1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2013 by Delphix. All rights reserved. 30 */ 31 32 #ifndef _SYS_DTRACE_H 33 #define _SYS_DTRACE_H 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * DTrace Dynamic Tracing Software: Kernel Interfaces 41 * 42 * Note: The contents of this file are private to the implementation of the 43 * Solaris system and DTrace subsystem and are subject to change at any time 44 * without notice. Applications and drivers using these interfaces will fail 45 * to run on future releases. These interfaces should not be used for any 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 48 */ 49 50 #ifndef _ASM 51 52 #include <sys/param.h> 53 #include <sys/stdint.h> 54 #ifdef _KERNEL 55 #include <sys/endian.h> 56 #endif 57 #if !defined(IN_BASE) && !defined(_KERNEL) 58 /* Compatibility types to allow including the CTF API */ 59 typedef unsigned int zoneid_t; 60 typedef unsigned char uchar_t; 61 typedef unsigned short ushort_t; 62 typedef unsigned int uint_t; 63 typedef unsigned long ulong_t; 64 typedef int processorid_t; 65 #else 66 #include <sys/modctl.h> 67 #include <sys/processor.h> 68 #include <sys/cpuvar.h> 69 #include <sys/param.h> 70 #include <sys/linker.h> 71 #include <sys/ioccom.h> 72 #include <sys/cred.h> 73 #ifdef __FreeBSD__ 74 #include <sys/_mutex.h> 75 #endif 76 #include <sys/proc.h> 77 #include <sys/types.h> 78 #include <sys/ucred.h> 79 #endif 80 typedef int model_t; 81 #include <sys/ctf_api.h> 82 83 /* 84 * DTrace Universal Constants and Typedefs 85 */ 86 #define DTRACE_CPUALL -1 /* all CPUs */ 87 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 88 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 89 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 90 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 91 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 92 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 93 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 94 #define DTRACE_ARGNONE -1 /* invalid argument index */ 95 96 #define DTRACE_PROVNAMELEN 64 97 #define DTRACE_MODNAMELEN 64 98 #define DTRACE_FUNCNAMELEN 192 99 #define DTRACE_NAMELEN 64 100 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 101 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 102 #define DTRACE_ARGTYPELEN 128 103 104 typedef uint32_t dtrace_id_t; /* probe identifier */ 105 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 106 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 107 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 108 typedef uint16_t dtrace_actkind_t; /* action kind */ 109 typedef int64_t dtrace_optval_t; /* option value */ 110 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 111 112 typedef enum dtrace_probespec { 113 DTRACE_PROBESPEC_NONE = -1, 114 DTRACE_PROBESPEC_PROVIDER = 0, 115 DTRACE_PROBESPEC_MOD, 116 DTRACE_PROBESPEC_FUNC, 117 DTRACE_PROBESPEC_NAME 118 } dtrace_probespec_t; 119 120 /* 121 * DTrace Intermediate Format (DIF) 122 * 123 * The following definitions describe the DTrace Intermediate Format (DIF), a 124 * a RISC-like instruction set and program encoding used to represent 125 * predicates and actions that can be bound to DTrace probes. The constants 126 * below defining the number of available registers are suggested minimums; the 127 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 128 * registers provided by the current DTrace implementation. 129 */ 130 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 131 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 132 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 133 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 134 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 135 136 #define DIF_OP_OR 1 /* or r1, r2, rd */ 137 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 138 #define DIF_OP_AND 3 /* and r1, r2, rd */ 139 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 140 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 141 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 142 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 143 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 144 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 145 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 146 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 147 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 148 #define DIF_OP_NOT 13 /* not r1, rd */ 149 #define DIF_OP_MOV 14 /* mov r1, rd */ 150 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 151 #define DIF_OP_TST 16 /* tst r1 */ 152 #define DIF_OP_BA 17 /* ba label */ 153 #define DIF_OP_BE 18 /* be label */ 154 #define DIF_OP_BNE 19 /* bne label */ 155 #define DIF_OP_BG 20 /* bg label */ 156 #define DIF_OP_BGU 21 /* bgu label */ 157 #define DIF_OP_BGE 22 /* bge label */ 158 #define DIF_OP_BGEU 23 /* bgeu label */ 159 #define DIF_OP_BL 24 /* bl label */ 160 #define DIF_OP_BLU 25 /* blu label */ 161 #define DIF_OP_BLE 26 /* ble label */ 162 #define DIF_OP_BLEU 27 /* bleu label */ 163 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 164 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 165 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 166 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 167 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 168 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 169 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 170 #define DIF_OP_RET 35 /* ret rd */ 171 #define DIF_OP_NOP 36 /* nop */ 172 #define DIF_OP_SETX 37 /* setx intindex, rd */ 173 #define DIF_OP_SETS 38 /* sets strindex, rd */ 174 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 175 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 176 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 177 #define DIF_OP_STGS 42 /* stgs var, rs */ 178 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 179 #define DIF_OP_LDTS 44 /* ldts var, rd */ 180 #define DIF_OP_STTS 45 /* stts var, rs */ 181 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 182 #define DIF_OP_CALL 47 /* call subr, rd */ 183 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 184 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 185 #define DIF_OP_POPTS 50 /* popts */ 186 #define DIF_OP_FLUSHTS 51 /* flushts */ 187 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 188 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 189 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 190 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 191 #define DIF_OP_LDLS 56 /* ldls var, rd */ 192 #define DIF_OP_STLS 57 /* stls var, rs */ 193 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 194 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 195 #define DIF_OP_STB 60 /* stb r1, [rd] */ 196 #define DIF_OP_STH 61 /* sth r1, [rd] */ 197 #define DIF_OP_STW 62 /* stw r1, [rd] */ 198 #define DIF_OP_STX 63 /* stx r1, [rd] */ 199 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 200 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 201 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 202 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 203 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 204 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 205 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 206 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 207 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 208 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 209 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 210 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 211 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 212 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 213 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 214 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 215 216 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 217 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 218 #define DIF_REGISTER_MAX 0xff /* highest register number */ 219 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 220 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 221 222 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 223 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 224 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 225 226 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 227 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 228 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 229 230 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 231 #define DIF_VAR_REGS 0x0001 /* registers array */ 232 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 233 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 234 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 235 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 236 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 237 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 238 #define DIF_VAR_ID 0x0105 /* probe ID */ 239 #define DIF_VAR_ARG0 0x0106 /* first argument */ 240 #define DIF_VAR_ARG1 0x0107 /* second argument */ 241 #define DIF_VAR_ARG2 0x0108 /* third argument */ 242 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 243 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 244 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 245 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 246 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 247 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 248 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 249 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 250 #define DIF_VAR_CALLER 0x0111 /* caller */ 251 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 252 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 253 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 254 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 255 #define DIF_VAR_PID 0x0116 /* process ID */ 256 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 257 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 258 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 259 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 260 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 261 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 262 #define DIF_VAR_PPID 0x011d /* parent process ID */ 263 #define DIF_VAR_UID 0x011e /* process user ID */ 264 #define DIF_VAR_GID 0x011f /* process group ID */ 265 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 266 #define DIF_VAR_EXECARGS 0x0121 /* process arguments */ 267 #define DIF_VAR_JID 0x0122 /* process jail id */ 268 #define DIF_VAR_JAILNAME 0x0123 /* process jail name */ 269 270 #ifndef illumos 271 #define DIF_VAR_CPU 0x0200 272 #endif 273 274 #define DIF_SUBR_RAND 0 275 #define DIF_SUBR_MUTEX_OWNED 1 276 #define DIF_SUBR_MUTEX_OWNER 2 277 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 278 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 279 #define DIF_SUBR_RW_READ_HELD 5 280 #define DIF_SUBR_RW_WRITE_HELD 6 281 #define DIF_SUBR_RW_ISWRITER 7 282 #define DIF_SUBR_COPYIN 8 283 #define DIF_SUBR_COPYINSTR 9 284 #define DIF_SUBR_SPECULATION 10 285 #define DIF_SUBR_PROGENYOF 11 286 #define DIF_SUBR_STRLEN 12 287 #define DIF_SUBR_COPYOUT 13 288 #define DIF_SUBR_COPYOUTSTR 14 289 #define DIF_SUBR_ALLOCA 15 290 #define DIF_SUBR_BCOPY 16 291 #define DIF_SUBR_COPYINTO 17 292 #define DIF_SUBR_MSGDSIZE 18 293 #define DIF_SUBR_MSGSIZE 19 294 #define DIF_SUBR_GETMAJOR 20 295 #define DIF_SUBR_GETMINOR 21 296 #define DIF_SUBR_DDI_PATHNAME 22 297 #define DIF_SUBR_STRJOIN 23 298 #define DIF_SUBR_LLTOSTR 24 299 #define DIF_SUBR_BASENAME 25 300 #define DIF_SUBR_DIRNAME 26 301 #define DIF_SUBR_CLEANPATH 27 302 #define DIF_SUBR_STRCHR 28 303 #define DIF_SUBR_STRRCHR 29 304 #define DIF_SUBR_STRSTR 30 305 #define DIF_SUBR_STRTOK 31 306 #define DIF_SUBR_SUBSTR 32 307 #define DIF_SUBR_INDEX 33 308 #define DIF_SUBR_RINDEX 34 309 #define DIF_SUBR_HTONS 35 310 #define DIF_SUBR_HTONL 36 311 #define DIF_SUBR_HTONLL 37 312 #define DIF_SUBR_NTOHS 38 313 #define DIF_SUBR_NTOHL 39 314 #define DIF_SUBR_NTOHLL 40 315 #define DIF_SUBR_INET_NTOP 41 316 #define DIF_SUBR_INET_NTOA 42 317 #define DIF_SUBR_INET_NTOA6 43 318 #define DIF_SUBR_TOUPPER 44 319 #define DIF_SUBR_TOLOWER 45 320 #define DIF_SUBR_MEMREF 46 321 #define DIF_SUBR_SX_SHARED_HELD 47 322 #define DIF_SUBR_SX_EXCLUSIVE_HELD 48 323 #define DIF_SUBR_SX_ISEXCLUSIVE 49 324 #define DIF_SUBR_MEMSTR 50 325 #define DIF_SUBR_GETF 51 326 #define DIF_SUBR_JSON 52 327 #define DIF_SUBR_STRTOLL 53 328 #define DIF_SUBR_MAX 53 /* max subroutine value */ 329 330 typedef uint32_t dif_instr_t; 331 332 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 333 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 334 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 335 #define DIF_INSTR_RD(i) ((i) & 0xff) 336 #define DIF_INSTR_RS(i) ((i) & 0xff) 337 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 338 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 339 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 340 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 341 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 342 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 343 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 344 345 #define DIF_INSTR_FMT(op, r1, r2, d) \ 346 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 347 348 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 349 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 350 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 351 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 352 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 353 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 354 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 355 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 356 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 357 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 358 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 359 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 360 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 361 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 362 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 363 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 364 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 365 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 366 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 367 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 368 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 369 370 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 371 372 /* 373 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 374 * of variables, function and associative array arguments, and the return type 375 * for each DIF object (shown below). It contains a description of the type, 376 * its size in bytes, and a module identifier. 377 */ 378 typedef struct dtrace_diftype { 379 uint8_t dtdt_kind; /* type kind (see below) */ 380 uint8_t dtdt_ckind; /* type kind in CTF */ 381 uint8_t dtdt_flags; /* type flags (see below) */ 382 uint8_t dtdt_pad; /* reserved for future use */ 383 uint32_t dtdt_size; /* type size in bytes (unless string) */ 384 } dtrace_diftype_t; 385 386 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 387 #define DIF_TYPE_STRING 1 /* type is a D string */ 388 389 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 390 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */ 391 392 /* 393 * A DTrace Intermediate Format variable record is used to describe each of the 394 * variables referenced by a given DIF object. It contains an integer variable 395 * identifier along with variable scope and properties, as shown below. The 396 * size of this structure must be sizeof (int) aligned. 397 */ 398 typedef struct dtrace_difv { 399 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 400 uint32_t dtdv_id; /* variable reference identifier */ 401 uint8_t dtdv_kind; /* variable kind (see below) */ 402 uint8_t dtdv_scope; /* variable scope (see below) */ 403 uint16_t dtdv_flags; /* variable flags (see below) */ 404 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 405 } dtrace_difv_t; 406 407 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 408 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 409 410 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 411 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 412 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 413 414 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 415 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 416 417 /* 418 * DTrace Actions 419 * 420 * The upper byte determines the class of the action; the low bytes determines 421 * the specific action within that class. The classes of actions are as 422 * follows: 423 * 424 * [ no class ] <= May record process- or kernel-related data 425 * DTRACEACT_PROC <= Only records process-related data 426 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 427 * DTRACEACT_KERNEL <= Only records kernel-related data 428 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 429 * DTRACEACT_SPECULATIVE <= Speculation-related action 430 * DTRACEACT_AGGREGATION <= Aggregating action 431 */ 432 #define DTRACEACT_NONE 0 /* no action */ 433 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 434 #define DTRACEACT_EXIT 2 /* exit() action */ 435 #define DTRACEACT_PRINTF 3 /* printf() action */ 436 #define DTRACEACT_PRINTA 4 /* printa() action */ 437 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 438 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ 439 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ 440 #define DTRACEACT_PRINTM 8 /* printm() action (BSD) */ 441 442 #define DTRACEACT_PROC 0x0100 443 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 444 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 445 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 446 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 447 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 448 449 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 450 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 451 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 452 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 453 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 454 455 #define DTRACEACT_PROC_CONTROL 0x0300 456 457 #define DTRACEACT_KERNEL 0x0400 458 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 459 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 460 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 461 462 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 463 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 464 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 465 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 466 467 #define DTRACEACT_SPECULATIVE 0x0600 468 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 469 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 470 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 471 472 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 473 474 #define DTRACEACT_ISDESTRUCTIVE(x) \ 475 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 476 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 477 478 #define DTRACEACT_ISSPECULATIVE(x) \ 479 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 480 481 #define DTRACEACT_ISPRINTFLIKE(x) \ 482 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 483 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 484 485 /* 486 * DTrace Aggregating Actions 487 * 488 * These are functions f(x) for which the following is true: 489 * 490 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 491 * 492 * where x_n is a set of arbitrary data. Aggregating actions are in their own 493 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 494 * for easier processing of the aggregation argument and data payload for a few 495 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 496 */ 497 #define DTRACEACT_AGGREGATION 0x0700 498 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 499 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 500 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 501 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 502 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 503 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 504 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 505 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 506 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) 507 508 #define DTRACEACT_ISAGG(x) \ 509 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 510 511 #define DTRACE_QUANTIZE_NBUCKETS \ 512 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 513 514 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 515 516 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 517 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 518 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 519 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 520 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 521 522 #define DTRACE_LQUANTIZE_STEPSHIFT 48 523 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 524 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 525 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 526 #define DTRACE_LQUANTIZE_BASESHIFT 0 527 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 528 529 #define DTRACE_LQUANTIZE_STEP(x) \ 530 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 531 DTRACE_LQUANTIZE_STEPSHIFT) 532 533 #define DTRACE_LQUANTIZE_LEVELS(x) \ 534 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 535 DTRACE_LQUANTIZE_LEVELSHIFT) 536 537 #define DTRACE_LQUANTIZE_BASE(x) \ 538 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 539 DTRACE_LQUANTIZE_BASESHIFT) 540 541 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 542 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) 543 #define DTRACE_LLQUANTIZE_LOWSHIFT 32 544 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) 545 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 546 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) 547 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 548 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX 549 550 #define DTRACE_LLQUANTIZE_FACTOR(x) \ 551 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ 552 DTRACE_LLQUANTIZE_FACTORSHIFT) 553 554 #define DTRACE_LLQUANTIZE_LOW(x) \ 555 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ 556 DTRACE_LLQUANTIZE_LOWSHIFT) 557 558 #define DTRACE_LLQUANTIZE_HIGH(x) \ 559 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ 560 DTRACE_LLQUANTIZE_HIGHSHIFT) 561 562 #define DTRACE_LLQUANTIZE_NSTEP(x) \ 563 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ 564 DTRACE_LLQUANTIZE_NSTEPSHIFT) 565 566 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 567 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 568 #define DTRACE_USTACK_ARG(x, y) \ 569 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 570 571 #ifndef _LP64 572 #if BYTE_ORDER == _BIG_ENDIAN 573 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 574 #else 575 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 576 #endif 577 #else 578 #define DTRACE_PTR(type, name) type *name 579 #endif 580 581 /* 582 * DTrace Object Format (DOF) 583 * 584 * DTrace programs can be persistently encoded in the DOF format so that they 585 * may be embedded in other programs (for example, in an ELF file) or in the 586 * dtrace driver configuration file for use in anonymous tracing. The DOF 587 * format is versioned and extensible so that it can be revised and so that 588 * internal data structures can be modified or extended compatibly. All DOF 589 * structures use fixed-size types, so the 32-bit and 64-bit representations 590 * are identical and consumers can use either data model transparently. 591 * 592 * The file layout is structured as follows: 593 * 594 * +---------------+-------------------+----- ... ----+---- ... ------+ 595 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 596 * | (file header) | (section headers) | section data | section data | 597 * +---------------+-------------------+----- ... ----+---- ... ------+ 598 * |<------------ dof_hdr.dofh_loadsz --------------->| | 599 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 600 * 601 * The file header stores meta-data including a magic number, data model for 602 * the instrumentation, data encoding, and properties of the DIF code within. 603 * The header describes its own size and the size of the section headers. By 604 * convention, an array of section headers follows the file header, and then 605 * the data for all loadable sections and unloadable sections. This permits 606 * consumer code to easily download the headers and all loadable data into the 607 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 608 * 609 * The section headers describe the size, offset, alignment, and section type 610 * for each section. Sections are described using a set of #defines that tell 611 * the consumer what kind of data is expected. Sections can contain links to 612 * other sections by storing a dof_secidx_t, an index into the section header 613 * array, inside of the section data structures. The section header includes 614 * an entry size so that sections with data arrays can grow their structures. 615 * 616 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 617 * are represented themselves as a collection of related DOF sections. This 618 * permits us to change the set of sections associated with a DIFO over time, 619 * and also permits us to encode DIFOs that contain different sets of sections. 620 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 621 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 622 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 623 * 624 * This loose coupling of the file structure (header and sections) to the 625 * structure of the DTrace program itself (ECB descriptions, action 626 * descriptions, and DIFOs) permits activities such as relocation processing 627 * to occur in a single pass without having to understand D program structure. 628 * 629 * Finally, strings are always stored in ELF-style string tables along with a 630 * string table section index and string table offset. Therefore strings in 631 * DOF are always arbitrary-length and not bound to the current implementation. 632 */ 633 634 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 635 636 typedef struct dof_hdr { 637 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 638 uint32_t dofh_flags; /* file attribute flags (if any) */ 639 uint32_t dofh_hdrsize; /* size of file header in bytes */ 640 uint32_t dofh_secsize; /* size of section header in bytes */ 641 uint32_t dofh_secnum; /* number of section headers */ 642 uint64_t dofh_secoff; /* file offset of section headers */ 643 uint64_t dofh_loadsz; /* file size of loadable portion */ 644 uint64_t dofh_filesz; /* file size of entire DOF file */ 645 uint64_t dofh_pad; /* reserved for future use */ 646 } dof_hdr_t; 647 648 #define DOF_ID_MAG0 0 /* first byte of magic number */ 649 #define DOF_ID_MAG1 1 /* second byte of magic number */ 650 #define DOF_ID_MAG2 2 /* third byte of magic number */ 651 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 652 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 653 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 654 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 655 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 656 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 657 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 658 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 659 660 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 661 #define DOF_MAG_MAG1 'D' 662 #define DOF_MAG_MAG2 'O' 663 #define DOF_MAG_MAG3 'F' 664 665 #define DOF_MAG_STRING "\177DOF" 666 #define DOF_MAG_STRLEN 4 667 668 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 669 #define DOF_MODEL_ILP32 1 670 #define DOF_MODEL_LP64 2 671 672 #ifdef _LP64 673 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 674 #else 675 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 676 #endif 677 678 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 679 #define DOF_ENCODE_LSB 1 680 #define DOF_ENCODE_MSB 2 681 682 #if BYTE_ORDER == _BIG_ENDIAN 683 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 684 #else 685 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 686 #endif 687 688 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 689 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 690 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 691 692 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 693 694 typedef uint32_t dof_secidx_t; /* section header table index type */ 695 typedef uint32_t dof_stridx_t; /* string table index type */ 696 697 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 698 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 699 700 typedef struct dof_sec { 701 uint32_t dofs_type; /* section type (see below) */ 702 uint32_t dofs_align; /* section data memory alignment */ 703 uint32_t dofs_flags; /* section flags (if any) */ 704 uint32_t dofs_entsize; /* size of section entry (if table) */ 705 uint64_t dofs_offset; /* offset of section data within file */ 706 uint64_t dofs_size; /* size of section data in bytes */ 707 } dof_sec_t; 708 709 #define DOF_SECT_NONE 0 /* null section */ 710 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 711 #define DOF_SECT_SOURCE 2 /* D program source code */ 712 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 713 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 714 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 715 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 716 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 717 #define DOF_SECT_STRTAB 8 /* string table */ 718 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 719 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 720 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 721 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 722 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 723 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 724 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 725 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 726 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 727 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 728 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 729 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 730 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 731 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 732 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 733 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 734 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 735 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 736 737 #define DOF_SECF_LOAD 1 /* section should be loaded */ 738 739 #define DOF_SEC_ISLOADABLE(x) \ 740 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ 741 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ 742 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ 743 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ 744 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ 745 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ 746 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ 747 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ 748 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ 749 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ 750 ((x) == DOF_SECT_XLEXPORT) || ((x) == DOF_SECT_PREXPORT) || \ 751 ((x) == DOF_SECT_PRENOFFS)) 752 753 typedef struct dof_ecbdesc { 754 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 755 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 756 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 757 uint32_t dofe_pad; /* reserved for future use */ 758 uint64_t dofe_uarg; /* user-supplied library argument */ 759 } dof_ecbdesc_t; 760 761 typedef struct dof_probedesc { 762 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 763 dof_stridx_t dofp_provider; /* provider string */ 764 dof_stridx_t dofp_mod; /* module string */ 765 dof_stridx_t dofp_func; /* function string */ 766 dof_stridx_t dofp_name; /* name string */ 767 uint32_t dofp_id; /* probe identifier (or zero) */ 768 } dof_probedesc_t; 769 770 typedef struct dof_actdesc { 771 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 772 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 773 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 774 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 775 uint64_t dofa_arg; /* kind-specific argument */ 776 uint64_t dofa_uarg; /* user-supplied argument */ 777 } dof_actdesc_t; 778 779 typedef struct dof_difohdr { 780 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 781 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 782 } dof_difohdr_t; 783 784 typedef struct dof_relohdr { 785 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 786 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 787 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 788 } dof_relohdr_t; 789 790 typedef struct dof_relodesc { 791 dof_stridx_t dofr_name; /* string name of relocation symbol */ 792 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 793 uint64_t dofr_offset; /* byte offset for relocation */ 794 uint64_t dofr_data; /* additional type-specific data */ 795 } dof_relodesc_t; 796 797 #define DOF_RELO_NONE 0 /* empty relocation entry */ 798 #define DOF_RELO_SETX 1 /* relocate setx value */ 799 #define DOF_RELO_DOFREL 2 /* relocate DOF-relative value */ 800 801 typedef struct dof_optdesc { 802 uint32_t dofo_option; /* option identifier */ 803 dof_secidx_t dofo_strtab; /* string table, if string option */ 804 uint64_t dofo_value; /* option value or string index */ 805 } dof_optdesc_t; 806 807 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 808 809 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 810 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 811 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 812 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 813 814 typedef struct dof_provider { 815 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 816 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 817 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 818 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 819 dof_stridx_t dofpv_name; /* provider name string */ 820 dof_attr_t dofpv_provattr; /* provider attributes */ 821 dof_attr_t dofpv_modattr; /* module attributes */ 822 dof_attr_t dofpv_funcattr; /* function attributes */ 823 dof_attr_t dofpv_nameattr; /* name attributes */ 824 dof_attr_t dofpv_argsattr; /* args attributes */ 825 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 826 } dof_provider_t; 827 828 typedef struct dof_probe { 829 uint64_t dofpr_addr; /* probe base address or offset */ 830 dof_stridx_t dofpr_func; /* probe function string */ 831 dof_stridx_t dofpr_name; /* probe name string */ 832 dof_stridx_t dofpr_nargv; /* native argument type strings */ 833 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 834 uint32_t dofpr_argidx; /* index of first argument mapping */ 835 uint32_t dofpr_offidx; /* index of first offset entry */ 836 uint8_t dofpr_nargc; /* native argument count */ 837 uint8_t dofpr_xargc; /* translated argument count */ 838 uint16_t dofpr_noffs; /* number of offset entries for probe */ 839 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 840 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 841 uint16_t dofpr_pad1; /* reserved for future use */ 842 uint32_t dofpr_pad2; /* reserved for future use */ 843 } dof_probe_t; 844 845 typedef struct dof_xlator { 846 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 847 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 848 dof_stridx_t dofxl_argv; /* input parameter type strings */ 849 uint32_t dofxl_argc; /* input parameter list length */ 850 dof_stridx_t dofxl_type; /* output type string name */ 851 dof_attr_t dofxl_attr; /* output stability attributes */ 852 } dof_xlator_t; 853 854 typedef struct dof_xlmember { 855 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 856 dof_stridx_t dofxm_name; /* member name */ 857 dtrace_diftype_t dofxm_type; /* member type */ 858 } dof_xlmember_t; 859 860 typedef struct dof_xlref { 861 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 862 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 863 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 864 } dof_xlref_t; 865 866 /* 867 * DTrace Intermediate Format Object (DIFO) 868 * 869 * A DIFO is used to store the compiled DIF for a D expression, its return 870 * type, and its string and variable tables. The string table is a single 871 * buffer of character data into which sets instructions and variable 872 * references can reference strings using a byte offset. The variable table 873 * is an array of dtrace_difv_t structures that describe the name and type of 874 * each variable and the id used in the DIF code. This structure is described 875 * above in the DIF section of this header file. The DIFO is used at both 876 * user-level (in the library) and in the kernel, but the structure is never 877 * passed between the two: the DOF structures form the only interface. As a 878 * result, the definition can change depending on the presence of _KERNEL. 879 */ 880 typedef struct dtrace_difo { 881 dif_instr_t *dtdo_buf; /* instruction buffer */ 882 uint64_t *dtdo_inttab; /* integer table (optional) */ 883 char *dtdo_strtab; /* string table (optional) */ 884 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 885 uint_t dtdo_len; /* length of instruction buffer */ 886 uint_t dtdo_intlen; /* length of integer table */ 887 uint_t dtdo_strlen; /* length of string table */ 888 uint_t dtdo_varlen; /* length of variable table */ 889 dtrace_diftype_t dtdo_rtype; /* return type */ 890 uint_t dtdo_refcnt; /* owner reference count */ 891 uint_t dtdo_destructive; /* invokes destructive subroutines */ 892 #ifndef _KERNEL 893 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 894 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 895 struct dt_node **dtdo_xlmtab; /* translator references */ 896 uint_t dtdo_krelen; /* length of krelo table */ 897 uint_t dtdo_urelen; /* length of urelo table */ 898 uint_t dtdo_xlmlen; /* length of translator table */ 899 #endif 900 } dtrace_difo_t; 901 902 /* 903 * DTrace Enabling Description Structures 904 * 905 * When DTrace is tracking the description of a DTrace enabling entity (probe, 906 * predicate, action, ECB, record, etc.), it does so in a description 907 * structure. These structures all end in "desc", and are used at both 908 * user-level and in the kernel -- but (with the exception of 909 * dtrace_probedesc_t) they are never passed between them. Typically, 910 * user-level will use the description structures when assembling an enabling. 911 * It will then distill those description structures into a DOF object (see 912 * above), and send it into the kernel. The kernel will again use the 913 * description structures to create a description of the enabling as it reads 914 * the DOF. When the description is complete, the enabling will be actually 915 * created -- turning it into the structures that represent the enabling 916 * instead of merely describing it. Not surprisingly, the description 917 * structures bear a strong resemblance to the DOF structures that act as their 918 * conduit. 919 */ 920 struct dtrace_predicate; 921 922 typedef struct dtrace_probedesc { 923 dtrace_id_t dtpd_id; /* probe identifier */ 924 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 925 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 926 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 927 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 928 } dtrace_probedesc_t; 929 930 typedef struct dtrace_repldesc { 931 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 932 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 933 } dtrace_repldesc_t; 934 935 typedef struct dtrace_preddesc { 936 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 937 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 938 } dtrace_preddesc_t; 939 940 typedef struct dtrace_actdesc { 941 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 942 struct dtrace_actdesc *dtad_next; /* next action */ 943 dtrace_actkind_t dtad_kind; /* kind of action */ 944 uint32_t dtad_ntuple; /* number in tuple */ 945 uint64_t dtad_arg; /* action argument */ 946 uint64_t dtad_uarg; /* user argument */ 947 int dtad_refcnt; /* reference count */ 948 } dtrace_actdesc_t; 949 950 typedef struct dtrace_ecbdesc { 951 dtrace_actdesc_t *dted_action; /* action description(s) */ 952 dtrace_preddesc_t dted_pred; /* predicate description */ 953 dtrace_probedesc_t dted_probe; /* probe description */ 954 uint64_t dted_uarg; /* library argument */ 955 int dted_refcnt; /* reference count */ 956 } dtrace_ecbdesc_t; 957 958 /* 959 * DTrace Metadata Description Structures 960 * 961 * DTrace separates the trace data stream from the metadata stream. The only 962 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + 963 * timestamp) or (in the case of aggregations) aggregation identifiers. To 964 * determine the structure of the data, DTrace consumers pass the token to the 965 * kernel, and receive in return a corresponding description of the enabled 966 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 967 * dtrace_aggdesc structure). Both of these structures are expressed in terms 968 * of record descriptions (via the dtrace_recdesc structure) that describe the 969 * exact structure of the data. Some record descriptions may also contain a 970 * format identifier; this additional bit of metadata can be retrieved from the 971 * kernel, for which a format description is returned via the dtrace_fmtdesc 972 * structure. Note that all four of these structures must be bitness-neutral 973 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 974 */ 975 typedef struct dtrace_recdesc { 976 dtrace_actkind_t dtrd_action; /* kind of action */ 977 uint32_t dtrd_size; /* size of record */ 978 uint32_t dtrd_offset; /* offset in ECB's data */ 979 uint16_t dtrd_alignment; /* required alignment */ 980 uint16_t dtrd_format; /* format, if any */ 981 uint64_t dtrd_arg; /* action argument */ 982 uint64_t dtrd_uarg; /* user argument */ 983 } dtrace_recdesc_t; 984 985 typedef struct dtrace_eprobedesc { 986 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 987 dtrace_id_t dtepd_probeid; /* probe ID */ 988 uint64_t dtepd_uarg; /* library argument */ 989 uint32_t dtepd_size; /* total size */ 990 int dtepd_nrecs; /* number of records */ 991 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 992 } dtrace_eprobedesc_t; 993 994 typedef struct dtrace_aggdesc { 995 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 996 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 997 int dtagd_flags; /* not filled in by kernel */ 998 dtrace_aggid_t dtagd_id; /* aggregation ID */ 999 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 1000 uint32_t dtagd_size; /* size in bytes */ 1001 int dtagd_nrecs; /* number of records */ 1002 uint32_t dtagd_pad; /* explicit padding */ 1003 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 1004 } dtrace_aggdesc_t; 1005 1006 typedef struct dtrace_fmtdesc { 1007 DTRACE_PTR(char, dtfd_string); /* format string */ 1008 int dtfd_length; /* length of format string */ 1009 uint16_t dtfd_format; /* format identifier */ 1010 } dtrace_fmtdesc_t; 1011 1012 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 1013 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 1014 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1015 1016 #define DTRACE_SIZEOF_AGGDESC(desc) \ 1017 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 1018 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1019 1020 /* 1021 * DTrace Option Interface 1022 * 1023 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 1024 * in a DOF image. The dof_optdesc structure contains an option identifier and 1025 * an option value. The valid option identifiers are found below; the mapping 1026 * between option identifiers and option identifying strings is maintained at 1027 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 1028 * following are potentially valid option values: all positive integers, zero 1029 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 1030 * predefined tokens as their values; these are defined with 1031 * DTRACEOPT_{option}_{token}. 1032 */ 1033 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 1034 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 1035 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 1036 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 1037 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 1038 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 1039 #define DTRACEOPT_STRSIZE 6 /* string size */ 1040 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 1041 #define DTRACEOPT_CPU 8 /* CPU to trace */ 1042 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 1043 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 1044 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 1045 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 1046 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 1047 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 1048 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 1049 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 1050 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 1051 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 1052 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 1053 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 1054 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 1055 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 1056 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 1057 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 1058 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 1059 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 1060 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ 1061 #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */ 1062 #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */ 1063 #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */ 1064 #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */ 1065 #define DTRACEOPT_MAX 32 /* number of options */ 1066 1067 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 1068 1069 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1070 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1071 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1072 1073 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1074 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1075 1076 /* 1077 * DTrace Buffer Interface 1078 * 1079 * In order to get a snapshot of the principal or aggregation buffer, 1080 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1081 * structure. This describes which CPU user-level is interested in, and 1082 * where user-level wishes the kernel to snapshot the buffer to (the 1083 * dtbd_data field). The kernel uses the same structure to pass back some 1084 * information regarding the buffer: the size of data actually copied out, the 1085 * number of drops, the number of errors, the offset of the oldest record, 1086 * and the time of the snapshot. 1087 * 1088 * If the buffer policy is a "switch" policy, taking a snapshot of the 1089 * principal buffer has the additional effect of switching the active and 1090 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1091 * the additional effect of switching the active and inactive buffers. 1092 */ 1093 typedef struct dtrace_bufdesc { 1094 uint64_t dtbd_size; /* size of buffer */ 1095 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1096 uint32_t dtbd_errors; /* number of errors */ 1097 uint64_t dtbd_drops; /* number of drops */ 1098 DTRACE_PTR(char, dtbd_data); /* data */ 1099 uint64_t dtbd_oldest; /* offset of oldest record */ 1100 uint64_t dtbd_timestamp; /* hrtime of snapshot */ 1101 } dtrace_bufdesc_t; 1102 1103 /* 1104 * Each record in the buffer (dtbd_data) begins with a header that includes 1105 * the epid and a timestamp. The timestamp is split into two 4-byte parts 1106 * so that we do not require 8-byte alignment. 1107 */ 1108 typedef struct dtrace_rechdr { 1109 dtrace_epid_t dtrh_epid; /* enabled probe id */ 1110 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ 1111 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ 1112 } dtrace_rechdr_t; 1113 1114 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ 1115 ((dtrh)->dtrh_timestamp_lo + \ 1116 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) 1117 1118 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ 1119 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ 1120 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ 1121 } 1122 1123 /* 1124 * DTrace Status 1125 * 1126 * The status of DTrace is relayed via the dtrace_status structure. This 1127 * structure contains members to count drops other than the capacity drops 1128 * available via the buffer interface (see above). This consists of dynamic 1129 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1130 * speculative drops (including capacity speculative drops, drops due to busy 1131 * speculative buffers and drops due to unavailable speculative buffers). 1132 * Additionally, the status structure contains a field to indicate the number 1133 * of "fill"-policy buffers have been filled and a boolean field to indicate 1134 * that exit() has been called. If the dtst_exiting field is non-zero, no 1135 * further data will be generated until tracing is stopped (at which time any 1136 * enablings of the END action will be processed); if user-level sees that 1137 * this field is non-zero, tracing should be stopped as soon as possible. 1138 */ 1139 typedef struct dtrace_status { 1140 uint64_t dtst_dyndrops; /* dynamic drops */ 1141 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1142 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1143 uint64_t dtst_specdrops; /* speculative drops */ 1144 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1145 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1146 uint64_t dtst_errors; /* total errors */ 1147 uint64_t dtst_filled; /* number of filled bufs */ 1148 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1149 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1150 char dtst_killed; /* non-zero if killed */ 1151 char dtst_exiting; /* non-zero if exit() called */ 1152 char dtst_pad[6]; /* pad out to 64-bit align */ 1153 } dtrace_status_t; 1154 1155 /* 1156 * DTrace Configuration 1157 * 1158 * User-level may need to understand some elements of the kernel DTrace 1159 * configuration in order to generate correct DIF. This information is 1160 * conveyed via the dtrace_conf structure. 1161 */ 1162 typedef struct dtrace_conf { 1163 uint_t dtc_difversion; /* supported DIF version */ 1164 uint_t dtc_difintregs; /* # of DIF integer registers */ 1165 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1166 uint_t dtc_ctfmodel; /* CTF data model */ 1167 uint_t dtc_pad[8]; /* reserved for future use */ 1168 } dtrace_conf_t; 1169 1170 /* 1171 * DTrace Faults 1172 * 1173 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1174 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1175 * postprocessing at user-level. Probe processing faults induce an ERROR 1176 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1177 * the error condition using thse symbolic labels. 1178 */ 1179 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1180 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1181 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1182 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1183 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1184 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1185 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1186 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1187 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1188 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1189 1190 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1191 1192 /* 1193 * DTrace Argument Types 1194 * 1195 * Because it would waste both space and time, argument types do not reside 1196 * with the probe. In order to determine argument types for args[X] 1197 * variables, the D compiler queries for argument types on a probe-by-probe 1198 * basis. (This optimizes for the common case that arguments are either not 1199 * used or used in an untyped fashion.) Typed arguments are specified with a 1200 * string of the type name in the dtragd_native member of the argument 1201 * description structure. Typed arguments may be further translated to types 1202 * of greater stability; the provider indicates such a translated argument by 1203 * filling in the dtargd_xlate member with the string of the translated type. 1204 * Finally, the provider may indicate which argument value a given argument 1205 * maps to by setting the dtargd_mapping member -- allowing a single argument 1206 * to map to multiple args[X] variables. 1207 */ 1208 typedef struct dtrace_argdesc { 1209 dtrace_id_t dtargd_id; /* probe identifier */ 1210 int dtargd_ndx; /* arg number (-1 iff none) */ 1211 int dtargd_mapping; /* value mapping */ 1212 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1213 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1214 } dtrace_argdesc_t; 1215 1216 /* 1217 * DTrace Stability Attributes 1218 * 1219 * Each DTrace provider advertises the name and data stability of each of its 1220 * probe description components, as well as its architectural dependencies. 1221 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1222 * order to compute the properties of an input program and report them. 1223 */ 1224 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1225 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1226 1227 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1228 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1229 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1230 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1231 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1232 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1233 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1234 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1235 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1236 1237 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1238 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1239 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1240 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1241 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1242 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1243 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1244 1245 #define DTRACE_PRIV_NONE 0x0000 1246 #define DTRACE_PRIV_KERNEL 0x0001 1247 #define DTRACE_PRIV_USER 0x0002 1248 #define DTRACE_PRIV_PROC 0x0004 1249 #define DTRACE_PRIV_OWNER 0x0008 1250 #define DTRACE_PRIV_ZONEOWNER 0x0010 1251 1252 #define DTRACE_PRIV_ALL \ 1253 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1254 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1255 1256 typedef struct dtrace_ppriv { 1257 uint32_t dtpp_flags; /* privilege flags */ 1258 uid_t dtpp_uid; /* user ID */ 1259 zoneid_t dtpp_zoneid; /* zone ID */ 1260 } dtrace_ppriv_t; 1261 1262 typedef struct dtrace_attribute { 1263 dtrace_stability_t dtat_name; /* entity name stability */ 1264 dtrace_stability_t dtat_data; /* entity data stability */ 1265 dtrace_class_t dtat_class; /* entity data dependency */ 1266 } dtrace_attribute_t; 1267 1268 typedef struct dtrace_pattr { 1269 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1270 dtrace_attribute_t dtpa_mod; /* module attributes */ 1271 dtrace_attribute_t dtpa_func; /* function attributes */ 1272 dtrace_attribute_t dtpa_name; /* name attributes */ 1273 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1274 } dtrace_pattr_t; 1275 1276 typedef struct dtrace_providerdesc { 1277 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1278 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1279 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1280 } dtrace_providerdesc_t; 1281 1282 /* 1283 * DTrace Pseudodevice Interface 1284 * 1285 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1286 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1287 * DTrace. 1288 */ 1289 #ifdef illumos 1290 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1291 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1292 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1293 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1294 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1295 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1296 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1297 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1298 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1299 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1300 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1301 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1302 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1303 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1304 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1305 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1306 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1307 #else 1308 #define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t) 1309 /* provider query */ 1310 #define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t) 1311 /* probe query */ 1312 #define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *) 1313 /* snapshot buffer */ 1314 #define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t) 1315 /* match probes */ 1316 typedef struct { 1317 void *dof; /* DOF userland address written to driver. */ 1318 int n_matched; /* # matches returned by driver. */ 1319 } dtrace_enable_io_t; 1320 #define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t) 1321 /* enable probes */ 1322 #define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *) 1323 /* snapshot agg. */ 1324 #define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t) 1325 /* get eprobe desc. */ 1326 #define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t) 1327 /* get probe arg */ 1328 #define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t) 1329 /* get config. */ 1330 #define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t) 1331 /* get status */ 1332 #define DTRACEIOC_GO _IOR('x',12,processorid_t) 1333 /* start tracing */ 1334 #define DTRACEIOC_STOP _IOWR('x',13,processorid_t) 1335 /* stop tracing */ 1336 #define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *) 1337 /* get agg. desc. */ 1338 #define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t) 1339 /* get format str */ 1340 #define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *) 1341 /* get DOF */ 1342 #define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t) 1343 /* replicate enab */ 1344 #endif 1345 1346 /* 1347 * DTrace Helpers 1348 * 1349 * In general, DTrace establishes probes in processes and takes actions on 1350 * processes without knowing their specific user-level structures. Instead of 1351 * existing in the framework, process-specific knowledge is contained by the 1352 * enabling D program -- which can apply process-specific knowledge by making 1353 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1354 * operate on user-level data. However, there may exist some specific probes 1355 * of particular semantic relevance that the application developer may wish to 1356 * explicitly export. For example, an application may wish to export a probe 1357 * at the point that it begins and ends certain well-defined transactions. In 1358 * addition to providing probes, programs may wish to offer assistance for 1359 * certain actions. For example, in highly dynamic environments (e.g., Java), 1360 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1361 * names (the translation from instruction addresses to corresponding symbol 1362 * names may only be possible in situ); these environments may wish to define 1363 * a series of actions to be applied in situ to obtain a meaningful stack 1364 * trace. 1365 * 1366 * These two mechanisms -- user-level statically defined tracing and assisting 1367 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1368 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1369 * providers, probes and their arguments. If a helper wishes to provide 1370 * action assistance, probe descriptions and corresponding DIF actions may be 1371 * specified in the helper DOF. For such helper actions, however, the probe 1372 * description describes the specific helper: all DTrace helpers have the 1373 * provider name "dtrace" and the module name "helper", and the name of the 1374 * helper is contained in the function name (for example, the ustack() helper 1375 * is named "ustack"). Any helper-specific name may be contained in the name 1376 * (for example, if a helper were to have a constructor, it might be named 1377 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1378 * action that they are helping is taken. Helper actions may only return DIF 1379 * expressions, and may only call the following subroutines: 1380 * 1381 * alloca() <= Allocates memory out of the consumer's scratch space 1382 * bcopy() <= Copies memory to scratch space 1383 * copyin() <= Copies memory from user-level into consumer's scratch 1384 * copyinto() <= Copies memory into a specific location in scratch 1385 * copyinstr() <= Copies a string into a specific location in scratch 1386 * 1387 * Helper actions may only access the following built-in variables: 1388 * 1389 * curthread <= Current kthread_t pointer 1390 * tid <= Current thread identifier 1391 * pid <= Current process identifier 1392 * ppid <= Parent process identifier 1393 * uid <= Current user ID 1394 * gid <= Current group ID 1395 * execname <= Current executable name 1396 * zonename <= Current zone name 1397 * 1398 * Helper actions may not manipulate or allocate dynamic variables, but they 1399 * may have clause-local and statically-allocated global variables. The 1400 * helper action variable state is specific to the helper action -- variables 1401 * used by the helper action may not be accessed outside of the helper 1402 * action, and the helper action may not access variables that like outside 1403 * of it. Helper actions may not load from kernel memory at-large; they are 1404 * restricting to loading current user state (via copyin() and variants) and 1405 * scratch space. As with probe enablings, helper actions are executed in 1406 * program order. The result of the helper action is the result of the last 1407 * executing helper expression. 1408 * 1409 * Helpers -- composed of either providers/probes or probes/actions (or both) 1410 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1411 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1412 * encapsulates the name and base address of the user-level library or 1413 * executable publishing the helpers and probes as well as the DOF that 1414 * contains the definitions of those helpers and probes. 1415 * 1416 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1417 * helpers and should no longer be used. No other ioctls are valid on the 1418 * helper minor node. 1419 */ 1420 #ifdef illumos 1421 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1422 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1423 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1424 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1425 #else 1426 #define DTRACEHIOC_REMOVE _IOW('z', 2, int) /* remove helper */ 1427 #define DTRACEHIOC_ADDDOF _IOWR('z', 3, dof_helper_t)/* add helper DOF */ 1428 #endif 1429 1430 typedef struct dof_helper { 1431 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1432 uint64_t dofhp_addr; /* base address of object */ 1433 uint64_t dofhp_dof; /* address of helper DOF */ 1434 #ifdef __FreeBSD__ 1435 pid_t dofhp_pid; /* target process ID */ 1436 int dofhp_gen; 1437 #endif 1438 } dof_helper_t; 1439 1440 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1441 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1442 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1443 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1444 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1445 1446 #ifdef _KERNEL 1447 1448 /* 1449 * DTrace Provider API 1450 * 1451 * The following functions are implemented by the DTrace framework and are 1452 * used to implement separate in-kernel DTrace providers. Common functions 1453 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1454 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1455 * 1456 * The provider API has two halves: the API that the providers consume from 1457 * DTrace, and the API that providers make available to DTrace. 1458 * 1459 * 1 Framework-to-Provider API 1460 * 1461 * 1.1 Overview 1462 * 1463 * The Framework-to-Provider API is represented by the dtrace_pops structure 1464 * that the provider passes to the framework when registering itself. This 1465 * structure consists of the following members: 1466 * 1467 * dtps_provide() <-- Provide all probes, all modules 1468 * dtps_provide_module() <-- Provide all probes in specified module 1469 * dtps_enable() <-- Enable specified probe 1470 * dtps_disable() <-- Disable specified probe 1471 * dtps_suspend() <-- Suspend specified probe 1472 * dtps_resume() <-- Resume specified probe 1473 * dtps_getargdesc() <-- Get the argument description for args[X] 1474 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1475 * dtps_usermode() <-- Find out if the probe was fired in user mode 1476 * dtps_destroy() <-- Destroy all state associated with this probe 1477 * 1478 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1479 * 1480 * 1.2.1 Overview 1481 * 1482 * Called to indicate that the provider should provide all probes. If the 1483 * specified description is non-NULL, dtps_provide() is being called because 1484 * no probe matched a specified probe -- if the provider has the ability to 1485 * create custom probes, it may wish to create a probe that matches the 1486 * specified description. 1487 * 1488 * 1.2.2 Arguments and notes 1489 * 1490 * The first argument is the cookie as passed to dtrace_register(). The 1491 * second argument is a pointer to a probe description that the provider may 1492 * wish to consider when creating custom probes. The provider is expected to 1493 * call back into the DTrace framework via dtrace_probe_create() to create 1494 * any necessary probes. dtps_provide() may be called even if the provider 1495 * has made available all probes; the provider should check the return value 1496 * of dtrace_probe_create() to handle this case. Note that the provider need 1497 * not implement both dtps_provide() and dtps_provide_module(); see 1498 * "Arguments and Notes" for dtrace_register(), below. 1499 * 1500 * 1.2.3 Return value 1501 * 1502 * None. 1503 * 1504 * 1.2.4 Caller's context 1505 * 1506 * dtps_provide() is typically called from open() or ioctl() context, but may 1507 * be called from other contexts as well. The DTrace framework is locked in 1508 * such a way that providers may not register or unregister. This means that 1509 * the provider may not call any DTrace API that affects its registration with 1510 * the framework, including dtrace_register(), dtrace_unregister(), 1511 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1512 * that the provider may (and indeed, is expected to) call probe-related 1513 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1514 * and dtrace_probe_arg(). 1515 * 1516 * 1.3 void dtps_provide_module(void *arg, modctl_t *mp) 1517 * 1518 * 1.3.1 Overview 1519 * 1520 * Called to indicate that the provider should provide all probes in the 1521 * specified module. 1522 * 1523 * 1.3.2 Arguments and notes 1524 * 1525 * The first argument is the cookie as passed to dtrace_register(). The 1526 * second argument is a pointer to a modctl structure that indicates the 1527 * module for which probes should be created. 1528 * 1529 * 1.3.3 Return value 1530 * 1531 * None. 1532 * 1533 * 1.3.4 Caller's context 1534 * 1535 * dtps_provide_module() may be called from open() or ioctl() context, but 1536 * may also be called from a module loading context. mod_lock is held, and 1537 * the DTrace framework is locked in such a way that providers may not 1538 * register or unregister. This means that the provider may not call any 1539 * DTrace API that affects its registration with the framework, including 1540 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1541 * dtrace_condense(). However, the context is such that the provider may (and 1542 * indeed, is expected to) call probe-related DTrace routines, including 1543 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1544 * that the provider need not implement both dtps_provide() and 1545 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1546 * below. 1547 * 1548 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1549 * 1550 * 1.4.1 Overview 1551 * 1552 * Called to enable the specified probe. 1553 * 1554 * 1.4.2 Arguments and notes 1555 * 1556 * The first argument is the cookie as passed to dtrace_register(). The 1557 * second argument is the identifier of the probe to be enabled. The third 1558 * argument is the probe argument as passed to dtrace_probe_create(). 1559 * dtps_enable() will be called when a probe transitions from not being 1560 * enabled at all to having one or more ECB. The number of ECBs associated 1561 * with the probe may change without subsequent calls into the provider. 1562 * When the number of ECBs drops to zero, the provider will be explicitly 1563 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1564 * be called for a probe identifier that hasn't been explicitly enabled via 1565 * dtps_enable(). 1566 * 1567 * 1.4.3 Return value 1568 * 1569 * None. 1570 * 1571 * 1.4.4 Caller's context 1572 * 1573 * The DTrace framework is locked in such a way that it may not be called 1574 * back into at all. cpu_lock is held. mod_lock is not held and may not 1575 * be acquired. 1576 * 1577 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1578 * 1579 * 1.5.1 Overview 1580 * 1581 * Called to disable the specified probe. 1582 * 1583 * 1.5.2 Arguments and notes 1584 * 1585 * The first argument is the cookie as passed to dtrace_register(). The 1586 * second argument is the identifier of the probe to be disabled. The third 1587 * argument is the probe argument as passed to dtrace_probe_create(). 1588 * dtps_disable() will be called when a probe transitions from being enabled 1589 * to having zero ECBs. dtrace_probe() should never be called for a probe 1590 * identifier that has been explicitly enabled via dtps_disable(). 1591 * 1592 * 1.5.3 Return value 1593 * 1594 * None. 1595 * 1596 * 1.5.4 Caller's context 1597 * 1598 * The DTrace framework is locked in such a way that it may not be called 1599 * back into at all. cpu_lock is held. mod_lock is not held and may not 1600 * be acquired. 1601 * 1602 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1603 * 1604 * 1.6.1 Overview 1605 * 1606 * Called to suspend the specified enabled probe. This entry point is for 1607 * providers that may need to suspend some or all of their probes when CPUs 1608 * are being powered on or when the boot monitor is being entered for a 1609 * prolonged period of time. 1610 * 1611 * 1.6.2 Arguments and notes 1612 * 1613 * The first argument is the cookie as passed to dtrace_register(). The 1614 * second argument is the identifier of the probe to be suspended. The 1615 * third argument is the probe argument as passed to dtrace_probe_create(). 1616 * dtps_suspend will only be called on an enabled probe. Providers that 1617 * provide a dtps_suspend entry point will want to take roughly the action 1618 * that it takes for dtps_disable. 1619 * 1620 * 1.6.3 Return value 1621 * 1622 * None. 1623 * 1624 * 1.6.4 Caller's context 1625 * 1626 * Interrupts are disabled. The DTrace framework is in a state such that the 1627 * specified probe cannot be disabled or destroyed for the duration of 1628 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1629 * little latitude; the provider is expected to do no more than a store to 1630 * memory. 1631 * 1632 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1633 * 1634 * 1.7.1 Overview 1635 * 1636 * Called to resume the specified enabled probe. This entry point is for 1637 * providers that may need to resume some or all of their probes after the 1638 * completion of an event that induced a call to dtps_suspend(). 1639 * 1640 * 1.7.2 Arguments and notes 1641 * 1642 * The first argument is the cookie as passed to dtrace_register(). The 1643 * second argument is the identifier of the probe to be resumed. The 1644 * third argument is the probe argument as passed to dtrace_probe_create(). 1645 * dtps_resume will only be called on an enabled probe. Providers that 1646 * provide a dtps_resume entry point will want to take roughly the action 1647 * that it takes for dtps_enable. 1648 * 1649 * 1.7.3 Return value 1650 * 1651 * None. 1652 * 1653 * 1.7.4 Caller's context 1654 * 1655 * Interrupts are disabled. The DTrace framework is in a state such that the 1656 * specified probe cannot be disabled or destroyed for the duration of 1657 * dtps_resume(). As interrupts are disabled, the provider is afforded 1658 * little latitude; the provider is expected to do no more than a store to 1659 * memory. 1660 * 1661 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1662 * dtrace_argdesc_t *desc) 1663 * 1664 * 1.8.1 Overview 1665 * 1666 * Called to retrieve the argument description for an args[X] variable. 1667 * 1668 * 1.8.2 Arguments and notes 1669 * 1670 * The first argument is the cookie as passed to dtrace_register(). The 1671 * second argument is the identifier of the current probe. The third 1672 * argument is the probe argument as passed to dtrace_probe_create(). The 1673 * fourth argument is a pointer to the argument description. This 1674 * description is both an input and output parameter: it contains the 1675 * index of the desired argument in the dtargd_ndx field, and expects 1676 * the other fields to be filled in upon return. If there is no argument 1677 * corresponding to the specified index, the dtargd_ndx field should be set 1678 * to DTRACE_ARGNONE. 1679 * 1680 * 1.8.3 Return value 1681 * 1682 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1683 * members of the dtrace_argdesc_t structure are all output values. 1684 * 1685 * 1.8.4 Caller's context 1686 * 1687 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1688 * the DTrace framework is locked in such a way that providers may not 1689 * register or unregister. This means that the provider may not call any 1690 * DTrace API that affects its registration with the framework, including 1691 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1692 * dtrace_condense(). 1693 * 1694 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1695 * int argno, int aframes) 1696 * 1697 * 1.9.1 Overview 1698 * 1699 * Called to retrieve a value for an argX or args[X] variable. 1700 * 1701 * 1.9.2 Arguments and notes 1702 * 1703 * The first argument is the cookie as passed to dtrace_register(). The 1704 * second argument is the identifier of the current probe. The third 1705 * argument is the probe argument as passed to dtrace_probe_create(). The 1706 * fourth argument is the number of the argument (the X in the example in 1707 * 1.9.1). The fifth argument is the number of stack frames that were used 1708 * to get from the actual place in the code that fired the probe to 1709 * dtrace_probe() itself, the so-called artificial frames. This argument may 1710 * be used to descend an appropriate number of frames to find the correct 1711 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1712 * function is used. 1713 * 1714 * 1.9.3 Return value 1715 * 1716 * The value of the argument. 1717 * 1718 * 1.9.4 Caller's context 1719 * 1720 * This is called from within dtrace_probe() meaning that interrupts 1721 * are disabled. No locks should be taken within this entry point. 1722 * 1723 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1724 * 1725 * 1.10.1 Overview 1726 * 1727 * Called to determine if the probe was fired in a user context. 1728 * 1729 * 1.10.2 Arguments and notes 1730 * 1731 * The first argument is the cookie as passed to dtrace_register(). The 1732 * second argument is the identifier of the current probe. The third 1733 * argument is the probe argument as passed to dtrace_probe_create(). This 1734 * entry point must not be left NULL for providers whose probes allow for 1735 * mixed mode tracing, that is to say those probes that can fire during 1736 * kernel- _or_ user-mode execution 1737 * 1738 * 1.10.3 Return value 1739 * 1740 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL 1741 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling 1742 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, 1743 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If 1744 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result 1745 * in the probe firing being silently ignored for the enabling; if the 1746 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not 1747 * prevent probe processing for the enabling, but restrictions will be in 1748 * place that induce a UPRIV fault upon attempt to examine probe arguments 1749 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit 1750 * is set, similar restrictions will be placed upon operation if the 1751 * privilege is sufficient to process the enabling, but does not otherwise 1752 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and 1753 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these 1754 * two policies must be specified), but either may be combined (or not) 1755 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. 1756 * 1757 * 1.10.4 Caller's context 1758 * 1759 * This is called from within dtrace_probe() meaning that interrupts 1760 * are disabled. No locks should be taken within this entry point. 1761 * 1762 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1763 * 1764 * 1.11.1 Overview 1765 * 1766 * Called to destroy the specified probe. 1767 * 1768 * 1.11.2 Arguments and notes 1769 * 1770 * The first argument is the cookie as passed to dtrace_register(). The 1771 * second argument is the identifier of the probe to be destroyed. The third 1772 * argument is the probe argument as passed to dtrace_probe_create(). The 1773 * provider should free all state associated with the probe. The framework 1774 * guarantees that dtps_destroy() is only called for probes that have either 1775 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1776 * Once dtps_disable() has been called for a probe, no further call will be 1777 * made specifying the probe. 1778 * 1779 * 1.11.3 Return value 1780 * 1781 * None. 1782 * 1783 * 1.11.4 Caller's context 1784 * 1785 * The DTrace framework is locked in such a way that it may not be called 1786 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1787 * acquired. 1788 * 1789 * 1790 * 2 Provider-to-Framework API 1791 * 1792 * 2.1 Overview 1793 * 1794 * The Provider-to-Framework API provides the mechanism for the provider to 1795 * register itself with the DTrace framework, to create probes, to lookup 1796 * probes and (most importantly) to fire probes. The Provider-to-Framework 1797 * consists of: 1798 * 1799 * dtrace_register() <-- Register a provider with the DTrace framework 1800 * dtrace_unregister() <-- Remove a provider's DTrace registration 1801 * dtrace_invalidate() <-- Invalidate the specified provider 1802 * dtrace_condense() <-- Remove a provider's unenabled probes 1803 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1804 * dtrace_probe_create() <-- Create a DTrace probe 1805 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1806 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1807 * dtrace_probe() <-- Fire the specified probe 1808 * 1809 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1810 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1811 * dtrace_provider_id_t *idp) 1812 * 1813 * 2.2.1 Overview 1814 * 1815 * dtrace_register() registers the calling provider with the DTrace 1816 * framework. It should generally be called by DTrace providers in their 1817 * attach(9E) entry point. 1818 * 1819 * 2.2.2 Arguments and Notes 1820 * 1821 * The first argument is the name of the provider. The second argument is a 1822 * pointer to the stability attributes for the provider. The third argument 1823 * is the privilege flags for the provider, and must be some combination of: 1824 * 1825 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1826 * 1827 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1828 * enable probes from this provider 1829 * 1830 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1831 * enable probes from this provider 1832 * 1833 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1834 * may enable probes from this provider 1835 * 1836 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1837 * the privilege requirements above. These probes 1838 * require either (a) a user ID matching the user 1839 * ID of the cred passed in the fourth argument 1840 * or (b) the PRIV_PROC_OWNER privilege. 1841 * 1842 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1843 * the privilege requirements above. These probes 1844 * require either (a) a zone ID matching the zone 1845 * ID of the cred passed in the fourth argument 1846 * or (b) the PRIV_PROC_ZONE privilege. 1847 * 1848 * Note that these flags designate the _visibility_ of the probes, not 1849 * the conditions under which they may or may not fire. 1850 * 1851 * The fourth argument is the credential that is associated with the 1852 * provider. This argument should be NULL if the privilege flags don't 1853 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1854 * framework stashes the uid and zoneid represented by this credential 1855 * for use at probe-time, in implicit predicates. These limit visibility 1856 * of the probes to users and/or zones which have sufficient privilege to 1857 * access them. 1858 * 1859 * The fifth argument is a DTrace provider operations vector, which provides 1860 * the implementation for the Framework-to-Provider API. (See Section 1, 1861 * above.) This must be non-NULL, and each member must be non-NULL. The 1862 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1863 * members (if the provider so desires, _one_ of these members may be left 1864 * NULL -- denoting that the provider only implements the other) and (2) 1865 * the dtps_suspend() and dtps_resume() members, which must either both be 1866 * NULL or both be non-NULL. 1867 * 1868 * The sixth argument is a cookie to be specified as the first argument for 1869 * each function in the Framework-to-Provider API. This argument may have 1870 * any value. 1871 * 1872 * The final argument is a pointer to dtrace_provider_id_t. If 1873 * dtrace_register() successfully completes, the provider identifier will be 1874 * stored in the memory pointed to be this argument. This argument must be 1875 * non-NULL. 1876 * 1877 * 2.2.3 Return value 1878 * 1879 * On success, dtrace_register() returns 0 and stores the new provider's 1880 * identifier into the memory pointed to by the idp argument. On failure, 1881 * dtrace_register() returns an errno: 1882 * 1883 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1884 * This may because a parameter that must be non-NULL was NULL, 1885 * because the name was invalid (either empty or an illegal 1886 * provider name) or because the attributes were invalid. 1887 * 1888 * No other failure code is returned. 1889 * 1890 * 2.2.4 Caller's context 1891 * 1892 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1893 * hold no locks across dtrace_register() that may also be acquired by 1894 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1895 * 1896 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1897 * 1898 * 2.3.1 Overview 1899 * 1900 * Unregisters the specified provider from the DTrace framework. It should 1901 * generally be called by DTrace providers in their detach(9E) entry point. 1902 * 1903 * 2.3.2 Arguments and Notes 1904 * 1905 * The only argument is the provider identifier, as returned from a 1906 * successful call to dtrace_register(). As a result of calling 1907 * dtrace_unregister(), the DTrace framework will call back into the provider 1908 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1909 * completes, however, the DTrace framework will no longer make calls through 1910 * the Framework-to-Provider API. 1911 * 1912 * 2.3.3 Return value 1913 * 1914 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1915 * returns an errno: 1916 * 1917 * EBUSY There are currently processes that have the DTrace pseudodevice 1918 * open, or there exists an anonymous enabling that hasn't yet 1919 * been claimed. 1920 * 1921 * No other failure code is returned. 1922 * 1923 * 2.3.4 Caller's context 1924 * 1925 * Because a call to dtrace_unregister() may induce calls through the 1926 * Framework-to-Provider API, the caller may not hold any lock across 1927 * dtrace_register() that is also acquired in any of the Framework-to- 1928 * Provider API functions. Additionally, mod_lock may not be held. 1929 * 1930 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1931 * 1932 * 2.4.1 Overview 1933 * 1934 * Invalidates the specified provider. All subsequent probe lookups for the 1935 * specified provider will fail, but its probes will not be removed. 1936 * 1937 * 2.4.2 Arguments and note 1938 * 1939 * The only argument is the provider identifier, as returned from a 1940 * successful call to dtrace_register(). In general, a provider's probes 1941 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1942 * an entire provider, regardless of whether or not probes are enabled or 1943 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1944 * probes from firing -- it will merely prevent any new enablings of the 1945 * provider's probes. 1946 * 1947 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1948 * 1949 * 2.5.1 Overview 1950 * 1951 * Removes all the unenabled probes for the given provider. This function is 1952 * not unlike dtrace_unregister(), except that it doesn't remove the 1953 * provider just as many of its associated probes as it can. 1954 * 1955 * 2.5.2 Arguments and Notes 1956 * 1957 * As with dtrace_unregister(), the sole argument is the provider identifier 1958 * as returned from a successful call to dtrace_register(). As a result of 1959 * calling dtrace_condense(), the DTrace framework will call back into the 1960 * given provider's dtps_destroy() entry point for each of the provider's 1961 * unenabled probes. 1962 * 1963 * 2.5.3 Return value 1964 * 1965 * Currently, dtrace_condense() always returns 0. However, consumers of this 1966 * function should check the return value as appropriate; its behavior may 1967 * change in the future. 1968 * 1969 * 2.5.4 Caller's context 1970 * 1971 * As with dtrace_unregister(), the caller may not hold any lock across 1972 * dtrace_condense() that is also acquired in the provider's entry points. 1973 * Also, mod_lock may not be held. 1974 * 1975 * 2.6 int dtrace_attached() 1976 * 1977 * 2.6.1 Overview 1978 * 1979 * Indicates whether or not DTrace has attached. 1980 * 1981 * 2.6.2 Arguments and Notes 1982 * 1983 * For most providers, DTrace makes initial contact beyond registration. 1984 * That is, once a provider has registered with DTrace, it waits to hear 1985 * from DTrace to create probes. However, some providers may wish to 1986 * proactively create probes without first being told by DTrace to do so. 1987 * If providers wish to do this, they must first call dtrace_attached() to 1988 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1989 * the provider must not make any other Provider-to-Framework API call. 1990 * 1991 * 2.6.3 Return value 1992 * 1993 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1994 * 1995 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1996 * const char *func, const char *name, int aframes, void *arg) 1997 * 1998 * 2.7.1 Overview 1999 * 2000 * Creates a probe with specified module name, function name, and name. 2001 * 2002 * 2.7.2 Arguments and Notes 2003 * 2004 * The first argument is the provider identifier, as returned from a 2005 * successful call to dtrace_register(). The second, third, and fourth 2006 * arguments are the module name, function name, and probe name, 2007 * respectively. Of these, module name and function name may both be NULL 2008 * (in which case the probe is considered to be unanchored), or they may both 2009 * be non-NULL. The name must be non-NULL, and must point to a non-empty 2010 * string. 2011 * 2012 * The fifth argument is the number of artificial stack frames that will be 2013 * found on the stack when dtrace_probe() is called for the new probe. These 2014 * artificial frames will be automatically be pruned should the stack() or 2015 * stackdepth() functions be called as part of one of the probe's ECBs. If 2016 * the parameter doesn't add an artificial frame, this parameter should be 2017 * zero. 2018 * 2019 * The final argument is a probe argument that will be passed back to the 2020 * provider when a probe-specific operation is called. (e.g., via 2021 * dtps_enable(), dtps_disable(), etc.) 2022 * 2023 * Note that it is up to the provider to be sure that the probe that it 2024 * creates does not already exist -- if the provider is unsure of the probe's 2025 * existence, it should assure its absence with dtrace_probe_lookup() before 2026 * calling dtrace_probe_create(). 2027 * 2028 * 2.7.3 Return value 2029 * 2030 * dtrace_probe_create() always succeeds, and always returns the identifier 2031 * of the newly-created probe. 2032 * 2033 * 2.7.4 Caller's context 2034 * 2035 * While dtrace_probe_create() is generally expected to be called from 2036 * dtps_provide() and/or dtps_provide_module(), it may be called from other 2037 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2038 * 2039 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 2040 * const char *func, const char *name) 2041 * 2042 * 2.8.1 Overview 2043 * 2044 * Looks up a probe based on provdider and one or more of module name, 2045 * function name and probe name. 2046 * 2047 * 2.8.2 Arguments and Notes 2048 * 2049 * The first argument is the provider identifier, as returned from a 2050 * successful call to dtrace_register(). The second, third, and fourth 2051 * arguments are the module name, function name, and probe name, 2052 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 2053 * the identifier of the first probe that is provided by the specified 2054 * provider and matches all of the non-NULL matching criteria. 2055 * dtrace_probe_lookup() is generally used by a provider to be check the 2056 * existence of a probe before creating it with dtrace_probe_create(). 2057 * 2058 * 2.8.3 Return value 2059 * 2060 * If the probe exists, returns its identifier. If the probe does not exist, 2061 * return DTRACE_IDNONE. 2062 * 2063 * 2.8.4 Caller's context 2064 * 2065 * While dtrace_probe_lookup() is generally expected to be called from 2066 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2067 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2068 * 2069 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 2070 * 2071 * 2.9.1 Overview 2072 * 2073 * Returns the probe argument associated with the specified probe. 2074 * 2075 * 2.9.2 Arguments and Notes 2076 * 2077 * The first argument is the provider identifier, as returned from a 2078 * successful call to dtrace_register(). The second argument is a probe 2079 * identifier, as returned from dtrace_probe_lookup() or 2080 * dtrace_probe_create(). This is useful if a probe has multiple 2081 * provider-specific components to it: the provider can create the probe 2082 * once with provider-specific state, and then add to the state by looking 2083 * up the probe based on probe identifier. 2084 * 2085 * 2.9.3 Return value 2086 * 2087 * Returns the argument associated with the specified probe. If the 2088 * specified probe does not exist, or if the specified probe is not provided 2089 * by the specified provider, NULL is returned. 2090 * 2091 * 2.9.4 Caller's context 2092 * 2093 * While dtrace_probe_arg() is generally expected to be called from 2094 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2095 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2096 * 2097 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 2098 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 2099 * 2100 * 2.10.1 Overview 2101 * 2102 * The epicenter of DTrace: fires the specified probes with the specified 2103 * arguments. 2104 * 2105 * 2.10.2 Arguments and Notes 2106 * 2107 * The first argument is a probe identifier as returned by 2108 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 2109 * arguments are the values to which the D variables "arg0" through "arg4" 2110 * will be mapped. 2111 * 2112 * dtrace_probe() should be called whenever the specified probe has fired -- 2113 * however the provider defines it. 2114 * 2115 * 2.10.3 Return value 2116 * 2117 * None. 2118 * 2119 * 2.10.4 Caller's context 2120 * 2121 * dtrace_probe() may be called in virtually any context: kernel, user, 2122 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 2123 * dispatcher locks held, with interrupts disabled, etc. The only latitude 2124 * that must be afforded to DTrace is the ability to make calls within 2125 * itself (and to its in-kernel subroutines) and the ability to access 2126 * arbitrary (but mapped) memory. On some platforms, this constrains 2127 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 2128 * from any context in which TL is greater than zero. dtrace_probe() may 2129 * also not be called from any routine which may be called by dtrace_probe() 2130 * -- which includes functions in the DTrace framework and some in-kernel 2131 * DTrace subroutines. All such functions "dtrace_"; providers that 2132 * instrument the kernel arbitrarily should be sure to not instrument these 2133 * routines. 2134 */ 2135 typedef struct dtrace_pops { 2136 void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec); 2137 void (*dtps_provide_module)(void *arg, modctl_t *mp); 2138 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2139 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2140 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2141 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2142 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2143 dtrace_argdesc_t *desc); 2144 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2145 int argno, int aframes); 2146 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 2147 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2148 } dtrace_pops_t; 2149 2150 #define DTRACE_MODE_KERNEL 0x01 2151 #define DTRACE_MODE_USER 0x02 2152 #define DTRACE_MODE_NOPRIV_DROP 0x10 2153 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 2154 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 2155 2156 typedef uintptr_t dtrace_provider_id_t; 2157 2158 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2159 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2160 extern int dtrace_unregister(dtrace_provider_id_t); 2161 extern int dtrace_condense(dtrace_provider_id_t); 2162 extern void dtrace_invalidate(dtrace_provider_id_t); 2163 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *, 2164 char *, char *); 2165 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2166 const char *, const char *, int, void *); 2167 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2168 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2169 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2170 2171 /* 2172 * DTrace Meta Provider API 2173 * 2174 * The following functions are implemented by the DTrace framework and are 2175 * used to implement meta providers. Meta providers plug into the DTrace 2176 * framework and are used to instantiate new providers on the fly. At 2177 * present, there is only one type of meta provider and only one meta 2178 * provider may be registered with the DTrace framework at a time. The 2179 * sole meta provider type provides user-land static tracing facilities 2180 * by taking meta probe descriptions and adding a corresponding provider 2181 * into the DTrace framework. 2182 * 2183 * 1 Framework-to-Provider 2184 * 2185 * 1.1 Overview 2186 * 2187 * The Framework-to-Provider API is represented by the dtrace_mops structure 2188 * that the meta provider passes to the framework when registering itself as 2189 * a meta provider. This structure consists of the following members: 2190 * 2191 * dtms_create_probe() <-- Add a new probe to a created provider 2192 * dtms_provide_pid() <-- Create a new provider for a given process 2193 * dtms_remove_pid() <-- Remove a previously created provider 2194 * 2195 * 1.2 void dtms_create_probe(void *arg, void *parg, 2196 * dtrace_helper_probedesc_t *probedesc); 2197 * 2198 * 1.2.1 Overview 2199 * 2200 * Called by the DTrace framework to create a new probe in a provider 2201 * created by this meta provider. 2202 * 2203 * 1.2.2 Arguments and notes 2204 * 2205 * The first argument is the cookie as passed to dtrace_meta_register(). 2206 * The second argument is the provider cookie for the associated provider; 2207 * this is obtained from the return value of dtms_provide_pid(). The third 2208 * argument is the helper probe description. 2209 * 2210 * 1.2.3 Return value 2211 * 2212 * None 2213 * 2214 * 1.2.4 Caller's context 2215 * 2216 * dtms_create_probe() is called from either ioctl() or module load context 2217 * in the context of a newly-created provider (that is, a provider that 2218 * is a result of a call to dtms_provide_pid()). The DTrace framework is 2219 * locked in such a way that meta providers may not register or unregister, 2220 * such that no other thread can call into a meta provider operation and that 2221 * atomicity is assured with respect to meta provider operations across 2222 * dtms_provide_pid() and subsequent calls to dtms_create_probe(). 2223 * The context is thus effectively single-threaded with respect to the meta 2224 * provider, and that the meta provider cannot call dtrace_meta_register() 2225 * or dtrace_meta_unregister(). However, the context is such that the 2226 * provider may (and is expected to) call provider-related DTrace provider 2227 * APIs including dtrace_probe_create(). 2228 * 2229 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2230 * pid_t pid) 2231 * 2232 * 1.3.1 Overview 2233 * 2234 * Called by the DTrace framework to instantiate a new provider given the 2235 * description of the provider and probes in the mprov argument. The 2236 * meta provider should call dtrace_register() to insert the new provider 2237 * into the DTrace framework. 2238 * 2239 * 1.3.2 Arguments and notes 2240 * 2241 * The first argument is the cookie as passed to dtrace_meta_register(). 2242 * The second argument is a pointer to a structure describing the new 2243 * helper provider. The third argument is the process identifier for 2244 * process associated with this new provider. Note that the name of the 2245 * provider as passed to dtrace_register() should be the contatenation of 2246 * the dtmpb_provname member of the mprov argument and the processs 2247 * identifier as a string. 2248 * 2249 * 1.3.3 Return value 2250 * 2251 * The cookie for the provider that the meta provider creates. This is 2252 * the same value that it passed to dtrace_register(). 2253 * 2254 * 1.3.4 Caller's context 2255 * 2256 * dtms_provide_pid() is called from either ioctl() or module load context. 2257 * The DTrace framework is locked in such a way that meta providers may not 2258 * register or unregister. This means that the meta provider cannot call 2259 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2260 * is such that the provider may -- and is expected to -- call 2261 * provider-related DTrace provider APIs including dtrace_register(). 2262 * 2263 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2264 * pid_t pid) 2265 * 2266 * 1.4.1 Overview 2267 * 2268 * Called by the DTrace framework to remove a provider that had previously 2269 * been instantiated via the dtms_provide_pid() entry point. The meta 2270 * provider need not remove the provider immediately, but this entry 2271 * point indicates that the provider should be removed as soon as possible 2272 * using the dtrace_unregister() API. 2273 * 2274 * 1.4.2 Arguments and notes 2275 * 2276 * The first argument is the cookie as passed to dtrace_meta_register(). 2277 * The second argument is a pointer to a structure describing the helper 2278 * provider. The third argument is the process identifier for process 2279 * associated with this new provider. 2280 * 2281 * 1.4.3 Return value 2282 * 2283 * None 2284 * 2285 * 1.4.4 Caller's context 2286 * 2287 * dtms_remove_pid() is called from either ioctl() or exit() context. 2288 * The DTrace framework is locked in such a way that meta providers may not 2289 * register or unregister. This means that the meta provider cannot call 2290 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2291 * is such that the provider may -- and is expected to -- call 2292 * provider-related DTrace provider APIs including dtrace_unregister(). 2293 */ 2294 typedef struct dtrace_helper_probedesc { 2295 char *dthpb_mod; /* probe module */ 2296 char *dthpb_func; /* probe function */ 2297 char *dthpb_name; /* probe name */ 2298 uint64_t dthpb_base; /* base address */ 2299 uint32_t *dthpb_offs; /* offsets array */ 2300 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2301 uint32_t dthpb_noffs; /* offsets count */ 2302 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2303 uint8_t *dthpb_args; /* argument mapping array */ 2304 uint8_t dthpb_xargc; /* translated argument count */ 2305 uint8_t dthpb_nargc; /* native argument count */ 2306 char *dthpb_xtypes; /* translated types strings */ 2307 char *dthpb_ntypes; /* native types strings */ 2308 } dtrace_helper_probedesc_t; 2309 2310 typedef struct dtrace_helper_provdesc { 2311 char *dthpv_provname; /* provider name */ 2312 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2313 } dtrace_helper_provdesc_t; 2314 2315 typedef struct dtrace_mops { 2316 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2317 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2318 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2319 } dtrace_mops_t; 2320 2321 typedef uintptr_t dtrace_meta_provider_id_t; 2322 2323 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2324 dtrace_meta_provider_id_t *); 2325 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2326 2327 /* 2328 * DTrace Kernel Hooks 2329 * 2330 * The following functions are implemented by the base kernel and form a set of 2331 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2332 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2333 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2334 */ 2335 2336 typedef enum dtrace_vtime_state { 2337 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2338 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2339 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2340 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2341 } dtrace_vtime_state_t; 2342 2343 #ifdef illumos 2344 extern dtrace_vtime_state_t dtrace_vtime_active; 2345 #endif 2346 extern void dtrace_vtime_switch(kthread_t *next); 2347 extern void dtrace_vtime_enable_tnf(void); 2348 extern void dtrace_vtime_disable_tnf(void); 2349 extern void dtrace_vtime_enable(void); 2350 extern void dtrace_vtime_disable(void); 2351 2352 struct regs; 2353 struct reg; 2354 2355 #ifdef illumos 2356 extern int (*dtrace_pid_probe_ptr)(struct reg *); 2357 extern int (*dtrace_return_probe_ptr)(struct reg *); 2358 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2359 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2360 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2361 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2362 #endif 2363 2364 typedef uintptr_t dtrace_icookie_t; 2365 typedef void (*dtrace_xcall_t)(void *); 2366 2367 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2368 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2369 2370 extern void dtrace_membar_producer(void); 2371 extern void dtrace_membar_consumer(void); 2372 2373 extern void (*dtrace_cpu_init)(processorid_t); 2374 #ifdef illumos 2375 extern void (*dtrace_modload)(modctl_t *); 2376 extern void (*dtrace_modunload)(modctl_t *); 2377 #endif 2378 extern void (*dtrace_helpers_cleanup)(void); 2379 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2380 extern void (*dtrace_cpustart_init)(void); 2381 extern void (*dtrace_cpustart_fini)(void); 2382 extern void (*dtrace_closef)(void); 2383 2384 extern void (*dtrace_debugger_init)(void); 2385 extern void (*dtrace_debugger_fini)(void); 2386 extern dtrace_cacheid_t dtrace_predcache_id; 2387 2388 #ifdef illumos 2389 extern hrtime_t dtrace_gethrtime(void); 2390 #else 2391 void dtrace_debug_printf(const char *, ...) __printflike(1, 2); 2392 #endif 2393 extern void dtrace_sync(void); 2394 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2395 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2396 extern void dtrace_vpanic(const char *, __va_list); 2397 extern void dtrace_panic(const char *, ...); 2398 2399 extern int dtrace_safe_defer_signal(void); 2400 extern void dtrace_safe_synchronous_signal(void); 2401 2402 extern int dtrace_mach_aframes(void); 2403 2404 #if defined(__i386) || defined(__amd64) 2405 extern int dtrace_instr_size_isa(uint8_t *, model_t, int *); 2406 #ifdef __i386 2407 extern void dtrace_invop_callsite(void); 2408 #endif 2409 #endif 2410 extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t)); 2411 extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *, 2412 uintptr_t)); 2413 2414 #ifdef __sparc 2415 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2416 extern void dtrace_getfsr(uint64_t *); 2417 #endif 2418 2419 #ifndef illumos 2420 extern void dtrace_helpers_duplicate(proc_t *, proc_t *); 2421 extern void dtrace_helpers_destroy(proc_t *); 2422 #endif 2423 2424 #define DTRACE_CPUFLAG_ISSET(flag) \ 2425 (cpu_core[curcpu].cpuc_dtrace_flags & (flag)) 2426 2427 #define DTRACE_CPUFLAG_SET(flag) do { \ 2428 __compiler_membar(); \ 2429 cpu_core[curcpu].cpuc_dtrace_flags |= (flag); \ 2430 __compiler_membar(); \ 2431 } while (0) 2432 2433 #define DTRACE_CPUFLAG_CLEAR(flag) do { \ 2434 __compiler_membar(); \ 2435 cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag); \ 2436 __compiler_membar(); \ 2437 } while (0) 2438 2439 #endif /* _KERNEL */ 2440 2441 extern int dtrace_instr_size(uint8_t *instr); 2442 2443 #if defined(__i386) || defined(__amd64) 2444 extern int dtrace_dis_get_byte(void *p); 2445 #endif 2446 2447 #if defined(__riscv) 2448 extern int dtrace_match_opcode(uint32_t insn, int match, int mask); 2449 extern int dtrace_instr_sdsp(uint32_t **instr); 2450 extern int dtrace_instr_ret(uint32_t **instr); 2451 extern int dtrace_instr_c_sdsp(uint32_t **instr); 2452 extern int dtrace_instr_c_ret(uint32_t **instr); 2453 #endif 2454 2455 #endif /* _ASM */ 2456 2457 #if defined(__i386) || defined(__amd64) 2458 2459 #define DTRACE_INVOP_PUSHL_EBP 1 2460 #define DTRACE_INVOP_PUSHQ_RBP DTRACE_INVOP_PUSHL_EBP 2461 #define DTRACE_INVOP_POPL_EBP 2 2462 #define DTRACE_INVOP_POPQ_RBP DTRACE_INVOP_POPL_EBP 2463 #define DTRACE_INVOP_LEAVE 3 2464 #define DTRACE_INVOP_NOP 4 2465 #define DTRACE_INVOP_RET 5 2466 2467 #if defined(__amd64) 2468 #define DTRACE_INVOP_CALL 6 2469 #endif 2470 2471 #elif defined(__powerpc__) 2472 2473 #define DTRACE_INVOP_BCTR 1 2474 #define DTRACE_INVOP_BLR 2 2475 #define DTRACE_INVOP_JUMP 3 2476 #define DTRACE_INVOP_MFLR_R0 4 2477 #define DTRACE_INVOP_NOP 5 2478 2479 #elif defined(__arm__) 2480 2481 #define DTRACE_INVOP_SHIFT 4 2482 #define DTRACE_INVOP_MASK ((1 << DTRACE_INVOP_SHIFT) - 1) 2483 #define DTRACE_INVOP_DATA(x) ((x) >> DTRACE_INVOP_SHIFT) 2484 2485 #define DTRACE_INVOP_PUSHM 1 2486 #define DTRACE_INVOP_POPM 2 2487 #define DTRACE_INVOP_B 3 2488 2489 #elif defined(__aarch64__) 2490 2491 #define INSN_SIZE 4 2492 2493 #define BRK_INSTR 0xd4200000 2494 #define BRK_IMM16_SHIFT 5 2495 #define BRK_IMM16_VAL (0x40d << BRK_IMM16_SHIFT) 2496 2497 #define B_MASK 0xff000000 2498 #define B_DATA_MASK 0x00ffffff 2499 #define B_INSTR 0x14000000 2500 2501 #define BTI_MASK 0xffffff3f 2502 #define BTI_INSTR 0xd503241f 2503 2504 #define NOP_INSTR 0xd503201f 2505 2506 #define RET_INSTR 0xd65f03c0 2507 2508 #define SUB_MASK 0xffc00000 2509 #define SUB_INSTR 0xd1000000 2510 #define SUB_RD_SHIFT 0 2511 #define SUB_RN_SHIFT 5 2512 #define SUB_R_MASK 0x1f 2513 #define SUB_IMM_SHIFT 10 2514 #define SUB_IMM_MASK 0xfff 2515 2516 #define LDP_STP_MASK 0xffc00000 2517 #define STP_32 0x29800000 2518 #define STP_64 0xa9800000 2519 #define LDP_32 0x28c00000 2520 #define LDP_64 0xa8c00000 2521 #define LDP_STP_PREIND (1 << 24) 2522 #define LDP_STP_DIR (1 << 22) /* Load instruction */ 2523 #define ARG1_SHIFT 0 2524 #define ARG1_MASK 0x1f 2525 #define ARG2_SHIFT 10 2526 #define ARG2_MASK 0x1f 2527 #define ADDR_SHIFT 5 2528 #define ADDR_MASK 0x1f 2529 #define OFFSET_SHIFT 15 2530 #define OFFSET_SIZE 7 2531 #define OFFSET_MASK ((1 << OFFSET_SIZE) - 1) 2532 2533 #define DTRACE_PATCHVAL (BRK_INSTR | BRK_IMM16_VAL) 2534 2535 #define DTRACE_INVOP_STP 1 2536 #define DTRACE_INVOP_RET 2 2537 #define DTRACE_INVOP_B 3 2538 #define DTRACE_INVOP_SUB 4 2539 2540 #elif defined(__mips__) 2541 2542 #define INSN_SIZE 4 2543 2544 /* Load/Store double RA to/from SP */ 2545 #define LDSD_RA_SP_MASK 0xffff0000 2546 #define LDSD_DATA_MASK 0x0000ffff 2547 #define SD_RA_SP 0xffbf0000 2548 #define LD_RA_SP 0xdfbf0000 2549 2550 #define DTRACE_INVOP_SD 1 2551 #define DTRACE_INVOP_LD 2 2552 2553 #elif defined(__riscv) 2554 2555 #define DTRACE_INVOP_SD 1 2556 #define DTRACE_INVOP_C_SDSP 2 2557 #define DTRACE_INVOP_RET 3 2558 #define DTRACE_INVOP_C_RET 4 2559 #define DTRACE_INVOP_NOP 5 2560 2561 #endif 2562 2563 #ifdef __cplusplus 2564 } 2565 #endif 2566 2567 #endif /* _SYS_DTRACE_H */ 2568