1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2016, Joyent, Inc. All rights reserved.
25 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
26 */
27
28 /*
29 * DTrace - Dynamic Tracing for Solaris
30 *
31 * This is the implementation of the Solaris Dynamic Tracing framework
32 * (DTrace). The user-visible interface to DTrace is described at length in
33 * the "Solaris Dynamic Tracing Guide". The interfaces between the libdtrace
34 * library, the in-kernel DTrace framework, and the DTrace providers are
35 * described in the block comments in the <sys/dtrace.h> header file. The
36 * internal architecture of DTrace is described in the block comments in the
37 * <sys/dtrace_impl.h> header file. The comments contained within the DTrace
38 * implementation very much assume mastery of all of these sources; if one has
39 * an unanswered question about the implementation, one should consult them
40 * first.
41 *
42 * The functions here are ordered roughly as follows:
43 *
44 * - Probe context functions
45 * - Probe hashing functions
46 * - Non-probe context utility functions
47 * - Matching functions
48 * - Provider-to-Framework API functions
49 * - Probe management functions
50 * - DIF object functions
51 * - Format functions
52 * - Predicate functions
53 * - ECB functions
54 * - Buffer functions
55 * - Enabling functions
56 * - DOF functions
57 * - Anonymous enabling functions
58 * - Consumer state functions
59 * - Helper functions
60 * - Hook functions
61 * - Driver cookbook functions
62 *
63 * Each group of functions begins with a block comment labelled the "DTrace
64 * [Group] Functions", allowing one to find each block by searching forward
65 * on capital-f functions.
66 */
67 #include <sys/errno.h>
68 #include <sys/stat.h>
69 #include <sys/modctl.h>
70 #include <sys/conf.h>
71 #include <sys/systm.h>
72 #include <sys/ddi.h>
73 #include <sys/sunddi.h>
74 #include <sys/cpuvar.h>
75 #include <sys/kmem.h>
76 #include <sys/strsubr.h>
77 #include <sys/sysmacros.h>
78 #include <sys/dtrace_impl.h>
79 #include <sys/atomic.h>
80 #include <sys/cmn_err.h>
81 #include <sys/mutex_impl.h>
82 #include <sys/rwlock_impl.h>
83 #include <sys/ctf_api.h>
84 #include <sys/panic.h>
85 #include <sys/priv_impl.h>
86 #include <sys/policy.h>
87 #include <sys/cred_impl.h>
88 #include <sys/procfs_isa.h>
89 #include <sys/taskq.h>
90 #include <sys/mkdev.h>
91 #include <sys/kdi.h>
92 #include <sys/zone.h>
93 #include <sys/socket.h>
94 #include <netinet/in.h>
95 #include "strtolctype.h"
96
97 /*
98 * DTrace Tunable Variables
99 *
100 * The following variables may be tuned by adding a line to /etc/system that
101 * includes both the name of the DTrace module ("dtrace") and the name of the
102 * variable. For example:
103 *
104 * set dtrace:dtrace_destructive_disallow = 1
105 *
106 * In general, the only variables that one should be tuning this way are those
107 * that affect system-wide DTrace behavior, and for which the default behavior
108 * is undesirable. Most of these variables are tunable on a per-consumer
109 * basis using DTrace options, and need not be tuned on a system-wide basis.
110 * When tuning these variables, avoid pathological values; while some attempt
111 * is made to verify the integrity of these variables, they are not considered
112 * part of the supported interface to DTrace, and they are therefore not
113 * checked comprehensively. Further, these variables should not be tuned
114 * dynamically via "mdb -kw" or other means; they should only be tuned via
115 * /etc/system.
116 */
117 int dtrace_destructive_disallow = 0;
118 dtrace_optval_t dtrace_nonroot_maxsize = (16 * 1024 * 1024);
119 size_t dtrace_difo_maxsize = (256 * 1024);
120 dtrace_optval_t dtrace_dof_maxsize = (8 * 1024 * 1024);
121 size_t dtrace_statvar_maxsize = (16 * 1024);
122 size_t dtrace_actions_max = (16 * 1024);
123 size_t dtrace_retain_max = 1024;
124 dtrace_optval_t dtrace_helper_actions_max = 1024;
125 dtrace_optval_t dtrace_helper_providers_max = 32;
126 dtrace_optval_t dtrace_dstate_defsize = (1 * 1024 * 1024);
127 size_t dtrace_strsize_default = 256;
128 dtrace_optval_t dtrace_cleanrate_default = 9900990; /* 101 hz */
129 dtrace_optval_t dtrace_cleanrate_min = 200000; /* 5000 hz */
130 dtrace_optval_t dtrace_cleanrate_max = (uint64_t)60 * NANOSEC; /* 1/minute */
131 dtrace_optval_t dtrace_aggrate_default = NANOSEC; /* 1 hz */
132 dtrace_optval_t dtrace_statusrate_default = NANOSEC; /* 1 hz */
133 dtrace_optval_t dtrace_statusrate_max = (hrtime_t)10 * NANOSEC; /* 6/minute */
134 dtrace_optval_t dtrace_switchrate_default = NANOSEC; /* 1 hz */
135 dtrace_optval_t dtrace_nspec_default = 1;
136 dtrace_optval_t dtrace_specsize_default = 32 * 1024;
137 dtrace_optval_t dtrace_stackframes_default = 20;
138 dtrace_optval_t dtrace_ustackframes_default = 20;
139 dtrace_optval_t dtrace_jstackframes_default = 50;
140 dtrace_optval_t dtrace_jstackstrsize_default = 512;
141 int dtrace_msgdsize_max = 128;
142 hrtime_t dtrace_chill_max = MSEC2NSEC(500); /* 500 ms */
143 hrtime_t dtrace_chill_interval = NANOSEC; /* 1000 ms */
144 int dtrace_devdepth_max = 32;
145 int dtrace_err_verbose;
146 hrtime_t dtrace_deadman_interval = NANOSEC;
147 hrtime_t dtrace_deadman_timeout = (hrtime_t)10 * NANOSEC;
148 hrtime_t dtrace_deadman_user = (hrtime_t)30 * NANOSEC;
149 hrtime_t dtrace_unregister_defunct_reap = (hrtime_t)60 * NANOSEC;
150
151 /*
152 * DTrace External Variables
153 *
154 * As dtrace(7D) is a kernel module, any DTrace variables are obviously
155 * available to DTrace consumers via the backtick (`) syntax. One of these,
156 * dtrace_zero, is made deliberately so: it is provided as a source of
157 * well-known, zero-filled memory. While this variable is not documented,
158 * it is used by some translators as an implementation detail.
159 */
160 const char dtrace_zero[256] = { 0 }; /* zero-filled memory */
161
162 /*
163 * DTrace Internal Variables
164 */
165 static dev_info_t *dtrace_devi; /* device info */
166 static vmem_t *dtrace_arena; /* probe ID arena */
167 static vmem_t *dtrace_minor; /* minor number arena */
168 static taskq_t *dtrace_taskq; /* task queue */
169 static dtrace_probe_t **dtrace_probes; /* array of all probes */
170 static int dtrace_nprobes; /* number of probes */
171 static dtrace_provider_t *dtrace_provider; /* provider list */
172 static dtrace_meta_t *dtrace_meta_pid; /* user-land meta provider */
173 static int dtrace_opens; /* number of opens */
174 static int dtrace_helpers; /* number of helpers */
175 static int dtrace_getf; /* number of unpriv getf()s */
176 static void *dtrace_softstate; /* softstate pointer */
177 static dtrace_hash_t *dtrace_bymod; /* probes hashed by module */
178 static dtrace_hash_t *dtrace_byfunc; /* probes hashed by function */
179 static dtrace_hash_t *dtrace_byname; /* probes hashed by name */
180 static dtrace_toxrange_t *dtrace_toxrange; /* toxic range array */
181 static int dtrace_toxranges; /* number of toxic ranges */
182 static int dtrace_toxranges_max; /* size of toxic range array */
183 static dtrace_anon_t dtrace_anon; /* anonymous enabling */
184 static kmem_cache_t *dtrace_state_cache; /* cache for dynamic state */
185 static uint64_t dtrace_vtime_references; /* number of vtimestamp refs */
186 static kthread_t *dtrace_panicked; /* panicking thread */
187 static dtrace_ecb_t *dtrace_ecb_create_cache; /* cached created ECB */
188 static dtrace_genid_t dtrace_probegen; /* current probe generation */
189 static dtrace_helpers_t *dtrace_deferred_pid; /* deferred helper list */
190 static dtrace_enabling_t *dtrace_retained; /* list of retained enablings */
191 static dtrace_genid_t dtrace_retained_gen; /* current retained enab gen */
192 static dtrace_dynvar_t dtrace_dynhash_sink; /* end of dynamic hash chains */
193 static int dtrace_dynvar_failclean; /* dynvars failed to clean */
194
195 /*
196 * DTrace Locking
197 * DTrace is protected by three (relatively coarse-grained) locks:
198 *
199 * (1) dtrace_lock is required to manipulate essentially any DTrace state,
200 * including enabling state, probes, ECBs, consumer state, helper state,
201 * etc. Importantly, dtrace_lock is _not_ required when in probe context;
202 * probe context is lock-free -- synchronization is handled via the
203 * dtrace_sync() cross call mechanism.
204 *
205 * (2) dtrace_provider_lock is required when manipulating provider state, or
206 * when provider state must be held constant.
207 *
208 * (3) dtrace_meta_lock is required when manipulating meta provider state, or
209 * when meta provider state must be held constant.
210 *
211 * The lock ordering between these three locks is dtrace_meta_lock before
212 * dtrace_provider_lock before dtrace_lock. (In particular, there are
213 * several places where dtrace_provider_lock is held by the framework as it
214 * calls into the providers -- which then call back into the framework,
215 * grabbing dtrace_lock.)
216 *
217 * There are two other locks in the mix: mod_lock and cpu_lock. With respect
218 * to dtrace_provider_lock and dtrace_lock, cpu_lock continues its historical
219 * role as a coarse-grained lock; it is acquired before both of these locks.
220 * With respect to dtrace_meta_lock, its behavior is stranger: cpu_lock must
221 * be acquired _between_ dtrace_meta_lock and any other DTrace locks.
222 * mod_lock is similar with respect to dtrace_provider_lock in that it must be
223 * acquired _between_ dtrace_provider_lock and dtrace_lock.
224 */
225 static kmutex_t dtrace_lock; /* probe state lock */
226 static kmutex_t dtrace_provider_lock; /* provider state lock */
227 static kmutex_t dtrace_meta_lock; /* meta-provider state lock */
228
229 /*
230 * DTrace Provider Variables
231 *
232 * These are the variables relating to DTrace as a provider (that is, the
233 * provider of the BEGIN, END, and ERROR probes).
234 */
235 static dtrace_pattr_t dtrace_provider_attr = {
236 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
237 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
238 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
239 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
240 { DTRACE_STABILITY_STABLE, DTRACE_STABILITY_STABLE, DTRACE_CLASS_COMMON },
241 };
242
243 static void
dtrace_nullop(void)244 dtrace_nullop(void)
245 {}
246
247 static int
dtrace_enable_nullop(void)248 dtrace_enable_nullop(void)
249 {
250 return (0);
251 }
252
253 static dtrace_pops_t dtrace_provider_ops = {
254 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop,
255 (void (*)(void *, struct modctl *))dtrace_nullop,
256 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop,
257 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
258 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
259 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop,
260 NULL,
261 NULL,
262 NULL,
263 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop
264 };
265
266 static dtrace_id_t dtrace_probeid_begin; /* special BEGIN probe */
267 static dtrace_id_t dtrace_probeid_end; /* special END probe */
268 dtrace_id_t dtrace_probeid_error; /* special ERROR probe */
269
270 /*
271 * DTrace Helper Tracing Variables
272 *
273 * These variables should be set dynamically to enable helper tracing. The
274 * only variables that should be set are dtrace_helptrace_enable (which should
275 * be set to a non-zero value to allocate helper tracing buffers on the next
276 * open of /dev/dtrace) and dtrace_helptrace_disable (which should be set to a
277 * non-zero value to deallocate helper tracing buffers on the next close of
278 * /dev/dtrace). When (and only when) helper tracing is disabled, the
279 * buffer size may also be set via dtrace_helptrace_bufsize.
280 */
281 int dtrace_helptrace_enable = 0;
282 int dtrace_helptrace_disable = 0;
283 int dtrace_helptrace_bufsize = 16 * 1024 * 1024;
284 uint32_t dtrace_helptrace_nlocals;
285 static dtrace_helptrace_t *dtrace_helptrace_buffer;
286 static uint32_t dtrace_helptrace_next = 0;
287 static int dtrace_helptrace_wrapped = 0;
288
289 /*
290 * DTrace Error Hashing
291 *
292 * On DEBUG kernels, DTrace will track the errors that has seen in a hash
293 * table. This is very useful for checking coverage of tests that are
294 * expected to induce DIF or DOF processing errors, and may be useful for
295 * debugging problems in the DIF code generator or in DOF generation . The
296 * error hash may be examined with the ::dtrace_errhash MDB dcmd.
297 */
298 #ifdef DEBUG
299 static dtrace_errhash_t dtrace_errhash[DTRACE_ERRHASHSZ];
300 static const char *dtrace_errlast;
301 static kthread_t *dtrace_errthread;
302 static kmutex_t dtrace_errlock;
303 #endif
304
305 /*
306 * DTrace Macros and Constants
307 *
308 * These are various macros that are useful in various spots in the
309 * implementation, along with a few random constants that have no meaning
310 * outside of the implementation. There is no real structure to this cpp
311 * mishmash -- but is there ever?
312 */
313 #define DTRACE_HASHSTR(hash, probe) \
314 dtrace_hash_str(*((char **)((uintptr_t)(probe) + (hash)->dth_stroffs)))
315
316 #define DTRACE_HASHNEXT(hash, probe) \
317 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_nextoffs)
318
319 #define DTRACE_HASHPREV(hash, probe) \
320 (dtrace_probe_t **)((uintptr_t)(probe) + (hash)->dth_prevoffs)
321
322 #define DTRACE_HASHEQ(hash, lhs, rhs) \
323 (strcmp(*((char **)((uintptr_t)(lhs) + (hash)->dth_stroffs)), \
324 *((char **)((uintptr_t)(rhs) + (hash)->dth_stroffs))) == 0)
325
326 #define DTRACE_AGGHASHSIZE_SLEW 17
327
328 #define DTRACE_V4MAPPED_OFFSET (sizeof (uint32_t) * 3)
329
330 /*
331 * The key for a thread-local variable consists of the lower 61 bits of the
332 * t_did, plus the 3 bits of the highest active interrupt above LOCK_LEVEL.
333 * We add DIF_VARIABLE_MAX to t_did to assure that the thread key is never
334 * equal to a variable identifier. This is necessary (but not sufficient) to
335 * assure that global associative arrays never collide with thread-local
336 * variables. To guarantee that they cannot collide, we must also define the
337 * order for keying dynamic variables. That order is:
338 *
339 * [ key0 ] ... [ keyn ] [ variable-key ] [ tls-key ]
340 *
341 * Because the variable-key and the tls-key are in orthogonal spaces, there is
342 * no way for a global variable key signature to match a thread-local key
343 * signature.
344 */
345 #define DTRACE_TLS_THRKEY(where) { \
346 uint_t intr = 0; \
347 uint_t actv = CPU->cpu_intr_actv >> (LOCK_LEVEL + 1); \
348 for (; actv; actv >>= 1) \
349 intr++; \
350 ASSERT(intr < (1 << 3)); \
351 (where) = ((curthread->t_did + DIF_VARIABLE_MAX) & \
352 (((uint64_t)1 << 61) - 1)) | ((uint64_t)intr << 61); \
353 }
354
355 #define DT_BSWAP_8(x) ((x) & 0xff)
356 #define DT_BSWAP_16(x) ((DT_BSWAP_8(x) << 8) | DT_BSWAP_8((x) >> 8))
357 #define DT_BSWAP_32(x) ((DT_BSWAP_16(x) << 16) | DT_BSWAP_16((x) >> 16))
358 #define DT_BSWAP_64(x) ((DT_BSWAP_32(x) << 32) | DT_BSWAP_32((x) >> 32))
359
360 #define DT_MASK_LO 0x00000000FFFFFFFFULL
361
362 #define DTRACE_STORE(type, tomax, offset, what) \
363 *((type *)((uintptr_t)(tomax) + (uintptr_t)offset)) = (type)(what);
364
365 #ifndef __x86
366 #define DTRACE_ALIGNCHECK(addr, size, flags) \
367 if (addr & (size - 1)) { \
368 *flags |= CPU_DTRACE_BADALIGN; \
369 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
370 return (0); \
371 }
372 #else
373 #define DTRACE_ALIGNCHECK(addr, size, flags)
374 #endif
375
376 /*
377 * Test whether a range of memory starting at testaddr of size testsz falls
378 * within the range of memory described by addr, sz. We take care to avoid
379 * problems with overflow and underflow of the unsigned quantities, and
380 * disallow all negative sizes. Ranges of size 0 are allowed.
381 */
382 #define DTRACE_INRANGE(testaddr, testsz, baseaddr, basesz) \
383 ((testaddr) - (uintptr_t)(baseaddr) < (basesz) && \
384 (testaddr) + (testsz) - (uintptr_t)(baseaddr) <= (basesz) && \
385 (testaddr) + (testsz) >= (testaddr))
386
387 /*
388 * Test whether alloc_sz bytes will fit in the scratch region. We isolate
389 * alloc_sz on the righthand side of the comparison in order to avoid overflow
390 * or underflow in the comparison with it. This is simpler than the INRANGE
391 * check above, because we know that the dtms_scratch_ptr is valid in the
392 * range. Allocations of size zero are allowed.
393 */
394 #define DTRACE_INSCRATCH(mstate, alloc_sz) \
395 ((mstate)->dtms_scratch_base + (mstate)->dtms_scratch_size - \
396 (mstate)->dtms_scratch_ptr >= (alloc_sz))
397
398 #define DTRACE_LOADFUNC(bits) \
399 /*CSTYLED*/ \
400 uint##bits##_t \
401 dtrace_load##bits(uintptr_t addr) \
402 { \
403 size_t size = bits / NBBY; \
404 /*CSTYLED*/ \
405 uint##bits##_t rval; \
406 int i; \
407 volatile uint16_t *flags = (volatile uint16_t *) \
408 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags; \
409 \
410 DTRACE_ALIGNCHECK(addr, size, flags); \
411 \
412 for (i = 0; i < dtrace_toxranges; i++) { \
413 if (addr >= dtrace_toxrange[i].dtt_limit) \
414 continue; \
415 \
416 if (addr + size <= dtrace_toxrange[i].dtt_base) \
417 continue; \
418 \
419 /* \
420 * This address falls within a toxic region; return 0. \
421 */ \
422 *flags |= CPU_DTRACE_BADADDR; \
423 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = addr; \
424 return (0); \
425 } \
426 \
427 *flags |= CPU_DTRACE_NOFAULT; \
428 /*CSTYLED*/ \
429 rval = *((volatile uint##bits##_t *)addr); \
430 *flags &= ~CPU_DTRACE_NOFAULT; \
431 \
432 return (!(*flags & CPU_DTRACE_FAULT) ? rval : 0); \
433 }
434
435 #ifdef _LP64
436 #define dtrace_loadptr dtrace_load64
437 #else
438 #define dtrace_loadptr dtrace_load32
439 #endif
440
441 #define DTRACE_DYNHASH_FREE 0
442 #define DTRACE_DYNHASH_SINK 1
443 #define DTRACE_DYNHASH_VALID 2
444
445 #define DTRACE_MATCH_FAIL -1
446 #define DTRACE_MATCH_NEXT 0
447 #define DTRACE_MATCH_DONE 1
448 #define DTRACE_ANCHORED(probe) ((probe)->dtpr_func[0] != '\0')
449 #define DTRACE_STATE_ALIGN 64
450
451 #define DTRACE_FLAGS2FLT(flags) \
452 (((flags) & CPU_DTRACE_BADADDR) ? DTRACEFLT_BADADDR : \
453 ((flags) & CPU_DTRACE_ILLOP) ? DTRACEFLT_ILLOP : \
454 ((flags) & CPU_DTRACE_DIVZERO) ? DTRACEFLT_DIVZERO : \
455 ((flags) & CPU_DTRACE_KPRIV) ? DTRACEFLT_KPRIV : \
456 ((flags) & CPU_DTRACE_UPRIV) ? DTRACEFLT_UPRIV : \
457 ((flags) & CPU_DTRACE_TUPOFLOW) ? DTRACEFLT_TUPOFLOW : \
458 ((flags) & CPU_DTRACE_BADALIGN) ? DTRACEFLT_BADALIGN : \
459 ((flags) & CPU_DTRACE_NOSCRATCH) ? DTRACEFLT_NOSCRATCH : \
460 ((flags) & CPU_DTRACE_BADSTACK) ? DTRACEFLT_BADSTACK : \
461 DTRACEFLT_UNKNOWN)
462
463 #define DTRACEACT_ISSTRING(act) \
464 ((act)->dta_kind == DTRACEACT_DIFEXPR && \
465 (act)->dta_difo->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING)
466
467 static size_t dtrace_strlen(const char *, size_t);
468 static dtrace_probe_t *dtrace_probe_lookup_id(dtrace_id_t id);
469 static void dtrace_enabling_provide(dtrace_provider_t *);
470 static int dtrace_enabling_match(dtrace_enabling_t *, int *);
471 static void dtrace_enabling_matchall(void);
472 static void dtrace_enabling_reap(void);
473 static dtrace_state_t *dtrace_anon_grab(void);
474 static uint64_t dtrace_helper(int, dtrace_mstate_t *,
475 dtrace_state_t *, uint64_t, uint64_t);
476 static dtrace_helpers_t *dtrace_helpers_create(proc_t *);
477 static void dtrace_buffer_drop(dtrace_buffer_t *);
478 static int dtrace_buffer_consumed(dtrace_buffer_t *, hrtime_t when);
479 static intptr_t dtrace_buffer_reserve(dtrace_buffer_t *, size_t, size_t,
480 dtrace_state_t *, dtrace_mstate_t *);
481 static int dtrace_state_option(dtrace_state_t *, dtrace_optid_t,
482 dtrace_optval_t);
483 static int dtrace_ecb_create_enable(dtrace_probe_t *, void *);
484 static void dtrace_helper_provider_destroy(dtrace_helper_provider_t *);
485 static int dtrace_priv_proc(dtrace_state_t *, dtrace_mstate_t *);
486 static void dtrace_getf_barrier(void);
487
488 /*
489 * DTrace Probe Context Functions
490 *
491 * These functions are called from probe context. Because probe context is
492 * any context in which C may be called, arbitrarily locks may be held,
493 * interrupts may be disabled, we may be in arbitrary dispatched state, etc.
494 * As a result, functions called from probe context may only call other DTrace
495 * support functions -- they may not interact at all with the system at large.
496 * (Note that the ASSERT macro is made probe-context safe by redefining it in
497 * terms of dtrace_assfail(), a probe-context safe function.) If arbitrary
498 * loads are to be performed from probe context, they _must_ be in terms of
499 * the safe dtrace_load*() variants.
500 *
501 * Some functions in this block are not actually called from probe context;
502 * for these functions, there will be a comment above the function reading
503 * "Note: not called from probe context."
504 */
505 void
dtrace_panic(const char * format,...)506 dtrace_panic(const char *format, ...)
507 {
508 va_list alist;
509
510 va_start(alist, format);
511 dtrace_vpanic(format, alist);
512 va_end(alist);
513 }
514
515 int
dtrace_assfail(const char * a,const char * f,int l)516 dtrace_assfail(const char *a, const char *f, int l)
517 {
518 dtrace_panic("assertion failed: %s, file: %s, line: %d", a, f, l);
519
520 /*
521 * We just need something here that even the most clever compiler
522 * cannot optimize away.
523 */
524 return (a[(uintptr_t)f]);
525 }
526
527 /*
528 * Atomically increment a specified error counter from probe context.
529 */
530 static void
dtrace_error(uint32_t * counter)531 dtrace_error(uint32_t *counter)
532 {
533 /*
534 * Most counters stored to in probe context are per-CPU counters.
535 * However, there are some error conditions that are sufficiently
536 * arcane that they don't merit per-CPU storage. If these counters
537 * are incremented concurrently on different CPUs, scalability will be
538 * adversely affected -- but we don't expect them to be white-hot in a
539 * correctly constructed enabling...
540 */
541 uint32_t oval, nval;
542
543 do {
544 oval = *counter;
545
546 if ((nval = oval + 1) == 0) {
547 /*
548 * If the counter would wrap, set it to 1 -- assuring
549 * that the counter is never zero when we have seen
550 * errors. (The counter must be 32-bits because we
551 * aren't guaranteed a 64-bit compare&swap operation.)
552 * To save this code both the infamy of being fingered
553 * by a priggish news story and the indignity of being
554 * the target of a neo-puritan witch trial, we're
555 * carefully avoiding any colorful description of the
556 * likelihood of this condition -- but suffice it to
557 * say that it is only slightly more likely than the
558 * overflow of predicate cache IDs, as discussed in
559 * dtrace_predicate_create().
560 */
561 nval = 1;
562 }
563 } while (dtrace_cas32(counter, oval, nval) != oval);
564 }
565
566 /*
567 * Use the DTRACE_LOADFUNC macro to define functions for each of loading a
568 * uint8_t, a uint16_t, a uint32_t and a uint64_t.
569 */
570 /* BEGIN CSTYLED */
571 DTRACE_LOADFUNC(8)
572 DTRACE_LOADFUNC(16)
573 DTRACE_LOADFUNC(32)
574 DTRACE_LOADFUNC(64)
575 /* END CSTYLED */
576
577 static int
dtrace_inscratch(uintptr_t dest,size_t size,dtrace_mstate_t * mstate)578 dtrace_inscratch(uintptr_t dest, size_t size, dtrace_mstate_t *mstate)
579 {
580 if (dest < mstate->dtms_scratch_base)
581 return (0);
582
583 if (dest + size < dest)
584 return (0);
585
586 if (dest + size > mstate->dtms_scratch_ptr)
587 return (0);
588
589 return (1);
590 }
591
592 static int
dtrace_canstore_statvar(uint64_t addr,size_t sz,dtrace_statvar_t ** svars,int nsvars)593 dtrace_canstore_statvar(uint64_t addr, size_t sz,
594 dtrace_statvar_t **svars, int nsvars)
595 {
596 int i;
597 size_t maxglobalsize, maxlocalsize;
598
599 if (nsvars == 0)
600 return (0);
601
602 maxglobalsize = dtrace_statvar_maxsize + sizeof (uint64_t);
603 maxlocalsize = maxglobalsize * NCPU;
604
605 for (i = 0; i < nsvars; i++) {
606 dtrace_statvar_t *svar = svars[i];
607 uint8_t scope;
608 size_t size;
609
610 if (svar == NULL || (size = svar->dtsv_size) == 0)
611 continue;
612
613 scope = svar->dtsv_var.dtdv_scope;
614
615 /*
616 * We verify that our size is valid in the spirit of providing
617 * defense in depth: we want to prevent attackers from using
618 * DTrace to escalate an orthogonal kernel heap corruption bug
619 * into the ability to store to arbitrary locations in memory.
620 */
621 VERIFY((scope == DIFV_SCOPE_GLOBAL && size <= maxglobalsize) ||
622 (scope == DIFV_SCOPE_LOCAL && size <= maxlocalsize));
623
624 if (DTRACE_INRANGE(addr, sz, svar->dtsv_data, svar->dtsv_size))
625 return (1);
626 }
627
628 return (0);
629 }
630
631 /*
632 * Check to see if the address is within a memory region to which a store may
633 * be issued. This includes the DTrace scratch areas, and any DTrace variable
634 * region. The caller of dtrace_canstore() is responsible for performing any
635 * alignment checks that are needed before stores are actually executed.
636 */
637 static int
dtrace_canstore(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)638 dtrace_canstore(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
639 dtrace_vstate_t *vstate)
640 {
641 /*
642 * First, check to see if the address is in scratch space...
643 */
644 if (DTRACE_INRANGE(addr, sz, mstate->dtms_scratch_base,
645 mstate->dtms_scratch_size))
646 return (1);
647
648 /*
649 * Now check to see if it's a dynamic variable. This check will pick
650 * up both thread-local variables and any global dynamically-allocated
651 * variables.
652 */
653 if (DTRACE_INRANGE(addr, sz, vstate->dtvs_dynvars.dtds_base,
654 vstate->dtvs_dynvars.dtds_size)) {
655 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
656 uintptr_t base = (uintptr_t)dstate->dtds_base +
657 (dstate->dtds_hashsize * sizeof (dtrace_dynhash_t));
658 uintptr_t chunkoffs;
659 dtrace_dynvar_t *dvar;
660
661 /*
662 * Before we assume that we can store here, we need to make
663 * sure that it isn't in our metadata -- storing to our
664 * dynamic variable metadata would corrupt our state. For
665 * the range to not include any dynamic variable metadata,
666 * it must:
667 *
668 * (1) Start above the hash table that is at the base of
669 * the dynamic variable space
670 *
671 * (2) Have a starting chunk offset that is beyond the
672 * dtrace_dynvar_t that is at the base of every chunk
673 *
674 * (3) Not span a chunk boundary
675 *
676 * (4) Not be in the tuple space of a dynamic variable
677 *
678 */
679 if (addr < base)
680 return (0);
681
682 chunkoffs = (addr - base) % dstate->dtds_chunksize;
683
684 if (chunkoffs < sizeof (dtrace_dynvar_t))
685 return (0);
686
687 if (chunkoffs + sz > dstate->dtds_chunksize)
688 return (0);
689
690 dvar = (dtrace_dynvar_t *)((uintptr_t)addr - chunkoffs);
691
692 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE)
693 return (0);
694
695 if (chunkoffs < sizeof (dtrace_dynvar_t) +
696 ((dvar->dtdv_tuple.dtt_nkeys - 1) * sizeof (dtrace_key_t)))
697 return (0);
698
699 return (1);
700 }
701
702 /*
703 * Finally, check the static local and global variables. These checks
704 * take the longest, so we perform them last.
705 */
706 if (dtrace_canstore_statvar(addr, sz,
707 vstate->dtvs_locals, vstate->dtvs_nlocals))
708 return (1);
709
710 if (dtrace_canstore_statvar(addr, sz,
711 vstate->dtvs_globals, vstate->dtvs_nglobals))
712 return (1);
713
714 return (0);
715 }
716
717
718 /*
719 * Convenience routine to check to see if the address is within a memory
720 * region in which a load may be issued given the user's privilege level;
721 * if not, it sets the appropriate error flags and loads 'addr' into the
722 * illegal value slot.
723 *
724 * DTrace subroutines (DIF_SUBR_*) should use this helper to implement
725 * appropriate memory access protection.
726 */
727 static int
dtrace_canload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)728 dtrace_canload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
729 dtrace_vstate_t *vstate)
730 {
731 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
732 file_t *fp;
733
734 /*
735 * If we hold the privilege to read from kernel memory, then
736 * everything is readable.
737 */
738 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
739 return (1);
740
741 /*
742 * You can obviously read that which you can store.
743 */
744 if (dtrace_canstore(addr, sz, mstate, vstate))
745 return (1);
746
747 /*
748 * We're allowed to read from our own string table.
749 */
750 if (DTRACE_INRANGE(addr, sz, mstate->dtms_difo->dtdo_strtab,
751 mstate->dtms_difo->dtdo_strlen))
752 return (1);
753
754 if (vstate->dtvs_state != NULL &&
755 dtrace_priv_proc(vstate->dtvs_state, mstate)) {
756 proc_t *p;
757
758 /*
759 * When we have privileges to the current process, there are
760 * several context-related kernel structures that are safe to
761 * read, even absent the privilege to read from kernel memory.
762 * These reads are safe because these structures contain only
763 * state that (1) we're permitted to read, (2) is harmless or
764 * (3) contains pointers to additional kernel state that we're
765 * not permitted to read (and as such, do not present an
766 * opportunity for privilege escalation). Finally (and
767 * critically), because of the nature of their relation with
768 * the current thread context, the memory associated with these
769 * structures cannot change over the duration of probe context,
770 * and it is therefore impossible for this memory to be
771 * deallocated and reallocated as something else while it's
772 * being operated upon.
773 */
774 if (DTRACE_INRANGE(addr, sz, curthread, sizeof (kthread_t)))
775 return (1);
776
777 if ((p = curthread->t_procp) != NULL && DTRACE_INRANGE(addr,
778 sz, curthread->t_procp, sizeof (proc_t))) {
779 return (1);
780 }
781
782 if (curthread->t_cred != NULL && DTRACE_INRANGE(addr, sz,
783 curthread->t_cred, sizeof (cred_t))) {
784 return (1);
785 }
786
787 if (p != NULL && p->p_pidp != NULL && DTRACE_INRANGE(addr, sz,
788 &(p->p_pidp->pid_id), sizeof (pid_t))) {
789 return (1);
790 }
791
792 if (curthread->t_cpu != NULL && DTRACE_INRANGE(addr, sz,
793 curthread->t_cpu, offsetof(cpu_t, cpu_pause_thread))) {
794 return (1);
795 }
796 }
797
798 if ((fp = mstate->dtms_getf) != NULL) {
799 uintptr_t psz = sizeof (void *);
800 vnode_t *vp;
801 vnodeops_t *op;
802
803 /*
804 * When getf() returns a file_t, the enabling is implicitly
805 * granted the (transient) right to read the returned file_t
806 * as well as the v_path and v_op->vnop_name of the underlying
807 * vnode. These accesses are allowed after a successful
808 * getf() because the members that they refer to cannot change
809 * once set -- and the barrier logic in the kernel's closef()
810 * path assures that the file_t and its referenced vode_t
811 * cannot themselves be stale (that is, it impossible for
812 * either dtms_getf itself or its f_vnode member to reference
813 * freed memory).
814 */
815 if (DTRACE_INRANGE(addr, sz, fp, sizeof (file_t)))
816 return (1);
817
818 if ((vp = fp->f_vnode) != NULL) {
819 if (DTRACE_INRANGE(addr, sz, &vp->v_path, psz))
820 return (1);
821
822 if (vp->v_path != NULL && DTRACE_INRANGE(addr, sz,
823 vp->v_path, strlen(vp->v_path) + 1)) {
824 return (1);
825 }
826
827 if (DTRACE_INRANGE(addr, sz, &vp->v_op, psz))
828 return (1);
829
830 if ((op = vp->v_op) != NULL &&
831 DTRACE_INRANGE(addr, sz, &op->vnop_name, psz)) {
832 return (1);
833 }
834
835 if (op != NULL && op->vnop_name != NULL &&
836 DTRACE_INRANGE(addr, sz, op->vnop_name,
837 strlen(op->vnop_name) + 1)) {
838 return (1);
839 }
840 }
841 }
842
843 DTRACE_CPUFLAG_SET(CPU_DTRACE_KPRIV);
844 *illval = addr;
845 return (0);
846 }
847
848 /*
849 * Convenience routine to check to see if a given string is within a memory
850 * region in which a load may be issued given the user's privilege level;
851 * this exists so that we don't need to issue unnecessary dtrace_strlen()
852 * calls in the event that the user has all privileges.
853 */
854 static int
dtrace_strcanload(uint64_t addr,size_t sz,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)855 dtrace_strcanload(uint64_t addr, size_t sz, dtrace_mstate_t *mstate,
856 dtrace_vstate_t *vstate)
857 {
858 size_t strsz;
859
860 /*
861 * If we hold the privilege to read from kernel memory, then
862 * everything is readable.
863 */
864 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
865 return (1);
866
867 strsz = 1 + dtrace_strlen((char *)(uintptr_t)addr, sz);
868 if (dtrace_canload(addr, strsz, mstate, vstate))
869 return (1);
870
871 return (0);
872 }
873
874 /*
875 * Convenience routine to check to see if a given variable is within a memory
876 * region in which a load may be issued given the user's privilege level.
877 */
878 static int
dtrace_vcanload(void * src,dtrace_diftype_t * type,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)879 dtrace_vcanload(void *src, dtrace_diftype_t *type, dtrace_mstate_t *mstate,
880 dtrace_vstate_t *vstate)
881 {
882 size_t sz;
883 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
884
885 /*
886 * If we hold the privilege to read from kernel memory, then
887 * everything is readable.
888 */
889 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
890 return (1);
891
892 if (type->dtdt_kind == DIF_TYPE_STRING)
893 sz = dtrace_strlen(src,
894 vstate->dtvs_state->dts_options[DTRACEOPT_STRSIZE]) + 1;
895 else
896 sz = type->dtdt_size;
897
898 return (dtrace_canload((uintptr_t)src, sz, mstate, vstate));
899 }
900
901 /*
902 * Convert a string to a signed integer using safe loads.
903 *
904 * NOTE: This function uses various macros from strtolctype.h to manipulate
905 * digit values, etc -- these have all been checked to ensure they make
906 * no additional function calls.
907 */
908 static int64_t
dtrace_strtoll(char * input,int base,size_t limit)909 dtrace_strtoll(char *input, int base, size_t limit)
910 {
911 uintptr_t pos = (uintptr_t)input;
912 int64_t val = 0;
913 int x;
914 boolean_t neg = B_FALSE;
915 char c, cc, ccc;
916 uintptr_t end = pos + limit;
917
918 /*
919 * Consume any whitespace preceding digits.
920 */
921 while ((c = dtrace_load8(pos)) == ' ' || c == '\t')
922 pos++;
923
924 /*
925 * Handle an explicit sign if one is present.
926 */
927 if (c == '-' || c == '+') {
928 if (c == '-')
929 neg = B_TRUE;
930 c = dtrace_load8(++pos);
931 }
932
933 /*
934 * Check for an explicit hexadecimal prefix ("0x" or "0X") and skip it
935 * if present.
936 */
937 if (base == 16 && c == '0' && ((cc = dtrace_load8(pos + 1)) == 'x' ||
938 cc == 'X') && isxdigit(ccc = dtrace_load8(pos + 2))) {
939 pos += 2;
940 c = ccc;
941 }
942
943 /*
944 * Read in contiguous digits until the first non-digit character.
945 */
946 for (; pos < end && c != '\0' && lisalnum(c) && (x = DIGIT(c)) < base;
947 c = dtrace_load8(++pos))
948 val = val * base + x;
949
950 return (neg ? -val : val);
951 }
952
953 /*
954 * Compare two strings using safe loads.
955 */
956 static int
dtrace_strncmp(char * s1,char * s2,size_t limit)957 dtrace_strncmp(char *s1, char *s2, size_t limit)
958 {
959 uint8_t c1, c2;
960 volatile uint16_t *flags;
961
962 if (s1 == s2 || limit == 0)
963 return (0);
964
965 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
966
967 do {
968 if (s1 == NULL) {
969 c1 = '\0';
970 } else {
971 c1 = dtrace_load8((uintptr_t)s1++);
972 }
973
974 if (s2 == NULL) {
975 c2 = '\0';
976 } else {
977 c2 = dtrace_load8((uintptr_t)s2++);
978 }
979
980 if (c1 != c2)
981 return (c1 - c2);
982 } while (--limit && c1 != '\0' && !(*flags & CPU_DTRACE_FAULT));
983
984 return (0);
985 }
986
987 /*
988 * Compute strlen(s) for a string using safe memory accesses. The additional
989 * len parameter is used to specify a maximum length to ensure completion.
990 */
991 static size_t
dtrace_strlen(const char * s,size_t lim)992 dtrace_strlen(const char *s, size_t lim)
993 {
994 uint_t len;
995
996 for (len = 0; len != lim; len++) {
997 if (dtrace_load8((uintptr_t)s++) == '\0')
998 break;
999 }
1000
1001 return (len);
1002 }
1003
1004 /*
1005 * Check if an address falls within a toxic region.
1006 */
1007 static int
dtrace_istoxic(uintptr_t kaddr,size_t size)1008 dtrace_istoxic(uintptr_t kaddr, size_t size)
1009 {
1010 uintptr_t taddr, tsize;
1011 int i;
1012
1013 for (i = 0; i < dtrace_toxranges; i++) {
1014 taddr = dtrace_toxrange[i].dtt_base;
1015 tsize = dtrace_toxrange[i].dtt_limit - taddr;
1016
1017 if (kaddr - taddr < tsize) {
1018 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1019 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = kaddr;
1020 return (1);
1021 }
1022
1023 if (taddr - kaddr < size) {
1024 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
1025 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = taddr;
1026 return (1);
1027 }
1028 }
1029
1030 return (0);
1031 }
1032
1033 /*
1034 * Copy src to dst using safe memory accesses. The src is assumed to be unsafe
1035 * memory specified by the DIF program. The dst is assumed to be safe memory
1036 * that we can store to directly because it is managed by DTrace. As with
1037 * standard bcopy, overlapping copies are handled properly.
1038 */
1039 static void
dtrace_bcopy(const void * src,void * dst,size_t len)1040 dtrace_bcopy(const void *src, void *dst, size_t len)
1041 {
1042 if (len != 0) {
1043 uint8_t *s1 = dst;
1044 const uint8_t *s2 = src;
1045
1046 if (s1 <= s2) {
1047 do {
1048 *s1++ = dtrace_load8((uintptr_t)s2++);
1049 } while (--len != 0);
1050 } else {
1051 s2 += len;
1052 s1 += len;
1053
1054 do {
1055 *--s1 = dtrace_load8((uintptr_t)--s2);
1056 } while (--len != 0);
1057 }
1058 }
1059 }
1060
1061 /*
1062 * Copy src to dst using safe memory accesses, up to either the specified
1063 * length, or the point that a nul byte is encountered. The src is assumed to
1064 * be unsafe memory specified by the DIF program. The dst is assumed to be
1065 * safe memory that we can store to directly because it is managed by DTrace.
1066 * Unlike dtrace_bcopy(), overlapping regions are not handled.
1067 */
1068 static void
dtrace_strcpy(const void * src,void * dst,size_t len)1069 dtrace_strcpy(const void *src, void *dst, size_t len)
1070 {
1071 if (len != 0) {
1072 uint8_t *s1 = dst, c;
1073 const uint8_t *s2 = src;
1074
1075 do {
1076 *s1++ = c = dtrace_load8((uintptr_t)s2++);
1077 } while (--len != 0 && c != '\0');
1078 }
1079 }
1080
1081 /*
1082 * Copy src to dst, deriving the size and type from the specified (BYREF)
1083 * variable type. The src is assumed to be unsafe memory specified by the DIF
1084 * program. The dst is assumed to be DTrace variable memory that is of the
1085 * specified type; we assume that we can store to directly.
1086 */
1087 static void
dtrace_vcopy(void * src,void * dst,dtrace_diftype_t * type)1088 dtrace_vcopy(void *src, void *dst, dtrace_diftype_t *type)
1089 {
1090 ASSERT(type->dtdt_flags & DIF_TF_BYREF);
1091
1092 if (type->dtdt_kind == DIF_TYPE_STRING) {
1093 dtrace_strcpy(src, dst, type->dtdt_size);
1094 } else {
1095 dtrace_bcopy(src, dst, type->dtdt_size);
1096 }
1097 }
1098
1099 /*
1100 * Compare s1 to s2 using safe memory accesses. The s1 data is assumed to be
1101 * unsafe memory specified by the DIF program. The s2 data is assumed to be
1102 * safe memory that we can access directly because it is managed by DTrace.
1103 */
1104 static int
dtrace_bcmp(const void * s1,const void * s2,size_t len)1105 dtrace_bcmp(const void *s1, const void *s2, size_t len)
1106 {
1107 volatile uint16_t *flags;
1108
1109 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
1110
1111 if (s1 == s2)
1112 return (0);
1113
1114 if (s1 == NULL || s2 == NULL)
1115 return (1);
1116
1117 if (s1 != s2 && len != 0) {
1118 const uint8_t *ps1 = s1;
1119 const uint8_t *ps2 = s2;
1120
1121 do {
1122 if (dtrace_load8((uintptr_t)ps1++) != *ps2++)
1123 return (1);
1124 } while (--len != 0 && !(*flags & CPU_DTRACE_FAULT));
1125 }
1126 return (0);
1127 }
1128
1129 /*
1130 * Zero the specified region using a simple byte-by-byte loop. Note that this
1131 * is for safe DTrace-managed memory only.
1132 */
1133 static void
dtrace_bzero(void * dst,size_t len)1134 dtrace_bzero(void *dst, size_t len)
1135 {
1136 uchar_t *cp;
1137
1138 for (cp = dst; len != 0; len--)
1139 *cp++ = 0;
1140 }
1141
1142 static void
dtrace_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)1143 dtrace_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
1144 {
1145 uint64_t result[2];
1146
1147 result[0] = addend1[0] + addend2[0];
1148 result[1] = addend1[1] + addend2[1] +
1149 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
1150
1151 sum[0] = result[0];
1152 sum[1] = result[1];
1153 }
1154
1155 /*
1156 * Shift the 128-bit value in a by b. If b is positive, shift left.
1157 * If b is negative, shift right.
1158 */
1159 static void
dtrace_shift_128(uint64_t * a,int b)1160 dtrace_shift_128(uint64_t *a, int b)
1161 {
1162 uint64_t mask;
1163
1164 if (b == 0)
1165 return;
1166
1167 if (b < 0) {
1168 b = -b;
1169 if (b >= 64) {
1170 a[0] = a[1] >> (b - 64);
1171 a[1] = 0;
1172 } else {
1173 a[0] >>= b;
1174 mask = 1LL << (64 - b);
1175 mask -= 1;
1176 a[0] |= ((a[1] & mask) << (64 - b));
1177 a[1] >>= b;
1178 }
1179 } else {
1180 if (b >= 64) {
1181 a[1] = a[0] << (b - 64);
1182 a[0] = 0;
1183 } else {
1184 a[1] <<= b;
1185 mask = a[0] >> (64 - b);
1186 a[1] |= mask;
1187 a[0] <<= b;
1188 }
1189 }
1190 }
1191
1192 /*
1193 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
1194 * use native multiplication on those, and then re-combine into the
1195 * resulting 128-bit value.
1196 *
1197 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
1198 * hi1 * hi2 << 64 +
1199 * hi1 * lo2 << 32 +
1200 * hi2 * lo1 << 32 +
1201 * lo1 * lo2
1202 */
1203 static void
dtrace_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)1204 dtrace_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
1205 {
1206 uint64_t hi1, hi2, lo1, lo2;
1207 uint64_t tmp[2];
1208
1209 hi1 = factor1 >> 32;
1210 hi2 = factor2 >> 32;
1211
1212 lo1 = factor1 & DT_MASK_LO;
1213 lo2 = factor2 & DT_MASK_LO;
1214
1215 product[0] = lo1 * lo2;
1216 product[1] = hi1 * hi2;
1217
1218 tmp[0] = hi1 * lo2;
1219 tmp[1] = 0;
1220 dtrace_shift_128(tmp, 32);
1221 dtrace_add_128(product, tmp, product);
1222
1223 tmp[0] = hi2 * lo1;
1224 tmp[1] = 0;
1225 dtrace_shift_128(tmp, 32);
1226 dtrace_add_128(product, tmp, product);
1227 }
1228
1229 /*
1230 * This privilege check should be used by actions and subroutines to
1231 * verify that the user credentials of the process that enabled the
1232 * invoking ECB match the target credentials
1233 */
1234 static int
dtrace_priv_proc_common_user(dtrace_state_t * state)1235 dtrace_priv_proc_common_user(dtrace_state_t *state)
1236 {
1237 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1238
1239 /*
1240 * We should always have a non-NULL state cred here, since if cred
1241 * is null (anonymous tracing), we fast-path bypass this routine.
1242 */
1243 ASSERT(s_cr != NULL);
1244
1245 if ((cr = CRED()) != NULL &&
1246 s_cr->cr_uid == cr->cr_uid &&
1247 s_cr->cr_uid == cr->cr_ruid &&
1248 s_cr->cr_uid == cr->cr_suid &&
1249 s_cr->cr_gid == cr->cr_gid &&
1250 s_cr->cr_gid == cr->cr_rgid &&
1251 s_cr->cr_gid == cr->cr_sgid)
1252 return (1);
1253
1254 return (0);
1255 }
1256
1257 /*
1258 * This privilege check should be used by actions and subroutines to
1259 * verify that the zone of the process that enabled the invoking ECB
1260 * matches the target credentials
1261 */
1262 static int
dtrace_priv_proc_common_zone(dtrace_state_t * state)1263 dtrace_priv_proc_common_zone(dtrace_state_t *state)
1264 {
1265 cred_t *cr, *s_cr = state->dts_cred.dcr_cred;
1266
1267 /*
1268 * We should always have a non-NULL state cred here, since if cred
1269 * is null (anonymous tracing), we fast-path bypass this routine.
1270 */
1271 ASSERT(s_cr != NULL);
1272
1273 if ((cr = CRED()) != NULL && s_cr->cr_zone == cr->cr_zone)
1274 return (1);
1275
1276 return (0);
1277 }
1278
1279 /*
1280 * This privilege check should be used by actions and subroutines to
1281 * verify that the process has not setuid or changed credentials.
1282 */
1283 static int
dtrace_priv_proc_common_nocd()1284 dtrace_priv_proc_common_nocd()
1285 {
1286 proc_t *proc;
1287
1288 if ((proc = ttoproc(curthread)) != NULL &&
1289 !(proc->p_flag & SNOCD))
1290 return (1);
1291
1292 return (0);
1293 }
1294
1295 static int
dtrace_priv_proc_destructive(dtrace_state_t * state,dtrace_mstate_t * mstate)1296 dtrace_priv_proc_destructive(dtrace_state_t *state, dtrace_mstate_t *mstate)
1297 {
1298 int action = state->dts_cred.dcr_action;
1299
1300 if (!(mstate->dtms_access & DTRACE_ACCESS_PROC))
1301 goto bad;
1302
1303 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE) == 0) &&
1304 dtrace_priv_proc_common_zone(state) == 0)
1305 goto bad;
1306
1307 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER) == 0) &&
1308 dtrace_priv_proc_common_user(state) == 0)
1309 goto bad;
1310
1311 if (((action & DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG) == 0) &&
1312 dtrace_priv_proc_common_nocd() == 0)
1313 goto bad;
1314
1315 return (1);
1316
1317 bad:
1318 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1319
1320 return (0);
1321 }
1322
1323 static int
dtrace_priv_proc_control(dtrace_state_t * state,dtrace_mstate_t * mstate)1324 dtrace_priv_proc_control(dtrace_state_t *state, dtrace_mstate_t *mstate)
1325 {
1326 if (mstate->dtms_access & DTRACE_ACCESS_PROC) {
1327 if (state->dts_cred.dcr_action & DTRACE_CRA_PROC_CONTROL)
1328 return (1);
1329
1330 if (dtrace_priv_proc_common_zone(state) &&
1331 dtrace_priv_proc_common_user(state) &&
1332 dtrace_priv_proc_common_nocd())
1333 return (1);
1334 }
1335
1336 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1337
1338 return (0);
1339 }
1340
1341 static int
dtrace_priv_proc(dtrace_state_t * state,dtrace_mstate_t * mstate)1342 dtrace_priv_proc(dtrace_state_t *state, dtrace_mstate_t *mstate)
1343 {
1344 if ((mstate->dtms_access & DTRACE_ACCESS_PROC) &&
1345 (state->dts_cred.dcr_action & DTRACE_CRA_PROC))
1346 return (1);
1347
1348 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_UPRIV;
1349
1350 return (0);
1351 }
1352
1353 static int
dtrace_priv_kernel(dtrace_state_t * state)1354 dtrace_priv_kernel(dtrace_state_t *state)
1355 {
1356 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL)
1357 return (1);
1358
1359 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1360
1361 return (0);
1362 }
1363
1364 static int
dtrace_priv_kernel_destructive(dtrace_state_t * state)1365 dtrace_priv_kernel_destructive(dtrace_state_t *state)
1366 {
1367 if (state->dts_cred.dcr_action & DTRACE_CRA_KERNEL_DESTRUCTIVE)
1368 return (1);
1369
1370 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= CPU_DTRACE_KPRIV;
1371
1372 return (0);
1373 }
1374
1375 /*
1376 * Determine if the dte_cond of the specified ECB allows for processing of
1377 * the current probe to continue. Note that this routine may allow continued
1378 * processing, but with access(es) stripped from the mstate's dtms_access
1379 * field.
1380 */
1381 static int
dtrace_priv_probe(dtrace_state_t * state,dtrace_mstate_t * mstate,dtrace_ecb_t * ecb)1382 dtrace_priv_probe(dtrace_state_t *state, dtrace_mstate_t *mstate,
1383 dtrace_ecb_t *ecb)
1384 {
1385 dtrace_probe_t *probe = ecb->dte_probe;
1386 dtrace_provider_t *prov = probe->dtpr_provider;
1387 dtrace_pops_t *pops = &prov->dtpv_pops;
1388 int mode = DTRACE_MODE_NOPRIV_DROP;
1389
1390 ASSERT(ecb->dte_cond);
1391
1392 if (pops->dtps_mode != NULL) {
1393 mode = pops->dtps_mode(prov->dtpv_arg,
1394 probe->dtpr_id, probe->dtpr_arg);
1395
1396 ASSERT(mode & (DTRACE_MODE_USER | DTRACE_MODE_KERNEL));
1397 ASSERT(mode & (DTRACE_MODE_NOPRIV_RESTRICT |
1398 DTRACE_MODE_NOPRIV_DROP));
1399 }
1400
1401 /*
1402 * If the dte_cond bits indicate that this consumer is only allowed to
1403 * see user-mode firings of this probe, check that the probe was fired
1404 * while in a user context. If that's not the case, use the policy
1405 * specified by the provider to determine if we drop the probe or
1406 * merely restrict operation.
1407 */
1408 if (ecb->dte_cond & DTRACE_COND_USERMODE) {
1409 ASSERT(mode != DTRACE_MODE_NOPRIV_DROP);
1410
1411 if (!(mode & DTRACE_MODE_USER)) {
1412 if (mode & DTRACE_MODE_NOPRIV_DROP)
1413 return (0);
1414
1415 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1416 }
1417 }
1418
1419 /*
1420 * This is more subtle than it looks. We have to be absolutely certain
1421 * that CRED() isn't going to change out from under us so it's only
1422 * legit to examine that structure if we're in constrained situations.
1423 * Currently, the only times we'll this check is if a non-super-user
1424 * has enabled the profile or syscall providers -- providers that
1425 * allow visibility of all processes. For the profile case, the check
1426 * above will ensure that we're examining a user context.
1427 */
1428 if (ecb->dte_cond & DTRACE_COND_OWNER) {
1429 cred_t *cr;
1430 cred_t *s_cr = state->dts_cred.dcr_cred;
1431 proc_t *proc;
1432
1433 ASSERT(s_cr != NULL);
1434
1435 if ((cr = CRED()) == NULL ||
1436 s_cr->cr_uid != cr->cr_uid ||
1437 s_cr->cr_uid != cr->cr_ruid ||
1438 s_cr->cr_uid != cr->cr_suid ||
1439 s_cr->cr_gid != cr->cr_gid ||
1440 s_cr->cr_gid != cr->cr_rgid ||
1441 s_cr->cr_gid != cr->cr_sgid ||
1442 (proc = ttoproc(curthread)) == NULL ||
1443 (proc->p_flag & SNOCD)) {
1444 if (mode & DTRACE_MODE_NOPRIV_DROP)
1445 return (0);
1446
1447 mstate->dtms_access &= ~DTRACE_ACCESS_PROC;
1448 }
1449 }
1450
1451 /*
1452 * If our dte_cond is set to DTRACE_COND_ZONEOWNER and we are not
1453 * in our zone, check to see if our mode policy is to restrict rather
1454 * than to drop; if to restrict, strip away both DTRACE_ACCESS_PROC
1455 * and DTRACE_ACCESS_ARGS
1456 */
1457 if (ecb->dte_cond & DTRACE_COND_ZONEOWNER) {
1458 cred_t *cr;
1459 cred_t *s_cr = state->dts_cred.dcr_cred;
1460
1461 ASSERT(s_cr != NULL);
1462
1463 if ((cr = CRED()) == NULL ||
1464 s_cr->cr_zone->zone_id != cr->cr_zone->zone_id) {
1465 if (mode & DTRACE_MODE_NOPRIV_DROP)
1466 return (0);
1467
1468 mstate->dtms_access &=
1469 ~(DTRACE_ACCESS_PROC | DTRACE_ACCESS_ARGS);
1470 }
1471 }
1472
1473 /*
1474 * By merits of being in this code path at all, we have limited
1475 * privileges. If the provider has indicated that limited privileges
1476 * are to denote restricted operation, strip off the ability to access
1477 * arguments.
1478 */
1479 if (mode & DTRACE_MODE_LIMITEDPRIV_RESTRICT)
1480 mstate->dtms_access &= ~DTRACE_ACCESS_ARGS;
1481
1482 return (1);
1483 }
1484
1485 /*
1486 * Note: not called from probe context. This function is called
1487 * asynchronously (and at a regular interval) from outside of probe context to
1488 * clean the dirty dynamic variable lists on all CPUs. Dynamic variable
1489 * cleaning is explained in detail in <sys/dtrace_impl.h>.
1490 */
1491 void
dtrace_dynvar_clean(dtrace_dstate_t * dstate)1492 dtrace_dynvar_clean(dtrace_dstate_t *dstate)
1493 {
1494 dtrace_dynvar_t *dirty;
1495 dtrace_dstate_percpu_t *dcpu;
1496 dtrace_dynvar_t **rinsep;
1497 int i, j, work = 0;
1498
1499 for (i = 0; i < NCPU; i++) {
1500 dcpu = &dstate->dtds_percpu[i];
1501 rinsep = &dcpu->dtdsc_rinsing;
1502
1503 /*
1504 * If the dirty list is NULL, there is no dirty work to do.
1505 */
1506 if (dcpu->dtdsc_dirty == NULL)
1507 continue;
1508
1509 if (dcpu->dtdsc_rinsing != NULL) {
1510 /*
1511 * If the rinsing list is non-NULL, then it is because
1512 * this CPU was selected to accept another CPU's
1513 * dirty list -- and since that time, dirty buffers
1514 * have accumulated. This is a highly unlikely
1515 * condition, but we choose to ignore the dirty
1516 * buffers -- they'll be picked up a future cleanse.
1517 */
1518 continue;
1519 }
1520
1521 if (dcpu->dtdsc_clean != NULL) {
1522 /*
1523 * If the clean list is non-NULL, then we're in a
1524 * situation where a CPU has done deallocations (we
1525 * have a non-NULL dirty list) but no allocations (we
1526 * also have a non-NULL clean list). We can't simply
1527 * move the dirty list into the clean list on this
1528 * CPU, yet we also don't want to allow this condition
1529 * to persist, lest a short clean list prevent a
1530 * massive dirty list from being cleaned (which in
1531 * turn could lead to otherwise avoidable dynamic
1532 * drops). To deal with this, we look for some CPU
1533 * with a NULL clean list, NULL dirty list, and NULL
1534 * rinsing list -- and then we borrow this CPU to
1535 * rinse our dirty list.
1536 */
1537 for (j = 0; j < NCPU; j++) {
1538 dtrace_dstate_percpu_t *rinser;
1539
1540 rinser = &dstate->dtds_percpu[j];
1541
1542 if (rinser->dtdsc_rinsing != NULL)
1543 continue;
1544
1545 if (rinser->dtdsc_dirty != NULL)
1546 continue;
1547
1548 if (rinser->dtdsc_clean != NULL)
1549 continue;
1550
1551 rinsep = &rinser->dtdsc_rinsing;
1552 break;
1553 }
1554
1555 if (j == NCPU) {
1556 /*
1557 * We were unable to find another CPU that
1558 * could accept this dirty list -- we are
1559 * therefore unable to clean it now.
1560 */
1561 dtrace_dynvar_failclean++;
1562 continue;
1563 }
1564 }
1565
1566 work = 1;
1567
1568 /*
1569 * Atomically move the dirty list aside.
1570 */
1571 do {
1572 dirty = dcpu->dtdsc_dirty;
1573
1574 /*
1575 * Before we zap the dirty list, set the rinsing list.
1576 * (This allows for a potential assertion in
1577 * dtrace_dynvar(): if a free dynamic variable appears
1578 * on a hash chain, either the dirty list or the
1579 * rinsing list for some CPU must be non-NULL.)
1580 */
1581 *rinsep = dirty;
1582 dtrace_membar_producer();
1583 } while (dtrace_casptr(&dcpu->dtdsc_dirty,
1584 dirty, NULL) != dirty);
1585 }
1586
1587 if (!work) {
1588 /*
1589 * We have no work to do; we can simply return.
1590 */
1591 return;
1592 }
1593
1594 dtrace_sync();
1595
1596 for (i = 0; i < NCPU; i++) {
1597 dcpu = &dstate->dtds_percpu[i];
1598
1599 if (dcpu->dtdsc_rinsing == NULL)
1600 continue;
1601
1602 /*
1603 * We are now guaranteed that no hash chain contains a pointer
1604 * into this dirty list; we can make it clean.
1605 */
1606 ASSERT(dcpu->dtdsc_clean == NULL);
1607 dcpu->dtdsc_clean = dcpu->dtdsc_rinsing;
1608 dcpu->dtdsc_rinsing = NULL;
1609 }
1610
1611 /*
1612 * Before we actually set the state to be DTRACE_DSTATE_CLEAN, make
1613 * sure that all CPUs have seen all of the dtdsc_clean pointers.
1614 * This prevents a race whereby a CPU incorrectly decides that
1615 * the state should be something other than DTRACE_DSTATE_CLEAN
1616 * after dtrace_dynvar_clean() has completed.
1617 */
1618 dtrace_sync();
1619
1620 dstate->dtds_state = DTRACE_DSTATE_CLEAN;
1621 }
1622
1623 /*
1624 * Depending on the value of the op parameter, this function looks-up,
1625 * allocates or deallocates an arbitrarily-keyed dynamic variable. If an
1626 * allocation is requested, this function will return a pointer to a
1627 * dtrace_dynvar_t corresponding to the allocated variable -- or NULL if no
1628 * variable can be allocated. If NULL is returned, the appropriate counter
1629 * will be incremented.
1630 */
1631 dtrace_dynvar_t *
dtrace_dynvar(dtrace_dstate_t * dstate,uint_t nkeys,dtrace_key_t * key,size_t dsize,dtrace_dynvar_op_t op,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate)1632 dtrace_dynvar(dtrace_dstate_t *dstate, uint_t nkeys,
1633 dtrace_key_t *key, size_t dsize, dtrace_dynvar_op_t op,
1634 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate)
1635 {
1636 uint64_t hashval = DTRACE_DYNHASH_VALID;
1637 dtrace_dynhash_t *hash = dstate->dtds_hash;
1638 dtrace_dynvar_t *free, *new_free, *next, *dvar, *start, *prev = NULL;
1639 processorid_t me = CPU->cpu_id, cpu = me;
1640 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[me];
1641 size_t bucket, ksize;
1642 size_t chunksize = dstate->dtds_chunksize;
1643 uintptr_t kdata, lock, nstate;
1644 uint_t i;
1645
1646 ASSERT(nkeys != 0);
1647
1648 /*
1649 * Hash the key. As with aggregations, we use Jenkins' "One-at-a-time"
1650 * algorithm. For the by-value portions, we perform the algorithm in
1651 * 16-bit chunks (as opposed to 8-bit chunks). This speeds things up a
1652 * bit, and seems to have only a minute effect on distribution. For
1653 * the by-reference data, we perform "One-at-a-time" iterating (safely)
1654 * over each referenced byte. It's painful to do this, but it's much
1655 * better than pathological hash distribution. The efficacy of the
1656 * hashing algorithm (and a comparison with other algorithms) may be
1657 * found by running the ::dtrace_dynstat MDB dcmd.
1658 */
1659 for (i = 0; i < nkeys; i++) {
1660 if (key[i].dttk_size == 0) {
1661 uint64_t val = key[i].dttk_value;
1662
1663 hashval += (val >> 48) & 0xffff;
1664 hashval += (hashval << 10);
1665 hashval ^= (hashval >> 6);
1666
1667 hashval += (val >> 32) & 0xffff;
1668 hashval += (hashval << 10);
1669 hashval ^= (hashval >> 6);
1670
1671 hashval += (val >> 16) & 0xffff;
1672 hashval += (hashval << 10);
1673 hashval ^= (hashval >> 6);
1674
1675 hashval += val & 0xffff;
1676 hashval += (hashval << 10);
1677 hashval ^= (hashval >> 6);
1678 } else {
1679 /*
1680 * This is incredibly painful, but it beats the hell
1681 * out of the alternative.
1682 */
1683 uint64_t j, size = key[i].dttk_size;
1684 uintptr_t base = (uintptr_t)key[i].dttk_value;
1685
1686 if (!dtrace_canload(base, size, mstate, vstate))
1687 break;
1688
1689 for (j = 0; j < size; j++) {
1690 hashval += dtrace_load8(base + j);
1691 hashval += (hashval << 10);
1692 hashval ^= (hashval >> 6);
1693 }
1694 }
1695 }
1696
1697 if (DTRACE_CPUFLAG_ISSET(CPU_DTRACE_FAULT))
1698 return (NULL);
1699
1700 hashval += (hashval << 3);
1701 hashval ^= (hashval >> 11);
1702 hashval += (hashval << 15);
1703
1704 /*
1705 * There is a remote chance (ideally, 1 in 2^31) that our hashval
1706 * comes out to be one of our two sentinel hash values. If this
1707 * actually happens, we set the hashval to be a value known to be a
1708 * non-sentinel value.
1709 */
1710 if (hashval == DTRACE_DYNHASH_FREE || hashval == DTRACE_DYNHASH_SINK)
1711 hashval = DTRACE_DYNHASH_VALID;
1712
1713 /*
1714 * Yes, it's painful to do a divide here. If the cycle count becomes
1715 * important here, tricks can be pulled to reduce it. (However, it's
1716 * critical that hash collisions be kept to an absolute minimum;
1717 * they're much more painful than a divide.) It's better to have a
1718 * solution that generates few collisions and still keeps things
1719 * relatively simple.
1720 */
1721 bucket = hashval % dstate->dtds_hashsize;
1722
1723 if (op == DTRACE_DYNVAR_DEALLOC) {
1724 volatile uintptr_t *lockp = &hash[bucket].dtdh_lock;
1725
1726 for (;;) {
1727 while ((lock = *lockp) & 1)
1728 continue;
1729
1730 if (dtrace_casptr((void *)lockp,
1731 (void *)lock, (void *)(lock + 1)) == (void *)lock)
1732 break;
1733 }
1734
1735 dtrace_membar_producer();
1736 }
1737
1738 top:
1739 prev = NULL;
1740 lock = hash[bucket].dtdh_lock;
1741
1742 dtrace_membar_consumer();
1743
1744 start = hash[bucket].dtdh_chain;
1745 ASSERT(start != NULL && (start->dtdv_hashval == DTRACE_DYNHASH_SINK ||
1746 start->dtdv_hashval != DTRACE_DYNHASH_FREE ||
1747 op != DTRACE_DYNVAR_DEALLOC));
1748
1749 for (dvar = start; dvar != NULL; dvar = dvar->dtdv_next) {
1750 dtrace_tuple_t *dtuple = &dvar->dtdv_tuple;
1751 dtrace_key_t *dkey = &dtuple->dtt_key[0];
1752
1753 if (dvar->dtdv_hashval != hashval) {
1754 if (dvar->dtdv_hashval == DTRACE_DYNHASH_SINK) {
1755 /*
1756 * We've reached the sink, and therefore the
1757 * end of the hash chain; we can kick out of
1758 * the loop knowing that we have seen a valid
1759 * snapshot of state.
1760 */
1761 ASSERT(dvar->dtdv_next == NULL);
1762 ASSERT(dvar == &dtrace_dynhash_sink);
1763 break;
1764 }
1765
1766 if (dvar->dtdv_hashval == DTRACE_DYNHASH_FREE) {
1767 /*
1768 * We've gone off the rails: somewhere along
1769 * the line, one of the members of this hash
1770 * chain was deleted. Note that we could also
1771 * detect this by simply letting this loop run
1772 * to completion, as we would eventually hit
1773 * the end of the dirty list. However, we
1774 * want to avoid running the length of the
1775 * dirty list unnecessarily (it might be quite
1776 * long), so we catch this as early as
1777 * possible by detecting the hash marker. In
1778 * this case, we simply set dvar to NULL and
1779 * break; the conditional after the loop will
1780 * send us back to top.
1781 */
1782 dvar = NULL;
1783 break;
1784 }
1785
1786 goto next;
1787 }
1788
1789 if (dtuple->dtt_nkeys != nkeys)
1790 goto next;
1791
1792 for (i = 0; i < nkeys; i++, dkey++) {
1793 if (dkey->dttk_size != key[i].dttk_size)
1794 goto next; /* size or type mismatch */
1795
1796 if (dkey->dttk_size != 0) {
1797 if (dtrace_bcmp(
1798 (void *)(uintptr_t)key[i].dttk_value,
1799 (void *)(uintptr_t)dkey->dttk_value,
1800 dkey->dttk_size))
1801 goto next;
1802 } else {
1803 if (dkey->dttk_value != key[i].dttk_value)
1804 goto next;
1805 }
1806 }
1807
1808 if (op != DTRACE_DYNVAR_DEALLOC)
1809 return (dvar);
1810
1811 ASSERT(dvar->dtdv_next == NULL ||
1812 dvar->dtdv_next->dtdv_hashval != DTRACE_DYNHASH_FREE);
1813
1814 if (prev != NULL) {
1815 ASSERT(hash[bucket].dtdh_chain != dvar);
1816 ASSERT(start != dvar);
1817 ASSERT(prev->dtdv_next == dvar);
1818 prev->dtdv_next = dvar->dtdv_next;
1819 } else {
1820 if (dtrace_casptr(&hash[bucket].dtdh_chain,
1821 start, dvar->dtdv_next) != start) {
1822 /*
1823 * We have failed to atomically swing the
1824 * hash table head pointer, presumably because
1825 * of a conflicting allocation on another CPU.
1826 * We need to reread the hash chain and try
1827 * again.
1828 */
1829 goto top;
1830 }
1831 }
1832
1833 dtrace_membar_producer();
1834
1835 /*
1836 * Now set the hash value to indicate that it's free.
1837 */
1838 ASSERT(hash[bucket].dtdh_chain != dvar);
1839 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
1840
1841 dtrace_membar_producer();
1842
1843 /*
1844 * Set the next pointer to point at the dirty list, and
1845 * atomically swing the dirty pointer to the newly freed dvar.
1846 */
1847 do {
1848 next = dcpu->dtdsc_dirty;
1849 dvar->dtdv_next = next;
1850 } while (dtrace_casptr(&dcpu->dtdsc_dirty, next, dvar) != next);
1851
1852 /*
1853 * Finally, unlock this hash bucket.
1854 */
1855 ASSERT(hash[bucket].dtdh_lock == lock);
1856 ASSERT(lock & 1);
1857 hash[bucket].dtdh_lock++;
1858
1859 return (NULL);
1860 next:
1861 prev = dvar;
1862 continue;
1863 }
1864
1865 if (dvar == NULL) {
1866 /*
1867 * If dvar is NULL, it is because we went off the rails:
1868 * one of the elements that we traversed in the hash chain
1869 * was deleted while we were traversing it. In this case,
1870 * we assert that we aren't doing a dealloc (deallocs lock
1871 * the hash bucket to prevent themselves from racing with
1872 * one another), and retry the hash chain traversal.
1873 */
1874 ASSERT(op != DTRACE_DYNVAR_DEALLOC);
1875 goto top;
1876 }
1877
1878 if (op != DTRACE_DYNVAR_ALLOC) {
1879 /*
1880 * If we are not to allocate a new variable, we want to
1881 * return NULL now. Before we return, check that the value
1882 * of the lock word hasn't changed. If it has, we may have
1883 * seen an inconsistent snapshot.
1884 */
1885 if (op == DTRACE_DYNVAR_NOALLOC) {
1886 if (hash[bucket].dtdh_lock != lock)
1887 goto top;
1888 } else {
1889 ASSERT(op == DTRACE_DYNVAR_DEALLOC);
1890 ASSERT(hash[bucket].dtdh_lock == lock);
1891 ASSERT(lock & 1);
1892 hash[bucket].dtdh_lock++;
1893 }
1894
1895 return (NULL);
1896 }
1897
1898 /*
1899 * We need to allocate a new dynamic variable. The size we need is the
1900 * size of dtrace_dynvar plus the size of nkeys dtrace_key_t's plus the
1901 * size of any auxiliary key data (rounded up to 8-byte alignment) plus
1902 * the size of any referred-to data (dsize). We then round the final
1903 * size up to the chunksize for allocation.
1904 */
1905 for (ksize = 0, i = 0; i < nkeys; i++)
1906 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
1907
1908 /*
1909 * This should be pretty much impossible, but could happen if, say,
1910 * strange DIF specified the tuple. Ideally, this should be an
1911 * assertion and not an error condition -- but that requires that the
1912 * chunksize calculation in dtrace_difo_chunksize() be absolutely
1913 * bullet-proof. (That is, it must not be able to be fooled by
1914 * malicious DIF.) Given the lack of backwards branches in DIF,
1915 * solving this would presumably not amount to solving the Halting
1916 * Problem -- but it still seems awfully hard.
1917 */
1918 if (sizeof (dtrace_dynvar_t) + sizeof (dtrace_key_t) * (nkeys - 1) +
1919 ksize + dsize > chunksize) {
1920 dcpu->dtdsc_drops++;
1921 return (NULL);
1922 }
1923
1924 nstate = DTRACE_DSTATE_EMPTY;
1925
1926 do {
1927 retry:
1928 free = dcpu->dtdsc_free;
1929
1930 if (free == NULL) {
1931 dtrace_dynvar_t *clean = dcpu->dtdsc_clean;
1932 void *rval;
1933
1934 if (clean == NULL) {
1935 /*
1936 * We're out of dynamic variable space on
1937 * this CPU. Unless we have tried all CPUs,
1938 * we'll try to allocate from a different
1939 * CPU.
1940 */
1941 switch (dstate->dtds_state) {
1942 case DTRACE_DSTATE_CLEAN: {
1943 void *sp = &dstate->dtds_state;
1944
1945 if (++cpu >= NCPU)
1946 cpu = 0;
1947
1948 if (dcpu->dtdsc_dirty != NULL &&
1949 nstate == DTRACE_DSTATE_EMPTY)
1950 nstate = DTRACE_DSTATE_DIRTY;
1951
1952 if (dcpu->dtdsc_rinsing != NULL)
1953 nstate = DTRACE_DSTATE_RINSING;
1954
1955 dcpu = &dstate->dtds_percpu[cpu];
1956
1957 if (cpu != me)
1958 goto retry;
1959
1960 (void) dtrace_cas32(sp,
1961 DTRACE_DSTATE_CLEAN, nstate);
1962
1963 /*
1964 * To increment the correct bean
1965 * counter, take another lap.
1966 */
1967 goto retry;
1968 }
1969
1970 case DTRACE_DSTATE_DIRTY:
1971 dcpu->dtdsc_dirty_drops++;
1972 break;
1973
1974 case DTRACE_DSTATE_RINSING:
1975 dcpu->dtdsc_rinsing_drops++;
1976 break;
1977
1978 case DTRACE_DSTATE_EMPTY:
1979 dcpu->dtdsc_drops++;
1980 break;
1981 }
1982
1983 DTRACE_CPUFLAG_SET(CPU_DTRACE_DROP);
1984 return (NULL);
1985 }
1986
1987 /*
1988 * The clean list appears to be non-empty. We want to
1989 * move the clean list to the free list; we start by
1990 * moving the clean pointer aside.
1991 */
1992 if (dtrace_casptr(&dcpu->dtdsc_clean,
1993 clean, NULL) != clean) {
1994 /*
1995 * We are in one of two situations:
1996 *
1997 * (a) The clean list was switched to the
1998 * free list by another CPU.
1999 *
2000 * (b) The clean list was added to by the
2001 * cleansing cyclic.
2002 *
2003 * In either of these situations, we can
2004 * just reattempt the free list allocation.
2005 */
2006 goto retry;
2007 }
2008
2009 ASSERT(clean->dtdv_hashval == DTRACE_DYNHASH_FREE);
2010
2011 /*
2012 * Now we'll move the clean list to our free list.
2013 * It's impossible for this to fail: the only way
2014 * the free list can be updated is through this
2015 * code path, and only one CPU can own the clean list.
2016 * Thus, it would only be possible for this to fail if
2017 * this code were racing with dtrace_dynvar_clean().
2018 * (That is, if dtrace_dynvar_clean() updated the clean
2019 * list, and we ended up racing to update the free
2020 * list.) This race is prevented by the dtrace_sync()
2021 * in dtrace_dynvar_clean() -- which flushes the
2022 * owners of the clean lists out before resetting
2023 * the clean lists.
2024 */
2025 dcpu = &dstate->dtds_percpu[me];
2026 rval = dtrace_casptr(&dcpu->dtdsc_free, NULL, clean);
2027 ASSERT(rval == NULL);
2028 goto retry;
2029 }
2030
2031 dvar = free;
2032 new_free = dvar->dtdv_next;
2033 } while (dtrace_casptr(&dcpu->dtdsc_free, free, new_free) != free);
2034
2035 /*
2036 * We have now allocated a new chunk. We copy the tuple keys into the
2037 * tuple array and copy any referenced key data into the data space
2038 * following the tuple array. As we do this, we relocate dttk_value
2039 * in the final tuple to point to the key data address in the chunk.
2040 */
2041 kdata = (uintptr_t)&dvar->dtdv_tuple.dtt_key[nkeys];
2042 dvar->dtdv_data = (void *)(kdata + ksize);
2043 dvar->dtdv_tuple.dtt_nkeys = nkeys;
2044
2045 for (i = 0; i < nkeys; i++) {
2046 dtrace_key_t *dkey = &dvar->dtdv_tuple.dtt_key[i];
2047 size_t kesize = key[i].dttk_size;
2048
2049 if (kesize != 0) {
2050 dtrace_bcopy(
2051 (const void *)(uintptr_t)key[i].dttk_value,
2052 (void *)kdata, kesize);
2053 dkey->dttk_value = kdata;
2054 kdata += P2ROUNDUP(kesize, sizeof (uint64_t));
2055 } else {
2056 dkey->dttk_value = key[i].dttk_value;
2057 }
2058
2059 dkey->dttk_size = kesize;
2060 }
2061
2062 ASSERT(dvar->dtdv_hashval == DTRACE_DYNHASH_FREE);
2063 dvar->dtdv_hashval = hashval;
2064 dvar->dtdv_next = start;
2065
2066 if (dtrace_casptr(&hash[bucket].dtdh_chain, start, dvar) == start)
2067 return (dvar);
2068
2069 /*
2070 * The cas has failed. Either another CPU is adding an element to
2071 * this hash chain, or another CPU is deleting an element from this
2072 * hash chain. The simplest way to deal with both of these cases
2073 * (though not necessarily the most efficient) is to free our
2074 * allocated block and re-attempt it all. Note that the free is
2075 * to the dirty list and _not_ to the free list. This is to prevent
2076 * races with allocators, above.
2077 */
2078 dvar->dtdv_hashval = DTRACE_DYNHASH_FREE;
2079
2080 dtrace_membar_producer();
2081
2082 do {
2083 free = dcpu->dtdsc_dirty;
2084 dvar->dtdv_next = free;
2085 } while (dtrace_casptr(&dcpu->dtdsc_dirty, free, dvar) != free);
2086
2087 goto top;
2088 }
2089
2090 /*ARGSUSED*/
2091 static void
dtrace_aggregate_min(uint64_t * oval,uint64_t nval,uint64_t arg)2092 dtrace_aggregate_min(uint64_t *oval, uint64_t nval, uint64_t arg)
2093 {
2094 if ((int64_t)nval < (int64_t)*oval)
2095 *oval = nval;
2096 }
2097
2098 /*ARGSUSED*/
2099 static void
dtrace_aggregate_max(uint64_t * oval,uint64_t nval,uint64_t arg)2100 dtrace_aggregate_max(uint64_t *oval, uint64_t nval, uint64_t arg)
2101 {
2102 if ((int64_t)nval > (int64_t)*oval)
2103 *oval = nval;
2104 }
2105
2106 static void
dtrace_aggregate_quantize(uint64_t * quanta,uint64_t nval,uint64_t incr)2107 dtrace_aggregate_quantize(uint64_t *quanta, uint64_t nval, uint64_t incr)
2108 {
2109 int i, zero = DTRACE_QUANTIZE_ZEROBUCKET;
2110 int64_t val = (int64_t)nval;
2111
2112 if (val < 0) {
2113 for (i = 0; i < zero; i++) {
2114 if (val <= DTRACE_QUANTIZE_BUCKETVAL(i)) {
2115 quanta[i] += incr;
2116 return;
2117 }
2118 }
2119 } else {
2120 for (i = zero + 1; i < DTRACE_QUANTIZE_NBUCKETS; i++) {
2121 if (val < DTRACE_QUANTIZE_BUCKETVAL(i)) {
2122 quanta[i - 1] += incr;
2123 return;
2124 }
2125 }
2126
2127 quanta[DTRACE_QUANTIZE_NBUCKETS - 1] += incr;
2128 return;
2129 }
2130
2131 ASSERT(0);
2132 }
2133
2134 static void
dtrace_aggregate_lquantize(uint64_t * lquanta,uint64_t nval,uint64_t incr)2135 dtrace_aggregate_lquantize(uint64_t *lquanta, uint64_t nval, uint64_t incr)
2136 {
2137 uint64_t arg = *lquanta++;
2138 int32_t base = DTRACE_LQUANTIZE_BASE(arg);
2139 uint16_t step = DTRACE_LQUANTIZE_STEP(arg);
2140 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(arg);
2141 int32_t val = (int32_t)nval, level;
2142
2143 ASSERT(step != 0);
2144 ASSERT(levels != 0);
2145
2146 if (val < base) {
2147 /*
2148 * This is an underflow.
2149 */
2150 lquanta[0] += incr;
2151 return;
2152 }
2153
2154 level = (val - base) / step;
2155
2156 if (level < levels) {
2157 lquanta[level + 1] += incr;
2158 return;
2159 }
2160
2161 /*
2162 * This is an overflow.
2163 */
2164 lquanta[levels + 1] += incr;
2165 }
2166
2167 static int
dtrace_aggregate_llquantize_bucket(uint16_t factor,uint16_t low,uint16_t high,uint16_t nsteps,int64_t value)2168 dtrace_aggregate_llquantize_bucket(uint16_t factor, uint16_t low,
2169 uint16_t high, uint16_t nsteps, int64_t value)
2170 {
2171 int64_t this = 1, last, next;
2172 int base = 1, order;
2173
2174 ASSERT(factor <= nsteps);
2175 ASSERT(nsteps % factor == 0);
2176
2177 for (order = 0; order < low; order++)
2178 this *= factor;
2179
2180 /*
2181 * If our value is less than our factor taken to the power of the
2182 * low order of magnitude, it goes into the zeroth bucket.
2183 */
2184 if (value < (last = this))
2185 return (0);
2186
2187 for (this *= factor; order <= high; order++) {
2188 int nbuckets = this > nsteps ? nsteps : this;
2189
2190 if ((next = this * factor) < this) {
2191 /*
2192 * We should not generally get log/linear quantizations
2193 * with a high magnitude that allows 64-bits to
2194 * overflow, but we nonetheless protect against this
2195 * by explicitly checking for overflow, and clamping
2196 * our value accordingly.
2197 */
2198 value = this - 1;
2199 }
2200
2201 if (value < this) {
2202 /*
2203 * If our value lies within this order of magnitude,
2204 * determine its position by taking the offset within
2205 * the order of magnitude, dividing by the bucket
2206 * width, and adding to our (accumulated) base.
2207 */
2208 return (base + (value - last) / (this / nbuckets));
2209 }
2210
2211 base += nbuckets - (nbuckets / factor);
2212 last = this;
2213 this = next;
2214 }
2215
2216 /*
2217 * Our value is greater than or equal to our factor taken to the
2218 * power of one plus the high magnitude -- return the top bucket.
2219 */
2220 return (base);
2221 }
2222
2223 static void
dtrace_aggregate_llquantize(uint64_t * llquanta,uint64_t nval,uint64_t incr)2224 dtrace_aggregate_llquantize(uint64_t *llquanta, uint64_t nval, uint64_t incr)
2225 {
2226 uint64_t arg = *llquanta++;
2227 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(arg);
2228 uint16_t low = DTRACE_LLQUANTIZE_LOW(arg);
2229 uint16_t high = DTRACE_LLQUANTIZE_HIGH(arg);
2230 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
2231
2232 llquanta[dtrace_aggregate_llquantize_bucket(factor,
2233 low, high, nsteps, nval)] += incr;
2234 }
2235
2236 /*ARGSUSED*/
2237 static void
dtrace_aggregate_avg(uint64_t * data,uint64_t nval,uint64_t arg)2238 dtrace_aggregate_avg(uint64_t *data, uint64_t nval, uint64_t arg)
2239 {
2240 data[0]++;
2241 data[1] += nval;
2242 }
2243
2244 /*ARGSUSED*/
2245 static void
dtrace_aggregate_stddev(uint64_t * data,uint64_t nval,uint64_t arg)2246 dtrace_aggregate_stddev(uint64_t *data, uint64_t nval, uint64_t arg)
2247 {
2248 int64_t snval = (int64_t)nval;
2249 uint64_t tmp[2];
2250
2251 data[0]++;
2252 data[1] += nval;
2253
2254 /*
2255 * What we want to say here is:
2256 *
2257 * data[2] += nval * nval;
2258 *
2259 * But given that nval is 64-bit, we could easily overflow, so
2260 * we do this as 128-bit arithmetic.
2261 */
2262 if (snval < 0)
2263 snval = -snval;
2264
2265 dtrace_multiply_128((uint64_t)snval, (uint64_t)snval, tmp);
2266 dtrace_add_128(data + 2, tmp, data + 2);
2267 }
2268
2269 /*ARGSUSED*/
2270 static void
dtrace_aggregate_count(uint64_t * oval,uint64_t nval,uint64_t arg)2271 dtrace_aggregate_count(uint64_t *oval, uint64_t nval, uint64_t arg)
2272 {
2273 *oval = *oval + 1;
2274 }
2275
2276 /*ARGSUSED*/
2277 static void
dtrace_aggregate_sum(uint64_t * oval,uint64_t nval,uint64_t arg)2278 dtrace_aggregate_sum(uint64_t *oval, uint64_t nval, uint64_t arg)
2279 {
2280 *oval += nval;
2281 }
2282
2283 /*
2284 * Aggregate given the tuple in the principal data buffer, and the aggregating
2285 * action denoted by the specified dtrace_aggregation_t. The aggregation
2286 * buffer is specified as the buf parameter. This routine does not return
2287 * failure; if there is no space in the aggregation buffer, the data will be
2288 * dropped, and a corresponding counter incremented.
2289 */
2290 static void
dtrace_aggregate(dtrace_aggregation_t * agg,dtrace_buffer_t * dbuf,intptr_t offset,dtrace_buffer_t * buf,uint64_t expr,uint64_t arg)2291 dtrace_aggregate(dtrace_aggregation_t *agg, dtrace_buffer_t *dbuf,
2292 intptr_t offset, dtrace_buffer_t *buf, uint64_t expr, uint64_t arg)
2293 {
2294 dtrace_recdesc_t *rec = &agg->dtag_action.dta_rec;
2295 uint32_t i, ndx, size, fsize;
2296 uint32_t align = sizeof (uint64_t) - 1;
2297 dtrace_aggbuffer_t *agb;
2298 dtrace_aggkey_t *key;
2299 uint32_t hashval = 0, limit, isstr;
2300 caddr_t tomax, data, kdata;
2301 dtrace_actkind_t action;
2302 dtrace_action_t *act;
2303 uintptr_t offs;
2304
2305 if (buf == NULL)
2306 return;
2307
2308 if (!agg->dtag_hasarg) {
2309 /*
2310 * Currently, only quantize() and lquantize() take additional
2311 * arguments, and they have the same semantics: an increment
2312 * value that defaults to 1 when not present. If additional
2313 * aggregating actions take arguments, the setting of the
2314 * default argument value will presumably have to become more
2315 * sophisticated...
2316 */
2317 arg = 1;
2318 }
2319
2320 action = agg->dtag_action.dta_kind - DTRACEACT_AGGREGATION;
2321 size = rec->dtrd_offset - agg->dtag_base;
2322 fsize = size + rec->dtrd_size;
2323
2324 ASSERT(dbuf->dtb_tomax != NULL);
2325 data = dbuf->dtb_tomax + offset + agg->dtag_base;
2326
2327 if ((tomax = buf->dtb_tomax) == NULL) {
2328 dtrace_buffer_drop(buf);
2329 return;
2330 }
2331
2332 /*
2333 * The metastructure is always at the bottom of the buffer.
2334 */
2335 agb = (dtrace_aggbuffer_t *)(tomax + buf->dtb_size -
2336 sizeof (dtrace_aggbuffer_t));
2337
2338 if (buf->dtb_offset == 0) {
2339 /*
2340 * We just kludge up approximately 1/8th of the size to be
2341 * buckets. If this guess ends up being routinely
2342 * off-the-mark, we may need to dynamically readjust this
2343 * based on past performance.
2344 */
2345 uintptr_t hashsize = (buf->dtb_size >> 3) / sizeof (uintptr_t);
2346
2347 if ((uintptr_t)agb - hashsize * sizeof (dtrace_aggkey_t *) <
2348 (uintptr_t)tomax || hashsize == 0) {
2349 /*
2350 * We've been given a ludicrously small buffer;
2351 * increment our drop count and leave.
2352 */
2353 dtrace_buffer_drop(buf);
2354 return;
2355 }
2356
2357 /*
2358 * And now, a pathetic attempt to try to get a an odd (or
2359 * perchance, a prime) hash size for better hash distribution.
2360 */
2361 if (hashsize > (DTRACE_AGGHASHSIZE_SLEW << 3))
2362 hashsize -= DTRACE_AGGHASHSIZE_SLEW;
2363
2364 agb->dtagb_hashsize = hashsize;
2365 agb->dtagb_hash = (dtrace_aggkey_t **)((uintptr_t)agb -
2366 agb->dtagb_hashsize * sizeof (dtrace_aggkey_t *));
2367 agb->dtagb_free = (uintptr_t)agb->dtagb_hash;
2368
2369 for (i = 0; i < agb->dtagb_hashsize; i++)
2370 agb->dtagb_hash[i] = NULL;
2371 }
2372
2373 ASSERT(agg->dtag_first != NULL);
2374 ASSERT(agg->dtag_first->dta_intuple);
2375
2376 /*
2377 * Calculate the hash value based on the key. Note that we _don't_
2378 * include the aggid in the hashing (but we will store it as part of
2379 * the key). The hashing algorithm is Bob Jenkins' "One-at-a-time"
2380 * algorithm: a simple, quick algorithm that has no known funnels, and
2381 * gets good distribution in practice. The efficacy of the hashing
2382 * algorithm (and a comparison with other algorithms) may be found by
2383 * running the ::dtrace_aggstat MDB dcmd.
2384 */
2385 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2386 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2387 limit = i + act->dta_rec.dtrd_size;
2388 ASSERT(limit <= size);
2389 isstr = DTRACEACT_ISSTRING(act);
2390
2391 for (; i < limit; i++) {
2392 hashval += data[i];
2393 hashval += (hashval << 10);
2394 hashval ^= (hashval >> 6);
2395
2396 if (isstr && data[i] == '\0')
2397 break;
2398 }
2399 }
2400
2401 hashval += (hashval << 3);
2402 hashval ^= (hashval >> 11);
2403 hashval += (hashval << 15);
2404
2405 /*
2406 * Yes, the divide here is expensive -- but it's generally the least
2407 * of the performance issues given the amount of data that we iterate
2408 * over to compute hash values, compare data, etc.
2409 */
2410 ndx = hashval % agb->dtagb_hashsize;
2411
2412 for (key = agb->dtagb_hash[ndx]; key != NULL; key = key->dtak_next) {
2413 ASSERT((caddr_t)key >= tomax);
2414 ASSERT((caddr_t)key < tomax + buf->dtb_size);
2415
2416 if (hashval != key->dtak_hashval || key->dtak_size != size)
2417 continue;
2418
2419 kdata = key->dtak_data;
2420 ASSERT(kdata >= tomax && kdata < tomax + buf->dtb_size);
2421
2422 for (act = agg->dtag_first; act->dta_intuple;
2423 act = act->dta_next) {
2424 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2425 limit = i + act->dta_rec.dtrd_size;
2426 ASSERT(limit <= size);
2427 isstr = DTRACEACT_ISSTRING(act);
2428
2429 for (; i < limit; i++) {
2430 if (kdata[i] != data[i])
2431 goto next;
2432
2433 if (isstr && data[i] == '\0')
2434 break;
2435 }
2436 }
2437
2438 if (action != key->dtak_action) {
2439 /*
2440 * We are aggregating on the same value in the same
2441 * aggregation with two different aggregating actions.
2442 * (This should have been picked up in the compiler,
2443 * so we may be dealing with errant or devious DIF.)
2444 * This is an error condition; we indicate as much,
2445 * and return.
2446 */
2447 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
2448 return;
2449 }
2450
2451 /*
2452 * This is a hit: we need to apply the aggregator to
2453 * the value at this key.
2454 */
2455 agg->dtag_aggregate((uint64_t *)(kdata + size), expr, arg);
2456 return;
2457 next:
2458 continue;
2459 }
2460
2461 /*
2462 * We didn't find it. We need to allocate some zero-filled space,
2463 * link it into the hash table appropriately, and apply the aggregator
2464 * to the (zero-filled) value.
2465 */
2466 offs = buf->dtb_offset;
2467 while (offs & (align - 1))
2468 offs += sizeof (uint32_t);
2469
2470 /*
2471 * If we don't have enough room to both allocate a new key _and_
2472 * its associated data, increment the drop count and return.
2473 */
2474 if ((uintptr_t)tomax + offs + fsize >
2475 agb->dtagb_free - sizeof (dtrace_aggkey_t)) {
2476 dtrace_buffer_drop(buf);
2477 return;
2478 }
2479
2480 /*CONSTCOND*/
2481 ASSERT(!(sizeof (dtrace_aggkey_t) & (sizeof (uintptr_t) - 1)));
2482 key = (dtrace_aggkey_t *)(agb->dtagb_free - sizeof (dtrace_aggkey_t));
2483 agb->dtagb_free -= sizeof (dtrace_aggkey_t);
2484
2485 key->dtak_data = kdata = tomax + offs;
2486 buf->dtb_offset = offs + fsize;
2487
2488 /*
2489 * Now copy the data across.
2490 */
2491 *((dtrace_aggid_t *)kdata) = agg->dtag_id;
2492
2493 for (i = sizeof (dtrace_aggid_t); i < size; i++)
2494 kdata[i] = data[i];
2495
2496 /*
2497 * Because strings are not zeroed out by default, we need to iterate
2498 * looking for actions that store strings, and we need to explicitly
2499 * pad these strings out with zeroes.
2500 */
2501 for (act = agg->dtag_first; act->dta_intuple; act = act->dta_next) {
2502 int nul;
2503
2504 if (!DTRACEACT_ISSTRING(act))
2505 continue;
2506
2507 i = act->dta_rec.dtrd_offset - agg->dtag_base;
2508 limit = i + act->dta_rec.dtrd_size;
2509 ASSERT(limit <= size);
2510
2511 for (nul = 0; i < limit; i++) {
2512 if (nul) {
2513 kdata[i] = '\0';
2514 continue;
2515 }
2516
2517 if (data[i] != '\0')
2518 continue;
2519
2520 nul = 1;
2521 }
2522 }
2523
2524 for (i = size; i < fsize; i++)
2525 kdata[i] = 0;
2526
2527 key->dtak_hashval = hashval;
2528 key->dtak_size = size;
2529 key->dtak_action = action;
2530 key->dtak_next = agb->dtagb_hash[ndx];
2531 agb->dtagb_hash[ndx] = key;
2532
2533 /*
2534 * Finally, apply the aggregator.
2535 */
2536 *((uint64_t *)(key->dtak_data + size)) = agg->dtag_initial;
2537 agg->dtag_aggregate((uint64_t *)(key->dtak_data + size), expr, arg);
2538 }
2539
2540 /*
2541 * Given consumer state, this routine finds a speculation in the INACTIVE
2542 * state and transitions it into the ACTIVE state. If there is no speculation
2543 * in the INACTIVE state, 0 is returned. In this case, no error counter is
2544 * incremented -- it is up to the caller to take appropriate action.
2545 */
2546 static int
dtrace_speculation(dtrace_state_t * state)2547 dtrace_speculation(dtrace_state_t *state)
2548 {
2549 int i = 0;
2550 dtrace_speculation_state_t current;
2551 uint32_t *stat = &state->dts_speculations_unavail, count;
2552
2553 while (i < state->dts_nspeculations) {
2554 dtrace_speculation_t *spec = &state->dts_speculations[i];
2555
2556 current = spec->dtsp_state;
2557
2558 if (current != DTRACESPEC_INACTIVE) {
2559 if (current == DTRACESPEC_COMMITTINGMANY ||
2560 current == DTRACESPEC_COMMITTING ||
2561 current == DTRACESPEC_DISCARDING)
2562 stat = &state->dts_speculations_busy;
2563 i++;
2564 continue;
2565 }
2566
2567 if (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2568 current, DTRACESPEC_ACTIVE) == current)
2569 return (i + 1);
2570 }
2571
2572 /*
2573 * We couldn't find a speculation. If we found as much as a single
2574 * busy speculation buffer, we'll attribute this failure as "busy"
2575 * instead of "unavail".
2576 */
2577 do {
2578 count = *stat;
2579 } while (dtrace_cas32(stat, count, count + 1) != count);
2580
2581 return (0);
2582 }
2583
2584 /*
2585 * This routine commits an active speculation. If the specified speculation
2586 * is not in a valid state to perform a commit(), this routine will silently do
2587 * nothing. The state of the specified speculation is transitioned according
2588 * to the state transition diagram outlined in <sys/dtrace_impl.h>
2589 */
2590 static void
dtrace_speculation_commit(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2591 dtrace_speculation_commit(dtrace_state_t *state, processorid_t cpu,
2592 dtrace_specid_t which)
2593 {
2594 dtrace_speculation_t *spec;
2595 dtrace_buffer_t *src, *dest;
2596 uintptr_t daddr, saddr, dlimit, slimit;
2597 dtrace_speculation_state_t current, new;
2598 intptr_t offs;
2599 uint64_t timestamp;
2600
2601 if (which == 0)
2602 return;
2603
2604 if (which > state->dts_nspeculations) {
2605 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2606 return;
2607 }
2608
2609 spec = &state->dts_speculations[which - 1];
2610 src = &spec->dtsp_buffer[cpu];
2611 dest = &state->dts_buffer[cpu];
2612
2613 do {
2614 current = spec->dtsp_state;
2615
2616 if (current == DTRACESPEC_COMMITTINGMANY)
2617 break;
2618
2619 switch (current) {
2620 case DTRACESPEC_INACTIVE:
2621 case DTRACESPEC_DISCARDING:
2622 return;
2623
2624 case DTRACESPEC_COMMITTING:
2625 /*
2626 * This is only possible if we are (a) commit()'ing
2627 * without having done a prior speculate() on this CPU
2628 * and (b) racing with another commit() on a different
2629 * CPU. There's nothing to do -- we just assert that
2630 * our offset is 0.
2631 */
2632 ASSERT(src->dtb_offset == 0);
2633 return;
2634
2635 case DTRACESPEC_ACTIVE:
2636 new = DTRACESPEC_COMMITTING;
2637 break;
2638
2639 case DTRACESPEC_ACTIVEONE:
2640 /*
2641 * This speculation is active on one CPU. If our
2642 * buffer offset is non-zero, we know that the one CPU
2643 * must be us. Otherwise, we are committing on a
2644 * different CPU from the speculate(), and we must
2645 * rely on being asynchronously cleaned.
2646 */
2647 if (src->dtb_offset != 0) {
2648 new = DTRACESPEC_COMMITTING;
2649 break;
2650 }
2651 /*FALLTHROUGH*/
2652
2653 case DTRACESPEC_ACTIVEMANY:
2654 new = DTRACESPEC_COMMITTINGMANY;
2655 break;
2656
2657 default:
2658 ASSERT(0);
2659 }
2660 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2661 current, new) != current);
2662
2663 /*
2664 * We have set the state to indicate that we are committing this
2665 * speculation. Now reserve the necessary space in the destination
2666 * buffer.
2667 */
2668 if ((offs = dtrace_buffer_reserve(dest, src->dtb_offset,
2669 sizeof (uint64_t), state, NULL)) < 0) {
2670 dtrace_buffer_drop(dest);
2671 goto out;
2672 }
2673
2674 /*
2675 * We have sufficient space to copy the speculative buffer into the
2676 * primary buffer. First, modify the speculative buffer, filling
2677 * in the timestamp of all entries with the current time. The data
2678 * must have the commit() time rather than the time it was traced,
2679 * so that all entries in the primary buffer are in timestamp order.
2680 */
2681 timestamp = dtrace_gethrtime();
2682 saddr = (uintptr_t)src->dtb_tomax;
2683 slimit = saddr + src->dtb_offset;
2684 while (saddr < slimit) {
2685 size_t size;
2686 dtrace_rechdr_t *dtrh = (dtrace_rechdr_t *)saddr;
2687
2688 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2689 saddr += sizeof (dtrace_epid_t);
2690 continue;
2691 }
2692 ASSERT3U(dtrh->dtrh_epid, <=, state->dts_necbs);
2693 size = state->dts_ecbs[dtrh->dtrh_epid - 1]->dte_size;
2694
2695 ASSERT3U(saddr + size, <=, slimit);
2696 ASSERT3U(size, >=, sizeof (dtrace_rechdr_t));
2697 ASSERT3U(DTRACE_RECORD_LOAD_TIMESTAMP(dtrh), ==, UINT64_MAX);
2698
2699 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, timestamp);
2700
2701 saddr += size;
2702 }
2703
2704 /*
2705 * Copy the buffer across. (Note that this is a
2706 * highly subobtimal bcopy(); in the unlikely event that this becomes
2707 * a serious performance issue, a high-performance DTrace-specific
2708 * bcopy() should obviously be invented.)
2709 */
2710 daddr = (uintptr_t)dest->dtb_tomax + offs;
2711 dlimit = daddr + src->dtb_offset;
2712 saddr = (uintptr_t)src->dtb_tomax;
2713
2714 /*
2715 * First, the aligned portion.
2716 */
2717 while (dlimit - daddr >= sizeof (uint64_t)) {
2718 *((uint64_t *)daddr) = *((uint64_t *)saddr);
2719
2720 daddr += sizeof (uint64_t);
2721 saddr += sizeof (uint64_t);
2722 }
2723
2724 /*
2725 * Now any left-over bit...
2726 */
2727 while (dlimit - daddr)
2728 *((uint8_t *)daddr++) = *((uint8_t *)saddr++);
2729
2730 /*
2731 * Finally, commit the reserved space in the destination buffer.
2732 */
2733 dest->dtb_offset = offs + src->dtb_offset;
2734
2735 out:
2736 /*
2737 * If we're lucky enough to be the only active CPU on this speculation
2738 * buffer, we can just set the state back to DTRACESPEC_INACTIVE.
2739 */
2740 if (current == DTRACESPEC_ACTIVE ||
2741 (current == DTRACESPEC_ACTIVEONE && new == DTRACESPEC_COMMITTING)) {
2742 uint32_t rval = dtrace_cas32((uint32_t *)&spec->dtsp_state,
2743 DTRACESPEC_COMMITTING, DTRACESPEC_INACTIVE);
2744
2745 ASSERT(rval == DTRACESPEC_COMMITTING);
2746 }
2747
2748 src->dtb_offset = 0;
2749 src->dtb_xamot_drops += src->dtb_drops;
2750 src->dtb_drops = 0;
2751 }
2752
2753 /*
2754 * This routine discards an active speculation. If the specified speculation
2755 * is not in a valid state to perform a discard(), this routine will silently
2756 * do nothing. The state of the specified speculation is transitioned
2757 * according to the state transition diagram outlined in <sys/dtrace_impl.h>
2758 */
2759 static void
dtrace_speculation_discard(dtrace_state_t * state,processorid_t cpu,dtrace_specid_t which)2760 dtrace_speculation_discard(dtrace_state_t *state, processorid_t cpu,
2761 dtrace_specid_t which)
2762 {
2763 dtrace_speculation_t *spec;
2764 dtrace_speculation_state_t current, new;
2765 dtrace_buffer_t *buf;
2766
2767 if (which == 0)
2768 return;
2769
2770 if (which > state->dts_nspeculations) {
2771 cpu_core[cpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2772 return;
2773 }
2774
2775 spec = &state->dts_speculations[which - 1];
2776 buf = &spec->dtsp_buffer[cpu];
2777
2778 do {
2779 current = spec->dtsp_state;
2780
2781 switch (current) {
2782 case DTRACESPEC_INACTIVE:
2783 case DTRACESPEC_COMMITTINGMANY:
2784 case DTRACESPEC_COMMITTING:
2785 case DTRACESPEC_DISCARDING:
2786 return;
2787
2788 case DTRACESPEC_ACTIVE:
2789 case DTRACESPEC_ACTIVEMANY:
2790 new = DTRACESPEC_DISCARDING;
2791 break;
2792
2793 case DTRACESPEC_ACTIVEONE:
2794 if (buf->dtb_offset != 0) {
2795 new = DTRACESPEC_INACTIVE;
2796 } else {
2797 new = DTRACESPEC_DISCARDING;
2798 }
2799 break;
2800
2801 default:
2802 ASSERT(0);
2803 }
2804 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2805 current, new) != current);
2806
2807 buf->dtb_offset = 0;
2808 buf->dtb_drops = 0;
2809 }
2810
2811 /*
2812 * Note: not called from probe context. This function is called
2813 * asynchronously from cross call context to clean any speculations that are
2814 * in the COMMITTINGMANY or DISCARDING states. These speculations may not be
2815 * transitioned back to the INACTIVE state until all CPUs have cleaned the
2816 * speculation.
2817 */
2818 static void
dtrace_speculation_clean_here(dtrace_state_t * state)2819 dtrace_speculation_clean_here(dtrace_state_t *state)
2820 {
2821 dtrace_icookie_t cookie;
2822 processorid_t cpu = CPU->cpu_id;
2823 dtrace_buffer_t *dest = &state->dts_buffer[cpu];
2824 dtrace_specid_t i;
2825
2826 cookie = dtrace_interrupt_disable();
2827
2828 if (dest->dtb_tomax == NULL) {
2829 dtrace_interrupt_enable(cookie);
2830 return;
2831 }
2832
2833 for (i = 0; i < state->dts_nspeculations; i++) {
2834 dtrace_speculation_t *spec = &state->dts_speculations[i];
2835 dtrace_buffer_t *src = &spec->dtsp_buffer[cpu];
2836
2837 if (src->dtb_tomax == NULL)
2838 continue;
2839
2840 if (spec->dtsp_state == DTRACESPEC_DISCARDING) {
2841 src->dtb_offset = 0;
2842 continue;
2843 }
2844
2845 if (spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2846 continue;
2847
2848 if (src->dtb_offset == 0)
2849 continue;
2850
2851 dtrace_speculation_commit(state, cpu, i + 1);
2852 }
2853
2854 dtrace_interrupt_enable(cookie);
2855 }
2856
2857 /*
2858 * Note: not called from probe context. This function is called
2859 * asynchronously (and at a regular interval) to clean any speculations that
2860 * are in the COMMITTINGMANY or DISCARDING states. If it discovers that there
2861 * is work to be done, it cross calls all CPUs to perform that work;
2862 * COMMITMANY and DISCARDING speculations may not be transitioned back to the
2863 * INACTIVE state until they have been cleaned by all CPUs.
2864 */
2865 static void
dtrace_speculation_clean(dtrace_state_t * state)2866 dtrace_speculation_clean(dtrace_state_t *state)
2867 {
2868 int work = 0, rv;
2869 dtrace_specid_t i;
2870
2871 for (i = 0; i < state->dts_nspeculations; i++) {
2872 dtrace_speculation_t *spec = &state->dts_speculations[i];
2873
2874 ASSERT(!spec->dtsp_cleaning);
2875
2876 if (spec->dtsp_state != DTRACESPEC_DISCARDING &&
2877 spec->dtsp_state != DTRACESPEC_COMMITTINGMANY)
2878 continue;
2879
2880 work++;
2881 spec->dtsp_cleaning = 1;
2882 }
2883
2884 if (!work)
2885 return;
2886
2887 dtrace_xcall(DTRACE_CPUALL,
2888 (dtrace_xcall_t)dtrace_speculation_clean_here, state);
2889
2890 /*
2891 * We now know that all CPUs have committed or discarded their
2892 * speculation buffers, as appropriate. We can now set the state
2893 * to inactive.
2894 */
2895 for (i = 0; i < state->dts_nspeculations; i++) {
2896 dtrace_speculation_t *spec = &state->dts_speculations[i];
2897 dtrace_speculation_state_t current, new;
2898
2899 if (!spec->dtsp_cleaning)
2900 continue;
2901
2902 current = spec->dtsp_state;
2903 ASSERT(current == DTRACESPEC_DISCARDING ||
2904 current == DTRACESPEC_COMMITTINGMANY);
2905
2906 new = DTRACESPEC_INACTIVE;
2907
2908 rv = dtrace_cas32((uint32_t *)&spec->dtsp_state, current, new);
2909 ASSERT(rv == current);
2910 spec->dtsp_cleaning = 0;
2911 }
2912 }
2913
2914 /*
2915 * Called as part of a speculate() to get the speculative buffer associated
2916 * with a given speculation. Returns NULL if the specified speculation is not
2917 * in an ACTIVE state. If the speculation is in the ACTIVEONE state -- and
2918 * the active CPU is not the specified CPU -- the speculation will be
2919 * atomically transitioned into the ACTIVEMANY state.
2920 */
2921 static dtrace_buffer_t *
dtrace_speculation_buffer(dtrace_state_t * state,processorid_t cpuid,dtrace_specid_t which)2922 dtrace_speculation_buffer(dtrace_state_t *state, processorid_t cpuid,
2923 dtrace_specid_t which)
2924 {
2925 dtrace_speculation_t *spec;
2926 dtrace_speculation_state_t current, new;
2927 dtrace_buffer_t *buf;
2928
2929 if (which == 0)
2930 return (NULL);
2931
2932 if (which > state->dts_nspeculations) {
2933 cpu_core[cpuid].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP;
2934 return (NULL);
2935 }
2936
2937 spec = &state->dts_speculations[which - 1];
2938 buf = &spec->dtsp_buffer[cpuid];
2939
2940 do {
2941 current = spec->dtsp_state;
2942
2943 switch (current) {
2944 case DTRACESPEC_INACTIVE:
2945 case DTRACESPEC_COMMITTINGMANY:
2946 case DTRACESPEC_DISCARDING:
2947 return (NULL);
2948
2949 case DTRACESPEC_COMMITTING:
2950 ASSERT(buf->dtb_offset == 0);
2951 return (NULL);
2952
2953 case DTRACESPEC_ACTIVEONE:
2954 /*
2955 * This speculation is currently active on one CPU.
2956 * Check the offset in the buffer; if it's non-zero,
2957 * that CPU must be us (and we leave the state alone).
2958 * If it's zero, assume that we're starting on a new
2959 * CPU -- and change the state to indicate that the
2960 * speculation is active on more than one CPU.
2961 */
2962 if (buf->dtb_offset != 0)
2963 return (buf);
2964
2965 new = DTRACESPEC_ACTIVEMANY;
2966 break;
2967
2968 case DTRACESPEC_ACTIVEMANY:
2969 return (buf);
2970
2971 case DTRACESPEC_ACTIVE:
2972 new = DTRACESPEC_ACTIVEONE;
2973 break;
2974
2975 default:
2976 ASSERT(0);
2977 }
2978 } while (dtrace_cas32((uint32_t *)&spec->dtsp_state,
2979 current, new) != current);
2980
2981 ASSERT(new == DTRACESPEC_ACTIVEONE || new == DTRACESPEC_ACTIVEMANY);
2982 return (buf);
2983 }
2984
2985 /*
2986 * Return a string. In the event that the user lacks the privilege to access
2987 * arbitrary kernel memory, we copy the string out to scratch memory so that we
2988 * don't fail access checking.
2989 *
2990 * dtrace_dif_variable() uses this routine as a helper for various
2991 * builtin values such as 'execname' and 'probefunc.'
2992 */
2993 uintptr_t
dtrace_dif_varstr(uintptr_t addr,dtrace_state_t * state,dtrace_mstate_t * mstate)2994 dtrace_dif_varstr(uintptr_t addr, dtrace_state_t *state,
2995 dtrace_mstate_t *mstate)
2996 {
2997 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
2998 uintptr_t ret;
2999 size_t strsz;
3000
3001 /*
3002 * The easy case: this probe is allowed to read all of memory, so
3003 * we can just return this as a vanilla pointer.
3004 */
3005 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) != 0)
3006 return (addr);
3007
3008 /*
3009 * This is the tougher case: we copy the string in question from
3010 * kernel memory into scratch memory and return it that way: this
3011 * ensures that we won't trip up when access checking tests the
3012 * BYREF return value.
3013 */
3014 strsz = dtrace_strlen((char *)addr, size) + 1;
3015
3016 if (mstate->dtms_scratch_ptr + strsz >
3017 mstate->dtms_scratch_base + mstate->dtms_scratch_size) {
3018 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
3019 return (NULL);
3020 }
3021
3022 dtrace_strcpy((const void *)addr, (void *)mstate->dtms_scratch_ptr,
3023 strsz);
3024 ret = mstate->dtms_scratch_ptr;
3025 mstate->dtms_scratch_ptr += strsz;
3026 return (ret);
3027 }
3028
3029 /*
3030 * This function implements the DIF emulator's variable lookups. The emulator
3031 * passes a reserved variable identifier and optional built-in array index.
3032 */
3033 static uint64_t
dtrace_dif_variable(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t v,uint64_t ndx)3034 dtrace_dif_variable(dtrace_mstate_t *mstate, dtrace_state_t *state, uint64_t v,
3035 uint64_t ndx)
3036 {
3037 /*
3038 * If we're accessing one of the uncached arguments, we'll turn this
3039 * into a reference in the args array.
3040 */
3041 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9) {
3042 ndx = v - DIF_VAR_ARG0;
3043 v = DIF_VAR_ARGS;
3044 }
3045
3046 switch (v) {
3047 case DIF_VAR_ARGS:
3048 if (!(mstate->dtms_access & DTRACE_ACCESS_ARGS)) {
3049 cpu_core[CPU->cpu_id].cpuc_dtrace_flags |=
3050 CPU_DTRACE_KPRIV;
3051 return (0);
3052 }
3053
3054 ASSERT(mstate->dtms_present & DTRACE_MSTATE_ARGS);
3055 if (ndx >= sizeof (mstate->dtms_arg) /
3056 sizeof (mstate->dtms_arg[0])) {
3057 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3058 dtrace_provider_t *pv;
3059 uint64_t val;
3060
3061 pv = mstate->dtms_probe->dtpr_provider;
3062 if (pv->dtpv_pops.dtps_getargval != NULL)
3063 val = pv->dtpv_pops.dtps_getargval(pv->dtpv_arg,
3064 mstate->dtms_probe->dtpr_id,
3065 mstate->dtms_probe->dtpr_arg, ndx, aframes);
3066 else
3067 val = dtrace_getarg(ndx, aframes);
3068
3069 /*
3070 * This is regrettably required to keep the compiler
3071 * from tail-optimizing the call to dtrace_getarg().
3072 * The condition always evaluates to true, but the
3073 * compiler has no way of figuring that out a priori.
3074 * (None of this would be necessary if the compiler
3075 * could be relied upon to _always_ tail-optimize
3076 * the call to dtrace_getarg() -- but it can't.)
3077 */
3078 if (mstate->dtms_probe != NULL)
3079 return (val);
3080
3081 ASSERT(0);
3082 }
3083
3084 return (mstate->dtms_arg[ndx]);
3085
3086 case DIF_VAR_UREGS: {
3087 klwp_t *lwp;
3088
3089 if (!dtrace_priv_proc(state, mstate))
3090 return (0);
3091
3092 if ((lwp = curthread->t_lwp) == NULL) {
3093 DTRACE_CPUFLAG_SET(CPU_DTRACE_BADADDR);
3094 cpu_core[CPU->cpu_id].cpuc_dtrace_illval = NULL;
3095 return (0);
3096 }
3097
3098 return (dtrace_getreg(lwp->lwp_regs, ndx));
3099 }
3100
3101 case DIF_VAR_VMREGS: {
3102 uint64_t rval;
3103
3104 if (!dtrace_priv_kernel(state))
3105 return (0);
3106
3107 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3108
3109 rval = dtrace_getvmreg(ndx,
3110 &cpu_core[CPU->cpu_id].cpuc_dtrace_flags);
3111
3112 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3113
3114 return (rval);
3115 }
3116
3117 case DIF_VAR_CURTHREAD:
3118 if (!dtrace_priv_proc(state, mstate))
3119 return (0);
3120 return ((uint64_t)(uintptr_t)curthread);
3121
3122 case DIF_VAR_TIMESTAMP:
3123 if (!(mstate->dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
3124 mstate->dtms_timestamp = dtrace_gethrtime();
3125 mstate->dtms_present |= DTRACE_MSTATE_TIMESTAMP;
3126 }
3127 return (mstate->dtms_timestamp);
3128
3129 case DIF_VAR_VTIMESTAMP:
3130 ASSERT(dtrace_vtime_references != 0);
3131 return (curthread->t_dtrace_vtime);
3132
3133 case DIF_VAR_WALLTIMESTAMP:
3134 if (!(mstate->dtms_present & DTRACE_MSTATE_WALLTIMESTAMP)) {
3135 mstate->dtms_walltimestamp = dtrace_gethrestime();
3136 mstate->dtms_present |= DTRACE_MSTATE_WALLTIMESTAMP;
3137 }
3138 return (mstate->dtms_walltimestamp);
3139
3140 case DIF_VAR_IPL:
3141 if (!dtrace_priv_kernel(state))
3142 return (0);
3143 if (!(mstate->dtms_present & DTRACE_MSTATE_IPL)) {
3144 mstate->dtms_ipl = dtrace_getipl();
3145 mstate->dtms_present |= DTRACE_MSTATE_IPL;
3146 }
3147 return (mstate->dtms_ipl);
3148
3149 case DIF_VAR_EPID:
3150 ASSERT(mstate->dtms_present & DTRACE_MSTATE_EPID);
3151 return (mstate->dtms_epid);
3152
3153 case DIF_VAR_ID:
3154 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3155 return (mstate->dtms_probe->dtpr_id);
3156
3157 case DIF_VAR_STACKDEPTH:
3158 if (!dtrace_priv_kernel(state))
3159 return (0);
3160 if (!(mstate->dtms_present & DTRACE_MSTATE_STACKDEPTH)) {
3161 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3162
3163 mstate->dtms_stackdepth = dtrace_getstackdepth(aframes);
3164 mstate->dtms_present |= DTRACE_MSTATE_STACKDEPTH;
3165 }
3166 return (mstate->dtms_stackdepth);
3167
3168 case DIF_VAR_USTACKDEPTH:
3169 if (!dtrace_priv_proc(state, mstate))
3170 return (0);
3171 if (!(mstate->dtms_present & DTRACE_MSTATE_USTACKDEPTH)) {
3172 /*
3173 * See comment in DIF_VAR_PID.
3174 */
3175 if (DTRACE_ANCHORED(mstate->dtms_probe) &&
3176 CPU_ON_INTR(CPU)) {
3177 mstate->dtms_ustackdepth = 0;
3178 } else {
3179 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3180 mstate->dtms_ustackdepth =
3181 dtrace_getustackdepth();
3182 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3183 }
3184 mstate->dtms_present |= DTRACE_MSTATE_USTACKDEPTH;
3185 }
3186 return (mstate->dtms_ustackdepth);
3187
3188 case DIF_VAR_CALLER:
3189 if (!dtrace_priv_kernel(state))
3190 return (0);
3191 if (!(mstate->dtms_present & DTRACE_MSTATE_CALLER)) {
3192 int aframes = mstate->dtms_probe->dtpr_aframes + 2;
3193
3194 if (!DTRACE_ANCHORED(mstate->dtms_probe)) {
3195 /*
3196 * If this is an unanchored probe, we are
3197 * required to go through the slow path:
3198 * dtrace_caller() only guarantees correct
3199 * results for anchored probes.
3200 */
3201 pc_t caller[2];
3202
3203 dtrace_getpcstack(caller, 2, aframes,
3204 (uint32_t *)(uintptr_t)mstate->dtms_arg[0]);
3205 mstate->dtms_caller = caller[1];
3206 } else if ((mstate->dtms_caller =
3207 dtrace_caller(aframes)) == -1) {
3208 /*
3209 * We have failed to do this the quick way;
3210 * we must resort to the slower approach of
3211 * calling dtrace_getpcstack().
3212 */
3213 pc_t caller;
3214
3215 dtrace_getpcstack(&caller, 1, aframes, NULL);
3216 mstate->dtms_caller = caller;
3217 }
3218
3219 mstate->dtms_present |= DTRACE_MSTATE_CALLER;
3220 }
3221 return (mstate->dtms_caller);
3222
3223 case DIF_VAR_UCALLER:
3224 if (!dtrace_priv_proc(state, mstate))
3225 return (0);
3226
3227 if (!(mstate->dtms_present & DTRACE_MSTATE_UCALLER)) {
3228 uint64_t ustack[3];
3229
3230 /*
3231 * dtrace_getupcstack() fills in the first uint64_t
3232 * with the current PID. The second uint64_t will
3233 * be the program counter at user-level. The third
3234 * uint64_t will contain the caller, which is what
3235 * we're after.
3236 */
3237 ustack[2] = NULL;
3238 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
3239 dtrace_getupcstack(ustack, 3);
3240 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
3241 mstate->dtms_ucaller = ustack[2];
3242 mstate->dtms_present |= DTRACE_MSTATE_UCALLER;
3243 }
3244
3245 return (mstate->dtms_ucaller);
3246
3247 case DIF_VAR_PROBEPROV:
3248 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3249 return (dtrace_dif_varstr(
3250 (uintptr_t)mstate->dtms_probe->dtpr_provider->dtpv_name,
3251 state, mstate));
3252
3253 case DIF_VAR_PROBEMOD:
3254 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3255 return (dtrace_dif_varstr(
3256 (uintptr_t)mstate->dtms_probe->dtpr_mod,
3257 state, mstate));
3258
3259 case DIF_VAR_PROBEFUNC:
3260 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3261 return (dtrace_dif_varstr(
3262 (uintptr_t)mstate->dtms_probe->dtpr_func,
3263 state, mstate));
3264
3265 case DIF_VAR_PROBENAME:
3266 ASSERT(mstate->dtms_present & DTRACE_MSTATE_PROBE);
3267 return (dtrace_dif_varstr(
3268 (uintptr_t)mstate->dtms_probe->dtpr_name,
3269 state, mstate));
3270
3271 case DIF_VAR_PID:
3272 if (!dtrace_priv_proc(state, mstate))
3273 return (0);
3274
3275 /*
3276 * Note that we are assuming that an unanchored probe is
3277 * always due to a high-level interrupt. (And we're assuming
3278 * that there is only a single high level interrupt.)
3279 */
3280 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3281 return (pid0.pid_id);
3282
3283 /*
3284 * It is always safe to dereference one's own t_procp pointer:
3285 * it always points to a valid, allocated proc structure.
3286 * Further, it is always safe to dereference the p_pidp member
3287 * of one's own proc structure. (These are truisms becuase
3288 * threads and processes don't clean up their own state --
3289 * they leave that task to whomever reaps them.)
3290 */
3291 return ((uint64_t)curthread->t_procp->p_pidp->pid_id);
3292
3293 case DIF_VAR_PPID:
3294 if (!dtrace_priv_proc(state, mstate))
3295 return (0);
3296
3297 /*
3298 * See comment in DIF_VAR_PID.
3299 */
3300 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3301 return (pid0.pid_id);
3302
3303 /*
3304 * It is always safe to dereference one's own t_procp pointer:
3305 * it always points to a valid, allocated proc structure.
3306 * (This is true because threads don't clean up their own
3307 * state -- they leave that task to whomever reaps them.)
3308 */
3309 return ((uint64_t)curthread->t_procp->p_ppid);
3310
3311 case DIF_VAR_TID:
3312 /*
3313 * See comment in DIF_VAR_PID.
3314 */
3315 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3316 return (0);
3317
3318 return ((uint64_t)curthread->t_tid);
3319
3320 case DIF_VAR_EXECNAME:
3321 if (!dtrace_priv_proc(state, mstate))
3322 return (0);
3323
3324 /*
3325 * See comment in DIF_VAR_PID.
3326 */
3327 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3328 return ((uint64_t)(uintptr_t)p0.p_user.u_comm);
3329
3330 /*
3331 * It is always safe to dereference one's own t_procp pointer:
3332 * it always points to a valid, allocated proc structure.
3333 * (This is true because threads don't clean up their own
3334 * state -- they leave that task to whomever reaps them.)
3335 */
3336 return (dtrace_dif_varstr(
3337 (uintptr_t)curthread->t_procp->p_user.u_comm,
3338 state, mstate));
3339
3340 case DIF_VAR_ZONENAME:
3341 if (!dtrace_priv_proc(state, mstate))
3342 return (0);
3343
3344 /*
3345 * See comment in DIF_VAR_PID.
3346 */
3347 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3348 return ((uint64_t)(uintptr_t)p0.p_zone->zone_name);
3349
3350 /*
3351 * It is always safe to dereference one's own t_procp pointer:
3352 * it always points to a valid, allocated proc structure.
3353 * (This is true because threads don't clean up their own
3354 * state -- they leave that task to whomever reaps them.)
3355 */
3356 return (dtrace_dif_varstr(
3357 (uintptr_t)curthread->t_procp->p_zone->zone_name,
3358 state, mstate));
3359
3360 case DIF_VAR_UID:
3361 if (!dtrace_priv_proc(state, mstate))
3362 return (0);
3363
3364 /*
3365 * See comment in DIF_VAR_PID.
3366 */
3367 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3368 return ((uint64_t)p0.p_cred->cr_uid);
3369
3370 /*
3371 * It is always safe to dereference one's own t_procp pointer:
3372 * it always points to a valid, allocated proc structure.
3373 * (This is true because threads don't clean up their own
3374 * state -- they leave that task to whomever reaps them.)
3375 *
3376 * Additionally, it is safe to dereference one's own process
3377 * credential, since this is never NULL after process birth.
3378 */
3379 return ((uint64_t)curthread->t_procp->p_cred->cr_uid);
3380
3381 case DIF_VAR_GID:
3382 if (!dtrace_priv_proc(state, mstate))
3383 return (0);
3384
3385 /*
3386 * See comment in DIF_VAR_PID.
3387 */
3388 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3389 return ((uint64_t)p0.p_cred->cr_gid);
3390
3391 /*
3392 * It is always safe to dereference one's own t_procp pointer:
3393 * it always points to a valid, allocated proc structure.
3394 * (This is true because threads don't clean up their own
3395 * state -- they leave that task to whomever reaps them.)
3396 *
3397 * Additionally, it is safe to dereference one's own process
3398 * credential, since this is never NULL after process birth.
3399 */
3400 return ((uint64_t)curthread->t_procp->p_cred->cr_gid);
3401
3402 case DIF_VAR_ERRNO: {
3403 klwp_t *lwp;
3404 if (!dtrace_priv_proc(state, mstate))
3405 return (0);
3406
3407 /*
3408 * See comment in DIF_VAR_PID.
3409 */
3410 if (DTRACE_ANCHORED(mstate->dtms_probe) && CPU_ON_INTR(CPU))
3411 return (0);
3412
3413 /*
3414 * It is always safe to dereference one's own t_lwp pointer in
3415 * the event that this pointer is non-NULL. (This is true
3416 * because threads and lwps don't clean up their own state --
3417 * they leave that task to whomever reaps them.)
3418 */
3419 if ((lwp = curthread->t_lwp) == NULL)
3420 return (0);
3421
3422 return ((uint64_t)lwp->lwp_errno);
3423 }
3424 default:
3425 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
3426 return (0);
3427 }
3428 }
3429
3430
3431 typedef enum dtrace_json_state {
3432 DTRACE_JSON_REST = 1,
3433 DTRACE_JSON_OBJECT,
3434 DTRACE_JSON_STRING,
3435 DTRACE_JSON_STRING_ESCAPE,
3436 DTRACE_JSON_STRING_ESCAPE_UNICODE,
3437 DTRACE_JSON_COLON,
3438 DTRACE_JSON_COMMA,
3439 DTRACE_JSON_VALUE,
3440 DTRACE_JSON_IDENTIFIER,
3441 DTRACE_JSON_NUMBER,
3442 DTRACE_JSON_NUMBER_FRAC,
3443 DTRACE_JSON_NUMBER_EXP,
3444 DTRACE_JSON_COLLECT_OBJECT
3445 } dtrace_json_state_t;
3446
3447 /*
3448 * This function possesses just enough knowledge about JSON to extract a single
3449 * value from a JSON string and store it in the scratch buffer. It is able
3450 * to extract nested object values, and members of arrays by index.
3451 *
3452 * elemlist is a list of JSON keys, stored as packed NUL-terminated strings, to
3453 * be looked up as we descend into the object tree. e.g.
3454 *
3455 * foo[0].bar.baz[32] --> "foo" NUL "0" NUL "bar" NUL "baz" NUL "32" NUL
3456 * with nelems = 5.
3457 *
3458 * The run time of this function must be bounded above by strsize to limit the
3459 * amount of work done in probe context. As such, it is implemented as a
3460 * simple state machine, reading one character at a time using safe loads
3461 * until we find the requested element, hit a parsing error or run off the
3462 * end of the object or string.
3463 *
3464 * As there is no way for a subroutine to return an error without interrupting
3465 * clause execution, we simply return NULL in the event of a missing key or any
3466 * other error condition. Each NULL return in this function is commented with
3467 * the error condition it represents -- parsing or otherwise.
3468 *
3469 * The set of states for the state machine closely matches the JSON
3470 * specification (http://json.org/). Briefly:
3471 *
3472 * DTRACE_JSON_REST:
3473 * Skip whitespace until we find either a top-level Object, moving
3474 * to DTRACE_JSON_OBJECT; or an Array, moving to DTRACE_JSON_VALUE.
3475 *
3476 * DTRACE_JSON_OBJECT:
3477 * Locate the next key String in an Object. Sets a flag to denote
3478 * the next String as a key string and moves to DTRACE_JSON_STRING.
3479 *
3480 * DTRACE_JSON_COLON:
3481 * Skip whitespace until we find the colon that separates key Strings
3482 * from their values. Once found, move to DTRACE_JSON_VALUE.
3483 *
3484 * DTRACE_JSON_VALUE:
3485 * Detects the type of the next value (String, Number, Identifier, Object
3486 * or Array) and routes to the states that process that type. Here we also
3487 * deal with the element selector list if we are requested to traverse down
3488 * into the object tree.
3489 *
3490 * DTRACE_JSON_COMMA:
3491 * Skip whitespace until we find the comma that separates key-value pairs
3492 * in Objects (returning to DTRACE_JSON_OBJECT) or values in Arrays
3493 * (similarly DTRACE_JSON_VALUE). All following literal value processing
3494 * states return to this state at the end of their value, unless otherwise
3495 * noted.
3496 *
3497 * DTRACE_JSON_NUMBER, DTRACE_JSON_NUMBER_FRAC, DTRACE_JSON_NUMBER_EXP:
3498 * Processes a Number literal from the JSON, including any exponent
3499 * component that may be present. Numbers are returned as strings, which
3500 * may be passed to strtoll() if an integer is required.
3501 *
3502 * DTRACE_JSON_IDENTIFIER:
3503 * Processes a "true", "false" or "null" literal in the JSON.
3504 *
3505 * DTRACE_JSON_STRING, DTRACE_JSON_STRING_ESCAPE,
3506 * DTRACE_JSON_STRING_ESCAPE_UNICODE:
3507 * Processes a String literal from the JSON, whether the String denotes
3508 * a key, a value or part of a larger Object. Handles all escape sequences
3509 * present in the specification, including four-digit unicode characters,
3510 * but merely includes the escape sequence without converting it to the
3511 * actual escaped character. If the String is flagged as a key, we
3512 * move to DTRACE_JSON_COLON rather than DTRACE_JSON_COMMA.
3513 *
3514 * DTRACE_JSON_COLLECT_OBJECT:
3515 * This state collects an entire Object (or Array), correctly handling
3516 * embedded strings. If the full element selector list matches this nested
3517 * object, we return the Object in full as a string. If not, we use this
3518 * state to skip to the next value at this level and continue processing.
3519 *
3520 * NOTE: This function uses various macros from strtolctype.h to manipulate
3521 * digit values, etc -- these have all been checked to ensure they make
3522 * no additional function calls.
3523 */
3524 static char *
dtrace_json(uint64_t size,uintptr_t json,char * elemlist,int nelems,char * dest)3525 dtrace_json(uint64_t size, uintptr_t json, char *elemlist, int nelems,
3526 char *dest)
3527 {
3528 dtrace_json_state_t state = DTRACE_JSON_REST;
3529 int64_t array_elem = INT64_MIN;
3530 int64_t array_pos = 0;
3531 uint8_t escape_unicount = 0;
3532 boolean_t string_is_key = B_FALSE;
3533 boolean_t collect_object = B_FALSE;
3534 boolean_t found_key = B_FALSE;
3535 boolean_t in_array = B_FALSE;
3536 uint32_t braces = 0, brackets = 0;
3537 char *elem = elemlist;
3538 char *dd = dest;
3539 uintptr_t cur;
3540
3541 for (cur = json; cur < json + size; cur++) {
3542 char cc = dtrace_load8(cur);
3543 if (cc == '\0')
3544 return (NULL);
3545
3546 switch (state) {
3547 case DTRACE_JSON_REST:
3548 if (isspace(cc))
3549 break;
3550
3551 if (cc == '{') {
3552 state = DTRACE_JSON_OBJECT;
3553 break;
3554 }
3555
3556 if (cc == '[') {
3557 in_array = B_TRUE;
3558 array_pos = 0;
3559 array_elem = dtrace_strtoll(elem, 10, size);
3560 found_key = array_elem == 0 ? B_TRUE : B_FALSE;
3561 state = DTRACE_JSON_VALUE;
3562 break;
3563 }
3564
3565 /*
3566 * ERROR: expected to find a top-level object or array.
3567 */
3568 return (NULL);
3569 case DTRACE_JSON_OBJECT:
3570 if (isspace(cc))
3571 break;
3572
3573 if (cc == '"') {
3574 state = DTRACE_JSON_STRING;
3575 string_is_key = B_TRUE;
3576 break;
3577 }
3578
3579 /*
3580 * ERROR: either the object did not start with a key
3581 * string, or we've run off the end of the object
3582 * without finding the requested key.
3583 */
3584 return (NULL);
3585 case DTRACE_JSON_STRING:
3586 if (cc == '\\') {
3587 *dd++ = '\\';
3588 state = DTRACE_JSON_STRING_ESCAPE;
3589 break;
3590 }
3591
3592 if (cc == '"') {
3593 if (collect_object) {
3594 /*
3595 * We don't reset the dest here, as
3596 * the string is part of a larger
3597 * object being collected.
3598 */
3599 *dd++ = cc;
3600 collect_object = B_FALSE;
3601 state = DTRACE_JSON_COLLECT_OBJECT;
3602 break;
3603 }
3604 *dd = '\0';
3605 dd = dest; /* reset string buffer */
3606 if (string_is_key) {
3607 if (dtrace_strncmp(dest, elem,
3608 size) == 0)
3609 found_key = B_TRUE;
3610 } else if (found_key) {
3611 if (nelems > 1) {
3612 /*
3613 * We expected an object, not
3614 * this string.
3615 */
3616 return (NULL);
3617 }
3618 return (dest);
3619 }
3620 state = string_is_key ? DTRACE_JSON_COLON :
3621 DTRACE_JSON_COMMA;
3622 string_is_key = B_FALSE;
3623 break;
3624 }
3625
3626 *dd++ = cc;
3627 break;
3628 case DTRACE_JSON_STRING_ESCAPE:
3629 *dd++ = cc;
3630 if (cc == 'u') {
3631 escape_unicount = 0;
3632 state = DTRACE_JSON_STRING_ESCAPE_UNICODE;
3633 } else {
3634 state = DTRACE_JSON_STRING;
3635 }
3636 break;
3637 case DTRACE_JSON_STRING_ESCAPE_UNICODE:
3638 if (!isxdigit(cc)) {
3639 /*
3640 * ERROR: invalid unicode escape, expected
3641 * four valid hexidecimal digits.
3642 */
3643 return (NULL);
3644 }
3645
3646 *dd++ = cc;
3647 if (++escape_unicount == 4)
3648 state = DTRACE_JSON_STRING;
3649 break;
3650 case DTRACE_JSON_COLON:
3651 if (isspace(cc))
3652 break;
3653
3654 if (cc == ':') {
3655 state = DTRACE_JSON_VALUE;
3656 break;
3657 }
3658
3659 /*
3660 * ERROR: expected a colon.
3661 */
3662 return (NULL);
3663 case DTRACE_JSON_COMMA:
3664 if (isspace(cc))
3665 break;
3666
3667 if (cc == ',') {
3668 if (in_array) {
3669 state = DTRACE_JSON_VALUE;
3670 if (++array_pos == array_elem)
3671 found_key = B_TRUE;
3672 } else {
3673 state = DTRACE_JSON_OBJECT;
3674 }
3675 break;
3676 }
3677
3678 /*
3679 * ERROR: either we hit an unexpected character, or
3680 * we reached the end of the object or array without
3681 * finding the requested key.
3682 */
3683 return (NULL);
3684 case DTRACE_JSON_IDENTIFIER:
3685 if (islower(cc)) {
3686 *dd++ = cc;
3687 break;
3688 }
3689
3690 *dd = '\0';
3691 dd = dest; /* reset string buffer */
3692
3693 if (dtrace_strncmp(dest, "true", 5) == 0 ||
3694 dtrace_strncmp(dest, "false", 6) == 0 ||
3695 dtrace_strncmp(dest, "null", 5) == 0) {
3696 if (found_key) {
3697 if (nelems > 1) {
3698 /*
3699 * ERROR: We expected an object,
3700 * not this identifier.
3701 */
3702 return (NULL);
3703 }
3704 return (dest);
3705 } else {
3706 cur--;
3707 state = DTRACE_JSON_COMMA;
3708 break;
3709 }
3710 }
3711
3712 /*
3713 * ERROR: we did not recognise the identifier as one
3714 * of those in the JSON specification.
3715 */
3716 return (NULL);
3717 case DTRACE_JSON_NUMBER:
3718 if (cc == '.') {
3719 *dd++ = cc;
3720 state = DTRACE_JSON_NUMBER_FRAC;
3721 break;
3722 }
3723
3724 if (cc == 'x' || cc == 'X') {
3725 /*
3726 * ERROR: specification explicitly excludes
3727 * hexidecimal or octal numbers.
3728 */
3729 return (NULL);
3730 }
3731
3732 /* FALLTHRU */
3733 case DTRACE_JSON_NUMBER_FRAC:
3734 if (cc == 'e' || cc == 'E') {
3735 *dd++ = cc;
3736 state = DTRACE_JSON_NUMBER_EXP;
3737 break;
3738 }
3739
3740 if (cc == '+' || cc == '-') {
3741 /*
3742 * ERROR: expect sign as part of exponent only.
3743 */
3744 return (NULL);
3745 }
3746 /* FALLTHRU */
3747 case DTRACE_JSON_NUMBER_EXP:
3748 if (isdigit(cc) || cc == '+' || cc == '-') {
3749 *dd++ = cc;
3750 break;
3751 }
3752
3753 *dd = '\0';
3754 dd = dest; /* reset string buffer */
3755 if (found_key) {
3756 if (nelems > 1) {
3757 /*
3758 * ERROR: We expected an object, not
3759 * this number.
3760 */
3761 return (NULL);
3762 }
3763 return (dest);
3764 }
3765
3766 cur--;
3767 state = DTRACE_JSON_COMMA;
3768 break;
3769 case DTRACE_JSON_VALUE:
3770 if (isspace(cc))
3771 break;
3772
3773 if (cc == '{' || cc == '[') {
3774 if (nelems > 1 && found_key) {
3775 in_array = cc == '[' ? B_TRUE : B_FALSE;
3776 /*
3777 * If our element selector directs us
3778 * to descend into this nested object,
3779 * then move to the next selector
3780 * element in the list and restart the
3781 * state machine.
3782 */
3783 while (*elem != '\0')
3784 elem++;
3785 elem++; /* skip the inter-element NUL */
3786 nelems--;
3787 dd = dest;
3788 if (in_array) {
3789 state = DTRACE_JSON_VALUE;
3790 array_pos = 0;
3791 array_elem = dtrace_strtoll(
3792 elem, 10, size);
3793 found_key = array_elem == 0 ?
3794 B_TRUE : B_FALSE;
3795 } else {
3796 found_key = B_FALSE;
3797 state = DTRACE_JSON_OBJECT;
3798 }
3799 break;
3800 }
3801
3802 /*
3803 * Otherwise, we wish to either skip this
3804 * nested object or return it in full.
3805 */
3806 if (cc == '[')
3807 brackets = 1;
3808 else
3809 braces = 1;
3810 *dd++ = cc;
3811 state = DTRACE_JSON_COLLECT_OBJECT;
3812 break;
3813 }
3814
3815 if (cc == '"') {
3816 state = DTRACE_JSON_STRING;
3817 break;
3818 }
3819
3820 if (islower(cc)) {
3821 /*
3822 * Here we deal with true, false and null.
3823 */
3824 *dd++ = cc;
3825 state = DTRACE_JSON_IDENTIFIER;
3826 break;
3827 }
3828
3829 if (cc == '-' || isdigit(cc)) {
3830 *dd++ = cc;
3831 state = DTRACE_JSON_NUMBER;
3832 break;
3833 }
3834
3835 /*
3836 * ERROR: unexpected character at start of value.
3837 */
3838 return (NULL);
3839 case DTRACE_JSON_COLLECT_OBJECT:
3840 if (cc == '\0')
3841 /*
3842 * ERROR: unexpected end of input.
3843 */
3844 return (NULL);
3845
3846 *dd++ = cc;
3847 if (cc == '"') {
3848 collect_object = B_TRUE;
3849 state = DTRACE_JSON_STRING;
3850 break;
3851 }
3852
3853 if (cc == ']') {
3854 if (brackets-- == 0) {
3855 /*
3856 * ERROR: unbalanced brackets.
3857 */
3858 return (NULL);
3859 }
3860 } else if (cc == '}') {
3861 if (braces-- == 0) {
3862 /*
3863 * ERROR: unbalanced braces.
3864 */
3865 return (NULL);
3866 }
3867 } else if (cc == '{') {
3868 braces++;
3869 } else if (cc == '[') {
3870 brackets++;
3871 }
3872
3873 if (brackets == 0 && braces == 0) {
3874 if (found_key) {
3875 *dd = '\0';
3876 return (dest);
3877 }
3878 dd = dest; /* reset string buffer */
3879 state = DTRACE_JSON_COMMA;
3880 }
3881 break;
3882 }
3883 }
3884 return (NULL);
3885 }
3886
3887 /*
3888 * Emulate the execution of DTrace ID subroutines invoked by the call opcode.
3889 * Notice that we don't bother validating the proper number of arguments or
3890 * their types in the tuple stack. This isn't needed because all argument
3891 * interpretation is safe because of our load safety -- the worst that can
3892 * happen is that a bogus program can obtain bogus results.
3893 */
3894 static void
dtrace_dif_subr(uint_t subr,uint_t rd,uint64_t * regs,dtrace_key_t * tupregs,int nargs,dtrace_mstate_t * mstate,dtrace_state_t * state)3895 dtrace_dif_subr(uint_t subr, uint_t rd, uint64_t *regs,
3896 dtrace_key_t *tupregs, int nargs,
3897 dtrace_mstate_t *mstate, dtrace_state_t *state)
3898 {
3899 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
3900 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
3901 dtrace_vstate_t *vstate = &state->dts_vstate;
3902
3903 union {
3904 mutex_impl_t mi;
3905 uint64_t mx;
3906 } m;
3907
3908 union {
3909 krwlock_t ri;
3910 uintptr_t rw;
3911 } r;
3912
3913 switch (subr) {
3914 case DIF_SUBR_RAND:
3915 regs[rd] = (dtrace_gethrtime() * 2416 + 374441) % 1771875;
3916 break;
3917
3918 case DIF_SUBR_MUTEX_OWNED:
3919 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3920 mstate, vstate)) {
3921 regs[rd] = NULL;
3922 break;
3923 }
3924
3925 m.mx = dtrace_load64(tupregs[0].dttk_value);
3926 if (MUTEX_TYPE_ADAPTIVE(&m.mi))
3927 regs[rd] = MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER;
3928 else
3929 regs[rd] = LOCK_HELD(&m.mi.m_spin.m_spinlock);
3930 break;
3931
3932 case DIF_SUBR_MUTEX_OWNER:
3933 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3934 mstate, vstate)) {
3935 regs[rd] = NULL;
3936 break;
3937 }
3938
3939 m.mx = dtrace_load64(tupregs[0].dttk_value);
3940 if (MUTEX_TYPE_ADAPTIVE(&m.mi) &&
3941 MUTEX_OWNER(&m.mi) != MUTEX_NO_OWNER)
3942 regs[rd] = (uintptr_t)MUTEX_OWNER(&m.mi);
3943 else
3944 regs[rd] = 0;
3945 break;
3946
3947 case DIF_SUBR_MUTEX_TYPE_ADAPTIVE:
3948 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3949 mstate, vstate)) {
3950 regs[rd] = NULL;
3951 break;
3952 }
3953
3954 m.mx = dtrace_load64(tupregs[0].dttk_value);
3955 regs[rd] = MUTEX_TYPE_ADAPTIVE(&m.mi);
3956 break;
3957
3958 case DIF_SUBR_MUTEX_TYPE_SPIN:
3959 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (kmutex_t),
3960 mstate, vstate)) {
3961 regs[rd] = NULL;
3962 break;
3963 }
3964
3965 m.mx = dtrace_load64(tupregs[0].dttk_value);
3966 regs[rd] = MUTEX_TYPE_SPIN(&m.mi);
3967 break;
3968
3969 case DIF_SUBR_RW_READ_HELD: {
3970 uintptr_t tmp;
3971
3972 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (uintptr_t),
3973 mstate, vstate)) {
3974 regs[rd] = NULL;
3975 break;
3976 }
3977
3978 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3979 regs[rd] = _RW_READ_HELD(&r.ri, tmp);
3980 break;
3981 }
3982
3983 case DIF_SUBR_RW_WRITE_HELD:
3984 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3985 mstate, vstate)) {
3986 regs[rd] = NULL;
3987 break;
3988 }
3989
3990 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
3991 regs[rd] = _RW_WRITE_HELD(&r.ri);
3992 break;
3993
3994 case DIF_SUBR_RW_ISWRITER:
3995 if (!dtrace_canload(tupregs[0].dttk_value, sizeof (krwlock_t),
3996 mstate, vstate)) {
3997 regs[rd] = NULL;
3998 break;
3999 }
4000
4001 r.rw = dtrace_loadptr(tupregs[0].dttk_value);
4002 regs[rd] = _RW_ISWRITER(&r.ri);
4003 break;
4004
4005 case DIF_SUBR_BCOPY: {
4006 /*
4007 * We need to be sure that the destination is in the scratch
4008 * region -- no other region is allowed.
4009 */
4010 uintptr_t src = tupregs[0].dttk_value;
4011 uintptr_t dest = tupregs[1].dttk_value;
4012 size_t size = tupregs[2].dttk_value;
4013
4014 if (!dtrace_inscratch(dest, size, mstate)) {
4015 *flags |= CPU_DTRACE_BADADDR;
4016 *illval = regs[rd];
4017 break;
4018 }
4019
4020 if (!dtrace_canload(src, size, mstate, vstate)) {
4021 regs[rd] = NULL;
4022 break;
4023 }
4024
4025 dtrace_bcopy((void *)src, (void *)dest, size);
4026 break;
4027 }
4028
4029 case DIF_SUBR_ALLOCA:
4030 case DIF_SUBR_COPYIN: {
4031 uintptr_t dest = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
4032 uint64_t size =
4033 tupregs[subr == DIF_SUBR_ALLOCA ? 0 : 1].dttk_value;
4034 size_t scratch_size = (dest - mstate->dtms_scratch_ptr) + size;
4035
4036 /*
4037 * This action doesn't require any credential checks since
4038 * probes will not activate in user contexts to which the
4039 * enabling user does not have permissions.
4040 */
4041
4042 /*
4043 * Rounding up the user allocation size could have overflowed
4044 * a large, bogus allocation (like -1ULL) to 0.
4045 */
4046 if (scratch_size < size ||
4047 !DTRACE_INSCRATCH(mstate, scratch_size)) {
4048 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4049 regs[rd] = NULL;
4050 break;
4051 }
4052
4053 if (subr == DIF_SUBR_COPYIN) {
4054 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4055 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4056 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4057 }
4058
4059 mstate->dtms_scratch_ptr += scratch_size;
4060 regs[rd] = dest;
4061 break;
4062 }
4063
4064 case DIF_SUBR_COPYINTO: {
4065 uint64_t size = tupregs[1].dttk_value;
4066 uintptr_t dest = tupregs[2].dttk_value;
4067
4068 /*
4069 * This action doesn't require any credential checks since
4070 * probes will not activate in user contexts to which the
4071 * enabling user does not have permissions.
4072 */
4073 if (!dtrace_inscratch(dest, size, mstate)) {
4074 *flags |= CPU_DTRACE_BADADDR;
4075 *illval = regs[rd];
4076 break;
4077 }
4078
4079 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4080 dtrace_copyin(tupregs[0].dttk_value, dest, size, flags);
4081 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4082 break;
4083 }
4084
4085 case DIF_SUBR_COPYINSTR: {
4086 uintptr_t dest = mstate->dtms_scratch_ptr;
4087 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4088
4089 if (nargs > 1 && tupregs[1].dttk_value < size)
4090 size = tupregs[1].dttk_value + 1;
4091
4092 /*
4093 * This action doesn't require any credential checks since
4094 * probes will not activate in user contexts to which the
4095 * enabling user does not have permissions.
4096 */
4097 if (!DTRACE_INSCRATCH(mstate, size)) {
4098 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4099 regs[rd] = NULL;
4100 break;
4101 }
4102
4103 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4104 dtrace_copyinstr(tupregs[0].dttk_value, dest, size, flags);
4105 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4106
4107 ((char *)dest)[size - 1] = '\0';
4108 mstate->dtms_scratch_ptr += size;
4109 regs[rd] = dest;
4110 break;
4111 }
4112
4113 case DIF_SUBR_MSGSIZE:
4114 case DIF_SUBR_MSGDSIZE: {
4115 uintptr_t baddr = tupregs[0].dttk_value, daddr;
4116 uintptr_t wptr, rptr;
4117 size_t count = 0;
4118 int cont = 0;
4119
4120 while (baddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4121
4122 if (!dtrace_canload(baddr, sizeof (mblk_t), mstate,
4123 vstate)) {
4124 regs[rd] = NULL;
4125 break;
4126 }
4127
4128 wptr = dtrace_loadptr(baddr +
4129 offsetof(mblk_t, b_wptr));
4130
4131 rptr = dtrace_loadptr(baddr +
4132 offsetof(mblk_t, b_rptr));
4133
4134 if (wptr < rptr) {
4135 *flags |= CPU_DTRACE_BADADDR;
4136 *illval = tupregs[0].dttk_value;
4137 break;
4138 }
4139
4140 daddr = dtrace_loadptr(baddr +
4141 offsetof(mblk_t, b_datap));
4142
4143 baddr = dtrace_loadptr(baddr +
4144 offsetof(mblk_t, b_cont));
4145
4146 /*
4147 * We want to prevent against denial-of-service here,
4148 * so we're only going to search the list for
4149 * dtrace_msgdsize_max mblks.
4150 */
4151 if (cont++ > dtrace_msgdsize_max) {
4152 *flags |= CPU_DTRACE_ILLOP;
4153 break;
4154 }
4155
4156 if (subr == DIF_SUBR_MSGDSIZE) {
4157 if (dtrace_load8(daddr +
4158 offsetof(dblk_t, db_type)) != M_DATA)
4159 continue;
4160 }
4161
4162 count += wptr - rptr;
4163 }
4164
4165 if (!(*flags & CPU_DTRACE_FAULT))
4166 regs[rd] = count;
4167
4168 break;
4169 }
4170
4171 case DIF_SUBR_PROGENYOF: {
4172 pid_t pid = tupregs[0].dttk_value;
4173 proc_t *p;
4174 int rval = 0;
4175
4176 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4177
4178 for (p = curthread->t_procp; p != NULL; p = p->p_parent) {
4179 if (p->p_pidp->pid_id == pid) {
4180 rval = 1;
4181 break;
4182 }
4183 }
4184
4185 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4186
4187 regs[rd] = rval;
4188 break;
4189 }
4190
4191 case DIF_SUBR_SPECULATION:
4192 regs[rd] = dtrace_speculation(state);
4193 break;
4194
4195 case DIF_SUBR_COPYOUT: {
4196 uintptr_t kaddr = tupregs[0].dttk_value;
4197 uintptr_t uaddr = tupregs[1].dttk_value;
4198 uint64_t size = tupregs[2].dttk_value;
4199
4200 if (!dtrace_destructive_disallow &&
4201 dtrace_priv_proc_control(state, mstate) &&
4202 !dtrace_istoxic(kaddr, size) &&
4203 dtrace_canload(kaddr, size, mstate, vstate)) {
4204 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4205 dtrace_copyout(kaddr, uaddr, size, flags);
4206 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4207 }
4208 break;
4209 }
4210
4211 case DIF_SUBR_COPYOUTSTR: {
4212 uintptr_t kaddr = tupregs[0].dttk_value;
4213 uintptr_t uaddr = tupregs[1].dttk_value;
4214 uint64_t size = tupregs[2].dttk_value;
4215
4216 if (!dtrace_destructive_disallow &&
4217 dtrace_priv_proc_control(state, mstate) &&
4218 !dtrace_istoxic(kaddr, size) &&
4219 dtrace_strcanload(kaddr, size, mstate, vstate)) {
4220 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
4221 dtrace_copyoutstr(kaddr, uaddr, size, flags);
4222 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
4223 }
4224 break;
4225 }
4226
4227 case DIF_SUBR_STRLEN: {
4228 size_t sz;
4229 uintptr_t addr = (uintptr_t)tupregs[0].dttk_value;
4230 sz = dtrace_strlen((char *)addr,
4231 state->dts_options[DTRACEOPT_STRSIZE]);
4232
4233 if (!dtrace_canload(addr, sz + 1, mstate, vstate)) {
4234 regs[rd] = NULL;
4235 break;
4236 }
4237
4238 regs[rd] = sz;
4239
4240 break;
4241 }
4242
4243 case DIF_SUBR_STRCHR:
4244 case DIF_SUBR_STRRCHR: {
4245 /*
4246 * We're going to iterate over the string looking for the
4247 * specified character. We will iterate until we have reached
4248 * the string length or we have found the character. If this
4249 * is DIF_SUBR_STRRCHR, we will look for the last occurrence
4250 * of the specified character instead of the first.
4251 */
4252 uintptr_t saddr = tupregs[0].dttk_value;
4253 uintptr_t addr = tupregs[0].dttk_value;
4254 uintptr_t limit = addr + state->dts_options[DTRACEOPT_STRSIZE];
4255 char c, target = (char)tupregs[1].dttk_value;
4256
4257 for (regs[rd] = NULL; addr < limit; addr++) {
4258 if ((c = dtrace_load8(addr)) == target) {
4259 regs[rd] = addr;
4260
4261 if (subr == DIF_SUBR_STRCHR)
4262 break;
4263 }
4264
4265 if (c == '\0')
4266 break;
4267 }
4268
4269 if (!dtrace_canload(saddr, addr - saddr, mstate, vstate)) {
4270 regs[rd] = NULL;
4271 break;
4272 }
4273
4274 break;
4275 }
4276
4277 case DIF_SUBR_STRSTR:
4278 case DIF_SUBR_INDEX:
4279 case DIF_SUBR_RINDEX: {
4280 /*
4281 * We're going to iterate over the string looking for the
4282 * specified string. We will iterate until we have reached
4283 * the string length or we have found the string. (Yes, this
4284 * is done in the most naive way possible -- but considering
4285 * that the string we're searching for is likely to be
4286 * relatively short, the complexity of Rabin-Karp or similar
4287 * hardly seems merited.)
4288 */
4289 char *addr = (char *)(uintptr_t)tupregs[0].dttk_value;
4290 char *substr = (char *)(uintptr_t)tupregs[1].dttk_value;
4291 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4292 size_t len = dtrace_strlen(addr, size);
4293 size_t sublen = dtrace_strlen(substr, size);
4294 char *limit = addr + len, *orig = addr;
4295 int notfound = subr == DIF_SUBR_STRSTR ? 0 : -1;
4296 int inc = 1;
4297
4298 regs[rd] = notfound;
4299
4300 if (!dtrace_canload((uintptr_t)addr, len + 1, mstate, vstate)) {
4301 regs[rd] = NULL;
4302 break;
4303 }
4304
4305 if (!dtrace_canload((uintptr_t)substr, sublen + 1, mstate,
4306 vstate)) {
4307 regs[rd] = NULL;
4308 break;
4309 }
4310
4311 /*
4312 * strstr() and index()/rindex() have similar semantics if
4313 * both strings are the empty string: strstr() returns a
4314 * pointer to the (empty) string, and index() and rindex()
4315 * both return index 0 (regardless of any position argument).
4316 */
4317 if (sublen == 0 && len == 0) {
4318 if (subr == DIF_SUBR_STRSTR)
4319 regs[rd] = (uintptr_t)addr;
4320 else
4321 regs[rd] = 0;
4322 break;
4323 }
4324
4325 if (subr != DIF_SUBR_STRSTR) {
4326 if (subr == DIF_SUBR_RINDEX) {
4327 limit = orig - 1;
4328 addr += len;
4329 inc = -1;
4330 }
4331
4332 /*
4333 * Both index() and rindex() take an optional position
4334 * argument that denotes the starting position.
4335 */
4336 if (nargs == 3) {
4337 int64_t pos = (int64_t)tupregs[2].dttk_value;
4338
4339 /*
4340 * If the position argument to index() is
4341 * negative, Perl implicitly clamps it at
4342 * zero. This semantic is a little surprising
4343 * given the special meaning of negative
4344 * positions to similar Perl functions like
4345 * substr(), but it appears to reflect a
4346 * notion that index() can start from a
4347 * negative index and increment its way up to
4348 * the string. Given this notion, Perl's
4349 * rindex() is at least self-consistent in
4350 * that it implicitly clamps positions greater
4351 * than the string length to be the string
4352 * length. Where Perl completely loses
4353 * coherence, however, is when the specified
4354 * substring is the empty string (""). In
4355 * this case, even if the position is
4356 * negative, rindex() returns 0 -- and even if
4357 * the position is greater than the length,
4358 * index() returns the string length. These
4359 * semantics violate the notion that index()
4360 * should never return a value less than the
4361 * specified position and that rindex() should
4362 * never return a value greater than the
4363 * specified position. (One assumes that
4364 * these semantics are artifacts of Perl's
4365 * implementation and not the results of
4366 * deliberate design -- it beggars belief that
4367 * even Larry Wall could desire such oddness.)
4368 * While in the abstract one would wish for
4369 * consistent position semantics across
4370 * substr(), index() and rindex() -- or at the
4371 * very least self-consistent position
4372 * semantics for index() and rindex() -- we
4373 * instead opt to keep with the extant Perl
4374 * semantics, in all their broken glory. (Do
4375 * we have more desire to maintain Perl's
4376 * semantics than Perl does? Probably.)
4377 */
4378 if (subr == DIF_SUBR_RINDEX) {
4379 if (pos < 0) {
4380 if (sublen == 0)
4381 regs[rd] = 0;
4382 break;
4383 }
4384
4385 if (pos > len)
4386 pos = len;
4387 } else {
4388 if (pos < 0)
4389 pos = 0;
4390
4391 if (pos >= len) {
4392 if (sublen == 0)
4393 regs[rd] = len;
4394 break;
4395 }
4396 }
4397
4398 addr = orig + pos;
4399 }
4400 }
4401
4402 for (regs[rd] = notfound; addr != limit; addr += inc) {
4403 if (dtrace_strncmp(addr, substr, sublen) == 0) {
4404 if (subr != DIF_SUBR_STRSTR) {
4405 /*
4406 * As D index() and rindex() are
4407 * modeled on Perl (and not on awk),
4408 * we return a zero-based (and not a
4409 * one-based) index. (For you Perl
4410 * weenies: no, we're not going to add
4411 * $[ -- and shouldn't you be at a con
4412 * or something?)
4413 */
4414 regs[rd] = (uintptr_t)(addr - orig);
4415 break;
4416 }
4417
4418 ASSERT(subr == DIF_SUBR_STRSTR);
4419 regs[rd] = (uintptr_t)addr;
4420 break;
4421 }
4422 }
4423
4424 break;
4425 }
4426
4427 case DIF_SUBR_STRTOK: {
4428 uintptr_t addr = tupregs[0].dttk_value;
4429 uintptr_t tokaddr = tupregs[1].dttk_value;
4430 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4431 uintptr_t limit, toklimit = tokaddr + size;
4432 uint8_t c, tokmap[32]; /* 256 / 8 */
4433 char *dest = (char *)mstate->dtms_scratch_ptr;
4434 int i;
4435
4436 /*
4437 * Check both the token buffer and (later) the input buffer,
4438 * since both could be non-scratch addresses.
4439 */
4440 if (!dtrace_strcanload(tokaddr, size, mstate, vstate)) {
4441 regs[rd] = NULL;
4442 break;
4443 }
4444
4445 if (!DTRACE_INSCRATCH(mstate, size)) {
4446 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4447 regs[rd] = NULL;
4448 break;
4449 }
4450
4451 if (addr == NULL) {
4452 /*
4453 * If the address specified is NULL, we use our saved
4454 * strtok pointer from the mstate. Note that this
4455 * means that the saved strtok pointer is _only_
4456 * valid within multiple enablings of the same probe --
4457 * it behaves like an implicit clause-local variable.
4458 */
4459 addr = mstate->dtms_strtok;
4460 } else {
4461 /*
4462 * If the user-specified address is non-NULL we must
4463 * access check it. This is the only time we have
4464 * a chance to do so, since this address may reside
4465 * in the string table of this clause-- future calls
4466 * (when we fetch addr from mstate->dtms_strtok)
4467 * would fail this access check.
4468 */
4469 if (!dtrace_strcanload(addr, size, mstate, vstate)) {
4470 regs[rd] = NULL;
4471 break;
4472 }
4473 }
4474
4475 /*
4476 * First, zero the token map, and then process the token
4477 * string -- setting a bit in the map for every character
4478 * found in the token string.
4479 */
4480 for (i = 0; i < sizeof (tokmap); i++)
4481 tokmap[i] = 0;
4482
4483 for (; tokaddr < toklimit; tokaddr++) {
4484 if ((c = dtrace_load8(tokaddr)) == '\0')
4485 break;
4486
4487 ASSERT((c >> 3) < sizeof (tokmap));
4488 tokmap[c >> 3] |= (1 << (c & 0x7));
4489 }
4490
4491 for (limit = addr + size; addr < limit; addr++) {
4492 /*
4493 * We're looking for a character that is _not_ contained
4494 * in the token string.
4495 */
4496 if ((c = dtrace_load8(addr)) == '\0')
4497 break;
4498
4499 if (!(tokmap[c >> 3] & (1 << (c & 0x7))))
4500 break;
4501 }
4502
4503 if (c == '\0') {
4504 /*
4505 * We reached the end of the string without finding
4506 * any character that was not in the token string.
4507 * We return NULL in this case, and we set the saved
4508 * address to NULL as well.
4509 */
4510 regs[rd] = NULL;
4511 mstate->dtms_strtok = NULL;
4512 break;
4513 }
4514
4515 /*
4516 * From here on, we're copying into the destination string.
4517 */
4518 for (i = 0; addr < limit && i < size - 1; addr++) {
4519 if ((c = dtrace_load8(addr)) == '\0')
4520 break;
4521
4522 if (tokmap[c >> 3] & (1 << (c & 0x7)))
4523 break;
4524
4525 ASSERT(i < size);
4526 dest[i++] = c;
4527 }
4528
4529 ASSERT(i < size);
4530 dest[i] = '\0';
4531 regs[rd] = (uintptr_t)dest;
4532 mstate->dtms_scratch_ptr += size;
4533 mstate->dtms_strtok = addr;
4534 break;
4535 }
4536
4537 case DIF_SUBR_SUBSTR: {
4538 uintptr_t s = tupregs[0].dttk_value;
4539 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4540 char *d = (char *)mstate->dtms_scratch_ptr;
4541 int64_t index = (int64_t)tupregs[1].dttk_value;
4542 int64_t remaining = (int64_t)tupregs[2].dttk_value;
4543 size_t len = dtrace_strlen((char *)s, size);
4544 int64_t i;
4545
4546 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4547 regs[rd] = NULL;
4548 break;
4549 }
4550
4551 if (!DTRACE_INSCRATCH(mstate, size)) {
4552 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4553 regs[rd] = NULL;
4554 break;
4555 }
4556
4557 if (nargs <= 2)
4558 remaining = (int64_t)size;
4559
4560 if (index < 0) {
4561 index += len;
4562
4563 if (index < 0 && index + remaining > 0) {
4564 remaining += index;
4565 index = 0;
4566 }
4567 }
4568
4569 if (index >= len || index < 0) {
4570 remaining = 0;
4571 } else if (remaining < 0) {
4572 remaining += len - index;
4573 } else if (index + remaining > size) {
4574 remaining = size - index;
4575 }
4576
4577 for (i = 0; i < remaining; i++) {
4578 if ((d[i] = dtrace_load8(s + index + i)) == '\0')
4579 break;
4580 }
4581
4582 d[i] = '\0';
4583
4584 mstate->dtms_scratch_ptr += size;
4585 regs[rd] = (uintptr_t)d;
4586 break;
4587 }
4588
4589 case DIF_SUBR_JSON: {
4590 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4591 uintptr_t json = tupregs[0].dttk_value;
4592 size_t jsonlen = dtrace_strlen((char *)json, size);
4593 uintptr_t elem = tupregs[1].dttk_value;
4594 size_t elemlen = dtrace_strlen((char *)elem, size);
4595
4596 char *dest = (char *)mstate->dtms_scratch_ptr;
4597 char *elemlist = (char *)mstate->dtms_scratch_ptr + jsonlen + 1;
4598 char *ee = elemlist;
4599 int nelems = 1;
4600 uintptr_t cur;
4601
4602 if (!dtrace_canload(json, jsonlen + 1, mstate, vstate) ||
4603 !dtrace_canload(elem, elemlen + 1, mstate, vstate)) {
4604 regs[rd] = NULL;
4605 break;
4606 }
4607
4608 if (!DTRACE_INSCRATCH(mstate, jsonlen + 1 + elemlen + 1)) {
4609 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4610 regs[rd] = NULL;
4611 break;
4612 }
4613
4614 /*
4615 * Read the element selector and split it up into a packed list
4616 * of strings.
4617 */
4618 for (cur = elem; cur < elem + elemlen; cur++) {
4619 char cc = dtrace_load8(cur);
4620
4621 if (cur == elem && cc == '[') {
4622 /*
4623 * If the first element selector key is
4624 * actually an array index then ignore the
4625 * bracket.
4626 */
4627 continue;
4628 }
4629
4630 if (cc == ']')
4631 continue;
4632
4633 if (cc == '.' || cc == '[') {
4634 nelems++;
4635 cc = '\0';
4636 }
4637
4638 *ee++ = cc;
4639 }
4640 *ee++ = '\0';
4641
4642 if ((regs[rd] = (uintptr_t)dtrace_json(size, json, elemlist,
4643 nelems, dest)) != NULL)
4644 mstate->dtms_scratch_ptr += jsonlen + 1;
4645 break;
4646 }
4647
4648 case DIF_SUBR_TOUPPER:
4649 case DIF_SUBR_TOLOWER: {
4650 uintptr_t s = tupregs[0].dttk_value;
4651 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4652 char *dest = (char *)mstate->dtms_scratch_ptr, c;
4653 size_t len = dtrace_strlen((char *)s, size);
4654 char lower, upper, convert;
4655 int64_t i;
4656
4657 if (subr == DIF_SUBR_TOUPPER) {
4658 lower = 'a';
4659 upper = 'z';
4660 convert = 'A';
4661 } else {
4662 lower = 'A';
4663 upper = 'Z';
4664 convert = 'a';
4665 }
4666
4667 if (!dtrace_canload(s, len + 1, mstate, vstate)) {
4668 regs[rd] = NULL;
4669 break;
4670 }
4671
4672 if (!DTRACE_INSCRATCH(mstate, size)) {
4673 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4674 regs[rd] = NULL;
4675 break;
4676 }
4677
4678 for (i = 0; i < size - 1; i++) {
4679 if ((c = dtrace_load8(s + i)) == '\0')
4680 break;
4681
4682 if (c >= lower && c <= upper)
4683 c = convert + (c - lower);
4684
4685 dest[i] = c;
4686 }
4687
4688 ASSERT(i < size);
4689 dest[i] = '\0';
4690 regs[rd] = (uintptr_t)dest;
4691 mstate->dtms_scratch_ptr += size;
4692 break;
4693 }
4694
4695 case DIF_SUBR_GETMAJOR:
4696 #ifdef _LP64
4697 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR64) & MAXMAJ64;
4698 #else
4699 regs[rd] = (tupregs[0].dttk_value >> NBITSMINOR) & MAXMAJ;
4700 #endif
4701 break;
4702
4703 case DIF_SUBR_GETMINOR:
4704 #ifdef _LP64
4705 regs[rd] = tupregs[0].dttk_value & MAXMIN64;
4706 #else
4707 regs[rd] = tupregs[0].dttk_value & MAXMIN;
4708 #endif
4709 break;
4710
4711 case DIF_SUBR_DDI_PATHNAME: {
4712 /*
4713 * This one is a galactic mess. We are going to roughly
4714 * emulate ddi_pathname(), but it's made more complicated
4715 * by the fact that we (a) want to include the minor name and
4716 * (b) must proceed iteratively instead of recursively.
4717 */
4718 uintptr_t dest = mstate->dtms_scratch_ptr;
4719 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4720 char *start = (char *)dest, *end = start + size - 1;
4721 uintptr_t daddr = tupregs[0].dttk_value;
4722 int64_t minor = (int64_t)tupregs[1].dttk_value;
4723 char *s;
4724 int i, len, depth = 0;
4725
4726 /*
4727 * Due to all the pointer jumping we do and context we must
4728 * rely upon, we just mandate that the user must have kernel
4729 * read privileges to use this routine.
4730 */
4731 if ((mstate->dtms_access & DTRACE_ACCESS_KERNEL) == 0) {
4732 *flags |= CPU_DTRACE_KPRIV;
4733 *illval = daddr;
4734 regs[rd] = NULL;
4735 }
4736
4737 if (!DTRACE_INSCRATCH(mstate, size)) {
4738 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4739 regs[rd] = NULL;
4740 break;
4741 }
4742
4743 *end = '\0';
4744
4745 /*
4746 * We want to have a name for the minor. In order to do this,
4747 * we need to walk the minor list from the devinfo. We want
4748 * to be sure that we don't infinitely walk a circular list,
4749 * so we check for circularity by sending a scout pointer
4750 * ahead two elements for every element that we iterate over;
4751 * if the list is circular, these will ultimately point to the
4752 * same element. You may recognize this little trick as the
4753 * answer to a stupid interview question -- one that always
4754 * seems to be asked by those who had to have it laboriously
4755 * explained to them, and who can't even concisely describe
4756 * the conditions under which one would be forced to resort to
4757 * this technique. Needless to say, those conditions are
4758 * found here -- and probably only here. Is this the only use
4759 * of this infamous trick in shipping, production code? If it
4760 * isn't, it probably should be...
4761 */
4762 if (minor != -1) {
4763 uintptr_t maddr = dtrace_loadptr(daddr +
4764 offsetof(struct dev_info, devi_minor));
4765
4766 uintptr_t next = offsetof(struct ddi_minor_data, next);
4767 uintptr_t name = offsetof(struct ddi_minor_data,
4768 d_minor) + offsetof(struct ddi_minor, name);
4769 uintptr_t dev = offsetof(struct ddi_minor_data,
4770 d_minor) + offsetof(struct ddi_minor, dev);
4771 uintptr_t scout;
4772
4773 if (maddr != NULL)
4774 scout = dtrace_loadptr(maddr + next);
4775
4776 while (maddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4777 uint64_t m;
4778 #ifdef _LP64
4779 m = dtrace_load64(maddr + dev) & MAXMIN64;
4780 #else
4781 m = dtrace_load32(maddr + dev) & MAXMIN;
4782 #endif
4783 if (m != minor) {
4784 maddr = dtrace_loadptr(maddr + next);
4785
4786 if (scout == NULL)
4787 continue;
4788
4789 scout = dtrace_loadptr(scout + next);
4790
4791 if (scout == NULL)
4792 continue;
4793
4794 scout = dtrace_loadptr(scout + next);
4795
4796 if (scout == NULL)
4797 continue;
4798
4799 if (scout == maddr) {
4800 *flags |= CPU_DTRACE_ILLOP;
4801 break;
4802 }
4803
4804 continue;
4805 }
4806
4807 /*
4808 * We have the minor data. Now we need to
4809 * copy the minor's name into the end of the
4810 * pathname.
4811 */
4812 s = (char *)dtrace_loadptr(maddr + name);
4813 len = dtrace_strlen(s, size);
4814
4815 if (*flags & CPU_DTRACE_FAULT)
4816 break;
4817
4818 if (len != 0) {
4819 if ((end -= (len + 1)) < start)
4820 break;
4821
4822 *end = ':';
4823 }
4824
4825 for (i = 1; i <= len; i++)
4826 end[i] = dtrace_load8((uintptr_t)s++);
4827 break;
4828 }
4829 }
4830
4831 while (daddr != NULL && !(*flags & CPU_DTRACE_FAULT)) {
4832 ddi_node_state_t devi_state;
4833
4834 devi_state = dtrace_load32(daddr +
4835 offsetof(struct dev_info, devi_node_state));
4836
4837 if (*flags & CPU_DTRACE_FAULT)
4838 break;
4839
4840 if (devi_state >= DS_INITIALIZED) {
4841 s = (char *)dtrace_loadptr(daddr +
4842 offsetof(struct dev_info, devi_addr));
4843 len = dtrace_strlen(s, size);
4844
4845 if (*flags & CPU_DTRACE_FAULT)
4846 break;
4847
4848 if (len != 0) {
4849 if ((end -= (len + 1)) < start)
4850 break;
4851
4852 *end = '@';
4853 }
4854
4855 for (i = 1; i <= len; i++)
4856 end[i] = dtrace_load8((uintptr_t)s++);
4857 }
4858
4859 /*
4860 * Now for the node name...
4861 */
4862 s = (char *)dtrace_loadptr(daddr +
4863 offsetof(struct dev_info, devi_node_name));
4864
4865 daddr = dtrace_loadptr(daddr +
4866 offsetof(struct dev_info, devi_parent));
4867
4868 /*
4869 * If our parent is NULL (that is, if we're the root
4870 * node), we're going to use the special path
4871 * "devices".
4872 */
4873 if (daddr == NULL)
4874 s = "devices";
4875
4876 len = dtrace_strlen(s, size);
4877 if (*flags & CPU_DTRACE_FAULT)
4878 break;
4879
4880 if ((end -= (len + 1)) < start)
4881 break;
4882
4883 for (i = 1; i <= len; i++)
4884 end[i] = dtrace_load8((uintptr_t)s++);
4885 *end = '/';
4886
4887 if (depth++ > dtrace_devdepth_max) {
4888 *flags |= CPU_DTRACE_ILLOP;
4889 break;
4890 }
4891 }
4892
4893 if (end < start)
4894 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4895
4896 if (daddr == NULL) {
4897 regs[rd] = (uintptr_t)end;
4898 mstate->dtms_scratch_ptr += size;
4899 }
4900
4901 break;
4902 }
4903
4904 case DIF_SUBR_STRJOIN: {
4905 char *d = (char *)mstate->dtms_scratch_ptr;
4906 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4907 uintptr_t s1 = tupregs[0].dttk_value;
4908 uintptr_t s2 = tupregs[1].dttk_value;
4909 int i = 0;
4910
4911 if (!dtrace_strcanload(s1, size, mstate, vstate) ||
4912 !dtrace_strcanload(s2, size, mstate, vstate)) {
4913 regs[rd] = NULL;
4914 break;
4915 }
4916
4917 if (!DTRACE_INSCRATCH(mstate, size)) {
4918 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4919 regs[rd] = NULL;
4920 break;
4921 }
4922
4923 for (;;) {
4924 if (i >= size) {
4925 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4926 regs[rd] = NULL;
4927 break;
4928 }
4929
4930 if ((d[i++] = dtrace_load8(s1++)) == '\0') {
4931 i--;
4932 break;
4933 }
4934 }
4935
4936 for (;;) {
4937 if (i >= size) {
4938 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4939 regs[rd] = NULL;
4940 break;
4941 }
4942
4943 if ((d[i++] = dtrace_load8(s2++)) == '\0')
4944 break;
4945 }
4946
4947 if (i < size) {
4948 mstate->dtms_scratch_ptr += i;
4949 regs[rd] = (uintptr_t)d;
4950 }
4951
4952 break;
4953 }
4954
4955 case DIF_SUBR_STRTOLL: {
4956 uintptr_t s = tupregs[0].dttk_value;
4957 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
4958 int base = 10;
4959
4960 if (nargs > 1) {
4961 if ((base = tupregs[1].dttk_value) <= 1 ||
4962 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4963 *flags |= CPU_DTRACE_ILLOP;
4964 break;
4965 }
4966 }
4967
4968 if (!dtrace_strcanload(s, size, mstate, vstate)) {
4969 regs[rd] = INT64_MIN;
4970 break;
4971 }
4972
4973 regs[rd] = dtrace_strtoll((char *)s, base, size);
4974 break;
4975 }
4976
4977 case DIF_SUBR_LLTOSTR: {
4978 int64_t i = (int64_t)tupregs[0].dttk_value;
4979 uint64_t val, digit;
4980 uint64_t size = 65; /* enough room for 2^64 in binary */
4981 char *end = (char *)mstate->dtms_scratch_ptr + size - 1;
4982 int base = 10;
4983
4984 if (nargs > 1) {
4985 if ((base = tupregs[1].dttk_value) <= 1 ||
4986 base > ('z' - 'a' + 1) + ('9' - '0' + 1)) {
4987 *flags |= CPU_DTRACE_ILLOP;
4988 break;
4989 }
4990 }
4991
4992 val = (base == 10 && i < 0) ? i * -1 : i;
4993
4994 if (!DTRACE_INSCRATCH(mstate, size)) {
4995 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
4996 regs[rd] = NULL;
4997 break;
4998 }
4999
5000 for (*end-- = '\0'; val; val /= base) {
5001 if ((digit = val % base) <= '9' - '0') {
5002 *end-- = '0' + digit;
5003 } else {
5004 *end-- = 'a' + (digit - ('9' - '0') - 1);
5005 }
5006 }
5007
5008 if (i == 0 && base == 16)
5009 *end-- = '0';
5010
5011 if (base == 16)
5012 *end-- = 'x';
5013
5014 if (i == 0 || base == 8 || base == 16)
5015 *end-- = '0';
5016
5017 if (i < 0 && base == 10)
5018 *end-- = '-';
5019
5020 regs[rd] = (uintptr_t)end + 1;
5021 mstate->dtms_scratch_ptr += size;
5022 break;
5023 }
5024
5025 case DIF_SUBR_HTONS:
5026 case DIF_SUBR_NTOHS:
5027 #ifdef _BIG_ENDIAN
5028 regs[rd] = (uint16_t)tupregs[0].dttk_value;
5029 #else
5030 regs[rd] = DT_BSWAP_16((uint16_t)tupregs[0].dttk_value);
5031 #endif
5032 break;
5033
5034
5035 case DIF_SUBR_HTONL:
5036 case DIF_SUBR_NTOHL:
5037 #ifdef _BIG_ENDIAN
5038 regs[rd] = (uint32_t)tupregs[0].dttk_value;
5039 #else
5040 regs[rd] = DT_BSWAP_32((uint32_t)tupregs[0].dttk_value);
5041 #endif
5042 break;
5043
5044
5045 case DIF_SUBR_HTONLL:
5046 case DIF_SUBR_NTOHLL:
5047 #ifdef _BIG_ENDIAN
5048 regs[rd] = (uint64_t)tupregs[0].dttk_value;
5049 #else
5050 regs[rd] = DT_BSWAP_64((uint64_t)tupregs[0].dttk_value);
5051 #endif
5052 break;
5053
5054
5055 case DIF_SUBR_DIRNAME:
5056 case DIF_SUBR_BASENAME: {
5057 char *dest = (char *)mstate->dtms_scratch_ptr;
5058 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5059 uintptr_t src = tupregs[0].dttk_value;
5060 int i, j, len = dtrace_strlen((char *)src, size);
5061 int lastbase = -1, firstbase = -1, lastdir = -1;
5062 int start, end;
5063
5064 if (!dtrace_canload(src, len + 1, mstate, vstate)) {
5065 regs[rd] = NULL;
5066 break;
5067 }
5068
5069 if (!DTRACE_INSCRATCH(mstate, size)) {
5070 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5071 regs[rd] = NULL;
5072 break;
5073 }
5074
5075 /*
5076 * The basename and dirname for a zero-length string is
5077 * defined to be "."
5078 */
5079 if (len == 0) {
5080 len = 1;
5081 src = (uintptr_t)".";
5082 }
5083
5084 /*
5085 * Start from the back of the string, moving back toward the
5086 * front until we see a character that isn't a slash. That
5087 * character is the last character in the basename.
5088 */
5089 for (i = len - 1; i >= 0; i--) {
5090 if (dtrace_load8(src + i) != '/')
5091 break;
5092 }
5093
5094 if (i >= 0)
5095 lastbase = i;
5096
5097 /*
5098 * Starting from the last character in the basename, move
5099 * towards the front until we find a slash. The character
5100 * that we processed immediately before that is the first
5101 * character in the basename.
5102 */
5103 for (; i >= 0; i--) {
5104 if (dtrace_load8(src + i) == '/')
5105 break;
5106 }
5107
5108 if (i >= 0)
5109 firstbase = i + 1;
5110
5111 /*
5112 * Now keep going until we find a non-slash character. That
5113 * character is the last character in the dirname.
5114 */
5115 for (; i >= 0; i--) {
5116 if (dtrace_load8(src + i) != '/')
5117 break;
5118 }
5119
5120 if (i >= 0)
5121 lastdir = i;
5122
5123 ASSERT(!(lastbase == -1 && firstbase != -1));
5124 ASSERT(!(firstbase == -1 && lastdir != -1));
5125
5126 if (lastbase == -1) {
5127 /*
5128 * We didn't find a non-slash character. We know that
5129 * the length is non-zero, so the whole string must be
5130 * slashes. In either the dirname or the basename
5131 * case, we return '/'.
5132 */
5133 ASSERT(firstbase == -1);
5134 firstbase = lastbase = lastdir = 0;
5135 }
5136
5137 if (firstbase == -1) {
5138 /*
5139 * The entire string consists only of a basename
5140 * component. If we're looking for dirname, we need
5141 * to change our string to be just "."; if we're
5142 * looking for a basename, we'll just set the first
5143 * character of the basename to be 0.
5144 */
5145 if (subr == DIF_SUBR_DIRNAME) {
5146 ASSERT(lastdir == -1);
5147 src = (uintptr_t)".";
5148 lastdir = 0;
5149 } else {
5150 firstbase = 0;
5151 }
5152 }
5153
5154 if (subr == DIF_SUBR_DIRNAME) {
5155 if (lastdir == -1) {
5156 /*
5157 * We know that we have a slash in the name --
5158 * or lastdir would be set to 0, above. And
5159 * because lastdir is -1, we know that this
5160 * slash must be the first character. (That
5161 * is, the full string must be of the form
5162 * "/basename".) In this case, the last
5163 * character of the directory name is 0.
5164 */
5165 lastdir = 0;
5166 }
5167
5168 start = 0;
5169 end = lastdir;
5170 } else {
5171 ASSERT(subr == DIF_SUBR_BASENAME);
5172 ASSERT(firstbase != -1 && lastbase != -1);
5173 start = firstbase;
5174 end = lastbase;
5175 }
5176
5177 for (i = start, j = 0; i <= end && j < size - 1; i++, j++)
5178 dest[j] = dtrace_load8(src + i);
5179
5180 dest[j] = '\0';
5181 regs[rd] = (uintptr_t)dest;
5182 mstate->dtms_scratch_ptr += size;
5183 break;
5184 }
5185
5186 case DIF_SUBR_GETF: {
5187 uintptr_t fd = tupregs[0].dttk_value;
5188 uf_info_t *finfo = &curthread->t_procp->p_user.u_finfo;
5189 file_t *fp;
5190
5191 if (!dtrace_priv_proc(state, mstate)) {
5192 regs[rd] = NULL;
5193 break;
5194 }
5195
5196 /*
5197 * This is safe because fi_nfiles only increases, and the
5198 * fi_list array is not freed when the array size doubles.
5199 * (See the comment in flist_grow() for details on the
5200 * management of the u_finfo structure.)
5201 */
5202 fp = fd < finfo->fi_nfiles ? finfo->fi_list[fd].uf_file : NULL;
5203
5204 mstate->dtms_getf = fp;
5205 regs[rd] = (uintptr_t)fp;
5206 break;
5207 }
5208
5209 case DIF_SUBR_CLEANPATH: {
5210 char *dest = (char *)mstate->dtms_scratch_ptr, c;
5211 uint64_t size = state->dts_options[DTRACEOPT_STRSIZE];
5212 uintptr_t src = tupregs[0].dttk_value;
5213 int i = 0, j = 0;
5214 zone_t *z;
5215
5216 if (!dtrace_strcanload(src, size, mstate, vstate)) {
5217 regs[rd] = NULL;
5218 break;
5219 }
5220
5221 if (!DTRACE_INSCRATCH(mstate, size)) {
5222 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5223 regs[rd] = NULL;
5224 break;
5225 }
5226
5227 /*
5228 * Move forward, loading each character.
5229 */
5230 do {
5231 c = dtrace_load8(src + i++);
5232 next:
5233 if (j + 5 >= size) /* 5 = strlen("/..c\0") */
5234 break;
5235
5236 if (c != '/') {
5237 dest[j++] = c;
5238 continue;
5239 }
5240
5241 c = dtrace_load8(src + i++);
5242
5243 if (c == '/') {
5244 /*
5245 * We have two slashes -- we can just advance
5246 * to the next character.
5247 */
5248 goto next;
5249 }
5250
5251 if (c != '.') {
5252 /*
5253 * This is not "." and it's not ".." -- we can
5254 * just store the "/" and this character and
5255 * drive on.
5256 */
5257 dest[j++] = '/';
5258 dest[j++] = c;
5259 continue;
5260 }
5261
5262 c = dtrace_load8(src + i++);
5263
5264 if (c == '/') {
5265 /*
5266 * This is a "/./" component. We're not going
5267 * to store anything in the destination buffer;
5268 * we're just going to go to the next component.
5269 */
5270 goto next;
5271 }
5272
5273 if (c != '.') {
5274 /*
5275 * This is not ".." -- we can just store the
5276 * "/." and this character and continue
5277 * processing.
5278 */
5279 dest[j++] = '/';
5280 dest[j++] = '.';
5281 dest[j++] = c;
5282 continue;
5283 }
5284
5285 c = dtrace_load8(src + i++);
5286
5287 if (c != '/' && c != '\0') {
5288 /*
5289 * This is not ".." -- it's "..[mumble]".
5290 * We'll store the "/.." and this character
5291 * and continue processing.
5292 */
5293 dest[j++] = '/';
5294 dest[j++] = '.';
5295 dest[j++] = '.';
5296 dest[j++] = c;
5297 continue;
5298 }
5299
5300 /*
5301 * This is "/../" or "/..\0". We need to back up
5302 * our destination pointer until we find a "/".
5303 */
5304 i--;
5305 while (j != 0 && dest[--j] != '/')
5306 continue;
5307
5308 if (c == '\0')
5309 dest[++j] = '/';
5310 } while (c != '\0');
5311
5312 dest[j] = '\0';
5313
5314 if (mstate->dtms_getf != NULL &&
5315 !(mstate->dtms_access & DTRACE_ACCESS_KERNEL) &&
5316 (z = state->dts_cred.dcr_cred->cr_zone) != kcred->cr_zone) {
5317 /*
5318 * If we've done a getf() as a part of this ECB and we
5319 * don't have kernel access (and we're not in the global
5320 * zone), check if the path we cleaned up begins with
5321 * the zone's root path, and trim it off if so. Note
5322 * that this is an output cleanliness issue, not a
5323 * security issue: knowing one's zone root path does
5324 * not enable privilege escalation.
5325 */
5326 if (strstr(dest, z->zone_rootpath) == dest)
5327 dest += strlen(z->zone_rootpath) - 1;
5328 }
5329
5330 regs[rd] = (uintptr_t)dest;
5331 mstate->dtms_scratch_ptr += size;
5332 break;
5333 }
5334
5335 case DIF_SUBR_INET_NTOA:
5336 case DIF_SUBR_INET_NTOA6:
5337 case DIF_SUBR_INET_NTOP: {
5338 size_t size;
5339 int af, argi, i;
5340 char *base, *end;
5341
5342 if (subr == DIF_SUBR_INET_NTOP) {
5343 af = (int)tupregs[0].dttk_value;
5344 argi = 1;
5345 } else {
5346 af = subr == DIF_SUBR_INET_NTOA ? AF_INET: AF_INET6;
5347 argi = 0;
5348 }
5349
5350 if (af == AF_INET) {
5351 ipaddr_t ip4;
5352 uint8_t *ptr8, val;
5353
5354 if (!dtrace_canload(tupregs[argi].dttk_value,
5355 sizeof (ipaddr_t), mstate, vstate)) {
5356 regs[rd] = NULL;
5357 break;
5358 }
5359
5360 /*
5361 * Safely load the IPv4 address.
5362 */
5363 ip4 = dtrace_load32(tupregs[argi].dttk_value);
5364
5365 /*
5366 * Check an IPv4 string will fit in scratch.
5367 */
5368 size = INET_ADDRSTRLEN;
5369 if (!DTRACE_INSCRATCH(mstate, size)) {
5370 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5371 regs[rd] = NULL;
5372 break;
5373 }
5374 base = (char *)mstate->dtms_scratch_ptr;
5375 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5376
5377 /*
5378 * Stringify as a dotted decimal quad.
5379 */
5380 *end-- = '\0';
5381 ptr8 = (uint8_t *)&ip4;
5382 for (i = 3; i >= 0; i--) {
5383 val = ptr8[i];
5384
5385 if (val == 0) {
5386 *end-- = '0';
5387 } else {
5388 for (; val; val /= 10) {
5389 *end-- = '0' + (val % 10);
5390 }
5391 }
5392
5393 if (i > 0)
5394 *end-- = '.';
5395 }
5396 ASSERT(end + 1 >= base);
5397
5398 } else if (af == AF_INET6) {
5399 struct in6_addr ip6;
5400 int firstzero, tryzero, numzero, v6end;
5401 uint16_t val;
5402 const char digits[] = "0123456789abcdef";
5403
5404 /*
5405 * Stringify using RFC 1884 convention 2 - 16 bit
5406 * hexadecimal values with a zero-run compression.
5407 * Lower case hexadecimal digits are used.
5408 * eg, fe80::214:4fff:fe0b:76c8.
5409 * The IPv4 embedded form is returned for inet_ntop,
5410 * just the IPv4 string is returned for inet_ntoa6.
5411 */
5412
5413 if (!dtrace_canload(tupregs[argi].dttk_value,
5414 sizeof (struct in6_addr), mstate, vstate)) {
5415 regs[rd] = NULL;
5416 break;
5417 }
5418
5419 /*
5420 * Safely load the IPv6 address.
5421 */
5422 dtrace_bcopy(
5423 (void *)(uintptr_t)tupregs[argi].dttk_value,
5424 (void *)(uintptr_t)&ip6, sizeof (struct in6_addr));
5425
5426 /*
5427 * Check an IPv6 string will fit in scratch.
5428 */
5429 size = INET6_ADDRSTRLEN;
5430 if (!DTRACE_INSCRATCH(mstate, size)) {
5431 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
5432 regs[rd] = NULL;
5433 break;
5434 }
5435 base = (char *)mstate->dtms_scratch_ptr;
5436 end = (char *)mstate->dtms_scratch_ptr + size - 1;
5437 *end-- = '\0';
5438
5439 /*
5440 * Find the longest run of 16 bit zero values
5441 * for the single allowed zero compression - "::".
5442 */
5443 firstzero = -1;
5444 tryzero = -1;
5445 numzero = 1;
5446 for (i = 0; i < sizeof (struct in6_addr); i++) {
5447 if (ip6._S6_un._S6_u8[i] == 0 &&
5448 tryzero == -1 && i % 2 == 0) {
5449 tryzero = i;
5450 continue;
5451 }
5452
5453 if (tryzero != -1 &&
5454 (ip6._S6_un._S6_u8[i] != 0 ||
5455 i == sizeof (struct in6_addr) - 1)) {
5456
5457 if (i - tryzero <= numzero) {
5458 tryzero = -1;
5459 continue;
5460 }
5461
5462 firstzero = tryzero;
5463 numzero = i - i % 2 - tryzero;
5464 tryzero = -1;
5465
5466 if (ip6._S6_un._S6_u8[i] == 0 &&
5467 i == sizeof (struct in6_addr) - 1)
5468 numzero += 2;
5469 }
5470 }
5471 ASSERT(firstzero + numzero <= sizeof (struct in6_addr));
5472
5473 /*
5474 * Check for an IPv4 embedded address.
5475 */
5476 v6end = sizeof (struct in6_addr) - 2;
5477 if (IN6_IS_ADDR_V4MAPPED(&ip6) ||
5478 IN6_IS_ADDR_V4COMPAT(&ip6)) {
5479 for (i = sizeof (struct in6_addr) - 1;
5480 i >= DTRACE_V4MAPPED_OFFSET; i--) {
5481 ASSERT(end >= base);
5482
5483 val = ip6._S6_un._S6_u8[i];
5484
5485 if (val == 0) {
5486 *end-- = '0';
5487 } else {
5488 for (; val; val /= 10) {
5489 *end-- = '0' + val % 10;
5490 }
5491 }
5492
5493 if (i > DTRACE_V4MAPPED_OFFSET)
5494 *end-- = '.';
5495 }
5496
5497 if (subr == DIF_SUBR_INET_NTOA6)
5498 goto inetout;
5499
5500 /*
5501 * Set v6end to skip the IPv4 address that
5502 * we have already stringified.
5503 */
5504 v6end = 10;
5505 }
5506
5507 /*
5508 * Build the IPv6 string by working through the
5509 * address in reverse.
5510 */
5511 for (i = v6end; i >= 0; i -= 2) {
5512 ASSERT(end >= base);
5513
5514 if (i == firstzero + numzero - 2) {
5515 *end-- = ':';
5516 *end-- = ':';
5517 i -= numzero - 2;
5518 continue;
5519 }
5520
5521 if (i < 14 && i != firstzero - 2)
5522 *end-- = ':';
5523
5524 val = (ip6._S6_un._S6_u8[i] << 8) +
5525 ip6._S6_un._S6_u8[i + 1];
5526
5527 if (val == 0) {
5528 *end-- = '0';
5529 } else {
5530 for (; val; val /= 16) {
5531 *end-- = digits[val % 16];
5532 }
5533 }
5534 }
5535 ASSERT(end + 1 >= base);
5536
5537 } else {
5538 /*
5539 * The user didn't use AH_INET or AH_INET6.
5540 */
5541 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
5542 regs[rd] = NULL;
5543 break;
5544 }
5545
5546 inetout: regs[rd] = (uintptr_t)end + 1;
5547 mstate->dtms_scratch_ptr += size;
5548 break;
5549 }
5550
5551 }
5552 }
5553
5554 /*
5555 * Emulate the execution of DTrace IR instructions specified by the given
5556 * DIF object. This function is deliberately void of assertions as all of
5557 * the necessary checks are handled by a call to dtrace_difo_validate().
5558 */
5559 static uint64_t
dtrace_dif_emulate(dtrace_difo_t * difo,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate,dtrace_state_t * state)5560 dtrace_dif_emulate(dtrace_difo_t *difo, dtrace_mstate_t *mstate,
5561 dtrace_vstate_t *vstate, dtrace_state_t *state)
5562 {
5563 const dif_instr_t *text = difo->dtdo_buf;
5564 const uint_t textlen = difo->dtdo_len;
5565 const char *strtab = difo->dtdo_strtab;
5566 const uint64_t *inttab = difo->dtdo_inttab;
5567
5568 uint64_t rval = 0;
5569 dtrace_statvar_t *svar;
5570 dtrace_dstate_t *dstate = &vstate->dtvs_dynvars;
5571 dtrace_difv_t *v;
5572 volatile uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
5573 volatile uintptr_t *illval = &cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
5574
5575 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
5576 uint64_t regs[DIF_DIR_NREGS];
5577 uint64_t *tmp;
5578
5579 uint8_t cc_n = 0, cc_z = 0, cc_v = 0, cc_c = 0;
5580 int64_t cc_r;
5581 uint_t pc = 0, id, opc;
5582 uint8_t ttop = 0;
5583 dif_instr_t instr;
5584 uint_t r1, r2, rd;
5585
5586 /*
5587 * We stash the current DIF object into the machine state: we need it
5588 * for subsequent access checking.
5589 */
5590 mstate->dtms_difo = difo;
5591
5592 regs[DIF_REG_R0] = 0; /* %r0 is fixed at zero */
5593
5594 while (pc < textlen && !(*flags & CPU_DTRACE_FAULT)) {
5595 opc = pc;
5596
5597 instr = text[pc++];
5598 r1 = DIF_INSTR_R1(instr);
5599 r2 = DIF_INSTR_R2(instr);
5600 rd = DIF_INSTR_RD(instr);
5601
5602 switch (DIF_INSTR_OP(instr)) {
5603 case DIF_OP_OR:
5604 regs[rd] = regs[r1] | regs[r2];
5605 break;
5606 case DIF_OP_XOR:
5607 regs[rd] = regs[r1] ^ regs[r2];
5608 break;
5609 case DIF_OP_AND:
5610 regs[rd] = regs[r1] & regs[r2];
5611 break;
5612 case DIF_OP_SLL:
5613 regs[rd] = regs[r1] << regs[r2];
5614 break;
5615 case DIF_OP_SRL:
5616 regs[rd] = regs[r1] >> regs[r2];
5617 break;
5618 case DIF_OP_SUB:
5619 regs[rd] = regs[r1] - regs[r2];
5620 break;
5621 case DIF_OP_ADD:
5622 regs[rd] = regs[r1] + regs[r2];
5623 break;
5624 case DIF_OP_MUL:
5625 regs[rd] = regs[r1] * regs[r2];
5626 break;
5627 case DIF_OP_SDIV:
5628 if (regs[r2] == 0) {
5629 regs[rd] = 0;
5630 *flags |= CPU_DTRACE_DIVZERO;
5631 } else {
5632 regs[rd] = (int64_t)regs[r1] /
5633 (int64_t)regs[r2];
5634 }
5635 break;
5636
5637 case DIF_OP_UDIV:
5638 if (regs[r2] == 0) {
5639 regs[rd] = 0;
5640 *flags |= CPU_DTRACE_DIVZERO;
5641 } else {
5642 regs[rd] = regs[r1] / regs[r2];
5643 }
5644 break;
5645
5646 case DIF_OP_SREM:
5647 if (regs[r2] == 0) {
5648 regs[rd] = 0;
5649 *flags |= CPU_DTRACE_DIVZERO;
5650 } else {
5651 regs[rd] = (int64_t)regs[r1] %
5652 (int64_t)regs[r2];
5653 }
5654 break;
5655
5656 case DIF_OP_UREM:
5657 if (regs[r2] == 0) {
5658 regs[rd] = 0;
5659 *flags |= CPU_DTRACE_DIVZERO;
5660 } else {
5661 regs[rd] = regs[r1] % regs[r2];
5662 }
5663 break;
5664
5665 case DIF_OP_NOT:
5666 regs[rd] = ~regs[r1];
5667 break;
5668 case DIF_OP_MOV:
5669 regs[rd] = regs[r1];
5670 break;
5671 case DIF_OP_CMP:
5672 cc_r = regs[r1] - regs[r2];
5673 cc_n = cc_r < 0;
5674 cc_z = cc_r == 0;
5675 cc_v = 0;
5676 cc_c = regs[r1] < regs[r2];
5677 break;
5678 case DIF_OP_TST:
5679 cc_n = cc_v = cc_c = 0;
5680 cc_z = regs[r1] == 0;
5681 break;
5682 case DIF_OP_BA:
5683 pc = DIF_INSTR_LABEL(instr);
5684 break;
5685 case DIF_OP_BE:
5686 if (cc_z)
5687 pc = DIF_INSTR_LABEL(instr);
5688 break;
5689 case DIF_OP_BNE:
5690 if (cc_z == 0)
5691 pc = DIF_INSTR_LABEL(instr);
5692 break;
5693 case DIF_OP_BG:
5694 if ((cc_z | (cc_n ^ cc_v)) == 0)
5695 pc = DIF_INSTR_LABEL(instr);
5696 break;
5697 case DIF_OP_BGU:
5698 if ((cc_c | cc_z) == 0)
5699 pc = DIF_INSTR_LABEL(instr);
5700 break;
5701 case DIF_OP_BGE:
5702 if ((cc_n ^ cc_v) == 0)
5703 pc = DIF_INSTR_LABEL(instr);
5704 break;
5705 case DIF_OP_BGEU:
5706 if (cc_c == 0)
5707 pc = DIF_INSTR_LABEL(instr);
5708 break;
5709 case DIF_OP_BL:
5710 if (cc_n ^ cc_v)
5711 pc = DIF_INSTR_LABEL(instr);
5712 break;
5713 case DIF_OP_BLU:
5714 if (cc_c)
5715 pc = DIF_INSTR_LABEL(instr);
5716 break;
5717 case DIF_OP_BLE:
5718 if (cc_z | (cc_n ^ cc_v))
5719 pc = DIF_INSTR_LABEL(instr);
5720 break;
5721 case DIF_OP_BLEU:
5722 if (cc_c | cc_z)
5723 pc = DIF_INSTR_LABEL(instr);
5724 break;
5725 case DIF_OP_RLDSB:
5726 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5727 break;
5728 /*FALLTHROUGH*/
5729 case DIF_OP_LDSB:
5730 regs[rd] = (int8_t)dtrace_load8(regs[r1]);
5731 break;
5732 case DIF_OP_RLDSH:
5733 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5734 break;
5735 /*FALLTHROUGH*/
5736 case DIF_OP_LDSH:
5737 regs[rd] = (int16_t)dtrace_load16(regs[r1]);
5738 break;
5739 case DIF_OP_RLDSW:
5740 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5741 break;
5742 /*FALLTHROUGH*/
5743 case DIF_OP_LDSW:
5744 regs[rd] = (int32_t)dtrace_load32(regs[r1]);
5745 break;
5746 case DIF_OP_RLDUB:
5747 if (!dtrace_canload(regs[r1], 1, mstate, vstate))
5748 break;
5749 /*FALLTHROUGH*/
5750 case DIF_OP_LDUB:
5751 regs[rd] = dtrace_load8(regs[r1]);
5752 break;
5753 case DIF_OP_RLDUH:
5754 if (!dtrace_canload(regs[r1], 2, mstate, vstate))
5755 break;
5756 /*FALLTHROUGH*/
5757 case DIF_OP_LDUH:
5758 regs[rd] = dtrace_load16(regs[r1]);
5759 break;
5760 case DIF_OP_RLDUW:
5761 if (!dtrace_canload(regs[r1], 4, mstate, vstate))
5762 break;
5763 /*FALLTHROUGH*/
5764 case DIF_OP_LDUW:
5765 regs[rd] = dtrace_load32(regs[r1]);
5766 break;
5767 case DIF_OP_RLDX:
5768 if (!dtrace_canload(regs[r1], 8, mstate, vstate))
5769 break;
5770 /*FALLTHROUGH*/
5771 case DIF_OP_LDX:
5772 regs[rd] = dtrace_load64(regs[r1]);
5773 break;
5774 case DIF_OP_ULDSB:
5775 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5776 regs[rd] = (int8_t)
5777 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5778 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5779 break;
5780 case DIF_OP_ULDSH:
5781 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5782 regs[rd] = (int16_t)
5783 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5784 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5785 break;
5786 case DIF_OP_ULDSW:
5787 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5788 regs[rd] = (int32_t)
5789 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5790 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5791 break;
5792 case DIF_OP_ULDUB:
5793 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5794 regs[rd] =
5795 dtrace_fuword8((void *)(uintptr_t)regs[r1]);
5796 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5797 break;
5798 case DIF_OP_ULDUH:
5799 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5800 regs[rd] =
5801 dtrace_fuword16((void *)(uintptr_t)regs[r1]);
5802 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5803 break;
5804 case DIF_OP_ULDUW:
5805 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5806 regs[rd] =
5807 dtrace_fuword32((void *)(uintptr_t)regs[r1]);
5808 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5809 break;
5810 case DIF_OP_ULDX:
5811 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
5812 regs[rd] =
5813 dtrace_fuword64((void *)(uintptr_t)regs[r1]);
5814 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
5815 break;
5816 case DIF_OP_RET:
5817 rval = regs[rd];
5818 pc = textlen;
5819 break;
5820 case DIF_OP_NOP:
5821 break;
5822 case DIF_OP_SETX:
5823 regs[rd] = inttab[DIF_INSTR_INTEGER(instr)];
5824 break;
5825 case DIF_OP_SETS:
5826 regs[rd] = (uint64_t)(uintptr_t)
5827 (strtab + DIF_INSTR_STRING(instr));
5828 break;
5829 case DIF_OP_SCMP: {
5830 size_t sz = state->dts_options[DTRACEOPT_STRSIZE];
5831 uintptr_t s1 = regs[r1];
5832 uintptr_t s2 = regs[r2];
5833
5834 if (s1 != NULL &&
5835 !dtrace_strcanload(s1, sz, mstate, vstate))
5836 break;
5837 if (s2 != NULL &&
5838 !dtrace_strcanload(s2, sz, mstate, vstate))
5839 break;
5840
5841 cc_r = dtrace_strncmp((char *)s1, (char *)s2, sz);
5842
5843 cc_n = cc_r < 0;
5844 cc_z = cc_r == 0;
5845 cc_v = cc_c = 0;
5846 break;
5847 }
5848 case DIF_OP_LDGA:
5849 regs[rd] = dtrace_dif_variable(mstate, state,
5850 r1, regs[r2]);
5851 break;
5852 case DIF_OP_LDGS:
5853 id = DIF_INSTR_VAR(instr);
5854
5855 if (id >= DIF_VAR_OTHER_UBASE) {
5856 uintptr_t a;
5857
5858 id -= DIF_VAR_OTHER_UBASE;
5859 svar = vstate->dtvs_globals[id];
5860 ASSERT(svar != NULL);
5861 v = &svar->dtsv_var;
5862
5863 if (!(v->dtdv_type.dtdt_flags & DIF_TF_BYREF)) {
5864 regs[rd] = svar->dtsv_data;
5865 break;
5866 }
5867
5868 a = (uintptr_t)svar->dtsv_data;
5869
5870 if (*(uint8_t *)a == UINT8_MAX) {
5871 /*
5872 * If the 0th byte is set to UINT8_MAX
5873 * then this is to be treated as a
5874 * reference to a NULL variable.
5875 */
5876 regs[rd] = NULL;
5877 } else {
5878 regs[rd] = a + sizeof (uint64_t);
5879 }
5880
5881 break;
5882 }
5883
5884 regs[rd] = dtrace_dif_variable(mstate, state, id, 0);
5885 break;
5886
5887 case DIF_OP_STGS:
5888 id = DIF_INSTR_VAR(instr);
5889
5890 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5891 id -= DIF_VAR_OTHER_UBASE;
5892
5893 VERIFY(id < vstate->dtvs_nglobals);
5894 svar = vstate->dtvs_globals[id];
5895 ASSERT(svar != NULL);
5896 v = &svar->dtsv_var;
5897
5898 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5899 uintptr_t a = (uintptr_t)svar->dtsv_data;
5900
5901 ASSERT(a != NULL);
5902 ASSERT(svar->dtsv_size != 0);
5903
5904 if (regs[rd] == NULL) {
5905 *(uint8_t *)a = UINT8_MAX;
5906 break;
5907 } else {
5908 *(uint8_t *)a = 0;
5909 a += sizeof (uint64_t);
5910 }
5911 if (!dtrace_vcanload(
5912 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
5913 mstate, vstate))
5914 break;
5915
5916 dtrace_vcopy((void *)(uintptr_t)regs[rd],
5917 (void *)a, &v->dtdv_type);
5918 break;
5919 }
5920
5921 svar->dtsv_data = regs[rd];
5922 break;
5923
5924 case DIF_OP_LDTA:
5925 /*
5926 * There are no DTrace built-in thread-local arrays at
5927 * present. This opcode is saved for future work.
5928 */
5929 *flags |= CPU_DTRACE_ILLOP;
5930 regs[rd] = 0;
5931 break;
5932
5933 case DIF_OP_LDLS:
5934 id = DIF_INSTR_VAR(instr);
5935
5936 if (id < DIF_VAR_OTHER_UBASE) {
5937 /*
5938 * For now, this has no meaning.
5939 */
5940 regs[rd] = 0;
5941 break;
5942 }
5943
5944 id -= DIF_VAR_OTHER_UBASE;
5945
5946 ASSERT(id < vstate->dtvs_nlocals);
5947 ASSERT(vstate->dtvs_locals != NULL);
5948
5949 svar = vstate->dtvs_locals[id];
5950 ASSERT(svar != NULL);
5951 v = &svar->dtsv_var;
5952
5953 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5954 uintptr_t a = (uintptr_t)svar->dtsv_data;
5955 size_t sz = v->dtdv_type.dtdt_size;
5956
5957 sz += sizeof (uint64_t);
5958 ASSERT(svar->dtsv_size == NCPU * sz);
5959 a += CPU->cpu_id * sz;
5960
5961 if (*(uint8_t *)a == UINT8_MAX) {
5962 /*
5963 * If the 0th byte is set to UINT8_MAX
5964 * then this is to be treated as a
5965 * reference to a NULL variable.
5966 */
5967 regs[rd] = NULL;
5968 } else {
5969 regs[rd] = a + sizeof (uint64_t);
5970 }
5971
5972 break;
5973 }
5974
5975 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
5976 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
5977 regs[rd] = tmp[CPU->cpu_id];
5978 break;
5979
5980 case DIF_OP_STLS:
5981 id = DIF_INSTR_VAR(instr);
5982
5983 ASSERT(id >= DIF_VAR_OTHER_UBASE);
5984 id -= DIF_VAR_OTHER_UBASE;
5985 VERIFY(id < vstate->dtvs_nlocals);
5986
5987 ASSERT(vstate->dtvs_locals != NULL);
5988 svar = vstate->dtvs_locals[id];
5989 ASSERT(svar != NULL);
5990 v = &svar->dtsv_var;
5991
5992 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
5993 uintptr_t a = (uintptr_t)svar->dtsv_data;
5994 size_t sz = v->dtdv_type.dtdt_size;
5995
5996 sz += sizeof (uint64_t);
5997 ASSERT(svar->dtsv_size == NCPU * sz);
5998 a += CPU->cpu_id * sz;
5999
6000 if (regs[rd] == NULL) {
6001 *(uint8_t *)a = UINT8_MAX;
6002 break;
6003 } else {
6004 *(uint8_t *)a = 0;
6005 a += sizeof (uint64_t);
6006 }
6007
6008 if (!dtrace_vcanload(
6009 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6010 mstate, vstate))
6011 break;
6012
6013 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6014 (void *)a, &v->dtdv_type);
6015 break;
6016 }
6017
6018 ASSERT(svar->dtsv_size == NCPU * sizeof (uint64_t));
6019 tmp = (uint64_t *)(uintptr_t)svar->dtsv_data;
6020 tmp[CPU->cpu_id] = regs[rd];
6021 break;
6022
6023 case DIF_OP_LDTS: {
6024 dtrace_dynvar_t *dvar;
6025 dtrace_key_t *key;
6026
6027 id = DIF_INSTR_VAR(instr);
6028 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6029 id -= DIF_VAR_OTHER_UBASE;
6030 v = &vstate->dtvs_tlocals[id];
6031
6032 key = &tupregs[DIF_DTR_NREGS];
6033 key[0].dttk_value = (uint64_t)id;
6034 key[0].dttk_size = 0;
6035 DTRACE_TLS_THRKEY(key[1].dttk_value);
6036 key[1].dttk_size = 0;
6037
6038 dvar = dtrace_dynvar(dstate, 2, key,
6039 sizeof (uint64_t), DTRACE_DYNVAR_NOALLOC,
6040 mstate, vstate);
6041
6042 if (dvar == NULL) {
6043 regs[rd] = 0;
6044 break;
6045 }
6046
6047 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6048 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6049 } else {
6050 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6051 }
6052
6053 break;
6054 }
6055
6056 case DIF_OP_STTS: {
6057 dtrace_dynvar_t *dvar;
6058 dtrace_key_t *key;
6059
6060 id = DIF_INSTR_VAR(instr);
6061 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6062 id -= DIF_VAR_OTHER_UBASE;
6063 VERIFY(id < vstate->dtvs_ntlocals);
6064
6065 key = &tupregs[DIF_DTR_NREGS];
6066 key[0].dttk_value = (uint64_t)id;
6067 key[0].dttk_size = 0;
6068 DTRACE_TLS_THRKEY(key[1].dttk_value);
6069 key[1].dttk_size = 0;
6070 v = &vstate->dtvs_tlocals[id];
6071
6072 dvar = dtrace_dynvar(dstate, 2, key,
6073 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6074 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6075 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6076 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6077
6078 /*
6079 * Given that we're storing to thread-local data,
6080 * we need to flush our predicate cache.
6081 */
6082 curthread->t_predcache = NULL;
6083
6084 if (dvar == NULL)
6085 break;
6086
6087 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6088 if (!dtrace_vcanload(
6089 (void *)(uintptr_t)regs[rd],
6090 &v->dtdv_type, mstate, vstate))
6091 break;
6092
6093 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6094 dvar->dtdv_data, &v->dtdv_type);
6095 } else {
6096 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6097 }
6098
6099 break;
6100 }
6101
6102 case DIF_OP_SRA:
6103 regs[rd] = (int64_t)regs[r1] >> regs[r2];
6104 break;
6105
6106 case DIF_OP_CALL:
6107 dtrace_dif_subr(DIF_INSTR_SUBR(instr), rd,
6108 regs, tupregs, ttop, mstate, state);
6109 break;
6110
6111 case DIF_OP_PUSHTR:
6112 if (ttop == DIF_DTR_NREGS) {
6113 *flags |= CPU_DTRACE_TUPOFLOW;
6114 break;
6115 }
6116
6117 if (r1 == DIF_TYPE_STRING) {
6118 /*
6119 * If this is a string type and the size is 0,
6120 * we'll use the system-wide default string
6121 * size. Note that we are _not_ looking at
6122 * the value of the DTRACEOPT_STRSIZE option;
6123 * had this been set, we would expect to have
6124 * a non-zero size value in the "pushtr".
6125 */
6126 tupregs[ttop].dttk_size =
6127 dtrace_strlen((char *)(uintptr_t)regs[rd],
6128 regs[r2] ? regs[r2] :
6129 dtrace_strsize_default) + 1;
6130 } else {
6131 if (regs[r2] > LONG_MAX) {
6132 *flags |= CPU_DTRACE_ILLOP;
6133 break;
6134 }
6135
6136 tupregs[ttop].dttk_size = regs[r2];
6137 }
6138
6139 tupregs[ttop++].dttk_value = regs[rd];
6140 break;
6141
6142 case DIF_OP_PUSHTV:
6143 if (ttop == DIF_DTR_NREGS) {
6144 *flags |= CPU_DTRACE_TUPOFLOW;
6145 break;
6146 }
6147
6148 tupregs[ttop].dttk_value = regs[rd];
6149 tupregs[ttop++].dttk_size = 0;
6150 break;
6151
6152 case DIF_OP_POPTS:
6153 if (ttop != 0)
6154 ttop--;
6155 break;
6156
6157 case DIF_OP_FLUSHTS:
6158 ttop = 0;
6159 break;
6160
6161 case DIF_OP_LDGAA:
6162 case DIF_OP_LDTAA: {
6163 dtrace_dynvar_t *dvar;
6164 dtrace_key_t *key = tupregs;
6165 uint_t nkeys = ttop;
6166
6167 id = DIF_INSTR_VAR(instr);
6168 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6169 id -= DIF_VAR_OTHER_UBASE;
6170
6171 key[nkeys].dttk_value = (uint64_t)id;
6172 key[nkeys++].dttk_size = 0;
6173
6174 if (DIF_INSTR_OP(instr) == DIF_OP_LDTAA) {
6175 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6176 key[nkeys++].dttk_size = 0;
6177 VERIFY(id < vstate->dtvs_ntlocals);
6178 v = &vstate->dtvs_tlocals[id];
6179 } else {
6180 VERIFY(id < vstate->dtvs_nglobals);
6181 v = &vstate->dtvs_globals[id]->dtsv_var;
6182 }
6183
6184 dvar = dtrace_dynvar(dstate, nkeys, key,
6185 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6186 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6187 DTRACE_DYNVAR_NOALLOC, mstate, vstate);
6188
6189 if (dvar == NULL) {
6190 regs[rd] = 0;
6191 break;
6192 }
6193
6194 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6195 regs[rd] = (uint64_t)(uintptr_t)dvar->dtdv_data;
6196 } else {
6197 regs[rd] = *((uint64_t *)dvar->dtdv_data);
6198 }
6199
6200 break;
6201 }
6202
6203 case DIF_OP_STGAA:
6204 case DIF_OP_STTAA: {
6205 dtrace_dynvar_t *dvar;
6206 dtrace_key_t *key = tupregs;
6207 uint_t nkeys = ttop;
6208
6209 id = DIF_INSTR_VAR(instr);
6210 ASSERT(id >= DIF_VAR_OTHER_UBASE);
6211 id -= DIF_VAR_OTHER_UBASE;
6212
6213 key[nkeys].dttk_value = (uint64_t)id;
6214 key[nkeys++].dttk_size = 0;
6215
6216 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA) {
6217 DTRACE_TLS_THRKEY(key[nkeys].dttk_value);
6218 key[nkeys++].dttk_size = 0;
6219 VERIFY(id < vstate->dtvs_ntlocals);
6220 v = &vstate->dtvs_tlocals[id];
6221 } else {
6222 VERIFY(id < vstate->dtvs_nglobals);
6223 v = &vstate->dtvs_globals[id]->dtsv_var;
6224 }
6225
6226 dvar = dtrace_dynvar(dstate, nkeys, key,
6227 v->dtdv_type.dtdt_size > sizeof (uint64_t) ?
6228 v->dtdv_type.dtdt_size : sizeof (uint64_t),
6229 regs[rd] ? DTRACE_DYNVAR_ALLOC :
6230 DTRACE_DYNVAR_DEALLOC, mstate, vstate);
6231
6232 if (dvar == NULL)
6233 break;
6234
6235 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF) {
6236 if (!dtrace_vcanload(
6237 (void *)(uintptr_t)regs[rd], &v->dtdv_type,
6238 mstate, vstate))
6239 break;
6240
6241 dtrace_vcopy((void *)(uintptr_t)regs[rd],
6242 dvar->dtdv_data, &v->dtdv_type);
6243 } else {
6244 *((uint64_t *)dvar->dtdv_data) = regs[rd];
6245 }
6246
6247 break;
6248 }
6249
6250 case DIF_OP_ALLOCS: {
6251 uintptr_t ptr = P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6252 size_t size = ptr - mstate->dtms_scratch_ptr + regs[r1];
6253
6254 /*
6255 * Rounding up the user allocation size could have
6256 * overflowed large, bogus allocations (like -1ULL) to
6257 * 0.
6258 */
6259 if (size < regs[r1] ||
6260 !DTRACE_INSCRATCH(mstate, size)) {
6261 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6262 regs[rd] = NULL;
6263 break;
6264 }
6265
6266 dtrace_bzero((void *) mstate->dtms_scratch_ptr, size);
6267 mstate->dtms_scratch_ptr += size;
6268 regs[rd] = ptr;
6269 break;
6270 }
6271
6272 case DIF_OP_COPYS:
6273 if (!dtrace_canstore(regs[rd], regs[r2],
6274 mstate, vstate)) {
6275 *flags |= CPU_DTRACE_BADADDR;
6276 *illval = regs[rd];
6277 break;
6278 }
6279
6280 if (!dtrace_canload(regs[r1], regs[r2], mstate, vstate))
6281 break;
6282
6283 dtrace_bcopy((void *)(uintptr_t)regs[r1],
6284 (void *)(uintptr_t)regs[rd], (size_t)regs[r2]);
6285 break;
6286
6287 case DIF_OP_STB:
6288 if (!dtrace_canstore(regs[rd], 1, mstate, vstate)) {
6289 *flags |= CPU_DTRACE_BADADDR;
6290 *illval = regs[rd];
6291 break;
6292 }
6293 *((uint8_t *)(uintptr_t)regs[rd]) = (uint8_t)regs[r1];
6294 break;
6295
6296 case DIF_OP_STH:
6297 if (!dtrace_canstore(regs[rd], 2, mstate, vstate)) {
6298 *flags |= CPU_DTRACE_BADADDR;
6299 *illval = regs[rd];
6300 break;
6301 }
6302 if (regs[rd] & 1) {
6303 *flags |= CPU_DTRACE_BADALIGN;
6304 *illval = regs[rd];
6305 break;
6306 }
6307 *((uint16_t *)(uintptr_t)regs[rd]) = (uint16_t)regs[r1];
6308 break;
6309
6310 case DIF_OP_STW:
6311 if (!dtrace_canstore(regs[rd], 4, mstate, vstate)) {
6312 *flags |= CPU_DTRACE_BADADDR;
6313 *illval = regs[rd];
6314 break;
6315 }
6316 if (regs[rd] & 3) {
6317 *flags |= CPU_DTRACE_BADALIGN;
6318 *illval = regs[rd];
6319 break;
6320 }
6321 *((uint32_t *)(uintptr_t)regs[rd]) = (uint32_t)regs[r1];
6322 break;
6323
6324 case DIF_OP_STX:
6325 if (!dtrace_canstore(regs[rd], 8, mstate, vstate)) {
6326 *flags |= CPU_DTRACE_BADADDR;
6327 *illval = regs[rd];
6328 break;
6329 }
6330 if (regs[rd] & 7) {
6331 *flags |= CPU_DTRACE_BADALIGN;
6332 *illval = regs[rd];
6333 break;
6334 }
6335 *((uint64_t *)(uintptr_t)regs[rd]) = regs[r1];
6336 break;
6337 }
6338 }
6339
6340 if (!(*flags & CPU_DTRACE_FAULT))
6341 return (rval);
6342
6343 mstate->dtms_fltoffs = opc * sizeof (dif_instr_t);
6344 mstate->dtms_present |= DTRACE_MSTATE_FLTOFFS;
6345
6346 return (0);
6347 }
6348
6349 static void
dtrace_action_breakpoint(dtrace_ecb_t * ecb)6350 dtrace_action_breakpoint(dtrace_ecb_t *ecb)
6351 {
6352 dtrace_probe_t *probe = ecb->dte_probe;
6353 dtrace_provider_t *prov = probe->dtpr_provider;
6354 char c[DTRACE_FULLNAMELEN + 80], *str;
6355 char *msg = "dtrace: breakpoint action at probe ";
6356 char *ecbmsg = " (ecb ";
6357 uintptr_t mask = (0xf << (sizeof (uintptr_t) * NBBY / 4));
6358 uintptr_t val = (uintptr_t)ecb;
6359 int shift = (sizeof (uintptr_t) * NBBY) - 4, i = 0;
6360
6361 if (dtrace_destructive_disallow)
6362 return;
6363
6364 /*
6365 * It's impossible to be taking action on the NULL probe.
6366 */
6367 ASSERT(probe != NULL);
6368
6369 /*
6370 * This is a poor man's (destitute man's?) sprintf(): we want to
6371 * print the provider name, module name, function name and name of
6372 * the probe, along with the hex address of the ECB with the breakpoint
6373 * action -- all of which we must place in the character buffer by
6374 * hand.
6375 */
6376 while (*msg != '\0')
6377 c[i++] = *msg++;
6378
6379 for (str = prov->dtpv_name; *str != '\0'; str++)
6380 c[i++] = *str;
6381 c[i++] = ':';
6382
6383 for (str = probe->dtpr_mod; *str != '\0'; str++)
6384 c[i++] = *str;
6385 c[i++] = ':';
6386
6387 for (str = probe->dtpr_func; *str != '\0'; str++)
6388 c[i++] = *str;
6389 c[i++] = ':';
6390
6391 for (str = probe->dtpr_name; *str != '\0'; str++)
6392 c[i++] = *str;
6393
6394 while (*ecbmsg != '\0')
6395 c[i++] = *ecbmsg++;
6396
6397 while (shift >= 0) {
6398 mask = (uintptr_t)0xf << shift;
6399
6400 if (val >= ((uintptr_t)1 << shift))
6401 c[i++] = "0123456789abcdef"[(val & mask) >> shift];
6402 shift -= 4;
6403 }
6404
6405 c[i++] = ')';
6406 c[i] = '\0';
6407
6408 debug_enter(c);
6409 }
6410
6411 static void
dtrace_action_panic(dtrace_ecb_t * ecb)6412 dtrace_action_panic(dtrace_ecb_t *ecb)
6413 {
6414 dtrace_probe_t *probe = ecb->dte_probe;
6415
6416 /*
6417 * It's impossible to be taking action on the NULL probe.
6418 */
6419 ASSERT(probe != NULL);
6420
6421 if (dtrace_destructive_disallow)
6422 return;
6423
6424 if (dtrace_panicked != NULL)
6425 return;
6426
6427 if (dtrace_casptr(&dtrace_panicked, NULL, curthread) != NULL)
6428 return;
6429
6430 /*
6431 * We won the right to panic. (We want to be sure that only one
6432 * thread calls panic() from dtrace_probe(), and that panic() is
6433 * called exactly once.)
6434 */
6435 dtrace_panic("dtrace: panic action at probe %s:%s:%s:%s (ecb %p)",
6436 probe->dtpr_provider->dtpv_name, probe->dtpr_mod,
6437 probe->dtpr_func, probe->dtpr_name, (void *)ecb);
6438 }
6439
6440 static void
dtrace_action_raise(uint64_t sig)6441 dtrace_action_raise(uint64_t sig)
6442 {
6443 if (dtrace_destructive_disallow)
6444 return;
6445
6446 if (sig >= NSIG) {
6447 DTRACE_CPUFLAG_SET(CPU_DTRACE_ILLOP);
6448 return;
6449 }
6450
6451 /*
6452 * raise() has a queue depth of 1 -- we ignore all subsequent
6453 * invocations of the raise() action.
6454 */
6455 if (curthread->t_dtrace_sig == 0)
6456 curthread->t_dtrace_sig = (uint8_t)sig;
6457
6458 curthread->t_sig_check = 1;
6459 aston(curthread);
6460 }
6461
6462 static void
dtrace_action_stop(void)6463 dtrace_action_stop(void)
6464 {
6465 if (dtrace_destructive_disallow)
6466 return;
6467
6468 if (!curthread->t_dtrace_stop) {
6469 curthread->t_dtrace_stop = 1;
6470 curthread->t_sig_check = 1;
6471 aston(curthread);
6472 }
6473 }
6474
6475 static void
dtrace_action_chill(dtrace_mstate_t * mstate,hrtime_t val)6476 dtrace_action_chill(dtrace_mstate_t *mstate, hrtime_t val)
6477 {
6478 hrtime_t now;
6479 volatile uint16_t *flags;
6480 cpu_t *cpu = CPU;
6481
6482 if (dtrace_destructive_disallow)
6483 return;
6484
6485 flags = (volatile uint16_t *)&cpu_core[cpu->cpu_id].cpuc_dtrace_flags;
6486
6487 now = dtrace_gethrtime();
6488
6489 if (now - cpu->cpu_dtrace_chillmark > dtrace_chill_interval) {
6490 /*
6491 * We need to advance the mark to the current time.
6492 */
6493 cpu->cpu_dtrace_chillmark = now;
6494 cpu->cpu_dtrace_chilled = 0;
6495 }
6496
6497 /*
6498 * Now check to see if the requested chill time would take us over
6499 * the maximum amount of time allowed in the chill interval. (Or
6500 * worse, if the calculation itself induces overflow.)
6501 */
6502 if (cpu->cpu_dtrace_chilled + val > dtrace_chill_max ||
6503 cpu->cpu_dtrace_chilled + val < cpu->cpu_dtrace_chilled) {
6504 *flags |= CPU_DTRACE_ILLOP;
6505 return;
6506 }
6507
6508 while (dtrace_gethrtime() - now < val)
6509 continue;
6510
6511 /*
6512 * Normally, we assure that the value of the variable "timestamp" does
6513 * not change within an ECB. The presence of chill() represents an
6514 * exception to this rule, however.
6515 */
6516 mstate->dtms_present &= ~DTRACE_MSTATE_TIMESTAMP;
6517 cpu->cpu_dtrace_chilled += val;
6518 }
6519
6520 static void
dtrace_action_ustack(dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t * buf,uint64_t arg)6521 dtrace_action_ustack(dtrace_mstate_t *mstate, dtrace_state_t *state,
6522 uint64_t *buf, uint64_t arg)
6523 {
6524 int nframes = DTRACE_USTACK_NFRAMES(arg);
6525 int strsize = DTRACE_USTACK_STRSIZE(arg);
6526 uint64_t *pcs = &buf[1], *fps;
6527 char *str = (char *)&pcs[nframes];
6528 int size, offs = 0, i, j;
6529 uintptr_t old = mstate->dtms_scratch_ptr, saved;
6530 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6531 char *sym;
6532
6533 /*
6534 * Should be taking a faster path if string space has not been
6535 * allocated.
6536 */
6537 ASSERT(strsize != 0);
6538
6539 /*
6540 * We will first allocate some temporary space for the frame pointers.
6541 */
6542 fps = (uint64_t *)P2ROUNDUP(mstate->dtms_scratch_ptr, 8);
6543 size = (uintptr_t)fps - mstate->dtms_scratch_ptr +
6544 (nframes * sizeof (uint64_t));
6545
6546 if (!DTRACE_INSCRATCH(mstate, size)) {
6547 /*
6548 * Not enough room for our frame pointers -- need to indicate
6549 * that we ran out of scratch space.
6550 */
6551 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOSCRATCH);
6552 return;
6553 }
6554
6555 mstate->dtms_scratch_ptr += size;
6556 saved = mstate->dtms_scratch_ptr;
6557
6558 /*
6559 * Now get a stack with both program counters and frame pointers.
6560 */
6561 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6562 dtrace_getufpstack(buf, fps, nframes + 1);
6563 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6564
6565 /*
6566 * If that faulted, we're cooked.
6567 */
6568 if (*flags & CPU_DTRACE_FAULT)
6569 goto out;
6570
6571 /*
6572 * Now we want to walk up the stack, calling the USTACK helper. For
6573 * each iteration, we restore the scratch pointer.
6574 */
6575 for (i = 0; i < nframes; i++) {
6576 mstate->dtms_scratch_ptr = saved;
6577
6578 if (offs >= strsize)
6579 break;
6580
6581 sym = (char *)(uintptr_t)dtrace_helper(
6582 DTRACE_HELPER_ACTION_USTACK,
6583 mstate, state, pcs[i], fps[i]);
6584
6585 /*
6586 * If we faulted while running the helper, we're going to
6587 * clear the fault and null out the corresponding string.
6588 */
6589 if (*flags & CPU_DTRACE_FAULT) {
6590 *flags &= ~CPU_DTRACE_FAULT;
6591 str[offs++] = '\0';
6592 continue;
6593 }
6594
6595 if (sym == NULL) {
6596 str[offs++] = '\0';
6597 continue;
6598 }
6599
6600 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6601
6602 /*
6603 * Now copy in the string that the helper returned to us.
6604 */
6605 for (j = 0; offs + j < strsize; j++) {
6606 if ((str[offs + j] = sym[j]) == '\0')
6607 break;
6608 }
6609
6610 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6611
6612 offs += j + 1;
6613 }
6614
6615 if (offs >= strsize) {
6616 /*
6617 * If we didn't have room for all of the strings, we don't
6618 * abort processing -- this needn't be a fatal error -- but we
6619 * still want to increment a counter (dts_stkstroverflows) to
6620 * allow this condition to be warned about. (If this is from
6621 * a jstack() action, it is easily tuned via jstackstrsize.)
6622 */
6623 dtrace_error(&state->dts_stkstroverflows);
6624 }
6625
6626 while (offs < strsize)
6627 str[offs++] = '\0';
6628
6629 out:
6630 mstate->dtms_scratch_ptr = old;
6631 }
6632
6633 static void
dtrace_store_by_ref(dtrace_difo_t * dp,caddr_t tomax,size_t size,size_t * valoffsp,uint64_t * valp,uint64_t end,int intuple,int dtkind)6634 dtrace_store_by_ref(dtrace_difo_t *dp, caddr_t tomax, size_t size,
6635 size_t *valoffsp, uint64_t *valp, uint64_t end, int intuple, int dtkind)
6636 {
6637 volatile uint16_t *flags;
6638 uint64_t val = *valp;
6639 size_t valoffs = *valoffsp;
6640
6641 flags = (volatile uint16_t *)&cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
6642 ASSERT(dtkind == DIF_TF_BYREF || dtkind == DIF_TF_BYUREF);
6643
6644 /*
6645 * If this is a string, we're going to only load until we find the zero
6646 * byte -- after which we'll store zero bytes.
6647 */
6648 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
6649 char c = '\0' + 1;
6650 size_t s;
6651
6652 for (s = 0; s < size; s++) {
6653 if (c != '\0' && dtkind == DIF_TF_BYREF) {
6654 c = dtrace_load8(val++);
6655 } else if (c != '\0' && dtkind == DIF_TF_BYUREF) {
6656 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6657 c = dtrace_fuword8((void *)(uintptr_t)val++);
6658 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6659 if (*flags & CPU_DTRACE_FAULT)
6660 break;
6661 }
6662
6663 DTRACE_STORE(uint8_t, tomax, valoffs++, c);
6664
6665 if (c == '\0' && intuple)
6666 break;
6667 }
6668 } else {
6669 uint8_t c;
6670 while (valoffs < end) {
6671 if (dtkind == DIF_TF_BYREF) {
6672 c = dtrace_load8(val++);
6673 } else if (dtkind == DIF_TF_BYUREF) {
6674 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
6675 c = dtrace_fuword8((void *)(uintptr_t)val++);
6676 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
6677 if (*flags & CPU_DTRACE_FAULT)
6678 break;
6679 }
6680
6681 DTRACE_STORE(uint8_t, tomax,
6682 valoffs++, c);
6683 }
6684 }
6685
6686 *valp = val;
6687 *valoffsp = valoffs;
6688 }
6689
6690 /*
6691 * If you're looking for the epicenter of DTrace, you just found it. This
6692 * is the function called by the provider to fire a probe -- from which all
6693 * subsequent probe-context DTrace activity emanates.
6694 */
6695 void
dtrace_probe(dtrace_id_t id,uintptr_t arg0,uintptr_t arg1,uintptr_t arg2,uintptr_t arg3,uintptr_t arg4)6696 dtrace_probe(dtrace_id_t id, uintptr_t arg0, uintptr_t arg1,
6697 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
6698 {
6699 processorid_t cpuid;
6700 dtrace_icookie_t cookie;
6701 dtrace_probe_t *probe;
6702 dtrace_mstate_t mstate;
6703 dtrace_ecb_t *ecb;
6704 dtrace_action_t *act;
6705 intptr_t offs;
6706 size_t size;
6707 int vtime, onintr;
6708 volatile uint16_t *flags;
6709 hrtime_t now, end;
6710
6711 /*
6712 * Kick out immediately if this CPU is still being born (in which case
6713 * curthread will be set to -1) or the current thread can't allow
6714 * probes in its current context.
6715 */
6716 if (((uintptr_t)curthread & 1) || (curthread->t_flag & T_DONTDTRACE))
6717 return;
6718
6719 cookie = dtrace_interrupt_disable();
6720 probe = dtrace_probes[id - 1];
6721 cpuid = CPU->cpu_id;
6722 onintr = CPU_ON_INTR(CPU);
6723
6724 CPU->cpu_dtrace_probes++;
6725
6726 if (!onintr && probe->dtpr_predcache != DTRACE_CACHEIDNONE &&
6727 probe->dtpr_predcache == curthread->t_predcache) {
6728 /*
6729 * We have hit in the predicate cache; we know that
6730 * this predicate would evaluate to be false.
6731 */
6732 dtrace_interrupt_enable(cookie);
6733 return;
6734 }
6735
6736 if (panic_quiesce) {
6737 /*
6738 * We don't trace anything if we're panicking.
6739 */
6740 dtrace_interrupt_enable(cookie);
6741 return;
6742 }
6743
6744 now = mstate.dtms_timestamp = dtrace_gethrtime();
6745 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6746 vtime = dtrace_vtime_references != 0;
6747
6748 if (vtime && curthread->t_dtrace_start)
6749 curthread->t_dtrace_vtime += now - curthread->t_dtrace_start;
6750
6751 mstate.dtms_difo = NULL;
6752 mstate.dtms_probe = probe;
6753 mstate.dtms_strtok = NULL;
6754 mstate.dtms_arg[0] = arg0;
6755 mstate.dtms_arg[1] = arg1;
6756 mstate.dtms_arg[2] = arg2;
6757 mstate.dtms_arg[3] = arg3;
6758 mstate.dtms_arg[4] = arg4;
6759
6760 flags = (volatile uint16_t *)&cpu_core[cpuid].cpuc_dtrace_flags;
6761
6762 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
6763 dtrace_predicate_t *pred = ecb->dte_predicate;
6764 dtrace_state_t *state = ecb->dte_state;
6765 dtrace_buffer_t *buf = &state->dts_buffer[cpuid];
6766 dtrace_buffer_t *aggbuf = &state->dts_aggbuffer[cpuid];
6767 dtrace_vstate_t *vstate = &state->dts_vstate;
6768 dtrace_provider_t *prov = probe->dtpr_provider;
6769 uint64_t tracememsize = 0;
6770 int committed = 0;
6771 caddr_t tomax;
6772
6773 /*
6774 * A little subtlety with the following (seemingly innocuous)
6775 * declaration of the automatic 'val': by looking at the
6776 * code, you might think that it could be declared in the
6777 * action processing loop, below. (That is, it's only used in
6778 * the action processing loop.) However, it must be declared
6779 * out of that scope because in the case of DIF expression
6780 * arguments to aggregating actions, one iteration of the
6781 * action loop will use the last iteration's value.
6782 */
6783 #ifdef lint
6784 uint64_t val = 0;
6785 #else
6786 uint64_t val;
6787 #endif
6788
6789 mstate.dtms_present = DTRACE_MSTATE_ARGS | DTRACE_MSTATE_PROBE;
6790 mstate.dtms_access = DTRACE_ACCESS_ARGS | DTRACE_ACCESS_PROC;
6791 mstate.dtms_getf = NULL;
6792
6793 *flags &= ~CPU_DTRACE_ERROR;
6794
6795 if (prov == dtrace_provider) {
6796 /*
6797 * If dtrace itself is the provider of this probe,
6798 * we're only going to continue processing the ECB if
6799 * arg0 (the dtrace_state_t) is equal to the ECB's
6800 * creating state. (This prevents disjoint consumers
6801 * from seeing one another's metaprobes.)
6802 */
6803 if (arg0 != (uint64_t)(uintptr_t)state)
6804 continue;
6805 }
6806
6807 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE) {
6808 /*
6809 * We're not currently active. If our provider isn't
6810 * the dtrace pseudo provider, we're not interested.
6811 */
6812 if (prov != dtrace_provider)
6813 continue;
6814
6815 /*
6816 * Now we must further check if we are in the BEGIN
6817 * probe. If we are, we will only continue processing
6818 * if we're still in WARMUP -- if one BEGIN enabling
6819 * has invoked the exit() action, we don't want to
6820 * evaluate subsequent BEGIN enablings.
6821 */
6822 if (probe->dtpr_id == dtrace_probeid_begin &&
6823 state->dts_activity != DTRACE_ACTIVITY_WARMUP) {
6824 ASSERT(state->dts_activity ==
6825 DTRACE_ACTIVITY_DRAINING);
6826 continue;
6827 }
6828 }
6829
6830 if (ecb->dte_cond && !dtrace_priv_probe(state, &mstate, ecb))
6831 continue;
6832
6833 if (now - state->dts_alive > dtrace_deadman_timeout) {
6834 /*
6835 * We seem to be dead. Unless we (a) have kernel
6836 * destructive permissions (b) have explicitly enabled
6837 * destructive actions and (c) destructive actions have
6838 * not been disabled, we're going to transition into
6839 * the KILLED state, from which no further processing
6840 * on this state will be performed.
6841 */
6842 if (!dtrace_priv_kernel_destructive(state) ||
6843 !state->dts_cred.dcr_destructive ||
6844 dtrace_destructive_disallow) {
6845 void *activity = &state->dts_activity;
6846 dtrace_activity_t current;
6847
6848 do {
6849 current = state->dts_activity;
6850 } while (dtrace_cas32(activity, current,
6851 DTRACE_ACTIVITY_KILLED) != current);
6852
6853 continue;
6854 }
6855 }
6856
6857 if ((offs = dtrace_buffer_reserve(buf, ecb->dte_needed,
6858 ecb->dte_alignment, state, &mstate)) < 0)
6859 continue;
6860
6861 tomax = buf->dtb_tomax;
6862 ASSERT(tomax != NULL);
6863
6864 if (ecb->dte_size != 0) {
6865 dtrace_rechdr_t dtrh;
6866 if (!(mstate.dtms_present & DTRACE_MSTATE_TIMESTAMP)) {
6867 mstate.dtms_timestamp = dtrace_gethrtime();
6868 mstate.dtms_present |= DTRACE_MSTATE_TIMESTAMP;
6869 }
6870 ASSERT3U(ecb->dte_size, >=, sizeof (dtrace_rechdr_t));
6871 dtrh.dtrh_epid = ecb->dte_epid;
6872 DTRACE_RECORD_STORE_TIMESTAMP(&dtrh,
6873 mstate.dtms_timestamp);
6874 *((dtrace_rechdr_t *)(tomax + offs)) = dtrh;
6875 }
6876
6877 mstate.dtms_epid = ecb->dte_epid;
6878 mstate.dtms_present |= DTRACE_MSTATE_EPID;
6879
6880 if (state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)
6881 mstate.dtms_access |= DTRACE_ACCESS_KERNEL;
6882
6883 if (pred != NULL) {
6884 dtrace_difo_t *dp = pred->dtp_difo;
6885 int rval;
6886
6887 rval = dtrace_dif_emulate(dp, &mstate, vstate, state);
6888
6889 if (!(*flags & CPU_DTRACE_ERROR) && !rval) {
6890 dtrace_cacheid_t cid = probe->dtpr_predcache;
6891
6892 if (cid != DTRACE_CACHEIDNONE && !onintr) {
6893 /*
6894 * Update the predicate cache...
6895 */
6896 ASSERT(cid == pred->dtp_cacheid);
6897 curthread->t_predcache = cid;
6898 }
6899
6900 continue;
6901 }
6902 }
6903
6904 for (act = ecb->dte_action; !(*flags & CPU_DTRACE_ERROR) &&
6905 act != NULL; act = act->dta_next) {
6906 size_t valoffs;
6907 dtrace_difo_t *dp;
6908 dtrace_recdesc_t *rec = &act->dta_rec;
6909
6910 size = rec->dtrd_size;
6911 valoffs = offs + rec->dtrd_offset;
6912
6913 if (DTRACEACT_ISAGG(act->dta_kind)) {
6914 uint64_t v = 0xbad;
6915 dtrace_aggregation_t *agg;
6916
6917 agg = (dtrace_aggregation_t *)act;
6918
6919 if ((dp = act->dta_difo) != NULL)
6920 v = dtrace_dif_emulate(dp,
6921 &mstate, vstate, state);
6922
6923 if (*flags & CPU_DTRACE_ERROR)
6924 continue;
6925
6926 /*
6927 * Note that we always pass the expression
6928 * value from the previous iteration of the
6929 * action loop. This value will only be used
6930 * if there is an expression argument to the
6931 * aggregating action, denoted by the
6932 * dtag_hasarg field.
6933 */
6934 dtrace_aggregate(agg, buf,
6935 offs, aggbuf, v, val);
6936 continue;
6937 }
6938
6939 switch (act->dta_kind) {
6940 case DTRACEACT_STOP:
6941 if (dtrace_priv_proc_destructive(state,
6942 &mstate))
6943 dtrace_action_stop();
6944 continue;
6945
6946 case DTRACEACT_BREAKPOINT:
6947 if (dtrace_priv_kernel_destructive(state))
6948 dtrace_action_breakpoint(ecb);
6949 continue;
6950
6951 case DTRACEACT_PANIC:
6952 if (dtrace_priv_kernel_destructive(state))
6953 dtrace_action_panic(ecb);
6954 continue;
6955
6956 case DTRACEACT_STACK:
6957 if (!dtrace_priv_kernel(state))
6958 continue;
6959
6960 dtrace_getpcstack((pc_t *)(tomax + valoffs),
6961 size / sizeof (pc_t), probe->dtpr_aframes,
6962 DTRACE_ANCHORED(probe) ? NULL :
6963 (uint32_t *)arg0);
6964
6965 continue;
6966
6967 case DTRACEACT_JSTACK:
6968 case DTRACEACT_USTACK:
6969 if (!dtrace_priv_proc(state, &mstate))
6970 continue;
6971
6972 /*
6973 * See comment in DIF_VAR_PID.
6974 */
6975 if (DTRACE_ANCHORED(mstate.dtms_probe) &&
6976 CPU_ON_INTR(CPU)) {
6977 int depth = DTRACE_USTACK_NFRAMES(
6978 rec->dtrd_arg) + 1;
6979
6980 dtrace_bzero((void *)(tomax + valoffs),
6981 DTRACE_USTACK_STRSIZE(rec->dtrd_arg)
6982 + depth * sizeof (uint64_t));
6983
6984 continue;
6985 }
6986
6987 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0 &&
6988 curproc->p_dtrace_helpers != NULL) {
6989 /*
6990 * This is the slow path -- we have
6991 * allocated string space, and we're
6992 * getting the stack of a process that
6993 * has helpers. Call into a separate
6994 * routine to perform this processing.
6995 */
6996 dtrace_action_ustack(&mstate, state,
6997 (uint64_t *)(tomax + valoffs),
6998 rec->dtrd_arg);
6999 continue;
7000 }
7001
7002 /*
7003 * Clear the string space, since there's no
7004 * helper to do it for us.
7005 */
7006 if (DTRACE_USTACK_STRSIZE(rec->dtrd_arg) != 0) {
7007 int depth = DTRACE_USTACK_NFRAMES(
7008 rec->dtrd_arg);
7009 size_t strsize = DTRACE_USTACK_STRSIZE(
7010 rec->dtrd_arg);
7011 uint64_t *buf = (uint64_t *)(tomax +
7012 valoffs);
7013 void *strspace = &buf[depth + 1];
7014
7015 dtrace_bzero(strspace,
7016 MIN(depth, strsize));
7017 }
7018
7019 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
7020 dtrace_getupcstack((uint64_t *)
7021 (tomax + valoffs),
7022 DTRACE_USTACK_NFRAMES(rec->dtrd_arg) + 1);
7023 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);
7024 continue;
7025
7026 default:
7027 break;
7028 }
7029
7030 dp = act->dta_difo;
7031 ASSERT(dp != NULL);
7032
7033 val = dtrace_dif_emulate(dp, &mstate, vstate, state);
7034
7035 if (*flags & CPU_DTRACE_ERROR)
7036 continue;
7037
7038 switch (act->dta_kind) {
7039 case DTRACEACT_SPECULATE: {
7040 dtrace_rechdr_t *dtrh;
7041
7042 ASSERT(buf == &state->dts_buffer[cpuid]);
7043 buf = dtrace_speculation_buffer(state,
7044 cpuid, val);
7045
7046 if (buf == NULL) {
7047 *flags |= CPU_DTRACE_DROP;
7048 continue;
7049 }
7050
7051 offs = dtrace_buffer_reserve(buf,
7052 ecb->dte_needed, ecb->dte_alignment,
7053 state, NULL);
7054
7055 if (offs < 0) {
7056 *flags |= CPU_DTRACE_DROP;
7057 continue;
7058 }
7059
7060 tomax = buf->dtb_tomax;
7061 ASSERT(tomax != NULL);
7062
7063 if (ecb->dte_size == 0)
7064 continue;
7065
7066 ASSERT3U(ecb->dte_size, >=,
7067 sizeof (dtrace_rechdr_t));
7068 dtrh = ((void *)(tomax + offs));
7069 dtrh->dtrh_epid = ecb->dte_epid;
7070 /*
7071 * When the speculation is committed, all of
7072 * the records in the speculative buffer will
7073 * have their timestamps set to the commit
7074 * time. Until then, it is set to a sentinel
7075 * value, for debugability.
7076 */
7077 DTRACE_RECORD_STORE_TIMESTAMP(dtrh, UINT64_MAX);
7078 continue;
7079 }
7080
7081 case DTRACEACT_CHILL:
7082 if (dtrace_priv_kernel_destructive(state))
7083 dtrace_action_chill(&mstate, val);
7084 continue;
7085
7086 case DTRACEACT_RAISE:
7087 if (dtrace_priv_proc_destructive(state,
7088 &mstate))
7089 dtrace_action_raise(val);
7090 continue;
7091
7092 case DTRACEACT_COMMIT:
7093 ASSERT(!committed);
7094
7095 /*
7096 * We need to commit our buffer state.
7097 */
7098 if (ecb->dte_size)
7099 buf->dtb_offset = offs + ecb->dte_size;
7100 buf = &state->dts_buffer[cpuid];
7101 dtrace_speculation_commit(state, cpuid, val);
7102 committed = 1;
7103 continue;
7104
7105 case DTRACEACT_DISCARD:
7106 dtrace_speculation_discard(state, cpuid, val);
7107 continue;
7108
7109 case DTRACEACT_DIFEXPR:
7110 case DTRACEACT_LIBACT:
7111 case DTRACEACT_PRINTF:
7112 case DTRACEACT_PRINTA:
7113 case DTRACEACT_SYSTEM:
7114 case DTRACEACT_FREOPEN:
7115 case DTRACEACT_TRACEMEM:
7116 break;
7117
7118 case DTRACEACT_TRACEMEM_DYNSIZE:
7119 tracememsize = val;
7120 break;
7121
7122 case DTRACEACT_SYM:
7123 case DTRACEACT_MOD:
7124 if (!dtrace_priv_kernel(state))
7125 continue;
7126 break;
7127
7128 case DTRACEACT_USYM:
7129 case DTRACEACT_UMOD:
7130 case DTRACEACT_UADDR: {
7131 struct pid *pid = curthread->t_procp->p_pidp;
7132
7133 if (!dtrace_priv_proc(state, &mstate))
7134 continue;
7135
7136 DTRACE_STORE(uint64_t, tomax,
7137 valoffs, (uint64_t)pid->pid_id);
7138 DTRACE_STORE(uint64_t, tomax,
7139 valoffs + sizeof (uint64_t), val);
7140
7141 continue;
7142 }
7143
7144 case DTRACEACT_EXIT: {
7145 /*
7146 * For the exit action, we are going to attempt
7147 * to atomically set our activity to be
7148 * draining. If this fails (either because
7149 * another CPU has beat us to the exit action,
7150 * or because our current activity is something
7151 * other than ACTIVE or WARMUP), we will
7152 * continue. This assures that the exit action
7153 * can be successfully recorded at most once
7154 * when we're in the ACTIVE state. If we're
7155 * encountering the exit() action while in
7156 * COOLDOWN, however, we want to honor the new
7157 * status code. (We know that we're the only
7158 * thread in COOLDOWN, so there is no race.)
7159 */
7160 void *activity = &state->dts_activity;
7161 dtrace_activity_t current = state->dts_activity;
7162
7163 if (current == DTRACE_ACTIVITY_COOLDOWN)
7164 break;
7165
7166 if (current != DTRACE_ACTIVITY_WARMUP)
7167 current = DTRACE_ACTIVITY_ACTIVE;
7168
7169 if (dtrace_cas32(activity, current,
7170 DTRACE_ACTIVITY_DRAINING) != current) {
7171 *flags |= CPU_DTRACE_DROP;
7172 continue;
7173 }
7174
7175 break;
7176 }
7177
7178 default:
7179 ASSERT(0);
7180 }
7181
7182 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ||
7183 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYUREF) {
7184 uintptr_t end = valoffs + size;
7185
7186 if (tracememsize != 0 &&
7187 valoffs + tracememsize < end) {
7188 end = valoffs + tracememsize;
7189 tracememsize = 0;
7190 }
7191
7192 if (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF &&
7193 !dtrace_vcanload((void *)(uintptr_t)val,
7194 &dp->dtdo_rtype, &mstate, vstate))
7195 continue;
7196
7197 dtrace_store_by_ref(dp, tomax, size, &valoffs,
7198 &val, end, act->dta_intuple,
7199 dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF ?
7200 DIF_TF_BYREF: DIF_TF_BYUREF);
7201 continue;
7202 }
7203
7204 switch (size) {
7205 case 0:
7206 break;
7207
7208 case sizeof (uint8_t):
7209 DTRACE_STORE(uint8_t, tomax, valoffs, val);
7210 break;
7211 case sizeof (uint16_t):
7212 DTRACE_STORE(uint16_t, tomax, valoffs, val);
7213 break;
7214 case sizeof (uint32_t):
7215 DTRACE_STORE(uint32_t, tomax, valoffs, val);
7216 break;
7217 case sizeof (uint64_t):
7218 DTRACE_STORE(uint64_t, tomax, valoffs, val);
7219 break;
7220 default:
7221 /*
7222 * Any other size should have been returned by
7223 * reference, not by value.
7224 */
7225 ASSERT(0);
7226 break;
7227 }
7228 }
7229
7230 if (*flags & CPU_DTRACE_DROP)
7231 continue;
7232
7233 if (*flags & CPU_DTRACE_FAULT) {
7234 int ndx;
7235 dtrace_action_t *err;
7236
7237 buf->dtb_errors++;
7238
7239 if (probe->dtpr_id == dtrace_probeid_error) {
7240 /*
7241 * There's nothing we can do -- we had an
7242 * error on the error probe. We bump an
7243 * error counter to at least indicate that
7244 * this condition happened.
7245 */
7246 dtrace_error(&state->dts_dblerrors);
7247 continue;
7248 }
7249
7250 if (vtime) {
7251 /*
7252 * Before recursing on dtrace_probe(), we
7253 * need to explicitly clear out our start
7254 * time to prevent it from being accumulated
7255 * into t_dtrace_vtime.
7256 */
7257 curthread->t_dtrace_start = 0;
7258 }
7259
7260 /*
7261 * Iterate over the actions to figure out which action
7262 * we were processing when we experienced the error.
7263 * Note that act points _past_ the faulting action; if
7264 * act is ecb->dte_action, the fault was in the
7265 * predicate, if it's ecb->dte_action->dta_next it's
7266 * in action #1, and so on.
7267 */
7268 for (err = ecb->dte_action, ndx = 0;
7269 err != act; err = err->dta_next, ndx++)
7270 continue;
7271
7272 dtrace_probe_error(state, ecb->dte_epid, ndx,
7273 (mstate.dtms_present & DTRACE_MSTATE_FLTOFFS) ?
7274 mstate.dtms_fltoffs : -1, DTRACE_FLAGS2FLT(*flags),
7275 cpu_core[cpuid].cpuc_dtrace_illval);
7276
7277 continue;
7278 }
7279
7280 if (!committed)
7281 buf->dtb_offset = offs + ecb->dte_size;
7282 }
7283
7284 end = dtrace_gethrtime();
7285 if (vtime)
7286 curthread->t_dtrace_start = end;
7287
7288 CPU->cpu_dtrace_nsec += end - now;
7289
7290 dtrace_interrupt_enable(cookie);
7291 }
7292
7293 /*
7294 * DTrace Probe Hashing Functions
7295 *
7296 * The functions in this section (and indeed, the functions in remaining
7297 * sections) are not _called_ from probe context. (Any exceptions to this are
7298 * marked with a "Note:".) Rather, they are called from elsewhere in the
7299 * DTrace framework to look-up probes in, add probes to and remove probes from
7300 * the DTrace probe hashes. (Each probe is hashed by each element of the
7301 * probe tuple -- allowing for fast lookups, regardless of what was
7302 * specified.)
7303 */
7304 static uint_t
dtrace_hash_str(char * p)7305 dtrace_hash_str(char *p)
7306 {
7307 unsigned int g;
7308 uint_t hval = 0;
7309
7310 while (*p) {
7311 hval = (hval << 4) + *p++;
7312 if ((g = (hval & 0xf0000000)) != 0)
7313 hval ^= g >> 24;
7314 hval &= ~g;
7315 }
7316 return (hval);
7317 }
7318
7319 static dtrace_hash_t *
dtrace_hash_create(uintptr_t stroffs,uintptr_t nextoffs,uintptr_t prevoffs)7320 dtrace_hash_create(uintptr_t stroffs, uintptr_t nextoffs, uintptr_t prevoffs)
7321 {
7322 dtrace_hash_t *hash = kmem_zalloc(sizeof (dtrace_hash_t), KM_SLEEP);
7323
7324 hash->dth_stroffs = stroffs;
7325 hash->dth_nextoffs = nextoffs;
7326 hash->dth_prevoffs = prevoffs;
7327
7328 hash->dth_size = 1;
7329 hash->dth_mask = hash->dth_size - 1;
7330
7331 hash->dth_tab = kmem_zalloc(hash->dth_size *
7332 sizeof (dtrace_hashbucket_t *), KM_SLEEP);
7333
7334 return (hash);
7335 }
7336
7337 static void
dtrace_hash_destroy(dtrace_hash_t * hash)7338 dtrace_hash_destroy(dtrace_hash_t *hash)
7339 {
7340 #ifdef DEBUG
7341 int i;
7342
7343 for (i = 0; i < hash->dth_size; i++)
7344 ASSERT(hash->dth_tab[i] == NULL);
7345 #endif
7346
7347 kmem_free(hash->dth_tab,
7348 hash->dth_size * sizeof (dtrace_hashbucket_t *));
7349 kmem_free(hash, sizeof (dtrace_hash_t));
7350 }
7351
7352 static void
dtrace_hash_resize(dtrace_hash_t * hash)7353 dtrace_hash_resize(dtrace_hash_t *hash)
7354 {
7355 int size = hash->dth_size, i, ndx;
7356 int new_size = hash->dth_size << 1;
7357 int new_mask = new_size - 1;
7358 dtrace_hashbucket_t **new_tab, *bucket, *next;
7359
7360 ASSERT((new_size & new_mask) == 0);
7361
7362 new_tab = kmem_zalloc(new_size * sizeof (void *), KM_SLEEP);
7363
7364 for (i = 0; i < size; i++) {
7365 for (bucket = hash->dth_tab[i]; bucket != NULL; bucket = next) {
7366 dtrace_probe_t *probe = bucket->dthb_chain;
7367
7368 ASSERT(probe != NULL);
7369 ndx = DTRACE_HASHSTR(hash, probe) & new_mask;
7370
7371 next = bucket->dthb_next;
7372 bucket->dthb_next = new_tab[ndx];
7373 new_tab[ndx] = bucket;
7374 }
7375 }
7376
7377 kmem_free(hash->dth_tab, hash->dth_size * sizeof (void *));
7378 hash->dth_tab = new_tab;
7379 hash->dth_size = new_size;
7380 hash->dth_mask = new_mask;
7381 }
7382
7383 static void
dtrace_hash_add(dtrace_hash_t * hash,dtrace_probe_t * new)7384 dtrace_hash_add(dtrace_hash_t *hash, dtrace_probe_t *new)
7385 {
7386 int hashval = DTRACE_HASHSTR(hash, new);
7387 int ndx = hashval & hash->dth_mask;
7388 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7389 dtrace_probe_t **nextp, **prevp;
7390
7391 for (; bucket != NULL; bucket = bucket->dthb_next) {
7392 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, new))
7393 goto add;
7394 }
7395
7396 if ((hash->dth_nbuckets >> 1) > hash->dth_size) {
7397 dtrace_hash_resize(hash);
7398 dtrace_hash_add(hash, new);
7399 return;
7400 }
7401
7402 bucket = kmem_zalloc(sizeof (dtrace_hashbucket_t), KM_SLEEP);
7403 bucket->dthb_next = hash->dth_tab[ndx];
7404 hash->dth_tab[ndx] = bucket;
7405 hash->dth_nbuckets++;
7406
7407 add:
7408 nextp = DTRACE_HASHNEXT(hash, new);
7409 ASSERT(*nextp == NULL && *(DTRACE_HASHPREV(hash, new)) == NULL);
7410 *nextp = bucket->dthb_chain;
7411
7412 if (bucket->dthb_chain != NULL) {
7413 prevp = DTRACE_HASHPREV(hash, bucket->dthb_chain);
7414 ASSERT(*prevp == NULL);
7415 *prevp = new;
7416 }
7417
7418 bucket->dthb_chain = new;
7419 bucket->dthb_len++;
7420 }
7421
7422 static dtrace_probe_t *
dtrace_hash_lookup(dtrace_hash_t * hash,dtrace_probe_t * template)7423 dtrace_hash_lookup(dtrace_hash_t *hash, dtrace_probe_t *template)
7424 {
7425 int hashval = DTRACE_HASHSTR(hash, template);
7426 int ndx = hashval & hash->dth_mask;
7427 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7428
7429 for (; bucket != NULL; bucket = bucket->dthb_next) {
7430 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7431 return (bucket->dthb_chain);
7432 }
7433
7434 return (NULL);
7435 }
7436
7437 static int
dtrace_hash_collisions(dtrace_hash_t * hash,dtrace_probe_t * template)7438 dtrace_hash_collisions(dtrace_hash_t *hash, dtrace_probe_t *template)
7439 {
7440 int hashval = DTRACE_HASHSTR(hash, template);
7441 int ndx = hashval & hash->dth_mask;
7442 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7443
7444 for (; bucket != NULL; bucket = bucket->dthb_next) {
7445 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, template))
7446 return (bucket->dthb_len);
7447 }
7448
7449 return (NULL);
7450 }
7451
7452 static void
dtrace_hash_remove(dtrace_hash_t * hash,dtrace_probe_t * probe)7453 dtrace_hash_remove(dtrace_hash_t *hash, dtrace_probe_t *probe)
7454 {
7455 int ndx = DTRACE_HASHSTR(hash, probe) & hash->dth_mask;
7456 dtrace_hashbucket_t *bucket = hash->dth_tab[ndx];
7457
7458 dtrace_probe_t **prevp = DTRACE_HASHPREV(hash, probe);
7459 dtrace_probe_t **nextp = DTRACE_HASHNEXT(hash, probe);
7460
7461 /*
7462 * Find the bucket that we're removing this probe from.
7463 */
7464 for (; bucket != NULL; bucket = bucket->dthb_next) {
7465 if (DTRACE_HASHEQ(hash, bucket->dthb_chain, probe))
7466 break;
7467 }
7468
7469 ASSERT(bucket != NULL);
7470
7471 if (*prevp == NULL) {
7472 if (*nextp == NULL) {
7473 /*
7474 * The removed probe was the only probe on this
7475 * bucket; we need to remove the bucket.
7476 */
7477 dtrace_hashbucket_t *b = hash->dth_tab[ndx];
7478
7479 ASSERT(bucket->dthb_chain == probe);
7480 ASSERT(b != NULL);
7481
7482 if (b == bucket) {
7483 hash->dth_tab[ndx] = bucket->dthb_next;
7484 } else {
7485 while (b->dthb_next != bucket)
7486 b = b->dthb_next;
7487 b->dthb_next = bucket->dthb_next;
7488 }
7489
7490 ASSERT(hash->dth_nbuckets > 0);
7491 hash->dth_nbuckets--;
7492 kmem_free(bucket, sizeof (dtrace_hashbucket_t));
7493 return;
7494 }
7495
7496 bucket->dthb_chain = *nextp;
7497 } else {
7498 *(DTRACE_HASHNEXT(hash, *prevp)) = *nextp;
7499 }
7500
7501 if (*nextp != NULL)
7502 *(DTRACE_HASHPREV(hash, *nextp)) = *prevp;
7503 }
7504
7505 /*
7506 * DTrace Utility Functions
7507 *
7508 * These are random utility functions that are _not_ called from probe context.
7509 */
7510 static int
dtrace_badattr(const dtrace_attribute_t * a)7511 dtrace_badattr(const dtrace_attribute_t *a)
7512 {
7513 return (a->dtat_name > DTRACE_STABILITY_MAX ||
7514 a->dtat_data > DTRACE_STABILITY_MAX ||
7515 a->dtat_class > DTRACE_CLASS_MAX);
7516 }
7517
7518 /*
7519 * Return a duplicate copy of a string. If the specified string is NULL,
7520 * this function returns a zero-length string.
7521 */
7522 static char *
dtrace_strdup(const char * str)7523 dtrace_strdup(const char *str)
7524 {
7525 char *new = kmem_zalloc((str != NULL ? strlen(str) : 0) + 1, KM_SLEEP);
7526
7527 if (str != NULL)
7528 (void) strcpy(new, str);
7529
7530 return (new);
7531 }
7532
7533 #define DTRACE_ISALPHA(c) \
7534 (((c) >= 'a' && (c) <= 'z') || ((c) >= 'A' && (c) <= 'Z'))
7535
7536 static int
dtrace_badname(const char * s)7537 dtrace_badname(const char *s)
7538 {
7539 char c;
7540
7541 if (s == NULL || (c = *s++) == '\0')
7542 return (0);
7543
7544 if (!DTRACE_ISALPHA(c) && c != '-' && c != '_' && c != '.')
7545 return (1);
7546
7547 while ((c = *s++) != '\0') {
7548 if (!DTRACE_ISALPHA(c) && (c < '0' || c > '9') &&
7549 c != '-' && c != '_' && c != '.' && c != '`')
7550 return (1);
7551 }
7552
7553 return (0);
7554 }
7555
7556 static void
dtrace_cred2priv(cred_t * cr,uint32_t * privp,uid_t * uidp,zoneid_t * zoneidp)7557 dtrace_cred2priv(cred_t *cr, uint32_t *privp, uid_t *uidp, zoneid_t *zoneidp)
7558 {
7559 uint32_t priv;
7560
7561 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
7562 /*
7563 * For DTRACE_PRIV_ALL, the uid and zoneid don't matter.
7564 */
7565 priv = DTRACE_PRIV_ALL;
7566 } else {
7567 *uidp = crgetuid(cr);
7568 *zoneidp = crgetzoneid(cr);
7569
7570 priv = 0;
7571 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE))
7572 priv |= DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER;
7573 else if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE))
7574 priv |= DTRACE_PRIV_USER;
7575 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE))
7576 priv |= DTRACE_PRIV_PROC;
7577 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
7578 priv |= DTRACE_PRIV_OWNER;
7579 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
7580 priv |= DTRACE_PRIV_ZONEOWNER;
7581 }
7582
7583 *privp = priv;
7584 }
7585
7586 #ifdef DTRACE_ERRDEBUG
7587 static void
dtrace_errdebug(const char * str)7588 dtrace_errdebug(const char *str)
7589 {
7590 int hval = dtrace_hash_str((char *)str) % DTRACE_ERRHASHSZ;
7591 int occupied = 0;
7592
7593 mutex_enter(&dtrace_errlock);
7594 dtrace_errlast = str;
7595 dtrace_errthread = curthread;
7596
7597 while (occupied++ < DTRACE_ERRHASHSZ) {
7598 if (dtrace_errhash[hval].dter_msg == str) {
7599 dtrace_errhash[hval].dter_count++;
7600 goto out;
7601 }
7602
7603 if (dtrace_errhash[hval].dter_msg != NULL) {
7604 hval = (hval + 1) % DTRACE_ERRHASHSZ;
7605 continue;
7606 }
7607
7608 dtrace_errhash[hval].dter_msg = str;
7609 dtrace_errhash[hval].dter_count = 1;
7610 goto out;
7611 }
7612
7613 panic("dtrace: undersized error hash");
7614 out:
7615 mutex_exit(&dtrace_errlock);
7616 }
7617 #endif
7618
7619 /*
7620 * DTrace Matching Functions
7621 *
7622 * These functions are used to match groups of probes, given some elements of
7623 * a probe tuple, or some globbed expressions for elements of a probe tuple.
7624 */
7625 static int
dtrace_match_priv(const dtrace_probe_t * prp,uint32_t priv,uid_t uid,zoneid_t zoneid)7626 dtrace_match_priv(const dtrace_probe_t *prp, uint32_t priv, uid_t uid,
7627 zoneid_t zoneid)
7628 {
7629 if (priv != DTRACE_PRIV_ALL) {
7630 uint32_t ppriv = prp->dtpr_provider->dtpv_priv.dtpp_flags;
7631 uint32_t match = priv & ppriv;
7632
7633 /*
7634 * No PRIV_DTRACE_* privileges...
7635 */
7636 if ((priv & (DTRACE_PRIV_PROC | DTRACE_PRIV_USER |
7637 DTRACE_PRIV_KERNEL)) == 0)
7638 return (0);
7639
7640 /*
7641 * No matching bits, but there were bits to match...
7642 */
7643 if (match == 0 && ppriv != 0)
7644 return (0);
7645
7646 /*
7647 * Need to have permissions to the process, but don't...
7648 */
7649 if (((ppriv & ~match) & DTRACE_PRIV_OWNER) != 0 &&
7650 uid != prp->dtpr_provider->dtpv_priv.dtpp_uid) {
7651 return (0);
7652 }
7653
7654 /*
7655 * Need to be in the same zone unless we possess the
7656 * privilege to examine all zones.
7657 */
7658 if (((ppriv & ~match) & DTRACE_PRIV_ZONEOWNER) != 0 &&
7659 zoneid != prp->dtpr_provider->dtpv_priv.dtpp_zoneid) {
7660 return (0);
7661 }
7662 }
7663
7664 return (1);
7665 }
7666
7667 /*
7668 * dtrace_match_probe compares a dtrace_probe_t to a pre-compiled key, which
7669 * consists of input pattern strings and an ops-vector to evaluate them.
7670 * This function returns >0 for match, 0 for no match, and <0 for error.
7671 */
7672 static int
dtrace_match_probe(const dtrace_probe_t * prp,const dtrace_probekey_t * pkp,uint32_t priv,uid_t uid,zoneid_t zoneid)7673 dtrace_match_probe(const dtrace_probe_t *prp, const dtrace_probekey_t *pkp,
7674 uint32_t priv, uid_t uid, zoneid_t zoneid)
7675 {
7676 dtrace_provider_t *pvp = prp->dtpr_provider;
7677 int rv;
7678
7679 if (pvp->dtpv_defunct)
7680 return (0);
7681
7682 if ((rv = pkp->dtpk_pmatch(pvp->dtpv_name, pkp->dtpk_prov, 0)) <= 0)
7683 return (rv);
7684
7685 if ((rv = pkp->dtpk_mmatch(prp->dtpr_mod, pkp->dtpk_mod, 0)) <= 0)
7686 return (rv);
7687
7688 if ((rv = pkp->dtpk_fmatch(prp->dtpr_func, pkp->dtpk_func, 0)) <= 0)
7689 return (rv);
7690
7691 if ((rv = pkp->dtpk_nmatch(prp->dtpr_name, pkp->dtpk_name, 0)) <= 0)
7692 return (rv);
7693
7694 if (dtrace_match_priv(prp, priv, uid, zoneid) == 0)
7695 return (0);
7696
7697 return (rv);
7698 }
7699
7700 /*
7701 * dtrace_match_glob() is a safe kernel implementation of the gmatch(3GEN)
7702 * interface for matching a glob pattern 'p' to an input string 's'. Unlike
7703 * libc's version, the kernel version only applies to 8-bit ASCII strings.
7704 * In addition, all of the recursion cases except for '*' matching have been
7705 * unwound. For '*', we still implement recursive evaluation, but a depth
7706 * counter is maintained and matching is aborted if we recurse too deep.
7707 * The function returns 0 if no match, >0 if match, and <0 if recursion error.
7708 */
7709 static int
dtrace_match_glob(const char * s,const char * p,int depth)7710 dtrace_match_glob(const char *s, const char *p, int depth)
7711 {
7712 const char *olds;
7713 char s1, c;
7714 int gs;
7715
7716 if (depth > DTRACE_PROBEKEY_MAXDEPTH)
7717 return (-1);
7718
7719 if (s == NULL)
7720 s = ""; /* treat NULL as empty string */
7721
7722 top:
7723 olds = s;
7724 s1 = *s++;
7725
7726 if (p == NULL)
7727 return (0);
7728
7729 if ((c = *p++) == '\0')
7730 return (s1 == '\0');
7731
7732 switch (c) {
7733 case '[': {
7734 int ok = 0, notflag = 0;
7735 char lc = '\0';
7736
7737 if (s1 == '\0')
7738 return (0);
7739
7740 if (*p == '!') {
7741 notflag = 1;
7742 p++;
7743 }
7744
7745 if ((c = *p++) == '\0')
7746 return (0);
7747
7748 do {
7749 if (c == '-' && lc != '\0' && *p != ']') {
7750 if ((c = *p++) == '\0')
7751 return (0);
7752 if (c == '\\' && (c = *p++) == '\0')
7753 return (0);
7754
7755 if (notflag) {
7756 if (s1 < lc || s1 > c)
7757 ok++;
7758 else
7759 return (0);
7760 } else if (lc <= s1 && s1 <= c)
7761 ok++;
7762
7763 } else if (c == '\\' && (c = *p++) == '\0')
7764 return (0);
7765
7766 lc = c; /* save left-hand 'c' for next iteration */
7767
7768 if (notflag) {
7769 if (s1 != c)
7770 ok++;
7771 else
7772 return (0);
7773 } else if (s1 == c)
7774 ok++;
7775
7776 if ((c = *p++) == '\0')
7777 return (0);
7778
7779 } while (c != ']');
7780
7781 if (ok)
7782 goto top;
7783
7784 return (0);
7785 }
7786
7787 case '\\':
7788 if ((c = *p++) == '\0')
7789 return (0);
7790 /*FALLTHRU*/
7791
7792 default:
7793 if (c != s1)
7794 return (0);
7795 /*FALLTHRU*/
7796
7797 case '?':
7798 if (s1 != '\0')
7799 goto top;
7800 return (0);
7801
7802 case '*':
7803 while (*p == '*')
7804 p++; /* consecutive *'s are identical to a single one */
7805
7806 if (*p == '\0')
7807 return (1);
7808
7809 for (s = olds; *s != '\0'; s++) {
7810 if ((gs = dtrace_match_glob(s, p, depth + 1)) != 0)
7811 return (gs);
7812 }
7813
7814 return (0);
7815 }
7816 }
7817
7818 /*ARGSUSED*/
7819 static int
dtrace_match_string(const char * s,const char * p,int depth)7820 dtrace_match_string(const char *s, const char *p, int depth)
7821 {
7822 return (s != NULL && strcmp(s, p) == 0);
7823 }
7824
7825 /*ARGSUSED*/
7826 static int
dtrace_match_nul(const char * s,const char * p,int depth)7827 dtrace_match_nul(const char *s, const char *p, int depth)
7828 {
7829 return (1); /* always match the empty pattern */
7830 }
7831
7832 /*ARGSUSED*/
7833 static int
dtrace_match_nonzero(const char * s,const char * p,int depth)7834 dtrace_match_nonzero(const char *s, const char *p, int depth)
7835 {
7836 return (s != NULL && s[0] != '\0');
7837 }
7838
7839 static int
dtrace_match(const dtrace_probekey_t * pkp,uint32_t priv,uid_t uid,zoneid_t zoneid,int (* matched)(dtrace_probe_t *,void *),void * arg)7840 dtrace_match(const dtrace_probekey_t *pkp, uint32_t priv, uid_t uid,
7841 zoneid_t zoneid, int (*matched)(dtrace_probe_t *, void *), void *arg)
7842 {
7843 dtrace_probe_t template, *probe;
7844 dtrace_hash_t *hash = NULL;
7845 int len, rc, best = INT_MAX, nmatched = 0;
7846 dtrace_id_t i;
7847
7848 ASSERT(MUTEX_HELD(&dtrace_lock));
7849
7850 /*
7851 * If the probe ID is specified in the key, just lookup by ID and
7852 * invoke the match callback once if a matching probe is found.
7853 */
7854 if (pkp->dtpk_id != DTRACE_IDNONE) {
7855 if ((probe = dtrace_probe_lookup_id(pkp->dtpk_id)) != NULL &&
7856 dtrace_match_probe(probe, pkp, priv, uid, zoneid) > 0) {
7857 if ((*matched)(probe, arg) == DTRACE_MATCH_FAIL)
7858 return (DTRACE_MATCH_FAIL);
7859 nmatched++;
7860 }
7861 return (nmatched);
7862 }
7863
7864 template.dtpr_mod = (char *)pkp->dtpk_mod;
7865 template.dtpr_func = (char *)pkp->dtpk_func;
7866 template.dtpr_name = (char *)pkp->dtpk_name;
7867
7868 /*
7869 * We want to find the most distinct of the module name, function
7870 * name, and name. So for each one that is not a glob pattern or
7871 * empty string, we perform a lookup in the corresponding hash and
7872 * use the hash table with the fewest collisions to do our search.
7873 */
7874 if (pkp->dtpk_mmatch == &dtrace_match_string &&
7875 (len = dtrace_hash_collisions(dtrace_bymod, &template)) < best) {
7876 best = len;
7877 hash = dtrace_bymod;
7878 }
7879
7880 if (pkp->dtpk_fmatch == &dtrace_match_string &&
7881 (len = dtrace_hash_collisions(dtrace_byfunc, &template)) < best) {
7882 best = len;
7883 hash = dtrace_byfunc;
7884 }
7885
7886 if (pkp->dtpk_nmatch == &dtrace_match_string &&
7887 (len = dtrace_hash_collisions(dtrace_byname, &template)) < best) {
7888 best = len;
7889 hash = dtrace_byname;
7890 }
7891
7892 /*
7893 * If we did not select a hash table, iterate over every probe and
7894 * invoke our callback for each one that matches our input probe key.
7895 */
7896 if (hash == NULL) {
7897 for (i = 0; i < dtrace_nprobes; i++) {
7898 if ((probe = dtrace_probes[i]) == NULL ||
7899 dtrace_match_probe(probe, pkp, priv, uid,
7900 zoneid) <= 0)
7901 continue;
7902
7903 nmatched++;
7904
7905 if ((rc = (*matched)(probe, arg)) !=
7906 DTRACE_MATCH_NEXT) {
7907 if (rc == DTRACE_MATCH_FAIL)
7908 return (DTRACE_MATCH_FAIL);
7909 break;
7910 }
7911 }
7912
7913 return (nmatched);
7914 }
7915
7916 /*
7917 * If we selected a hash table, iterate over each probe of the same key
7918 * name and invoke the callback for every probe that matches the other
7919 * attributes of our input probe key.
7920 */
7921 for (probe = dtrace_hash_lookup(hash, &template); probe != NULL;
7922 probe = *(DTRACE_HASHNEXT(hash, probe))) {
7923
7924 if (dtrace_match_probe(probe, pkp, priv, uid, zoneid) <= 0)
7925 continue;
7926
7927 nmatched++;
7928
7929 if ((rc = (*matched)(probe, arg)) != DTRACE_MATCH_NEXT) {
7930 if (rc == DTRACE_MATCH_FAIL)
7931 return (DTRACE_MATCH_FAIL);
7932 break;
7933 }
7934 }
7935
7936 return (nmatched);
7937 }
7938
7939 /*
7940 * Return the function pointer dtrace_probecmp() should use to compare the
7941 * specified pattern with a string. For NULL or empty patterns, we select
7942 * dtrace_match_nul(). For glob pattern strings, we use dtrace_match_glob().
7943 * For non-empty non-glob strings, we use dtrace_match_string().
7944 */
7945 static dtrace_probekey_f *
dtrace_probekey_func(const char * p)7946 dtrace_probekey_func(const char *p)
7947 {
7948 char c;
7949
7950 if (p == NULL || *p == '\0')
7951 return (&dtrace_match_nul);
7952
7953 while ((c = *p++) != '\0') {
7954 if (c == '[' || c == '?' || c == '*' || c == '\\')
7955 return (&dtrace_match_glob);
7956 }
7957
7958 return (&dtrace_match_string);
7959 }
7960
7961 /*
7962 * Build a probe comparison key for use with dtrace_match_probe() from the
7963 * given probe description. By convention, a null key only matches anchored
7964 * probes: if each field is the empty string, reset dtpk_fmatch to
7965 * dtrace_match_nonzero().
7966 */
7967 static void
dtrace_probekey(const dtrace_probedesc_t * pdp,dtrace_probekey_t * pkp)7968 dtrace_probekey(const dtrace_probedesc_t *pdp, dtrace_probekey_t *pkp)
7969 {
7970 pkp->dtpk_prov = pdp->dtpd_provider;
7971 pkp->dtpk_pmatch = dtrace_probekey_func(pdp->dtpd_provider);
7972
7973 pkp->dtpk_mod = pdp->dtpd_mod;
7974 pkp->dtpk_mmatch = dtrace_probekey_func(pdp->dtpd_mod);
7975
7976 pkp->dtpk_func = pdp->dtpd_func;
7977 pkp->dtpk_fmatch = dtrace_probekey_func(pdp->dtpd_func);
7978
7979 pkp->dtpk_name = pdp->dtpd_name;
7980 pkp->dtpk_nmatch = dtrace_probekey_func(pdp->dtpd_name);
7981
7982 pkp->dtpk_id = pdp->dtpd_id;
7983
7984 if (pkp->dtpk_id == DTRACE_IDNONE &&
7985 pkp->dtpk_pmatch == &dtrace_match_nul &&
7986 pkp->dtpk_mmatch == &dtrace_match_nul &&
7987 pkp->dtpk_fmatch == &dtrace_match_nul &&
7988 pkp->dtpk_nmatch == &dtrace_match_nul)
7989 pkp->dtpk_fmatch = &dtrace_match_nonzero;
7990 }
7991
7992 /*
7993 * DTrace Provider-to-Framework API Functions
7994 *
7995 * These functions implement much of the Provider-to-Framework API, as
7996 * described in <sys/dtrace.h>. The parts of the API not in this section are
7997 * the functions in the API for probe management (found below), and
7998 * dtrace_probe() itself (found above).
7999 */
8000
8001 /*
8002 * Register the calling provider with the DTrace framework. This should
8003 * generally be called by DTrace providers in their attach(9E) entry point.
8004 */
8005 int
dtrace_register(const char * name,const dtrace_pattr_t * pap,uint32_t priv,cred_t * cr,const dtrace_pops_t * pops,void * arg,dtrace_provider_id_t * idp)8006 dtrace_register(const char *name, const dtrace_pattr_t *pap, uint32_t priv,
8007 cred_t *cr, const dtrace_pops_t *pops, void *arg, dtrace_provider_id_t *idp)
8008 {
8009 dtrace_provider_t *provider;
8010
8011 if (name == NULL || pap == NULL || pops == NULL || idp == NULL) {
8012 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8013 "arguments", name ? name : "<NULL>");
8014 return (EINVAL);
8015 }
8016
8017 if (name[0] == '\0' || dtrace_badname(name)) {
8018 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8019 "provider name", name);
8020 return (EINVAL);
8021 }
8022
8023 if ((pops->dtps_provide == NULL && pops->dtps_provide_module == NULL) ||
8024 pops->dtps_enable == NULL || pops->dtps_disable == NULL ||
8025 pops->dtps_destroy == NULL ||
8026 ((pops->dtps_resume == NULL) != (pops->dtps_suspend == NULL))) {
8027 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8028 "provider ops", name);
8029 return (EINVAL);
8030 }
8031
8032 if (dtrace_badattr(&pap->dtpa_provider) ||
8033 dtrace_badattr(&pap->dtpa_mod) ||
8034 dtrace_badattr(&pap->dtpa_func) ||
8035 dtrace_badattr(&pap->dtpa_name) ||
8036 dtrace_badattr(&pap->dtpa_args)) {
8037 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8038 "provider attributes", name);
8039 return (EINVAL);
8040 }
8041
8042 if (priv & ~DTRACE_PRIV_ALL) {
8043 cmn_err(CE_WARN, "failed to register provider '%s': invalid "
8044 "privilege attributes", name);
8045 return (EINVAL);
8046 }
8047
8048 if ((priv & DTRACE_PRIV_KERNEL) &&
8049 (priv & (DTRACE_PRIV_USER | DTRACE_PRIV_OWNER)) &&
8050 pops->dtps_mode == NULL) {
8051 cmn_err(CE_WARN, "failed to register provider '%s': need "
8052 "dtps_mode() op for given privilege attributes", name);
8053 return (EINVAL);
8054 }
8055
8056 provider = kmem_zalloc(sizeof (dtrace_provider_t), KM_SLEEP);
8057 provider->dtpv_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8058 (void) strcpy(provider->dtpv_name, name);
8059
8060 provider->dtpv_attr = *pap;
8061 provider->dtpv_priv.dtpp_flags = priv;
8062 if (cr != NULL) {
8063 provider->dtpv_priv.dtpp_uid = crgetuid(cr);
8064 provider->dtpv_priv.dtpp_zoneid = crgetzoneid(cr);
8065 }
8066 provider->dtpv_pops = *pops;
8067
8068 if (pops->dtps_provide == NULL) {
8069 ASSERT(pops->dtps_provide_module != NULL);
8070 provider->dtpv_pops.dtps_provide =
8071 (void (*)(void *, const dtrace_probedesc_t *))dtrace_nullop;
8072 }
8073
8074 if (pops->dtps_provide_module == NULL) {
8075 ASSERT(pops->dtps_provide != NULL);
8076 provider->dtpv_pops.dtps_provide_module =
8077 (void (*)(void *, struct modctl *))dtrace_nullop;
8078 }
8079
8080 if (pops->dtps_suspend == NULL) {
8081 ASSERT(pops->dtps_resume == NULL);
8082 provider->dtpv_pops.dtps_suspend =
8083 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8084 provider->dtpv_pops.dtps_resume =
8085 (void (*)(void *, dtrace_id_t, void *))dtrace_nullop;
8086 }
8087
8088 provider->dtpv_arg = arg;
8089 *idp = (dtrace_provider_id_t)provider;
8090
8091 if (pops == &dtrace_provider_ops) {
8092 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8093 ASSERT(MUTEX_HELD(&dtrace_lock));
8094 ASSERT(dtrace_anon.dta_enabling == NULL);
8095
8096 /*
8097 * We make sure that the DTrace provider is at the head of
8098 * the provider chain.
8099 */
8100 provider->dtpv_next = dtrace_provider;
8101 dtrace_provider = provider;
8102 return (0);
8103 }
8104
8105 mutex_enter(&dtrace_provider_lock);
8106 mutex_enter(&dtrace_lock);
8107
8108 /*
8109 * If there is at least one provider registered, we'll add this
8110 * provider after the first provider.
8111 */
8112 if (dtrace_provider != NULL) {
8113 provider->dtpv_next = dtrace_provider->dtpv_next;
8114 dtrace_provider->dtpv_next = provider;
8115 } else {
8116 dtrace_provider = provider;
8117 }
8118
8119 if (dtrace_retained != NULL) {
8120 dtrace_enabling_provide(provider);
8121
8122 /*
8123 * Now we need to call dtrace_enabling_matchall() -- which
8124 * will acquire cpu_lock and dtrace_lock. We therefore need
8125 * to drop all of our locks before calling into it...
8126 */
8127 mutex_exit(&dtrace_lock);
8128 mutex_exit(&dtrace_provider_lock);
8129 dtrace_enabling_matchall();
8130
8131 return (0);
8132 }
8133
8134 mutex_exit(&dtrace_lock);
8135 mutex_exit(&dtrace_provider_lock);
8136
8137 return (0);
8138 }
8139
8140 /*
8141 * Unregister the specified provider from the DTrace framework. This should
8142 * generally be called by DTrace providers in their detach(9E) entry point.
8143 */
8144 int
dtrace_unregister(dtrace_provider_id_t id)8145 dtrace_unregister(dtrace_provider_id_t id)
8146 {
8147 dtrace_provider_t *old = (dtrace_provider_t *)id;
8148 dtrace_provider_t *prev = NULL;
8149 int i, self = 0, noreap = 0;
8150 dtrace_probe_t *probe, *first = NULL;
8151
8152 if (old->dtpv_pops.dtps_enable ==
8153 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop) {
8154 /*
8155 * If DTrace itself is the provider, we're called with locks
8156 * already held.
8157 */
8158 ASSERT(old == dtrace_provider);
8159 ASSERT(dtrace_devi != NULL);
8160 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8161 ASSERT(MUTEX_HELD(&dtrace_lock));
8162 self = 1;
8163
8164 if (dtrace_provider->dtpv_next != NULL) {
8165 /*
8166 * There's another provider here; return failure.
8167 */
8168 return (EBUSY);
8169 }
8170 } else {
8171 mutex_enter(&dtrace_provider_lock);
8172 mutex_enter(&mod_lock);
8173 mutex_enter(&dtrace_lock);
8174 }
8175
8176 /*
8177 * If anyone has /dev/dtrace open, or if there are anonymous enabled
8178 * probes, we refuse to let providers slither away, unless this
8179 * provider has already been explicitly invalidated.
8180 */
8181 if (!old->dtpv_defunct &&
8182 (dtrace_opens || (dtrace_anon.dta_state != NULL &&
8183 dtrace_anon.dta_state->dts_necbs > 0))) {
8184 if (!self) {
8185 mutex_exit(&dtrace_lock);
8186 mutex_exit(&mod_lock);
8187 mutex_exit(&dtrace_provider_lock);
8188 }
8189 return (EBUSY);
8190 }
8191
8192 /*
8193 * Attempt to destroy the probes associated with this provider.
8194 */
8195 for (i = 0; i < dtrace_nprobes; i++) {
8196 if ((probe = dtrace_probes[i]) == NULL)
8197 continue;
8198
8199 if (probe->dtpr_provider != old)
8200 continue;
8201
8202 if (probe->dtpr_ecb == NULL)
8203 continue;
8204
8205 /*
8206 * If we are trying to unregister a defunct provider, and the
8207 * provider was made defunct within the interval dictated by
8208 * dtrace_unregister_defunct_reap, we'll (asynchronously)
8209 * attempt to reap our enablings. To denote that the provider
8210 * should reattempt to unregister itself at some point in the
8211 * future, we will return a differentiable error code (EAGAIN
8212 * instead of EBUSY) in this case.
8213 */
8214 if (dtrace_gethrtime() - old->dtpv_defunct >
8215 dtrace_unregister_defunct_reap)
8216 noreap = 1;
8217
8218 if (!self) {
8219 mutex_exit(&dtrace_lock);
8220 mutex_exit(&mod_lock);
8221 mutex_exit(&dtrace_provider_lock);
8222 }
8223
8224 if (noreap)
8225 return (EBUSY);
8226
8227 (void) taskq_dispatch(dtrace_taskq,
8228 (task_func_t *)dtrace_enabling_reap, NULL, TQ_SLEEP);
8229
8230 return (EAGAIN);
8231 }
8232
8233 /*
8234 * All of the probes for this provider are disabled; we can safely
8235 * remove all of them from their hash chains and from the probe array.
8236 */
8237 for (i = 0; i < dtrace_nprobes; i++) {
8238 if ((probe = dtrace_probes[i]) == NULL)
8239 continue;
8240
8241 if (probe->dtpr_provider != old)
8242 continue;
8243
8244 dtrace_probes[i] = NULL;
8245
8246 dtrace_hash_remove(dtrace_bymod, probe);
8247 dtrace_hash_remove(dtrace_byfunc, probe);
8248 dtrace_hash_remove(dtrace_byname, probe);
8249
8250 if (first == NULL) {
8251 first = probe;
8252 probe->dtpr_nextmod = NULL;
8253 } else {
8254 probe->dtpr_nextmod = first;
8255 first = probe;
8256 }
8257 }
8258
8259 /*
8260 * The provider's probes have been removed from the hash chains and
8261 * from the probe array. Now issue a dtrace_sync() to be sure that
8262 * everyone has cleared out from any probe array processing.
8263 */
8264 dtrace_sync();
8265
8266 for (probe = first; probe != NULL; probe = first) {
8267 first = probe->dtpr_nextmod;
8268
8269 old->dtpv_pops.dtps_destroy(old->dtpv_arg, probe->dtpr_id,
8270 probe->dtpr_arg);
8271 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8272 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8273 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8274 vmem_free(dtrace_arena, (void *)(uintptr_t)(probe->dtpr_id), 1);
8275 kmem_free(probe, sizeof (dtrace_probe_t));
8276 }
8277
8278 if ((prev = dtrace_provider) == old) {
8279 ASSERT(self || dtrace_devi == NULL);
8280 ASSERT(old->dtpv_next == NULL || dtrace_devi == NULL);
8281 dtrace_provider = old->dtpv_next;
8282 } else {
8283 while (prev != NULL && prev->dtpv_next != old)
8284 prev = prev->dtpv_next;
8285
8286 if (prev == NULL) {
8287 panic("attempt to unregister non-existent "
8288 "dtrace provider %p\n", (void *)id);
8289 }
8290
8291 prev->dtpv_next = old->dtpv_next;
8292 }
8293
8294 if (!self) {
8295 mutex_exit(&dtrace_lock);
8296 mutex_exit(&mod_lock);
8297 mutex_exit(&dtrace_provider_lock);
8298 }
8299
8300 kmem_free(old->dtpv_name, strlen(old->dtpv_name) + 1);
8301 kmem_free(old, sizeof (dtrace_provider_t));
8302
8303 return (0);
8304 }
8305
8306 /*
8307 * Invalidate the specified provider. All subsequent probe lookups for the
8308 * specified provider will fail, but its probes will not be removed.
8309 */
8310 void
dtrace_invalidate(dtrace_provider_id_t id)8311 dtrace_invalidate(dtrace_provider_id_t id)
8312 {
8313 dtrace_provider_t *pvp = (dtrace_provider_t *)id;
8314
8315 ASSERT(pvp->dtpv_pops.dtps_enable !=
8316 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8317
8318 mutex_enter(&dtrace_provider_lock);
8319 mutex_enter(&dtrace_lock);
8320
8321 pvp->dtpv_defunct = dtrace_gethrtime();
8322
8323 mutex_exit(&dtrace_lock);
8324 mutex_exit(&dtrace_provider_lock);
8325 }
8326
8327 /*
8328 * Indicate whether or not DTrace has attached.
8329 */
8330 int
dtrace_attached(void)8331 dtrace_attached(void)
8332 {
8333 /*
8334 * dtrace_provider will be non-NULL iff the DTrace driver has
8335 * attached. (It's non-NULL because DTrace is always itself a
8336 * provider.)
8337 */
8338 return (dtrace_provider != NULL);
8339 }
8340
8341 /*
8342 * Remove all the unenabled probes for the given provider. This function is
8343 * not unlike dtrace_unregister(), except that it doesn't remove the provider
8344 * -- just as many of its associated probes as it can.
8345 */
8346 int
dtrace_condense(dtrace_provider_id_t id)8347 dtrace_condense(dtrace_provider_id_t id)
8348 {
8349 dtrace_provider_t *prov = (dtrace_provider_t *)id;
8350 int i;
8351 dtrace_probe_t *probe;
8352
8353 /*
8354 * Make sure this isn't the dtrace provider itself.
8355 */
8356 ASSERT(prov->dtpv_pops.dtps_enable !=
8357 (int (*)(void *, dtrace_id_t, void *))dtrace_enable_nullop);
8358
8359 mutex_enter(&dtrace_provider_lock);
8360 mutex_enter(&dtrace_lock);
8361
8362 /*
8363 * Attempt to destroy the probes associated with this provider.
8364 */
8365 for (i = 0; i < dtrace_nprobes; i++) {
8366 if ((probe = dtrace_probes[i]) == NULL)
8367 continue;
8368
8369 if (probe->dtpr_provider != prov)
8370 continue;
8371
8372 if (probe->dtpr_ecb != NULL)
8373 continue;
8374
8375 dtrace_probes[i] = NULL;
8376
8377 dtrace_hash_remove(dtrace_bymod, probe);
8378 dtrace_hash_remove(dtrace_byfunc, probe);
8379 dtrace_hash_remove(dtrace_byname, probe);
8380
8381 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, i + 1,
8382 probe->dtpr_arg);
8383 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
8384 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
8385 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
8386 kmem_free(probe, sizeof (dtrace_probe_t));
8387 vmem_free(dtrace_arena, (void *)((uintptr_t)i + 1), 1);
8388 }
8389
8390 mutex_exit(&dtrace_lock);
8391 mutex_exit(&dtrace_provider_lock);
8392
8393 return (0);
8394 }
8395
8396 /*
8397 * DTrace Probe Management Functions
8398 *
8399 * The functions in this section perform the DTrace probe management,
8400 * including functions to create probes, look-up probes, and call into the
8401 * providers to request that probes be provided. Some of these functions are
8402 * in the Provider-to-Framework API; these functions can be identified by the
8403 * fact that they are not declared "static".
8404 */
8405
8406 /*
8407 * Create a probe with the specified module name, function name, and name.
8408 */
8409 dtrace_id_t
dtrace_probe_create(dtrace_provider_id_t prov,const char * mod,const char * func,const char * name,int aframes,void * arg)8410 dtrace_probe_create(dtrace_provider_id_t prov, const char *mod,
8411 const char *func, const char *name, int aframes, void *arg)
8412 {
8413 dtrace_probe_t *probe, **probes;
8414 dtrace_provider_t *provider = (dtrace_provider_t *)prov;
8415 dtrace_id_t id;
8416
8417 if (provider == dtrace_provider) {
8418 ASSERT(MUTEX_HELD(&dtrace_lock));
8419 } else {
8420 mutex_enter(&dtrace_lock);
8421 }
8422
8423 id = (dtrace_id_t)(uintptr_t)vmem_alloc(dtrace_arena, 1,
8424 VM_BESTFIT | VM_SLEEP);
8425 probe = kmem_zalloc(sizeof (dtrace_probe_t), KM_SLEEP);
8426
8427 probe->dtpr_id = id;
8428 probe->dtpr_gen = dtrace_probegen++;
8429 probe->dtpr_mod = dtrace_strdup(mod);
8430 probe->dtpr_func = dtrace_strdup(func);
8431 probe->dtpr_name = dtrace_strdup(name);
8432 probe->dtpr_arg = arg;
8433 probe->dtpr_aframes = aframes;
8434 probe->dtpr_provider = provider;
8435
8436 dtrace_hash_add(dtrace_bymod, probe);
8437 dtrace_hash_add(dtrace_byfunc, probe);
8438 dtrace_hash_add(dtrace_byname, probe);
8439
8440 if (id - 1 >= dtrace_nprobes) {
8441 size_t osize = dtrace_nprobes * sizeof (dtrace_probe_t *);
8442 size_t nsize = osize << 1;
8443
8444 if (nsize == 0) {
8445 ASSERT(osize == 0);
8446 ASSERT(dtrace_probes == NULL);
8447 nsize = sizeof (dtrace_probe_t *);
8448 }
8449
8450 probes = kmem_zalloc(nsize, KM_SLEEP);
8451
8452 if (dtrace_probes == NULL) {
8453 ASSERT(osize == 0);
8454 dtrace_probes = probes;
8455 dtrace_nprobes = 1;
8456 } else {
8457 dtrace_probe_t **oprobes = dtrace_probes;
8458
8459 bcopy(oprobes, probes, osize);
8460 dtrace_membar_producer();
8461 dtrace_probes = probes;
8462
8463 dtrace_sync();
8464
8465 /*
8466 * All CPUs are now seeing the new probes array; we can
8467 * safely free the old array.
8468 */
8469 kmem_free(oprobes, osize);
8470 dtrace_nprobes <<= 1;
8471 }
8472
8473 ASSERT(id - 1 < dtrace_nprobes);
8474 }
8475
8476 ASSERT(dtrace_probes[id - 1] == NULL);
8477 dtrace_probes[id - 1] = probe;
8478
8479 if (provider != dtrace_provider)
8480 mutex_exit(&dtrace_lock);
8481
8482 return (id);
8483 }
8484
8485 static dtrace_probe_t *
dtrace_probe_lookup_id(dtrace_id_t id)8486 dtrace_probe_lookup_id(dtrace_id_t id)
8487 {
8488 ASSERT(MUTEX_HELD(&dtrace_lock));
8489
8490 if (id == 0 || id > dtrace_nprobes)
8491 return (NULL);
8492
8493 return (dtrace_probes[id - 1]);
8494 }
8495
8496 static int
dtrace_probe_lookup_match(dtrace_probe_t * probe,void * arg)8497 dtrace_probe_lookup_match(dtrace_probe_t *probe, void *arg)
8498 {
8499 *((dtrace_id_t *)arg) = probe->dtpr_id;
8500
8501 return (DTRACE_MATCH_DONE);
8502 }
8503
8504 /*
8505 * Look up a probe based on provider and one or more of module name, function
8506 * name and probe name.
8507 */
8508 dtrace_id_t
dtrace_probe_lookup(dtrace_provider_id_t prid,const char * mod,const char * func,const char * name)8509 dtrace_probe_lookup(dtrace_provider_id_t prid, const char *mod,
8510 const char *func, const char *name)
8511 {
8512 dtrace_probekey_t pkey;
8513 dtrace_id_t id;
8514 int match;
8515
8516 pkey.dtpk_prov = ((dtrace_provider_t *)prid)->dtpv_name;
8517 pkey.dtpk_pmatch = &dtrace_match_string;
8518 pkey.dtpk_mod = mod;
8519 pkey.dtpk_mmatch = mod ? &dtrace_match_string : &dtrace_match_nul;
8520 pkey.dtpk_func = func;
8521 pkey.dtpk_fmatch = func ? &dtrace_match_string : &dtrace_match_nul;
8522 pkey.dtpk_name = name;
8523 pkey.dtpk_nmatch = name ? &dtrace_match_string : &dtrace_match_nul;
8524 pkey.dtpk_id = DTRACE_IDNONE;
8525
8526 mutex_enter(&dtrace_lock);
8527 match = dtrace_match(&pkey, DTRACE_PRIV_ALL, 0, 0,
8528 dtrace_probe_lookup_match, &id);
8529 mutex_exit(&dtrace_lock);
8530
8531 ASSERT(match == 1 || match == 0);
8532 return (match ? id : 0);
8533 }
8534
8535 /*
8536 * Returns the probe argument associated with the specified probe.
8537 */
8538 void *
dtrace_probe_arg(dtrace_provider_id_t id,dtrace_id_t pid)8539 dtrace_probe_arg(dtrace_provider_id_t id, dtrace_id_t pid)
8540 {
8541 dtrace_probe_t *probe;
8542 void *rval = NULL;
8543
8544 mutex_enter(&dtrace_lock);
8545
8546 if ((probe = dtrace_probe_lookup_id(pid)) != NULL &&
8547 probe->dtpr_provider == (dtrace_provider_t *)id)
8548 rval = probe->dtpr_arg;
8549
8550 mutex_exit(&dtrace_lock);
8551
8552 return (rval);
8553 }
8554
8555 /*
8556 * Copy a probe into a probe description.
8557 */
8558 static void
dtrace_probe_description(const dtrace_probe_t * prp,dtrace_probedesc_t * pdp)8559 dtrace_probe_description(const dtrace_probe_t *prp, dtrace_probedesc_t *pdp)
8560 {
8561 bzero(pdp, sizeof (dtrace_probedesc_t));
8562 pdp->dtpd_id = prp->dtpr_id;
8563
8564 (void) strncpy(pdp->dtpd_provider,
8565 prp->dtpr_provider->dtpv_name, DTRACE_PROVNAMELEN - 1);
8566
8567 (void) strncpy(pdp->dtpd_mod, prp->dtpr_mod, DTRACE_MODNAMELEN - 1);
8568 (void) strncpy(pdp->dtpd_func, prp->dtpr_func, DTRACE_FUNCNAMELEN - 1);
8569 (void) strncpy(pdp->dtpd_name, prp->dtpr_name, DTRACE_NAMELEN - 1);
8570 }
8571
8572 /*
8573 * Called to indicate that a probe -- or probes -- should be provided by a
8574 * specfied provider. If the specified description is NULL, the provider will
8575 * be told to provide all of its probes. (This is done whenever a new
8576 * consumer comes along, or whenever a retained enabling is to be matched.) If
8577 * the specified description is non-NULL, the provider is given the
8578 * opportunity to dynamically provide the specified probe, allowing providers
8579 * to support the creation of probes on-the-fly. (So-called _autocreated_
8580 * probes.) If the provider is NULL, the operations will be applied to all
8581 * providers; if the provider is non-NULL the operations will only be applied
8582 * to the specified provider. The dtrace_provider_lock must be held, and the
8583 * dtrace_lock must _not_ be held -- the provider's dtps_provide() operation
8584 * will need to grab the dtrace_lock when it reenters the framework through
8585 * dtrace_probe_lookup(), dtrace_probe_create(), etc.
8586 */
8587 static void
dtrace_probe_provide(dtrace_probedesc_t * desc,dtrace_provider_t * prv)8588 dtrace_probe_provide(dtrace_probedesc_t *desc, dtrace_provider_t *prv)
8589 {
8590 struct modctl *ctl;
8591 int all = 0;
8592
8593 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
8594
8595 if (prv == NULL) {
8596 all = 1;
8597 prv = dtrace_provider;
8598 }
8599
8600 do {
8601 /*
8602 * First, call the blanket provide operation.
8603 */
8604 prv->dtpv_pops.dtps_provide(prv->dtpv_arg, desc);
8605
8606 /*
8607 * Now call the per-module provide operation. We will grab
8608 * mod_lock to prevent the list from being modified. Note
8609 * that this also prevents the mod_busy bits from changing.
8610 * (mod_busy can only be changed with mod_lock held.)
8611 */
8612 mutex_enter(&mod_lock);
8613
8614 ctl = &modules;
8615 do {
8616 if (ctl->mod_busy || ctl->mod_mp == NULL)
8617 continue;
8618
8619 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
8620
8621 } while ((ctl = ctl->mod_next) != &modules);
8622
8623 mutex_exit(&mod_lock);
8624 } while (all && (prv = prv->dtpv_next) != NULL);
8625 }
8626
8627 /*
8628 * Iterate over each probe, and call the Framework-to-Provider API function
8629 * denoted by offs.
8630 */
8631 static void
dtrace_probe_foreach(uintptr_t offs)8632 dtrace_probe_foreach(uintptr_t offs)
8633 {
8634 dtrace_provider_t *prov;
8635 void (*func)(void *, dtrace_id_t, void *);
8636 dtrace_probe_t *probe;
8637 dtrace_icookie_t cookie;
8638 int i;
8639
8640 /*
8641 * We disable interrupts to walk through the probe array. This is
8642 * safe -- the dtrace_sync() in dtrace_unregister() assures that we
8643 * won't see stale data.
8644 */
8645 cookie = dtrace_interrupt_disable();
8646
8647 for (i = 0; i < dtrace_nprobes; i++) {
8648 if ((probe = dtrace_probes[i]) == NULL)
8649 continue;
8650
8651 if (probe->dtpr_ecb == NULL) {
8652 /*
8653 * This probe isn't enabled -- don't call the function.
8654 */
8655 continue;
8656 }
8657
8658 prov = probe->dtpr_provider;
8659 func = *((void(**)(void *, dtrace_id_t, void *))
8660 ((uintptr_t)&prov->dtpv_pops + offs));
8661
8662 func(prov->dtpv_arg, i + 1, probe->dtpr_arg);
8663 }
8664
8665 dtrace_interrupt_enable(cookie);
8666 }
8667
8668 static int
dtrace_probe_enable(const dtrace_probedesc_t * desc,dtrace_enabling_t * enab)8669 dtrace_probe_enable(const dtrace_probedesc_t *desc, dtrace_enabling_t *enab)
8670 {
8671 dtrace_probekey_t pkey;
8672 uint32_t priv;
8673 uid_t uid;
8674 zoneid_t zoneid;
8675
8676 ASSERT(MUTEX_HELD(&dtrace_lock));
8677 dtrace_ecb_create_cache = NULL;
8678
8679 if (desc == NULL) {
8680 /*
8681 * If we're passed a NULL description, we're being asked to
8682 * create an ECB with a NULL probe.
8683 */
8684 (void) dtrace_ecb_create_enable(NULL, enab);
8685 return (0);
8686 }
8687
8688 dtrace_probekey(desc, &pkey);
8689 dtrace_cred2priv(enab->dten_vstate->dtvs_state->dts_cred.dcr_cred,
8690 &priv, &uid, &zoneid);
8691
8692 return (dtrace_match(&pkey, priv, uid, zoneid, dtrace_ecb_create_enable,
8693 enab));
8694 }
8695
8696 /*
8697 * DTrace Helper Provider Functions
8698 */
8699 static void
dtrace_dofattr2attr(dtrace_attribute_t * attr,const dof_attr_t dofattr)8700 dtrace_dofattr2attr(dtrace_attribute_t *attr, const dof_attr_t dofattr)
8701 {
8702 attr->dtat_name = DOF_ATTR_NAME(dofattr);
8703 attr->dtat_data = DOF_ATTR_DATA(dofattr);
8704 attr->dtat_class = DOF_ATTR_CLASS(dofattr);
8705 }
8706
8707 static void
dtrace_dofprov2hprov(dtrace_helper_provdesc_t * hprov,const dof_provider_t * dofprov,char * strtab)8708 dtrace_dofprov2hprov(dtrace_helper_provdesc_t *hprov,
8709 const dof_provider_t *dofprov, char *strtab)
8710 {
8711 hprov->dthpv_provname = strtab + dofprov->dofpv_name;
8712 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_provider,
8713 dofprov->dofpv_provattr);
8714 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_mod,
8715 dofprov->dofpv_modattr);
8716 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_func,
8717 dofprov->dofpv_funcattr);
8718 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_name,
8719 dofprov->dofpv_nameattr);
8720 dtrace_dofattr2attr(&hprov->dthpv_pattr.dtpa_args,
8721 dofprov->dofpv_argsattr);
8722 }
8723
8724 static void
dtrace_helper_provide_one(dof_helper_t * dhp,dof_sec_t * sec,pid_t pid)8725 dtrace_helper_provide_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8726 {
8727 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8728 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8729 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
8730 dof_provider_t *provider;
8731 dof_probe_t *probe;
8732 uint32_t *off, *enoff;
8733 uint8_t *arg;
8734 char *strtab;
8735 uint_t i, nprobes;
8736 dtrace_helper_provdesc_t dhpv;
8737 dtrace_helper_probedesc_t dhpb;
8738 dtrace_meta_t *meta = dtrace_meta_pid;
8739 dtrace_mops_t *mops = &meta->dtm_mops;
8740 void *parg;
8741
8742 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8743 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8744 provider->dofpv_strtab * dof->dofh_secsize);
8745 prb_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8746 provider->dofpv_probes * dof->dofh_secsize);
8747 arg_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8748 provider->dofpv_prargs * dof->dofh_secsize);
8749 off_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8750 provider->dofpv_proffs * dof->dofh_secsize);
8751
8752 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8753 off = (uint32_t *)(uintptr_t)(daddr + off_sec->dofs_offset);
8754 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
8755 enoff = NULL;
8756
8757 /*
8758 * See dtrace_helper_provider_validate().
8759 */
8760 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
8761 provider->dofpv_prenoffs != DOF_SECT_NONE) {
8762 enoff_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8763 provider->dofpv_prenoffs * dof->dofh_secsize);
8764 enoff = (uint32_t *)(uintptr_t)(daddr + enoff_sec->dofs_offset);
8765 }
8766
8767 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
8768
8769 /*
8770 * Create the provider.
8771 */
8772 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8773
8774 if ((parg = mops->dtms_provide_pid(meta->dtm_arg, &dhpv, pid)) == NULL)
8775 return;
8776
8777 meta->dtm_count++;
8778
8779 /*
8780 * Create the probes.
8781 */
8782 for (i = 0; i < nprobes; i++) {
8783 probe = (dof_probe_t *)(uintptr_t)(daddr +
8784 prb_sec->dofs_offset + i * prb_sec->dofs_entsize);
8785
8786 dhpb.dthpb_mod = dhp->dofhp_mod;
8787 dhpb.dthpb_func = strtab + probe->dofpr_func;
8788 dhpb.dthpb_name = strtab + probe->dofpr_name;
8789 dhpb.dthpb_base = probe->dofpr_addr;
8790 dhpb.dthpb_offs = off + probe->dofpr_offidx;
8791 dhpb.dthpb_noffs = probe->dofpr_noffs;
8792 if (enoff != NULL) {
8793 dhpb.dthpb_enoffs = enoff + probe->dofpr_enoffidx;
8794 dhpb.dthpb_nenoffs = probe->dofpr_nenoffs;
8795 } else {
8796 dhpb.dthpb_enoffs = NULL;
8797 dhpb.dthpb_nenoffs = 0;
8798 }
8799 dhpb.dthpb_args = arg + probe->dofpr_argidx;
8800 dhpb.dthpb_nargc = probe->dofpr_nargc;
8801 dhpb.dthpb_xargc = probe->dofpr_xargc;
8802 dhpb.dthpb_ntypes = strtab + probe->dofpr_nargv;
8803 dhpb.dthpb_xtypes = strtab + probe->dofpr_xargv;
8804
8805 mops->dtms_create_probe(meta->dtm_arg, parg, &dhpb);
8806 }
8807 }
8808
8809 static void
dtrace_helper_provide(dof_helper_t * dhp,pid_t pid)8810 dtrace_helper_provide(dof_helper_t *dhp, pid_t pid)
8811 {
8812 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8813 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8814 int i;
8815
8816 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8817
8818 for (i = 0; i < dof->dofh_secnum; i++) {
8819 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8820 dof->dofh_secoff + i * dof->dofh_secsize);
8821
8822 if (sec->dofs_type != DOF_SECT_PROVIDER)
8823 continue;
8824
8825 dtrace_helper_provide_one(dhp, sec, pid);
8826 }
8827
8828 /*
8829 * We may have just created probes, so we must now rematch against
8830 * any retained enablings. Note that this call will acquire both
8831 * cpu_lock and dtrace_lock; the fact that we are holding
8832 * dtrace_meta_lock now is what defines the ordering with respect to
8833 * these three locks.
8834 */
8835 dtrace_enabling_matchall();
8836 }
8837
8838 static void
dtrace_helper_provider_remove_one(dof_helper_t * dhp,dof_sec_t * sec,pid_t pid)8839 dtrace_helper_provider_remove_one(dof_helper_t *dhp, dof_sec_t *sec, pid_t pid)
8840 {
8841 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8842 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8843 dof_sec_t *str_sec;
8844 dof_provider_t *provider;
8845 char *strtab;
8846 dtrace_helper_provdesc_t dhpv;
8847 dtrace_meta_t *meta = dtrace_meta_pid;
8848 dtrace_mops_t *mops = &meta->dtm_mops;
8849
8850 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
8851 str_sec = (dof_sec_t *)(uintptr_t)(daddr + dof->dofh_secoff +
8852 provider->dofpv_strtab * dof->dofh_secsize);
8853
8854 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
8855
8856 /*
8857 * Create the provider.
8858 */
8859 dtrace_dofprov2hprov(&dhpv, provider, strtab);
8860
8861 mops->dtms_remove_pid(meta->dtm_arg, &dhpv, pid);
8862
8863 meta->dtm_count--;
8864 }
8865
8866 static void
dtrace_helper_provider_remove(dof_helper_t * dhp,pid_t pid)8867 dtrace_helper_provider_remove(dof_helper_t *dhp, pid_t pid)
8868 {
8869 uintptr_t daddr = (uintptr_t)dhp->dofhp_dof;
8870 dof_hdr_t *dof = (dof_hdr_t *)daddr;
8871 int i;
8872
8873 ASSERT(MUTEX_HELD(&dtrace_meta_lock));
8874
8875 for (i = 0; i < dof->dofh_secnum; i++) {
8876 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
8877 dof->dofh_secoff + i * dof->dofh_secsize);
8878
8879 if (sec->dofs_type != DOF_SECT_PROVIDER)
8880 continue;
8881
8882 dtrace_helper_provider_remove_one(dhp, sec, pid);
8883 }
8884 }
8885
8886 /*
8887 * DTrace Meta Provider-to-Framework API Functions
8888 *
8889 * These functions implement the Meta Provider-to-Framework API, as described
8890 * in <sys/dtrace.h>.
8891 */
8892 int
dtrace_meta_register(const char * name,const dtrace_mops_t * mops,void * arg,dtrace_meta_provider_id_t * idp)8893 dtrace_meta_register(const char *name, const dtrace_mops_t *mops, void *arg,
8894 dtrace_meta_provider_id_t *idp)
8895 {
8896 dtrace_meta_t *meta;
8897 dtrace_helpers_t *help, *next;
8898 int i;
8899
8900 *idp = DTRACE_METAPROVNONE;
8901
8902 /*
8903 * We strictly don't need the name, but we hold onto it for
8904 * debuggability. All hail error queues!
8905 */
8906 if (name == NULL) {
8907 cmn_err(CE_WARN, "failed to register meta-provider: "
8908 "invalid name");
8909 return (EINVAL);
8910 }
8911
8912 if (mops == NULL ||
8913 mops->dtms_create_probe == NULL ||
8914 mops->dtms_provide_pid == NULL ||
8915 mops->dtms_remove_pid == NULL) {
8916 cmn_err(CE_WARN, "failed to register meta-register %s: "
8917 "invalid ops", name);
8918 return (EINVAL);
8919 }
8920
8921 meta = kmem_zalloc(sizeof (dtrace_meta_t), KM_SLEEP);
8922 meta->dtm_mops = *mops;
8923 meta->dtm_name = kmem_alloc(strlen(name) + 1, KM_SLEEP);
8924 (void) strcpy(meta->dtm_name, name);
8925 meta->dtm_arg = arg;
8926
8927 mutex_enter(&dtrace_meta_lock);
8928 mutex_enter(&dtrace_lock);
8929
8930 if (dtrace_meta_pid != NULL) {
8931 mutex_exit(&dtrace_lock);
8932 mutex_exit(&dtrace_meta_lock);
8933 cmn_err(CE_WARN, "failed to register meta-register %s: "
8934 "user-land meta-provider exists", name);
8935 kmem_free(meta->dtm_name, strlen(meta->dtm_name) + 1);
8936 kmem_free(meta, sizeof (dtrace_meta_t));
8937 return (EINVAL);
8938 }
8939
8940 dtrace_meta_pid = meta;
8941 *idp = (dtrace_meta_provider_id_t)meta;
8942
8943 /*
8944 * If there are providers and probes ready to go, pass them
8945 * off to the new meta provider now.
8946 */
8947
8948 help = dtrace_deferred_pid;
8949 dtrace_deferred_pid = NULL;
8950
8951 mutex_exit(&dtrace_lock);
8952
8953 while (help != NULL) {
8954 for (i = 0; i < help->dthps_nprovs; i++) {
8955 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
8956 help->dthps_pid);
8957 }
8958
8959 next = help->dthps_next;
8960 help->dthps_next = NULL;
8961 help->dthps_prev = NULL;
8962 help->dthps_deferred = 0;
8963 help = next;
8964 }
8965
8966 mutex_exit(&dtrace_meta_lock);
8967
8968 return (0);
8969 }
8970
8971 int
dtrace_meta_unregister(dtrace_meta_provider_id_t id)8972 dtrace_meta_unregister(dtrace_meta_provider_id_t id)
8973 {
8974 dtrace_meta_t **pp, *old = (dtrace_meta_t *)id;
8975
8976 mutex_enter(&dtrace_meta_lock);
8977 mutex_enter(&dtrace_lock);
8978
8979 if (old == dtrace_meta_pid) {
8980 pp = &dtrace_meta_pid;
8981 } else {
8982 panic("attempt to unregister non-existent "
8983 "dtrace meta-provider %p\n", (void *)old);
8984 }
8985
8986 if (old->dtm_count != 0) {
8987 mutex_exit(&dtrace_lock);
8988 mutex_exit(&dtrace_meta_lock);
8989 return (EBUSY);
8990 }
8991
8992 *pp = NULL;
8993
8994 mutex_exit(&dtrace_lock);
8995 mutex_exit(&dtrace_meta_lock);
8996
8997 kmem_free(old->dtm_name, strlen(old->dtm_name) + 1);
8998 kmem_free(old, sizeof (dtrace_meta_t));
8999
9000 return (0);
9001 }
9002
9003
9004 /*
9005 * DTrace DIF Object Functions
9006 */
9007 static int
dtrace_difo_err(uint_t pc,const char * format,...)9008 dtrace_difo_err(uint_t pc, const char *format, ...)
9009 {
9010 if (dtrace_err_verbose) {
9011 va_list alist;
9012
9013 (void) uprintf("dtrace DIF object error: [%u]: ", pc);
9014 va_start(alist, format);
9015 (void) vuprintf(format, alist);
9016 va_end(alist);
9017 }
9018
9019 #ifdef DTRACE_ERRDEBUG
9020 dtrace_errdebug(format);
9021 #endif
9022 return (1);
9023 }
9024
9025 /*
9026 * Validate a DTrace DIF object by checking the IR instructions. The following
9027 * rules are currently enforced by dtrace_difo_validate():
9028 *
9029 * 1. Each instruction must have a valid opcode
9030 * 2. Each register, string, variable, or subroutine reference must be valid
9031 * 3. No instruction can modify register %r0 (must be zero)
9032 * 4. All instruction reserved bits must be set to zero
9033 * 5. The last instruction must be a "ret" instruction
9034 * 6. All branch targets must reference a valid instruction _after_ the branch
9035 */
9036 static int
dtrace_difo_validate(dtrace_difo_t * dp,dtrace_vstate_t * vstate,uint_t nregs,cred_t * cr)9037 dtrace_difo_validate(dtrace_difo_t *dp, dtrace_vstate_t *vstate, uint_t nregs,
9038 cred_t *cr)
9039 {
9040 int err = 0, i;
9041 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9042 int kcheckload;
9043 uint_t pc;
9044 int maxglobal = -1, maxlocal = -1, maxtlocal = -1;
9045
9046 kcheckload = cr == NULL ||
9047 (vstate->dtvs_state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) == 0;
9048
9049 dp->dtdo_destructive = 0;
9050
9051 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9052 dif_instr_t instr = dp->dtdo_buf[pc];
9053
9054 uint_t r1 = DIF_INSTR_R1(instr);
9055 uint_t r2 = DIF_INSTR_R2(instr);
9056 uint_t rd = DIF_INSTR_RD(instr);
9057 uint_t rs = DIF_INSTR_RS(instr);
9058 uint_t label = DIF_INSTR_LABEL(instr);
9059 uint_t v = DIF_INSTR_VAR(instr);
9060 uint_t subr = DIF_INSTR_SUBR(instr);
9061 uint_t type = DIF_INSTR_TYPE(instr);
9062 uint_t op = DIF_INSTR_OP(instr);
9063
9064 switch (op) {
9065 case DIF_OP_OR:
9066 case DIF_OP_XOR:
9067 case DIF_OP_AND:
9068 case DIF_OP_SLL:
9069 case DIF_OP_SRL:
9070 case DIF_OP_SRA:
9071 case DIF_OP_SUB:
9072 case DIF_OP_ADD:
9073 case DIF_OP_MUL:
9074 case DIF_OP_SDIV:
9075 case DIF_OP_UDIV:
9076 case DIF_OP_SREM:
9077 case DIF_OP_UREM:
9078 case DIF_OP_COPYS:
9079 if (r1 >= nregs)
9080 err += efunc(pc, "invalid register %u\n", r1);
9081 if (r2 >= nregs)
9082 err += efunc(pc, "invalid register %u\n", r2);
9083 if (rd >= nregs)
9084 err += efunc(pc, "invalid register %u\n", rd);
9085 if (rd == 0)
9086 err += efunc(pc, "cannot write to %r0\n");
9087 break;
9088 case DIF_OP_NOT:
9089 case DIF_OP_MOV:
9090 case DIF_OP_ALLOCS:
9091 if (r1 >= nregs)
9092 err += efunc(pc, "invalid register %u\n", r1);
9093 if (r2 != 0)
9094 err += efunc(pc, "non-zero reserved bits\n");
9095 if (rd >= nregs)
9096 err += efunc(pc, "invalid register %u\n", rd);
9097 if (rd == 0)
9098 err += efunc(pc, "cannot write to %r0\n");
9099 break;
9100 case DIF_OP_LDSB:
9101 case DIF_OP_LDSH:
9102 case DIF_OP_LDSW:
9103 case DIF_OP_LDUB:
9104 case DIF_OP_LDUH:
9105 case DIF_OP_LDUW:
9106 case DIF_OP_LDX:
9107 if (r1 >= nregs)
9108 err += efunc(pc, "invalid register %u\n", r1);
9109 if (r2 != 0)
9110 err += efunc(pc, "non-zero reserved bits\n");
9111 if (rd >= nregs)
9112 err += efunc(pc, "invalid register %u\n", rd);
9113 if (rd == 0)
9114 err += efunc(pc, "cannot write to %r0\n");
9115 if (kcheckload)
9116 dp->dtdo_buf[pc] = DIF_INSTR_LOAD(op +
9117 DIF_OP_RLDSB - DIF_OP_LDSB, r1, rd);
9118 break;
9119 case DIF_OP_RLDSB:
9120 case DIF_OP_RLDSH:
9121 case DIF_OP_RLDSW:
9122 case DIF_OP_RLDUB:
9123 case DIF_OP_RLDUH:
9124 case DIF_OP_RLDUW:
9125 case DIF_OP_RLDX:
9126 if (r1 >= nregs)
9127 err += efunc(pc, "invalid register %u\n", r1);
9128 if (r2 != 0)
9129 err += efunc(pc, "non-zero reserved bits\n");
9130 if (rd >= nregs)
9131 err += efunc(pc, "invalid register %u\n", rd);
9132 if (rd == 0)
9133 err += efunc(pc, "cannot write to %r0\n");
9134 break;
9135 case DIF_OP_ULDSB:
9136 case DIF_OP_ULDSH:
9137 case DIF_OP_ULDSW:
9138 case DIF_OP_ULDUB:
9139 case DIF_OP_ULDUH:
9140 case DIF_OP_ULDUW:
9141 case DIF_OP_ULDX:
9142 if (r1 >= nregs)
9143 err += efunc(pc, "invalid register %u\n", r1);
9144 if (r2 != 0)
9145 err += efunc(pc, "non-zero reserved bits\n");
9146 if (rd >= nregs)
9147 err += efunc(pc, "invalid register %u\n", rd);
9148 if (rd == 0)
9149 err += efunc(pc, "cannot write to %r0\n");
9150 break;
9151 case DIF_OP_STB:
9152 case DIF_OP_STH:
9153 case DIF_OP_STW:
9154 case DIF_OP_STX:
9155 if (r1 >= nregs)
9156 err += efunc(pc, "invalid register %u\n", r1);
9157 if (r2 != 0)
9158 err += efunc(pc, "non-zero reserved bits\n");
9159 if (rd >= nregs)
9160 err += efunc(pc, "invalid register %u\n", rd);
9161 if (rd == 0)
9162 err += efunc(pc, "cannot write to 0 address\n");
9163 break;
9164 case DIF_OP_CMP:
9165 case DIF_OP_SCMP:
9166 if (r1 >= nregs)
9167 err += efunc(pc, "invalid register %u\n", r1);
9168 if (r2 >= nregs)
9169 err += efunc(pc, "invalid register %u\n", r2);
9170 if (rd != 0)
9171 err += efunc(pc, "non-zero reserved bits\n");
9172 break;
9173 case DIF_OP_TST:
9174 if (r1 >= nregs)
9175 err += efunc(pc, "invalid register %u\n", r1);
9176 if (r2 != 0 || rd != 0)
9177 err += efunc(pc, "non-zero reserved bits\n");
9178 break;
9179 case DIF_OP_BA:
9180 case DIF_OP_BE:
9181 case DIF_OP_BNE:
9182 case DIF_OP_BG:
9183 case DIF_OP_BGU:
9184 case DIF_OP_BGE:
9185 case DIF_OP_BGEU:
9186 case DIF_OP_BL:
9187 case DIF_OP_BLU:
9188 case DIF_OP_BLE:
9189 case DIF_OP_BLEU:
9190 if (label >= dp->dtdo_len) {
9191 err += efunc(pc, "invalid branch target %u\n",
9192 label);
9193 }
9194 if (label <= pc) {
9195 err += efunc(pc, "backward branch to %u\n",
9196 label);
9197 }
9198 break;
9199 case DIF_OP_RET:
9200 if (r1 != 0 || r2 != 0)
9201 err += efunc(pc, "non-zero reserved bits\n");
9202 if (rd >= nregs)
9203 err += efunc(pc, "invalid register %u\n", rd);
9204 break;
9205 case DIF_OP_NOP:
9206 case DIF_OP_POPTS:
9207 case DIF_OP_FLUSHTS:
9208 if (r1 != 0 || r2 != 0 || rd != 0)
9209 err += efunc(pc, "non-zero reserved bits\n");
9210 break;
9211 case DIF_OP_SETX:
9212 if (DIF_INSTR_INTEGER(instr) >= dp->dtdo_intlen) {
9213 err += efunc(pc, "invalid integer ref %u\n",
9214 DIF_INSTR_INTEGER(instr));
9215 }
9216 if (rd >= nregs)
9217 err += efunc(pc, "invalid register %u\n", rd);
9218 if (rd == 0)
9219 err += efunc(pc, "cannot write to %r0\n");
9220 break;
9221 case DIF_OP_SETS:
9222 if (DIF_INSTR_STRING(instr) >= dp->dtdo_strlen) {
9223 err += efunc(pc, "invalid string ref %u\n",
9224 DIF_INSTR_STRING(instr));
9225 }
9226 if (rd >= nregs)
9227 err += efunc(pc, "invalid register %u\n", rd);
9228 if (rd == 0)
9229 err += efunc(pc, "cannot write to %r0\n");
9230 break;
9231 case DIF_OP_LDGA:
9232 case DIF_OP_LDTA:
9233 if (r1 > DIF_VAR_ARRAY_MAX)
9234 err += efunc(pc, "invalid array %u\n", r1);
9235 if (r2 >= nregs)
9236 err += efunc(pc, "invalid register %u\n", r2);
9237 if (rd >= nregs)
9238 err += efunc(pc, "invalid register %u\n", rd);
9239 if (rd == 0)
9240 err += efunc(pc, "cannot write to %r0\n");
9241 break;
9242 case DIF_OP_LDGS:
9243 case DIF_OP_LDTS:
9244 case DIF_OP_LDLS:
9245 case DIF_OP_LDGAA:
9246 case DIF_OP_LDTAA:
9247 if (v < DIF_VAR_OTHER_MIN || v > DIF_VAR_OTHER_MAX)
9248 err += efunc(pc, "invalid variable %u\n", v);
9249 if (rd >= nregs)
9250 err += efunc(pc, "invalid register %u\n", rd);
9251 if (rd == 0)
9252 err += efunc(pc, "cannot write to %r0\n");
9253 break;
9254 case DIF_OP_STGS:
9255 case DIF_OP_STTS:
9256 case DIF_OP_STLS:
9257 case DIF_OP_STGAA:
9258 case DIF_OP_STTAA:
9259 if (v < DIF_VAR_OTHER_UBASE || v > DIF_VAR_OTHER_MAX)
9260 err += efunc(pc, "invalid variable %u\n", v);
9261 if (rs >= nregs)
9262 err += efunc(pc, "invalid register %u\n", rd);
9263 break;
9264 case DIF_OP_CALL:
9265 if (subr > DIF_SUBR_MAX)
9266 err += efunc(pc, "invalid subr %u\n", subr);
9267 if (rd >= nregs)
9268 err += efunc(pc, "invalid register %u\n", rd);
9269 if (rd == 0)
9270 err += efunc(pc, "cannot write to %r0\n");
9271
9272 if (subr == DIF_SUBR_COPYOUT ||
9273 subr == DIF_SUBR_COPYOUTSTR) {
9274 dp->dtdo_destructive = 1;
9275 }
9276
9277 if (subr == DIF_SUBR_GETF) {
9278 /*
9279 * If we have a getf() we need to record that
9280 * in our state. Note that our state can be
9281 * NULL if this is a helper -- but in that
9282 * case, the call to getf() is itself illegal,
9283 * and will be caught (slightly later) when
9284 * the helper is validated.
9285 */
9286 if (vstate->dtvs_state != NULL)
9287 vstate->dtvs_state->dts_getf++;
9288 }
9289
9290 break;
9291 case DIF_OP_PUSHTR:
9292 if (type != DIF_TYPE_STRING && type != DIF_TYPE_CTF)
9293 err += efunc(pc, "invalid ref type %u\n", type);
9294 if (r2 >= nregs)
9295 err += efunc(pc, "invalid register %u\n", r2);
9296 if (rs >= nregs)
9297 err += efunc(pc, "invalid register %u\n", rs);
9298 break;
9299 case DIF_OP_PUSHTV:
9300 if (type != DIF_TYPE_CTF)
9301 err += efunc(pc, "invalid val type %u\n", type);
9302 if (r2 >= nregs)
9303 err += efunc(pc, "invalid register %u\n", r2);
9304 if (rs >= nregs)
9305 err += efunc(pc, "invalid register %u\n", rs);
9306 break;
9307 default:
9308 err += efunc(pc, "invalid opcode %u\n",
9309 DIF_INSTR_OP(instr));
9310 }
9311 }
9312
9313 if (dp->dtdo_len != 0 &&
9314 DIF_INSTR_OP(dp->dtdo_buf[dp->dtdo_len - 1]) != DIF_OP_RET) {
9315 err += efunc(dp->dtdo_len - 1,
9316 "expected 'ret' as last DIF instruction\n");
9317 }
9318
9319 if (!(dp->dtdo_rtype.dtdt_flags & (DIF_TF_BYREF | DIF_TF_BYUREF))) {
9320 /*
9321 * If we're not returning by reference, the size must be either
9322 * 0 or the size of one of the base types.
9323 */
9324 switch (dp->dtdo_rtype.dtdt_size) {
9325 case 0:
9326 case sizeof (uint8_t):
9327 case sizeof (uint16_t):
9328 case sizeof (uint32_t):
9329 case sizeof (uint64_t):
9330 break;
9331
9332 default:
9333 err += efunc(dp->dtdo_len - 1, "bad return size\n");
9334 }
9335 }
9336
9337 for (i = 0; i < dp->dtdo_varlen && err == 0; i++) {
9338 dtrace_difv_t *v = &dp->dtdo_vartab[i], *existing = NULL;
9339 dtrace_diftype_t *vt, *et;
9340 uint_t id, ndx;
9341
9342 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL &&
9343 v->dtdv_scope != DIFV_SCOPE_THREAD &&
9344 v->dtdv_scope != DIFV_SCOPE_LOCAL) {
9345 err += efunc(i, "unrecognized variable scope %d\n",
9346 v->dtdv_scope);
9347 break;
9348 }
9349
9350 if (v->dtdv_kind != DIFV_KIND_ARRAY &&
9351 v->dtdv_kind != DIFV_KIND_SCALAR) {
9352 err += efunc(i, "unrecognized variable type %d\n",
9353 v->dtdv_kind);
9354 break;
9355 }
9356
9357 if ((id = v->dtdv_id) > DIF_VARIABLE_MAX) {
9358 err += efunc(i, "%d exceeds variable id limit\n", id);
9359 break;
9360 }
9361
9362 if (id < DIF_VAR_OTHER_UBASE)
9363 continue;
9364
9365 /*
9366 * For user-defined variables, we need to check that this
9367 * definition is identical to any previous definition that we
9368 * encountered.
9369 */
9370 ndx = id - DIF_VAR_OTHER_UBASE;
9371
9372 switch (v->dtdv_scope) {
9373 case DIFV_SCOPE_GLOBAL:
9374 if (maxglobal == -1 || ndx > maxglobal)
9375 maxglobal = ndx;
9376
9377 if (ndx < vstate->dtvs_nglobals) {
9378 dtrace_statvar_t *svar;
9379
9380 if ((svar = vstate->dtvs_globals[ndx]) != NULL)
9381 existing = &svar->dtsv_var;
9382 }
9383
9384 break;
9385
9386 case DIFV_SCOPE_THREAD:
9387 if (maxtlocal == -1 || ndx > maxtlocal)
9388 maxtlocal = ndx;
9389
9390 if (ndx < vstate->dtvs_ntlocals)
9391 existing = &vstate->dtvs_tlocals[ndx];
9392 break;
9393
9394 case DIFV_SCOPE_LOCAL:
9395 if (maxlocal == -1 || ndx > maxlocal)
9396 maxlocal = ndx;
9397
9398 if (ndx < vstate->dtvs_nlocals) {
9399 dtrace_statvar_t *svar;
9400
9401 if ((svar = vstate->dtvs_locals[ndx]) != NULL)
9402 existing = &svar->dtsv_var;
9403 }
9404
9405 break;
9406 }
9407
9408 vt = &v->dtdv_type;
9409
9410 if (vt->dtdt_flags & DIF_TF_BYREF) {
9411 if (vt->dtdt_size == 0) {
9412 err += efunc(i, "zero-sized variable\n");
9413 break;
9414 }
9415
9416 if ((v->dtdv_scope == DIFV_SCOPE_GLOBAL ||
9417 v->dtdv_scope == DIFV_SCOPE_LOCAL) &&
9418 vt->dtdt_size > dtrace_statvar_maxsize) {
9419 err += efunc(i, "oversized by-ref static\n");
9420 break;
9421 }
9422 }
9423
9424 if (existing == NULL || existing->dtdv_id == 0)
9425 continue;
9426
9427 ASSERT(existing->dtdv_id == v->dtdv_id);
9428 ASSERT(existing->dtdv_scope == v->dtdv_scope);
9429
9430 if (existing->dtdv_kind != v->dtdv_kind)
9431 err += efunc(i, "%d changed variable kind\n", id);
9432
9433 et = &existing->dtdv_type;
9434
9435 if (vt->dtdt_flags != et->dtdt_flags) {
9436 err += efunc(i, "%d changed variable type flags\n", id);
9437 break;
9438 }
9439
9440 if (vt->dtdt_size != 0 && vt->dtdt_size != et->dtdt_size) {
9441 err += efunc(i, "%d changed variable type size\n", id);
9442 break;
9443 }
9444 }
9445
9446 for (pc = 0; pc < dp->dtdo_len && err == 0; pc++) {
9447 dif_instr_t instr = dp->dtdo_buf[pc];
9448
9449 uint_t v = DIF_INSTR_VAR(instr);
9450 uint_t op = DIF_INSTR_OP(instr);
9451
9452 switch (op) {
9453 case DIF_OP_LDGS:
9454 case DIF_OP_LDGAA:
9455 case DIF_OP_STGS:
9456 case DIF_OP_STGAA:
9457 if (v > DIF_VAR_OTHER_UBASE + maxglobal)
9458 err += efunc(pc, "invalid variable %u\n", v);
9459 break;
9460 case DIF_OP_LDTS:
9461 case DIF_OP_LDTAA:
9462 case DIF_OP_STTS:
9463 case DIF_OP_STTAA:
9464 if (v > DIF_VAR_OTHER_UBASE + maxtlocal)
9465 err += efunc(pc, "invalid variable %u\n", v);
9466 break;
9467 case DIF_OP_LDLS:
9468 case DIF_OP_STLS:
9469 if (v > DIF_VAR_OTHER_UBASE + maxlocal)
9470 err += efunc(pc, "invalid variable %u\n", v);
9471 break;
9472 default:
9473 break;
9474 }
9475 }
9476
9477 return (err);
9478 }
9479
9480 /*
9481 * Validate a DTrace DIF object that it is to be used as a helper. Helpers
9482 * are much more constrained than normal DIFOs. Specifically, they may
9483 * not:
9484 *
9485 * 1. Make calls to subroutines other than copyin(), copyinstr() or
9486 * miscellaneous string routines
9487 * 2. Access DTrace variables other than the args[] array, and the
9488 * curthread, pid, ppid, tid, execname, zonename, uid and gid variables.
9489 * 3. Have thread-local variables.
9490 * 4. Have dynamic variables.
9491 */
9492 static int
dtrace_difo_validate_helper(dtrace_difo_t * dp)9493 dtrace_difo_validate_helper(dtrace_difo_t *dp)
9494 {
9495 int (*efunc)(uint_t pc, const char *, ...) = dtrace_difo_err;
9496 int err = 0;
9497 uint_t pc;
9498
9499 for (pc = 0; pc < dp->dtdo_len; pc++) {
9500 dif_instr_t instr = dp->dtdo_buf[pc];
9501
9502 uint_t v = DIF_INSTR_VAR(instr);
9503 uint_t subr = DIF_INSTR_SUBR(instr);
9504 uint_t op = DIF_INSTR_OP(instr);
9505
9506 switch (op) {
9507 case DIF_OP_OR:
9508 case DIF_OP_XOR:
9509 case DIF_OP_AND:
9510 case DIF_OP_SLL:
9511 case DIF_OP_SRL:
9512 case DIF_OP_SRA:
9513 case DIF_OP_SUB:
9514 case DIF_OP_ADD:
9515 case DIF_OP_MUL:
9516 case DIF_OP_SDIV:
9517 case DIF_OP_UDIV:
9518 case DIF_OP_SREM:
9519 case DIF_OP_UREM:
9520 case DIF_OP_COPYS:
9521 case DIF_OP_NOT:
9522 case DIF_OP_MOV:
9523 case DIF_OP_RLDSB:
9524 case DIF_OP_RLDSH:
9525 case DIF_OP_RLDSW:
9526 case DIF_OP_RLDUB:
9527 case DIF_OP_RLDUH:
9528 case DIF_OP_RLDUW:
9529 case DIF_OP_RLDX:
9530 case DIF_OP_ULDSB:
9531 case DIF_OP_ULDSH:
9532 case DIF_OP_ULDSW:
9533 case DIF_OP_ULDUB:
9534 case DIF_OP_ULDUH:
9535 case DIF_OP_ULDUW:
9536 case DIF_OP_ULDX:
9537 case DIF_OP_STB:
9538 case DIF_OP_STH:
9539 case DIF_OP_STW:
9540 case DIF_OP_STX:
9541 case DIF_OP_ALLOCS:
9542 case DIF_OP_CMP:
9543 case DIF_OP_SCMP:
9544 case DIF_OP_TST:
9545 case DIF_OP_BA:
9546 case DIF_OP_BE:
9547 case DIF_OP_BNE:
9548 case DIF_OP_BG:
9549 case DIF_OP_BGU:
9550 case DIF_OP_BGE:
9551 case DIF_OP_BGEU:
9552 case DIF_OP_BL:
9553 case DIF_OP_BLU:
9554 case DIF_OP_BLE:
9555 case DIF_OP_BLEU:
9556 case DIF_OP_RET:
9557 case DIF_OP_NOP:
9558 case DIF_OP_POPTS:
9559 case DIF_OP_FLUSHTS:
9560 case DIF_OP_SETX:
9561 case DIF_OP_SETS:
9562 case DIF_OP_LDGA:
9563 case DIF_OP_LDLS:
9564 case DIF_OP_STGS:
9565 case DIF_OP_STLS:
9566 case DIF_OP_PUSHTR:
9567 case DIF_OP_PUSHTV:
9568 break;
9569
9570 case DIF_OP_LDGS:
9571 if (v >= DIF_VAR_OTHER_UBASE)
9572 break;
9573
9574 if (v >= DIF_VAR_ARG0 && v <= DIF_VAR_ARG9)
9575 break;
9576
9577 if (v == DIF_VAR_CURTHREAD || v == DIF_VAR_PID ||
9578 v == DIF_VAR_PPID || v == DIF_VAR_TID ||
9579 v == DIF_VAR_EXECNAME || v == DIF_VAR_ZONENAME ||
9580 v == DIF_VAR_UID || v == DIF_VAR_GID)
9581 break;
9582
9583 err += efunc(pc, "illegal variable %u\n", v);
9584 break;
9585
9586 case DIF_OP_LDTA:
9587 case DIF_OP_LDTS:
9588 case DIF_OP_LDGAA:
9589 case DIF_OP_LDTAA:
9590 err += efunc(pc, "illegal dynamic variable load\n");
9591 break;
9592
9593 case DIF_OP_STTS:
9594 case DIF_OP_STGAA:
9595 case DIF_OP_STTAA:
9596 err += efunc(pc, "illegal dynamic variable store\n");
9597 break;
9598
9599 case DIF_OP_CALL:
9600 if (subr == DIF_SUBR_ALLOCA ||
9601 subr == DIF_SUBR_BCOPY ||
9602 subr == DIF_SUBR_COPYIN ||
9603 subr == DIF_SUBR_COPYINTO ||
9604 subr == DIF_SUBR_COPYINSTR ||
9605 subr == DIF_SUBR_INDEX ||
9606 subr == DIF_SUBR_INET_NTOA ||
9607 subr == DIF_SUBR_INET_NTOA6 ||
9608 subr == DIF_SUBR_INET_NTOP ||
9609 subr == DIF_SUBR_JSON ||
9610 subr == DIF_SUBR_LLTOSTR ||
9611 subr == DIF_SUBR_STRTOLL ||
9612 subr == DIF_SUBR_RINDEX ||
9613 subr == DIF_SUBR_STRCHR ||
9614 subr == DIF_SUBR_STRJOIN ||
9615 subr == DIF_SUBR_STRRCHR ||
9616 subr == DIF_SUBR_STRSTR ||
9617 subr == DIF_SUBR_HTONS ||
9618 subr == DIF_SUBR_HTONL ||
9619 subr == DIF_SUBR_HTONLL ||
9620 subr == DIF_SUBR_NTOHS ||
9621 subr == DIF_SUBR_NTOHL ||
9622 subr == DIF_SUBR_NTOHLL)
9623 break;
9624
9625 err += efunc(pc, "invalid subr %u\n", subr);
9626 break;
9627
9628 default:
9629 err += efunc(pc, "invalid opcode %u\n",
9630 DIF_INSTR_OP(instr));
9631 }
9632 }
9633
9634 return (err);
9635 }
9636
9637 /*
9638 * Returns 1 if the expression in the DIF object can be cached on a per-thread
9639 * basis; 0 if not.
9640 */
9641 static int
dtrace_difo_cacheable(dtrace_difo_t * dp)9642 dtrace_difo_cacheable(dtrace_difo_t *dp)
9643 {
9644 int i;
9645
9646 if (dp == NULL)
9647 return (0);
9648
9649 for (i = 0; i < dp->dtdo_varlen; i++) {
9650 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9651
9652 if (v->dtdv_scope != DIFV_SCOPE_GLOBAL)
9653 continue;
9654
9655 switch (v->dtdv_id) {
9656 case DIF_VAR_CURTHREAD:
9657 case DIF_VAR_PID:
9658 case DIF_VAR_TID:
9659 case DIF_VAR_EXECNAME:
9660 case DIF_VAR_ZONENAME:
9661 break;
9662
9663 default:
9664 return (0);
9665 }
9666 }
9667
9668 /*
9669 * This DIF object may be cacheable. Now we need to look for any
9670 * array loading instructions, any memory loading instructions, or
9671 * any stores to thread-local variables.
9672 */
9673 for (i = 0; i < dp->dtdo_len; i++) {
9674 uint_t op = DIF_INSTR_OP(dp->dtdo_buf[i]);
9675
9676 if ((op >= DIF_OP_LDSB && op <= DIF_OP_LDX) ||
9677 (op >= DIF_OP_ULDSB && op <= DIF_OP_ULDX) ||
9678 (op >= DIF_OP_RLDSB && op <= DIF_OP_RLDX) ||
9679 op == DIF_OP_LDGA || op == DIF_OP_STTS)
9680 return (0);
9681 }
9682
9683 return (1);
9684 }
9685
9686 static void
dtrace_difo_hold(dtrace_difo_t * dp)9687 dtrace_difo_hold(dtrace_difo_t *dp)
9688 {
9689 int i;
9690
9691 ASSERT(MUTEX_HELD(&dtrace_lock));
9692
9693 dp->dtdo_refcnt++;
9694 ASSERT(dp->dtdo_refcnt != 0);
9695
9696 /*
9697 * We need to check this DIF object for references to the variable
9698 * DIF_VAR_VTIMESTAMP.
9699 */
9700 for (i = 0; i < dp->dtdo_varlen; i++) {
9701 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9702
9703 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
9704 continue;
9705
9706 if (dtrace_vtime_references++ == 0)
9707 dtrace_vtime_enable();
9708 }
9709 }
9710
9711 /*
9712 * This routine calculates the dynamic variable chunksize for a given DIF
9713 * object. The calculation is not fool-proof, and can probably be tricked by
9714 * malicious DIF -- but it works for all compiler-generated DIF. Because this
9715 * calculation is likely imperfect, dtrace_dynvar() is able to gracefully fail
9716 * if a dynamic variable size exceeds the chunksize.
9717 */
9718 static void
dtrace_difo_chunksize(dtrace_difo_t * dp,dtrace_vstate_t * vstate)9719 dtrace_difo_chunksize(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9720 {
9721 uint64_t sval;
9722 dtrace_key_t tupregs[DIF_DTR_NREGS + 2]; /* +2 for thread and id */
9723 const dif_instr_t *text = dp->dtdo_buf;
9724 uint_t pc, srd = 0;
9725 uint_t ttop = 0;
9726 size_t size, ksize;
9727 uint_t id, i;
9728
9729 for (pc = 0; pc < dp->dtdo_len; pc++) {
9730 dif_instr_t instr = text[pc];
9731 uint_t op = DIF_INSTR_OP(instr);
9732 uint_t rd = DIF_INSTR_RD(instr);
9733 uint_t r1 = DIF_INSTR_R1(instr);
9734 uint_t nkeys = 0;
9735 uchar_t scope;
9736
9737 dtrace_key_t *key = tupregs;
9738
9739 switch (op) {
9740 case DIF_OP_SETX:
9741 sval = dp->dtdo_inttab[DIF_INSTR_INTEGER(instr)];
9742 srd = rd;
9743 continue;
9744
9745 case DIF_OP_STTS:
9746 key = &tupregs[DIF_DTR_NREGS];
9747 key[0].dttk_size = 0;
9748 key[1].dttk_size = 0;
9749 nkeys = 2;
9750 scope = DIFV_SCOPE_THREAD;
9751 break;
9752
9753 case DIF_OP_STGAA:
9754 case DIF_OP_STTAA:
9755 nkeys = ttop;
9756
9757 if (DIF_INSTR_OP(instr) == DIF_OP_STTAA)
9758 key[nkeys++].dttk_size = 0;
9759
9760 key[nkeys++].dttk_size = 0;
9761
9762 if (op == DIF_OP_STTAA) {
9763 scope = DIFV_SCOPE_THREAD;
9764 } else {
9765 scope = DIFV_SCOPE_GLOBAL;
9766 }
9767
9768 break;
9769
9770 case DIF_OP_PUSHTR:
9771 if (ttop == DIF_DTR_NREGS)
9772 return;
9773
9774 if ((srd == 0 || sval == 0) && r1 == DIF_TYPE_STRING) {
9775 /*
9776 * If the register for the size of the "pushtr"
9777 * is %r0 (or the value is 0) and the type is
9778 * a string, we'll use the system-wide default
9779 * string size.
9780 */
9781 tupregs[ttop++].dttk_size =
9782 dtrace_strsize_default;
9783 } else {
9784 if (srd == 0)
9785 return;
9786
9787 if (sval > LONG_MAX)
9788 return;
9789
9790 tupregs[ttop++].dttk_size = sval;
9791 }
9792
9793 break;
9794
9795 case DIF_OP_PUSHTV:
9796 if (ttop == DIF_DTR_NREGS)
9797 return;
9798
9799 tupregs[ttop++].dttk_size = 0;
9800 break;
9801
9802 case DIF_OP_FLUSHTS:
9803 ttop = 0;
9804 break;
9805
9806 case DIF_OP_POPTS:
9807 if (ttop != 0)
9808 ttop--;
9809 break;
9810 }
9811
9812 sval = 0;
9813 srd = 0;
9814
9815 if (nkeys == 0)
9816 continue;
9817
9818 /*
9819 * We have a dynamic variable allocation; calculate its size.
9820 */
9821 for (ksize = 0, i = 0; i < nkeys; i++)
9822 ksize += P2ROUNDUP(key[i].dttk_size, sizeof (uint64_t));
9823
9824 size = sizeof (dtrace_dynvar_t);
9825 size += sizeof (dtrace_key_t) * (nkeys - 1);
9826 size += ksize;
9827
9828 /*
9829 * Now we need to determine the size of the stored data.
9830 */
9831 id = DIF_INSTR_VAR(instr);
9832
9833 for (i = 0; i < dp->dtdo_varlen; i++) {
9834 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9835
9836 if (v->dtdv_id == id && v->dtdv_scope == scope) {
9837 size += v->dtdv_type.dtdt_size;
9838 break;
9839 }
9840 }
9841
9842 if (i == dp->dtdo_varlen)
9843 return;
9844
9845 /*
9846 * We have the size. If this is larger than the chunk size
9847 * for our dynamic variable state, reset the chunk size.
9848 */
9849 size = P2ROUNDUP(size, sizeof (uint64_t));
9850
9851 /*
9852 * Before setting the chunk size, check that we're not going
9853 * to set it to a negative value...
9854 */
9855 if (size > LONG_MAX)
9856 return;
9857
9858 /*
9859 * ...and make certain that we didn't badly overflow.
9860 */
9861 if (size < ksize || size < sizeof (dtrace_dynvar_t))
9862 return;
9863
9864 if (size > vstate->dtvs_dynvars.dtds_chunksize)
9865 vstate->dtvs_dynvars.dtds_chunksize = size;
9866 }
9867 }
9868
9869 static void
dtrace_difo_init(dtrace_difo_t * dp,dtrace_vstate_t * vstate)9870 dtrace_difo_init(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9871 {
9872 int i, oldsvars, osz, nsz, otlocals, ntlocals;
9873 uint_t id;
9874
9875 ASSERT(MUTEX_HELD(&dtrace_lock));
9876 ASSERT(dp->dtdo_buf != NULL && dp->dtdo_len != 0);
9877
9878 for (i = 0; i < dp->dtdo_varlen; i++) {
9879 dtrace_difv_t *v = &dp->dtdo_vartab[i];
9880 dtrace_statvar_t *svar, ***svarp;
9881 size_t dsize = 0;
9882 uint8_t scope = v->dtdv_scope;
9883 int *np;
9884
9885 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
9886 continue;
9887
9888 id -= DIF_VAR_OTHER_UBASE;
9889
9890 switch (scope) {
9891 case DIFV_SCOPE_THREAD:
9892 while (id >= (otlocals = vstate->dtvs_ntlocals)) {
9893 dtrace_difv_t *tlocals;
9894
9895 if ((ntlocals = (otlocals << 1)) == 0)
9896 ntlocals = 1;
9897
9898 osz = otlocals * sizeof (dtrace_difv_t);
9899 nsz = ntlocals * sizeof (dtrace_difv_t);
9900
9901 tlocals = kmem_zalloc(nsz, KM_SLEEP);
9902
9903 if (osz != 0) {
9904 bcopy(vstate->dtvs_tlocals,
9905 tlocals, osz);
9906 kmem_free(vstate->dtvs_tlocals, osz);
9907 }
9908
9909 vstate->dtvs_tlocals = tlocals;
9910 vstate->dtvs_ntlocals = ntlocals;
9911 }
9912
9913 vstate->dtvs_tlocals[id] = *v;
9914 continue;
9915
9916 case DIFV_SCOPE_LOCAL:
9917 np = &vstate->dtvs_nlocals;
9918 svarp = &vstate->dtvs_locals;
9919
9920 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9921 dsize = NCPU * (v->dtdv_type.dtdt_size +
9922 sizeof (uint64_t));
9923 else
9924 dsize = NCPU * sizeof (uint64_t);
9925
9926 break;
9927
9928 case DIFV_SCOPE_GLOBAL:
9929 np = &vstate->dtvs_nglobals;
9930 svarp = &vstate->dtvs_globals;
9931
9932 if (v->dtdv_type.dtdt_flags & DIF_TF_BYREF)
9933 dsize = v->dtdv_type.dtdt_size +
9934 sizeof (uint64_t);
9935
9936 break;
9937
9938 default:
9939 ASSERT(0);
9940 }
9941
9942 while (id >= (oldsvars = *np)) {
9943 dtrace_statvar_t **statics;
9944 int newsvars, oldsize, newsize;
9945
9946 if ((newsvars = (oldsvars << 1)) == 0)
9947 newsvars = 1;
9948
9949 oldsize = oldsvars * sizeof (dtrace_statvar_t *);
9950 newsize = newsvars * sizeof (dtrace_statvar_t *);
9951
9952 statics = kmem_zalloc(newsize, KM_SLEEP);
9953
9954 if (oldsize != 0) {
9955 bcopy(*svarp, statics, oldsize);
9956 kmem_free(*svarp, oldsize);
9957 }
9958
9959 *svarp = statics;
9960 *np = newsvars;
9961 }
9962
9963 if ((svar = (*svarp)[id]) == NULL) {
9964 svar = kmem_zalloc(sizeof (dtrace_statvar_t), KM_SLEEP);
9965 svar->dtsv_var = *v;
9966
9967 if ((svar->dtsv_size = dsize) != 0) {
9968 svar->dtsv_data = (uint64_t)(uintptr_t)
9969 kmem_zalloc(dsize, KM_SLEEP);
9970 }
9971
9972 (*svarp)[id] = svar;
9973 }
9974
9975 svar->dtsv_refcnt++;
9976 }
9977
9978 dtrace_difo_chunksize(dp, vstate);
9979 dtrace_difo_hold(dp);
9980 }
9981
9982 static dtrace_difo_t *
dtrace_difo_duplicate(dtrace_difo_t * dp,dtrace_vstate_t * vstate)9983 dtrace_difo_duplicate(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
9984 {
9985 dtrace_difo_t *new;
9986 size_t sz;
9987
9988 ASSERT(dp->dtdo_buf != NULL);
9989 ASSERT(dp->dtdo_refcnt != 0);
9990
9991 new = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
9992
9993 ASSERT(dp->dtdo_buf != NULL);
9994 sz = dp->dtdo_len * sizeof (dif_instr_t);
9995 new->dtdo_buf = kmem_alloc(sz, KM_SLEEP);
9996 bcopy(dp->dtdo_buf, new->dtdo_buf, sz);
9997 new->dtdo_len = dp->dtdo_len;
9998
9999 if (dp->dtdo_strtab != NULL) {
10000 ASSERT(dp->dtdo_strlen != 0);
10001 new->dtdo_strtab = kmem_alloc(dp->dtdo_strlen, KM_SLEEP);
10002 bcopy(dp->dtdo_strtab, new->dtdo_strtab, dp->dtdo_strlen);
10003 new->dtdo_strlen = dp->dtdo_strlen;
10004 }
10005
10006 if (dp->dtdo_inttab != NULL) {
10007 ASSERT(dp->dtdo_intlen != 0);
10008 sz = dp->dtdo_intlen * sizeof (uint64_t);
10009 new->dtdo_inttab = kmem_alloc(sz, KM_SLEEP);
10010 bcopy(dp->dtdo_inttab, new->dtdo_inttab, sz);
10011 new->dtdo_intlen = dp->dtdo_intlen;
10012 }
10013
10014 if (dp->dtdo_vartab != NULL) {
10015 ASSERT(dp->dtdo_varlen != 0);
10016 sz = dp->dtdo_varlen * sizeof (dtrace_difv_t);
10017 new->dtdo_vartab = kmem_alloc(sz, KM_SLEEP);
10018 bcopy(dp->dtdo_vartab, new->dtdo_vartab, sz);
10019 new->dtdo_varlen = dp->dtdo_varlen;
10020 }
10021
10022 dtrace_difo_init(new, vstate);
10023 return (new);
10024 }
10025
10026 static void
dtrace_difo_destroy(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10027 dtrace_difo_destroy(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10028 {
10029 int i;
10030
10031 ASSERT(dp->dtdo_refcnt == 0);
10032
10033 for (i = 0; i < dp->dtdo_varlen; i++) {
10034 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10035 dtrace_statvar_t *svar, **svarp;
10036 uint_t id;
10037 uint8_t scope = v->dtdv_scope;
10038 int *np;
10039
10040 switch (scope) {
10041 case DIFV_SCOPE_THREAD:
10042 continue;
10043
10044 case DIFV_SCOPE_LOCAL:
10045 np = &vstate->dtvs_nlocals;
10046 svarp = vstate->dtvs_locals;
10047 break;
10048
10049 case DIFV_SCOPE_GLOBAL:
10050 np = &vstate->dtvs_nglobals;
10051 svarp = vstate->dtvs_globals;
10052 break;
10053
10054 default:
10055 ASSERT(0);
10056 }
10057
10058 if ((id = v->dtdv_id) < DIF_VAR_OTHER_UBASE)
10059 continue;
10060
10061 id -= DIF_VAR_OTHER_UBASE;
10062 ASSERT(id < *np);
10063
10064 svar = svarp[id];
10065 ASSERT(svar != NULL);
10066 ASSERT(svar->dtsv_refcnt > 0);
10067
10068 if (--svar->dtsv_refcnt > 0)
10069 continue;
10070
10071 if (svar->dtsv_size != 0) {
10072 ASSERT(svar->dtsv_data != NULL);
10073 kmem_free((void *)(uintptr_t)svar->dtsv_data,
10074 svar->dtsv_size);
10075 }
10076
10077 kmem_free(svar, sizeof (dtrace_statvar_t));
10078 svarp[id] = NULL;
10079 }
10080
10081 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
10082 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
10083 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
10084 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
10085
10086 kmem_free(dp, sizeof (dtrace_difo_t));
10087 }
10088
10089 static void
dtrace_difo_release(dtrace_difo_t * dp,dtrace_vstate_t * vstate)10090 dtrace_difo_release(dtrace_difo_t *dp, dtrace_vstate_t *vstate)
10091 {
10092 int i;
10093
10094 ASSERT(MUTEX_HELD(&dtrace_lock));
10095 ASSERT(dp->dtdo_refcnt != 0);
10096
10097 for (i = 0; i < dp->dtdo_varlen; i++) {
10098 dtrace_difv_t *v = &dp->dtdo_vartab[i];
10099
10100 if (v->dtdv_id != DIF_VAR_VTIMESTAMP)
10101 continue;
10102
10103 ASSERT(dtrace_vtime_references > 0);
10104 if (--dtrace_vtime_references == 0)
10105 dtrace_vtime_disable();
10106 }
10107
10108 if (--dp->dtdo_refcnt == 0)
10109 dtrace_difo_destroy(dp, vstate);
10110 }
10111
10112 /*
10113 * DTrace Format Functions
10114 */
10115 static uint16_t
dtrace_format_add(dtrace_state_t * state,char * str)10116 dtrace_format_add(dtrace_state_t *state, char *str)
10117 {
10118 char *fmt, **new;
10119 uint16_t ndx, len = strlen(str) + 1;
10120
10121 fmt = kmem_zalloc(len, KM_SLEEP);
10122 bcopy(str, fmt, len);
10123
10124 for (ndx = 0; ndx < state->dts_nformats; ndx++) {
10125 if (state->dts_formats[ndx] == NULL) {
10126 state->dts_formats[ndx] = fmt;
10127 return (ndx + 1);
10128 }
10129 }
10130
10131 if (state->dts_nformats == USHRT_MAX) {
10132 /*
10133 * This is only likely if a denial-of-service attack is being
10134 * attempted. As such, it's okay to fail silently here.
10135 */
10136 kmem_free(fmt, len);
10137 return (0);
10138 }
10139
10140 /*
10141 * For simplicity, we always resize the formats array to be exactly the
10142 * number of formats.
10143 */
10144 ndx = state->dts_nformats++;
10145 new = kmem_alloc((ndx + 1) * sizeof (char *), KM_SLEEP);
10146
10147 if (state->dts_formats != NULL) {
10148 ASSERT(ndx != 0);
10149 bcopy(state->dts_formats, new, ndx * sizeof (char *));
10150 kmem_free(state->dts_formats, ndx * sizeof (char *));
10151 }
10152
10153 state->dts_formats = new;
10154 state->dts_formats[ndx] = fmt;
10155
10156 return (ndx + 1);
10157 }
10158
10159 static void
dtrace_format_remove(dtrace_state_t * state,uint16_t format)10160 dtrace_format_remove(dtrace_state_t *state, uint16_t format)
10161 {
10162 char *fmt;
10163
10164 ASSERT(state->dts_formats != NULL);
10165 ASSERT(format <= state->dts_nformats);
10166 ASSERT(state->dts_formats[format - 1] != NULL);
10167
10168 fmt = state->dts_formats[format - 1];
10169 kmem_free(fmt, strlen(fmt) + 1);
10170 state->dts_formats[format - 1] = NULL;
10171 }
10172
10173 static void
dtrace_format_destroy(dtrace_state_t * state)10174 dtrace_format_destroy(dtrace_state_t *state)
10175 {
10176 int i;
10177
10178 if (state->dts_nformats == 0) {
10179 ASSERT(state->dts_formats == NULL);
10180 return;
10181 }
10182
10183 ASSERT(state->dts_formats != NULL);
10184
10185 for (i = 0; i < state->dts_nformats; i++) {
10186 char *fmt = state->dts_formats[i];
10187
10188 if (fmt == NULL)
10189 continue;
10190
10191 kmem_free(fmt, strlen(fmt) + 1);
10192 }
10193
10194 kmem_free(state->dts_formats, state->dts_nformats * sizeof (char *));
10195 state->dts_nformats = 0;
10196 state->dts_formats = NULL;
10197 }
10198
10199 /*
10200 * DTrace Predicate Functions
10201 */
10202 static dtrace_predicate_t *
dtrace_predicate_create(dtrace_difo_t * dp)10203 dtrace_predicate_create(dtrace_difo_t *dp)
10204 {
10205 dtrace_predicate_t *pred;
10206
10207 ASSERT(MUTEX_HELD(&dtrace_lock));
10208 ASSERT(dp->dtdo_refcnt != 0);
10209
10210 pred = kmem_zalloc(sizeof (dtrace_predicate_t), KM_SLEEP);
10211 pred->dtp_difo = dp;
10212 pred->dtp_refcnt = 1;
10213
10214 if (!dtrace_difo_cacheable(dp))
10215 return (pred);
10216
10217 if (dtrace_predcache_id == DTRACE_CACHEIDNONE) {
10218 /*
10219 * This is only theoretically possible -- we have had 2^32
10220 * cacheable predicates on this machine. We cannot allow any
10221 * more predicates to become cacheable: as unlikely as it is,
10222 * there may be a thread caching a (now stale) predicate cache
10223 * ID. (N.B.: the temptation is being successfully resisted to
10224 * have this cmn_err() "Holy shit -- we executed this code!")
10225 */
10226 return (pred);
10227 }
10228
10229 pred->dtp_cacheid = dtrace_predcache_id++;
10230
10231 return (pred);
10232 }
10233
10234 static void
dtrace_predicate_hold(dtrace_predicate_t * pred)10235 dtrace_predicate_hold(dtrace_predicate_t *pred)
10236 {
10237 ASSERT(MUTEX_HELD(&dtrace_lock));
10238 ASSERT(pred->dtp_difo != NULL && pred->dtp_difo->dtdo_refcnt != 0);
10239 ASSERT(pred->dtp_refcnt > 0);
10240
10241 pred->dtp_refcnt++;
10242 }
10243
10244 static void
dtrace_predicate_release(dtrace_predicate_t * pred,dtrace_vstate_t * vstate)10245 dtrace_predicate_release(dtrace_predicate_t *pred, dtrace_vstate_t *vstate)
10246 {
10247 dtrace_difo_t *dp = pred->dtp_difo;
10248
10249 ASSERT(MUTEX_HELD(&dtrace_lock));
10250 ASSERT(dp != NULL && dp->dtdo_refcnt != 0);
10251 ASSERT(pred->dtp_refcnt > 0);
10252
10253 if (--pred->dtp_refcnt == 0) {
10254 dtrace_difo_release(pred->dtp_difo, vstate);
10255 kmem_free(pred, sizeof (dtrace_predicate_t));
10256 }
10257 }
10258
10259 /*
10260 * DTrace Action Description Functions
10261 */
10262 static dtrace_actdesc_t *
dtrace_actdesc_create(dtrace_actkind_t kind,uint32_t ntuple,uint64_t uarg,uint64_t arg)10263 dtrace_actdesc_create(dtrace_actkind_t kind, uint32_t ntuple,
10264 uint64_t uarg, uint64_t arg)
10265 {
10266 dtrace_actdesc_t *act;
10267
10268 ASSERT(!DTRACEACT_ISPRINTFLIKE(kind) || (arg != NULL &&
10269 arg >= KERNELBASE) || (arg == NULL && kind == DTRACEACT_PRINTA));
10270
10271 act = kmem_zalloc(sizeof (dtrace_actdesc_t), KM_SLEEP);
10272 act->dtad_kind = kind;
10273 act->dtad_ntuple = ntuple;
10274 act->dtad_uarg = uarg;
10275 act->dtad_arg = arg;
10276 act->dtad_refcnt = 1;
10277
10278 return (act);
10279 }
10280
10281 static void
dtrace_actdesc_hold(dtrace_actdesc_t * act)10282 dtrace_actdesc_hold(dtrace_actdesc_t *act)
10283 {
10284 ASSERT(act->dtad_refcnt >= 1);
10285 act->dtad_refcnt++;
10286 }
10287
10288 static void
dtrace_actdesc_release(dtrace_actdesc_t * act,dtrace_vstate_t * vstate)10289 dtrace_actdesc_release(dtrace_actdesc_t *act, dtrace_vstate_t *vstate)
10290 {
10291 dtrace_actkind_t kind = act->dtad_kind;
10292 dtrace_difo_t *dp;
10293
10294 ASSERT(act->dtad_refcnt >= 1);
10295
10296 if (--act->dtad_refcnt != 0)
10297 return;
10298
10299 if ((dp = act->dtad_difo) != NULL)
10300 dtrace_difo_release(dp, vstate);
10301
10302 if (DTRACEACT_ISPRINTFLIKE(kind)) {
10303 char *str = (char *)(uintptr_t)act->dtad_arg;
10304
10305 ASSERT((str != NULL && (uintptr_t)str >= KERNELBASE) ||
10306 (str == NULL && act->dtad_kind == DTRACEACT_PRINTA));
10307
10308 if (str != NULL)
10309 kmem_free(str, strlen(str) + 1);
10310 }
10311
10312 kmem_free(act, sizeof (dtrace_actdesc_t));
10313 }
10314
10315 /*
10316 * DTrace ECB Functions
10317 */
10318 static dtrace_ecb_t *
dtrace_ecb_add(dtrace_state_t * state,dtrace_probe_t * probe)10319 dtrace_ecb_add(dtrace_state_t *state, dtrace_probe_t *probe)
10320 {
10321 dtrace_ecb_t *ecb;
10322 dtrace_epid_t epid;
10323
10324 ASSERT(MUTEX_HELD(&dtrace_lock));
10325
10326 ecb = kmem_zalloc(sizeof (dtrace_ecb_t), KM_SLEEP);
10327 ecb->dte_predicate = NULL;
10328 ecb->dte_probe = probe;
10329
10330 /*
10331 * The default size is the size of the default action: recording
10332 * the header.
10333 */
10334 ecb->dte_size = ecb->dte_needed = sizeof (dtrace_rechdr_t);
10335 ecb->dte_alignment = sizeof (dtrace_epid_t);
10336
10337 epid = state->dts_epid++;
10338
10339 if (epid - 1 >= state->dts_necbs) {
10340 dtrace_ecb_t **oecbs = state->dts_ecbs, **ecbs;
10341 int necbs = state->dts_necbs << 1;
10342
10343 ASSERT(epid == state->dts_necbs + 1);
10344
10345 if (necbs == 0) {
10346 ASSERT(oecbs == NULL);
10347 necbs = 1;
10348 }
10349
10350 ecbs = kmem_zalloc(necbs * sizeof (*ecbs), KM_SLEEP);
10351
10352 if (oecbs != NULL)
10353 bcopy(oecbs, ecbs, state->dts_necbs * sizeof (*ecbs));
10354
10355 dtrace_membar_producer();
10356 state->dts_ecbs = ecbs;
10357
10358 if (oecbs != NULL) {
10359 /*
10360 * If this state is active, we must dtrace_sync()
10361 * before we can free the old dts_ecbs array: we're
10362 * coming in hot, and there may be active ring
10363 * buffer processing (which indexes into the dts_ecbs
10364 * array) on another CPU.
10365 */
10366 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
10367 dtrace_sync();
10368
10369 kmem_free(oecbs, state->dts_necbs * sizeof (*ecbs));
10370 }
10371
10372 dtrace_membar_producer();
10373 state->dts_necbs = necbs;
10374 }
10375
10376 ecb->dte_state = state;
10377
10378 ASSERT(state->dts_ecbs[epid - 1] == NULL);
10379 dtrace_membar_producer();
10380 state->dts_ecbs[(ecb->dte_epid = epid) - 1] = ecb;
10381
10382 return (ecb);
10383 }
10384
10385 static int
dtrace_ecb_enable(dtrace_ecb_t * ecb)10386 dtrace_ecb_enable(dtrace_ecb_t *ecb)
10387 {
10388 dtrace_probe_t *probe = ecb->dte_probe;
10389
10390 ASSERT(MUTEX_HELD(&cpu_lock));
10391 ASSERT(MUTEX_HELD(&dtrace_lock));
10392 ASSERT(ecb->dte_next == NULL);
10393
10394 if (probe == NULL) {
10395 /*
10396 * This is the NULL probe -- there's nothing to do.
10397 */
10398 return (0);
10399 }
10400
10401 if (probe->dtpr_ecb == NULL) {
10402 dtrace_provider_t *prov = probe->dtpr_provider;
10403
10404 /*
10405 * We're the first ECB on this probe.
10406 */
10407 probe->dtpr_ecb = probe->dtpr_ecb_last = ecb;
10408
10409 if (ecb->dte_predicate != NULL)
10410 probe->dtpr_predcache = ecb->dte_predicate->dtp_cacheid;
10411
10412 return (prov->dtpv_pops.dtps_enable(prov->dtpv_arg,
10413 probe->dtpr_id, probe->dtpr_arg));
10414 } else {
10415 /*
10416 * This probe is already active. Swing the last pointer to
10417 * point to the new ECB, and issue a dtrace_sync() to assure
10418 * that all CPUs have seen the change.
10419 */
10420 ASSERT(probe->dtpr_ecb_last != NULL);
10421 probe->dtpr_ecb_last->dte_next = ecb;
10422 probe->dtpr_ecb_last = ecb;
10423 probe->dtpr_predcache = 0;
10424
10425 dtrace_sync();
10426 return (0);
10427 }
10428 }
10429
10430 static void
dtrace_ecb_resize(dtrace_ecb_t * ecb)10431 dtrace_ecb_resize(dtrace_ecb_t *ecb)
10432 {
10433 dtrace_action_t *act;
10434 uint32_t curneeded = UINT32_MAX;
10435 uint32_t aggbase = UINT32_MAX;
10436
10437 /*
10438 * If we record anything, we always record the dtrace_rechdr_t. (And
10439 * we always record it first.)
10440 */
10441 ecb->dte_size = sizeof (dtrace_rechdr_t);
10442 ecb->dte_alignment = sizeof (dtrace_epid_t);
10443
10444 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10445 dtrace_recdesc_t *rec = &act->dta_rec;
10446 ASSERT(rec->dtrd_size > 0 || rec->dtrd_alignment == 1);
10447
10448 ecb->dte_alignment = MAX(ecb->dte_alignment,
10449 rec->dtrd_alignment);
10450
10451 if (DTRACEACT_ISAGG(act->dta_kind)) {
10452 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10453
10454 ASSERT(rec->dtrd_size != 0);
10455 ASSERT(agg->dtag_first != NULL);
10456 ASSERT(act->dta_prev->dta_intuple);
10457 ASSERT(aggbase != UINT32_MAX);
10458 ASSERT(curneeded != UINT32_MAX);
10459
10460 agg->dtag_base = aggbase;
10461
10462 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10463 rec->dtrd_offset = curneeded;
10464 curneeded += rec->dtrd_size;
10465 ecb->dte_needed = MAX(ecb->dte_needed, curneeded);
10466
10467 aggbase = UINT32_MAX;
10468 curneeded = UINT32_MAX;
10469 } else if (act->dta_intuple) {
10470 if (curneeded == UINT32_MAX) {
10471 /*
10472 * This is the first record in a tuple. Align
10473 * curneeded to be at offset 4 in an 8-byte
10474 * aligned block.
10475 */
10476 ASSERT(act->dta_prev == NULL ||
10477 !act->dta_prev->dta_intuple);
10478 ASSERT3U(aggbase, ==, UINT32_MAX);
10479 curneeded = P2PHASEUP(ecb->dte_size,
10480 sizeof (uint64_t), sizeof (dtrace_aggid_t));
10481
10482 aggbase = curneeded - sizeof (dtrace_aggid_t);
10483 ASSERT(IS_P2ALIGNED(aggbase,
10484 sizeof (uint64_t)));
10485 }
10486 curneeded = P2ROUNDUP(curneeded, rec->dtrd_alignment);
10487 rec->dtrd_offset = curneeded;
10488 curneeded += rec->dtrd_size;
10489 } else {
10490 /* tuples must be followed by an aggregation */
10491 ASSERT(act->dta_prev == NULL ||
10492 !act->dta_prev->dta_intuple);
10493
10494 ecb->dte_size = P2ROUNDUP(ecb->dte_size,
10495 rec->dtrd_alignment);
10496 rec->dtrd_offset = ecb->dte_size;
10497 ecb->dte_size += rec->dtrd_size;
10498 ecb->dte_needed = MAX(ecb->dte_needed, ecb->dte_size);
10499 }
10500 }
10501
10502 if ((act = ecb->dte_action) != NULL &&
10503 !(act->dta_kind == DTRACEACT_SPECULATE && act->dta_next == NULL) &&
10504 ecb->dte_size == sizeof (dtrace_rechdr_t)) {
10505 /*
10506 * If the size is still sizeof (dtrace_rechdr_t), then all
10507 * actions store no data; set the size to 0.
10508 */
10509 ecb->dte_size = 0;
10510 }
10511
10512 ecb->dte_size = P2ROUNDUP(ecb->dte_size, sizeof (dtrace_epid_t));
10513 ecb->dte_needed = P2ROUNDUP(ecb->dte_needed, (sizeof (dtrace_epid_t)));
10514 ecb->dte_state->dts_needed = MAX(ecb->dte_state->dts_needed,
10515 ecb->dte_needed);
10516 }
10517
10518 static dtrace_action_t *
dtrace_ecb_aggregation_create(dtrace_ecb_t * ecb,dtrace_actdesc_t * desc)10519 dtrace_ecb_aggregation_create(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10520 {
10521 dtrace_aggregation_t *agg;
10522 size_t size = sizeof (uint64_t);
10523 int ntuple = desc->dtad_ntuple;
10524 dtrace_action_t *act;
10525 dtrace_recdesc_t *frec;
10526 dtrace_aggid_t aggid;
10527 dtrace_state_t *state = ecb->dte_state;
10528
10529 agg = kmem_zalloc(sizeof (dtrace_aggregation_t), KM_SLEEP);
10530 agg->dtag_ecb = ecb;
10531
10532 ASSERT(DTRACEACT_ISAGG(desc->dtad_kind));
10533
10534 switch (desc->dtad_kind) {
10535 case DTRACEAGG_MIN:
10536 agg->dtag_initial = INT64_MAX;
10537 agg->dtag_aggregate = dtrace_aggregate_min;
10538 break;
10539
10540 case DTRACEAGG_MAX:
10541 agg->dtag_initial = INT64_MIN;
10542 agg->dtag_aggregate = dtrace_aggregate_max;
10543 break;
10544
10545 case DTRACEAGG_COUNT:
10546 agg->dtag_aggregate = dtrace_aggregate_count;
10547 break;
10548
10549 case DTRACEAGG_QUANTIZE:
10550 agg->dtag_aggregate = dtrace_aggregate_quantize;
10551 size = (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) *
10552 sizeof (uint64_t);
10553 break;
10554
10555 case DTRACEAGG_LQUANTIZE: {
10556 uint16_t step = DTRACE_LQUANTIZE_STEP(desc->dtad_arg);
10557 uint16_t levels = DTRACE_LQUANTIZE_LEVELS(desc->dtad_arg);
10558
10559 agg->dtag_initial = desc->dtad_arg;
10560 agg->dtag_aggregate = dtrace_aggregate_lquantize;
10561
10562 if (step == 0 || levels == 0)
10563 goto err;
10564
10565 size = levels * sizeof (uint64_t) + 3 * sizeof (uint64_t);
10566 break;
10567 }
10568
10569 case DTRACEAGG_LLQUANTIZE: {
10570 uint16_t factor = DTRACE_LLQUANTIZE_FACTOR(desc->dtad_arg);
10571 uint16_t low = DTRACE_LLQUANTIZE_LOW(desc->dtad_arg);
10572 uint16_t high = DTRACE_LLQUANTIZE_HIGH(desc->dtad_arg);
10573 uint16_t nsteps = DTRACE_LLQUANTIZE_NSTEP(desc->dtad_arg);
10574 int64_t v;
10575
10576 agg->dtag_initial = desc->dtad_arg;
10577 agg->dtag_aggregate = dtrace_aggregate_llquantize;
10578
10579 if (factor < 2 || low >= high || nsteps < factor)
10580 goto err;
10581
10582 /*
10583 * Now check that the number of steps evenly divides a power
10584 * of the factor. (This assures both integer bucket size and
10585 * linearity within each magnitude.)
10586 */
10587 for (v = factor; v < nsteps; v *= factor)
10588 continue;
10589
10590 if ((v % nsteps) || (nsteps % factor))
10591 goto err;
10592
10593 size = (dtrace_aggregate_llquantize_bucket(factor,
10594 low, high, nsteps, INT64_MAX) + 2) * sizeof (uint64_t);
10595 break;
10596 }
10597
10598 case DTRACEAGG_AVG:
10599 agg->dtag_aggregate = dtrace_aggregate_avg;
10600 size = sizeof (uint64_t) * 2;
10601 break;
10602
10603 case DTRACEAGG_STDDEV:
10604 agg->dtag_aggregate = dtrace_aggregate_stddev;
10605 size = sizeof (uint64_t) * 4;
10606 break;
10607
10608 case DTRACEAGG_SUM:
10609 agg->dtag_aggregate = dtrace_aggregate_sum;
10610 break;
10611
10612 default:
10613 goto err;
10614 }
10615
10616 agg->dtag_action.dta_rec.dtrd_size = size;
10617
10618 if (ntuple == 0)
10619 goto err;
10620
10621 /*
10622 * We must make sure that we have enough actions for the n-tuple.
10623 */
10624 for (act = ecb->dte_action_last; act != NULL; act = act->dta_prev) {
10625 if (DTRACEACT_ISAGG(act->dta_kind))
10626 break;
10627
10628 if (--ntuple == 0) {
10629 /*
10630 * This is the action with which our n-tuple begins.
10631 */
10632 agg->dtag_first = act;
10633 goto success;
10634 }
10635 }
10636
10637 /*
10638 * This n-tuple is short by ntuple elements. Return failure.
10639 */
10640 ASSERT(ntuple != 0);
10641 err:
10642 kmem_free(agg, sizeof (dtrace_aggregation_t));
10643 return (NULL);
10644
10645 success:
10646 /*
10647 * If the last action in the tuple has a size of zero, it's actually
10648 * an expression argument for the aggregating action.
10649 */
10650 ASSERT(ecb->dte_action_last != NULL);
10651 act = ecb->dte_action_last;
10652
10653 if (act->dta_kind == DTRACEACT_DIFEXPR) {
10654 ASSERT(act->dta_difo != NULL);
10655
10656 if (act->dta_difo->dtdo_rtype.dtdt_size == 0)
10657 agg->dtag_hasarg = 1;
10658 }
10659
10660 /*
10661 * We need to allocate an id for this aggregation.
10662 */
10663 aggid = (dtrace_aggid_t)(uintptr_t)vmem_alloc(state->dts_aggid_arena, 1,
10664 VM_BESTFIT | VM_SLEEP);
10665
10666 if (aggid - 1 >= state->dts_naggregations) {
10667 dtrace_aggregation_t **oaggs = state->dts_aggregations;
10668 dtrace_aggregation_t **aggs;
10669 int naggs = state->dts_naggregations << 1;
10670 int onaggs = state->dts_naggregations;
10671
10672 ASSERT(aggid == state->dts_naggregations + 1);
10673
10674 if (naggs == 0) {
10675 ASSERT(oaggs == NULL);
10676 naggs = 1;
10677 }
10678
10679 aggs = kmem_zalloc(naggs * sizeof (*aggs), KM_SLEEP);
10680
10681 if (oaggs != NULL) {
10682 bcopy(oaggs, aggs, onaggs * sizeof (*aggs));
10683 kmem_free(oaggs, onaggs * sizeof (*aggs));
10684 }
10685
10686 state->dts_aggregations = aggs;
10687 state->dts_naggregations = naggs;
10688 }
10689
10690 ASSERT(state->dts_aggregations[aggid - 1] == NULL);
10691 state->dts_aggregations[(agg->dtag_id = aggid) - 1] = agg;
10692
10693 frec = &agg->dtag_first->dta_rec;
10694 if (frec->dtrd_alignment < sizeof (dtrace_aggid_t))
10695 frec->dtrd_alignment = sizeof (dtrace_aggid_t);
10696
10697 for (act = agg->dtag_first; act != NULL; act = act->dta_next) {
10698 ASSERT(!act->dta_intuple);
10699 act->dta_intuple = 1;
10700 }
10701
10702 return (&agg->dtag_action);
10703 }
10704
10705 static void
dtrace_ecb_aggregation_destroy(dtrace_ecb_t * ecb,dtrace_action_t * act)10706 dtrace_ecb_aggregation_destroy(dtrace_ecb_t *ecb, dtrace_action_t *act)
10707 {
10708 dtrace_aggregation_t *agg = (dtrace_aggregation_t *)act;
10709 dtrace_state_t *state = ecb->dte_state;
10710 dtrace_aggid_t aggid = agg->dtag_id;
10711
10712 ASSERT(DTRACEACT_ISAGG(act->dta_kind));
10713 vmem_free(state->dts_aggid_arena, (void *)(uintptr_t)aggid, 1);
10714
10715 ASSERT(state->dts_aggregations[aggid - 1] == agg);
10716 state->dts_aggregations[aggid - 1] = NULL;
10717
10718 kmem_free(agg, sizeof (dtrace_aggregation_t));
10719 }
10720
10721 static int
dtrace_ecb_action_add(dtrace_ecb_t * ecb,dtrace_actdesc_t * desc)10722 dtrace_ecb_action_add(dtrace_ecb_t *ecb, dtrace_actdesc_t *desc)
10723 {
10724 dtrace_action_t *action, *last;
10725 dtrace_difo_t *dp = desc->dtad_difo;
10726 uint32_t size = 0, align = sizeof (uint8_t), mask;
10727 uint16_t format = 0;
10728 dtrace_recdesc_t *rec;
10729 dtrace_state_t *state = ecb->dte_state;
10730 dtrace_optval_t *opt = state->dts_options, nframes, strsize;
10731 uint64_t arg = desc->dtad_arg;
10732
10733 ASSERT(MUTEX_HELD(&dtrace_lock));
10734 ASSERT(ecb->dte_action == NULL || ecb->dte_action->dta_refcnt == 1);
10735
10736 if (DTRACEACT_ISAGG(desc->dtad_kind)) {
10737 /*
10738 * If this is an aggregating action, there must be neither
10739 * a speculate nor a commit on the action chain.
10740 */
10741 dtrace_action_t *act;
10742
10743 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
10744 if (act->dta_kind == DTRACEACT_COMMIT)
10745 return (EINVAL);
10746
10747 if (act->dta_kind == DTRACEACT_SPECULATE)
10748 return (EINVAL);
10749 }
10750
10751 action = dtrace_ecb_aggregation_create(ecb, desc);
10752
10753 if (action == NULL)
10754 return (EINVAL);
10755 } else {
10756 if (DTRACEACT_ISDESTRUCTIVE(desc->dtad_kind) ||
10757 (desc->dtad_kind == DTRACEACT_DIFEXPR &&
10758 dp != NULL && dp->dtdo_destructive)) {
10759 state->dts_destructive = 1;
10760 }
10761
10762 switch (desc->dtad_kind) {
10763 case DTRACEACT_PRINTF:
10764 case DTRACEACT_PRINTA:
10765 case DTRACEACT_SYSTEM:
10766 case DTRACEACT_FREOPEN:
10767 case DTRACEACT_DIFEXPR:
10768 /*
10769 * We know that our arg is a string -- turn it into a
10770 * format.
10771 */
10772 if (arg == NULL) {
10773 ASSERT(desc->dtad_kind == DTRACEACT_PRINTA ||
10774 desc->dtad_kind == DTRACEACT_DIFEXPR);
10775 format = 0;
10776 } else {
10777 ASSERT(arg != NULL);
10778 ASSERT(arg > KERNELBASE);
10779 format = dtrace_format_add(state,
10780 (char *)(uintptr_t)arg);
10781 }
10782
10783 /*FALLTHROUGH*/
10784 case DTRACEACT_LIBACT:
10785 case DTRACEACT_TRACEMEM:
10786 case DTRACEACT_TRACEMEM_DYNSIZE:
10787 if (dp == NULL)
10788 return (EINVAL);
10789
10790 if ((size = dp->dtdo_rtype.dtdt_size) != 0)
10791 break;
10792
10793 if (dp->dtdo_rtype.dtdt_kind == DIF_TYPE_STRING) {
10794 if (!(dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10795 return (EINVAL);
10796
10797 size = opt[DTRACEOPT_STRSIZE];
10798 }
10799
10800 break;
10801
10802 case DTRACEACT_STACK:
10803 if ((nframes = arg) == 0) {
10804 nframes = opt[DTRACEOPT_STACKFRAMES];
10805 ASSERT(nframes > 0);
10806 arg = nframes;
10807 }
10808
10809 size = nframes * sizeof (pc_t);
10810 break;
10811
10812 case DTRACEACT_JSTACK:
10813 if ((strsize = DTRACE_USTACK_STRSIZE(arg)) == 0)
10814 strsize = opt[DTRACEOPT_JSTACKSTRSIZE];
10815
10816 if ((nframes = DTRACE_USTACK_NFRAMES(arg)) == 0)
10817 nframes = opt[DTRACEOPT_JSTACKFRAMES];
10818
10819 arg = DTRACE_USTACK_ARG(nframes, strsize);
10820
10821 /*FALLTHROUGH*/
10822 case DTRACEACT_USTACK:
10823 if (desc->dtad_kind != DTRACEACT_JSTACK &&
10824 (nframes = DTRACE_USTACK_NFRAMES(arg)) == 0) {
10825 strsize = DTRACE_USTACK_STRSIZE(arg);
10826 nframes = opt[DTRACEOPT_USTACKFRAMES];
10827 ASSERT(nframes > 0);
10828 arg = DTRACE_USTACK_ARG(nframes, strsize);
10829 }
10830
10831 /*
10832 * Save a slot for the pid.
10833 */
10834 size = (nframes + 1) * sizeof (uint64_t);
10835 size += DTRACE_USTACK_STRSIZE(arg);
10836 size = P2ROUNDUP(size, (uint32_t)(sizeof (uintptr_t)));
10837
10838 break;
10839
10840 case DTRACEACT_SYM:
10841 case DTRACEACT_MOD:
10842 if (dp == NULL || ((size = dp->dtdo_rtype.dtdt_size) !=
10843 sizeof (uint64_t)) ||
10844 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10845 return (EINVAL);
10846 break;
10847
10848 case DTRACEACT_USYM:
10849 case DTRACEACT_UMOD:
10850 case DTRACEACT_UADDR:
10851 if (dp == NULL ||
10852 (dp->dtdo_rtype.dtdt_size != sizeof (uint64_t)) ||
10853 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10854 return (EINVAL);
10855
10856 /*
10857 * We have a slot for the pid, plus a slot for the
10858 * argument. To keep things simple (aligned with
10859 * bitness-neutral sizing), we store each as a 64-bit
10860 * quantity.
10861 */
10862 size = 2 * sizeof (uint64_t);
10863 break;
10864
10865 case DTRACEACT_STOP:
10866 case DTRACEACT_BREAKPOINT:
10867 case DTRACEACT_PANIC:
10868 break;
10869
10870 case DTRACEACT_CHILL:
10871 case DTRACEACT_DISCARD:
10872 case DTRACEACT_RAISE:
10873 if (dp == NULL)
10874 return (EINVAL);
10875 break;
10876
10877 case DTRACEACT_EXIT:
10878 if (dp == NULL ||
10879 (size = dp->dtdo_rtype.dtdt_size) != sizeof (int) ||
10880 (dp->dtdo_rtype.dtdt_flags & DIF_TF_BYREF))
10881 return (EINVAL);
10882 break;
10883
10884 case DTRACEACT_SPECULATE:
10885 if (ecb->dte_size > sizeof (dtrace_rechdr_t))
10886 return (EINVAL);
10887
10888 if (dp == NULL)
10889 return (EINVAL);
10890
10891 state->dts_speculates = 1;
10892 break;
10893
10894 case DTRACEACT_COMMIT: {
10895 dtrace_action_t *act = ecb->dte_action;
10896
10897 for (; act != NULL; act = act->dta_next) {
10898 if (act->dta_kind == DTRACEACT_COMMIT)
10899 return (EINVAL);
10900 }
10901
10902 if (dp == NULL)
10903 return (EINVAL);
10904 break;
10905 }
10906
10907 default:
10908 return (EINVAL);
10909 }
10910
10911 if (size != 0 || desc->dtad_kind == DTRACEACT_SPECULATE) {
10912 /*
10913 * If this is a data-storing action or a speculate,
10914 * we must be sure that there isn't a commit on the
10915 * action chain.
10916 */
10917 dtrace_action_t *act = ecb->dte_action;
10918
10919 for (; act != NULL; act = act->dta_next) {
10920 if (act->dta_kind == DTRACEACT_COMMIT)
10921 return (EINVAL);
10922 }
10923 }
10924
10925 action = kmem_zalloc(sizeof (dtrace_action_t), KM_SLEEP);
10926 action->dta_rec.dtrd_size = size;
10927 }
10928
10929 action->dta_refcnt = 1;
10930 rec = &action->dta_rec;
10931 size = rec->dtrd_size;
10932
10933 for (mask = sizeof (uint64_t) - 1; size != 0 && mask > 0; mask >>= 1) {
10934 if (!(size & mask)) {
10935 align = mask + 1;
10936 break;
10937 }
10938 }
10939
10940 action->dta_kind = desc->dtad_kind;
10941
10942 if ((action->dta_difo = dp) != NULL)
10943 dtrace_difo_hold(dp);
10944
10945 rec->dtrd_action = action->dta_kind;
10946 rec->dtrd_arg = arg;
10947 rec->dtrd_uarg = desc->dtad_uarg;
10948 rec->dtrd_alignment = (uint16_t)align;
10949 rec->dtrd_format = format;
10950
10951 if ((last = ecb->dte_action_last) != NULL) {
10952 ASSERT(ecb->dte_action != NULL);
10953 action->dta_prev = last;
10954 last->dta_next = action;
10955 } else {
10956 ASSERT(ecb->dte_action == NULL);
10957 ecb->dte_action = action;
10958 }
10959
10960 ecb->dte_action_last = action;
10961
10962 return (0);
10963 }
10964
10965 static void
dtrace_ecb_action_remove(dtrace_ecb_t * ecb)10966 dtrace_ecb_action_remove(dtrace_ecb_t *ecb)
10967 {
10968 dtrace_action_t *act = ecb->dte_action, *next;
10969 dtrace_vstate_t *vstate = &ecb->dte_state->dts_vstate;
10970 dtrace_difo_t *dp;
10971 uint16_t format;
10972
10973 if (act != NULL && act->dta_refcnt > 1) {
10974 ASSERT(act->dta_next == NULL || act->dta_next->dta_refcnt == 1);
10975 act->dta_refcnt--;
10976 } else {
10977 for (; act != NULL; act = next) {
10978 next = act->dta_next;
10979 ASSERT(next != NULL || act == ecb->dte_action_last);
10980 ASSERT(act->dta_refcnt == 1);
10981
10982 if ((format = act->dta_rec.dtrd_format) != 0)
10983 dtrace_format_remove(ecb->dte_state, format);
10984
10985 if ((dp = act->dta_difo) != NULL)
10986 dtrace_difo_release(dp, vstate);
10987
10988 if (DTRACEACT_ISAGG(act->dta_kind)) {
10989 dtrace_ecb_aggregation_destroy(ecb, act);
10990 } else {
10991 kmem_free(act, sizeof (dtrace_action_t));
10992 }
10993 }
10994 }
10995
10996 ecb->dte_action = NULL;
10997 ecb->dte_action_last = NULL;
10998 ecb->dte_size = 0;
10999 }
11000
11001 static void
dtrace_ecb_disable(dtrace_ecb_t * ecb)11002 dtrace_ecb_disable(dtrace_ecb_t *ecb)
11003 {
11004 /*
11005 * We disable the ECB by removing it from its probe.
11006 */
11007 dtrace_ecb_t *pecb, *prev = NULL;
11008 dtrace_probe_t *probe = ecb->dte_probe;
11009
11010 ASSERT(MUTEX_HELD(&dtrace_lock));
11011
11012 if (probe == NULL) {
11013 /*
11014 * This is the NULL probe; there is nothing to disable.
11015 */
11016 return;
11017 }
11018
11019 for (pecb = probe->dtpr_ecb; pecb != NULL; pecb = pecb->dte_next) {
11020 if (pecb == ecb)
11021 break;
11022 prev = pecb;
11023 }
11024
11025 ASSERT(pecb != NULL);
11026
11027 if (prev == NULL) {
11028 probe->dtpr_ecb = ecb->dte_next;
11029 } else {
11030 prev->dte_next = ecb->dte_next;
11031 }
11032
11033 if (ecb == probe->dtpr_ecb_last) {
11034 ASSERT(ecb->dte_next == NULL);
11035 probe->dtpr_ecb_last = prev;
11036 }
11037
11038 /*
11039 * The ECB has been disconnected from the probe; now sync to assure
11040 * that all CPUs have seen the change before returning.
11041 */
11042 dtrace_sync();
11043
11044 if (probe->dtpr_ecb == NULL) {
11045 /*
11046 * That was the last ECB on the probe; clear the predicate
11047 * cache ID for the probe, disable it and sync one more time
11048 * to assure that we'll never hit it again.
11049 */
11050 dtrace_provider_t *prov = probe->dtpr_provider;
11051
11052 ASSERT(ecb->dte_next == NULL);
11053 ASSERT(probe->dtpr_ecb_last == NULL);
11054 probe->dtpr_predcache = DTRACE_CACHEIDNONE;
11055 prov->dtpv_pops.dtps_disable(prov->dtpv_arg,
11056 probe->dtpr_id, probe->dtpr_arg);
11057 dtrace_sync();
11058 } else {
11059 /*
11060 * There is at least one ECB remaining on the probe. If there
11061 * is _exactly_ one, set the probe's predicate cache ID to be
11062 * the predicate cache ID of the remaining ECB.
11063 */
11064 ASSERT(probe->dtpr_ecb_last != NULL);
11065 ASSERT(probe->dtpr_predcache == DTRACE_CACHEIDNONE);
11066
11067 if (probe->dtpr_ecb == probe->dtpr_ecb_last) {
11068 dtrace_predicate_t *p = probe->dtpr_ecb->dte_predicate;
11069
11070 ASSERT(probe->dtpr_ecb->dte_next == NULL);
11071
11072 if (p != NULL)
11073 probe->dtpr_predcache = p->dtp_cacheid;
11074 }
11075
11076 ecb->dte_next = NULL;
11077 }
11078 }
11079
11080 static void
dtrace_ecb_destroy(dtrace_ecb_t * ecb)11081 dtrace_ecb_destroy(dtrace_ecb_t *ecb)
11082 {
11083 dtrace_state_t *state = ecb->dte_state;
11084 dtrace_vstate_t *vstate = &state->dts_vstate;
11085 dtrace_predicate_t *pred;
11086 dtrace_epid_t epid = ecb->dte_epid;
11087
11088 ASSERT(MUTEX_HELD(&dtrace_lock));
11089 ASSERT(ecb->dte_next == NULL);
11090 ASSERT(ecb->dte_probe == NULL || ecb->dte_probe->dtpr_ecb != ecb);
11091
11092 if ((pred = ecb->dte_predicate) != NULL)
11093 dtrace_predicate_release(pred, vstate);
11094
11095 dtrace_ecb_action_remove(ecb);
11096
11097 ASSERT(state->dts_ecbs[epid - 1] == ecb);
11098 state->dts_ecbs[epid - 1] = NULL;
11099
11100 kmem_free(ecb, sizeof (dtrace_ecb_t));
11101 }
11102
11103 static dtrace_ecb_t *
dtrace_ecb_create(dtrace_state_t * state,dtrace_probe_t * probe,dtrace_enabling_t * enab)11104 dtrace_ecb_create(dtrace_state_t *state, dtrace_probe_t *probe,
11105 dtrace_enabling_t *enab)
11106 {
11107 dtrace_ecb_t *ecb;
11108 dtrace_predicate_t *pred;
11109 dtrace_actdesc_t *act;
11110 dtrace_provider_t *prov;
11111 dtrace_ecbdesc_t *desc = enab->dten_current;
11112
11113 ASSERT(MUTEX_HELD(&dtrace_lock));
11114 ASSERT(state != NULL);
11115
11116 ecb = dtrace_ecb_add(state, probe);
11117 ecb->dte_uarg = desc->dted_uarg;
11118
11119 if ((pred = desc->dted_pred.dtpdd_predicate) != NULL) {
11120 dtrace_predicate_hold(pred);
11121 ecb->dte_predicate = pred;
11122 }
11123
11124 if (probe != NULL) {
11125 /*
11126 * If the provider shows more leg than the consumer is old
11127 * enough to see, we need to enable the appropriate implicit
11128 * predicate bits to prevent the ecb from activating at
11129 * revealing times.
11130 *
11131 * Providers specifying DTRACE_PRIV_USER at register time
11132 * are stating that they need the /proc-style privilege
11133 * model to be enforced, and this is what DTRACE_COND_OWNER
11134 * and DTRACE_COND_ZONEOWNER will then do at probe time.
11135 */
11136 prov = probe->dtpr_provider;
11137 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLPROC) &&
11138 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11139 ecb->dte_cond |= DTRACE_COND_OWNER;
11140
11141 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_ALLZONE) &&
11142 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_USER))
11143 ecb->dte_cond |= DTRACE_COND_ZONEOWNER;
11144
11145 /*
11146 * If the provider shows us kernel innards and the user
11147 * is lacking sufficient privilege, enable the
11148 * DTRACE_COND_USERMODE implicit predicate.
11149 */
11150 if (!(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL) &&
11151 (prov->dtpv_priv.dtpp_flags & DTRACE_PRIV_KERNEL))
11152 ecb->dte_cond |= DTRACE_COND_USERMODE;
11153 }
11154
11155 if (dtrace_ecb_create_cache != NULL) {
11156 /*
11157 * If we have a cached ecb, we'll use its action list instead
11158 * of creating our own (saving both time and space).
11159 */
11160 dtrace_ecb_t *cached = dtrace_ecb_create_cache;
11161 dtrace_action_t *act = cached->dte_action;
11162
11163 if (act != NULL) {
11164 ASSERT(act->dta_refcnt > 0);
11165 act->dta_refcnt++;
11166 ecb->dte_action = act;
11167 ecb->dte_action_last = cached->dte_action_last;
11168 ecb->dte_needed = cached->dte_needed;
11169 ecb->dte_size = cached->dte_size;
11170 ecb->dte_alignment = cached->dte_alignment;
11171 }
11172
11173 return (ecb);
11174 }
11175
11176 for (act = desc->dted_action; act != NULL; act = act->dtad_next) {
11177 if ((enab->dten_error = dtrace_ecb_action_add(ecb, act)) != 0) {
11178 dtrace_ecb_destroy(ecb);
11179 return (NULL);
11180 }
11181 }
11182
11183 dtrace_ecb_resize(ecb);
11184
11185 return (dtrace_ecb_create_cache = ecb);
11186 }
11187
11188 static int
dtrace_ecb_create_enable(dtrace_probe_t * probe,void * arg)11189 dtrace_ecb_create_enable(dtrace_probe_t *probe, void *arg)
11190 {
11191 dtrace_ecb_t *ecb;
11192 dtrace_enabling_t *enab = arg;
11193 dtrace_state_t *state = enab->dten_vstate->dtvs_state;
11194
11195 ASSERT(state != NULL);
11196
11197 if (probe != NULL && probe->dtpr_gen < enab->dten_probegen) {
11198 /*
11199 * This probe was created in a generation for which this
11200 * enabling has previously created ECBs; we don't want to
11201 * enable it again, so just kick out.
11202 */
11203 return (DTRACE_MATCH_NEXT);
11204 }
11205
11206 if ((ecb = dtrace_ecb_create(state, probe, enab)) == NULL)
11207 return (DTRACE_MATCH_DONE);
11208
11209 if (dtrace_ecb_enable(ecb) < 0)
11210 return (DTRACE_MATCH_FAIL);
11211
11212 return (DTRACE_MATCH_NEXT);
11213 }
11214
11215 static dtrace_ecb_t *
dtrace_epid2ecb(dtrace_state_t * state,dtrace_epid_t id)11216 dtrace_epid2ecb(dtrace_state_t *state, dtrace_epid_t id)
11217 {
11218 dtrace_ecb_t *ecb;
11219
11220 ASSERT(MUTEX_HELD(&dtrace_lock));
11221
11222 if (id == 0 || id > state->dts_necbs)
11223 return (NULL);
11224
11225 ASSERT(state->dts_necbs > 0 && state->dts_ecbs != NULL);
11226 ASSERT((ecb = state->dts_ecbs[id - 1]) == NULL || ecb->dte_epid == id);
11227
11228 return (state->dts_ecbs[id - 1]);
11229 }
11230
11231 static dtrace_aggregation_t *
dtrace_aggid2agg(dtrace_state_t * state,dtrace_aggid_t id)11232 dtrace_aggid2agg(dtrace_state_t *state, dtrace_aggid_t id)
11233 {
11234 dtrace_aggregation_t *agg;
11235
11236 ASSERT(MUTEX_HELD(&dtrace_lock));
11237
11238 if (id == 0 || id > state->dts_naggregations)
11239 return (NULL);
11240
11241 ASSERT(state->dts_naggregations > 0 && state->dts_aggregations != NULL);
11242 ASSERT((agg = state->dts_aggregations[id - 1]) == NULL ||
11243 agg->dtag_id == id);
11244
11245 return (state->dts_aggregations[id - 1]);
11246 }
11247
11248 /*
11249 * DTrace Buffer Functions
11250 *
11251 * The following functions manipulate DTrace buffers. Most of these functions
11252 * are called in the context of establishing or processing consumer state;
11253 * exceptions are explicitly noted.
11254 */
11255
11256 /*
11257 * Note: called from cross call context. This function switches the two
11258 * buffers on a given CPU. The atomicity of this operation is assured by
11259 * disabling interrupts while the actual switch takes place; the disabling of
11260 * interrupts serializes the execution with any execution of dtrace_probe() on
11261 * the same CPU.
11262 */
11263 static void
dtrace_buffer_switch(dtrace_buffer_t * buf)11264 dtrace_buffer_switch(dtrace_buffer_t *buf)
11265 {
11266 caddr_t tomax = buf->dtb_tomax;
11267 caddr_t xamot = buf->dtb_xamot;
11268 dtrace_icookie_t cookie;
11269 hrtime_t now;
11270
11271 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11272 ASSERT(!(buf->dtb_flags & DTRACEBUF_RING));
11273
11274 cookie = dtrace_interrupt_disable();
11275 now = dtrace_gethrtime();
11276 buf->dtb_tomax = xamot;
11277 buf->dtb_xamot = tomax;
11278 buf->dtb_xamot_drops = buf->dtb_drops;
11279 buf->dtb_xamot_offset = buf->dtb_offset;
11280 buf->dtb_xamot_errors = buf->dtb_errors;
11281 buf->dtb_xamot_flags = buf->dtb_flags;
11282 buf->dtb_offset = 0;
11283 buf->dtb_drops = 0;
11284 buf->dtb_errors = 0;
11285 buf->dtb_flags &= ~(DTRACEBUF_ERROR | DTRACEBUF_DROPPED);
11286 buf->dtb_interval = now - buf->dtb_switched;
11287 buf->dtb_switched = now;
11288 dtrace_interrupt_enable(cookie);
11289 }
11290
11291 /*
11292 * Note: called from cross call context. This function activates a buffer
11293 * on a CPU. As with dtrace_buffer_switch(), the atomicity of the operation
11294 * is guaranteed by the disabling of interrupts.
11295 */
11296 static void
dtrace_buffer_activate(dtrace_state_t * state)11297 dtrace_buffer_activate(dtrace_state_t *state)
11298 {
11299 dtrace_buffer_t *buf;
11300 dtrace_icookie_t cookie = dtrace_interrupt_disable();
11301
11302 buf = &state->dts_buffer[CPU->cpu_id];
11303
11304 if (buf->dtb_tomax != NULL) {
11305 /*
11306 * We might like to assert that the buffer is marked inactive,
11307 * but this isn't necessarily true: the buffer for the CPU
11308 * that processes the BEGIN probe has its buffer activated
11309 * manually. In this case, we take the (harmless) action
11310 * re-clearing the bit INACTIVE bit.
11311 */
11312 buf->dtb_flags &= ~DTRACEBUF_INACTIVE;
11313 }
11314
11315 dtrace_interrupt_enable(cookie);
11316 }
11317
11318 static int
dtrace_buffer_alloc(dtrace_buffer_t * bufs,size_t size,int flags,processorid_t cpu,int * factor)11319 dtrace_buffer_alloc(dtrace_buffer_t *bufs, size_t size, int flags,
11320 processorid_t cpu, int *factor)
11321 {
11322 cpu_t *cp;
11323 dtrace_buffer_t *buf;
11324 int allocated = 0, desired = 0;
11325
11326 ASSERT(MUTEX_HELD(&cpu_lock));
11327 ASSERT(MUTEX_HELD(&dtrace_lock));
11328
11329 *factor = 1;
11330
11331 if (size > dtrace_nonroot_maxsize &&
11332 !PRIV_POLICY_CHOICE(CRED(), PRIV_ALL, B_FALSE))
11333 return (EFBIG);
11334
11335 cp = cpu_list;
11336
11337 do {
11338 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11339 continue;
11340
11341 buf = &bufs[cp->cpu_id];
11342
11343 /*
11344 * If there is already a buffer allocated for this CPU, it
11345 * is only possible that this is a DR event. In this case,
11346 * the buffer size must match our specified size.
11347 */
11348 if (buf->dtb_tomax != NULL) {
11349 ASSERT(buf->dtb_size == size);
11350 continue;
11351 }
11352
11353 ASSERT(buf->dtb_xamot == NULL);
11354
11355 if ((buf->dtb_tomax = kmem_zalloc(size,
11356 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11357 goto err;
11358
11359 buf->dtb_size = size;
11360 buf->dtb_flags = flags;
11361 buf->dtb_offset = 0;
11362 buf->dtb_drops = 0;
11363
11364 if (flags & DTRACEBUF_NOSWITCH)
11365 continue;
11366
11367 if ((buf->dtb_xamot = kmem_zalloc(size,
11368 KM_NOSLEEP | KM_NORMALPRI)) == NULL)
11369 goto err;
11370 } while ((cp = cp->cpu_next) != cpu_list);
11371
11372 return (0);
11373
11374 err:
11375 cp = cpu_list;
11376
11377 do {
11378 if (cpu != DTRACE_CPUALL && cpu != cp->cpu_id)
11379 continue;
11380
11381 buf = &bufs[cp->cpu_id];
11382 desired += 2;
11383
11384 if (buf->dtb_xamot != NULL) {
11385 ASSERT(buf->dtb_tomax != NULL);
11386 ASSERT(buf->dtb_size == size);
11387 kmem_free(buf->dtb_xamot, size);
11388 allocated++;
11389 }
11390
11391 if (buf->dtb_tomax != NULL) {
11392 ASSERT(buf->dtb_size == size);
11393 kmem_free(buf->dtb_tomax, size);
11394 allocated++;
11395 }
11396
11397 buf->dtb_tomax = NULL;
11398 buf->dtb_xamot = NULL;
11399 buf->dtb_size = 0;
11400 } while ((cp = cp->cpu_next) != cpu_list);
11401
11402 *factor = desired / (allocated > 0 ? allocated : 1);
11403
11404 return (ENOMEM);
11405 }
11406
11407 /*
11408 * Note: called from probe context. This function just increments the drop
11409 * count on a buffer. It has been made a function to allow for the
11410 * possibility of understanding the source of mysterious drop counts. (A
11411 * problem for which one may be particularly disappointed that DTrace cannot
11412 * be used to understand DTrace.)
11413 */
11414 static void
dtrace_buffer_drop(dtrace_buffer_t * buf)11415 dtrace_buffer_drop(dtrace_buffer_t *buf)
11416 {
11417 buf->dtb_drops++;
11418 }
11419
11420 /*
11421 * Note: called from probe context. This function is called to reserve space
11422 * in a buffer. If mstate is non-NULL, sets the scratch base and size in the
11423 * mstate. Returns the new offset in the buffer, or a negative value if an
11424 * error has occurred.
11425 */
11426 static intptr_t
dtrace_buffer_reserve(dtrace_buffer_t * buf,size_t needed,size_t align,dtrace_state_t * state,dtrace_mstate_t * mstate)11427 dtrace_buffer_reserve(dtrace_buffer_t *buf, size_t needed, size_t align,
11428 dtrace_state_t *state, dtrace_mstate_t *mstate)
11429 {
11430 intptr_t offs = buf->dtb_offset, soffs;
11431 intptr_t woffs;
11432 caddr_t tomax;
11433 size_t total;
11434
11435 if (buf->dtb_flags & DTRACEBUF_INACTIVE)
11436 return (-1);
11437
11438 if ((tomax = buf->dtb_tomax) == NULL) {
11439 dtrace_buffer_drop(buf);
11440 return (-1);
11441 }
11442
11443 if (!(buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL))) {
11444 while (offs & (align - 1)) {
11445 /*
11446 * Assert that our alignment is off by a number which
11447 * is itself sizeof (uint32_t) aligned.
11448 */
11449 ASSERT(!((align - (offs & (align - 1))) &
11450 (sizeof (uint32_t) - 1)));
11451 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11452 offs += sizeof (uint32_t);
11453 }
11454
11455 if ((soffs = offs + needed) > buf->dtb_size) {
11456 dtrace_buffer_drop(buf);
11457 return (-1);
11458 }
11459
11460 if (mstate == NULL)
11461 return (offs);
11462
11463 mstate->dtms_scratch_base = (uintptr_t)tomax + soffs;
11464 mstate->dtms_scratch_size = buf->dtb_size - soffs;
11465 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11466
11467 return (offs);
11468 }
11469
11470 if (buf->dtb_flags & DTRACEBUF_FILL) {
11471 if (state->dts_activity != DTRACE_ACTIVITY_COOLDOWN &&
11472 (buf->dtb_flags & DTRACEBUF_FULL))
11473 return (-1);
11474 goto out;
11475 }
11476
11477 total = needed + (offs & (align - 1));
11478
11479 /*
11480 * For a ring buffer, life is quite a bit more complicated. Before
11481 * we can store any padding, we need to adjust our wrapping offset.
11482 * (If we've never before wrapped or we're not about to, no adjustment
11483 * is required.)
11484 */
11485 if ((buf->dtb_flags & DTRACEBUF_WRAPPED) ||
11486 offs + total > buf->dtb_size) {
11487 woffs = buf->dtb_xamot_offset;
11488
11489 if (offs + total > buf->dtb_size) {
11490 /*
11491 * We can't fit in the end of the buffer. First, a
11492 * sanity check that we can fit in the buffer at all.
11493 */
11494 if (total > buf->dtb_size) {
11495 dtrace_buffer_drop(buf);
11496 return (-1);
11497 }
11498
11499 /*
11500 * We're going to be storing at the top of the buffer,
11501 * so now we need to deal with the wrapped offset. We
11502 * only reset our wrapped offset to 0 if it is
11503 * currently greater than the current offset. If it
11504 * is less than the current offset, it is because a
11505 * previous allocation induced a wrap -- but the
11506 * allocation didn't subsequently take the space due
11507 * to an error or false predicate evaluation. In this
11508 * case, we'll just leave the wrapped offset alone: if
11509 * the wrapped offset hasn't been advanced far enough
11510 * for this allocation, it will be adjusted in the
11511 * lower loop.
11512 */
11513 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
11514 if (woffs >= offs)
11515 woffs = 0;
11516 } else {
11517 woffs = 0;
11518 }
11519
11520 /*
11521 * Now we know that we're going to be storing to the
11522 * top of the buffer and that there is room for us
11523 * there. We need to clear the buffer from the current
11524 * offset to the end (there may be old gunk there).
11525 */
11526 while (offs < buf->dtb_size)
11527 tomax[offs++] = 0;
11528
11529 /*
11530 * We need to set our offset to zero. And because we
11531 * are wrapping, we need to set the bit indicating as
11532 * much. We can also adjust our needed space back
11533 * down to the space required by the ECB -- we know
11534 * that the top of the buffer is aligned.
11535 */
11536 offs = 0;
11537 total = needed;
11538 buf->dtb_flags |= DTRACEBUF_WRAPPED;
11539 } else {
11540 /*
11541 * There is room for us in the buffer, so we simply
11542 * need to check the wrapped offset.
11543 */
11544 if (woffs < offs) {
11545 /*
11546 * The wrapped offset is less than the offset.
11547 * This can happen if we allocated buffer space
11548 * that induced a wrap, but then we didn't
11549 * subsequently take the space due to an error
11550 * or false predicate evaluation. This is
11551 * okay; we know that _this_ allocation isn't
11552 * going to induce a wrap. We still can't
11553 * reset the wrapped offset to be zero,
11554 * however: the space may have been trashed in
11555 * the previous failed probe attempt. But at
11556 * least the wrapped offset doesn't need to
11557 * be adjusted at all...
11558 */
11559 goto out;
11560 }
11561 }
11562
11563 while (offs + total > woffs) {
11564 dtrace_epid_t epid = *(uint32_t *)(tomax + woffs);
11565 size_t size;
11566
11567 if (epid == DTRACE_EPIDNONE) {
11568 size = sizeof (uint32_t);
11569 } else {
11570 ASSERT3U(epid, <=, state->dts_necbs);
11571 ASSERT(state->dts_ecbs[epid - 1] != NULL);
11572
11573 size = state->dts_ecbs[epid - 1]->dte_size;
11574 }
11575
11576 ASSERT(woffs + size <= buf->dtb_size);
11577 ASSERT(size != 0);
11578
11579 if (woffs + size == buf->dtb_size) {
11580 /*
11581 * We've reached the end of the buffer; we want
11582 * to set the wrapped offset to 0 and break
11583 * out. However, if the offs is 0, then we're
11584 * in a strange edge-condition: the amount of
11585 * space that we want to reserve plus the size
11586 * of the record that we're overwriting is
11587 * greater than the size of the buffer. This
11588 * is problematic because if we reserve the
11589 * space but subsequently don't consume it (due
11590 * to a failed predicate or error) the wrapped
11591 * offset will be 0 -- yet the EPID at offset 0
11592 * will not be committed. This situation is
11593 * relatively easy to deal with: if we're in
11594 * this case, the buffer is indistinguishable
11595 * from one that hasn't wrapped; we need only
11596 * finish the job by clearing the wrapped bit,
11597 * explicitly setting the offset to be 0, and
11598 * zero'ing out the old data in the buffer.
11599 */
11600 if (offs == 0) {
11601 buf->dtb_flags &= ~DTRACEBUF_WRAPPED;
11602 buf->dtb_offset = 0;
11603 woffs = total;
11604
11605 while (woffs < buf->dtb_size)
11606 tomax[woffs++] = 0;
11607 }
11608
11609 woffs = 0;
11610 break;
11611 }
11612
11613 woffs += size;
11614 }
11615
11616 /*
11617 * We have a wrapped offset. It may be that the wrapped offset
11618 * has become zero -- that's okay.
11619 */
11620 buf->dtb_xamot_offset = woffs;
11621 }
11622
11623 out:
11624 /*
11625 * Now we can plow the buffer with any necessary padding.
11626 */
11627 while (offs & (align - 1)) {
11628 /*
11629 * Assert that our alignment is off by a number which
11630 * is itself sizeof (uint32_t) aligned.
11631 */
11632 ASSERT(!((align - (offs & (align - 1))) &
11633 (sizeof (uint32_t) - 1)));
11634 DTRACE_STORE(uint32_t, tomax, offs, DTRACE_EPIDNONE);
11635 offs += sizeof (uint32_t);
11636 }
11637
11638 if (buf->dtb_flags & DTRACEBUF_FILL) {
11639 if (offs + needed > buf->dtb_size - state->dts_reserve) {
11640 buf->dtb_flags |= DTRACEBUF_FULL;
11641 return (-1);
11642 }
11643 }
11644
11645 if (mstate == NULL)
11646 return (offs);
11647
11648 /*
11649 * For ring buffers and fill buffers, the scratch space is always
11650 * the inactive buffer.
11651 */
11652 mstate->dtms_scratch_base = (uintptr_t)buf->dtb_xamot;
11653 mstate->dtms_scratch_size = buf->dtb_size;
11654 mstate->dtms_scratch_ptr = mstate->dtms_scratch_base;
11655
11656 return (offs);
11657 }
11658
11659 static void
dtrace_buffer_polish(dtrace_buffer_t * buf)11660 dtrace_buffer_polish(dtrace_buffer_t *buf)
11661 {
11662 ASSERT(buf->dtb_flags & DTRACEBUF_RING);
11663 ASSERT(MUTEX_HELD(&dtrace_lock));
11664
11665 if (!(buf->dtb_flags & DTRACEBUF_WRAPPED))
11666 return;
11667
11668 /*
11669 * We need to polish the ring buffer. There are three cases:
11670 *
11671 * - The first (and presumably most common) is that there is no gap
11672 * between the buffer offset and the wrapped offset. In this case,
11673 * there is nothing in the buffer that isn't valid data; we can
11674 * mark the buffer as polished and return.
11675 *
11676 * - The second (less common than the first but still more common
11677 * than the third) is that there is a gap between the buffer offset
11678 * and the wrapped offset, and the wrapped offset is larger than the
11679 * buffer offset. This can happen because of an alignment issue, or
11680 * can happen because of a call to dtrace_buffer_reserve() that
11681 * didn't subsequently consume the buffer space. In this case,
11682 * we need to zero the data from the buffer offset to the wrapped
11683 * offset.
11684 *
11685 * - The third (and least common) is that there is a gap between the
11686 * buffer offset and the wrapped offset, but the wrapped offset is
11687 * _less_ than the buffer offset. This can only happen because a
11688 * call to dtrace_buffer_reserve() induced a wrap, but the space
11689 * was not subsequently consumed. In this case, we need to zero the
11690 * space from the offset to the end of the buffer _and_ from the
11691 * top of the buffer to the wrapped offset.
11692 */
11693 if (buf->dtb_offset < buf->dtb_xamot_offset) {
11694 bzero(buf->dtb_tomax + buf->dtb_offset,
11695 buf->dtb_xamot_offset - buf->dtb_offset);
11696 }
11697
11698 if (buf->dtb_offset > buf->dtb_xamot_offset) {
11699 bzero(buf->dtb_tomax + buf->dtb_offset,
11700 buf->dtb_size - buf->dtb_offset);
11701 bzero(buf->dtb_tomax, buf->dtb_xamot_offset);
11702 }
11703 }
11704
11705 /*
11706 * This routine determines if data generated at the specified time has likely
11707 * been entirely consumed at user-level. This routine is called to determine
11708 * if an ECB on a defunct probe (but for an active enabling) can be safely
11709 * disabled and destroyed.
11710 */
11711 static int
dtrace_buffer_consumed(dtrace_buffer_t * bufs,hrtime_t when)11712 dtrace_buffer_consumed(dtrace_buffer_t *bufs, hrtime_t when)
11713 {
11714 int i;
11715
11716 for (i = 0; i < NCPU; i++) {
11717 dtrace_buffer_t *buf = &bufs[i];
11718
11719 if (buf->dtb_size == 0)
11720 continue;
11721
11722 if (buf->dtb_flags & DTRACEBUF_RING)
11723 return (0);
11724
11725 if (!buf->dtb_switched && buf->dtb_offset != 0)
11726 return (0);
11727
11728 if (buf->dtb_switched - buf->dtb_interval < when)
11729 return (0);
11730 }
11731
11732 return (1);
11733 }
11734
11735 static void
dtrace_buffer_free(dtrace_buffer_t * bufs)11736 dtrace_buffer_free(dtrace_buffer_t *bufs)
11737 {
11738 int i;
11739
11740 for (i = 0; i < NCPU; i++) {
11741 dtrace_buffer_t *buf = &bufs[i];
11742
11743 if (buf->dtb_tomax == NULL) {
11744 ASSERT(buf->dtb_xamot == NULL);
11745 ASSERT(buf->dtb_size == 0);
11746 continue;
11747 }
11748
11749 if (buf->dtb_xamot != NULL) {
11750 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
11751 kmem_free(buf->dtb_xamot, buf->dtb_size);
11752 }
11753
11754 kmem_free(buf->dtb_tomax, buf->dtb_size);
11755 buf->dtb_size = 0;
11756 buf->dtb_tomax = NULL;
11757 buf->dtb_xamot = NULL;
11758 }
11759 }
11760
11761 /*
11762 * DTrace Enabling Functions
11763 */
11764 static dtrace_enabling_t *
dtrace_enabling_create(dtrace_vstate_t * vstate)11765 dtrace_enabling_create(dtrace_vstate_t *vstate)
11766 {
11767 dtrace_enabling_t *enab;
11768
11769 enab = kmem_zalloc(sizeof (dtrace_enabling_t), KM_SLEEP);
11770 enab->dten_vstate = vstate;
11771
11772 return (enab);
11773 }
11774
11775 static void
dtrace_enabling_add(dtrace_enabling_t * enab,dtrace_ecbdesc_t * ecb)11776 dtrace_enabling_add(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb)
11777 {
11778 dtrace_ecbdesc_t **ndesc;
11779 size_t osize, nsize;
11780
11781 /*
11782 * We can't add to enablings after we've enabled them, or after we've
11783 * retained them.
11784 */
11785 ASSERT(enab->dten_probegen == 0);
11786 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11787
11788 if (enab->dten_ndesc < enab->dten_maxdesc) {
11789 enab->dten_desc[enab->dten_ndesc++] = ecb;
11790 return;
11791 }
11792
11793 osize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11794
11795 if (enab->dten_maxdesc == 0) {
11796 enab->dten_maxdesc = 1;
11797 } else {
11798 enab->dten_maxdesc <<= 1;
11799 }
11800
11801 ASSERT(enab->dten_ndesc < enab->dten_maxdesc);
11802
11803 nsize = enab->dten_maxdesc * sizeof (dtrace_enabling_t *);
11804 ndesc = kmem_zalloc(nsize, KM_SLEEP);
11805 bcopy(enab->dten_desc, ndesc, osize);
11806 kmem_free(enab->dten_desc, osize);
11807
11808 enab->dten_desc = ndesc;
11809 enab->dten_desc[enab->dten_ndesc++] = ecb;
11810 }
11811
11812 static void
dtrace_enabling_addlike(dtrace_enabling_t * enab,dtrace_ecbdesc_t * ecb,dtrace_probedesc_t * pd)11813 dtrace_enabling_addlike(dtrace_enabling_t *enab, dtrace_ecbdesc_t *ecb,
11814 dtrace_probedesc_t *pd)
11815 {
11816 dtrace_ecbdesc_t *new;
11817 dtrace_predicate_t *pred;
11818 dtrace_actdesc_t *act;
11819
11820 /*
11821 * We're going to create a new ECB description that matches the
11822 * specified ECB in every way, but has the specified probe description.
11823 */
11824 new = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
11825
11826 if ((pred = ecb->dted_pred.dtpdd_predicate) != NULL)
11827 dtrace_predicate_hold(pred);
11828
11829 for (act = ecb->dted_action; act != NULL; act = act->dtad_next)
11830 dtrace_actdesc_hold(act);
11831
11832 new->dted_action = ecb->dted_action;
11833 new->dted_pred = ecb->dted_pred;
11834 new->dted_probe = *pd;
11835 new->dted_uarg = ecb->dted_uarg;
11836
11837 dtrace_enabling_add(enab, new);
11838 }
11839
11840 static void
dtrace_enabling_dump(dtrace_enabling_t * enab)11841 dtrace_enabling_dump(dtrace_enabling_t *enab)
11842 {
11843 int i;
11844
11845 for (i = 0; i < enab->dten_ndesc; i++) {
11846 dtrace_probedesc_t *desc = &enab->dten_desc[i]->dted_probe;
11847
11848 cmn_err(CE_NOTE, "enabling probe %d (%s:%s:%s:%s)", i,
11849 desc->dtpd_provider, desc->dtpd_mod,
11850 desc->dtpd_func, desc->dtpd_name);
11851 }
11852 }
11853
11854 static void
dtrace_enabling_destroy(dtrace_enabling_t * enab)11855 dtrace_enabling_destroy(dtrace_enabling_t *enab)
11856 {
11857 int i;
11858 dtrace_ecbdesc_t *ep;
11859 dtrace_vstate_t *vstate = enab->dten_vstate;
11860
11861 ASSERT(MUTEX_HELD(&dtrace_lock));
11862
11863 for (i = 0; i < enab->dten_ndesc; i++) {
11864 dtrace_actdesc_t *act, *next;
11865 dtrace_predicate_t *pred;
11866
11867 ep = enab->dten_desc[i];
11868
11869 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL)
11870 dtrace_predicate_release(pred, vstate);
11871
11872 for (act = ep->dted_action; act != NULL; act = next) {
11873 next = act->dtad_next;
11874 dtrace_actdesc_release(act, vstate);
11875 }
11876
11877 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
11878 }
11879
11880 kmem_free(enab->dten_desc,
11881 enab->dten_maxdesc * sizeof (dtrace_enabling_t *));
11882
11883 /*
11884 * If this was a retained enabling, decrement the dts_nretained count
11885 * and take it off of the dtrace_retained list.
11886 */
11887 if (enab->dten_prev != NULL || enab->dten_next != NULL ||
11888 dtrace_retained == enab) {
11889 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11890 ASSERT(enab->dten_vstate->dtvs_state->dts_nretained > 0);
11891 enab->dten_vstate->dtvs_state->dts_nretained--;
11892 dtrace_retained_gen++;
11893 }
11894
11895 if (enab->dten_prev == NULL) {
11896 if (dtrace_retained == enab) {
11897 dtrace_retained = enab->dten_next;
11898
11899 if (dtrace_retained != NULL)
11900 dtrace_retained->dten_prev = NULL;
11901 }
11902 } else {
11903 ASSERT(enab != dtrace_retained);
11904 ASSERT(dtrace_retained != NULL);
11905 enab->dten_prev->dten_next = enab->dten_next;
11906 }
11907
11908 if (enab->dten_next != NULL) {
11909 ASSERT(dtrace_retained != NULL);
11910 enab->dten_next->dten_prev = enab->dten_prev;
11911 }
11912
11913 kmem_free(enab, sizeof (dtrace_enabling_t));
11914 }
11915
11916 static int
dtrace_enabling_retain(dtrace_enabling_t * enab)11917 dtrace_enabling_retain(dtrace_enabling_t *enab)
11918 {
11919 dtrace_state_t *state;
11920
11921 ASSERT(MUTEX_HELD(&dtrace_lock));
11922 ASSERT(enab->dten_next == NULL && enab->dten_prev == NULL);
11923 ASSERT(enab->dten_vstate != NULL);
11924
11925 state = enab->dten_vstate->dtvs_state;
11926 ASSERT(state != NULL);
11927
11928 /*
11929 * We only allow each state to retain dtrace_retain_max enablings.
11930 */
11931 if (state->dts_nretained >= dtrace_retain_max)
11932 return (ENOSPC);
11933
11934 state->dts_nretained++;
11935 dtrace_retained_gen++;
11936
11937 if (dtrace_retained == NULL) {
11938 dtrace_retained = enab;
11939 return (0);
11940 }
11941
11942 enab->dten_next = dtrace_retained;
11943 dtrace_retained->dten_prev = enab;
11944 dtrace_retained = enab;
11945
11946 return (0);
11947 }
11948
11949 static int
dtrace_enabling_replicate(dtrace_state_t * state,dtrace_probedesc_t * match,dtrace_probedesc_t * create)11950 dtrace_enabling_replicate(dtrace_state_t *state, dtrace_probedesc_t *match,
11951 dtrace_probedesc_t *create)
11952 {
11953 dtrace_enabling_t *new, *enab;
11954 int found = 0, err = ENOENT;
11955
11956 ASSERT(MUTEX_HELD(&dtrace_lock));
11957 ASSERT(strlen(match->dtpd_provider) < DTRACE_PROVNAMELEN);
11958 ASSERT(strlen(match->dtpd_mod) < DTRACE_MODNAMELEN);
11959 ASSERT(strlen(match->dtpd_func) < DTRACE_FUNCNAMELEN);
11960 ASSERT(strlen(match->dtpd_name) < DTRACE_NAMELEN);
11961
11962 new = dtrace_enabling_create(&state->dts_vstate);
11963
11964 /*
11965 * Iterate over all retained enablings, looking for enablings that
11966 * match the specified state.
11967 */
11968 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
11969 int i;
11970
11971 /*
11972 * dtvs_state can only be NULL for helper enablings -- and
11973 * helper enablings can't be retained.
11974 */
11975 ASSERT(enab->dten_vstate->dtvs_state != NULL);
11976
11977 if (enab->dten_vstate->dtvs_state != state)
11978 continue;
11979
11980 /*
11981 * Now iterate over each probe description; we're looking for
11982 * an exact match to the specified probe description.
11983 */
11984 for (i = 0; i < enab->dten_ndesc; i++) {
11985 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
11986 dtrace_probedesc_t *pd = &ep->dted_probe;
11987
11988 if (strcmp(pd->dtpd_provider, match->dtpd_provider))
11989 continue;
11990
11991 if (strcmp(pd->dtpd_mod, match->dtpd_mod))
11992 continue;
11993
11994 if (strcmp(pd->dtpd_func, match->dtpd_func))
11995 continue;
11996
11997 if (strcmp(pd->dtpd_name, match->dtpd_name))
11998 continue;
11999
12000 /*
12001 * We have a winning probe! Add it to our growing
12002 * enabling.
12003 */
12004 found = 1;
12005 dtrace_enabling_addlike(new, ep, create);
12006 }
12007 }
12008
12009 if (!found || (err = dtrace_enabling_retain(new)) != 0) {
12010 dtrace_enabling_destroy(new);
12011 return (err);
12012 }
12013
12014 return (0);
12015 }
12016
12017 static void
dtrace_enabling_retract(dtrace_state_t * state)12018 dtrace_enabling_retract(dtrace_state_t *state)
12019 {
12020 dtrace_enabling_t *enab, *next;
12021
12022 ASSERT(MUTEX_HELD(&dtrace_lock));
12023
12024 /*
12025 * Iterate over all retained enablings, destroy the enablings retained
12026 * for the specified state.
12027 */
12028 for (enab = dtrace_retained; enab != NULL; enab = next) {
12029 next = enab->dten_next;
12030
12031 /*
12032 * dtvs_state can only be NULL for helper enablings -- and
12033 * helper enablings can't be retained.
12034 */
12035 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12036
12037 if (enab->dten_vstate->dtvs_state == state) {
12038 ASSERT(state->dts_nretained > 0);
12039 dtrace_enabling_destroy(enab);
12040 }
12041 }
12042
12043 ASSERT(state->dts_nretained == 0);
12044 }
12045
12046 static int
dtrace_enabling_match(dtrace_enabling_t * enab,int * nmatched)12047 dtrace_enabling_match(dtrace_enabling_t *enab, int *nmatched)
12048 {
12049 int i = 0;
12050 int total_matched = 0, matched = 0;
12051
12052 ASSERT(MUTEX_HELD(&cpu_lock));
12053 ASSERT(MUTEX_HELD(&dtrace_lock));
12054
12055 for (i = 0; i < enab->dten_ndesc; i++) {
12056 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
12057
12058 enab->dten_current = ep;
12059 enab->dten_error = 0;
12060
12061 /*
12062 * If a provider failed to enable a probe then get out and
12063 * let the consumer know we failed.
12064 */
12065 if ((matched = dtrace_probe_enable(&ep->dted_probe, enab)) < 0)
12066 return (EBUSY);
12067
12068 total_matched += matched;
12069
12070 if (enab->dten_error != 0) {
12071 /*
12072 * If we get an error half-way through enabling the
12073 * probes, we kick out -- perhaps with some number of
12074 * them enabled. Leaving enabled probes enabled may
12075 * be slightly confusing for user-level, but we expect
12076 * that no one will attempt to actually drive on in
12077 * the face of such errors. If this is an anonymous
12078 * enabling (indicated with a NULL nmatched pointer),
12079 * we cmn_err() a message. We aren't expecting to
12080 * get such an error -- such as it can exist at all,
12081 * it would be a result of corrupted DOF in the driver
12082 * properties.
12083 */
12084 if (nmatched == NULL) {
12085 cmn_err(CE_WARN, "dtrace_enabling_match() "
12086 "error on %p: %d", (void *)ep,
12087 enab->dten_error);
12088 }
12089
12090 return (enab->dten_error);
12091 }
12092 }
12093
12094 enab->dten_probegen = dtrace_probegen;
12095 if (nmatched != NULL)
12096 *nmatched = total_matched;
12097
12098 return (0);
12099 }
12100
12101 static void
dtrace_enabling_matchall(void)12102 dtrace_enabling_matchall(void)
12103 {
12104 dtrace_enabling_t *enab;
12105
12106 mutex_enter(&cpu_lock);
12107 mutex_enter(&dtrace_lock);
12108
12109 /*
12110 * Iterate over all retained enablings to see if any probes match
12111 * against them. We only perform this operation on enablings for which
12112 * we have sufficient permissions by virtue of being in the global zone
12113 * or in the same zone as the DTrace client. Because we can be called
12114 * after dtrace_detach() has been called, we cannot assert that there
12115 * are retained enablings. We can safely load from dtrace_retained,
12116 * however: the taskq_destroy() at the end of dtrace_detach() will
12117 * block pending our completion.
12118 */
12119 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12120 dtrace_cred_t *dcr = &enab->dten_vstate->dtvs_state->dts_cred;
12121 cred_t *cr = dcr->dcr_cred;
12122 zoneid_t zone = cr != NULL ? crgetzoneid(cr) : 0;
12123
12124 if ((dcr->dcr_visible & DTRACE_CRV_ALLZONE) || (cr != NULL &&
12125 (zone == GLOBAL_ZONEID || getzoneid() == zone)))
12126 (void) dtrace_enabling_match(enab, NULL);
12127 }
12128
12129 mutex_exit(&dtrace_lock);
12130 mutex_exit(&cpu_lock);
12131 }
12132
12133 /*
12134 * If an enabling is to be enabled without having matched probes (that is, if
12135 * dtrace_state_go() is to be called on the underlying dtrace_state_t), the
12136 * enabling must be _primed_ by creating an ECB for every ECB description.
12137 * This must be done to assure that we know the number of speculations, the
12138 * number of aggregations, the minimum buffer size needed, etc. before we
12139 * transition out of DTRACE_ACTIVITY_INACTIVE. To do this without actually
12140 * enabling any probes, we create ECBs for every ECB decription, but with a
12141 * NULL probe -- which is exactly what this function does.
12142 */
12143 static void
dtrace_enabling_prime(dtrace_state_t * state)12144 dtrace_enabling_prime(dtrace_state_t *state)
12145 {
12146 dtrace_enabling_t *enab;
12147 int i;
12148
12149 for (enab = dtrace_retained; enab != NULL; enab = enab->dten_next) {
12150 ASSERT(enab->dten_vstate->dtvs_state != NULL);
12151
12152 if (enab->dten_vstate->dtvs_state != state)
12153 continue;
12154
12155 /*
12156 * We don't want to prime an enabling more than once, lest
12157 * we allow a malicious user to induce resource exhaustion.
12158 * (The ECBs that result from priming an enabling aren't
12159 * leaked -- but they also aren't deallocated until the
12160 * consumer state is destroyed.)
12161 */
12162 if (enab->dten_primed)
12163 continue;
12164
12165 for (i = 0; i < enab->dten_ndesc; i++) {
12166 enab->dten_current = enab->dten_desc[i];
12167 (void) dtrace_probe_enable(NULL, enab);
12168 }
12169
12170 enab->dten_primed = 1;
12171 }
12172 }
12173
12174 /*
12175 * Called to indicate that probes should be provided due to retained
12176 * enablings. This is implemented in terms of dtrace_probe_provide(), but it
12177 * must take an initial lap through the enabling calling the dtps_provide()
12178 * entry point explicitly to allow for autocreated probes.
12179 */
12180 static void
dtrace_enabling_provide(dtrace_provider_t * prv)12181 dtrace_enabling_provide(dtrace_provider_t *prv)
12182 {
12183 int i, all = 0;
12184 dtrace_probedesc_t desc;
12185 dtrace_genid_t gen;
12186
12187 ASSERT(MUTEX_HELD(&dtrace_lock));
12188 ASSERT(MUTEX_HELD(&dtrace_provider_lock));
12189
12190 if (prv == NULL) {
12191 all = 1;
12192 prv = dtrace_provider;
12193 }
12194
12195 do {
12196 dtrace_enabling_t *enab;
12197 void *parg = prv->dtpv_arg;
12198
12199 retry:
12200 gen = dtrace_retained_gen;
12201 for (enab = dtrace_retained; enab != NULL;
12202 enab = enab->dten_next) {
12203 for (i = 0; i < enab->dten_ndesc; i++) {
12204 desc = enab->dten_desc[i]->dted_probe;
12205 mutex_exit(&dtrace_lock);
12206 prv->dtpv_pops.dtps_provide(parg, &desc);
12207 mutex_enter(&dtrace_lock);
12208 /*
12209 * Process the retained enablings again if
12210 * they have changed while we weren't holding
12211 * dtrace_lock.
12212 */
12213 if (gen != dtrace_retained_gen)
12214 goto retry;
12215 }
12216 }
12217 } while (all && (prv = prv->dtpv_next) != NULL);
12218
12219 mutex_exit(&dtrace_lock);
12220 dtrace_probe_provide(NULL, all ? NULL : prv);
12221 mutex_enter(&dtrace_lock);
12222 }
12223
12224 /*
12225 * Called to reap ECBs that are attached to probes from defunct providers.
12226 */
12227 static void
dtrace_enabling_reap(void)12228 dtrace_enabling_reap(void)
12229 {
12230 dtrace_provider_t *prov;
12231 dtrace_probe_t *probe;
12232 dtrace_ecb_t *ecb;
12233 hrtime_t when;
12234 int i;
12235
12236 mutex_enter(&cpu_lock);
12237 mutex_enter(&dtrace_lock);
12238
12239 for (i = 0; i < dtrace_nprobes; i++) {
12240 if ((probe = dtrace_probes[i]) == NULL)
12241 continue;
12242
12243 if (probe->dtpr_ecb == NULL)
12244 continue;
12245
12246 prov = probe->dtpr_provider;
12247
12248 if ((when = prov->dtpv_defunct) == 0)
12249 continue;
12250
12251 /*
12252 * We have ECBs on a defunct provider: we want to reap these
12253 * ECBs to allow the provider to unregister. The destruction
12254 * of these ECBs must be done carefully: if we destroy the ECB
12255 * and the consumer later wishes to consume an EPID that
12256 * corresponds to the destroyed ECB (and if the EPID metadata
12257 * has not been previously consumed), the consumer will abort
12258 * processing on the unknown EPID. To reduce (but not, sadly,
12259 * eliminate) the possibility of this, we will only destroy an
12260 * ECB for a defunct provider if, for the state that
12261 * corresponds to the ECB:
12262 *
12263 * (a) There is no speculative tracing (which can effectively
12264 * cache an EPID for an arbitrary amount of time).
12265 *
12266 * (b) The principal buffers have been switched twice since the
12267 * provider became defunct.
12268 *
12269 * (c) The aggregation buffers are of zero size or have been
12270 * switched twice since the provider became defunct.
12271 *
12272 * We use dts_speculates to determine (a) and call a function
12273 * (dtrace_buffer_consumed()) to determine (b) and (c). Note
12274 * that as soon as we've been unable to destroy one of the ECBs
12275 * associated with the probe, we quit trying -- reaping is only
12276 * fruitful in as much as we can destroy all ECBs associated
12277 * with the defunct provider's probes.
12278 */
12279 while ((ecb = probe->dtpr_ecb) != NULL) {
12280 dtrace_state_t *state = ecb->dte_state;
12281 dtrace_buffer_t *buf = state->dts_buffer;
12282 dtrace_buffer_t *aggbuf = state->dts_aggbuffer;
12283
12284 if (state->dts_speculates)
12285 break;
12286
12287 if (!dtrace_buffer_consumed(buf, when))
12288 break;
12289
12290 if (!dtrace_buffer_consumed(aggbuf, when))
12291 break;
12292
12293 dtrace_ecb_disable(ecb);
12294 ASSERT(probe->dtpr_ecb != ecb);
12295 dtrace_ecb_destroy(ecb);
12296 }
12297 }
12298
12299 mutex_exit(&dtrace_lock);
12300 mutex_exit(&cpu_lock);
12301 }
12302
12303 /*
12304 * DTrace DOF Functions
12305 */
12306 /*ARGSUSED*/
12307 static void
dtrace_dof_error(dof_hdr_t * dof,const char * str)12308 dtrace_dof_error(dof_hdr_t *dof, const char *str)
12309 {
12310 if (dtrace_err_verbose)
12311 cmn_err(CE_WARN, "failed to process DOF: %s", str);
12312
12313 #ifdef DTRACE_ERRDEBUG
12314 dtrace_errdebug(str);
12315 #endif
12316 }
12317
12318 /*
12319 * Create DOF out of a currently enabled state. Right now, we only create
12320 * DOF containing the run-time options -- but this could be expanded to create
12321 * complete DOF representing the enabled state.
12322 */
12323 static dof_hdr_t *
dtrace_dof_create(dtrace_state_t * state)12324 dtrace_dof_create(dtrace_state_t *state)
12325 {
12326 dof_hdr_t *dof;
12327 dof_sec_t *sec;
12328 dof_optdesc_t *opt;
12329 int i, len = sizeof (dof_hdr_t) +
12330 roundup(sizeof (dof_sec_t), sizeof (uint64_t)) +
12331 sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12332
12333 ASSERT(MUTEX_HELD(&dtrace_lock));
12334
12335 dof = kmem_zalloc(len, KM_SLEEP);
12336 dof->dofh_ident[DOF_ID_MAG0] = DOF_MAG_MAG0;
12337 dof->dofh_ident[DOF_ID_MAG1] = DOF_MAG_MAG1;
12338 dof->dofh_ident[DOF_ID_MAG2] = DOF_MAG_MAG2;
12339 dof->dofh_ident[DOF_ID_MAG3] = DOF_MAG_MAG3;
12340
12341 dof->dofh_ident[DOF_ID_MODEL] = DOF_MODEL_NATIVE;
12342 dof->dofh_ident[DOF_ID_ENCODING] = DOF_ENCODE_NATIVE;
12343 dof->dofh_ident[DOF_ID_VERSION] = DOF_VERSION;
12344 dof->dofh_ident[DOF_ID_DIFVERS] = DIF_VERSION;
12345 dof->dofh_ident[DOF_ID_DIFIREG] = DIF_DIR_NREGS;
12346 dof->dofh_ident[DOF_ID_DIFTREG] = DIF_DTR_NREGS;
12347
12348 dof->dofh_flags = 0;
12349 dof->dofh_hdrsize = sizeof (dof_hdr_t);
12350 dof->dofh_secsize = sizeof (dof_sec_t);
12351 dof->dofh_secnum = 1; /* only DOF_SECT_OPTDESC */
12352 dof->dofh_secoff = sizeof (dof_hdr_t);
12353 dof->dofh_loadsz = len;
12354 dof->dofh_filesz = len;
12355 dof->dofh_pad = 0;
12356
12357 /*
12358 * Fill in the option section header...
12359 */
12360 sec = (dof_sec_t *)((uintptr_t)dof + sizeof (dof_hdr_t));
12361 sec->dofs_type = DOF_SECT_OPTDESC;
12362 sec->dofs_align = sizeof (uint64_t);
12363 sec->dofs_flags = DOF_SECF_LOAD;
12364 sec->dofs_entsize = sizeof (dof_optdesc_t);
12365
12366 opt = (dof_optdesc_t *)((uintptr_t)sec +
12367 roundup(sizeof (dof_sec_t), sizeof (uint64_t)));
12368
12369 sec->dofs_offset = (uintptr_t)opt - (uintptr_t)dof;
12370 sec->dofs_size = sizeof (dof_optdesc_t) * DTRACEOPT_MAX;
12371
12372 for (i = 0; i < DTRACEOPT_MAX; i++) {
12373 opt[i].dofo_option = i;
12374 opt[i].dofo_strtab = DOF_SECIDX_NONE;
12375 opt[i].dofo_value = state->dts_options[i];
12376 }
12377
12378 return (dof);
12379 }
12380
12381 static dof_hdr_t *
dtrace_dof_copyin(uintptr_t uarg,int * errp)12382 dtrace_dof_copyin(uintptr_t uarg, int *errp)
12383 {
12384 dof_hdr_t hdr, *dof;
12385
12386 ASSERT(!MUTEX_HELD(&dtrace_lock));
12387
12388 /*
12389 * First, we're going to copyin() the sizeof (dof_hdr_t).
12390 */
12391 if (copyin((void *)uarg, &hdr, sizeof (hdr)) != 0) {
12392 dtrace_dof_error(NULL, "failed to copyin DOF header");
12393 *errp = EFAULT;
12394 return (NULL);
12395 }
12396
12397 /*
12398 * Now we'll allocate the entire DOF and copy it in -- provided
12399 * that the length isn't outrageous.
12400 */
12401 if (hdr.dofh_loadsz >= dtrace_dof_maxsize) {
12402 dtrace_dof_error(&hdr, "load size exceeds maximum");
12403 *errp = E2BIG;
12404 return (NULL);
12405 }
12406
12407 if (hdr.dofh_loadsz < sizeof (hdr)) {
12408 dtrace_dof_error(&hdr, "invalid load size");
12409 *errp = EINVAL;
12410 return (NULL);
12411 }
12412
12413 dof = kmem_alloc(hdr.dofh_loadsz, KM_SLEEP);
12414
12415 if (copyin((void *)uarg, dof, hdr.dofh_loadsz) != 0 ||
12416 dof->dofh_loadsz != hdr.dofh_loadsz) {
12417 kmem_free(dof, hdr.dofh_loadsz);
12418 *errp = EFAULT;
12419 return (NULL);
12420 }
12421
12422 return (dof);
12423 }
12424
12425 static dof_hdr_t *
dtrace_dof_property(const char * name)12426 dtrace_dof_property(const char *name)
12427 {
12428 uchar_t *buf;
12429 uint64_t loadsz;
12430 unsigned int len, i;
12431 dof_hdr_t *dof;
12432
12433 /*
12434 * Unfortunately, array of values in .conf files are always (and
12435 * only) interpreted to be integer arrays. We must read our DOF
12436 * as an integer array, and then squeeze it into a byte array.
12437 */
12438 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dtrace_devi, 0,
12439 (char *)name, (int **)&buf, &len) != DDI_PROP_SUCCESS)
12440 return (NULL);
12441
12442 for (i = 0; i < len; i++)
12443 buf[i] = (uchar_t)(((int *)buf)[i]);
12444
12445 if (len < sizeof (dof_hdr_t)) {
12446 ddi_prop_free(buf);
12447 dtrace_dof_error(NULL, "truncated header");
12448 return (NULL);
12449 }
12450
12451 if (len < (loadsz = ((dof_hdr_t *)buf)->dofh_loadsz)) {
12452 ddi_prop_free(buf);
12453 dtrace_dof_error(NULL, "truncated DOF");
12454 return (NULL);
12455 }
12456
12457 if (loadsz >= dtrace_dof_maxsize) {
12458 ddi_prop_free(buf);
12459 dtrace_dof_error(NULL, "oversized DOF");
12460 return (NULL);
12461 }
12462
12463 dof = kmem_alloc(loadsz, KM_SLEEP);
12464 bcopy(buf, dof, loadsz);
12465 ddi_prop_free(buf);
12466
12467 return (dof);
12468 }
12469
12470 static void
dtrace_dof_destroy(dof_hdr_t * dof)12471 dtrace_dof_destroy(dof_hdr_t *dof)
12472 {
12473 kmem_free(dof, dof->dofh_loadsz);
12474 }
12475
12476 /*
12477 * Return the dof_sec_t pointer corresponding to a given section index. If the
12478 * index is not valid, dtrace_dof_error() is called and NULL is returned. If
12479 * a type other than DOF_SECT_NONE is specified, the header is checked against
12480 * this type and NULL is returned if the types do not match.
12481 */
12482 static dof_sec_t *
dtrace_dof_sect(dof_hdr_t * dof,uint32_t type,dof_secidx_t i)12483 dtrace_dof_sect(dof_hdr_t *dof, uint32_t type, dof_secidx_t i)
12484 {
12485 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)
12486 ((uintptr_t)dof + dof->dofh_secoff + i * dof->dofh_secsize);
12487
12488 if (i >= dof->dofh_secnum) {
12489 dtrace_dof_error(dof, "referenced section index is invalid");
12490 return (NULL);
12491 }
12492
12493 if (!(sec->dofs_flags & DOF_SECF_LOAD)) {
12494 dtrace_dof_error(dof, "referenced section is not loadable");
12495 return (NULL);
12496 }
12497
12498 if (type != DOF_SECT_NONE && type != sec->dofs_type) {
12499 dtrace_dof_error(dof, "referenced section is the wrong type");
12500 return (NULL);
12501 }
12502
12503 return (sec);
12504 }
12505
12506 static dtrace_probedesc_t *
dtrace_dof_probedesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_probedesc_t * desc)12507 dtrace_dof_probedesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_probedesc_t *desc)
12508 {
12509 dof_probedesc_t *probe;
12510 dof_sec_t *strtab;
12511 uintptr_t daddr = (uintptr_t)dof;
12512 uintptr_t str;
12513 size_t size;
12514
12515 if (sec->dofs_type != DOF_SECT_PROBEDESC) {
12516 dtrace_dof_error(dof, "invalid probe section");
12517 return (NULL);
12518 }
12519
12520 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12521 dtrace_dof_error(dof, "bad alignment in probe description");
12522 return (NULL);
12523 }
12524
12525 if (sec->dofs_offset + sizeof (dof_probedesc_t) > dof->dofh_loadsz) {
12526 dtrace_dof_error(dof, "truncated probe description");
12527 return (NULL);
12528 }
12529
12530 probe = (dof_probedesc_t *)(uintptr_t)(daddr + sec->dofs_offset);
12531 strtab = dtrace_dof_sect(dof, DOF_SECT_STRTAB, probe->dofp_strtab);
12532
12533 if (strtab == NULL)
12534 return (NULL);
12535
12536 str = daddr + strtab->dofs_offset;
12537 size = strtab->dofs_size;
12538
12539 if (probe->dofp_provider >= strtab->dofs_size) {
12540 dtrace_dof_error(dof, "corrupt probe provider");
12541 return (NULL);
12542 }
12543
12544 (void) strncpy(desc->dtpd_provider,
12545 (char *)(str + probe->dofp_provider),
12546 MIN(DTRACE_PROVNAMELEN - 1, size - probe->dofp_provider));
12547
12548 if (probe->dofp_mod >= strtab->dofs_size) {
12549 dtrace_dof_error(dof, "corrupt probe module");
12550 return (NULL);
12551 }
12552
12553 (void) strncpy(desc->dtpd_mod, (char *)(str + probe->dofp_mod),
12554 MIN(DTRACE_MODNAMELEN - 1, size - probe->dofp_mod));
12555
12556 if (probe->dofp_func >= strtab->dofs_size) {
12557 dtrace_dof_error(dof, "corrupt probe function");
12558 return (NULL);
12559 }
12560
12561 (void) strncpy(desc->dtpd_func, (char *)(str + probe->dofp_func),
12562 MIN(DTRACE_FUNCNAMELEN - 1, size - probe->dofp_func));
12563
12564 if (probe->dofp_name >= strtab->dofs_size) {
12565 dtrace_dof_error(dof, "corrupt probe name");
12566 return (NULL);
12567 }
12568
12569 (void) strncpy(desc->dtpd_name, (char *)(str + probe->dofp_name),
12570 MIN(DTRACE_NAMELEN - 1, size - probe->dofp_name));
12571
12572 return (desc);
12573 }
12574
12575 static dtrace_difo_t *
dtrace_dof_difo(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)12576 dtrace_dof_difo(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12577 cred_t *cr)
12578 {
12579 dtrace_difo_t *dp;
12580 size_t ttl = 0;
12581 dof_difohdr_t *dofd;
12582 uintptr_t daddr = (uintptr_t)dof;
12583 size_t max = dtrace_difo_maxsize;
12584 int i, l, n;
12585
12586 static const struct {
12587 int section;
12588 int bufoffs;
12589 int lenoffs;
12590 int entsize;
12591 int align;
12592 const char *msg;
12593 } difo[] = {
12594 { DOF_SECT_DIF, offsetof(dtrace_difo_t, dtdo_buf),
12595 offsetof(dtrace_difo_t, dtdo_len), sizeof (dif_instr_t),
12596 sizeof (dif_instr_t), "multiple DIF sections" },
12597
12598 { DOF_SECT_INTTAB, offsetof(dtrace_difo_t, dtdo_inttab),
12599 offsetof(dtrace_difo_t, dtdo_intlen), sizeof (uint64_t),
12600 sizeof (uint64_t), "multiple integer tables" },
12601
12602 { DOF_SECT_STRTAB, offsetof(dtrace_difo_t, dtdo_strtab),
12603 offsetof(dtrace_difo_t, dtdo_strlen), 0,
12604 sizeof (char), "multiple string tables" },
12605
12606 { DOF_SECT_VARTAB, offsetof(dtrace_difo_t, dtdo_vartab),
12607 offsetof(dtrace_difo_t, dtdo_varlen), sizeof (dtrace_difv_t),
12608 sizeof (uint_t), "multiple variable tables" },
12609
12610 { DOF_SECT_NONE, 0, 0, 0, NULL }
12611 };
12612
12613 if (sec->dofs_type != DOF_SECT_DIFOHDR) {
12614 dtrace_dof_error(dof, "invalid DIFO header section");
12615 return (NULL);
12616 }
12617
12618 if (sec->dofs_align != sizeof (dof_secidx_t)) {
12619 dtrace_dof_error(dof, "bad alignment in DIFO header");
12620 return (NULL);
12621 }
12622
12623 if (sec->dofs_size < sizeof (dof_difohdr_t) ||
12624 sec->dofs_size % sizeof (dof_secidx_t)) {
12625 dtrace_dof_error(dof, "bad size in DIFO header");
12626 return (NULL);
12627 }
12628
12629 dofd = (dof_difohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12630 n = (sec->dofs_size - sizeof (*dofd)) / sizeof (dof_secidx_t) + 1;
12631
12632 dp = kmem_zalloc(sizeof (dtrace_difo_t), KM_SLEEP);
12633 dp->dtdo_rtype = dofd->dofd_rtype;
12634
12635 for (l = 0; l < n; l++) {
12636 dof_sec_t *subsec;
12637 void **bufp;
12638 uint32_t *lenp;
12639
12640 if ((subsec = dtrace_dof_sect(dof, DOF_SECT_NONE,
12641 dofd->dofd_links[l])) == NULL)
12642 goto err; /* invalid section link */
12643
12644 if (ttl + subsec->dofs_size > max) {
12645 dtrace_dof_error(dof, "exceeds maximum size");
12646 goto err;
12647 }
12648
12649 ttl += subsec->dofs_size;
12650
12651 for (i = 0; difo[i].section != DOF_SECT_NONE; i++) {
12652 if (subsec->dofs_type != difo[i].section)
12653 continue;
12654
12655 if (!(subsec->dofs_flags & DOF_SECF_LOAD)) {
12656 dtrace_dof_error(dof, "section not loaded");
12657 goto err;
12658 }
12659
12660 if (subsec->dofs_align != difo[i].align) {
12661 dtrace_dof_error(dof, "bad alignment");
12662 goto err;
12663 }
12664
12665 bufp = (void **)((uintptr_t)dp + difo[i].bufoffs);
12666 lenp = (uint32_t *)((uintptr_t)dp + difo[i].lenoffs);
12667
12668 if (*bufp != NULL) {
12669 dtrace_dof_error(dof, difo[i].msg);
12670 goto err;
12671 }
12672
12673 if (difo[i].entsize != subsec->dofs_entsize) {
12674 dtrace_dof_error(dof, "entry size mismatch");
12675 goto err;
12676 }
12677
12678 if (subsec->dofs_entsize != 0 &&
12679 (subsec->dofs_size % subsec->dofs_entsize) != 0) {
12680 dtrace_dof_error(dof, "corrupt entry size");
12681 goto err;
12682 }
12683
12684 *lenp = subsec->dofs_size;
12685 *bufp = kmem_alloc(subsec->dofs_size, KM_SLEEP);
12686 bcopy((char *)(uintptr_t)(daddr + subsec->dofs_offset),
12687 *bufp, subsec->dofs_size);
12688
12689 if (subsec->dofs_entsize != 0)
12690 *lenp /= subsec->dofs_entsize;
12691
12692 break;
12693 }
12694
12695 /*
12696 * If we encounter a loadable DIFO sub-section that is not
12697 * known to us, assume this is a broken program and fail.
12698 */
12699 if (difo[i].section == DOF_SECT_NONE &&
12700 (subsec->dofs_flags & DOF_SECF_LOAD)) {
12701 dtrace_dof_error(dof, "unrecognized DIFO subsection");
12702 goto err;
12703 }
12704 }
12705
12706 if (dp->dtdo_buf == NULL) {
12707 /*
12708 * We can't have a DIF object without DIF text.
12709 */
12710 dtrace_dof_error(dof, "missing DIF text");
12711 goto err;
12712 }
12713
12714 /*
12715 * Before we validate the DIF object, run through the variable table
12716 * looking for the strings -- if any of their size are under, we'll set
12717 * their size to be the system-wide default string size. Note that
12718 * this should _not_ happen if the "strsize" option has been set --
12719 * in this case, the compiler should have set the size to reflect the
12720 * setting of the option.
12721 */
12722 for (i = 0; i < dp->dtdo_varlen; i++) {
12723 dtrace_difv_t *v = &dp->dtdo_vartab[i];
12724 dtrace_diftype_t *t = &v->dtdv_type;
12725
12726 if (v->dtdv_id < DIF_VAR_OTHER_UBASE)
12727 continue;
12728
12729 if (t->dtdt_kind == DIF_TYPE_STRING && t->dtdt_size == 0)
12730 t->dtdt_size = dtrace_strsize_default;
12731 }
12732
12733 if (dtrace_difo_validate(dp, vstate, DIF_DIR_NREGS, cr) != 0)
12734 goto err;
12735
12736 dtrace_difo_init(dp, vstate);
12737 return (dp);
12738
12739 err:
12740 kmem_free(dp->dtdo_buf, dp->dtdo_len * sizeof (dif_instr_t));
12741 kmem_free(dp->dtdo_inttab, dp->dtdo_intlen * sizeof (uint64_t));
12742 kmem_free(dp->dtdo_strtab, dp->dtdo_strlen);
12743 kmem_free(dp->dtdo_vartab, dp->dtdo_varlen * sizeof (dtrace_difv_t));
12744
12745 kmem_free(dp, sizeof (dtrace_difo_t));
12746 return (NULL);
12747 }
12748
12749 static dtrace_predicate_t *
dtrace_dof_predicate(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)12750 dtrace_dof_predicate(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12751 cred_t *cr)
12752 {
12753 dtrace_difo_t *dp;
12754
12755 if ((dp = dtrace_dof_difo(dof, sec, vstate, cr)) == NULL)
12756 return (NULL);
12757
12758 return (dtrace_predicate_create(dp));
12759 }
12760
12761 static dtrace_actdesc_t *
dtrace_dof_actdesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)12762 dtrace_dof_actdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12763 cred_t *cr)
12764 {
12765 dtrace_actdesc_t *act, *first = NULL, *last = NULL, *next;
12766 dof_actdesc_t *desc;
12767 dof_sec_t *difosec;
12768 size_t offs;
12769 uintptr_t daddr = (uintptr_t)dof;
12770 uint64_t arg;
12771 dtrace_actkind_t kind;
12772
12773 if (sec->dofs_type != DOF_SECT_ACTDESC) {
12774 dtrace_dof_error(dof, "invalid action section");
12775 return (NULL);
12776 }
12777
12778 if (sec->dofs_offset + sizeof (dof_actdesc_t) > dof->dofh_loadsz) {
12779 dtrace_dof_error(dof, "truncated action description");
12780 return (NULL);
12781 }
12782
12783 if (sec->dofs_align != sizeof (uint64_t)) {
12784 dtrace_dof_error(dof, "bad alignment in action description");
12785 return (NULL);
12786 }
12787
12788 if (sec->dofs_size < sec->dofs_entsize) {
12789 dtrace_dof_error(dof, "section entry size exceeds total size");
12790 return (NULL);
12791 }
12792
12793 if (sec->dofs_entsize != sizeof (dof_actdesc_t)) {
12794 dtrace_dof_error(dof, "bad entry size in action description");
12795 return (NULL);
12796 }
12797
12798 if (sec->dofs_size / sec->dofs_entsize > dtrace_actions_max) {
12799 dtrace_dof_error(dof, "actions exceed dtrace_actions_max");
12800 return (NULL);
12801 }
12802
12803 for (offs = 0; offs < sec->dofs_size; offs += sec->dofs_entsize) {
12804 desc = (dof_actdesc_t *)(daddr +
12805 (uintptr_t)sec->dofs_offset + offs);
12806 kind = (dtrace_actkind_t)desc->dofa_kind;
12807
12808 if ((DTRACEACT_ISPRINTFLIKE(kind) &&
12809 (kind != DTRACEACT_PRINTA ||
12810 desc->dofa_strtab != DOF_SECIDX_NONE)) ||
12811 (kind == DTRACEACT_DIFEXPR &&
12812 desc->dofa_strtab != DOF_SECIDX_NONE)) {
12813 dof_sec_t *strtab;
12814 char *str, *fmt;
12815 uint64_t i;
12816
12817 /*
12818 * The argument to these actions is an index into the
12819 * DOF string table. For printf()-like actions, this
12820 * is the format string. For print(), this is the
12821 * CTF type of the expression result.
12822 */
12823 if ((strtab = dtrace_dof_sect(dof,
12824 DOF_SECT_STRTAB, desc->dofa_strtab)) == NULL)
12825 goto err;
12826
12827 str = (char *)((uintptr_t)dof +
12828 (uintptr_t)strtab->dofs_offset);
12829
12830 for (i = desc->dofa_arg; i < strtab->dofs_size; i++) {
12831 if (str[i] == '\0')
12832 break;
12833 }
12834
12835 if (i >= strtab->dofs_size) {
12836 dtrace_dof_error(dof, "bogus format string");
12837 goto err;
12838 }
12839
12840 if (i == desc->dofa_arg) {
12841 dtrace_dof_error(dof, "empty format string");
12842 goto err;
12843 }
12844
12845 i -= desc->dofa_arg;
12846 fmt = kmem_alloc(i + 1, KM_SLEEP);
12847 bcopy(&str[desc->dofa_arg], fmt, i + 1);
12848 arg = (uint64_t)(uintptr_t)fmt;
12849 } else {
12850 if (kind == DTRACEACT_PRINTA) {
12851 ASSERT(desc->dofa_strtab == DOF_SECIDX_NONE);
12852 arg = 0;
12853 } else {
12854 arg = desc->dofa_arg;
12855 }
12856 }
12857
12858 act = dtrace_actdesc_create(kind, desc->dofa_ntuple,
12859 desc->dofa_uarg, arg);
12860
12861 if (last != NULL) {
12862 last->dtad_next = act;
12863 } else {
12864 first = act;
12865 }
12866
12867 last = act;
12868
12869 if (desc->dofa_difo == DOF_SECIDX_NONE)
12870 continue;
12871
12872 if ((difosec = dtrace_dof_sect(dof,
12873 DOF_SECT_DIFOHDR, desc->dofa_difo)) == NULL)
12874 goto err;
12875
12876 act->dtad_difo = dtrace_dof_difo(dof, difosec, vstate, cr);
12877
12878 if (act->dtad_difo == NULL)
12879 goto err;
12880 }
12881
12882 ASSERT(first != NULL);
12883 return (first);
12884
12885 err:
12886 for (act = first; act != NULL; act = next) {
12887 next = act->dtad_next;
12888 dtrace_actdesc_release(act, vstate);
12889 }
12890
12891 return (NULL);
12892 }
12893
12894 static dtrace_ecbdesc_t *
dtrace_dof_ecbdesc(dof_hdr_t * dof,dof_sec_t * sec,dtrace_vstate_t * vstate,cred_t * cr)12895 dtrace_dof_ecbdesc(dof_hdr_t *dof, dof_sec_t *sec, dtrace_vstate_t *vstate,
12896 cred_t *cr)
12897 {
12898 dtrace_ecbdesc_t *ep;
12899 dof_ecbdesc_t *ecb;
12900 dtrace_probedesc_t *desc;
12901 dtrace_predicate_t *pred = NULL;
12902
12903 if (sec->dofs_size < sizeof (dof_ecbdesc_t)) {
12904 dtrace_dof_error(dof, "truncated ECB description");
12905 return (NULL);
12906 }
12907
12908 if (sec->dofs_align != sizeof (uint64_t)) {
12909 dtrace_dof_error(dof, "bad alignment in ECB description");
12910 return (NULL);
12911 }
12912
12913 ecb = (dof_ecbdesc_t *)((uintptr_t)dof + (uintptr_t)sec->dofs_offset);
12914 sec = dtrace_dof_sect(dof, DOF_SECT_PROBEDESC, ecb->dofe_probes);
12915
12916 if (sec == NULL)
12917 return (NULL);
12918
12919 ep = kmem_zalloc(sizeof (dtrace_ecbdesc_t), KM_SLEEP);
12920 ep->dted_uarg = ecb->dofe_uarg;
12921 desc = &ep->dted_probe;
12922
12923 if (dtrace_dof_probedesc(dof, sec, desc) == NULL)
12924 goto err;
12925
12926 if (ecb->dofe_pred != DOF_SECIDX_NONE) {
12927 if ((sec = dtrace_dof_sect(dof,
12928 DOF_SECT_DIFOHDR, ecb->dofe_pred)) == NULL)
12929 goto err;
12930
12931 if ((pred = dtrace_dof_predicate(dof, sec, vstate, cr)) == NULL)
12932 goto err;
12933
12934 ep->dted_pred.dtpdd_predicate = pred;
12935 }
12936
12937 if (ecb->dofe_actions != DOF_SECIDX_NONE) {
12938 if ((sec = dtrace_dof_sect(dof,
12939 DOF_SECT_ACTDESC, ecb->dofe_actions)) == NULL)
12940 goto err;
12941
12942 ep->dted_action = dtrace_dof_actdesc(dof, sec, vstate, cr);
12943
12944 if (ep->dted_action == NULL)
12945 goto err;
12946 }
12947
12948 return (ep);
12949
12950 err:
12951 if (pred != NULL)
12952 dtrace_predicate_release(pred, vstate);
12953 kmem_free(ep, sizeof (dtrace_ecbdesc_t));
12954 return (NULL);
12955 }
12956
12957 /*
12958 * Apply the relocations from the specified 'sec' (a DOF_SECT_URELHDR) to the
12959 * specified DOF. At present, this amounts to simply adding 'ubase' to the
12960 * site of any user SETX relocations to account for load object base address.
12961 * In the future, if we need other relocations, this function can be extended.
12962 */
12963 static int
dtrace_dof_relocate(dof_hdr_t * dof,dof_sec_t * sec,uint64_t ubase)12964 dtrace_dof_relocate(dof_hdr_t *dof, dof_sec_t *sec, uint64_t ubase)
12965 {
12966 uintptr_t daddr = (uintptr_t)dof;
12967 dof_relohdr_t *dofr =
12968 (dof_relohdr_t *)(uintptr_t)(daddr + sec->dofs_offset);
12969 dof_sec_t *ss, *rs, *ts;
12970 dof_relodesc_t *r;
12971 uint_t i, n;
12972
12973 if (sec->dofs_size < sizeof (dof_relohdr_t) ||
12974 sec->dofs_align != sizeof (dof_secidx_t)) {
12975 dtrace_dof_error(dof, "invalid relocation header");
12976 return (-1);
12977 }
12978
12979 ss = dtrace_dof_sect(dof, DOF_SECT_STRTAB, dofr->dofr_strtab);
12980 rs = dtrace_dof_sect(dof, DOF_SECT_RELTAB, dofr->dofr_relsec);
12981 ts = dtrace_dof_sect(dof, DOF_SECT_NONE, dofr->dofr_tgtsec);
12982
12983 if (ss == NULL || rs == NULL || ts == NULL)
12984 return (-1); /* dtrace_dof_error() has been called already */
12985
12986 if (rs->dofs_entsize < sizeof (dof_relodesc_t) ||
12987 rs->dofs_align != sizeof (uint64_t)) {
12988 dtrace_dof_error(dof, "invalid relocation section");
12989 return (-1);
12990 }
12991
12992 r = (dof_relodesc_t *)(uintptr_t)(daddr + rs->dofs_offset);
12993 n = rs->dofs_size / rs->dofs_entsize;
12994
12995 for (i = 0; i < n; i++) {
12996 uintptr_t taddr = daddr + ts->dofs_offset + r->dofr_offset;
12997
12998 switch (r->dofr_type) {
12999 case DOF_RELO_NONE:
13000 break;
13001 case DOF_RELO_SETX:
13002 if (r->dofr_offset >= ts->dofs_size || r->dofr_offset +
13003 sizeof (uint64_t) > ts->dofs_size) {
13004 dtrace_dof_error(dof, "bad relocation offset");
13005 return (-1);
13006 }
13007
13008 if (!IS_P2ALIGNED(taddr, sizeof (uint64_t))) {
13009 dtrace_dof_error(dof, "misaligned setx relo");
13010 return (-1);
13011 }
13012
13013 *(uint64_t *)taddr += ubase;
13014 break;
13015 default:
13016 dtrace_dof_error(dof, "invalid relocation type");
13017 return (-1);
13018 }
13019
13020 r = (dof_relodesc_t *)((uintptr_t)r + rs->dofs_entsize);
13021 }
13022
13023 return (0);
13024 }
13025
13026 /*
13027 * The dof_hdr_t passed to dtrace_dof_slurp() should be a partially validated
13028 * header: it should be at the front of a memory region that is at least
13029 * sizeof (dof_hdr_t) in size -- and then at least dof_hdr.dofh_loadsz in
13030 * size. It need not be validated in any other way.
13031 */
13032 static int
dtrace_dof_slurp(dof_hdr_t * dof,dtrace_vstate_t * vstate,cred_t * cr,dtrace_enabling_t ** enabp,uint64_t ubase,int noprobes)13033 dtrace_dof_slurp(dof_hdr_t *dof, dtrace_vstate_t *vstate, cred_t *cr,
13034 dtrace_enabling_t **enabp, uint64_t ubase, int noprobes)
13035 {
13036 uint64_t len = dof->dofh_loadsz, seclen;
13037 uintptr_t daddr = (uintptr_t)dof;
13038 dtrace_ecbdesc_t *ep;
13039 dtrace_enabling_t *enab;
13040 uint_t i;
13041
13042 ASSERT(MUTEX_HELD(&dtrace_lock));
13043 ASSERT(dof->dofh_loadsz >= sizeof (dof_hdr_t));
13044
13045 /*
13046 * Check the DOF header identification bytes. In addition to checking
13047 * valid settings, we also verify that unused bits/bytes are zeroed so
13048 * we can use them later without fear of regressing existing binaries.
13049 */
13050 if (bcmp(&dof->dofh_ident[DOF_ID_MAG0],
13051 DOF_MAG_STRING, DOF_MAG_STRLEN) != 0) {
13052 dtrace_dof_error(dof, "DOF magic string mismatch");
13053 return (-1);
13054 }
13055
13056 if (dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_ILP32 &&
13057 dof->dofh_ident[DOF_ID_MODEL] != DOF_MODEL_LP64) {
13058 dtrace_dof_error(dof, "DOF has invalid data model");
13059 return (-1);
13060 }
13061
13062 if (dof->dofh_ident[DOF_ID_ENCODING] != DOF_ENCODE_NATIVE) {
13063 dtrace_dof_error(dof, "DOF encoding mismatch");
13064 return (-1);
13065 }
13066
13067 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
13068 dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_2) {
13069 dtrace_dof_error(dof, "DOF version mismatch");
13070 return (-1);
13071 }
13072
13073 if (dof->dofh_ident[DOF_ID_DIFVERS] != DIF_VERSION_2) {
13074 dtrace_dof_error(dof, "DOF uses unsupported instruction set");
13075 return (-1);
13076 }
13077
13078 if (dof->dofh_ident[DOF_ID_DIFIREG] > DIF_DIR_NREGS) {
13079 dtrace_dof_error(dof, "DOF uses too many integer registers");
13080 return (-1);
13081 }
13082
13083 if (dof->dofh_ident[DOF_ID_DIFTREG] > DIF_DTR_NREGS) {
13084 dtrace_dof_error(dof, "DOF uses too many tuple registers");
13085 return (-1);
13086 }
13087
13088 for (i = DOF_ID_PAD; i < DOF_ID_SIZE; i++) {
13089 if (dof->dofh_ident[i] != 0) {
13090 dtrace_dof_error(dof, "DOF has invalid ident byte set");
13091 return (-1);
13092 }
13093 }
13094
13095 if (dof->dofh_flags & ~DOF_FL_VALID) {
13096 dtrace_dof_error(dof, "DOF has invalid flag bits set");
13097 return (-1);
13098 }
13099
13100 if (dof->dofh_secsize == 0) {
13101 dtrace_dof_error(dof, "zero section header size");
13102 return (-1);
13103 }
13104
13105 /*
13106 * Check that the section headers don't exceed the amount of DOF
13107 * data. Note that we cast the section size and number of sections
13108 * to uint64_t's to prevent possible overflow in the multiplication.
13109 */
13110 seclen = (uint64_t)dof->dofh_secnum * (uint64_t)dof->dofh_secsize;
13111
13112 if (dof->dofh_secoff > len || seclen > len ||
13113 dof->dofh_secoff + seclen > len) {
13114 dtrace_dof_error(dof, "truncated section headers");
13115 return (-1);
13116 }
13117
13118 if (!IS_P2ALIGNED(dof->dofh_secoff, sizeof (uint64_t))) {
13119 dtrace_dof_error(dof, "misaligned section headers");
13120 return (-1);
13121 }
13122
13123 if (!IS_P2ALIGNED(dof->dofh_secsize, sizeof (uint64_t))) {
13124 dtrace_dof_error(dof, "misaligned section size");
13125 return (-1);
13126 }
13127
13128 /*
13129 * Take an initial pass through the section headers to be sure that
13130 * the headers don't have stray offsets. If the 'noprobes' flag is
13131 * set, do not permit sections relating to providers, probes, or args.
13132 */
13133 for (i = 0; i < dof->dofh_secnum; i++) {
13134 dof_sec_t *sec = (dof_sec_t *)(daddr +
13135 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13136
13137 if (noprobes) {
13138 switch (sec->dofs_type) {
13139 case DOF_SECT_PROVIDER:
13140 case DOF_SECT_PROBES:
13141 case DOF_SECT_PRARGS:
13142 case DOF_SECT_PROFFS:
13143 dtrace_dof_error(dof, "illegal sections "
13144 "for enabling");
13145 return (-1);
13146 }
13147 }
13148
13149 if (DOF_SEC_ISLOADABLE(sec->dofs_type) &&
13150 !(sec->dofs_flags & DOF_SECF_LOAD)) {
13151 dtrace_dof_error(dof, "loadable section with load "
13152 "flag unset");
13153 return (-1);
13154 }
13155
13156 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13157 continue; /* just ignore non-loadable sections */
13158
13159 if (!ISP2(sec->dofs_align)) {
13160 dtrace_dof_error(dof, "bad section alignment");
13161 return (-1);
13162 }
13163
13164 if (sec->dofs_offset & (sec->dofs_align - 1)) {
13165 dtrace_dof_error(dof, "misaligned section");
13166 return (-1);
13167 }
13168
13169 if (sec->dofs_offset > len || sec->dofs_size > len ||
13170 sec->dofs_offset + sec->dofs_size > len) {
13171 dtrace_dof_error(dof, "corrupt section header");
13172 return (-1);
13173 }
13174
13175 if (sec->dofs_type == DOF_SECT_STRTAB && *((char *)daddr +
13176 sec->dofs_offset + sec->dofs_size - 1) != '\0') {
13177 dtrace_dof_error(dof, "non-terminating string table");
13178 return (-1);
13179 }
13180 }
13181
13182 /*
13183 * Take a second pass through the sections and locate and perform any
13184 * relocations that are present. We do this after the first pass to
13185 * be sure that all sections have had their headers validated.
13186 */
13187 for (i = 0; i < dof->dofh_secnum; i++) {
13188 dof_sec_t *sec = (dof_sec_t *)(daddr +
13189 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13190
13191 if (!(sec->dofs_flags & DOF_SECF_LOAD))
13192 continue; /* skip sections that are not loadable */
13193
13194 switch (sec->dofs_type) {
13195 case DOF_SECT_URELHDR:
13196 if (dtrace_dof_relocate(dof, sec, ubase) != 0)
13197 return (-1);
13198 break;
13199 }
13200 }
13201
13202 if ((enab = *enabp) == NULL)
13203 enab = *enabp = dtrace_enabling_create(vstate);
13204
13205 for (i = 0; i < dof->dofh_secnum; i++) {
13206 dof_sec_t *sec = (dof_sec_t *)(daddr +
13207 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13208
13209 if (sec->dofs_type != DOF_SECT_ECBDESC)
13210 continue;
13211
13212 if ((ep = dtrace_dof_ecbdesc(dof, sec, vstate, cr)) == NULL) {
13213 dtrace_enabling_destroy(enab);
13214 *enabp = NULL;
13215 return (-1);
13216 }
13217
13218 dtrace_enabling_add(enab, ep);
13219 }
13220
13221 return (0);
13222 }
13223
13224 /*
13225 * Process DOF for any options. This routine assumes that the DOF has been
13226 * at least processed by dtrace_dof_slurp().
13227 */
13228 static int
dtrace_dof_options(dof_hdr_t * dof,dtrace_state_t * state)13229 dtrace_dof_options(dof_hdr_t *dof, dtrace_state_t *state)
13230 {
13231 int i, rval;
13232 uint32_t entsize;
13233 size_t offs;
13234 dof_optdesc_t *desc;
13235
13236 for (i = 0; i < dof->dofh_secnum; i++) {
13237 dof_sec_t *sec = (dof_sec_t *)((uintptr_t)dof +
13238 (uintptr_t)dof->dofh_secoff + i * dof->dofh_secsize);
13239
13240 if (sec->dofs_type != DOF_SECT_OPTDESC)
13241 continue;
13242
13243 if (sec->dofs_align != sizeof (uint64_t)) {
13244 dtrace_dof_error(dof, "bad alignment in "
13245 "option description");
13246 return (EINVAL);
13247 }
13248
13249 if ((entsize = sec->dofs_entsize) == 0) {
13250 dtrace_dof_error(dof, "zeroed option entry size");
13251 return (EINVAL);
13252 }
13253
13254 if (entsize < sizeof (dof_optdesc_t)) {
13255 dtrace_dof_error(dof, "bad option entry size");
13256 return (EINVAL);
13257 }
13258
13259 for (offs = 0; offs < sec->dofs_size; offs += entsize) {
13260 desc = (dof_optdesc_t *)((uintptr_t)dof +
13261 (uintptr_t)sec->dofs_offset + offs);
13262
13263 if (desc->dofo_strtab != DOF_SECIDX_NONE) {
13264 dtrace_dof_error(dof, "non-zero option string");
13265 return (EINVAL);
13266 }
13267
13268 if (desc->dofo_value == DTRACEOPT_UNSET) {
13269 dtrace_dof_error(dof, "unset option");
13270 return (EINVAL);
13271 }
13272
13273 if ((rval = dtrace_state_option(state,
13274 desc->dofo_option, desc->dofo_value)) != 0) {
13275 dtrace_dof_error(dof, "rejected option");
13276 return (rval);
13277 }
13278 }
13279 }
13280
13281 return (0);
13282 }
13283
13284 /*
13285 * DTrace Consumer State Functions
13286 */
13287 int
dtrace_dstate_init(dtrace_dstate_t * dstate,size_t size)13288 dtrace_dstate_init(dtrace_dstate_t *dstate, size_t size)
13289 {
13290 size_t hashsize, maxper, min, chunksize = dstate->dtds_chunksize;
13291 void *base;
13292 uintptr_t limit;
13293 dtrace_dynvar_t *dvar, *next, *start;
13294 int i;
13295
13296 ASSERT(MUTEX_HELD(&dtrace_lock));
13297 ASSERT(dstate->dtds_base == NULL && dstate->dtds_percpu == NULL);
13298
13299 bzero(dstate, sizeof (dtrace_dstate_t));
13300
13301 if ((dstate->dtds_chunksize = chunksize) == 0)
13302 dstate->dtds_chunksize = DTRACE_DYNVAR_CHUNKSIZE;
13303
13304 VERIFY(dstate->dtds_chunksize < LONG_MAX);
13305
13306 if (size < (min = dstate->dtds_chunksize + sizeof (dtrace_dynhash_t)))
13307 size = min;
13308
13309 if ((base = kmem_zalloc(size, KM_NOSLEEP | KM_NORMALPRI)) == NULL)
13310 return (ENOMEM);
13311
13312 dstate->dtds_size = size;
13313 dstate->dtds_base = base;
13314 dstate->dtds_percpu = kmem_cache_alloc(dtrace_state_cache, KM_SLEEP);
13315 bzero(dstate->dtds_percpu, NCPU * sizeof (dtrace_dstate_percpu_t));
13316
13317 hashsize = size / (dstate->dtds_chunksize + sizeof (dtrace_dynhash_t));
13318
13319 if (hashsize != 1 && (hashsize & 1))
13320 hashsize--;
13321
13322 dstate->dtds_hashsize = hashsize;
13323 dstate->dtds_hash = dstate->dtds_base;
13324
13325 /*
13326 * Set all of our hash buckets to point to the single sink, and (if
13327 * it hasn't already been set), set the sink's hash value to be the
13328 * sink sentinel value. The sink is needed for dynamic variable
13329 * lookups to know that they have iterated over an entire, valid hash
13330 * chain.
13331 */
13332 for (i = 0; i < hashsize; i++)
13333 dstate->dtds_hash[i].dtdh_chain = &dtrace_dynhash_sink;
13334
13335 if (dtrace_dynhash_sink.dtdv_hashval != DTRACE_DYNHASH_SINK)
13336 dtrace_dynhash_sink.dtdv_hashval = DTRACE_DYNHASH_SINK;
13337
13338 /*
13339 * Determine number of active CPUs. Divide free list evenly among
13340 * active CPUs.
13341 */
13342 start = (dtrace_dynvar_t *)
13343 ((uintptr_t)base + hashsize * sizeof (dtrace_dynhash_t));
13344 limit = (uintptr_t)base + size;
13345
13346 VERIFY((uintptr_t)start < limit);
13347 VERIFY((uintptr_t)start >= (uintptr_t)base);
13348
13349 maxper = (limit - (uintptr_t)start) / NCPU;
13350 maxper = (maxper / dstate->dtds_chunksize) * dstate->dtds_chunksize;
13351
13352 for (i = 0; i < NCPU; i++) {
13353 dstate->dtds_percpu[i].dtdsc_free = dvar = start;
13354
13355 /*
13356 * If we don't even have enough chunks to make it once through
13357 * NCPUs, we're just going to allocate everything to the first
13358 * CPU. And if we're on the last CPU, we're going to allocate
13359 * whatever is left over. In either case, we set the limit to
13360 * be the limit of the dynamic variable space.
13361 */
13362 if (maxper == 0 || i == NCPU - 1) {
13363 limit = (uintptr_t)base + size;
13364 start = NULL;
13365 } else {
13366 limit = (uintptr_t)start + maxper;
13367 start = (dtrace_dynvar_t *)limit;
13368 }
13369
13370 VERIFY(limit <= (uintptr_t)base + size);
13371
13372 for (;;) {
13373 next = (dtrace_dynvar_t *)((uintptr_t)dvar +
13374 dstate->dtds_chunksize);
13375
13376 if ((uintptr_t)next + dstate->dtds_chunksize >= limit)
13377 break;
13378
13379 VERIFY((uintptr_t)dvar >= (uintptr_t)base &&
13380 (uintptr_t)dvar <= (uintptr_t)base + size);
13381 dvar->dtdv_next = next;
13382 dvar = next;
13383 }
13384
13385 if (maxper == 0)
13386 break;
13387 }
13388
13389 return (0);
13390 }
13391
13392 void
dtrace_dstate_fini(dtrace_dstate_t * dstate)13393 dtrace_dstate_fini(dtrace_dstate_t *dstate)
13394 {
13395 ASSERT(MUTEX_HELD(&cpu_lock));
13396
13397 if (dstate->dtds_base == NULL)
13398 return;
13399
13400 kmem_free(dstate->dtds_base, dstate->dtds_size);
13401 kmem_cache_free(dtrace_state_cache, dstate->dtds_percpu);
13402 }
13403
13404 static void
dtrace_vstate_fini(dtrace_vstate_t * vstate)13405 dtrace_vstate_fini(dtrace_vstate_t *vstate)
13406 {
13407 /*
13408 * Logical XOR, where are you?
13409 */
13410 ASSERT((vstate->dtvs_nglobals == 0) ^ (vstate->dtvs_globals != NULL));
13411
13412 if (vstate->dtvs_nglobals > 0) {
13413 kmem_free(vstate->dtvs_globals, vstate->dtvs_nglobals *
13414 sizeof (dtrace_statvar_t *));
13415 }
13416
13417 if (vstate->dtvs_ntlocals > 0) {
13418 kmem_free(vstate->dtvs_tlocals, vstate->dtvs_ntlocals *
13419 sizeof (dtrace_difv_t));
13420 }
13421
13422 ASSERT((vstate->dtvs_nlocals == 0) ^ (vstate->dtvs_locals != NULL));
13423
13424 if (vstate->dtvs_nlocals > 0) {
13425 kmem_free(vstate->dtvs_locals, vstate->dtvs_nlocals *
13426 sizeof (dtrace_statvar_t *));
13427 }
13428 }
13429
13430 static void
dtrace_state_clean(dtrace_state_t * state)13431 dtrace_state_clean(dtrace_state_t *state)
13432 {
13433 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE)
13434 return;
13435
13436 dtrace_dynvar_clean(&state->dts_vstate.dtvs_dynvars);
13437 dtrace_speculation_clean(state);
13438 }
13439
13440 static void
dtrace_state_deadman(dtrace_state_t * state)13441 dtrace_state_deadman(dtrace_state_t *state)
13442 {
13443 hrtime_t now;
13444
13445 dtrace_sync();
13446
13447 now = dtrace_gethrtime();
13448
13449 if (state != dtrace_anon.dta_state &&
13450 now - state->dts_laststatus >= dtrace_deadman_user)
13451 return;
13452
13453 /*
13454 * We must be sure that dts_alive never appears to be less than the
13455 * value upon entry to dtrace_state_deadman(), and because we lack a
13456 * dtrace_cas64(), we cannot store to it atomically. We thus instead
13457 * store INT64_MAX to it, followed by a memory barrier, followed by
13458 * the new value. This assures that dts_alive never appears to be
13459 * less than its true value, regardless of the order in which the
13460 * stores to the underlying storage are issued.
13461 */
13462 state->dts_alive = INT64_MAX;
13463 dtrace_membar_producer();
13464 state->dts_alive = now;
13465 }
13466
13467 dtrace_state_t *
dtrace_state_create(dev_t * devp,cred_t * cr)13468 dtrace_state_create(dev_t *devp, cred_t *cr)
13469 {
13470 minor_t minor;
13471 major_t major;
13472 char c[30];
13473 dtrace_state_t *state;
13474 dtrace_optval_t *opt;
13475 int bufsize = NCPU * sizeof (dtrace_buffer_t), i;
13476
13477 ASSERT(MUTEX_HELD(&dtrace_lock));
13478 ASSERT(MUTEX_HELD(&cpu_lock));
13479
13480 minor = (minor_t)(uintptr_t)vmem_alloc(dtrace_minor, 1,
13481 VM_BESTFIT | VM_SLEEP);
13482
13483 if (ddi_soft_state_zalloc(dtrace_softstate, minor) != DDI_SUCCESS) {
13484 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
13485 return (NULL);
13486 }
13487
13488 state = ddi_get_soft_state(dtrace_softstate, minor);
13489 state->dts_epid = DTRACE_EPIDNONE + 1;
13490
13491 (void) snprintf(c, sizeof (c), "dtrace_aggid_%d", minor);
13492 state->dts_aggid_arena = vmem_create(c, (void *)1, UINT32_MAX, 1,
13493 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
13494
13495 if (devp != NULL) {
13496 major = getemajor(*devp);
13497 } else {
13498 major = ddi_driver_major(dtrace_devi);
13499 }
13500
13501 state->dts_dev = makedevice(major, minor);
13502
13503 if (devp != NULL)
13504 *devp = state->dts_dev;
13505
13506 /*
13507 * We allocate NCPU buffers. On the one hand, this can be quite
13508 * a bit of memory per instance (nearly 36K on a Starcat). On the
13509 * other hand, it saves an additional memory reference in the probe
13510 * path.
13511 */
13512 state->dts_buffer = kmem_zalloc(bufsize, KM_SLEEP);
13513 state->dts_aggbuffer = kmem_zalloc(bufsize, KM_SLEEP);
13514 state->dts_cleaner = CYCLIC_NONE;
13515 state->dts_deadman = CYCLIC_NONE;
13516 state->dts_vstate.dtvs_state = state;
13517
13518 for (i = 0; i < DTRACEOPT_MAX; i++)
13519 state->dts_options[i] = DTRACEOPT_UNSET;
13520
13521 /*
13522 * Set the default options.
13523 */
13524 opt = state->dts_options;
13525 opt[DTRACEOPT_BUFPOLICY] = DTRACEOPT_BUFPOLICY_SWITCH;
13526 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_AUTO;
13527 opt[DTRACEOPT_NSPEC] = dtrace_nspec_default;
13528 opt[DTRACEOPT_SPECSIZE] = dtrace_specsize_default;
13529 opt[DTRACEOPT_CPU] = (dtrace_optval_t)DTRACE_CPUALL;
13530 opt[DTRACEOPT_STRSIZE] = dtrace_strsize_default;
13531 opt[DTRACEOPT_STACKFRAMES] = dtrace_stackframes_default;
13532 opt[DTRACEOPT_USTACKFRAMES] = dtrace_ustackframes_default;
13533 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_default;
13534 opt[DTRACEOPT_AGGRATE] = dtrace_aggrate_default;
13535 opt[DTRACEOPT_SWITCHRATE] = dtrace_switchrate_default;
13536 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_default;
13537 opt[DTRACEOPT_JSTACKFRAMES] = dtrace_jstackframes_default;
13538 opt[DTRACEOPT_JSTACKSTRSIZE] = dtrace_jstackstrsize_default;
13539
13540 state->dts_activity = DTRACE_ACTIVITY_INACTIVE;
13541
13542 /*
13543 * Depending on the user credentials, we set flag bits which alter probe
13544 * visibility or the amount of destructiveness allowed. In the case of
13545 * actual anonymous tracing, or the possession of all privileges, all of
13546 * the normal checks are bypassed.
13547 */
13548 if (cr == NULL || PRIV_POLICY_ONLY(cr, PRIV_ALL, B_FALSE)) {
13549 state->dts_cred.dcr_visible = DTRACE_CRV_ALL;
13550 state->dts_cred.dcr_action = DTRACE_CRA_ALL;
13551 } else {
13552 /*
13553 * Set up the credentials for this instantiation. We take a
13554 * hold on the credential to prevent it from disappearing on
13555 * us; this in turn prevents the zone_t referenced by this
13556 * credential from disappearing. This means that we can
13557 * examine the credential and the zone from probe context.
13558 */
13559 crhold(cr);
13560 state->dts_cred.dcr_cred = cr;
13561
13562 /*
13563 * CRA_PROC means "we have *some* privilege for dtrace" and
13564 * unlocks the use of variables like pid, zonename, etc.
13565 */
13566 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE) ||
13567 PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13568 state->dts_cred.dcr_action |= DTRACE_CRA_PROC;
13569 }
13570
13571 /*
13572 * dtrace_user allows use of syscall and profile providers.
13573 * If the user also has proc_owner and/or proc_zone, we
13574 * extend the scope to include additional visibility and
13575 * destructive power.
13576 */
13577 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_USER, B_FALSE)) {
13578 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE)) {
13579 state->dts_cred.dcr_visible |=
13580 DTRACE_CRV_ALLPROC;
13581
13582 state->dts_cred.dcr_action |=
13583 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13584 }
13585
13586 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE)) {
13587 state->dts_cred.dcr_visible |=
13588 DTRACE_CRV_ALLZONE;
13589
13590 state->dts_cred.dcr_action |=
13591 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13592 }
13593
13594 /*
13595 * If we have all privs in whatever zone this is,
13596 * we can do destructive things to processes which
13597 * have altered credentials.
13598 */
13599 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13600 cr->cr_zone->zone_privset)) {
13601 state->dts_cred.dcr_action |=
13602 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13603 }
13604 }
13605
13606 /*
13607 * Holding the dtrace_kernel privilege also implies that
13608 * the user has the dtrace_user privilege from a visibility
13609 * perspective. But without further privileges, some
13610 * destructive actions are not available.
13611 */
13612 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_KERNEL, B_FALSE)) {
13613 /*
13614 * Make all probes in all zones visible. However,
13615 * this doesn't mean that all actions become available
13616 * to all zones.
13617 */
13618 state->dts_cred.dcr_visible |= DTRACE_CRV_KERNEL |
13619 DTRACE_CRV_ALLPROC | DTRACE_CRV_ALLZONE;
13620
13621 state->dts_cred.dcr_action |= DTRACE_CRA_KERNEL |
13622 DTRACE_CRA_PROC;
13623 /*
13624 * Holding proc_owner means that destructive actions
13625 * for *this* zone are allowed.
13626 */
13627 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13628 state->dts_cred.dcr_action |=
13629 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13630
13631 /*
13632 * Holding proc_zone means that destructive actions
13633 * for this user/group ID in all zones is allowed.
13634 */
13635 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13636 state->dts_cred.dcr_action |=
13637 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13638
13639 /*
13640 * If we have all privs in whatever zone this is,
13641 * we can do destructive things to processes which
13642 * have altered credentials.
13643 */
13644 if (priv_isequalset(priv_getset(cr, PRIV_EFFECTIVE),
13645 cr->cr_zone->zone_privset)) {
13646 state->dts_cred.dcr_action |=
13647 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG;
13648 }
13649 }
13650
13651 /*
13652 * Holding the dtrace_proc privilege gives control over fasttrap
13653 * and pid providers. We need to grant wider destructive
13654 * privileges in the event that the user has proc_owner and/or
13655 * proc_zone.
13656 */
13657 if (PRIV_POLICY_ONLY(cr, PRIV_DTRACE_PROC, B_FALSE)) {
13658 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_OWNER, B_FALSE))
13659 state->dts_cred.dcr_action |=
13660 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER;
13661
13662 if (PRIV_POLICY_ONLY(cr, PRIV_PROC_ZONE, B_FALSE))
13663 state->dts_cred.dcr_action |=
13664 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE;
13665 }
13666 }
13667
13668 return (state);
13669 }
13670
13671 static int
dtrace_state_buffer(dtrace_state_t * state,dtrace_buffer_t * buf,int which)13672 dtrace_state_buffer(dtrace_state_t *state, dtrace_buffer_t *buf, int which)
13673 {
13674 dtrace_optval_t *opt = state->dts_options, size;
13675 processorid_t cpu;
13676 int flags = 0, rval, factor, divisor = 1;
13677
13678 ASSERT(MUTEX_HELD(&dtrace_lock));
13679 ASSERT(MUTEX_HELD(&cpu_lock));
13680 ASSERT(which < DTRACEOPT_MAX);
13681 ASSERT(state->dts_activity == DTRACE_ACTIVITY_INACTIVE ||
13682 (state == dtrace_anon.dta_state &&
13683 state->dts_activity == DTRACE_ACTIVITY_ACTIVE));
13684
13685 if (opt[which] == DTRACEOPT_UNSET || opt[which] == 0)
13686 return (0);
13687
13688 if (opt[DTRACEOPT_CPU] != DTRACEOPT_UNSET)
13689 cpu = opt[DTRACEOPT_CPU];
13690
13691 if (which == DTRACEOPT_SPECSIZE)
13692 flags |= DTRACEBUF_NOSWITCH;
13693
13694 if (which == DTRACEOPT_BUFSIZE) {
13695 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_RING)
13696 flags |= DTRACEBUF_RING;
13697
13698 if (opt[DTRACEOPT_BUFPOLICY] == DTRACEOPT_BUFPOLICY_FILL)
13699 flags |= DTRACEBUF_FILL;
13700
13701 if (state != dtrace_anon.dta_state ||
13702 state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
13703 flags |= DTRACEBUF_INACTIVE;
13704 }
13705
13706 for (size = opt[which]; size >= sizeof (uint64_t); size /= divisor) {
13707 /*
13708 * The size must be 8-byte aligned. If the size is not 8-byte
13709 * aligned, drop it down by the difference.
13710 */
13711 if (size & (sizeof (uint64_t) - 1))
13712 size -= size & (sizeof (uint64_t) - 1);
13713
13714 if (size < state->dts_reserve) {
13715 /*
13716 * Buffers always must be large enough to accommodate
13717 * their prereserved space. We return E2BIG instead
13718 * of ENOMEM in this case to allow for user-level
13719 * software to differentiate the cases.
13720 */
13721 return (E2BIG);
13722 }
13723
13724 rval = dtrace_buffer_alloc(buf, size, flags, cpu, &factor);
13725
13726 if (rval != ENOMEM) {
13727 opt[which] = size;
13728 return (rval);
13729 }
13730
13731 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13732 return (rval);
13733
13734 for (divisor = 2; divisor < factor; divisor <<= 1)
13735 continue;
13736 }
13737
13738 return (ENOMEM);
13739 }
13740
13741 static int
dtrace_state_buffers(dtrace_state_t * state)13742 dtrace_state_buffers(dtrace_state_t *state)
13743 {
13744 dtrace_speculation_t *spec = state->dts_speculations;
13745 int rval, i;
13746
13747 if ((rval = dtrace_state_buffer(state, state->dts_buffer,
13748 DTRACEOPT_BUFSIZE)) != 0)
13749 return (rval);
13750
13751 if ((rval = dtrace_state_buffer(state, state->dts_aggbuffer,
13752 DTRACEOPT_AGGSIZE)) != 0)
13753 return (rval);
13754
13755 for (i = 0; i < state->dts_nspeculations; i++) {
13756 if ((rval = dtrace_state_buffer(state,
13757 spec[i].dtsp_buffer, DTRACEOPT_SPECSIZE)) != 0)
13758 return (rval);
13759 }
13760
13761 return (0);
13762 }
13763
13764 static void
dtrace_state_prereserve(dtrace_state_t * state)13765 dtrace_state_prereserve(dtrace_state_t *state)
13766 {
13767 dtrace_ecb_t *ecb;
13768 dtrace_probe_t *probe;
13769
13770 state->dts_reserve = 0;
13771
13772 if (state->dts_options[DTRACEOPT_BUFPOLICY] != DTRACEOPT_BUFPOLICY_FILL)
13773 return;
13774
13775 /*
13776 * If our buffer policy is a "fill" buffer policy, we need to set the
13777 * prereserved space to be the space required by the END probes.
13778 */
13779 probe = dtrace_probes[dtrace_probeid_end - 1];
13780 ASSERT(probe != NULL);
13781
13782 for (ecb = probe->dtpr_ecb; ecb != NULL; ecb = ecb->dte_next) {
13783 if (ecb->dte_state != state)
13784 continue;
13785
13786 state->dts_reserve += ecb->dte_needed + ecb->dte_alignment;
13787 }
13788 }
13789
13790 static int
dtrace_state_go(dtrace_state_t * state,processorid_t * cpu)13791 dtrace_state_go(dtrace_state_t *state, processorid_t *cpu)
13792 {
13793 dtrace_optval_t *opt = state->dts_options, sz, nspec;
13794 dtrace_speculation_t *spec;
13795 dtrace_buffer_t *buf;
13796 cyc_handler_t hdlr;
13797 cyc_time_t when;
13798 int rval = 0, i, bufsize = NCPU * sizeof (dtrace_buffer_t);
13799 dtrace_icookie_t cookie;
13800
13801 mutex_enter(&cpu_lock);
13802 mutex_enter(&dtrace_lock);
13803
13804 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
13805 rval = EBUSY;
13806 goto out;
13807 }
13808
13809 /*
13810 * Before we can perform any checks, we must prime all of the
13811 * retained enablings that correspond to this state.
13812 */
13813 dtrace_enabling_prime(state);
13814
13815 if (state->dts_destructive && !state->dts_cred.dcr_destructive) {
13816 rval = EACCES;
13817 goto out;
13818 }
13819
13820 dtrace_state_prereserve(state);
13821
13822 /*
13823 * Now we want to do is try to allocate our speculations.
13824 * We do not automatically resize the number of speculations; if
13825 * this fails, we will fail the operation.
13826 */
13827 nspec = opt[DTRACEOPT_NSPEC];
13828 ASSERT(nspec != DTRACEOPT_UNSET);
13829
13830 if (nspec > INT_MAX) {
13831 rval = ENOMEM;
13832 goto out;
13833 }
13834
13835 spec = kmem_zalloc(nspec * sizeof (dtrace_speculation_t),
13836 KM_NOSLEEP | KM_NORMALPRI);
13837
13838 if (spec == NULL) {
13839 rval = ENOMEM;
13840 goto out;
13841 }
13842
13843 state->dts_speculations = spec;
13844 state->dts_nspeculations = (int)nspec;
13845
13846 for (i = 0; i < nspec; i++) {
13847 if ((buf = kmem_zalloc(bufsize,
13848 KM_NOSLEEP | KM_NORMALPRI)) == NULL) {
13849 rval = ENOMEM;
13850 goto err;
13851 }
13852
13853 spec[i].dtsp_buffer = buf;
13854 }
13855
13856 if (opt[DTRACEOPT_GRABANON] != DTRACEOPT_UNSET) {
13857 if (dtrace_anon.dta_state == NULL) {
13858 rval = ENOENT;
13859 goto out;
13860 }
13861
13862 if (state->dts_necbs != 0) {
13863 rval = EALREADY;
13864 goto out;
13865 }
13866
13867 state->dts_anon = dtrace_anon_grab();
13868 ASSERT(state->dts_anon != NULL);
13869 state = state->dts_anon;
13870
13871 /*
13872 * We want "grabanon" to be set in the grabbed state, so we'll
13873 * copy that option value from the grabbing state into the
13874 * grabbed state.
13875 */
13876 state->dts_options[DTRACEOPT_GRABANON] =
13877 opt[DTRACEOPT_GRABANON];
13878
13879 *cpu = dtrace_anon.dta_beganon;
13880
13881 /*
13882 * If the anonymous state is active (as it almost certainly
13883 * is if the anonymous enabling ultimately matched anything),
13884 * we don't allow any further option processing -- but we
13885 * don't return failure.
13886 */
13887 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
13888 goto out;
13889 }
13890
13891 if (opt[DTRACEOPT_AGGSIZE] != DTRACEOPT_UNSET &&
13892 opt[DTRACEOPT_AGGSIZE] != 0) {
13893 if (state->dts_aggregations == NULL) {
13894 /*
13895 * We're not going to create an aggregation buffer
13896 * because we don't have any ECBs that contain
13897 * aggregations -- set this option to 0.
13898 */
13899 opt[DTRACEOPT_AGGSIZE] = 0;
13900 } else {
13901 /*
13902 * If we have an aggregation buffer, we must also have
13903 * a buffer to use as scratch.
13904 */
13905 if (opt[DTRACEOPT_BUFSIZE] == DTRACEOPT_UNSET ||
13906 opt[DTRACEOPT_BUFSIZE] < state->dts_needed) {
13907 opt[DTRACEOPT_BUFSIZE] = state->dts_needed;
13908 }
13909 }
13910 }
13911
13912 if (opt[DTRACEOPT_SPECSIZE] != DTRACEOPT_UNSET &&
13913 opt[DTRACEOPT_SPECSIZE] != 0) {
13914 if (!state->dts_speculates) {
13915 /*
13916 * We're not going to create speculation buffers
13917 * because we don't have any ECBs that actually
13918 * speculate -- set the speculation size to 0.
13919 */
13920 opt[DTRACEOPT_SPECSIZE] = 0;
13921 }
13922 }
13923
13924 /*
13925 * The bare minimum size for any buffer that we're actually going to
13926 * do anything to is sizeof (uint64_t).
13927 */
13928 sz = sizeof (uint64_t);
13929
13930 if ((state->dts_needed != 0 && opt[DTRACEOPT_BUFSIZE] < sz) ||
13931 (state->dts_speculates && opt[DTRACEOPT_SPECSIZE] < sz) ||
13932 (state->dts_aggregations != NULL && opt[DTRACEOPT_AGGSIZE] < sz)) {
13933 /*
13934 * A buffer size has been explicitly set to 0 (or to a size
13935 * that will be adjusted to 0) and we need the space -- we
13936 * need to return failure. We return ENOSPC to differentiate
13937 * it from failing to allocate a buffer due to failure to meet
13938 * the reserve (for which we return E2BIG).
13939 */
13940 rval = ENOSPC;
13941 goto out;
13942 }
13943
13944 if ((rval = dtrace_state_buffers(state)) != 0)
13945 goto err;
13946
13947 if ((sz = opt[DTRACEOPT_DYNVARSIZE]) == DTRACEOPT_UNSET)
13948 sz = dtrace_dstate_defsize;
13949
13950 do {
13951 rval = dtrace_dstate_init(&state->dts_vstate.dtvs_dynvars, sz);
13952
13953 if (rval == 0)
13954 break;
13955
13956 if (opt[DTRACEOPT_BUFRESIZE] == DTRACEOPT_BUFRESIZE_MANUAL)
13957 goto err;
13958 } while (sz >>= 1);
13959
13960 opt[DTRACEOPT_DYNVARSIZE] = sz;
13961
13962 if (rval != 0)
13963 goto err;
13964
13965 if (opt[DTRACEOPT_STATUSRATE] > dtrace_statusrate_max)
13966 opt[DTRACEOPT_STATUSRATE] = dtrace_statusrate_max;
13967
13968 if (opt[DTRACEOPT_CLEANRATE] == 0)
13969 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13970
13971 if (opt[DTRACEOPT_CLEANRATE] < dtrace_cleanrate_min)
13972 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_min;
13973
13974 if (opt[DTRACEOPT_CLEANRATE] > dtrace_cleanrate_max)
13975 opt[DTRACEOPT_CLEANRATE] = dtrace_cleanrate_max;
13976
13977 hdlr.cyh_func = (cyc_func_t)dtrace_state_clean;
13978 hdlr.cyh_arg = state;
13979 hdlr.cyh_level = CY_LOW_LEVEL;
13980
13981 when.cyt_when = 0;
13982 when.cyt_interval = opt[DTRACEOPT_CLEANRATE];
13983
13984 state->dts_cleaner = cyclic_add(&hdlr, &when);
13985
13986 hdlr.cyh_func = (cyc_func_t)dtrace_state_deadman;
13987 hdlr.cyh_arg = state;
13988 hdlr.cyh_level = CY_LOW_LEVEL;
13989
13990 when.cyt_when = 0;
13991 when.cyt_interval = dtrace_deadman_interval;
13992
13993 state->dts_alive = state->dts_laststatus = dtrace_gethrtime();
13994 state->dts_deadman = cyclic_add(&hdlr, &when);
13995
13996 state->dts_activity = DTRACE_ACTIVITY_WARMUP;
13997
13998 if (state->dts_getf != 0 &&
13999 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14000 /*
14001 * We don't have kernel privs but we have at least one call
14002 * to getf(); we need to bump our zone's count, and (if
14003 * this is the first enabling to have an unprivileged call
14004 * to getf()) we need to hook into closef().
14005 */
14006 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf++;
14007
14008 if (dtrace_getf++ == 0) {
14009 ASSERT(dtrace_closef == NULL);
14010 dtrace_closef = dtrace_getf_barrier;
14011 }
14012 }
14013
14014 /*
14015 * Now it's time to actually fire the BEGIN probe. We need to disable
14016 * interrupts here both to record the CPU on which we fired the BEGIN
14017 * probe (the data from this CPU will be processed first at user
14018 * level) and to manually activate the buffer for this CPU.
14019 */
14020 cookie = dtrace_interrupt_disable();
14021 *cpu = CPU->cpu_id;
14022 ASSERT(state->dts_buffer[*cpu].dtb_flags & DTRACEBUF_INACTIVE);
14023 state->dts_buffer[*cpu].dtb_flags &= ~DTRACEBUF_INACTIVE;
14024
14025 dtrace_probe(dtrace_probeid_begin,
14026 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14027 dtrace_interrupt_enable(cookie);
14028 /*
14029 * We may have had an exit action from a BEGIN probe; only change our
14030 * state to ACTIVE if we're still in WARMUP.
14031 */
14032 ASSERT(state->dts_activity == DTRACE_ACTIVITY_WARMUP ||
14033 state->dts_activity == DTRACE_ACTIVITY_DRAINING);
14034
14035 if (state->dts_activity == DTRACE_ACTIVITY_WARMUP)
14036 state->dts_activity = DTRACE_ACTIVITY_ACTIVE;
14037
14038 /*
14039 * Regardless of whether or not now we're in ACTIVE or DRAINING, we
14040 * want each CPU to transition its principal buffer out of the
14041 * INACTIVE state. Doing this assures that no CPU will suddenly begin
14042 * processing an ECB halfway down a probe's ECB chain; all CPUs will
14043 * atomically transition from processing none of a state's ECBs to
14044 * processing all of them.
14045 */
14046 dtrace_xcall(DTRACE_CPUALL,
14047 (dtrace_xcall_t)dtrace_buffer_activate, state);
14048 goto out;
14049
14050 err:
14051 dtrace_buffer_free(state->dts_buffer);
14052 dtrace_buffer_free(state->dts_aggbuffer);
14053
14054 if ((nspec = state->dts_nspeculations) == 0) {
14055 ASSERT(state->dts_speculations == NULL);
14056 goto out;
14057 }
14058
14059 spec = state->dts_speculations;
14060 ASSERT(spec != NULL);
14061
14062 for (i = 0; i < state->dts_nspeculations; i++) {
14063 if ((buf = spec[i].dtsp_buffer) == NULL)
14064 break;
14065
14066 dtrace_buffer_free(buf);
14067 kmem_free(buf, bufsize);
14068 }
14069
14070 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14071 state->dts_nspeculations = 0;
14072 state->dts_speculations = NULL;
14073
14074 out:
14075 mutex_exit(&dtrace_lock);
14076 mutex_exit(&cpu_lock);
14077
14078 return (rval);
14079 }
14080
14081 static int
dtrace_state_stop(dtrace_state_t * state,processorid_t * cpu)14082 dtrace_state_stop(dtrace_state_t *state, processorid_t *cpu)
14083 {
14084 dtrace_icookie_t cookie;
14085
14086 ASSERT(MUTEX_HELD(&dtrace_lock));
14087
14088 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE &&
14089 state->dts_activity != DTRACE_ACTIVITY_DRAINING)
14090 return (EINVAL);
14091
14092 /*
14093 * We'll set the activity to DTRACE_ACTIVITY_DRAINING, and issue a sync
14094 * to be sure that every CPU has seen it. See below for the details
14095 * on why this is done.
14096 */
14097 state->dts_activity = DTRACE_ACTIVITY_DRAINING;
14098 dtrace_sync();
14099
14100 /*
14101 * By this point, it is impossible for any CPU to be still processing
14102 * with DTRACE_ACTIVITY_ACTIVE. We can thus set our activity to
14103 * DTRACE_ACTIVITY_COOLDOWN and know that we're not racing with any
14104 * other CPU in dtrace_buffer_reserve(). This allows dtrace_probe()
14105 * and callees to know that the activity is DTRACE_ACTIVITY_COOLDOWN
14106 * iff we're in the END probe.
14107 */
14108 state->dts_activity = DTRACE_ACTIVITY_COOLDOWN;
14109 dtrace_sync();
14110 ASSERT(state->dts_activity == DTRACE_ACTIVITY_COOLDOWN);
14111
14112 /*
14113 * Finally, we can release the reserve and call the END probe. We
14114 * disable interrupts across calling the END probe to allow us to
14115 * return the CPU on which we actually called the END probe. This
14116 * allows user-land to be sure that this CPU's principal buffer is
14117 * processed last.
14118 */
14119 state->dts_reserve = 0;
14120
14121 cookie = dtrace_interrupt_disable();
14122 *cpu = CPU->cpu_id;
14123 dtrace_probe(dtrace_probeid_end,
14124 (uint64_t)(uintptr_t)state, 0, 0, 0, 0);
14125 dtrace_interrupt_enable(cookie);
14126
14127 state->dts_activity = DTRACE_ACTIVITY_STOPPED;
14128 dtrace_sync();
14129
14130 if (state->dts_getf != 0 &&
14131 !(state->dts_cred.dcr_visible & DTRACE_CRV_KERNEL)) {
14132 /*
14133 * We don't have kernel privs but we have at least one call
14134 * to getf(); we need to lower our zone's count, and (if
14135 * this is the last enabling to have an unprivileged call
14136 * to getf()) we need to clear the closef() hook.
14137 */
14138 ASSERT(state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf > 0);
14139 ASSERT(dtrace_closef == dtrace_getf_barrier);
14140 ASSERT(dtrace_getf > 0);
14141
14142 state->dts_cred.dcr_cred->cr_zone->zone_dtrace_getf--;
14143
14144 if (--dtrace_getf == 0)
14145 dtrace_closef = NULL;
14146 }
14147
14148 return (0);
14149 }
14150
14151 static int
dtrace_state_option(dtrace_state_t * state,dtrace_optid_t option,dtrace_optval_t val)14152 dtrace_state_option(dtrace_state_t *state, dtrace_optid_t option,
14153 dtrace_optval_t val)
14154 {
14155 ASSERT(MUTEX_HELD(&dtrace_lock));
14156
14157 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE)
14158 return (EBUSY);
14159
14160 if (option >= DTRACEOPT_MAX)
14161 return (EINVAL);
14162
14163 if (option != DTRACEOPT_CPU && val < 0)
14164 return (EINVAL);
14165
14166 switch (option) {
14167 case DTRACEOPT_DESTRUCTIVE:
14168 if (dtrace_destructive_disallow)
14169 return (EACCES);
14170
14171 state->dts_cred.dcr_destructive = 1;
14172 break;
14173
14174 case DTRACEOPT_BUFSIZE:
14175 case DTRACEOPT_DYNVARSIZE:
14176 case DTRACEOPT_AGGSIZE:
14177 case DTRACEOPT_SPECSIZE:
14178 case DTRACEOPT_STRSIZE:
14179 if (val < 0)
14180 return (EINVAL);
14181
14182 if (val >= LONG_MAX) {
14183 /*
14184 * If this is an otherwise negative value, set it to
14185 * the highest multiple of 128m less than LONG_MAX.
14186 * Technically, we're adjusting the size without
14187 * regard to the buffer resizing policy, but in fact,
14188 * this has no effect -- if we set the buffer size to
14189 * ~LONG_MAX and the buffer policy is ultimately set to
14190 * be "manual", the buffer allocation is guaranteed to
14191 * fail, if only because the allocation requires two
14192 * buffers. (We set the the size to the highest
14193 * multiple of 128m because it ensures that the size
14194 * will remain a multiple of a megabyte when
14195 * repeatedly halved -- all the way down to 15m.)
14196 */
14197 val = LONG_MAX - (1 << 27) + 1;
14198 }
14199 }
14200
14201 state->dts_options[option] = val;
14202
14203 return (0);
14204 }
14205
14206 static void
dtrace_state_destroy(dtrace_state_t * state)14207 dtrace_state_destroy(dtrace_state_t *state)
14208 {
14209 dtrace_ecb_t *ecb;
14210 dtrace_vstate_t *vstate = &state->dts_vstate;
14211 minor_t minor = getminor(state->dts_dev);
14212 int i, bufsize = NCPU * sizeof (dtrace_buffer_t);
14213 dtrace_speculation_t *spec = state->dts_speculations;
14214 int nspec = state->dts_nspeculations;
14215 uint32_t match;
14216
14217 ASSERT(MUTEX_HELD(&dtrace_lock));
14218 ASSERT(MUTEX_HELD(&cpu_lock));
14219
14220 /*
14221 * First, retract any retained enablings for this state.
14222 */
14223 dtrace_enabling_retract(state);
14224 ASSERT(state->dts_nretained == 0);
14225
14226 if (state->dts_activity == DTRACE_ACTIVITY_ACTIVE ||
14227 state->dts_activity == DTRACE_ACTIVITY_DRAINING) {
14228 /*
14229 * We have managed to come into dtrace_state_destroy() on a
14230 * hot enabling -- almost certainly because of a disorderly
14231 * shutdown of a consumer. (That is, a consumer that is
14232 * exiting without having called dtrace_stop().) In this case,
14233 * we're going to set our activity to be KILLED, and then
14234 * issue a sync to be sure that everyone is out of probe
14235 * context before we start blowing away ECBs.
14236 */
14237 state->dts_activity = DTRACE_ACTIVITY_KILLED;
14238 dtrace_sync();
14239 }
14240
14241 /*
14242 * Release the credential hold we took in dtrace_state_create().
14243 */
14244 if (state->dts_cred.dcr_cred != NULL)
14245 crfree(state->dts_cred.dcr_cred);
14246
14247 /*
14248 * Now we can safely disable and destroy any enabled probes. Because
14249 * any DTRACE_PRIV_KERNEL probes may actually be slowing our progress
14250 * (especially if they're all enabled), we take two passes through the
14251 * ECBs: in the first, we disable just DTRACE_PRIV_KERNEL probes, and
14252 * in the second we disable whatever is left over.
14253 */
14254 for (match = DTRACE_PRIV_KERNEL; ; match = 0) {
14255 for (i = 0; i < state->dts_necbs; i++) {
14256 if ((ecb = state->dts_ecbs[i]) == NULL)
14257 continue;
14258
14259 if (match && ecb->dte_probe != NULL) {
14260 dtrace_probe_t *probe = ecb->dte_probe;
14261 dtrace_provider_t *prov = probe->dtpr_provider;
14262
14263 if (!(prov->dtpv_priv.dtpp_flags & match))
14264 continue;
14265 }
14266
14267 dtrace_ecb_disable(ecb);
14268 dtrace_ecb_destroy(ecb);
14269 }
14270
14271 if (!match)
14272 break;
14273 }
14274
14275 /*
14276 * Before we free the buffers, perform one more sync to assure that
14277 * every CPU is out of probe context.
14278 */
14279 dtrace_sync();
14280
14281 dtrace_buffer_free(state->dts_buffer);
14282 dtrace_buffer_free(state->dts_aggbuffer);
14283
14284 for (i = 0; i < nspec; i++)
14285 dtrace_buffer_free(spec[i].dtsp_buffer);
14286
14287 if (state->dts_cleaner != CYCLIC_NONE)
14288 cyclic_remove(state->dts_cleaner);
14289
14290 if (state->dts_deadman != CYCLIC_NONE)
14291 cyclic_remove(state->dts_deadman);
14292
14293 dtrace_dstate_fini(&vstate->dtvs_dynvars);
14294 dtrace_vstate_fini(vstate);
14295 kmem_free(state->dts_ecbs, state->dts_necbs * sizeof (dtrace_ecb_t *));
14296
14297 if (state->dts_aggregations != NULL) {
14298 #ifdef DEBUG
14299 for (i = 0; i < state->dts_naggregations; i++)
14300 ASSERT(state->dts_aggregations[i] == NULL);
14301 #endif
14302 ASSERT(state->dts_naggregations > 0);
14303 kmem_free(state->dts_aggregations,
14304 state->dts_naggregations * sizeof (dtrace_aggregation_t *));
14305 }
14306
14307 kmem_free(state->dts_buffer, bufsize);
14308 kmem_free(state->dts_aggbuffer, bufsize);
14309
14310 for (i = 0; i < nspec; i++)
14311 kmem_free(spec[i].dtsp_buffer, bufsize);
14312
14313 kmem_free(spec, nspec * sizeof (dtrace_speculation_t));
14314
14315 dtrace_format_destroy(state);
14316
14317 vmem_destroy(state->dts_aggid_arena);
14318 ddi_soft_state_free(dtrace_softstate, minor);
14319 vmem_free(dtrace_minor, (void *)(uintptr_t)minor, 1);
14320 }
14321
14322 /*
14323 * DTrace Anonymous Enabling Functions
14324 */
14325 static dtrace_state_t *
dtrace_anon_grab(void)14326 dtrace_anon_grab(void)
14327 {
14328 dtrace_state_t *state;
14329
14330 ASSERT(MUTEX_HELD(&dtrace_lock));
14331
14332 if ((state = dtrace_anon.dta_state) == NULL) {
14333 ASSERT(dtrace_anon.dta_enabling == NULL);
14334 return (NULL);
14335 }
14336
14337 ASSERT(dtrace_anon.dta_enabling != NULL);
14338 ASSERT(dtrace_retained != NULL);
14339
14340 dtrace_enabling_destroy(dtrace_anon.dta_enabling);
14341 dtrace_anon.dta_enabling = NULL;
14342 dtrace_anon.dta_state = NULL;
14343
14344 return (state);
14345 }
14346
14347 static void
dtrace_anon_property(void)14348 dtrace_anon_property(void)
14349 {
14350 int i, rv;
14351 dtrace_state_t *state;
14352 dof_hdr_t *dof;
14353 char c[32]; /* enough for "dof-data-" + digits */
14354
14355 ASSERT(MUTEX_HELD(&dtrace_lock));
14356 ASSERT(MUTEX_HELD(&cpu_lock));
14357
14358 for (i = 0; ; i++) {
14359 (void) snprintf(c, sizeof (c), "dof-data-%d", i);
14360
14361 dtrace_err_verbose = 1;
14362
14363 if ((dof = dtrace_dof_property(c)) == NULL) {
14364 dtrace_err_verbose = 0;
14365 break;
14366 }
14367
14368 /*
14369 * We want to create anonymous state, so we need to transition
14370 * the kernel debugger to indicate that DTrace is active. If
14371 * this fails (e.g. because the debugger has modified text in
14372 * some way), we won't continue with the processing.
14373 */
14374 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
14375 cmn_err(CE_NOTE, "kernel debugger active; anonymous "
14376 "enabling ignored.");
14377 dtrace_dof_destroy(dof);
14378 break;
14379 }
14380
14381 /*
14382 * If we haven't allocated an anonymous state, we'll do so now.
14383 */
14384 if ((state = dtrace_anon.dta_state) == NULL) {
14385 state = dtrace_state_create(NULL, NULL);
14386 dtrace_anon.dta_state = state;
14387
14388 if (state == NULL) {
14389 /*
14390 * This basically shouldn't happen: the only
14391 * failure mode from dtrace_state_create() is a
14392 * failure of ddi_soft_state_zalloc() that
14393 * itself should never happen. Still, the
14394 * interface allows for a failure mode, and
14395 * we want to fail as gracefully as possible:
14396 * we'll emit an error message and cease
14397 * processing anonymous state in this case.
14398 */
14399 cmn_err(CE_WARN, "failed to create "
14400 "anonymous state");
14401 dtrace_dof_destroy(dof);
14402 break;
14403 }
14404 }
14405
14406 rv = dtrace_dof_slurp(dof, &state->dts_vstate, CRED(),
14407 &dtrace_anon.dta_enabling, 0, B_TRUE);
14408
14409 if (rv == 0)
14410 rv = dtrace_dof_options(dof, state);
14411
14412 dtrace_err_verbose = 0;
14413 dtrace_dof_destroy(dof);
14414
14415 if (rv != 0) {
14416 /*
14417 * This is malformed DOF; chuck any anonymous state
14418 * that we created.
14419 */
14420 ASSERT(dtrace_anon.dta_enabling == NULL);
14421 dtrace_state_destroy(state);
14422 dtrace_anon.dta_state = NULL;
14423 break;
14424 }
14425
14426 ASSERT(dtrace_anon.dta_enabling != NULL);
14427 }
14428
14429 if (dtrace_anon.dta_enabling != NULL) {
14430 int rval;
14431
14432 /*
14433 * dtrace_enabling_retain() can only fail because we are
14434 * trying to retain more enablings than are allowed -- but
14435 * we only have one anonymous enabling, and we are guaranteed
14436 * to be allowed at least one retained enabling; we assert
14437 * that dtrace_enabling_retain() returns success.
14438 */
14439 rval = dtrace_enabling_retain(dtrace_anon.dta_enabling);
14440 ASSERT(rval == 0);
14441
14442 dtrace_enabling_dump(dtrace_anon.dta_enabling);
14443 }
14444 }
14445
14446 /*
14447 * DTrace Helper Functions
14448 */
14449 static void
dtrace_helper_trace(dtrace_helper_action_t * helper,dtrace_mstate_t * mstate,dtrace_vstate_t * vstate,int where)14450 dtrace_helper_trace(dtrace_helper_action_t *helper,
14451 dtrace_mstate_t *mstate, dtrace_vstate_t *vstate, int where)
14452 {
14453 uint32_t size, next, nnext, i;
14454 dtrace_helptrace_t *ent, *buffer;
14455 uint16_t flags = cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14456
14457 if ((buffer = dtrace_helptrace_buffer) == NULL)
14458 return;
14459
14460 ASSERT(vstate->dtvs_nlocals <= dtrace_helptrace_nlocals);
14461
14462 /*
14463 * What would a tracing framework be without its own tracing
14464 * framework? (Well, a hell of a lot simpler, for starters...)
14465 */
14466 size = sizeof (dtrace_helptrace_t) + dtrace_helptrace_nlocals *
14467 sizeof (uint64_t) - sizeof (uint64_t);
14468
14469 /*
14470 * Iterate until we can allocate a slot in the trace buffer.
14471 */
14472 do {
14473 next = dtrace_helptrace_next;
14474
14475 if (next + size < dtrace_helptrace_bufsize) {
14476 nnext = next + size;
14477 } else {
14478 nnext = size;
14479 }
14480 } while (dtrace_cas32(&dtrace_helptrace_next, next, nnext) != next);
14481
14482 /*
14483 * We have our slot; fill it in.
14484 */
14485 if (nnext == size) {
14486 dtrace_helptrace_wrapped++;
14487 next = 0;
14488 }
14489
14490 ent = (dtrace_helptrace_t *)((uintptr_t)buffer + next);
14491 ent->dtht_helper = helper;
14492 ent->dtht_where = where;
14493 ent->dtht_nlocals = vstate->dtvs_nlocals;
14494
14495 ent->dtht_fltoffs = (mstate->dtms_present & DTRACE_MSTATE_FLTOFFS) ?
14496 mstate->dtms_fltoffs : -1;
14497 ent->dtht_fault = DTRACE_FLAGS2FLT(flags);
14498 ent->dtht_illval = cpu_core[CPU->cpu_id].cpuc_dtrace_illval;
14499
14500 for (i = 0; i < vstate->dtvs_nlocals; i++) {
14501 dtrace_statvar_t *svar;
14502
14503 if ((svar = vstate->dtvs_locals[i]) == NULL)
14504 continue;
14505
14506 ASSERT(svar->dtsv_size >= NCPU * sizeof (uint64_t));
14507 ent->dtht_locals[i] =
14508 ((uint64_t *)(uintptr_t)svar->dtsv_data)[CPU->cpu_id];
14509 }
14510 }
14511
14512 static uint64_t
dtrace_helper(int which,dtrace_mstate_t * mstate,dtrace_state_t * state,uint64_t arg0,uint64_t arg1)14513 dtrace_helper(int which, dtrace_mstate_t *mstate,
14514 dtrace_state_t *state, uint64_t arg0, uint64_t arg1)
14515 {
14516 uint16_t *flags = &cpu_core[CPU->cpu_id].cpuc_dtrace_flags;
14517 uint64_t sarg0 = mstate->dtms_arg[0];
14518 uint64_t sarg1 = mstate->dtms_arg[1];
14519 uint64_t rval;
14520 dtrace_helpers_t *helpers = curproc->p_dtrace_helpers;
14521 dtrace_helper_action_t *helper;
14522 dtrace_vstate_t *vstate;
14523 dtrace_difo_t *pred;
14524 int i, trace = dtrace_helptrace_buffer != NULL;
14525
14526 ASSERT(which >= 0 && which < DTRACE_NHELPER_ACTIONS);
14527
14528 if (helpers == NULL)
14529 return (0);
14530
14531 if ((helper = helpers->dthps_actions[which]) == NULL)
14532 return (0);
14533
14534 vstate = &helpers->dthps_vstate;
14535 mstate->dtms_arg[0] = arg0;
14536 mstate->dtms_arg[1] = arg1;
14537
14538 /*
14539 * Now iterate over each helper. If its predicate evaluates to 'true',
14540 * we'll call the corresponding actions. Note that the below calls
14541 * to dtrace_dif_emulate() may set faults in machine state. This is
14542 * okay: our caller (the outer dtrace_dif_emulate()) will simply plow
14543 * the stored DIF offset with its own (which is the desired behavior).
14544 * Also, note the calls to dtrace_dif_emulate() may allocate scratch
14545 * from machine state; this is okay, too.
14546 */
14547 for (; helper != NULL; helper = helper->dtha_next) {
14548 if ((pred = helper->dtha_predicate) != NULL) {
14549 if (trace)
14550 dtrace_helper_trace(helper, mstate, vstate, 0);
14551
14552 if (!dtrace_dif_emulate(pred, mstate, vstate, state))
14553 goto next;
14554
14555 if (*flags & CPU_DTRACE_FAULT)
14556 goto err;
14557 }
14558
14559 for (i = 0; i < helper->dtha_nactions; i++) {
14560 if (trace)
14561 dtrace_helper_trace(helper,
14562 mstate, vstate, i + 1);
14563
14564 rval = dtrace_dif_emulate(helper->dtha_actions[i],
14565 mstate, vstate, state);
14566
14567 if (*flags & CPU_DTRACE_FAULT)
14568 goto err;
14569 }
14570
14571 next:
14572 if (trace)
14573 dtrace_helper_trace(helper, mstate, vstate,
14574 DTRACE_HELPTRACE_NEXT);
14575 }
14576
14577 if (trace)
14578 dtrace_helper_trace(helper, mstate, vstate,
14579 DTRACE_HELPTRACE_DONE);
14580
14581 /*
14582 * Restore the arg0 that we saved upon entry.
14583 */
14584 mstate->dtms_arg[0] = sarg0;
14585 mstate->dtms_arg[1] = sarg1;
14586
14587 return (rval);
14588
14589 err:
14590 if (trace)
14591 dtrace_helper_trace(helper, mstate, vstate,
14592 DTRACE_HELPTRACE_ERR);
14593
14594 /*
14595 * Restore the arg0 that we saved upon entry.
14596 */
14597 mstate->dtms_arg[0] = sarg0;
14598 mstate->dtms_arg[1] = sarg1;
14599
14600 return (NULL);
14601 }
14602
14603 static void
dtrace_helper_action_destroy(dtrace_helper_action_t * helper,dtrace_vstate_t * vstate)14604 dtrace_helper_action_destroy(dtrace_helper_action_t *helper,
14605 dtrace_vstate_t *vstate)
14606 {
14607 int i;
14608
14609 if (helper->dtha_predicate != NULL)
14610 dtrace_difo_release(helper->dtha_predicate, vstate);
14611
14612 for (i = 0; i < helper->dtha_nactions; i++) {
14613 ASSERT(helper->dtha_actions[i] != NULL);
14614 dtrace_difo_release(helper->dtha_actions[i], vstate);
14615 }
14616
14617 kmem_free(helper->dtha_actions,
14618 helper->dtha_nactions * sizeof (dtrace_difo_t *));
14619 kmem_free(helper, sizeof (dtrace_helper_action_t));
14620 }
14621
14622 static int
dtrace_helper_destroygen(int gen)14623 dtrace_helper_destroygen(int gen)
14624 {
14625 proc_t *p = curproc;
14626 dtrace_helpers_t *help = p->p_dtrace_helpers;
14627 dtrace_vstate_t *vstate;
14628 int i;
14629
14630 ASSERT(MUTEX_HELD(&dtrace_lock));
14631
14632 if (help == NULL || gen > help->dthps_generation)
14633 return (EINVAL);
14634
14635 vstate = &help->dthps_vstate;
14636
14637 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
14638 dtrace_helper_action_t *last = NULL, *h, *next;
14639
14640 for (h = help->dthps_actions[i]; h != NULL; h = next) {
14641 next = h->dtha_next;
14642
14643 if (h->dtha_generation == gen) {
14644 if (last != NULL) {
14645 last->dtha_next = next;
14646 } else {
14647 help->dthps_actions[i] = next;
14648 }
14649
14650 dtrace_helper_action_destroy(h, vstate);
14651 } else {
14652 last = h;
14653 }
14654 }
14655 }
14656
14657 /*
14658 * Interate until we've cleared out all helper providers with the
14659 * given generation number.
14660 */
14661 for (;;) {
14662 dtrace_helper_provider_t *prov;
14663
14664 /*
14665 * Look for a helper provider with the right generation. We
14666 * have to start back at the beginning of the list each time
14667 * because we drop dtrace_lock. It's unlikely that we'll make
14668 * more than two passes.
14669 */
14670 for (i = 0; i < help->dthps_nprovs; i++) {
14671 prov = help->dthps_provs[i];
14672
14673 if (prov->dthp_generation == gen)
14674 break;
14675 }
14676
14677 /*
14678 * If there were no matches, we're done.
14679 */
14680 if (i == help->dthps_nprovs)
14681 break;
14682
14683 /*
14684 * Move the last helper provider into this slot.
14685 */
14686 help->dthps_nprovs--;
14687 help->dthps_provs[i] = help->dthps_provs[help->dthps_nprovs];
14688 help->dthps_provs[help->dthps_nprovs] = NULL;
14689
14690 mutex_exit(&dtrace_lock);
14691
14692 /*
14693 * If we have a meta provider, remove this helper provider.
14694 */
14695 mutex_enter(&dtrace_meta_lock);
14696 if (dtrace_meta_pid != NULL) {
14697 ASSERT(dtrace_deferred_pid == NULL);
14698 dtrace_helper_provider_remove(&prov->dthp_prov,
14699 p->p_pid);
14700 }
14701 mutex_exit(&dtrace_meta_lock);
14702
14703 dtrace_helper_provider_destroy(prov);
14704
14705 mutex_enter(&dtrace_lock);
14706 }
14707
14708 return (0);
14709 }
14710
14711 static int
dtrace_helper_validate(dtrace_helper_action_t * helper)14712 dtrace_helper_validate(dtrace_helper_action_t *helper)
14713 {
14714 int err = 0, i;
14715 dtrace_difo_t *dp;
14716
14717 if ((dp = helper->dtha_predicate) != NULL)
14718 err += dtrace_difo_validate_helper(dp);
14719
14720 for (i = 0; i < helper->dtha_nactions; i++)
14721 err += dtrace_difo_validate_helper(helper->dtha_actions[i]);
14722
14723 return (err == 0);
14724 }
14725
14726 static int
dtrace_helper_action_add(int which,dtrace_ecbdesc_t * ep)14727 dtrace_helper_action_add(int which, dtrace_ecbdesc_t *ep)
14728 {
14729 dtrace_helpers_t *help;
14730 dtrace_helper_action_t *helper, *last;
14731 dtrace_actdesc_t *act;
14732 dtrace_vstate_t *vstate;
14733 dtrace_predicate_t *pred;
14734 int count = 0, nactions = 0, i;
14735
14736 if (which < 0 || which >= DTRACE_NHELPER_ACTIONS)
14737 return (EINVAL);
14738
14739 help = curproc->p_dtrace_helpers;
14740 last = help->dthps_actions[which];
14741 vstate = &help->dthps_vstate;
14742
14743 for (count = 0; last != NULL; last = last->dtha_next) {
14744 count++;
14745 if (last->dtha_next == NULL)
14746 break;
14747 }
14748
14749 /*
14750 * If we already have dtrace_helper_actions_max helper actions for this
14751 * helper action type, we'll refuse to add a new one.
14752 */
14753 if (count >= dtrace_helper_actions_max)
14754 return (ENOSPC);
14755
14756 helper = kmem_zalloc(sizeof (dtrace_helper_action_t), KM_SLEEP);
14757 helper->dtha_generation = help->dthps_generation;
14758
14759 if ((pred = ep->dted_pred.dtpdd_predicate) != NULL) {
14760 ASSERT(pred->dtp_difo != NULL);
14761 dtrace_difo_hold(pred->dtp_difo);
14762 helper->dtha_predicate = pred->dtp_difo;
14763 }
14764
14765 for (act = ep->dted_action; act != NULL; act = act->dtad_next) {
14766 if (act->dtad_kind != DTRACEACT_DIFEXPR)
14767 goto err;
14768
14769 if (act->dtad_difo == NULL)
14770 goto err;
14771
14772 nactions++;
14773 }
14774
14775 helper->dtha_actions = kmem_zalloc(sizeof (dtrace_difo_t *) *
14776 (helper->dtha_nactions = nactions), KM_SLEEP);
14777
14778 for (act = ep->dted_action, i = 0; act != NULL; act = act->dtad_next) {
14779 dtrace_difo_hold(act->dtad_difo);
14780 helper->dtha_actions[i++] = act->dtad_difo;
14781 }
14782
14783 if (!dtrace_helper_validate(helper))
14784 goto err;
14785
14786 if (last == NULL) {
14787 help->dthps_actions[which] = helper;
14788 } else {
14789 last->dtha_next = helper;
14790 }
14791
14792 if (vstate->dtvs_nlocals > dtrace_helptrace_nlocals) {
14793 dtrace_helptrace_nlocals = vstate->dtvs_nlocals;
14794 dtrace_helptrace_next = 0;
14795 }
14796
14797 return (0);
14798 err:
14799 dtrace_helper_action_destroy(helper, vstate);
14800 return (EINVAL);
14801 }
14802
14803 static void
dtrace_helper_provider_register(proc_t * p,dtrace_helpers_t * help,dof_helper_t * dofhp)14804 dtrace_helper_provider_register(proc_t *p, dtrace_helpers_t *help,
14805 dof_helper_t *dofhp)
14806 {
14807 ASSERT(MUTEX_NOT_HELD(&dtrace_lock));
14808
14809 mutex_enter(&dtrace_meta_lock);
14810 mutex_enter(&dtrace_lock);
14811
14812 if (!dtrace_attached() || dtrace_meta_pid == NULL) {
14813 /*
14814 * If the dtrace module is loaded but not attached, or if
14815 * there aren't isn't a meta provider registered to deal with
14816 * these provider descriptions, we need to postpone creating
14817 * the actual providers until later.
14818 */
14819
14820 if (help->dthps_next == NULL && help->dthps_prev == NULL &&
14821 dtrace_deferred_pid != help) {
14822 help->dthps_deferred = 1;
14823 help->dthps_pid = p->p_pid;
14824 help->dthps_next = dtrace_deferred_pid;
14825 help->dthps_prev = NULL;
14826 if (dtrace_deferred_pid != NULL)
14827 dtrace_deferred_pid->dthps_prev = help;
14828 dtrace_deferred_pid = help;
14829 }
14830
14831 mutex_exit(&dtrace_lock);
14832
14833 } else if (dofhp != NULL) {
14834 /*
14835 * If the dtrace module is loaded and we have a particular
14836 * helper provider description, pass that off to the
14837 * meta provider.
14838 */
14839
14840 mutex_exit(&dtrace_lock);
14841
14842 dtrace_helper_provide(dofhp, p->p_pid);
14843
14844 } else {
14845 /*
14846 * Otherwise, just pass all the helper provider descriptions
14847 * off to the meta provider.
14848 */
14849
14850 int i;
14851 mutex_exit(&dtrace_lock);
14852
14853 for (i = 0; i < help->dthps_nprovs; i++) {
14854 dtrace_helper_provide(&help->dthps_provs[i]->dthp_prov,
14855 p->p_pid);
14856 }
14857 }
14858
14859 mutex_exit(&dtrace_meta_lock);
14860 }
14861
14862 static int
dtrace_helper_provider_add(dof_helper_t * dofhp,int gen)14863 dtrace_helper_provider_add(dof_helper_t *dofhp, int gen)
14864 {
14865 dtrace_helpers_t *help;
14866 dtrace_helper_provider_t *hprov, **tmp_provs;
14867 uint_t tmp_maxprovs, i;
14868
14869 ASSERT(MUTEX_HELD(&dtrace_lock));
14870
14871 help = curproc->p_dtrace_helpers;
14872 ASSERT(help != NULL);
14873
14874 /*
14875 * If we already have dtrace_helper_providers_max helper providers,
14876 * we're refuse to add a new one.
14877 */
14878 if (help->dthps_nprovs >= dtrace_helper_providers_max)
14879 return (ENOSPC);
14880
14881 /*
14882 * Check to make sure this isn't a duplicate.
14883 */
14884 for (i = 0; i < help->dthps_nprovs; i++) {
14885 if (dofhp->dofhp_addr ==
14886 help->dthps_provs[i]->dthp_prov.dofhp_addr)
14887 return (EALREADY);
14888 }
14889
14890 hprov = kmem_zalloc(sizeof (dtrace_helper_provider_t), KM_SLEEP);
14891 hprov->dthp_prov = *dofhp;
14892 hprov->dthp_ref = 1;
14893 hprov->dthp_generation = gen;
14894
14895 /*
14896 * Allocate a bigger table for helper providers if it's already full.
14897 */
14898 if (help->dthps_maxprovs == help->dthps_nprovs) {
14899 tmp_maxprovs = help->dthps_maxprovs;
14900 tmp_provs = help->dthps_provs;
14901
14902 if (help->dthps_maxprovs == 0)
14903 help->dthps_maxprovs = 2;
14904 else
14905 help->dthps_maxprovs *= 2;
14906 if (help->dthps_maxprovs > dtrace_helper_providers_max)
14907 help->dthps_maxprovs = dtrace_helper_providers_max;
14908
14909 ASSERT(tmp_maxprovs < help->dthps_maxprovs);
14910
14911 help->dthps_provs = kmem_zalloc(help->dthps_maxprovs *
14912 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
14913
14914 if (tmp_provs != NULL) {
14915 bcopy(tmp_provs, help->dthps_provs, tmp_maxprovs *
14916 sizeof (dtrace_helper_provider_t *));
14917 kmem_free(tmp_provs, tmp_maxprovs *
14918 sizeof (dtrace_helper_provider_t *));
14919 }
14920 }
14921
14922 help->dthps_provs[help->dthps_nprovs] = hprov;
14923 help->dthps_nprovs++;
14924
14925 return (0);
14926 }
14927
14928 static void
dtrace_helper_provider_destroy(dtrace_helper_provider_t * hprov)14929 dtrace_helper_provider_destroy(dtrace_helper_provider_t *hprov)
14930 {
14931 mutex_enter(&dtrace_lock);
14932
14933 if (--hprov->dthp_ref == 0) {
14934 dof_hdr_t *dof;
14935 mutex_exit(&dtrace_lock);
14936 dof = (dof_hdr_t *)(uintptr_t)hprov->dthp_prov.dofhp_dof;
14937 dtrace_dof_destroy(dof);
14938 kmem_free(hprov, sizeof (dtrace_helper_provider_t));
14939 } else {
14940 mutex_exit(&dtrace_lock);
14941 }
14942 }
14943
14944 static int
dtrace_helper_provider_validate(dof_hdr_t * dof,dof_sec_t * sec)14945 dtrace_helper_provider_validate(dof_hdr_t *dof, dof_sec_t *sec)
14946 {
14947 uintptr_t daddr = (uintptr_t)dof;
14948 dof_sec_t *str_sec, *prb_sec, *arg_sec, *off_sec, *enoff_sec;
14949 dof_provider_t *provider;
14950 dof_probe_t *probe;
14951 uint8_t *arg;
14952 char *strtab, *typestr;
14953 dof_stridx_t typeidx;
14954 size_t typesz;
14955 uint_t nprobes, j, k;
14956
14957 ASSERT(sec->dofs_type == DOF_SECT_PROVIDER);
14958
14959 if (sec->dofs_offset & (sizeof (uint_t) - 1)) {
14960 dtrace_dof_error(dof, "misaligned section offset");
14961 return (-1);
14962 }
14963
14964 /*
14965 * The section needs to be large enough to contain the DOF provider
14966 * structure appropriate for the given version.
14967 */
14968 if (sec->dofs_size <
14969 ((dof->dofh_ident[DOF_ID_VERSION] == DOF_VERSION_1) ?
14970 offsetof(dof_provider_t, dofpv_prenoffs) :
14971 sizeof (dof_provider_t))) {
14972 dtrace_dof_error(dof, "provider section too small");
14973 return (-1);
14974 }
14975
14976 provider = (dof_provider_t *)(uintptr_t)(daddr + sec->dofs_offset);
14977 str_sec = dtrace_dof_sect(dof, DOF_SECT_STRTAB, provider->dofpv_strtab);
14978 prb_sec = dtrace_dof_sect(dof, DOF_SECT_PROBES, provider->dofpv_probes);
14979 arg_sec = dtrace_dof_sect(dof, DOF_SECT_PRARGS, provider->dofpv_prargs);
14980 off_sec = dtrace_dof_sect(dof, DOF_SECT_PROFFS, provider->dofpv_proffs);
14981
14982 if (str_sec == NULL || prb_sec == NULL ||
14983 arg_sec == NULL || off_sec == NULL)
14984 return (-1);
14985
14986 enoff_sec = NULL;
14987
14988 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1 &&
14989 provider->dofpv_prenoffs != DOF_SECT_NONE &&
14990 (enoff_sec = dtrace_dof_sect(dof, DOF_SECT_PRENOFFS,
14991 provider->dofpv_prenoffs)) == NULL)
14992 return (-1);
14993
14994 strtab = (char *)(uintptr_t)(daddr + str_sec->dofs_offset);
14995
14996 if (provider->dofpv_name >= str_sec->dofs_size ||
14997 strlen(strtab + provider->dofpv_name) >= DTRACE_PROVNAMELEN) {
14998 dtrace_dof_error(dof, "invalid provider name");
14999 return (-1);
15000 }
15001
15002 if (prb_sec->dofs_entsize == 0 ||
15003 prb_sec->dofs_entsize > prb_sec->dofs_size) {
15004 dtrace_dof_error(dof, "invalid entry size");
15005 return (-1);
15006 }
15007
15008 if (prb_sec->dofs_entsize & (sizeof (uintptr_t) - 1)) {
15009 dtrace_dof_error(dof, "misaligned entry size");
15010 return (-1);
15011 }
15012
15013 if (off_sec->dofs_entsize != sizeof (uint32_t)) {
15014 dtrace_dof_error(dof, "invalid entry size");
15015 return (-1);
15016 }
15017
15018 if (off_sec->dofs_offset & (sizeof (uint32_t) - 1)) {
15019 dtrace_dof_error(dof, "misaligned section offset");
15020 return (-1);
15021 }
15022
15023 if (arg_sec->dofs_entsize != sizeof (uint8_t)) {
15024 dtrace_dof_error(dof, "invalid entry size");
15025 return (-1);
15026 }
15027
15028 arg = (uint8_t *)(uintptr_t)(daddr + arg_sec->dofs_offset);
15029
15030 nprobes = prb_sec->dofs_size / prb_sec->dofs_entsize;
15031
15032 /*
15033 * Take a pass through the probes to check for errors.
15034 */
15035 for (j = 0; j < nprobes; j++) {
15036 probe = (dof_probe_t *)(uintptr_t)(daddr +
15037 prb_sec->dofs_offset + j * prb_sec->dofs_entsize);
15038
15039 if (probe->dofpr_func >= str_sec->dofs_size) {
15040 dtrace_dof_error(dof, "invalid function name");
15041 return (-1);
15042 }
15043
15044 if (strlen(strtab + probe->dofpr_func) >= DTRACE_FUNCNAMELEN) {
15045 dtrace_dof_error(dof, "function name too long");
15046 return (-1);
15047 }
15048
15049 if (probe->dofpr_name >= str_sec->dofs_size ||
15050 strlen(strtab + probe->dofpr_name) >= DTRACE_NAMELEN) {
15051 dtrace_dof_error(dof, "invalid probe name");
15052 return (-1);
15053 }
15054
15055 /*
15056 * The offset count must not wrap the index, and the offsets
15057 * must also not overflow the section's data.
15058 */
15059 if (probe->dofpr_offidx + probe->dofpr_noffs <
15060 probe->dofpr_offidx ||
15061 (probe->dofpr_offidx + probe->dofpr_noffs) *
15062 off_sec->dofs_entsize > off_sec->dofs_size) {
15063 dtrace_dof_error(dof, "invalid probe offset");
15064 return (-1);
15065 }
15066
15067 if (dof->dofh_ident[DOF_ID_VERSION] != DOF_VERSION_1) {
15068 /*
15069 * If there's no is-enabled offset section, make sure
15070 * there aren't any is-enabled offsets. Otherwise
15071 * perform the same checks as for probe offsets
15072 * (immediately above).
15073 */
15074 if (enoff_sec == NULL) {
15075 if (probe->dofpr_enoffidx != 0 ||
15076 probe->dofpr_nenoffs != 0) {
15077 dtrace_dof_error(dof, "is-enabled "
15078 "offsets with null section");
15079 return (-1);
15080 }
15081 } else if (probe->dofpr_enoffidx +
15082 probe->dofpr_nenoffs < probe->dofpr_enoffidx ||
15083 (probe->dofpr_enoffidx + probe->dofpr_nenoffs) *
15084 enoff_sec->dofs_entsize > enoff_sec->dofs_size) {
15085 dtrace_dof_error(dof, "invalid is-enabled "
15086 "offset");
15087 return (-1);
15088 }
15089
15090 if (probe->dofpr_noffs + probe->dofpr_nenoffs == 0) {
15091 dtrace_dof_error(dof, "zero probe and "
15092 "is-enabled offsets");
15093 return (-1);
15094 }
15095 } else if (probe->dofpr_noffs == 0) {
15096 dtrace_dof_error(dof, "zero probe offsets");
15097 return (-1);
15098 }
15099
15100 if (probe->dofpr_argidx + probe->dofpr_xargc <
15101 probe->dofpr_argidx ||
15102 (probe->dofpr_argidx + probe->dofpr_xargc) *
15103 arg_sec->dofs_entsize > arg_sec->dofs_size) {
15104 dtrace_dof_error(dof, "invalid args");
15105 return (-1);
15106 }
15107
15108 typeidx = probe->dofpr_nargv;
15109 typestr = strtab + probe->dofpr_nargv;
15110 for (k = 0; k < probe->dofpr_nargc; k++) {
15111 if (typeidx >= str_sec->dofs_size) {
15112 dtrace_dof_error(dof, "bad "
15113 "native argument type");
15114 return (-1);
15115 }
15116
15117 typesz = strlen(typestr) + 1;
15118 if (typesz > DTRACE_ARGTYPELEN) {
15119 dtrace_dof_error(dof, "native "
15120 "argument type too long");
15121 return (-1);
15122 }
15123 typeidx += typesz;
15124 typestr += typesz;
15125 }
15126
15127 typeidx = probe->dofpr_xargv;
15128 typestr = strtab + probe->dofpr_xargv;
15129 for (k = 0; k < probe->dofpr_xargc; k++) {
15130 if (arg[probe->dofpr_argidx + k] > probe->dofpr_nargc) {
15131 dtrace_dof_error(dof, "bad "
15132 "native argument index");
15133 return (-1);
15134 }
15135
15136 if (typeidx >= str_sec->dofs_size) {
15137 dtrace_dof_error(dof, "bad "
15138 "translated argument type");
15139 return (-1);
15140 }
15141
15142 typesz = strlen(typestr) + 1;
15143 if (typesz > DTRACE_ARGTYPELEN) {
15144 dtrace_dof_error(dof, "translated argument "
15145 "type too long");
15146 return (-1);
15147 }
15148
15149 typeidx += typesz;
15150 typestr += typesz;
15151 }
15152 }
15153
15154 return (0);
15155 }
15156
15157 static int
dtrace_helper_slurp(dof_hdr_t * dof,dof_helper_t * dhp)15158 dtrace_helper_slurp(dof_hdr_t *dof, dof_helper_t *dhp)
15159 {
15160 dtrace_helpers_t *help;
15161 dtrace_vstate_t *vstate;
15162 dtrace_enabling_t *enab = NULL;
15163 int i, gen, rv, nhelpers = 0, nprovs = 0, destroy = 1;
15164 uintptr_t daddr = (uintptr_t)dof;
15165
15166 ASSERT(MUTEX_HELD(&dtrace_lock));
15167
15168 if ((help = curproc->p_dtrace_helpers) == NULL)
15169 help = dtrace_helpers_create(curproc);
15170
15171 vstate = &help->dthps_vstate;
15172
15173 if ((rv = dtrace_dof_slurp(dof, vstate, NULL, &enab,
15174 dhp != NULL ? dhp->dofhp_addr : 0, B_FALSE)) != 0) {
15175 dtrace_dof_destroy(dof);
15176 return (rv);
15177 }
15178
15179 /*
15180 * Look for helper providers and validate their descriptions.
15181 */
15182 if (dhp != NULL) {
15183 for (i = 0; i < dof->dofh_secnum; i++) {
15184 dof_sec_t *sec = (dof_sec_t *)(uintptr_t)(daddr +
15185 dof->dofh_secoff + i * dof->dofh_secsize);
15186
15187 if (sec->dofs_type != DOF_SECT_PROVIDER)
15188 continue;
15189
15190 if (dtrace_helper_provider_validate(dof, sec) != 0) {
15191 dtrace_enabling_destroy(enab);
15192 dtrace_dof_destroy(dof);
15193 return (-1);
15194 }
15195
15196 nprovs++;
15197 }
15198 }
15199
15200 /*
15201 * Now we need to walk through the ECB descriptions in the enabling.
15202 */
15203 for (i = 0; i < enab->dten_ndesc; i++) {
15204 dtrace_ecbdesc_t *ep = enab->dten_desc[i];
15205 dtrace_probedesc_t *desc = &ep->dted_probe;
15206
15207 if (strcmp(desc->dtpd_provider, "dtrace") != 0)
15208 continue;
15209
15210 if (strcmp(desc->dtpd_mod, "helper") != 0)
15211 continue;
15212
15213 if (strcmp(desc->dtpd_func, "ustack") != 0)
15214 continue;
15215
15216 if ((rv = dtrace_helper_action_add(DTRACE_HELPER_ACTION_USTACK,
15217 ep)) != 0) {
15218 /*
15219 * Adding this helper action failed -- we are now going
15220 * to rip out the entire generation and return failure.
15221 */
15222 (void) dtrace_helper_destroygen(help->dthps_generation);
15223 dtrace_enabling_destroy(enab);
15224 dtrace_dof_destroy(dof);
15225 return (-1);
15226 }
15227
15228 nhelpers++;
15229 }
15230
15231 if (nhelpers < enab->dten_ndesc)
15232 dtrace_dof_error(dof, "unmatched helpers");
15233
15234 gen = help->dthps_generation++;
15235 dtrace_enabling_destroy(enab);
15236
15237 if (dhp != NULL && nprovs > 0) {
15238 /*
15239 * Now that this is in-kernel, we change the sense of the
15240 * members: dofhp_dof denotes the in-kernel copy of the DOF
15241 * and dofhp_addr denotes the address at user-level.
15242 */
15243 dhp->dofhp_addr = dhp->dofhp_dof;
15244 dhp->dofhp_dof = (uint64_t)(uintptr_t)dof;
15245
15246 if (dtrace_helper_provider_add(dhp, gen) == 0) {
15247 mutex_exit(&dtrace_lock);
15248 dtrace_helper_provider_register(curproc, help, dhp);
15249 mutex_enter(&dtrace_lock);
15250
15251 destroy = 0;
15252 }
15253 }
15254
15255 if (destroy)
15256 dtrace_dof_destroy(dof);
15257
15258 return (gen);
15259 }
15260
15261 static dtrace_helpers_t *
dtrace_helpers_create(proc_t * p)15262 dtrace_helpers_create(proc_t *p)
15263 {
15264 dtrace_helpers_t *help;
15265
15266 ASSERT(MUTEX_HELD(&dtrace_lock));
15267 ASSERT(p->p_dtrace_helpers == NULL);
15268
15269 help = kmem_zalloc(sizeof (dtrace_helpers_t), KM_SLEEP);
15270 help->dthps_actions = kmem_zalloc(sizeof (dtrace_helper_action_t *) *
15271 DTRACE_NHELPER_ACTIONS, KM_SLEEP);
15272
15273 p->p_dtrace_helpers = help;
15274 dtrace_helpers++;
15275
15276 return (help);
15277 }
15278
15279 static void
dtrace_helpers_destroy(void)15280 dtrace_helpers_destroy(void)
15281 {
15282 dtrace_helpers_t *help;
15283 dtrace_vstate_t *vstate;
15284 proc_t *p = curproc;
15285 int i;
15286
15287 mutex_enter(&dtrace_lock);
15288
15289 ASSERT(p->p_dtrace_helpers != NULL);
15290 ASSERT(dtrace_helpers > 0);
15291
15292 help = p->p_dtrace_helpers;
15293 vstate = &help->dthps_vstate;
15294
15295 /*
15296 * We're now going to lose the help from this process.
15297 */
15298 p->p_dtrace_helpers = NULL;
15299 dtrace_sync();
15300
15301 /*
15302 * Destory the helper actions.
15303 */
15304 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15305 dtrace_helper_action_t *h, *next;
15306
15307 for (h = help->dthps_actions[i]; h != NULL; h = next) {
15308 next = h->dtha_next;
15309 dtrace_helper_action_destroy(h, vstate);
15310 h = next;
15311 }
15312 }
15313
15314 mutex_exit(&dtrace_lock);
15315
15316 /*
15317 * Destroy the helper providers.
15318 */
15319 if (help->dthps_maxprovs > 0) {
15320 mutex_enter(&dtrace_meta_lock);
15321 if (dtrace_meta_pid != NULL) {
15322 ASSERT(dtrace_deferred_pid == NULL);
15323
15324 for (i = 0; i < help->dthps_nprovs; i++) {
15325 dtrace_helper_provider_remove(
15326 &help->dthps_provs[i]->dthp_prov, p->p_pid);
15327 }
15328 } else {
15329 mutex_enter(&dtrace_lock);
15330 ASSERT(help->dthps_deferred == 0 ||
15331 help->dthps_next != NULL ||
15332 help->dthps_prev != NULL ||
15333 help == dtrace_deferred_pid);
15334
15335 /*
15336 * Remove the helper from the deferred list.
15337 */
15338 if (help->dthps_next != NULL)
15339 help->dthps_next->dthps_prev = help->dthps_prev;
15340 if (help->dthps_prev != NULL)
15341 help->dthps_prev->dthps_next = help->dthps_next;
15342 if (dtrace_deferred_pid == help) {
15343 dtrace_deferred_pid = help->dthps_next;
15344 ASSERT(help->dthps_prev == NULL);
15345 }
15346
15347 mutex_exit(&dtrace_lock);
15348 }
15349
15350 mutex_exit(&dtrace_meta_lock);
15351
15352 for (i = 0; i < help->dthps_nprovs; i++) {
15353 dtrace_helper_provider_destroy(help->dthps_provs[i]);
15354 }
15355
15356 kmem_free(help->dthps_provs, help->dthps_maxprovs *
15357 sizeof (dtrace_helper_provider_t *));
15358 }
15359
15360 mutex_enter(&dtrace_lock);
15361
15362 dtrace_vstate_fini(&help->dthps_vstate);
15363 kmem_free(help->dthps_actions,
15364 sizeof (dtrace_helper_action_t *) * DTRACE_NHELPER_ACTIONS);
15365 kmem_free(help, sizeof (dtrace_helpers_t));
15366
15367 --dtrace_helpers;
15368 mutex_exit(&dtrace_lock);
15369 }
15370
15371 static void
dtrace_helpers_duplicate(proc_t * from,proc_t * to)15372 dtrace_helpers_duplicate(proc_t *from, proc_t *to)
15373 {
15374 dtrace_helpers_t *help, *newhelp;
15375 dtrace_helper_action_t *helper, *new, *last;
15376 dtrace_difo_t *dp;
15377 dtrace_vstate_t *vstate;
15378 int i, j, sz, hasprovs = 0;
15379
15380 mutex_enter(&dtrace_lock);
15381 ASSERT(from->p_dtrace_helpers != NULL);
15382 ASSERT(dtrace_helpers > 0);
15383
15384 help = from->p_dtrace_helpers;
15385 newhelp = dtrace_helpers_create(to);
15386 ASSERT(to->p_dtrace_helpers != NULL);
15387
15388 newhelp->dthps_generation = help->dthps_generation;
15389 vstate = &newhelp->dthps_vstate;
15390
15391 /*
15392 * Duplicate the helper actions.
15393 */
15394 for (i = 0; i < DTRACE_NHELPER_ACTIONS; i++) {
15395 if ((helper = help->dthps_actions[i]) == NULL)
15396 continue;
15397
15398 for (last = NULL; helper != NULL; helper = helper->dtha_next) {
15399 new = kmem_zalloc(sizeof (dtrace_helper_action_t),
15400 KM_SLEEP);
15401 new->dtha_generation = helper->dtha_generation;
15402
15403 if ((dp = helper->dtha_predicate) != NULL) {
15404 dp = dtrace_difo_duplicate(dp, vstate);
15405 new->dtha_predicate = dp;
15406 }
15407
15408 new->dtha_nactions = helper->dtha_nactions;
15409 sz = sizeof (dtrace_difo_t *) * new->dtha_nactions;
15410 new->dtha_actions = kmem_alloc(sz, KM_SLEEP);
15411
15412 for (j = 0; j < new->dtha_nactions; j++) {
15413 dtrace_difo_t *dp = helper->dtha_actions[j];
15414
15415 ASSERT(dp != NULL);
15416 dp = dtrace_difo_duplicate(dp, vstate);
15417 new->dtha_actions[j] = dp;
15418 }
15419
15420 if (last != NULL) {
15421 last->dtha_next = new;
15422 } else {
15423 newhelp->dthps_actions[i] = new;
15424 }
15425
15426 last = new;
15427 }
15428 }
15429
15430 /*
15431 * Duplicate the helper providers and register them with the
15432 * DTrace framework.
15433 */
15434 if (help->dthps_nprovs > 0) {
15435 newhelp->dthps_nprovs = help->dthps_nprovs;
15436 newhelp->dthps_maxprovs = help->dthps_nprovs;
15437 newhelp->dthps_provs = kmem_alloc(newhelp->dthps_nprovs *
15438 sizeof (dtrace_helper_provider_t *), KM_SLEEP);
15439 for (i = 0; i < newhelp->dthps_nprovs; i++) {
15440 newhelp->dthps_provs[i] = help->dthps_provs[i];
15441 newhelp->dthps_provs[i]->dthp_ref++;
15442 }
15443
15444 hasprovs = 1;
15445 }
15446
15447 mutex_exit(&dtrace_lock);
15448
15449 if (hasprovs)
15450 dtrace_helper_provider_register(to, newhelp, NULL);
15451 }
15452
15453 /*
15454 * DTrace Hook Functions
15455 */
15456 static void
dtrace_module_loaded(struct modctl * ctl)15457 dtrace_module_loaded(struct modctl *ctl)
15458 {
15459 dtrace_provider_t *prv;
15460
15461 mutex_enter(&dtrace_provider_lock);
15462 mutex_enter(&mod_lock);
15463
15464 ASSERT(ctl->mod_busy);
15465
15466 /*
15467 * We're going to call each providers per-module provide operation
15468 * specifying only this module.
15469 */
15470 for (prv = dtrace_provider; prv != NULL; prv = prv->dtpv_next)
15471 prv->dtpv_pops.dtps_provide_module(prv->dtpv_arg, ctl);
15472
15473 mutex_exit(&mod_lock);
15474 mutex_exit(&dtrace_provider_lock);
15475
15476 /*
15477 * If we have any retained enablings, we need to match against them.
15478 * Enabling probes requires that cpu_lock be held, and we cannot hold
15479 * cpu_lock here -- it is legal for cpu_lock to be held when loading a
15480 * module. (In particular, this happens when loading scheduling
15481 * classes.) So if we have any retained enablings, we need to dispatch
15482 * our task queue to do the match for us.
15483 */
15484 mutex_enter(&dtrace_lock);
15485
15486 if (dtrace_retained == NULL) {
15487 mutex_exit(&dtrace_lock);
15488 return;
15489 }
15490
15491 (void) taskq_dispatch(dtrace_taskq,
15492 (task_func_t *)dtrace_enabling_matchall, NULL, TQ_SLEEP);
15493
15494 mutex_exit(&dtrace_lock);
15495
15496 /*
15497 * And now, for a little heuristic sleaze: in general, we want to
15498 * match modules as soon as they load. However, we cannot guarantee
15499 * this, because it would lead us to the lock ordering violation
15500 * outlined above. The common case, of course, is that cpu_lock is
15501 * _not_ held -- so we delay here for a clock tick, hoping that that's
15502 * long enough for the task queue to do its work. If it's not, it's
15503 * not a serious problem -- it just means that the module that we
15504 * just loaded may not be immediately instrumentable.
15505 */
15506 delay(1);
15507 }
15508
15509 static void
dtrace_module_unloaded(struct modctl * ctl)15510 dtrace_module_unloaded(struct modctl *ctl)
15511 {
15512 dtrace_probe_t template, *probe, *first, *next;
15513 dtrace_provider_t *prov;
15514
15515 template.dtpr_mod = ctl->mod_modname;
15516
15517 mutex_enter(&dtrace_provider_lock);
15518 mutex_enter(&mod_lock);
15519 mutex_enter(&dtrace_lock);
15520
15521 if (dtrace_bymod == NULL) {
15522 /*
15523 * The DTrace module is loaded (obviously) but not attached;
15524 * we don't have any work to do.
15525 */
15526 mutex_exit(&dtrace_provider_lock);
15527 mutex_exit(&mod_lock);
15528 mutex_exit(&dtrace_lock);
15529 return;
15530 }
15531
15532 for (probe = first = dtrace_hash_lookup(dtrace_bymod, &template);
15533 probe != NULL; probe = probe->dtpr_nextmod) {
15534 if (probe->dtpr_ecb != NULL) {
15535 mutex_exit(&dtrace_provider_lock);
15536 mutex_exit(&mod_lock);
15537 mutex_exit(&dtrace_lock);
15538
15539 /*
15540 * This shouldn't _actually_ be possible -- we're
15541 * unloading a module that has an enabled probe in it.
15542 * (It's normally up to the provider to make sure that
15543 * this can't happen.) However, because dtps_enable()
15544 * doesn't have a failure mode, there can be an
15545 * enable/unload race. Upshot: we don't want to
15546 * assert, but we're not going to disable the
15547 * probe, either.
15548 */
15549 if (dtrace_err_verbose) {
15550 cmn_err(CE_WARN, "unloaded module '%s' had "
15551 "enabled probes", ctl->mod_modname);
15552 }
15553
15554 return;
15555 }
15556 }
15557
15558 probe = first;
15559
15560 for (first = NULL; probe != NULL; probe = next) {
15561 ASSERT(dtrace_probes[probe->dtpr_id - 1] == probe);
15562
15563 dtrace_probes[probe->dtpr_id - 1] = NULL;
15564
15565 next = probe->dtpr_nextmod;
15566 dtrace_hash_remove(dtrace_bymod, probe);
15567 dtrace_hash_remove(dtrace_byfunc, probe);
15568 dtrace_hash_remove(dtrace_byname, probe);
15569
15570 if (first == NULL) {
15571 first = probe;
15572 probe->dtpr_nextmod = NULL;
15573 } else {
15574 probe->dtpr_nextmod = first;
15575 first = probe;
15576 }
15577 }
15578
15579 /*
15580 * We've removed all of the module's probes from the hash chains and
15581 * from the probe array. Now issue a dtrace_sync() to be sure that
15582 * everyone has cleared out from any probe array processing.
15583 */
15584 dtrace_sync();
15585
15586 for (probe = first; probe != NULL; probe = first) {
15587 first = probe->dtpr_nextmod;
15588 prov = probe->dtpr_provider;
15589 prov->dtpv_pops.dtps_destroy(prov->dtpv_arg, probe->dtpr_id,
15590 probe->dtpr_arg);
15591 kmem_free(probe->dtpr_mod, strlen(probe->dtpr_mod) + 1);
15592 kmem_free(probe->dtpr_func, strlen(probe->dtpr_func) + 1);
15593 kmem_free(probe->dtpr_name, strlen(probe->dtpr_name) + 1);
15594 vmem_free(dtrace_arena, (void *)(uintptr_t)probe->dtpr_id, 1);
15595 kmem_free(probe, sizeof (dtrace_probe_t));
15596 }
15597
15598 mutex_exit(&dtrace_lock);
15599 mutex_exit(&mod_lock);
15600 mutex_exit(&dtrace_provider_lock);
15601 }
15602
15603 void
dtrace_suspend(void)15604 dtrace_suspend(void)
15605 {
15606 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_suspend));
15607 }
15608
15609 void
dtrace_resume(void)15610 dtrace_resume(void)
15611 {
15612 dtrace_probe_foreach(offsetof(dtrace_pops_t, dtps_resume));
15613 }
15614
15615 static int
dtrace_cpu_setup(cpu_setup_t what,processorid_t cpu)15616 dtrace_cpu_setup(cpu_setup_t what, processorid_t cpu)
15617 {
15618 ASSERT(MUTEX_HELD(&cpu_lock));
15619 mutex_enter(&dtrace_lock);
15620
15621 switch (what) {
15622 case CPU_CONFIG: {
15623 dtrace_state_t *state;
15624 dtrace_optval_t *opt, rs, c;
15625
15626 /*
15627 * For now, we only allocate a new buffer for anonymous state.
15628 */
15629 if ((state = dtrace_anon.dta_state) == NULL)
15630 break;
15631
15632 if (state->dts_activity != DTRACE_ACTIVITY_ACTIVE)
15633 break;
15634
15635 opt = state->dts_options;
15636 c = opt[DTRACEOPT_CPU];
15637
15638 if (c != DTRACE_CPUALL && c != DTRACEOPT_UNSET && c != cpu)
15639 break;
15640
15641 /*
15642 * Regardless of what the actual policy is, we're going to
15643 * temporarily set our resize policy to be manual. We're
15644 * also going to temporarily set our CPU option to denote
15645 * the newly configured CPU.
15646 */
15647 rs = opt[DTRACEOPT_BUFRESIZE];
15648 opt[DTRACEOPT_BUFRESIZE] = DTRACEOPT_BUFRESIZE_MANUAL;
15649 opt[DTRACEOPT_CPU] = (dtrace_optval_t)cpu;
15650
15651 (void) dtrace_state_buffers(state);
15652
15653 opt[DTRACEOPT_BUFRESIZE] = rs;
15654 opt[DTRACEOPT_CPU] = c;
15655
15656 break;
15657 }
15658
15659 case CPU_UNCONFIG:
15660 /*
15661 * We don't free the buffer in the CPU_UNCONFIG case. (The
15662 * buffer will be freed when the consumer exits.)
15663 */
15664 break;
15665
15666 default:
15667 break;
15668 }
15669
15670 mutex_exit(&dtrace_lock);
15671 return (0);
15672 }
15673
15674 static void
dtrace_cpu_setup_initial(processorid_t cpu)15675 dtrace_cpu_setup_initial(processorid_t cpu)
15676 {
15677 (void) dtrace_cpu_setup(CPU_CONFIG, cpu);
15678 }
15679
15680 static void
dtrace_toxrange_add(uintptr_t base,uintptr_t limit)15681 dtrace_toxrange_add(uintptr_t base, uintptr_t limit)
15682 {
15683 if (dtrace_toxranges >= dtrace_toxranges_max) {
15684 int osize, nsize;
15685 dtrace_toxrange_t *range;
15686
15687 osize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15688
15689 if (osize == 0) {
15690 ASSERT(dtrace_toxrange == NULL);
15691 ASSERT(dtrace_toxranges_max == 0);
15692 dtrace_toxranges_max = 1;
15693 } else {
15694 dtrace_toxranges_max <<= 1;
15695 }
15696
15697 nsize = dtrace_toxranges_max * sizeof (dtrace_toxrange_t);
15698 range = kmem_zalloc(nsize, KM_SLEEP);
15699
15700 if (dtrace_toxrange != NULL) {
15701 ASSERT(osize != 0);
15702 bcopy(dtrace_toxrange, range, osize);
15703 kmem_free(dtrace_toxrange, osize);
15704 }
15705
15706 dtrace_toxrange = range;
15707 }
15708
15709 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_base == NULL);
15710 ASSERT(dtrace_toxrange[dtrace_toxranges].dtt_limit == NULL);
15711
15712 dtrace_toxrange[dtrace_toxranges].dtt_base = base;
15713 dtrace_toxrange[dtrace_toxranges].dtt_limit = limit;
15714 dtrace_toxranges++;
15715 }
15716
15717 static void
dtrace_getf_barrier()15718 dtrace_getf_barrier()
15719 {
15720 /*
15721 * When we have unprivileged (that is, non-DTRACE_CRV_KERNEL) enablings
15722 * that contain calls to getf(), this routine will be called on every
15723 * closef() before either the underlying vnode is released or the
15724 * file_t itself is freed. By the time we are here, it is essential
15725 * that the file_t can no longer be accessed from a call to getf()
15726 * in probe context -- that assures that a dtrace_sync() can be used
15727 * to clear out any enablings referring to the old structures.
15728 */
15729 if (curthread->t_procp->p_zone->zone_dtrace_getf != 0 ||
15730 kcred->cr_zone->zone_dtrace_getf != 0)
15731 dtrace_sync();
15732 }
15733
15734 /*
15735 * DTrace Driver Cookbook Functions
15736 */
15737 /*ARGSUSED*/
15738 static int
dtrace_attach(dev_info_t * devi,ddi_attach_cmd_t cmd)15739 dtrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
15740 {
15741 dtrace_provider_id_t id;
15742 dtrace_state_t *state = NULL;
15743 dtrace_enabling_t *enab;
15744
15745 mutex_enter(&cpu_lock);
15746 mutex_enter(&dtrace_provider_lock);
15747 mutex_enter(&dtrace_lock);
15748
15749 if (ddi_soft_state_init(&dtrace_softstate,
15750 sizeof (dtrace_state_t), 0) != 0) {
15751 cmn_err(CE_NOTE, "/dev/dtrace failed to initialize soft state");
15752 mutex_exit(&cpu_lock);
15753 mutex_exit(&dtrace_provider_lock);
15754 mutex_exit(&dtrace_lock);
15755 return (DDI_FAILURE);
15756 }
15757
15758 if (ddi_create_minor_node(devi, DTRACEMNR_DTRACE, S_IFCHR,
15759 DTRACEMNRN_DTRACE, DDI_PSEUDO, NULL) == DDI_FAILURE ||
15760 ddi_create_minor_node(devi, DTRACEMNR_HELPER, S_IFCHR,
15761 DTRACEMNRN_HELPER, DDI_PSEUDO, NULL) == DDI_FAILURE) {
15762 cmn_err(CE_NOTE, "/dev/dtrace couldn't create minor nodes");
15763 ddi_remove_minor_node(devi, NULL);
15764 ddi_soft_state_fini(&dtrace_softstate);
15765 mutex_exit(&cpu_lock);
15766 mutex_exit(&dtrace_provider_lock);
15767 mutex_exit(&dtrace_lock);
15768 return (DDI_FAILURE);
15769 }
15770
15771 ddi_report_dev(devi);
15772 dtrace_devi = devi;
15773
15774 dtrace_modload = dtrace_module_loaded;
15775 dtrace_modunload = dtrace_module_unloaded;
15776 dtrace_cpu_init = dtrace_cpu_setup_initial;
15777 dtrace_helpers_cleanup = dtrace_helpers_destroy;
15778 dtrace_helpers_fork = dtrace_helpers_duplicate;
15779 dtrace_cpustart_init = dtrace_suspend;
15780 dtrace_cpustart_fini = dtrace_resume;
15781 dtrace_debugger_init = dtrace_suspend;
15782 dtrace_debugger_fini = dtrace_resume;
15783
15784 register_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
15785
15786 ASSERT(MUTEX_HELD(&cpu_lock));
15787
15788 dtrace_arena = vmem_create("dtrace", (void *)1, UINT32_MAX, 1,
15789 NULL, NULL, NULL, 0, VM_SLEEP | VMC_IDENTIFIER);
15790 dtrace_minor = vmem_create("dtrace_minor", (void *)DTRACEMNRN_CLONE,
15791 UINT32_MAX - DTRACEMNRN_CLONE, 1, NULL, NULL, NULL, 0,
15792 VM_SLEEP | VMC_IDENTIFIER);
15793 dtrace_taskq = taskq_create("dtrace_taskq", 1, maxclsyspri,
15794 1, INT_MAX, 0);
15795
15796 dtrace_state_cache = kmem_cache_create("dtrace_state_cache",
15797 sizeof (dtrace_dstate_percpu_t) * NCPU, DTRACE_STATE_ALIGN,
15798 NULL, NULL, NULL, NULL, NULL, 0);
15799
15800 ASSERT(MUTEX_HELD(&cpu_lock));
15801 dtrace_bymod = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_mod),
15802 offsetof(dtrace_probe_t, dtpr_nextmod),
15803 offsetof(dtrace_probe_t, dtpr_prevmod));
15804
15805 dtrace_byfunc = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_func),
15806 offsetof(dtrace_probe_t, dtpr_nextfunc),
15807 offsetof(dtrace_probe_t, dtpr_prevfunc));
15808
15809 dtrace_byname = dtrace_hash_create(offsetof(dtrace_probe_t, dtpr_name),
15810 offsetof(dtrace_probe_t, dtpr_nextname),
15811 offsetof(dtrace_probe_t, dtpr_prevname));
15812
15813 if (dtrace_retain_max < 1) {
15814 cmn_err(CE_WARN, "illegal value (%lu) for dtrace_retain_max; "
15815 "setting to 1", dtrace_retain_max);
15816 dtrace_retain_max = 1;
15817 }
15818
15819 /*
15820 * Now discover our toxic ranges.
15821 */
15822 dtrace_toxic_ranges(dtrace_toxrange_add);
15823
15824 /*
15825 * Before we register ourselves as a provider to our own framework,
15826 * we would like to assert that dtrace_provider is NULL -- but that's
15827 * not true if we were loaded as a dependency of a DTrace provider.
15828 * Once we've registered, we can assert that dtrace_provider is our
15829 * pseudo provider.
15830 */
15831 (void) dtrace_register("dtrace", &dtrace_provider_attr,
15832 DTRACE_PRIV_NONE, 0, &dtrace_provider_ops, NULL, &id);
15833
15834 ASSERT(dtrace_provider != NULL);
15835 ASSERT((dtrace_provider_id_t)dtrace_provider == id);
15836
15837 dtrace_probeid_begin = dtrace_probe_create((dtrace_provider_id_t)
15838 dtrace_provider, NULL, NULL, "BEGIN", 0, NULL);
15839 dtrace_probeid_end = dtrace_probe_create((dtrace_provider_id_t)
15840 dtrace_provider, NULL, NULL, "END", 0, NULL);
15841 dtrace_probeid_error = dtrace_probe_create((dtrace_provider_id_t)
15842 dtrace_provider, NULL, NULL, "ERROR", 1, NULL);
15843
15844 dtrace_anon_property();
15845 mutex_exit(&cpu_lock);
15846
15847 /*
15848 * If there are already providers, we must ask them to provide their
15849 * probes, and then match any anonymous enabling against them. Note
15850 * that there should be no other retained enablings at this time:
15851 * the only retained enablings at this time should be the anonymous
15852 * enabling.
15853 */
15854 if (dtrace_anon.dta_enabling != NULL) {
15855 ASSERT(dtrace_retained == dtrace_anon.dta_enabling);
15856
15857 dtrace_enabling_provide(NULL);
15858 state = dtrace_anon.dta_state;
15859
15860 /*
15861 * We couldn't hold cpu_lock across the above call to
15862 * dtrace_enabling_provide(), but we must hold it to actually
15863 * enable the probes. We have to drop all of our locks, pick
15864 * up cpu_lock, and regain our locks before matching the
15865 * retained anonymous enabling.
15866 */
15867 mutex_exit(&dtrace_lock);
15868 mutex_exit(&dtrace_provider_lock);
15869
15870 mutex_enter(&cpu_lock);
15871 mutex_enter(&dtrace_provider_lock);
15872 mutex_enter(&dtrace_lock);
15873
15874 if ((enab = dtrace_anon.dta_enabling) != NULL)
15875 (void) dtrace_enabling_match(enab, NULL);
15876
15877 mutex_exit(&cpu_lock);
15878 }
15879
15880 mutex_exit(&dtrace_lock);
15881 mutex_exit(&dtrace_provider_lock);
15882
15883 if (state != NULL) {
15884 /*
15885 * If we created any anonymous state, set it going now.
15886 */
15887 (void) dtrace_state_go(state, &dtrace_anon.dta_beganon);
15888 }
15889
15890 return (DDI_SUCCESS);
15891 }
15892
15893 /*ARGSUSED*/
15894 static int
dtrace_open(dev_t * devp,int flag,int otyp,cred_t * cred_p)15895 dtrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
15896 {
15897 dtrace_state_t *state;
15898 uint32_t priv;
15899 uid_t uid;
15900 zoneid_t zoneid;
15901
15902 if (getminor(*devp) == DTRACEMNRN_HELPER)
15903 return (0);
15904
15905 /*
15906 * If this wasn't an open with the "helper" minor, then it must be
15907 * the "dtrace" minor.
15908 */
15909 if (getminor(*devp) != DTRACEMNRN_DTRACE)
15910 return (ENXIO);
15911
15912 /*
15913 * If no DTRACE_PRIV_* bits are set in the credential, then the
15914 * caller lacks sufficient permission to do anything with DTrace.
15915 */
15916 dtrace_cred2priv(cred_p, &priv, &uid, &zoneid);
15917 if (priv == DTRACE_PRIV_NONE)
15918 return (EACCES);
15919
15920 /*
15921 * Ask all providers to provide all their probes.
15922 */
15923 mutex_enter(&dtrace_provider_lock);
15924 dtrace_probe_provide(NULL, NULL);
15925 mutex_exit(&dtrace_provider_lock);
15926
15927 mutex_enter(&cpu_lock);
15928 mutex_enter(&dtrace_lock);
15929 dtrace_opens++;
15930 dtrace_membar_producer();
15931
15932 /*
15933 * If the kernel debugger is active (that is, if the kernel debugger
15934 * modified text in some way), we won't allow the open.
15935 */
15936 if (kdi_dtrace_set(KDI_DTSET_DTRACE_ACTIVATE) != 0) {
15937 dtrace_opens--;
15938 mutex_exit(&cpu_lock);
15939 mutex_exit(&dtrace_lock);
15940 return (EBUSY);
15941 }
15942
15943 if (dtrace_helptrace_enable && dtrace_helptrace_buffer == NULL) {
15944 /*
15945 * If DTrace helper tracing is enabled, we need to allocate the
15946 * trace buffer and initialize the values.
15947 */
15948 dtrace_helptrace_buffer =
15949 kmem_zalloc(dtrace_helptrace_bufsize, KM_SLEEP);
15950 dtrace_helptrace_next = 0;
15951 dtrace_helptrace_wrapped = 0;
15952 dtrace_helptrace_enable = 0;
15953 }
15954
15955 state = dtrace_state_create(devp, cred_p);
15956 mutex_exit(&cpu_lock);
15957
15958 if (state == NULL) {
15959 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
15960 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
15961 mutex_exit(&dtrace_lock);
15962 return (EAGAIN);
15963 }
15964
15965 mutex_exit(&dtrace_lock);
15966
15967 return (0);
15968 }
15969
15970 /*ARGSUSED*/
15971 static int
dtrace_close(dev_t dev,int flag,int otyp,cred_t * cred_p)15972 dtrace_close(dev_t dev, int flag, int otyp, cred_t *cred_p)
15973 {
15974 minor_t minor = getminor(dev);
15975 dtrace_state_t *state;
15976 dtrace_helptrace_t *buf = NULL;
15977
15978 if (minor == DTRACEMNRN_HELPER)
15979 return (0);
15980
15981 state = ddi_get_soft_state(dtrace_softstate, minor);
15982
15983 mutex_enter(&cpu_lock);
15984 mutex_enter(&dtrace_lock);
15985
15986 if (state->dts_anon) {
15987 /*
15988 * There is anonymous state. Destroy that first.
15989 */
15990 ASSERT(dtrace_anon.dta_state == NULL);
15991 dtrace_state_destroy(state->dts_anon);
15992 }
15993
15994 if (dtrace_helptrace_disable) {
15995 /*
15996 * If we have been told to disable helper tracing, set the
15997 * buffer to NULL before calling into dtrace_state_destroy();
15998 * we take advantage of its dtrace_sync() to know that no
15999 * CPU is in probe context with enabled helper tracing
16000 * after it returns.
16001 */
16002 buf = dtrace_helptrace_buffer;
16003 dtrace_helptrace_buffer = NULL;
16004 }
16005
16006 dtrace_state_destroy(state);
16007 ASSERT(dtrace_opens > 0);
16008
16009 /*
16010 * Only relinquish control of the kernel debugger interface when there
16011 * are no consumers and no anonymous enablings.
16012 */
16013 if (--dtrace_opens == 0 && dtrace_anon.dta_enabling == NULL)
16014 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16015
16016 if (buf != NULL) {
16017 kmem_free(buf, dtrace_helptrace_bufsize);
16018 dtrace_helptrace_disable = 0;
16019 }
16020
16021 mutex_exit(&dtrace_lock);
16022 mutex_exit(&cpu_lock);
16023
16024 return (0);
16025 }
16026
16027 /*ARGSUSED*/
16028 static int
dtrace_ioctl_helper(int cmd,intptr_t arg,int * rv)16029 dtrace_ioctl_helper(int cmd, intptr_t arg, int *rv)
16030 {
16031 int rval;
16032 dof_helper_t help, *dhp = NULL;
16033
16034 switch (cmd) {
16035 case DTRACEHIOC_ADDDOF:
16036 if (copyin((void *)arg, &help, sizeof (help)) != 0) {
16037 dtrace_dof_error(NULL, "failed to copyin DOF helper");
16038 return (EFAULT);
16039 }
16040
16041 dhp = &help;
16042 arg = (intptr_t)help.dofhp_dof;
16043 /*FALLTHROUGH*/
16044
16045 case DTRACEHIOC_ADD: {
16046 dof_hdr_t *dof = dtrace_dof_copyin(arg, &rval);
16047
16048 if (dof == NULL)
16049 return (rval);
16050
16051 mutex_enter(&dtrace_lock);
16052
16053 /*
16054 * dtrace_helper_slurp() takes responsibility for the dof --
16055 * it may free it now or it may save it and free it later.
16056 */
16057 if ((rval = dtrace_helper_slurp(dof, dhp)) != -1) {
16058 *rv = rval;
16059 rval = 0;
16060 } else {
16061 rval = EINVAL;
16062 }
16063
16064 mutex_exit(&dtrace_lock);
16065 return (rval);
16066 }
16067
16068 case DTRACEHIOC_REMOVE: {
16069 mutex_enter(&dtrace_lock);
16070 rval = dtrace_helper_destroygen(arg);
16071 mutex_exit(&dtrace_lock);
16072
16073 return (rval);
16074 }
16075
16076 default:
16077 break;
16078 }
16079
16080 return (ENOTTY);
16081 }
16082
16083 /*ARGSUSED*/
16084 static int
dtrace_ioctl(dev_t dev,int cmd,intptr_t arg,int md,cred_t * cr,int * rv)16085 dtrace_ioctl(dev_t dev, int cmd, intptr_t arg, int md, cred_t *cr, int *rv)
16086 {
16087 minor_t minor = getminor(dev);
16088 dtrace_state_t *state;
16089 int rval;
16090
16091 if (minor == DTRACEMNRN_HELPER)
16092 return (dtrace_ioctl_helper(cmd, arg, rv));
16093
16094 state = ddi_get_soft_state(dtrace_softstate, minor);
16095
16096 if (state->dts_anon) {
16097 ASSERT(dtrace_anon.dta_state == NULL);
16098 state = state->dts_anon;
16099 }
16100
16101 switch (cmd) {
16102 case DTRACEIOC_PROVIDER: {
16103 dtrace_providerdesc_t pvd;
16104 dtrace_provider_t *pvp;
16105
16106 if (copyin((void *)arg, &pvd, sizeof (pvd)) != 0)
16107 return (EFAULT);
16108
16109 pvd.dtvd_name[DTRACE_PROVNAMELEN - 1] = '\0';
16110 mutex_enter(&dtrace_provider_lock);
16111
16112 for (pvp = dtrace_provider; pvp != NULL; pvp = pvp->dtpv_next) {
16113 if (strcmp(pvp->dtpv_name, pvd.dtvd_name) == 0)
16114 break;
16115 }
16116
16117 mutex_exit(&dtrace_provider_lock);
16118
16119 if (pvp == NULL)
16120 return (ESRCH);
16121
16122 bcopy(&pvp->dtpv_priv, &pvd.dtvd_priv, sizeof (dtrace_ppriv_t));
16123 bcopy(&pvp->dtpv_attr, &pvd.dtvd_attr, sizeof (dtrace_pattr_t));
16124 if (copyout(&pvd, (void *)arg, sizeof (pvd)) != 0)
16125 return (EFAULT);
16126
16127 return (0);
16128 }
16129
16130 case DTRACEIOC_EPROBE: {
16131 dtrace_eprobedesc_t epdesc;
16132 dtrace_ecb_t *ecb;
16133 dtrace_action_t *act;
16134 void *buf;
16135 size_t size;
16136 uintptr_t dest;
16137 int nrecs;
16138
16139 if (copyin((void *)arg, &epdesc, sizeof (epdesc)) != 0)
16140 return (EFAULT);
16141
16142 mutex_enter(&dtrace_lock);
16143
16144 if ((ecb = dtrace_epid2ecb(state, epdesc.dtepd_epid)) == NULL) {
16145 mutex_exit(&dtrace_lock);
16146 return (EINVAL);
16147 }
16148
16149 if (ecb->dte_probe == NULL) {
16150 mutex_exit(&dtrace_lock);
16151 return (EINVAL);
16152 }
16153
16154 epdesc.dtepd_probeid = ecb->dte_probe->dtpr_id;
16155 epdesc.dtepd_uarg = ecb->dte_uarg;
16156 epdesc.dtepd_size = ecb->dte_size;
16157
16158 nrecs = epdesc.dtepd_nrecs;
16159 epdesc.dtepd_nrecs = 0;
16160 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16161 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16162 continue;
16163
16164 epdesc.dtepd_nrecs++;
16165 }
16166
16167 /*
16168 * Now that we have the size, we need to allocate a temporary
16169 * buffer in which to store the complete description. We need
16170 * the temporary buffer to be able to drop dtrace_lock()
16171 * across the copyout(), below.
16172 */
16173 size = sizeof (dtrace_eprobedesc_t) +
16174 (epdesc.dtepd_nrecs * sizeof (dtrace_recdesc_t));
16175
16176 buf = kmem_alloc(size, KM_SLEEP);
16177 dest = (uintptr_t)buf;
16178
16179 bcopy(&epdesc, (void *)dest, sizeof (epdesc));
16180 dest += offsetof(dtrace_eprobedesc_t, dtepd_rec[0]);
16181
16182 for (act = ecb->dte_action; act != NULL; act = act->dta_next) {
16183 if (DTRACEACT_ISAGG(act->dta_kind) || act->dta_intuple)
16184 continue;
16185
16186 if (nrecs-- == 0)
16187 break;
16188
16189 bcopy(&act->dta_rec, (void *)dest,
16190 sizeof (dtrace_recdesc_t));
16191 dest += sizeof (dtrace_recdesc_t);
16192 }
16193
16194 mutex_exit(&dtrace_lock);
16195
16196 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16197 kmem_free(buf, size);
16198 return (EFAULT);
16199 }
16200
16201 kmem_free(buf, size);
16202 return (0);
16203 }
16204
16205 case DTRACEIOC_AGGDESC: {
16206 dtrace_aggdesc_t aggdesc;
16207 dtrace_action_t *act;
16208 dtrace_aggregation_t *agg;
16209 int nrecs;
16210 uint32_t offs;
16211 dtrace_recdesc_t *lrec;
16212 void *buf;
16213 size_t size;
16214 uintptr_t dest;
16215
16216 if (copyin((void *)arg, &aggdesc, sizeof (aggdesc)) != 0)
16217 return (EFAULT);
16218
16219 mutex_enter(&dtrace_lock);
16220
16221 if ((agg = dtrace_aggid2agg(state, aggdesc.dtagd_id)) == NULL) {
16222 mutex_exit(&dtrace_lock);
16223 return (EINVAL);
16224 }
16225
16226 aggdesc.dtagd_epid = agg->dtag_ecb->dte_epid;
16227
16228 nrecs = aggdesc.dtagd_nrecs;
16229 aggdesc.dtagd_nrecs = 0;
16230
16231 offs = agg->dtag_base;
16232 lrec = &agg->dtag_action.dta_rec;
16233 aggdesc.dtagd_size = lrec->dtrd_offset + lrec->dtrd_size - offs;
16234
16235 for (act = agg->dtag_first; ; act = act->dta_next) {
16236 ASSERT(act->dta_intuple ||
16237 DTRACEACT_ISAGG(act->dta_kind));
16238
16239 /*
16240 * If this action has a record size of zero, it
16241 * denotes an argument to the aggregating action.
16242 * Because the presence of this record doesn't (or
16243 * shouldn't) affect the way the data is interpreted,
16244 * we don't copy it out to save user-level the
16245 * confusion of dealing with a zero-length record.
16246 */
16247 if (act->dta_rec.dtrd_size == 0) {
16248 ASSERT(agg->dtag_hasarg);
16249 continue;
16250 }
16251
16252 aggdesc.dtagd_nrecs++;
16253
16254 if (act == &agg->dtag_action)
16255 break;
16256 }
16257
16258 /*
16259 * Now that we have the size, we need to allocate a temporary
16260 * buffer in which to store the complete description. We need
16261 * the temporary buffer to be able to drop dtrace_lock()
16262 * across the copyout(), below.
16263 */
16264 size = sizeof (dtrace_aggdesc_t) +
16265 (aggdesc.dtagd_nrecs * sizeof (dtrace_recdesc_t));
16266
16267 buf = kmem_alloc(size, KM_SLEEP);
16268 dest = (uintptr_t)buf;
16269
16270 bcopy(&aggdesc, (void *)dest, sizeof (aggdesc));
16271 dest += offsetof(dtrace_aggdesc_t, dtagd_rec[0]);
16272
16273 for (act = agg->dtag_first; ; act = act->dta_next) {
16274 dtrace_recdesc_t rec = act->dta_rec;
16275
16276 /*
16277 * See the comment in the above loop for why we pass
16278 * over zero-length records.
16279 */
16280 if (rec.dtrd_size == 0) {
16281 ASSERT(agg->dtag_hasarg);
16282 continue;
16283 }
16284
16285 if (nrecs-- == 0)
16286 break;
16287
16288 rec.dtrd_offset -= offs;
16289 bcopy(&rec, (void *)dest, sizeof (rec));
16290 dest += sizeof (dtrace_recdesc_t);
16291
16292 if (act == &agg->dtag_action)
16293 break;
16294 }
16295
16296 mutex_exit(&dtrace_lock);
16297
16298 if (copyout(buf, (void *)arg, dest - (uintptr_t)buf) != 0) {
16299 kmem_free(buf, size);
16300 return (EFAULT);
16301 }
16302
16303 kmem_free(buf, size);
16304 return (0);
16305 }
16306
16307 case DTRACEIOC_ENABLE: {
16308 dof_hdr_t *dof;
16309 dtrace_enabling_t *enab = NULL;
16310 dtrace_vstate_t *vstate;
16311 int err = 0;
16312
16313 *rv = 0;
16314
16315 /*
16316 * If a NULL argument has been passed, we take this as our
16317 * cue to reevaluate our enablings.
16318 */
16319 if (arg == NULL) {
16320 dtrace_enabling_matchall();
16321
16322 return (0);
16323 }
16324
16325 if ((dof = dtrace_dof_copyin(arg, &rval)) == NULL)
16326 return (rval);
16327
16328 mutex_enter(&cpu_lock);
16329 mutex_enter(&dtrace_lock);
16330 vstate = &state->dts_vstate;
16331
16332 if (state->dts_activity != DTRACE_ACTIVITY_INACTIVE) {
16333 mutex_exit(&dtrace_lock);
16334 mutex_exit(&cpu_lock);
16335 dtrace_dof_destroy(dof);
16336 return (EBUSY);
16337 }
16338
16339 if (dtrace_dof_slurp(dof, vstate, cr, &enab, 0, B_TRUE) != 0) {
16340 mutex_exit(&dtrace_lock);
16341 mutex_exit(&cpu_lock);
16342 dtrace_dof_destroy(dof);
16343 return (EINVAL);
16344 }
16345
16346 if ((rval = dtrace_dof_options(dof, state)) != 0) {
16347 dtrace_enabling_destroy(enab);
16348 mutex_exit(&dtrace_lock);
16349 mutex_exit(&cpu_lock);
16350 dtrace_dof_destroy(dof);
16351 return (rval);
16352 }
16353
16354 if ((err = dtrace_enabling_match(enab, rv)) == 0) {
16355 err = dtrace_enabling_retain(enab);
16356 } else {
16357 dtrace_enabling_destroy(enab);
16358 }
16359
16360 mutex_exit(&cpu_lock);
16361 mutex_exit(&dtrace_lock);
16362 dtrace_dof_destroy(dof);
16363
16364 return (err);
16365 }
16366
16367 case DTRACEIOC_REPLICATE: {
16368 dtrace_repldesc_t desc;
16369 dtrace_probedesc_t *match = &desc.dtrpd_match;
16370 dtrace_probedesc_t *create = &desc.dtrpd_create;
16371 int err;
16372
16373 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16374 return (EFAULT);
16375
16376 match->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16377 match->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16378 match->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16379 match->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16380
16381 create->dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16382 create->dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16383 create->dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16384 create->dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16385
16386 mutex_enter(&dtrace_lock);
16387 err = dtrace_enabling_replicate(state, match, create);
16388 mutex_exit(&dtrace_lock);
16389
16390 return (err);
16391 }
16392
16393 case DTRACEIOC_PROBEMATCH:
16394 case DTRACEIOC_PROBES: {
16395 dtrace_probe_t *probe = NULL;
16396 dtrace_probedesc_t desc;
16397 dtrace_probekey_t pkey;
16398 dtrace_id_t i;
16399 int m = 0;
16400 uint32_t priv;
16401 uid_t uid;
16402 zoneid_t zoneid;
16403
16404 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16405 return (EFAULT);
16406
16407 desc.dtpd_provider[DTRACE_PROVNAMELEN - 1] = '\0';
16408 desc.dtpd_mod[DTRACE_MODNAMELEN - 1] = '\0';
16409 desc.dtpd_func[DTRACE_FUNCNAMELEN - 1] = '\0';
16410 desc.dtpd_name[DTRACE_NAMELEN - 1] = '\0';
16411
16412 /*
16413 * Before we attempt to match this probe, we want to give
16414 * all providers the opportunity to provide it.
16415 */
16416 if (desc.dtpd_id == DTRACE_IDNONE) {
16417 mutex_enter(&dtrace_provider_lock);
16418 dtrace_probe_provide(&desc, NULL);
16419 mutex_exit(&dtrace_provider_lock);
16420 desc.dtpd_id++;
16421 }
16422
16423 if (cmd == DTRACEIOC_PROBEMATCH) {
16424 dtrace_probekey(&desc, &pkey);
16425 pkey.dtpk_id = DTRACE_IDNONE;
16426 }
16427
16428 dtrace_cred2priv(cr, &priv, &uid, &zoneid);
16429
16430 mutex_enter(&dtrace_lock);
16431
16432 if (cmd == DTRACEIOC_PROBEMATCH) {
16433 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16434 if ((probe = dtrace_probes[i - 1]) != NULL &&
16435 (m = dtrace_match_probe(probe, &pkey,
16436 priv, uid, zoneid)) != 0)
16437 break;
16438 }
16439
16440 if (m < 0) {
16441 mutex_exit(&dtrace_lock);
16442 return (EINVAL);
16443 }
16444
16445 } else {
16446 for (i = desc.dtpd_id; i <= dtrace_nprobes; i++) {
16447 if ((probe = dtrace_probes[i - 1]) != NULL &&
16448 dtrace_match_priv(probe, priv, uid, zoneid))
16449 break;
16450 }
16451 }
16452
16453 if (probe == NULL) {
16454 mutex_exit(&dtrace_lock);
16455 return (ESRCH);
16456 }
16457
16458 dtrace_probe_description(probe, &desc);
16459 mutex_exit(&dtrace_lock);
16460
16461 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16462 return (EFAULT);
16463
16464 return (0);
16465 }
16466
16467 case DTRACEIOC_PROBEARG: {
16468 dtrace_argdesc_t desc;
16469 dtrace_probe_t *probe;
16470 dtrace_provider_t *prov;
16471
16472 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16473 return (EFAULT);
16474
16475 if (desc.dtargd_id == DTRACE_IDNONE)
16476 return (EINVAL);
16477
16478 if (desc.dtargd_ndx == DTRACE_ARGNONE)
16479 return (EINVAL);
16480
16481 mutex_enter(&dtrace_provider_lock);
16482 mutex_enter(&mod_lock);
16483 mutex_enter(&dtrace_lock);
16484
16485 if (desc.dtargd_id > dtrace_nprobes) {
16486 mutex_exit(&dtrace_lock);
16487 mutex_exit(&mod_lock);
16488 mutex_exit(&dtrace_provider_lock);
16489 return (EINVAL);
16490 }
16491
16492 if ((probe = dtrace_probes[desc.dtargd_id - 1]) == NULL) {
16493 mutex_exit(&dtrace_lock);
16494 mutex_exit(&mod_lock);
16495 mutex_exit(&dtrace_provider_lock);
16496 return (EINVAL);
16497 }
16498
16499 mutex_exit(&dtrace_lock);
16500
16501 prov = probe->dtpr_provider;
16502
16503 if (prov->dtpv_pops.dtps_getargdesc == NULL) {
16504 /*
16505 * There isn't any typed information for this probe.
16506 * Set the argument number to DTRACE_ARGNONE.
16507 */
16508 desc.dtargd_ndx = DTRACE_ARGNONE;
16509 } else {
16510 desc.dtargd_native[0] = '\0';
16511 desc.dtargd_xlate[0] = '\0';
16512 desc.dtargd_mapping = desc.dtargd_ndx;
16513
16514 prov->dtpv_pops.dtps_getargdesc(prov->dtpv_arg,
16515 probe->dtpr_id, probe->dtpr_arg, &desc);
16516 }
16517
16518 mutex_exit(&mod_lock);
16519 mutex_exit(&dtrace_provider_lock);
16520
16521 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16522 return (EFAULT);
16523
16524 return (0);
16525 }
16526
16527 case DTRACEIOC_GO: {
16528 processorid_t cpuid;
16529 rval = dtrace_state_go(state, &cpuid);
16530
16531 if (rval != 0)
16532 return (rval);
16533
16534 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16535 return (EFAULT);
16536
16537 return (0);
16538 }
16539
16540 case DTRACEIOC_STOP: {
16541 processorid_t cpuid;
16542
16543 mutex_enter(&dtrace_lock);
16544 rval = dtrace_state_stop(state, &cpuid);
16545 mutex_exit(&dtrace_lock);
16546
16547 if (rval != 0)
16548 return (rval);
16549
16550 if (copyout(&cpuid, (void *)arg, sizeof (cpuid)) != 0)
16551 return (EFAULT);
16552
16553 return (0);
16554 }
16555
16556 case DTRACEIOC_DOFGET: {
16557 dof_hdr_t hdr, *dof;
16558 uint64_t len;
16559
16560 if (copyin((void *)arg, &hdr, sizeof (hdr)) != 0)
16561 return (EFAULT);
16562
16563 mutex_enter(&dtrace_lock);
16564 dof = dtrace_dof_create(state);
16565 mutex_exit(&dtrace_lock);
16566
16567 len = MIN(hdr.dofh_loadsz, dof->dofh_loadsz);
16568 rval = copyout(dof, (void *)arg, len);
16569 dtrace_dof_destroy(dof);
16570
16571 return (rval == 0 ? 0 : EFAULT);
16572 }
16573
16574 case DTRACEIOC_AGGSNAP:
16575 case DTRACEIOC_BUFSNAP: {
16576 dtrace_bufdesc_t desc;
16577 caddr_t cached;
16578 dtrace_buffer_t *buf;
16579
16580 if (copyin((void *)arg, &desc, sizeof (desc)) != 0)
16581 return (EFAULT);
16582
16583 if (desc.dtbd_cpu < 0 || desc.dtbd_cpu >= NCPU)
16584 return (EINVAL);
16585
16586 mutex_enter(&dtrace_lock);
16587
16588 if (cmd == DTRACEIOC_BUFSNAP) {
16589 buf = &state->dts_buffer[desc.dtbd_cpu];
16590 } else {
16591 buf = &state->dts_aggbuffer[desc.dtbd_cpu];
16592 }
16593
16594 if (buf->dtb_flags & (DTRACEBUF_RING | DTRACEBUF_FILL)) {
16595 size_t sz = buf->dtb_offset;
16596
16597 if (state->dts_activity != DTRACE_ACTIVITY_STOPPED) {
16598 mutex_exit(&dtrace_lock);
16599 return (EBUSY);
16600 }
16601
16602 /*
16603 * If this buffer has already been consumed, we're
16604 * going to indicate that there's nothing left here
16605 * to consume.
16606 */
16607 if (buf->dtb_flags & DTRACEBUF_CONSUMED) {
16608 mutex_exit(&dtrace_lock);
16609
16610 desc.dtbd_size = 0;
16611 desc.dtbd_drops = 0;
16612 desc.dtbd_errors = 0;
16613 desc.dtbd_oldest = 0;
16614 sz = sizeof (desc);
16615
16616 if (copyout(&desc, (void *)arg, sz) != 0)
16617 return (EFAULT);
16618
16619 return (0);
16620 }
16621
16622 /*
16623 * If this is a ring buffer that has wrapped, we want
16624 * to copy the whole thing out.
16625 */
16626 if (buf->dtb_flags & DTRACEBUF_WRAPPED) {
16627 dtrace_buffer_polish(buf);
16628 sz = buf->dtb_size;
16629 }
16630
16631 if (copyout(buf->dtb_tomax, desc.dtbd_data, sz) != 0) {
16632 mutex_exit(&dtrace_lock);
16633 return (EFAULT);
16634 }
16635
16636 desc.dtbd_size = sz;
16637 desc.dtbd_drops = buf->dtb_drops;
16638 desc.dtbd_errors = buf->dtb_errors;
16639 desc.dtbd_oldest = buf->dtb_xamot_offset;
16640 desc.dtbd_timestamp = dtrace_gethrtime();
16641
16642 mutex_exit(&dtrace_lock);
16643
16644 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16645 return (EFAULT);
16646
16647 buf->dtb_flags |= DTRACEBUF_CONSUMED;
16648
16649 return (0);
16650 }
16651
16652 if (buf->dtb_tomax == NULL) {
16653 ASSERT(buf->dtb_xamot == NULL);
16654 mutex_exit(&dtrace_lock);
16655 return (ENOENT);
16656 }
16657
16658 cached = buf->dtb_tomax;
16659 ASSERT(!(buf->dtb_flags & DTRACEBUF_NOSWITCH));
16660
16661 dtrace_xcall(desc.dtbd_cpu,
16662 (dtrace_xcall_t)dtrace_buffer_switch, buf);
16663
16664 state->dts_errors += buf->dtb_xamot_errors;
16665
16666 /*
16667 * If the buffers did not actually switch, then the cross call
16668 * did not take place -- presumably because the given CPU is
16669 * not in the ready set. If this is the case, we'll return
16670 * ENOENT.
16671 */
16672 if (buf->dtb_tomax == cached) {
16673 ASSERT(buf->dtb_xamot != cached);
16674 mutex_exit(&dtrace_lock);
16675 return (ENOENT);
16676 }
16677
16678 ASSERT(cached == buf->dtb_xamot);
16679
16680 /*
16681 * We have our snapshot; now copy it out.
16682 */
16683 if (copyout(buf->dtb_xamot, desc.dtbd_data,
16684 buf->dtb_xamot_offset) != 0) {
16685 mutex_exit(&dtrace_lock);
16686 return (EFAULT);
16687 }
16688
16689 desc.dtbd_size = buf->dtb_xamot_offset;
16690 desc.dtbd_drops = buf->dtb_xamot_drops;
16691 desc.dtbd_errors = buf->dtb_xamot_errors;
16692 desc.dtbd_oldest = 0;
16693 desc.dtbd_timestamp = buf->dtb_switched;
16694
16695 mutex_exit(&dtrace_lock);
16696
16697 /*
16698 * Finally, copy out the buffer description.
16699 */
16700 if (copyout(&desc, (void *)arg, sizeof (desc)) != 0)
16701 return (EFAULT);
16702
16703 return (0);
16704 }
16705
16706 case DTRACEIOC_CONF: {
16707 dtrace_conf_t conf;
16708
16709 bzero(&conf, sizeof (conf));
16710 conf.dtc_difversion = DIF_VERSION;
16711 conf.dtc_difintregs = DIF_DIR_NREGS;
16712 conf.dtc_diftupregs = DIF_DTR_NREGS;
16713 conf.dtc_ctfmodel = CTF_MODEL_NATIVE;
16714
16715 if (copyout(&conf, (void *)arg, sizeof (conf)) != 0)
16716 return (EFAULT);
16717
16718 return (0);
16719 }
16720
16721 case DTRACEIOC_STATUS: {
16722 dtrace_status_t stat;
16723 dtrace_dstate_t *dstate;
16724 int i, j;
16725 uint64_t nerrs;
16726
16727 /*
16728 * See the comment in dtrace_state_deadman() for the reason
16729 * for setting dts_laststatus to INT64_MAX before setting
16730 * it to the correct value.
16731 */
16732 state->dts_laststatus = INT64_MAX;
16733 dtrace_membar_producer();
16734 state->dts_laststatus = dtrace_gethrtime();
16735
16736 bzero(&stat, sizeof (stat));
16737
16738 mutex_enter(&dtrace_lock);
16739
16740 if (state->dts_activity == DTRACE_ACTIVITY_INACTIVE) {
16741 mutex_exit(&dtrace_lock);
16742 return (ENOENT);
16743 }
16744
16745 if (state->dts_activity == DTRACE_ACTIVITY_DRAINING)
16746 stat.dtst_exiting = 1;
16747
16748 nerrs = state->dts_errors;
16749 dstate = &state->dts_vstate.dtvs_dynvars;
16750
16751 for (i = 0; i < NCPU; i++) {
16752 dtrace_dstate_percpu_t *dcpu = &dstate->dtds_percpu[i];
16753
16754 stat.dtst_dyndrops += dcpu->dtdsc_drops;
16755 stat.dtst_dyndrops_dirty += dcpu->dtdsc_dirty_drops;
16756 stat.dtst_dyndrops_rinsing += dcpu->dtdsc_rinsing_drops;
16757
16758 if (state->dts_buffer[i].dtb_flags & DTRACEBUF_FULL)
16759 stat.dtst_filled++;
16760
16761 nerrs += state->dts_buffer[i].dtb_errors;
16762
16763 for (j = 0; j < state->dts_nspeculations; j++) {
16764 dtrace_speculation_t *spec;
16765 dtrace_buffer_t *buf;
16766
16767 spec = &state->dts_speculations[j];
16768 buf = &spec->dtsp_buffer[i];
16769 stat.dtst_specdrops += buf->dtb_xamot_drops;
16770 }
16771 }
16772
16773 stat.dtst_specdrops_busy = state->dts_speculations_busy;
16774 stat.dtst_specdrops_unavail = state->dts_speculations_unavail;
16775 stat.dtst_stkstroverflows = state->dts_stkstroverflows;
16776 stat.dtst_dblerrors = state->dts_dblerrors;
16777 stat.dtst_killed =
16778 (state->dts_activity == DTRACE_ACTIVITY_KILLED);
16779 stat.dtst_errors = nerrs;
16780
16781 mutex_exit(&dtrace_lock);
16782
16783 if (copyout(&stat, (void *)arg, sizeof (stat)) != 0)
16784 return (EFAULT);
16785
16786 return (0);
16787 }
16788
16789 case DTRACEIOC_FORMAT: {
16790 dtrace_fmtdesc_t fmt;
16791 char *str;
16792 int len;
16793
16794 if (copyin((void *)arg, &fmt, sizeof (fmt)) != 0)
16795 return (EFAULT);
16796
16797 mutex_enter(&dtrace_lock);
16798
16799 if (fmt.dtfd_format == 0 ||
16800 fmt.dtfd_format > state->dts_nformats) {
16801 mutex_exit(&dtrace_lock);
16802 return (EINVAL);
16803 }
16804
16805 /*
16806 * Format strings are allocated contiguously and they are
16807 * never freed; if a format index is less than the number
16808 * of formats, we can assert that the format map is non-NULL
16809 * and that the format for the specified index is non-NULL.
16810 */
16811 ASSERT(state->dts_formats != NULL);
16812 str = state->dts_formats[fmt.dtfd_format - 1];
16813 ASSERT(str != NULL);
16814
16815 len = strlen(str) + 1;
16816
16817 if (len > fmt.dtfd_length) {
16818 fmt.dtfd_length = len;
16819
16820 if (copyout(&fmt, (void *)arg, sizeof (fmt)) != 0) {
16821 mutex_exit(&dtrace_lock);
16822 return (EINVAL);
16823 }
16824 } else {
16825 if (copyout(str, fmt.dtfd_string, len) != 0) {
16826 mutex_exit(&dtrace_lock);
16827 return (EINVAL);
16828 }
16829 }
16830
16831 mutex_exit(&dtrace_lock);
16832 return (0);
16833 }
16834
16835 default:
16836 break;
16837 }
16838
16839 return (ENOTTY);
16840 }
16841
16842 /*ARGSUSED*/
16843 static int
dtrace_detach(dev_info_t * dip,ddi_detach_cmd_t cmd)16844 dtrace_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
16845 {
16846 dtrace_state_t *state;
16847
16848 switch (cmd) {
16849 case DDI_DETACH:
16850 break;
16851
16852 case DDI_SUSPEND:
16853 return (DDI_SUCCESS);
16854
16855 default:
16856 return (DDI_FAILURE);
16857 }
16858
16859 mutex_enter(&cpu_lock);
16860 mutex_enter(&dtrace_provider_lock);
16861 mutex_enter(&dtrace_lock);
16862
16863 ASSERT(dtrace_opens == 0);
16864
16865 if (dtrace_helpers > 0) {
16866 mutex_exit(&dtrace_provider_lock);
16867 mutex_exit(&dtrace_lock);
16868 mutex_exit(&cpu_lock);
16869 return (DDI_FAILURE);
16870 }
16871
16872 if (dtrace_unregister((dtrace_provider_id_t)dtrace_provider) != 0) {
16873 mutex_exit(&dtrace_provider_lock);
16874 mutex_exit(&dtrace_lock);
16875 mutex_exit(&cpu_lock);
16876 return (DDI_FAILURE);
16877 }
16878
16879 dtrace_provider = NULL;
16880
16881 if ((state = dtrace_anon_grab()) != NULL) {
16882 /*
16883 * If there were ECBs on this state, the provider should
16884 * have not been allowed to detach; assert that there is
16885 * none.
16886 */
16887 ASSERT(state->dts_necbs == 0);
16888 dtrace_state_destroy(state);
16889
16890 /*
16891 * If we're being detached with anonymous state, we need to
16892 * indicate to the kernel debugger that DTrace is now inactive.
16893 */
16894 (void) kdi_dtrace_set(KDI_DTSET_DTRACE_DEACTIVATE);
16895 }
16896
16897 bzero(&dtrace_anon, sizeof (dtrace_anon_t));
16898 unregister_cpu_setup_func((cpu_setup_func_t *)dtrace_cpu_setup, NULL);
16899 dtrace_cpu_init = NULL;
16900 dtrace_helpers_cleanup = NULL;
16901 dtrace_helpers_fork = NULL;
16902 dtrace_cpustart_init = NULL;
16903 dtrace_cpustart_fini = NULL;
16904 dtrace_debugger_init = NULL;
16905 dtrace_debugger_fini = NULL;
16906 dtrace_modload = NULL;
16907 dtrace_modunload = NULL;
16908
16909 ASSERT(dtrace_getf == 0);
16910 ASSERT(dtrace_closef == NULL);
16911
16912 mutex_exit(&cpu_lock);
16913
16914 kmem_free(dtrace_probes, dtrace_nprobes * sizeof (dtrace_probe_t *));
16915 dtrace_probes = NULL;
16916 dtrace_nprobes = 0;
16917
16918 dtrace_hash_destroy(dtrace_bymod);
16919 dtrace_hash_destroy(dtrace_byfunc);
16920 dtrace_hash_destroy(dtrace_byname);
16921 dtrace_bymod = NULL;
16922 dtrace_byfunc = NULL;
16923 dtrace_byname = NULL;
16924
16925 kmem_cache_destroy(dtrace_state_cache);
16926 vmem_destroy(dtrace_minor);
16927 vmem_destroy(dtrace_arena);
16928
16929 if (dtrace_toxrange != NULL) {
16930 kmem_free(dtrace_toxrange,
16931 dtrace_toxranges_max * sizeof (dtrace_toxrange_t));
16932 dtrace_toxrange = NULL;
16933 dtrace_toxranges = 0;
16934 dtrace_toxranges_max = 0;
16935 }
16936
16937 ddi_remove_minor_node(dtrace_devi, NULL);
16938 dtrace_devi = NULL;
16939
16940 ddi_soft_state_fini(&dtrace_softstate);
16941
16942 ASSERT(dtrace_vtime_references == 0);
16943 ASSERT(dtrace_opens == 0);
16944 ASSERT(dtrace_retained == NULL);
16945
16946 mutex_exit(&dtrace_lock);
16947 mutex_exit(&dtrace_provider_lock);
16948
16949 /*
16950 * We don't destroy the task queue until after we have dropped our
16951 * locks (taskq_destroy() may block on running tasks). To prevent
16952 * attempting to do work after we have effectively detached but before
16953 * the task queue has been destroyed, all tasks dispatched via the
16954 * task queue must check that DTrace is still attached before
16955 * performing any operation.
16956 */
16957 taskq_destroy(dtrace_taskq);
16958 dtrace_taskq = NULL;
16959
16960 return (DDI_SUCCESS);
16961 }
16962
16963 /*ARGSUSED*/
16964 static int
dtrace_info(dev_info_t * dip,ddi_info_cmd_t infocmd,void * arg,void ** result)16965 dtrace_info(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
16966 {
16967 int error;
16968
16969 switch (infocmd) {
16970 case DDI_INFO_DEVT2DEVINFO:
16971 *result = (void *)dtrace_devi;
16972 error = DDI_SUCCESS;
16973 break;
16974 case DDI_INFO_DEVT2INSTANCE:
16975 *result = (void *)0;
16976 error = DDI_SUCCESS;
16977 break;
16978 default:
16979 error = DDI_FAILURE;
16980 }
16981 return (error);
16982 }
16983
16984 static struct cb_ops dtrace_cb_ops = {
16985 dtrace_open, /* open */
16986 dtrace_close, /* close */
16987 nulldev, /* strategy */
16988 nulldev, /* print */
16989 nodev, /* dump */
16990 nodev, /* read */
16991 nodev, /* write */
16992 dtrace_ioctl, /* ioctl */
16993 nodev, /* devmap */
16994 nodev, /* mmap */
16995 nodev, /* segmap */
16996 nochpoll, /* poll */
16997 ddi_prop_op, /* cb_prop_op */
16998 0, /* streamtab */
16999 D_NEW | D_MP /* Driver compatibility flag */
17000 };
17001
17002 static struct dev_ops dtrace_ops = {
17003 DEVO_REV, /* devo_rev */
17004 0, /* refcnt */
17005 dtrace_info, /* get_dev_info */
17006 nulldev, /* identify */
17007 nulldev, /* probe */
17008 dtrace_attach, /* attach */
17009 dtrace_detach, /* detach */
17010 nodev, /* reset */
17011 &dtrace_cb_ops, /* driver operations */
17012 NULL, /* bus operations */
17013 nodev, /* dev power */
17014 ddi_quiesce_not_needed, /* quiesce */
17015 };
17016
17017 static struct modldrv modldrv = {
17018 &mod_driverops, /* module type (this is a pseudo driver) */
17019 "Dynamic Tracing", /* name of module */
17020 &dtrace_ops, /* driver ops */
17021 };
17022
17023 static struct modlinkage modlinkage = {
17024 MODREV_1,
17025 (void *)&modldrv,
17026 NULL
17027 };
17028
17029 int
_init(void)17030 _init(void)
17031 {
17032 return (mod_install(&modlinkage));
17033 }
17034
17035 int
_info(struct modinfo * modinfop)17036 _info(struct modinfo *modinfop)
17037 {
17038 return (mod_info(&modlinkage, modinfop));
17039 }
17040
17041 int
_fini(void)17042 _fini(void)
17043 {
17044 return (mod_remove(&modlinkage));
17045 }
17046