrace_ops = {
18374 DEVO_REV, /* devo_rev */
18375 0, /* refcnt */
18376 dtrace_info, /* get_dev_info */
18377 nulldev, /* identify */
18378 nulldev, /* probe */
18379 dtrace_attach, /* attach */
18380 dtrace_detach, /* detach */
18381 nodev, /* reset */
18382 &dtrace_cb_ops, /* driver operations */
18383 NULL, /* bus operations */
18384 nodev /* dev power */
18385 };
18386
18387 static struct modldrv modldrv = {
18388 &mod_driverops, /* module type (this is a pseudo driver) */
18389 "Dynamic Tracing", /* name of module */
18390 &dtrace_ops, /* driver ops */
18391 };
18392
18393 static struct modlinkage modlinkage = {
18394 MODREV_1,
18395 (void *)&modldrv,
18396 NULL
18397 };
18398
18399 int
18400 _init(void)
18401 {
18402 return (mod_install(&modlinkage));
18403 }
18404
18405 int
18406 _info(struct modinfo *modinfop)
18407 {
18408 return (mod_info(&modlinkage, modinfop));
18409 }
18410
18411 int
18412 _fini(void)
18413 {
18414 return (mod_remove(&modlinkage));
18415 }
18416 #else
18417
18418 static d_ioctl_t dtrace_ioctl;
18419 static d_ioctl_t dtrace_ioctl_helper;
18420 static void dtrace_load(void *);
18421 static int dtrace_unload(void);
18422 static struct cdev *dtrace_dev;
18423 static struct cdev *helper_dev;
18424
18425 void dtrace_invop_init(void);
18426 void dtrace_invop_uninit(void);
18427
18428 static struct cdevsw dtrace_cdevsw = {
18429 .d_version = D_VERSION,
18430 .d_ioctl = dtrace_ioctl,
18431 .d_open = dtrace_open,
18432 .d_name = "dtrace",
18433 };
18434
18435 static struct cdevsw helper_cdevsw = {
18436 .d_version = D_VERSION,
18437 .d_ioctl = dtrace_ioctl_helper,
18438 .d_name = "helper",
18439 };
18440
18441 #include <dtrace_anon.c>
18442 #include <dtrace_ioctl.c>
18443 #include <dtrace_load.c>
18444 #include <dtrace_modevent.c>
18445 #include <dtrace_sysctl.c>
18446 #include <dtrace_unload.c>
18447 #include <dtrace_vtime.c>
18448 #include <dtrace_hacks.c>
18449
18450 SYSINIT(dtrace_load, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_load, NULL);
18451 SYSUNINIT(dtrace_unload, SI_SUB_DTRACE, SI_ORDER_FIRST, dtrace_unload, NULL);
18452 SYSINIT(dtrace_anon_init, SI_SUB_DTRACE_ANON, SI_ORDER_FIRST, dtrace_anon_init, NULL);
18453
18454 DEV_MODULE(dtrace, dtrace_modevent, NULL);
18455 MODULE_VERSION(dtrace, 1);
18456 MODULE_DEPEND(dtrace, opensolaris, 1, 1, 1);
18457 #endif
18458