1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 29 * Copyright (c) 2013 by Delphix. All rights reserved. 30 */ 31 32 #ifndef _SYS_DTRACE_H 33 #define _SYS_DTRACE_H 34 35 #ifdef __cplusplus 36 extern "C" { 37 #endif 38 39 /* 40 * DTrace Dynamic Tracing Software: Kernel Interfaces 41 * 42 * Note: The contents of this file are private to the implementation of the 43 * Solaris system and DTrace subsystem and are subject to change at any time 44 * without notice. Applications and drivers using these interfaces will fail 45 * to run on future releases. These interfaces should not be used for any 46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB). 47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information. 48 */ 49 50 #ifndef _ASM 51 52 #include <sys/param.h> 53 #include <sys/stdint.h> 54 #ifdef _KERNEL 55 #include <sys/endian.h> 56 #endif 57 #if !defined(IN_BASE) && !defined(_KERNEL) 58 /* Compatibility types to allow including the CTF API */ 59 typedef unsigned int zoneid_t; 60 typedef unsigned char uchar_t; 61 typedef unsigned short ushort_t; 62 typedef unsigned int uint_t; 63 typedef unsigned long ulong_t; 64 typedef int processorid_t; 65 #else 66 #include <sys/modctl.h> 67 #include <sys/processor.h> 68 #include <sys/cpuvar.h> 69 #include <sys/param.h> 70 #include <sys/linker.h> 71 #include <sys/ioccom.h> 72 #include <sys/cred.h> 73 #include <sys/proc.h> 74 #include <sys/types.h> 75 #include <sys/ucred.h> 76 #endif 77 typedef int model_t; 78 #include <sys/ctf_api.h> 79 80 /* 81 * DTrace Universal Constants and Typedefs 82 */ 83 #define DTRACE_CPUALL -1 /* all CPUs */ 84 #define DTRACE_IDNONE 0 /* invalid probe identifier */ 85 #define DTRACE_EPIDNONE 0 /* invalid enabled probe identifier */ 86 #define DTRACE_AGGIDNONE 0 /* invalid aggregation identifier */ 87 #define DTRACE_AGGVARIDNONE 0 /* invalid aggregation variable ID */ 88 #define DTRACE_CACHEIDNONE 0 /* invalid predicate cache */ 89 #define DTRACE_PROVNONE 0 /* invalid provider identifier */ 90 #define DTRACE_METAPROVNONE 0 /* invalid meta-provider identifier */ 91 #define DTRACE_ARGNONE -1 /* invalid argument index */ 92 93 #define DTRACE_PROVNAMELEN 64 94 #define DTRACE_MODNAMELEN 64 95 #define DTRACE_FUNCNAMELEN 192 96 #define DTRACE_NAMELEN 64 97 #define DTRACE_FULLNAMELEN (DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \ 98 DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4) 99 #define DTRACE_ARGTYPELEN 128 100 101 typedef uint32_t dtrace_id_t; /* probe identifier */ 102 typedef uint32_t dtrace_epid_t; /* enabled probe identifier */ 103 typedef uint32_t dtrace_aggid_t; /* aggregation identifier */ 104 typedef int64_t dtrace_aggvarid_t; /* aggregation variable identifier */ 105 typedef uint16_t dtrace_actkind_t; /* action kind */ 106 typedef int64_t dtrace_optval_t; /* option value */ 107 typedef uint32_t dtrace_cacheid_t; /* predicate cache identifier */ 108 109 typedef enum dtrace_probespec { 110 DTRACE_PROBESPEC_NONE = -1, 111 DTRACE_PROBESPEC_PROVIDER = 0, 112 DTRACE_PROBESPEC_MOD, 113 DTRACE_PROBESPEC_FUNC, 114 DTRACE_PROBESPEC_NAME 115 } dtrace_probespec_t; 116 117 /* 118 * DTrace Intermediate Format (DIF) 119 * 120 * The following definitions describe the DTrace Intermediate Format (DIF), a 121 * a RISC-like instruction set and program encoding used to represent 122 * predicates and actions that can be bound to DTrace probes. The constants 123 * below defining the number of available registers are suggested minimums; the 124 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of 125 * registers provided by the current DTrace implementation. 126 */ 127 #define DIF_VERSION_1 1 /* DIF version 1: Solaris 10 Beta */ 128 #define DIF_VERSION_2 2 /* DIF version 2: Solaris 10 FCS */ 129 #define DIF_VERSION DIF_VERSION_2 /* latest DIF instruction set version */ 130 #define DIF_DIR_NREGS 8 /* number of DIF integer registers */ 131 #define DIF_DTR_NREGS 8 /* number of DIF tuple registers */ 132 133 #define DIF_OP_OR 1 /* or r1, r2, rd */ 134 #define DIF_OP_XOR 2 /* xor r1, r2, rd */ 135 #define DIF_OP_AND 3 /* and r1, r2, rd */ 136 #define DIF_OP_SLL 4 /* sll r1, r2, rd */ 137 #define DIF_OP_SRL 5 /* srl r1, r2, rd */ 138 #define DIF_OP_SUB 6 /* sub r1, r2, rd */ 139 #define DIF_OP_ADD 7 /* add r1, r2, rd */ 140 #define DIF_OP_MUL 8 /* mul r1, r2, rd */ 141 #define DIF_OP_SDIV 9 /* sdiv r1, r2, rd */ 142 #define DIF_OP_UDIV 10 /* udiv r1, r2, rd */ 143 #define DIF_OP_SREM 11 /* srem r1, r2, rd */ 144 #define DIF_OP_UREM 12 /* urem r1, r2, rd */ 145 #define DIF_OP_NOT 13 /* not r1, rd */ 146 #define DIF_OP_MOV 14 /* mov r1, rd */ 147 #define DIF_OP_CMP 15 /* cmp r1, r2 */ 148 #define DIF_OP_TST 16 /* tst r1 */ 149 #define DIF_OP_BA 17 /* ba label */ 150 #define DIF_OP_BE 18 /* be label */ 151 #define DIF_OP_BNE 19 /* bne label */ 152 #define DIF_OP_BG 20 /* bg label */ 153 #define DIF_OP_BGU 21 /* bgu label */ 154 #define DIF_OP_BGE 22 /* bge label */ 155 #define DIF_OP_BGEU 23 /* bgeu label */ 156 #define DIF_OP_BL 24 /* bl label */ 157 #define DIF_OP_BLU 25 /* blu label */ 158 #define DIF_OP_BLE 26 /* ble label */ 159 #define DIF_OP_BLEU 27 /* bleu label */ 160 #define DIF_OP_LDSB 28 /* ldsb [r1], rd */ 161 #define DIF_OP_LDSH 29 /* ldsh [r1], rd */ 162 #define DIF_OP_LDSW 30 /* ldsw [r1], rd */ 163 #define DIF_OP_LDUB 31 /* ldub [r1], rd */ 164 #define DIF_OP_LDUH 32 /* lduh [r1], rd */ 165 #define DIF_OP_LDUW 33 /* lduw [r1], rd */ 166 #define DIF_OP_LDX 34 /* ldx [r1], rd */ 167 #define DIF_OP_RET 35 /* ret rd */ 168 #define DIF_OP_NOP 36 /* nop */ 169 #define DIF_OP_SETX 37 /* setx intindex, rd */ 170 #define DIF_OP_SETS 38 /* sets strindex, rd */ 171 #define DIF_OP_SCMP 39 /* scmp r1, r2 */ 172 #define DIF_OP_LDGA 40 /* ldga var, ri, rd */ 173 #define DIF_OP_LDGS 41 /* ldgs var, rd */ 174 #define DIF_OP_STGS 42 /* stgs var, rs */ 175 #define DIF_OP_LDTA 43 /* ldta var, ri, rd */ 176 #define DIF_OP_LDTS 44 /* ldts var, rd */ 177 #define DIF_OP_STTS 45 /* stts var, rs */ 178 #define DIF_OP_SRA 46 /* sra r1, r2, rd */ 179 #define DIF_OP_CALL 47 /* call subr, rd */ 180 #define DIF_OP_PUSHTR 48 /* pushtr type, rs, rr */ 181 #define DIF_OP_PUSHTV 49 /* pushtv type, rs, rv */ 182 #define DIF_OP_POPTS 50 /* popts */ 183 #define DIF_OP_FLUSHTS 51 /* flushts */ 184 #define DIF_OP_LDGAA 52 /* ldgaa var, rd */ 185 #define DIF_OP_LDTAA 53 /* ldtaa var, rd */ 186 #define DIF_OP_STGAA 54 /* stgaa var, rs */ 187 #define DIF_OP_STTAA 55 /* sttaa var, rs */ 188 #define DIF_OP_LDLS 56 /* ldls var, rd */ 189 #define DIF_OP_STLS 57 /* stls var, rs */ 190 #define DIF_OP_ALLOCS 58 /* allocs r1, rd */ 191 #define DIF_OP_COPYS 59 /* copys r1, r2, rd */ 192 #define DIF_OP_STB 60 /* stb r1, [rd] */ 193 #define DIF_OP_STH 61 /* sth r1, [rd] */ 194 #define DIF_OP_STW 62 /* stw r1, [rd] */ 195 #define DIF_OP_STX 63 /* stx r1, [rd] */ 196 #define DIF_OP_ULDSB 64 /* uldsb [r1], rd */ 197 #define DIF_OP_ULDSH 65 /* uldsh [r1], rd */ 198 #define DIF_OP_ULDSW 66 /* uldsw [r1], rd */ 199 #define DIF_OP_ULDUB 67 /* uldub [r1], rd */ 200 #define DIF_OP_ULDUH 68 /* ulduh [r1], rd */ 201 #define DIF_OP_ULDUW 69 /* ulduw [r1], rd */ 202 #define DIF_OP_ULDX 70 /* uldx [r1], rd */ 203 #define DIF_OP_RLDSB 71 /* rldsb [r1], rd */ 204 #define DIF_OP_RLDSH 72 /* rldsh [r1], rd */ 205 #define DIF_OP_RLDSW 73 /* rldsw [r1], rd */ 206 #define DIF_OP_RLDUB 74 /* rldub [r1], rd */ 207 #define DIF_OP_RLDUH 75 /* rlduh [r1], rd */ 208 #define DIF_OP_RLDUW 76 /* rlduw [r1], rd */ 209 #define DIF_OP_RLDX 77 /* rldx [r1], rd */ 210 #define DIF_OP_XLATE 78 /* xlate xlrindex, rd */ 211 #define DIF_OP_XLARG 79 /* xlarg xlrindex, rd */ 212 213 #define DIF_INTOFF_MAX 0xffff /* highest integer table offset */ 214 #define DIF_STROFF_MAX 0xffff /* highest string table offset */ 215 #define DIF_REGISTER_MAX 0xff /* highest register number */ 216 #define DIF_VARIABLE_MAX 0xffff /* highest variable identifier */ 217 #define DIF_SUBROUTINE_MAX 0xffff /* highest subroutine code */ 218 219 #define DIF_VAR_ARRAY_MIN 0x0000 /* lowest numbered array variable */ 220 #define DIF_VAR_ARRAY_UBASE 0x0080 /* lowest user-defined array */ 221 #define DIF_VAR_ARRAY_MAX 0x00ff /* highest numbered array variable */ 222 223 #define DIF_VAR_OTHER_MIN 0x0100 /* lowest numbered scalar or assc */ 224 #define DIF_VAR_OTHER_UBASE 0x0500 /* lowest user-defined scalar or assc */ 225 #define DIF_VAR_OTHER_MAX 0xffff /* highest numbered scalar or assc */ 226 227 #define DIF_VAR_ARGS 0x0000 /* arguments array */ 228 #define DIF_VAR_REGS 0x0001 /* registers array */ 229 #define DIF_VAR_UREGS 0x0002 /* user registers array */ 230 #define DIF_VAR_CURTHREAD 0x0100 /* thread pointer */ 231 #define DIF_VAR_TIMESTAMP 0x0101 /* timestamp */ 232 #define DIF_VAR_VTIMESTAMP 0x0102 /* virtual timestamp */ 233 #define DIF_VAR_IPL 0x0103 /* interrupt priority level */ 234 #define DIF_VAR_EPID 0x0104 /* enabled probe ID */ 235 #define DIF_VAR_ID 0x0105 /* probe ID */ 236 #define DIF_VAR_ARG0 0x0106 /* first argument */ 237 #define DIF_VAR_ARG1 0x0107 /* second argument */ 238 #define DIF_VAR_ARG2 0x0108 /* third argument */ 239 #define DIF_VAR_ARG3 0x0109 /* fourth argument */ 240 #define DIF_VAR_ARG4 0x010a /* fifth argument */ 241 #define DIF_VAR_ARG5 0x010b /* sixth argument */ 242 #define DIF_VAR_ARG6 0x010c /* seventh argument */ 243 #define DIF_VAR_ARG7 0x010d /* eighth argument */ 244 #define DIF_VAR_ARG8 0x010e /* ninth argument */ 245 #define DIF_VAR_ARG9 0x010f /* tenth argument */ 246 #define DIF_VAR_STACKDEPTH 0x0110 /* stack depth */ 247 #define DIF_VAR_CALLER 0x0111 /* caller */ 248 #define DIF_VAR_PROBEPROV 0x0112 /* probe provider */ 249 #define DIF_VAR_PROBEMOD 0x0113 /* probe module */ 250 #define DIF_VAR_PROBEFUNC 0x0114 /* probe function */ 251 #define DIF_VAR_PROBENAME 0x0115 /* probe name */ 252 #define DIF_VAR_PID 0x0116 /* process ID */ 253 #define DIF_VAR_TID 0x0117 /* (per-process) thread ID */ 254 #define DIF_VAR_EXECNAME 0x0118 /* name of executable */ 255 #define DIF_VAR_ZONENAME 0x0119 /* zone name associated with process */ 256 #define DIF_VAR_WALLTIMESTAMP 0x011a /* wall-clock timestamp */ 257 #define DIF_VAR_USTACKDEPTH 0x011b /* user-land stack depth */ 258 #define DIF_VAR_UCALLER 0x011c /* user-level caller */ 259 #define DIF_VAR_PPID 0x011d /* parent process ID */ 260 #define DIF_VAR_UID 0x011e /* process user ID */ 261 #define DIF_VAR_GID 0x011f /* process group ID */ 262 #define DIF_VAR_ERRNO 0x0120 /* thread errno */ 263 #define DIF_VAR_EXECARGS 0x0121 /* process arguments */ 264 #define DIF_VAR_JID 0x0122 /* process jail id */ 265 #define DIF_VAR_JAILNAME 0x0123 /* process jail name */ 266 267 #ifndef illumos 268 #define DIF_VAR_CPU 0x0200 269 #endif 270 271 #define DIF_SUBR_RAND 0 272 #define DIF_SUBR_MUTEX_OWNED 1 273 #define DIF_SUBR_MUTEX_OWNER 2 274 #define DIF_SUBR_MUTEX_TYPE_ADAPTIVE 3 275 #define DIF_SUBR_MUTEX_TYPE_SPIN 4 276 #define DIF_SUBR_RW_READ_HELD 5 277 #define DIF_SUBR_RW_WRITE_HELD 6 278 #define DIF_SUBR_RW_ISWRITER 7 279 #define DIF_SUBR_COPYIN 8 280 #define DIF_SUBR_COPYINSTR 9 281 #define DIF_SUBR_SPECULATION 10 282 #define DIF_SUBR_PROGENYOF 11 283 #define DIF_SUBR_STRLEN 12 284 #define DIF_SUBR_COPYOUT 13 285 #define DIF_SUBR_COPYOUTSTR 14 286 #define DIF_SUBR_ALLOCA 15 287 #define DIF_SUBR_BCOPY 16 288 #define DIF_SUBR_COPYINTO 17 289 #define DIF_SUBR_MSGDSIZE 18 290 #define DIF_SUBR_MSGSIZE 19 291 #define DIF_SUBR_GETMAJOR 20 292 #define DIF_SUBR_GETMINOR 21 293 #define DIF_SUBR_DDI_PATHNAME 22 294 #define DIF_SUBR_STRJOIN 23 295 #define DIF_SUBR_LLTOSTR 24 296 #define DIF_SUBR_BASENAME 25 297 #define DIF_SUBR_DIRNAME 26 298 #define DIF_SUBR_CLEANPATH 27 299 #define DIF_SUBR_STRCHR 28 300 #define DIF_SUBR_STRRCHR 29 301 #define DIF_SUBR_STRSTR 30 302 #define DIF_SUBR_STRTOK 31 303 #define DIF_SUBR_SUBSTR 32 304 #define DIF_SUBR_INDEX 33 305 #define DIF_SUBR_RINDEX 34 306 #define DIF_SUBR_HTONS 35 307 #define DIF_SUBR_HTONL 36 308 #define DIF_SUBR_HTONLL 37 309 #define DIF_SUBR_NTOHS 38 310 #define DIF_SUBR_NTOHL 39 311 #define DIF_SUBR_NTOHLL 40 312 #define DIF_SUBR_INET_NTOP 41 313 #define DIF_SUBR_INET_NTOA 42 314 #define DIF_SUBR_INET_NTOA6 43 315 #define DIF_SUBR_TOUPPER 44 316 #define DIF_SUBR_TOLOWER 45 317 #define DIF_SUBR_MEMREF 46 318 #define DIF_SUBR_SX_SHARED_HELD 47 319 #define DIF_SUBR_SX_EXCLUSIVE_HELD 48 320 #define DIF_SUBR_SX_ISEXCLUSIVE 49 321 #define DIF_SUBR_MEMSTR 50 322 #define DIF_SUBR_GETF 51 323 #define DIF_SUBR_JSON 52 324 #define DIF_SUBR_STRTOLL 53 325 #define DIF_SUBR_MAX 53 /* max subroutine value */ 326 327 typedef uint32_t dif_instr_t; 328 329 #define DIF_INSTR_OP(i) (((i) >> 24) & 0xff) 330 #define DIF_INSTR_R1(i) (((i) >> 16) & 0xff) 331 #define DIF_INSTR_R2(i) (((i) >> 8) & 0xff) 332 #define DIF_INSTR_RD(i) ((i) & 0xff) 333 #define DIF_INSTR_RS(i) ((i) & 0xff) 334 #define DIF_INSTR_LABEL(i) ((i) & 0xffffff) 335 #define DIF_INSTR_VAR(i) (((i) >> 8) & 0xffff) 336 #define DIF_INSTR_INTEGER(i) (((i) >> 8) & 0xffff) 337 #define DIF_INSTR_STRING(i) (((i) >> 8) & 0xffff) 338 #define DIF_INSTR_SUBR(i) (((i) >> 8) & 0xffff) 339 #define DIF_INSTR_TYPE(i) (((i) >> 16) & 0xff) 340 #define DIF_INSTR_XLREF(i) (((i) >> 8) & 0xffff) 341 342 #define DIF_INSTR_FMT(op, r1, r2, d) \ 343 (((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d)) 344 345 #define DIF_INSTR_NOT(r1, d) (DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d)) 346 #define DIF_INSTR_MOV(r1, d) (DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d)) 347 #define DIF_INSTR_CMP(op, r1, r2) (DIF_INSTR_FMT(op, r1, r2, 0)) 348 #define DIF_INSTR_TST(r1) (DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0)) 349 #define DIF_INSTR_BRANCH(op, label) (((op) << 24) | (label)) 350 #define DIF_INSTR_LOAD(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 351 #define DIF_INSTR_STORE(op, r1, d) (DIF_INSTR_FMT(op, r1, 0, d)) 352 #define DIF_INSTR_SETX(i, d) ((DIF_OP_SETX << 24) | ((i) << 8) | (d)) 353 #define DIF_INSTR_SETS(s, d) ((DIF_OP_SETS << 24) | ((s) << 8) | (d)) 354 #define DIF_INSTR_RET(d) (DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d)) 355 #define DIF_INSTR_NOP (DIF_OP_NOP << 24) 356 #define DIF_INSTR_LDA(op, v, r, d) (DIF_INSTR_FMT(op, v, r, d)) 357 #define DIF_INSTR_LDV(op, v, d) (((op) << 24) | ((v) << 8) | (d)) 358 #define DIF_INSTR_STV(op, v, rs) (((op) << 24) | ((v) << 8) | (rs)) 359 #define DIF_INSTR_CALL(s, d) ((DIF_OP_CALL << 24) | ((s) << 8) | (d)) 360 #define DIF_INSTR_PUSHTS(op, t, r2, rs) (DIF_INSTR_FMT(op, t, r2, rs)) 361 #define DIF_INSTR_POPTS (DIF_OP_POPTS << 24) 362 #define DIF_INSTR_FLUSHTS (DIF_OP_FLUSHTS << 24) 363 #define DIF_INSTR_ALLOCS(r1, d) (DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d)) 364 #define DIF_INSTR_COPYS(r1, r2, d) (DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d)) 365 #define DIF_INSTR_XLATE(op, r, d) (((op) << 24) | ((r) << 8) | (d)) 366 367 #define DIF_REG_R0 0 /* %r0 is always set to zero */ 368 369 /* 370 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types 371 * of variables, function and associative array arguments, and the return type 372 * for each DIF object (shown below). It contains a description of the type, 373 * its size in bytes, and a module identifier. 374 */ 375 typedef struct dtrace_diftype { 376 uint8_t dtdt_kind; /* type kind (see below) */ 377 uint8_t dtdt_ckind; /* type kind in CTF */ 378 uint8_t dtdt_flags; /* type flags (see below) */ 379 uint8_t dtdt_pad; /* reserved for future use */ 380 uint32_t dtdt_size; /* type size in bytes (unless string) */ 381 } dtrace_diftype_t; 382 383 #define DIF_TYPE_CTF 0 /* type is a CTF type */ 384 #define DIF_TYPE_STRING 1 /* type is a D string */ 385 386 #define DIF_TF_BYREF 0x1 /* type is passed by reference */ 387 #define DIF_TF_BYUREF 0x2 /* user type is passed by reference */ 388 389 /* 390 * A DTrace Intermediate Format variable record is used to describe each of the 391 * variables referenced by a given DIF object. It contains an integer variable 392 * identifier along with variable scope and properties, as shown below. The 393 * size of this structure must be sizeof (int) aligned. 394 */ 395 typedef struct dtrace_difv { 396 uint32_t dtdv_name; /* variable name index in dtdo_strtab */ 397 uint32_t dtdv_id; /* variable reference identifier */ 398 uint8_t dtdv_kind; /* variable kind (see below) */ 399 uint8_t dtdv_scope; /* variable scope (see below) */ 400 uint16_t dtdv_flags; /* variable flags (see below) */ 401 dtrace_diftype_t dtdv_type; /* variable type (see above) */ 402 } dtrace_difv_t; 403 404 #define DIFV_KIND_ARRAY 0 /* variable is an array of quantities */ 405 #define DIFV_KIND_SCALAR 1 /* variable is a scalar quantity */ 406 407 #define DIFV_SCOPE_GLOBAL 0 /* variable has global scope */ 408 #define DIFV_SCOPE_THREAD 1 /* variable has thread scope */ 409 #define DIFV_SCOPE_LOCAL 2 /* variable has local scope */ 410 411 #define DIFV_F_REF 0x1 /* variable is referenced by DIFO */ 412 #define DIFV_F_MOD 0x2 /* variable is written by DIFO */ 413 414 /* 415 * DTrace Actions 416 * 417 * The upper byte determines the class of the action; the low bytes determines 418 * the specific action within that class. The classes of actions are as 419 * follows: 420 * 421 * [ no class ] <= May record process- or kernel-related data 422 * DTRACEACT_PROC <= Only records process-related data 423 * DTRACEACT_PROC_DESTRUCTIVE <= Potentially destructive to processes 424 * DTRACEACT_KERNEL <= Only records kernel-related data 425 * DTRACEACT_KERNEL_DESTRUCTIVE <= Potentially destructive to the kernel 426 * DTRACEACT_SPECULATIVE <= Speculation-related action 427 * DTRACEACT_AGGREGATION <= Aggregating action 428 */ 429 #define DTRACEACT_NONE 0 /* no action */ 430 #define DTRACEACT_DIFEXPR 1 /* action is DIF expression */ 431 #define DTRACEACT_EXIT 2 /* exit() action */ 432 #define DTRACEACT_PRINTF 3 /* printf() action */ 433 #define DTRACEACT_PRINTA 4 /* printa() action */ 434 #define DTRACEACT_LIBACT 5 /* library-controlled action */ 435 #define DTRACEACT_TRACEMEM 6 /* tracemem() action */ 436 #define DTRACEACT_TRACEMEM_DYNSIZE 7 /* dynamic tracemem() size */ 437 #define DTRACEACT_PRINTM 8 /* printm() action (BSD) */ 438 439 #define DTRACEACT_PROC 0x0100 440 #define DTRACEACT_USTACK (DTRACEACT_PROC + 1) 441 #define DTRACEACT_JSTACK (DTRACEACT_PROC + 2) 442 #define DTRACEACT_USYM (DTRACEACT_PROC + 3) 443 #define DTRACEACT_UMOD (DTRACEACT_PROC + 4) 444 #define DTRACEACT_UADDR (DTRACEACT_PROC + 5) 445 446 #define DTRACEACT_PROC_DESTRUCTIVE 0x0200 447 #define DTRACEACT_STOP (DTRACEACT_PROC_DESTRUCTIVE + 1) 448 #define DTRACEACT_RAISE (DTRACEACT_PROC_DESTRUCTIVE + 2) 449 #define DTRACEACT_SYSTEM (DTRACEACT_PROC_DESTRUCTIVE + 3) 450 #define DTRACEACT_FREOPEN (DTRACEACT_PROC_DESTRUCTIVE + 4) 451 452 #define DTRACEACT_PROC_CONTROL 0x0300 453 454 #define DTRACEACT_KERNEL 0x0400 455 #define DTRACEACT_STACK (DTRACEACT_KERNEL + 1) 456 #define DTRACEACT_SYM (DTRACEACT_KERNEL + 2) 457 #define DTRACEACT_MOD (DTRACEACT_KERNEL + 3) 458 459 #define DTRACEACT_KERNEL_DESTRUCTIVE 0x0500 460 #define DTRACEACT_BREAKPOINT (DTRACEACT_KERNEL_DESTRUCTIVE + 1) 461 #define DTRACEACT_PANIC (DTRACEACT_KERNEL_DESTRUCTIVE + 2) 462 #define DTRACEACT_CHILL (DTRACEACT_KERNEL_DESTRUCTIVE + 3) 463 464 #define DTRACEACT_SPECULATIVE 0x0600 465 #define DTRACEACT_SPECULATE (DTRACEACT_SPECULATIVE + 1) 466 #define DTRACEACT_COMMIT (DTRACEACT_SPECULATIVE + 2) 467 #define DTRACEACT_DISCARD (DTRACEACT_SPECULATIVE + 3) 468 469 #define DTRACEACT_CLASS(x) ((x) & 0xff00) 470 471 #define DTRACEACT_ISDESTRUCTIVE(x) \ 472 (DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \ 473 DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE) 474 475 #define DTRACEACT_ISSPECULATIVE(x) \ 476 (DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE) 477 478 #define DTRACEACT_ISPRINTFLIKE(x) \ 479 ((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \ 480 (x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN) 481 482 /* 483 * DTrace Aggregating Actions 484 * 485 * These are functions f(x) for which the following is true: 486 * 487 * f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n) 488 * 489 * where x_n is a set of arbitrary data. Aggregating actions are in their own 490 * DTrace action class, DTTRACEACT_AGGREGATION. The macros provided here allow 491 * for easier processing of the aggregation argument and data payload for a few 492 * aggregating actions (notably: quantize(), lquantize(), and ustack()). 493 */ 494 #define DTRACEACT_AGGREGATION 0x0700 495 #define DTRACEAGG_COUNT (DTRACEACT_AGGREGATION + 1) 496 #define DTRACEAGG_MIN (DTRACEACT_AGGREGATION + 2) 497 #define DTRACEAGG_MAX (DTRACEACT_AGGREGATION + 3) 498 #define DTRACEAGG_AVG (DTRACEACT_AGGREGATION + 4) 499 #define DTRACEAGG_SUM (DTRACEACT_AGGREGATION + 5) 500 #define DTRACEAGG_STDDEV (DTRACEACT_AGGREGATION + 6) 501 #define DTRACEAGG_QUANTIZE (DTRACEACT_AGGREGATION + 7) 502 #define DTRACEAGG_LQUANTIZE (DTRACEACT_AGGREGATION + 8) 503 #define DTRACEAGG_LLQUANTIZE (DTRACEACT_AGGREGATION + 9) 504 505 #define DTRACEACT_ISAGG(x) \ 506 (DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION) 507 508 #define DTRACE_QUANTIZE_NBUCKETS \ 509 (((sizeof (uint64_t) * NBBY) - 1) * 2 + 1) 510 511 #define DTRACE_QUANTIZE_ZEROBUCKET ((sizeof (uint64_t) * NBBY) - 1) 512 513 #define DTRACE_QUANTIZE_BUCKETVAL(buck) \ 514 (int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ? \ 515 -(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) : \ 516 (buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 : \ 517 1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1)) 518 519 #define DTRACE_LQUANTIZE_STEPSHIFT 48 520 #define DTRACE_LQUANTIZE_STEPMASK ((uint64_t)UINT16_MAX << 48) 521 #define DTRACE_LQUANTIZE_LEVELSHIFT 32 522 #define DTRACE_LQUANTIZE_LEVELMASK ((uint64_t)UINT16_MAX << 32) 523 #define DTRACE_LQUANTIZE_BASESHIFT 0 524 #define DTRACE_LQUANTIZE_BASEMASK UINT32_MAX 525 526 #define DTRACE_LQUANTIZE_STEP(x) \ 527 (uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \ 528 DTRACE_LQUANTIZE_STEPSHIFT) 529 530 #define DTRACE_LQUANTIZE_LEVELS(x) \ 531 (uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \ 532 DTRACE_LQUANTIZE_LEVELSHIFT) 533 534 #define DTRACE_LQUANTIZE_BASE(x) \ 535 (int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \ 536 DTRACE_LQUANTIZE_BASESHIFT) 537 538 #define DTRACE_LLQUANTIZE_FACTORSHIFT 48 539 #define DTRACE_LLQUANTIZE_FACTORMASK ((uint64_t)UINT16_MAX << 48) 540 #define DTRACE_LLQUANTIZE_LOWSHIFT 32 541 #define DTRACE_LLQUANTIZE_LOWMASK ((uint64_t)UINT16_MAX << 32) 542 #define DTRACE_LLQUANTIZE_HIGHSHIFT 16 543 #define DTRACE_LLQUANTIZE_HIGHMASK ((uint64_t)UINT16_MAX << 16) 544 #define DTRACE_LLQUANTIZE_NSTEPSHIFT 0 545 #define DTRACE_LLQUANTIZE_NSTEPMASK UINT16_MAX 546 547 #define DTRACE_LLQUANTIZE_FACTOR(x) \ 548 (uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \ 549 DTRACE_LLQUANTIZE_FACTORSHIFT) 550 551 #define DTRACE_LLQUANTIZE_LOW(x) \ 552 (uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \ 553 DTRACE_LLQUANTIZE_LOWSHIFT) 554 555 #define DTRACE_LLQUANTIZE_HIGH(x) \ 556 (uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \ 557 DTRACE_LLQUANTIZE_HIGHSHIFT) 558 559 #define DTRACE_LLQUANTIZE_NSTEP(x) \ 560 (uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \ 561 DTRACE_LLQUANTIZE_NSTEPSHIFT) 562 563 #define DTRACE_USTACK_NFRAMES(x) (uint32_t)((x) & UINT32_MAX) 564 #define DTRACE_USTACK_STRSIZE(x) (uint32_t)((x) >> 32) 565 #define DTRACE_USTACK_ARG(x, y) \ 566 ((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX)) 567 568 #ifndef _LP64 569 #if BYTE_ORDER == _BIG_ENDIAN 570 #define DTRACE_PTR(type, name) uint32_t name##pad; type *name 571 #else 572 #define DTRACE_PTR(type, name) type *name; uint32_t name##pad 573 #endif 574 #else 575 #define DTRACE_PTR(type, name) type *name 576 #endif 577 578 /* 579 * DTrace Object Format (DOF) 580 * 581 * DTrace programs can be persistently encoded in the DOF format so that they 582 * may be embedded in other programs (for example, in an ELF file) or in the 583 * dtrace driver configuration file for use in anonymous tracing. The DOF 584 * format is versioned and extensible so that it can be revised and so that 585 * internal data structures can be modified or extended compatibly. All DOF 586 * structures use fixed-size types, so the 32-bit and 64-bit representations 587 * are identical and consumers can use either data model transparently. 588 * 589 * The file layout is structured as follows: 590 * 591 * +---------------+-------------------+----- ... ----+---- ... ------+ 592 * | dof_hdr_t | dof_sec_t[ ... ] | loadable | non-loadable | 593 * | (file header) | (section headers) | section data | section data | 594 * +---------------+-------------------+----- ... ----+---- ... ------+ 595 * |<------------ dof_hdr.dofh_loadsz --------------->| | 596 * |<------------ dof_hdr.dofh_filesz ------------------------------->| 597 * 598 * The file header stores meta-data including a magic number, data model for 599 * the instrumentation, data encoding, and properties of the DIF code within. 600 * The header describes its own size and the size of the section headers. By 601 * convention, an array of section headers follows the file header, and then 602 * the data for all loadable sections and unloadable sections. This permits 603 * consumer code to easily download the headers and all loadable data into the 604 * DTrace driver in one contiguous chunk, omitting other extraneous sections. 605 * 606 * The section headers describe the size, offset, alignment, and section type 607 * for each section. Sections are described using a set of #defines that tell 608 * the consumer what kind of data is expected. Sections can contain links to 609 * other sections by storing a dof_secidx_t, an index into the section header 610 * array, inside of the section data structures. The section header includes 611 * an entry size so that sections with data arrays can grow their structures. 612 * 613 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which 614 * are represented themselves as a collection of related DOF sections. This 615 * permits us to change the set of sections associated with a DIFO over time, 616 * and also permits us to encode DIFOs that contain different sets of sections. 617 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a 618 * section of type DOF_SECT_DIFOHDR. This section's data is then an array of 619 * dof_secidx_t's which in turn denote the sections associated with this DIFO. 620 * 621 * This loose coupling of the file structure (header and sections) to the 622 * structure of the DTrace program itself (ECB descriptions, action 623 * descriptions, and DIFOs) permits activities such as relocation processing 624 * to occur in a single pass without having to understand D program structure. 625 * 626 * Finally, strings are always stored in ELF-style string tables along with a 627 * string table section index and string table offset. Therefore strings in 628 * DOF are always arbitrary-length and not bound to the current implementation. 629 */ 630 631 #define DOF_ID_SIZE 16 /* total size of dofh_ident[] in bytes */ 632 633 typedef struct dof_hdr { 634 uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */ 635 uint32_t dofh_flags; /* file attribute flags (if any) */ 636 uint32_t dofh_hdrsize; /* size of file header in bytes */ 637 uint32_t dofh_secsize; /* size of section header in bytes */ 638 uint32_t dofh_secnum; /* number of section headers */ 639 uint64_t dofh_secoff; /* file offset of section headers */ 640 uint64_t dofh_loadsz; /* file size of loadable portion */ 641 uint64_t dofh_filesz; /* file size of entire DOF file */ 642 uint64_t dofh_pad; /* reserved for future use */ 643 } dof_hdr_t; 644 645 #define DOF_ID_MAG0 0 /* first byte of magic number */ 646 #define DOF_ID_MAG1 1 /* second byte of magic number */ 647 #define DOF_ID_MAG2 2 /* third byte of magic number */ 648 #define DOF_ID_MAG3 3 /* fourth byte of magic number */ 649 #define DOF_ID_MODEL 4 /* DOF data model (see below) */ 650 #define DOF_ID_ENCODING 5 /* DOF data encoding (see below) */ 651 #define DOF_ID_VERSION 6 /* DOF file format major version (see below) */ 652 #define DOF_ID_DIFVERS 7 /* DIF instruction set version */ 653 #define DOF_ID_DIFIREG 8 /* DIF integer registers used by compiler */ 654 #define DOF_ID_DIFTREG 9 /* DIF tuple registers used by compiler */ 655 #define DOF_ID_PAD 10 /* start of padding bytes (all zeroes) */ 656 657 #define DOF_MAG_MAG0 0x7F /* DOF_ID_MAG[0-3] */ 658 #define DOF_MAG_MAG1 'D' 659 #define DOF_MAG_MAG2 'O' 660 #define DOF_MAG_MAG3 'F' 661 662 #define DOF_MAG_STRING "\177DOF" 663 #define DOF_MAG_STRLEN 4 664 665 #define DOF_MODEL_NONE 0 /* DOF_ID_MODEL */ 666 #define DOF_MODEL_ILP32 1 667 #define DOF_MODEL_LP64 2 668 669 #ifdef _LP64 670 #define DOF_MODEL_NATIVE DOF_MODEL_LP64 671 #else 672 #define DOF_MODEL_NATIVE DOF_MODEL_ILP32 673 #endif 674 675 #define DOF_ENCODE_NONE 0 /* DOF_ID_ENCODING */ 676 #define DOF_ENCODE_LSB 1 677 #define DOF_ENCODE_MSB 2 678 679 #if BYTE_ORDER == _BIG_ENDIAN 680 #define DOF_ENCODE_NATIVE DOF_ENCODE_MSB 681 #else 682 #define DOF_ENCODE_NATIVE DOF_ENCODE_LSB 683 #endif 684 685 #define DOF_VERSION_1 1 /* DOF version 1: Solaris 10 FCS */ 686 #define DOF_VERSION_2 2 /* DOF version 2: Solaris Express 6/06 */ 687 #define DOF_VERSION DOF_VERSION_2 /* Latest DOF version */ 688 689 #define DOF_FL_VALID 0 /* mask of all valid dofh_flags bits */ 690 691 typedef uint32_t dof_secidx_t; /* section header table index type */ 692 typedef uint32_t dof_stridx_t; /* string table index type */ 693 694 #define DOF_SECIDX_NONE (-1U) /* null value for section indices */ 695 #define DOF_STRIDX_NONE (-1U) /* null value for string indices */ 696 697 typedef struct dof_sec { 698 uint32_t dofs_type; /* section type (see below) */ 699 uint32_t dofs_align; /* section data memory alignment */ 700 uint32_t dofs_flags; /* section flags (if any) */ 701 uint32_t dofs_entsize; /* size of section entry (if table) */ 702 uint64_t dofs_offset; /* offset of section data within file */ 703 uint64_t dofs_size; /* size of section data in bytes */ 704 } dof_sec_t; 705 706 #define DOF_SECT_NONE 0 /* null section */ 707 #define DOF_SECT_COMMENTS 1 /* compiler comments */ 708 #define DOF_SECT_SOURCE 2 /* D program source code */ 709 #define DOF_SECT_ECBDESC 3 /* dof_ecbdesc_t */ 710 #define DOF_SECT_PROBEDESC 4 /* dof_probedesc_t */ 711 #define DOF_SECT_ACTDESC 5 /* dof_actdesc_t array */ 712 #define DOF_SECT_DIFOHDR 6 /* dof_difohdr_t (variable length) */ 713 #define DOF_SECT_DIF 7 /* uint32_t array of byte code */ 714 #define DOF_SECT_STRTAB 8 /* string table */ 715 #define DOF_SECT_VARTAB 9 /* dtrace_difv_t array */ 716 #define DOF_SECT_RELTAB 10 /* dof_relodesc_t array */ 717 #define DOF_SECT_TYPTAB 11 /* dtrace_diftype_t array */ 718 #define DOF_SECT_URELHDR 12 /* dof_relohdr_t (user relocations) */ 719 #define DOF_SECT_KRELHDR 13 /* dof_relohdr_t (kernel relocations) */ 720 #define DOF_SECT_OPTDESC 14 /* dof_optdesc_t array */ 721 #define DOF_SECT_PROVIDER 15 /* dof_provider_t */ 722 #define DOF_SECT_PROBES 16 /* dof_probe_t array */ 723 #define DOF_SECT_PRARGS 17 /* uint8_t array (probe arg mappings) */ 724 #define DOF_SECT_PROFFS 18 /* uint32_t array (probe arg offsets) */ 725 #define DOF_SECT_INTTAB 19 /* uint64_t array */ 726 #define DOF_SECT_UTSNAME 20 /* struct utsname */ 727 #define DOF_SECT_XLTAB 21 /* dof_xlref_t array */ 728 #define DOF_SECT_XLMEMBERS 22 /* dof_xlmember_t array */ 729 #define DOF_SECT_XLIMPORT 23 /* dof_xlator_t */ 730 #define DOF_SECT_XLEXPORT 24 /* dof_xlator_t */ 731 #define DOF_SECT_PREXPORT 25 /* dof_secidx_t array (exported objs) */ 732 #define DOF_SECT_PRENOFFS 26 /* uint32_t array (enabled offsets) */ 733 734 #define DOF_SECF_LOAD 1 /* section should be loaded */ 735 736 #define DOF_SEC_ISLOADABLE(x) \ 737 (((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) || \ 738 ((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) || \ 739 ((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) || \ 740 ((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) || \ 741 ((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) || \ 742 ((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) || \ 743 ((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) || \ 744 ((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) || \ 745 ((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) || \ 746 ((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) || \ 747 ((x) == DOF_SECT_XLEXPORT) || ((x) == DOF_SECT_PREXPORT) || \ 748 ((x) == DOF_SECT_PRENOFFS)) 749 750 typedef struct dof_ecbdesc { 751 dof_secidx_t dofe_probes; /* link to DOF_SECT_PROBEDESC */ 752 dof_secidx_t dofe_pred; /* link to DOF_SECT_DIFOHDR */ 753 dof_secidx_t dofe_actions; /* link to DOF_SECT_ACTDESC */ 754 uint32_t dofe_pad; /* reserved for future use */ 755 uint64_t dofe_uarg; /* user-supplied library argument */ 756 } dof_ecbdesc_t; 757 758 typedef struct dof_probedesc { 759 dof_secidx_t dofp_strtab; /* link to DOF_SECT_STRTAB section */ 760 dof_stridx_t dofp_provider; /* provider string */ 761 dof_stridx_t dofp_mod; /* module string */ 762 dof_stridx_t dofp_func; /* function string */ 763 dof_stridx_t dofp_name; /* name string */ 764 uint32_t dofp_id; /* probe identifier (or zero) */ 765 } dof_probedesc_t; 766 767 typedef struct dof_actdesc { 768 dof_secidx_t dofa_difo; /* link to DOF_SECT_DIFOHDR */ 769 dof_secidx_t dofa_strtab; /* link to DOF_SECT_STRTAB section */ 770 uint32_t dofa_kind; /* action kind (DTRACEACT_* constant) */ 771 uint32_t dofa_ntuple; /* number of subsequent tuple actions */ 772 uint64_t dofa_arg; /* kind-specific argument */ 773 uint64_t dofa_uarg; /* user-supplied argument */ 774 } dof_actdesc_t; 775 776 typedef struct dof_difohdr { 777 dtrace_diftype_t dofd_rtype; /* return type for this fragment */ 778 dof_secidx_t dofd_links[1]; /* variable length array of indices */ 779 } dof_difohdr_t; 780 781 typedef struct dof_relohdr { 782 dof_secidx_t dofr_strtab; /* link to DOF_SECT_STRTAB for names */ 783 dof_secidx_t dofr_relsec; /* link to DOF_SECT_RELTAB for relos */ 784 dof_secidx_t dofr_tgtsec; /* link to section we are relocating */ 785 } dof_relohdr_t; 786 787 typedef struct dof_relodesc { 788 dof_stridx_t dofr_name; /* string name of relocation symbol */ 789 uint32_t dofr_type; /* relo type (DOF_RELO_* constant) */ 790 uint64_t dofr_offset; /* byte offset for relocation */ 791 uint64_t dofr_data; /* additional type-specific data */ 792 } dof_relodesc_t; 793 794 #define DOF_RELO_NONE 0 /* empty relocation entry */ 795 #define DOF_RELO_SETX 1 /* relocate setx value */ 796 #define DOF_RELO_DOFREL 2 /* relocate DOF-relative value */ 797 798 typedef struct dof_optdesc { 799 uint32_t dofo_option; /* option identifier */ 800 dof_secidx_t dofo_strtab; /* string table, if string option */ 801 uint64_t dofo_value; /* option value or string index */ 802 } dof_optdesc_t; 803 804 typedef uint32_t dof_attr_t; /* encoded stability attributes */ 805 806 #define DOF_ATTR(n, d, c) (((n) << 24) | ((d) << 16) | ((c) << 8)) 807 #define DOF_ATTR_NAME(a) (((a) >> 24) & 0xff) 808 #define DOF_ATTR_DATA(a) (((a) >> 16) & 0xff) 809 #define DOF_ATTR_CLASS(a) (((a) >> 8) & 0xff) 810 811 typedef struct dof_provider { 812 dof_secidx_t dofpv_strtab; /* link to DOF_SECT_STRTAB section */ 813 dof_secidx_t dofpv_probes; /* link to DOF_SECT_PROBES section */ 814 dof_secidx_t dofpv_prargs; /* link to DOF_SECT_PRARGS section */ 815 dof_secidx_t dofpv_proffs; /* link to DOF_SECT_PROFFS section */ 816 dof_stridx_t dofpv_name; /* provider name string */ 817 dof_attr_t dofpv_provattr; /* provider attributes */ 818 dof_attr_t dofpv_modattr; /* module attributes */ 819 dof_attr_t dofpv_funcattr; /* function attributes */ 820 dof_attr_t dofpv_nameattr; /* name attributes */ 821 dof_attr_t dofpv_argsattr; /* args attributes */ 822 dof_secidx_t dofpv_prenoffs; /* link to DOF_SECT_PRENOFFS section */ 823 } dof_provider_t; 824 825 typedef struct dof_probe { 826 uint64_t dofpr_addr; /* probe base address or offset */ 827 dof_stridx_t dofpr_func; /* probe function string */ 828 dof_stridx_t dofpr_name; /* probe name string */ 829 dof_stridx_t dofpr_nargv; /* native argument type strings */ 830 dof_stridx_t dofpr_xargv; /* translated argument type strings */ 831 uint32_t dofpr_argidx; /* index of first argument mapping */ 832 uint32_t dofpr_offidx; /* index of first offset entry */ 833 uint8_t dofpr_nargc; /* native argument count */ 834 uint8_t dofpr_xargc; /* translated argument count */ 835 uint16_t dofpr_noffs; /* number of offset entries for probe */ 836 uint32_t dofpr_enoffidx; /* index of first is-enabled offset */ 837 uint16_t dofpr_nenoffs; /* number of is-enabled offsets */ 838 uint16_t dofpr_pad1; /* reserved for future use */ 839 uint32_t dofpr_pad2; /* reserved for future use */ 840 } dof_probe_t; 841 842 typedef struct dof_xlator { 843 dof_secidx_t dofxl_members; /* link to DOF_SECT_XLMEMBERS section */ 844 dof_secidx_t dofxl_strtab; /* link to DOF_SECT_STRTAB section */ 845 dof_stridx_t dofxl_argv; /* input parameter type strings */ 846 uint32_t dofxl_argc; /* input parameter list length */ 847 dof_stridx_t dofxl_type; /* output type string name */ 848 dof_attr_t dofxl_attr; /* output stability attributes */ 849 } dof_xlator_t; 850 851 typedef struct dof_xlmember { 852 dof_secidx_t dofxm_difo; /* member link to DOF_SECT_DIFOHDR */ 853 dof_stridx_t dofxm_name; /* member name */ 854 dtrace_diftype_t dofxm_type; /* member type */ 855 } dof_xlmember_t; 856 857 typedef struct dof_xlref { 858 dof_secidx_t dofxr_xlator; /* link to DOF_SECT_XLATORS section */ 859 uint32_t dofxr_member; /* index of referenced dof_xlmember */ 860 uint32_t dofxr_argn; /* index of argument for DIF_OP_XLARG */ 861 } dof_xlref_t; 862 863 /* 864 * DTrace Intermediate Format Object (DIFO) 865 * 866 * A DIFO is used to store the compiled DIF for a D expression, its return 867 * type, and its string and variable tables. The string table is a single 868 * buffer of character data into which sets instructions and variable 869 * references can reference strings using a byte offset. The variable table 870 * is an array of dtrace_difv_t structures that describe the name and type of 871 * each variable and the id used in the DIF code. This structure is described 872 * above in the DIF section of this header file. The DIFO is used at both 873 * user-level (in the library) and in the kernel, but the structure is never 874 * passed between the two: the DOF structures form the only interface. As a 875 * result, the definition can change depending on the presence of _KERNEL. 876 */ 877 typedef struct dtrace_difo { 878 dif_instr_t *dtdo_buf; /* instruction buffer */ 879 uint64_t *dtdo_inttab; /* integer table (optional) */ 880 char *dtdo_strtab; /* string table (optional) */ 881 dtrace_difv_t *dtdo_vartab; /* variable table (optional) */ 882 uint_t dtdo_len; /* length of instruction buffer */ 883 uint_t dtdo_intlen; /* length of integer table */ 884 uint_t dtdo_strlen; /* length of string table */ 885 uint_t dtdo_varlen; /* length of variable table */ 886 dtrace_diftype_t dtdo_rtype; /* return type */ 887 uint_t dtdo_refcnt; /* owner reference count */ 888 uint_t dtdo_destructive; /* invokes destructive subroutines */ 889 #ifndef _KERNEL 890 dof_relodesc_t *dtdo_kreltab; /* kernel relocations */ 891 dof_relodesc_t *dtdo_ureltab; /* user relocations */ 892 struct dt_node **dtdo_xlmtab; /* translator references */ 893 uint_t dtdo_krelen; /* length of krelo table */ 894 uint_t dtdo_urelen; /* length of urelo table */ 895 uint_t dtdo_xlmlen; /* length of translator table */ 896 #endif 897 } dtrace_difo_t; 898 899 /* 900 * DTrace Enabling Description Structures 901 * 902 * When DTrace is tracking the description of a DTrace enabling entity (probe, 903 * predicate, action, ECB, record, etc.), it does so in a description 904 * structure. These structures all end in "desc", and are used at both 905 * user-level and in the kernel -- but (with the exception of 906 * dtrace_probedesc_t) they are never passed between them. Typically, 907 * user-level will use the description structures when assembling an enabling. 908 * It will then distill those description structures into a DOF object (see 909 * above), and send it into the kernel. The kernel will again use the 910 * description structures to create a description of the enabling as it reads 911 * the DOF. When the description is complete, the enabling will be actually 912 * created -- turning it into the structures that represent the enabling 913 * instead of merely describing it. Not surprisingly, the description 914 * structures bear a strong resemblance to the DOF structures that act as their 915 * conduit. 916 */ 917 struct dtrace_predicate; 918 919 typedef struct dtrace_probedesc { 920 dtrace_id_t dtpd_id; /* probe identifier */ 921 char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */ 922 char dtpd_mod[DTRACE_MODNAMELEN]; /* probe module name */ 923 char dtpd_func[DTRACE_FUNCNAMELEN]; /* probe function name */ 924 char dtpd_name[DTRACE_NAMELEN]; /* probe name */ 925 } dtrace_probedesc_t; 926 927 typedef struct dtrace_repldesc { 928 dtrace_probedesc_t dtrpd_match; /* probe descr. to match */ 929 dtrace_probedesc_t dtrpd_create; /* probe descr. to create */ 930 } dtrace_repldesc_t; 931 932 typedef struct dtrace_preddesc { 933 dtrace_difo_t *dtpdd_difo; /* pointer to DIF object */ 934 struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */ 935 } dtrace_preddesc_t; 936 937 typedef struct dtrace_actdesc { 938 dtrace_difo_t *dtad_difo; /* pointer to DIF object */ 939 struct dtrace_actdesc *dtad_next; /* next action */ 940 dtrace_actkind_t dtad_kind; /* kind of action */ 941 uint32_t dtad_ntuple; /* number in tuple */ 942 uint64_t dtad_arg; /* action argument */ 943 uint64_t dtad_uarg; /* user argument */ 944 int dtad_refcnt; /* reference count */ 945 } dtrace_actdesc_t; 946 947 typedef struct dtrace_ecbdesc { 948 dtrace_actdesc_t *dted_action; /* action description(s) */ 949 dtrace_preddesc_t dted_pred; /* predicate description */ 950 dtrace_probedesc_t dted_probe; /* probe description */ 951 uint64_t dted_uarg; /* library argument */ 952 int dted_refcnt; /* reference count */ 953 } dtrace_ecbdesc_t; 954 955 /* 956 * DTrace Metadata Description Structures 957 * 958 * DTrace separates the trace data stream from the metadata stream. The only 959 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID + 960 * timestamp) or (in the case of aggregations) aggregation identifiers. To 961 * determine the structure of the data, DTrace consumers pass the token to the 962 * kernel, and receive in return a corresponding description of the enabled 963 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the 964 * dtrace_aggdesc structure). Both of these structures are expressed in terms 965 * of record descriptions (via the dtrace_recdesc structure) that describe the 966 * exact structure of the data. Some record descriptions may also contain a 967 * format identifier; this additional bit of metadata can be retrieved from the 968 * kernel, for which a format description is returned via the dtrace_fmtdesc 969 * structure. Note that all four of these structures must be bitness-neutral 970 * to allow for a 32-bit DTrace consumer on a 64-bit kernel. 971 */ 972 typedef struct dtrace_recdesc { 973 dtrace_actkind_t dtrd_action; /* kind of action */ 974 uint32_t dtrd_size; /* size of record */ 975 uint32_t dtrd_offset; /* offset in ECB's data */ 976 uint16_t dtrd_alignment; /* required alignment */ 977 uint16_t dtrd_format; /* format, if any */ 978 uint64_t dtrd_arg; /* action argument */ 979 uint64_t dtrd_uarg; /* user argument */ 980 } dtrace_recdesc_t; 981 982 typedef struct dtrace_eprobedesc { 983 dtrace_epid_t dtepd_epid; /* enabled probe ID */ 984 dtrace_id_t dtepd_probeid; /* probe ID */ 985 uint64_t dtepd_uarg; /* library argument */ 986 uint32_t dtepd_size; /* total size */ 987 int dtepd_nrecs; /* number of records */ 988 dtrace_recdesc_t dtepd_rec[1]; /* records themselves */ 989 } dtrace_eprobedesc_t; 990 991 typedef struct dtrace_aggdesc { 992 DTRACE_PTR(char, dtagd_name); /* not filled in by kernel */ 993 dtrace_aggvarid_t dtagd_varid; /* not filled in by kernel */ 994 int dtagd_flags; /* not filled in by kernel */ 995 dtrace_aggid_t dtagd_id; /* aggregation ID */ 996 dtrace_epid_t dtagd_epid; /* enabled probe ID */ 997 uint32_t dtagd_size; /* size in bytes */ 998 int dtagd_nrecs; /* number of records */ 999 uint32_t dtagd_pad; /* explicit padding */ 1000 dtrace_recdesc_t dtagd_rec[1]; /* record descriptions */ 1001 } dtrace_aggdesc_t; 1002 1003 typedef struct dtrace_fmtdesc { 1004 DTRACE_PTR(char, dtfd_string); /* format string */ 1005 int dtfd_length; /* length of format string */ 1006 uint16_t dtfd_format; /* format identifier */ 1007 } dtrace_fmtdesc_t; 1008 1009 #define DTRACE_SIZEOF_EPROBEDESC(desc) \ 1010 (sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ? \ 1011 (((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1012 1013 #define DTRACE_SIZEOF_AGGDESC(desc) \ 1014 (sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ? \ 1015 (((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0)) 1016 1017 /* 1018 * DTrace Option Interface 1019 * 1020 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections 1021 * in a DOF image. The dof_optdesc structure contains an option identifier and 1022 * an option value. The valid option identifiers are found below; the mapping 1023 * between option identifiers and option identifying strings is maintained at 1024 * user-level. Note that the value of DTRACEOPT_UNSET is such that all of the 1025 * following are potentially valid option values: all positive integers, zero 1026 * and negative one. Some options (notably "bufpolicy" and "bufresize") take 1027 * predefined tokens as their values; these are defined with 1028 * DTRACEOPT_{option}_{token}. 1029 */ 1030 #define DTRACEOPT_BUFSIZE 0 /* buffer size */ 1031 #define DTRACEOPT_BUFPOLICY 1 /* buffer policy */ 1032 #define DTRACEOPT_DYNVARSIZE 2 /* dynamic variable size */ 1033 #define DTRACEOPT_AGGSIZE 3 /* aggregation size */ 1034 #define DTRACEOPT_SPECSIZE 4 /* speculation size */ 1035 #define DTRACEOPT_NSPEC 5 /* number of speculations */ 1036 #define DTRACEOPT_STRSIZE 6 /* string size */ 1037 #define DTRACEOPT_CLEANRATE 7 /* dynvar cleaning rate */ 1038 #define DTRACEOPT_CPU 8 /* CPU to trace */ 1039 #define DTRACEOPT_BUFRESIZE 9 /* buffer resizing policy */ 1040 #define DTRACEOPT_GRABANON 10 /* grab anonymous state, if any */ 1041 #define DTRACEOPT_FLOWINDENT 11 /* indent function entry/return */ 1042 #define DTRACEOPT_QUIET 12 /* only output explicitly traced data */ 1043 #define DTRACEOPT_STACKFRAMES 13 /* number of stack frames */ 1044 #define DTRACEOPT_USTACKFRAMES 14 /* number of user stack frames */ 1045 #define DTRACEOPT_AGGRATE 15 /* aggregation snapshot rate */ 1046 #define DTRACEOPT_SWITCHRATE 16 /* buffer switching rate */ 1047 #define DTRACEOPT_STATUSRATE 17 /* status rate */ 1048 #define DTRACEOPT_DESTRUCTIVE 18 /* destructive actions allowed */ 1049 #define DTRACEOPT_STACKINDENT 19 /* output indent for stack traces */ 1050 #define DTRACEOPT_RAWBYTES 20 /* always print bytes in raw form */ 1051 #define DTRACEOPT_JSTACKFRAMES 21 /* number of jstack() frames */ 1052 #define DTRACEOPT_JSTACKSTRSIZE 22 /* size of jstack() string table */ 1053 #define DTRACEOPT_AGGSORTKEY 23 /* sort aggregations by key */ 1054 #define DTRACEOPT_AGGSORTREV 24 /* reverse-sort aggregations */ 1055 #define DTRACEOPT_AGGSORTPOS 25 /* agg. position to sort on */ 1056 #define DTRACEOPT_AGGSORTKEYPOS 26 /* agg. key position to sort on */ 1057 #define DTRACEOPT_TEMPORAL 27 /* temporally ordered output */ 1058 #define DTRACEOPT_AGGHIST 28 /* histogram aggregation output */ 1059 #define DTRACEOPT_AGGPACK 29 /* packed aggregation output */ 1060 #define DTRACEOPT_AGGZOOM 30 /* zoomed aggregation scaling */ 1061 #define DTRACEOPT_ZONE 31 /* zone in which to enable probes */ 1062 #define DTRACEOPT_MAX 32 /* number of options */ 1063 1064 #define DTRACEOPT_UNSET (dtrace_optval_t)-2 /* unset option */ 1065 1066 #define DTRACEOPT_BUFPOLICY_RING 0 /* ring buffer */ 1067 #define DTRACEOPT_BUFPOLICY_FILL 1 /* fill buffer, then stop */ 1068 #define DTRACEOPT_BUFPOLICY_SWITCH 2 /* switch buffers */ 1069 1070 #define DTRACEOPT_BUFRESIZE_AUTO 0 /* automatic resizing */ 1071 #define DTRACEOPT_BUFRESIZE_MANUAL 1 /* manual resizing */ 1072 1073 /* 1074 * DTrace Buffer Interface 1075 * 1076 * In order to get a snapshot of the principal or aggregation buffer, 1077 * user-level passes a buffer description to the kernel with the dtrace_bufdesc 1078 * structure. This describes which CPU user-level is interested in, and 1079 * where user-level wishes the kernel to snapshot the buffer to (the 1080 * dtbd_data field). The kernel uses the same structure to pass back some 1081 * information regarding the buffer: the size of data actually copied out, the 1082 * number of drops, the number of errors, the offset of the oldest record, 1083 * and the time of the snapshot. 1084 * 1085 * If the buffer policy is a "switch" policy, taking a snapshot of the 1086 * principal buffer has the additional effect of switching the active and 1087 * inactive buffers. Taking a snapshot of the aggregation buffer _always_ has 1088 * the additional effect of switching the active and inactive buffers. 1089 */ 1090 typedef struct dtrace_bufdesc { 1091 uint64_t dtbd_size; /* size of buffer */ 1092 uint32_t dtbd_cpu; /* CPU or DTRACE_CPUALL */ 1093 uint32_t dtbd_errors; /* number of errors */ 1094 uint64_t dtbd_drops; /* number of drops */ 1095 DTRACE_PTR(char, dtbd_data); /* data */ 1096 uint64_t dtbd_oldest; /* offset of oldest record */ 1097 uint64_t dtbd_timestamp; /* hrtime of snapshot */ 1098 } dtrace_bufdesc_t; 1099 1100 /* 1101 * Each record in the buffer (dtbd_data) begins with a header that includes 1102 * the epid and a timestamp. The timestamp is split into two 4-byte parts 1103 * so that we do not require 8-byte alignment. 1104 */ 1105 typedef struct dtrace_rechdr { 1106 dtrace_epid_t dtrh_epid; /* enabled probe id */ 1107 uint32_t dtrh_timestamp_hi; /* high bits of hrtime_t */ 1108 uint32_t dtrh_timestamp_lo; /* low bits of hrtime_t */ 1109 } dtrace_rechdr_t; 1110 1111 #define DTRACE_RECORD_LOAD_TIMESTAMP(dtrh) \ 1112 ((dtrh)->dtrh_timestamp_lo + \ 1113 ((uint64_t)(dtrh)->dtrh_timestamp_hi << 32)) 1114 1115 #define DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) { \ 1116 (dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime; \ 1117 (dtrh)->dtrh_timestamp_hi = hrtime >> 32; \ 1118 } 1119 1120 /* 1121 * DTrace Status 1122 * 1123 * The status of DTrace is relayed via the dtrace_status structure. This 1124 * structure contains members to count drops other than the capacity drops 1125 * available via the buffer interface (see above). This consists of dynamic 1126 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and 1127 * speculative drops (including capacity speculative drops, drops due to busy 1128 * speculative buffers and drops due to unavailable speculative buffers). 1129 * Additionally, the status structure contains a field to indicate the number 1130 * of "fill"-policy buffers have been filled and a boolean field to indicate 1131 * that exit() has been called. If the dtst_exiting field is non-zero, no 1132 * further data will be generated until tracing is stopped (at which time any 1133 * enablings of the END action will be processed); if user-level sees that 1134 * this field is non-zero, tracing should be stopped as soon as possible. 1135 */ 1136 typedef struct dtrace_status { 1137 uint64_t dtst_dyndrops; /* dynamic drops */ 1138 uint64_t dtst_dyndrops_rinsing; /* dyn drops due to rinsing */ 1139 uint64_t dtst_dyndrops_dirty; /* dyn drops due to dirty */ 1140 uint64_t dtst_specdrops; /* speculative drops */ 1141 uint64_t dtst_specdrops_busy; /* spec drops due to busy */ 1142 uint64_t dtst_specdrops_unavail; /* spec drops due to unavail */ 1143 uint64_t dtst_errors; /* total errors */ 1144 uint64_t dtst_filled; /* number of filled bufs */ 1145 uint64_t dtst_stkstroverflows; /* stack string tab overflows */ 1146 uint64_t dtst_dblerrors; /* errors in ERROR probes */ 1147 char dtst_killed; /* non-zero if killed */ 1148 char dtst_exiting; /* non-zero if exit() called */ 1149 char dtst_pad[6]; /* pad out to 64-bit align */ 1150 } dtrace_status_t; 1151 1152 /* 1153 * DTrace Configuration 1154 * 1155 * User-level may need to understand some elements of the kernel DTrace 1156 * configuration in order to generate correct DIF. This information is 1157 * conveyed via the dtrace_conf structure. 1158 */ 1159 typedef struct dtrace_conf { 1160 uint_t dtc_difversion; /* supported DIF version */ 1161 uint_t dtc_difintregs; /* # of DIF integer registers */ 1162 uint_t dtc_diftupregs; /* # of DIF tuple registers */ 1163 uint_t dtc_ctfmodel; /* CTF data model */ 1164 uint_t dtc_pad[8]; /* reserved for future use */ 1165 } dtrace_conf_t; 1166 1167 /* 1168 * DTrace Faults 1169 * 1170 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults; 1171 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe 1172 * postprocessing at user-level. Probe processing faults induce an ERROR 1173 * probe and are replicated in unistd.d to allow users' ERROR probes to decode 1174 * the error condition using thse symbolic labels. 1175 */ 1176 #define DTRACEFLT_UNKNOWN 0 /* Unknown fault */ 1177 #define DTRACEFLT_BADADDR 1 /* Bad address */ 1178 #define DTRACEFLT_BADALIGN 2 /* Bad alignment */ 1179 #define DTRACEFLT_ILLOP 3 /* Illegal operation */ 1180 #define DTRACEFLT_DIVZERO 4 /* Divide-by-zero */ 1181 #define DTRACEFLT_NOSCRATCH 5 /* Out of scratch space */ 1182 #define DTRACEFLT_KPRIV 6 /* Illegal kernel access */ 1183 #define DTRACEFLT_UPRIV 7 /* Illegal user access */ 1184 #define DTRACEFLT_TUPOFLOW 8 /* Tuple stack overflow */ 1185 #define DTRACEFLT_BADSTACK 9 /* Bad stack */ 1186 1187 #define DTRACEFLT_LIBRARY 1000 /* Library-level fault */ 1188 1189 /* 1190 * DTrace Argument Types 1191 * 1192 * Because it would waste both space and time, argument types do not reside 1193 * with the probe. In order to determine argument types for args[X] 1194 * variables, the D compiler queries for argument types on a probe-by-probe 1195 * basis. (This optimizes for the common case that arguments are either not 1196 * used or used in an untyped fashion.) Typed arguments are specified with a 1197 * string of the type name in the dtragd_native member of the argument 1198 * description structure. Typed arguments may be further translated to types 1199 * of greater stability; the provider indicates such a translated argument by 1200 * filling in the dtargd_xlate member with the string of the translated type. 1201 * Finally, the provider may indicate which argument value a given argument 1202 * maps to by setting the dtargd_mapping member -- allowing a single argument 1203 * to map to multiple args[X] variables. 1204 */ 1205 typedef struct dtrace_argdesc { 1206 dtrace_id_t dtargd_id; /* probe identifier */ 1207 int dtargd_ndx; /* arg number (-1 iff none) */ 1208 int dtargd_mapping; /* value mapping */ 1209 char dtargd_native[DTRACE_ARGTYPELEN]; /* native type name */ 1210 char dtargd_xlate[DTRACE_ARGTYPELEN]; /* translated type name */ 1211 } dtrace_argdesc_t; 1212 1213 /* 1214 * DTrace Stability Attributes 1215 * 1216 * Each DTrace provider advertises the name and data stability of each of its 1217 * probe description components, as well as its architectural dependencies. 1218 * The D compiler can query the provider attributes (dtrace_pattr_t below) in 1219 * order to compute the properties of an input program and report them. 1220 */ 1221 typedef uint8_t dtrace_stability_t; /* stability code (see attributes(5)) */ 1222 typedef uint8_t dtrace_class_t; /* architectural dependency class */ 1223 1224 #define DTRACE_STABILITY_INTERNAL 0 /* private to DTrace itself */ 1225 #define DTRACE_STABILITY_PRIVATE 1 /* private to Sun (see docs) */ 1226 #define DTRACE_STABILITY_OBSOLETE 2 /* scheduled for removal */ 1227 #define DTRACE_STABILITY_EXTERNAL 3 /* not controlled by Sun */ 1228 #define DTRACE_STABILITY_UNSTABLE 4 /* new or rapidly changing */ 1229 #define DTRACE_STABILITY_EVOLVING 5 /* less rapidly changing */ 1230 #define DTRACE_STABILITY_STABLE 6 /* mature interface from Sun */ 1231 #define DTRACE_STABILITY_STANDARD 7 /* industry standard */ 1232 #define DTRACE_STABILITY_MAX 7 /* maximum valid stability */ 1233 1234 #define DTRACE_CLASS_UNKNOWN 0 /* unknown architectural dependency */ 1235 #define DTRACE_CLASS_CPU 1 /* CPU-module-specific */ 1236 #define DTRACE_CLASS_PLATFORM 2 /* platform-specific (uname -i) */ 1237 #define DTRACE_CLASS_GROUP 3 /* hardware-group-specific (uname -m) */ 1238 #define DTRACE_CLASS_ISA 4 /* ISA-specific (uname -p) */ 1239 #define DTRACE_CLASS_COMMON 5 /* common to all systems */ 1240 #define DTRACE_CLASS_MAX 5 /* maximum valid class */ 1241 1242 #define DTRACE_PRIV_NONE 0x0000 1243 #define DTRACE_PRIV_KERNEL 0x0001 1244 #define DTRACE_PRIV_USER 0x0002 1245 #define DTRACE_PRIV_PROC 0x0004 1246 #define DTRACE_PRIV_OWNER 0x0008 1247 #define DTRACE_PRIV_ZONEOWNER 0x0010 1248 1249 #define DTRACE_PRIV_ALL \ 1250 (DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \ 1251 DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER) 1252 1253 typedef struct dtrace_ppriv { 1254 uint32_t dtpp_flags; /* privilege flags */ 1255 uid_t dtpp_uid; /* user ID */ 1256 zoneid_t dtpp_zoneid; /* zone ID */ 1257 } dtrace_ppriv_t; 1258 1259 typedef struct dtrace_attribute { 1260 dtrace_stability_t dtat_name; /* entity name stability */ 1261 dtrace_stability_t dtat_data; /* entity data stability */ 1262 dtrace_class_t dtat_class; /* entity data dependency */ 1263 } dtrace_attribute_t; 1264 1265 typedef struct dtrace_pattr { 1266 dtrace_attribute_t dtpa_provider; /* provider attributes */ 1267 dtrace_attribute_t dtpa_mod; /* module attributes */ 1268 dtrace_attribute_t dtpa_func; /* function attributes */ 1269 dtrace_attribute_t dtpa_name; /* name attributes */ 1270 dtrace_attribute_t dtpa_args; /* args[] attributes */ 1271 } dtrace_pattr_t; 1272 1273 typedef struct dtrace_providerdesc { 1274 char dtvd_name[DTRACE_PROVNAMELEN]; /* provider name */ 1275 dtrace_pattr_t dtvd_attr; /* stability attributes */ 1276 dtrace_ppriv_t dtvd_priv; /* privileges required */ 1277 } dtrace_providerdesc_t; 1278 1279 /* 1280 * DTrace Pseudodevice Interface 1281 * 1282 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace 1283 * pseudodevice driver. These ioctls comprise the user-kernel interface to 1284 * DTrace. 1285 */ 1286 #ifdef illumos 1287 #define DTRACEIOC (('d' << 24) | ('t' << 16) | ('r' << 8)) 1288 #define DTRACEIOC_PROVIDER (DTRACEIOC | 1) /* provider query */ 1289 #define DTRACEIOC_PROBES (DTRACEIOC | 2) /* probe query */ 1290 #define DTRACEIOC_BUFSNAP (DTRACEIOC | 4) /* snapshot buffer */ 1291 #define DTRACEIOC_PROBEMATCH (DTRACEIOC | 5) /* match probes */ 1292 #define DTRACEIOC_ENABLE (DTRACEIOC | 6) /* enable probes */ 1293 #define DTRACEIOC_AGGSNAP (DTRACEIOC | 7) /* snapshot agg. */ 1294 #define DTRACEIOC_EPROBE (DTRACEIOC | 8) /* get eprobe desc. */ 1295 #define DTRACEIOC_PROBEARG (DTRACEIOC | 9) /* get probe arg */ 1296 #define DTRACEIOC_CONF (DTRACEIOC | 10) /* get config. */ 1297 #define DTRACEIOC_STATUS (DTRACEIOC | 11) /* get status */ 1298 #define DTRACEIOC_GO (DTRACEIOC | 12) /* start tracing */ 1299 #define DTRACEIOC_STOP (DTRACEIOC | 13) /* stop tracing */ 1300 #define DTRACEIOC_AGGDESC (DTRACEIOC | 15) /* get agg. desc. */ 1301 #define DTRACEIOC_FORMAT (DTRACEIOC | 16) /* get format str */ 1302 #define DTRACEIOC_DOFGET (DTRACEIOC | 17) /* get DOF */ 1303 #define DTRACEIOC_REPLICATE (DTRACEIOC | 18) /* replicate enab */ 1304 #else 1305 #define DTRACEIOC_PROVIDER _IOWR('x',1,dtrace_providerdesc_t) 1306 /* provider query */ 1307 #define DTRACEIOC_PROBES _IOWR('x',2,dtrace_probedesc_t) 1308 /* probe query */ 1309 #define DTRACEIOC_BUFSNAP _IOW('x',4,dtrace_bufdesc_t *) 1310 /* snapshot buffer */ 1311 #define DTRACEIOC_PROBEMATCH _IOWR('x',5,dtrace_probedesc_t) 1312 /* match probes */ 1313 typedef struct { 1314 void *dof; /* DOF userland address written to driver. */ 1315 int n_matched; /* # matches returned by driver. */ 1316 } dtrace_enable_io_t; 1317 #define DTRACEIOC_ENABLE _IOWR('x',6,dtrace_enable_io_t) 1318 /* enable probes */ 1319 #define DTRACEIOC_AGGSNAP _IOW('x',7,dtrace_bufdesc_t *) 1320 /* snapshot agg. */ 1321 #define DTRACEIOC_EPROBE _IOW('x',8,dtrace_eprobedesc_t) 1322 /* get eprobe desc. */ 1323 #define DTRACEIOC_PROBEARG _IOWR('x',9,dtrace_argdesc_t) 1324 /* get probe arg */ 1325 #define DTRACEIOC_CONF _IOR('x',10,dtrace_conf_t) 1326 /* get config. */ 1327 #define DTRACEIOC_STATUS _IOR('x',11,dtrace_status_t) 1328 /* get status */ 1329 #define DTRACEIOC_GO _IOR('x',12,processorid_t) 1330 /* start tracing */ 1331 #define DTRACEIOC_STOP _IOWR('x',13,processorid_t) 1332 /* stop tracing */ 1333 #define DTRACEIOC_AGGDESC _IOW('x',15,dtrace_aggdesc_t *) 1334 /* get agg. desc. */ 1335 #define DTRACEIOC_FORMAT _IOWR('x',16,dtrace_fmtdesc_t) 1336 /* get format str */ 1337 #define DTRACEIOC_DOFGET _IOW('x',17,dof_hdr_t *) 1338 /* get DOF */ 1339 #define DTRACEIOC_REPLICATE _IOW('x',18,dtrace_repldesc_t) 1340 /* replicate enab */ 1341 #endif 1342 1343 /* 1344 * DTrace Helpers 1345 * 1346 * In general, DTrace establishes probes in processes and takes actions on 1347 * processes without knowing their specific user-level structures. Instead of 1348 * existing in the framework, process-specific knowledge is contained by the 1349 * enabling D program -- which can apply process-specific knowledge by making 1350 * appropriate use of DTrace primitives like copyin() and copyinstr() to 1351 * operate on user-level data. However, there may exist some specific probes 1352 * of particular semantic relevance that the application developer may wish to 1353 * explicitly export. For example, an application may wish to export a probe 1354 * at the point that it begins and ends certain well-defined transactions. In 1355 * addition to providing probes, programs may wish to offer assistance for 1356 * certain actions. For example, in highly dynamic environments (e.g., Java), 1357 * it may be difficult to obtain a stack trace in terms of meaningful symbol 1358 * names (the translation from instruction addresses to corresponding symbol 1359 * names may only be possible in situ); these environments may wish to define 1360 * a series of actions to be applied in situ to obtain a meaningful stack 1361 * trace. 1362 * 1363 * These two mechanisms -- user-level statically defined tracing and assisting 1364 * DTrace actions -- are provided via DTrace _helpers_. Helpers are specified 1365 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of 1366 * providers, probes and their arguments. If a helper wishes to provide 1367 * action assistance, probe descriptions and corresponding DIF actions may be 1368 * specified in the helper DOF. For such helper actions, however, the probe 1369 * description describes the specific helper: all DTrace helpers have the 1370 * provider name "dtrace" and the module name "helper", and the name of the 1371 * helper is contained in the function name (for example, the ustack() helper 1372 * is named "ustack"). Any helper-specific name may be contained in the name 1373 * (for example, if a helper were to have a constructor, it might be named 1374 * "dtrace:helper:<helper>:init"). Helper actions are only called when the 1375 * action that they are helping is taken. Helper actions may only return DIF 1376 * expressions, and may only call the following subroutines: 1377 * 1378 * alloca() <= Allocates memory out of the consumer's scratch space 1379 * bcopy() <= Copies memory to scratch space 1380 * copyin() <= Copies memory from user-level into consumer's scratch 1381 * copyinto() <= Copies memory into a specific location in scratch 1382 * copyinstr() <= Copies a string into a specific location in scratch 1383 * 1384 * Helper actions may only access the following built-in variables: 1385 * 1386 * curthread <= Current kthread_t pointer 1387 * tid <= Current thread identifier 1388 * pid <= Current process identifier 1389 * ppid <= Parent process identifier 1390 * uid <= Current user ID 1391 * gid <= Current group ID 1392 * execname <= Current executable name 1393 * zonename <= Current zone name 1394 * 1395 * Helper actions may not manipulate or allocate dynamic variables, but they 1396 * may have clause-local and statically-allocated global variables. The 1397 * helper action variable state is specific to the helper action -- variables 1398 * used by the helper action may not be accessed outside of the helper 1399 * action, and the helper action may not access variables that like outside 1400 * of it. Helper actions may not load from kernel memory at-large; they are 1401 * restricting to loading current user state (via copyin() and variants) and 1402 * scratch space. As with probe enablings, helper actions are executed in 1403 * program order. The result of the helper action is the result of the last 1404 * executing helper expression. 1405 * 1406 * Helpers -- composed of either providers/probes or probes/actions (or both) 1407 * -- are added by opening the "helper" minor node, and issuing an ioctl(2) 1408 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This 1409 * encapsulates the name and base address of the user-level library or 1410 * executable publishing the helpers and probes as well as the DOF that 1411 * contains the definitions of those helpers and probes. 1412 * 1413 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy 1414 * helpers and should no longer be used. No other ioctls are valid on the 1415 * helper minor node. 1416 */ 1417 #ifdef illumos 1418 #define DTRACEHIOC (('d' << 24) | ('t' << 16) | ('h' << 8)) 1419 #define DTRACEHIOC_ADD (DTRACEHIOC | 1) /* add helper */ 1420 #define DTRACEHIOC_REMOVE (DTRACEHIOC | 2) /* remove helper */ 1421 #define DTRACEHIOC_ADDDOF (DTRACEHIOC | 3) /* add helper DOF */ 1422 #else 1423 #define DTRACEHIOC_REMOVE _IOW('z', 2, int) /* remove helper */ 1424 #define DTRACEHIOC_ADDDOF _IOWR('z', 3, dof_helper_t)/* add helper DOF */ 1425 #endif 1426 1427 typedef struct dof_helper { 1428 char dofhp_mod[DTRACE_MODNAMELEN]; /* executable or library name */ 1429 uint64_t dofhp_addr; /* base address of object */ 1430 uint64_t dofhp_dof; /* address of helper DOF */ 1431 #ifdef __FreeBSD__ 1432 pid_t dofhp_pid; /* target process ID */ 1433 int dofhp_gen; 1434 #endif 1435 } dof_helper_t; 1436 1437 #define DTRACEMNR_DTRACE "dtrace" /* node for DTrace ops */ 1438 #define DTRACEMNR_HELPER "helper" /* node for helpers */ 1439 #define DTRACEMNRN_DTRACE 0 /* minor for DTrace ops */ 1440 #define DTRACEMNRN_HELPER 1 /* minor for helpers */ 1441 #define DTRACEMNRN_CLONE 2 /* first clone minor */ 1442 1443 #ifdef _KERNEL 1444 1445 /* 1446 * DTrace Provider API 1447 * 1448 * The following functions are implemented by the DTrace framework and are 1449 * used to implement separate in-kernel DTrace providers. Common functions 1450 * are provided in uts/common/os/dtrace.c. ISA-dependent subroutines are 1451 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c. 1452 * 1453 * The provider API has two halves: the API that the providers consume from 1454 * DTrace, and the API that providers make available to DTrace. 1455 * 1456 * 1 Framework-to-Provider API 1457 * 1458 * 1.1 Overview 1459 * 1460 * The Framework-to-Provider API is represented by the dtrace_pops structure 1461 * that the provider passes to the framework when registering itself. This 1462 * structure consists of the following members: 1463 * 1464 * dtps_provide() <-- Provide all probes, all modules 1465 * dtps_provide_module() <-- Provide all probes in specified module 1466 * dtps_enable() <-- Enable specified probe 1467 * dtps_disable() <-- Disable specified probe 1468 * dtps_suspend() <-- Suspend specified probe 1469 * dtps_resume() <-- Resume specified probe 1470 * dtps_getargdesc() <-- Get the argument description for args[X] 1471 * dtps_getargval() <-- Get the value for an argX or args[X] variable 1472 * dtps_usermode() <-- Find out if the probe was fired in user mode 1473 * dtps_destroy() <-- Destroy all state associated with this probe 1474 * 1475 * 1.2 void dtps_provide(void *arg, const dtrace_probedesc_t *spec) 1476 * 1477 * 1.2.1 Overview 1478 * 1479 * Called to indicate that the provider should provide all probes. If the 1480 * specified description is non-NULL, dtps_provide() is being called because 1481 * no probe matched a specified probe -- if the provider has the ability to 1482 * create custom probes, it may wish to create a probe that matches the 1483 * specified description. 1484 * 1485 * 1.2.2 Arguments and notes 1486 * 1487 * The first argument is the cookie as passed to dtrace_register(). The 1488 * second argument is a pointer to a probe description that the provider may 1489 * wish to consider when creating custom probes. The provider is expected to 1490 * call back into the DTrace framework via dtrace_probe_create() to create 1491 * any necessary probes. dtps_provide() may be called even if the provider 1492 * has made available all probes; the provider should check the return value 1493 * of dtrace_probe_create() to handle this case. Note that the provider need 1494 * not implement both dtps_provide() and dtps_provide_module(); see 1495 * "Arguments and Notes" for dtrace_register(), below. 1496 * 1497 * 1.2.3 Return value 1498 * 1499 * None. 1500 * 1501 * 1.2.4 Caller's context 1502 * 1503 * dtps_provide() is typically called from open() or ioctl() context, but may 1504 * be called from other contexts as well. The DTrace framework is locked in 1505 * such a way that providers may not register or unregister. This means that 1506 * the provider may not call any DTrace API that affects its registration with 1507 * the framework, including dtrace_register(), dtrace_unregister(), 1508 * dtrace_invalidate(), and dtrace_condense(). However, the context is such 1509 * that the provider may (and indeed, is expected to) call probe-related 1510 * DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(), 1511 * and dtrace_probe_arg(). 1512 * 1513 * 1.3 void dtps_provide_module(void *arg, modctl_t *mp) 1514 * 1515 * 1.3.1 Overview 1516 * 1517 * Called to indicate that the provider should provide all probes in the 1518 * specified module. 1519 * 1520 * 1.3.2 Arguments and notes 1521 * 1522 * The first argument is the cookie as passed to dtrace_register(). The 1523 * second argument is a pointer to a modctl structure that indicates the 1524 * module for which probes should be created. 1525 * 1526 * 1.3.3 Return value 1527 * 1528 * None. 1529 * 1530 * 1.3.4 Caller's context 1531 * 1532 * dtps_provide_module() may be called from open() or ioctl() context, but 1533 * may also be called from a module loading context. mod_lock is held, and 1534 * the DTrace framework is locked in such a way that providers may not 1535 * register or unregister. This means that the provider may not call any 1536 * DTrace API that affects its registration with the framework, including 1537 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1538 * dtrace_condense(). However, the context is such that the provider may (and 1539 * indeed, is expected to) call probe-related DTrace routines, including 1540 * dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg(). Note 1541 * that the provider need not implement both dtps_provide() and 1542 * dtps_provide_module(); see "Arguments and Notes" for dtrace_register(), 1543 * below. 1544 * 1545 * 1.4 void dtps_enable(void *arg, dtrace_id_t id, void *parg) 1546 * 1547 * 1.4.1 Overview 1548 * 1549 * Called to enable the specified probe. 1550 * 1551 * 1.4.2 Arguments and notes 1552 * 1553 * The first argument is the cookie as passed to dtrace_register(). The 1554 * second argument is the identifier of the probe to be enabled. The third 1555 * argument is the probe argument as passed to dtrace_probe_create(). 1556 * dtps_enable() will be called when a probe transitions from not being 1557 * enabled at all to having one or more ECB. The number of ECBs associated 1558 * with the probe may change without subsequent calls into the provider. 1559 * When the number of ECBs drops to zero, the provider will be explicitly 1560 * told to disable the probe via dtps_disable(). dtrace_probe() should never 1561 * be called for a probe identifier that hasn't been explicitly enabled via 1562 * dtps_enable(). 1563 * 1564 * 1.4.3 Return value 1565 * 1566 * None. 1567 * 1568 * 1.4.4 Caller's context 1569 * 1570 * The DTrace framework is locked in such a way that it may not be called 1571 * back into at all. cpu_lock is held. mod_lock is not held and may not 1572 * be acquired. 1573 * 1574 * 1.5 void dtps_disable(void *arg, dtrace_id_t id, void *parg) 1575 * 1576 * 1.5.1 Overview 1577 * 1578 * Called to disable the specified probe. 1579 * 1580 * 1.5.2 Arguments and notes 1581 * 1582 * The first argument is the cookie as passed to dtrace_register(). The 1583 * second argument is the identifier of the probe to be disabled. The third 1584 * argument is the probe argument as passed to dtrace_probe_create(). 1585 * dtps_disable() will be called when a probe transitions from being enabled 1586 * to having zero ECBs. dtrace_probe() should never be called for a probe 1587 * identifier that has been explicitly enabled via dtps_disable(). 1588 * 1589 * 1.5.3 Return value 1590 * 1591 * None. 1592 * 1593 * 1.5.4 Caller's context 1594 * 1595 * The DTrace framework is locked in such a way that it may not be called 1596 * back into at all. cpu_lock is held. mod_lock is not held and may not 1597 * be acquired. 1598 * 1599 * 1.6 void dtps_suspend(void *arg, dtrace_id_t id, void *parg) 1600 * 1601 * 1.6.1 Overview 1602 * 1603 * Called to suspend the specified enabled probe. This entry point is for 1604 * providers that may need to suspend some or all of their probes when CPUs 1605 * are being powered on or when the boot monitor is being entered for a 1606 * prolonged period of time. 1607 * 1608 * 1.6.2 Arguments and notes 1609 * 1610 * The first argument is the cookie as passed to dtrace_register(). The 1611 * second argument is the identifier of the probe to be suspended. The 1612 * third argument is the probe argument as passed to dtrace_probe_create(). 1613 * dtps_suspend will only be called on an enabled probe. Providers that 1614 * provide a dtps_suspend entry point will want to take roughly the action 1615 * that it takes for dtps_disable. 1616 * 1617 * 1.6.3 Return value 1618 * 1619 * None. 1620 * 1621 * 1.6.4 Caller's context 1622 * 1623 * Interrupts are disabled. The DTrace framework is in a state such that the 1624 * specified probe cannot be disabled or destroyed for the duration of 1625 * dtps_suspend(). As interrupts are disabled, the provider is afforded 1626 * little latitude; the provider is expected to do no more than a store to 1627 * memory. 1628 * 1629 * 1.7 void dtps_resume(void *arg, dtrace_id_t id, void *parg) 1630 * 1631 * 1.7.1 Overview 1632 * 1633 * Called to resume the specified enabled probe. This entry point is for 1634 * providers that may need to resume some or all of their probes after the 1635 * completion of an event that induced a call to dtps_suspend(). 1636 * 1637 * 1.7.2 Arguments and notes 1638 * 1639 * The first argument is the cookie as passed to dtrace_register(). The 1640 * second argument is the identifier of the probe to be resumed. The 1641 * third argument is the probe argument as passed to dtrace_probe_create(). 1642 * dtps_resume will only be called on an enabled probe. Providers that 1643 * provide a dtps_resume entry point will want to take roughly the action 1644 * that it takes for dtps_enable. 1645 * 1646 * 1.7.3 Return value 1647 * 1648 * None. 1649 * 1650 * 1.7.4 Caller's context 1651 * 1652 * Interrupts are disabled. The DTrace framework is in a state such that the 1653 * specified probe cannot be disabled or destroyed for the duration of 1654 * dtps_resume(). As interrupts are disabled, the provider is afforded 1655 * little latitude; the provider is expected to do no more than a store to 1656 * memory. 1657 * 1658 * 1.8 void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg, 1659 * dtrace_argdesc_t *desc) 1660 * 1661 * 1.8.1 Overview 1662 * 1663 * Called to retrieve the argument description for an args[X] variable. 1664 * 1665 * 1.8.2 Arguments and notes 1666 * 1667 * The first argument is the cookie as passed to dtrace_register(). The 1668 * second argument is the identifier of the current probe. The third 1669 * argument is the probe argument as passed to dtrace_probe_create(). The 1670 * fourth argument is a pointer to the argument description. This 1671 * description is both an input and output parameter: it contains the 1672 * index of the desired argument in the dtargd_ndx field, and expects 1673 * the other fields to be filled in upon return. If there is no argument 1674 * corresponding to the specified index, the dtargd_ndx field should be set 1675 * to DTRACE_ARGNONE. 1676 * 1677 * 1.8.3 Return value 1678 * 1679 * None. The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping 1680 * members of the dtrace_argdesc_t structure are all output values. 1681 * 1682 * 1.8.4 Caller's context 1683 * 1684 * dtps_getargdesc() is called from ioctl() context. mod_lock is held, and 1685 * the DTrace framework is locked in such a way that providers may not 1686 * register or unregister. This means that the provider may not call any 1687 * DTrace API that affects its registration with the framework, including 1688 * dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and 1689 * dtrace_condense(). 1690 * 1691 * 1.9 uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg, 1692 * int argno, int aframes) 1693 * 1694 * 1.9.1 Overview 1695 * 1696 * Called to retrieve a value for an argX or args[X] variable. 1697 * 1698 * 1.9.2 Arguments and notes 1699 * 1700 * The first argument is the cookie as passed to dtrace_register(). The 1701 * second argument is the identifier of the current probe. The third 1702 * argument is the probe argument as passed to dtrace_probe_create(). The 1703 * fourth argument is the number of the argument (the X in the example in 1704 * 1.9.1). The fifth argument is the number of stack frames that were used 1705 * to get from the actual place in the code that fired the probe to 1706 * dtrace_probe() itself, the so-called artificial frames. This argument may 1707 * be used to descend an appropriate number of frames to find the correct 1708 * values. If this entry point is left NULL, the dtrace_getarg() built-in 1709 * function is used. 1710 * 1711 * 1.9.3 Return value 1712 * 1713 * The value of the argument. 1714 * 1715 * 1.9.4 Caller's context 1716 * 1717 * This is called from within dtrace_probe() meaning that interrupts 1718 * are disabled. No locks should be taken within this entry point. 1719 * 1720 * 1.10 int dtps_usermode(void *arg, dtrace_id_t id, void *parg) 1721 * 1722 * 1.10.1 Overview 1723 * 1724 * Called to determine if the probe was fired in a user context. 1725 * 1726 * 1.10.2 Arguments and notes 1727 * 1728 * The first argument is the cookie as passed to dtrace_register(). The 1729 * second argument is the identifier of the current probe. The third 1730 * argument is the probe argument as passed to dtrace_probe_create(). This 1731 * entry point must not be left NULL for providers whose probes allow for 1732 * mixed mode tracing, that is to say those probes that can fire during 1733 * kernel- _or_ user-mode execution 1734 * 1735 * 1.10.3 Return value 1736 * 1737 * A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL 1738 * or DTRACE_MODE_USER) and the policy when the privilege of the enabling 1739 * is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP, 1740 * DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT). If 1741 * DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result 1742 * in the probe firing being silently ignored for the enabling; if the 1743 * DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not 1744 * prevent probe processing for the enabling, but restrictions will be in 1745 * place that induce a UPRIV fault upon attempt to examine probe arguments 1746 * or current process state. If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit 1747 * is set, similar restrictions will be placed upon operation if the 1748 * privilege is sufficient to process the enabling, but does not otherwise 1749 * entitle the enabling to all zones. The DTRACE_MODE_NOPRIV_DROP and 1750 * DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these 1751 * two policies must be specified), but either may be combined (or not) 1752 * with DTRACE_MODE_LIMITEDPRIV_RESTRICT. 1753 * 1754 * 1.10.4 Caller's context 1755 * 1756 * This is called from within dtrace_probe() meaning that interrupts 1757 * are disabled. No locks should be taken within this entry point. 1758 * 1759 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg) 1760 * 1761 * 1.11.1 Overview 1762 * 1763 * Called to destroy the specified probe. 1764 * 1765 * 1.11.2 Arguments and notes 1766 * 1767 * The first argument is the cookie as passed to dtrace_register(). The 1768 * second argument is the identifier of the probe to be destroyed. The third 1769 * argument is the probe argument as passed to dtrace_probe_create(). The 1770 * provider should free all state associated with the probe. The framework 1771 * guarantees that dtps_destroy() is only called for probes that have either 1772 * been disabled via dtps_disable() or were never enabled via dtps_enable(). 1773 * Once dtps_disable() has been called for a probe, no further call will be 1774 * made specifying the probe. 1775 * 1776 * 1.11.3 Return value 1777 * 1778 * None. 1779 * 1780 * 1.11.4 Caller's context 1781 * 1782 * The DTrace framework is locked in such a way that it may not be called 1783 * back into at all. mod_lock is held. cpu_lock is not held, and may not be 1784 * acquired. 1785 * 1786 * 1787 * 2 Provider-to-Framework API 1788 * 1789 * 2.1 Overview 1790 * 1791 * The Provider-to-Framework API provides the mechanism for the provider to 1792 * register itself with the DTrace framework, to create probes, to lookup 1793 * probes and (most importantly) to fire probes. The Provider-to-Framework 1794 * consists of: 1795 * 1796 * dtrace_register() <-- Register a provider with the DTrace framework 1797 * dtrace_unregister() <-- Remove a provider's DTrace registration 1798 * dtrace_invalidate() <-- Invalidate the specified provider 1799 * dtrace_condense() <-- Remove a provider's unenabled probes 1800 * dtrace_attached() <-- Indicates whether or not DTrace has attached 1801 * dtrace_probe_create() <-- Create a DTrace probe 1802 * dtrace_probe_lookup() <-- Lookup a DTrace probe based on its name 1803 * dtrace_probe_arg() <-- Return the probe argument for a specific probe 1804 * dtrace_probe() <-- Fire the specified probe 1805 * 1806 * 2.2 int dtrace_register(const char *name, const dtrace_pattr_t *pap, 1807 * uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg, 1808 * dtrace_provider_id_t *idp) 1809 * 1810 * 2.2.1 Overview 1811 * 1812 * dtrace_register() registers the calling provider with the DTrace 1813 * framework. It should generally be called by DTrace providers in their 1814 * attach(9E) entry point. 1815 * 1816 * 2.2.2 Arguments and Notes 1817 * 1818 * The first argument is the name of the provider. The second argument is a 1819 * pointer to the stability attributes for the provider. The third argument 1820 * is the privilege flags for the provider, and must be some combination of: 1821 * 1822 * DTRACE_PRIV_NONE <= All users may enable probes from this provider 1823 * 1824 * DTRACE_PRIV_PROC <= Any user with privilege of PRIV_DTRACE_PROC may 1825 * enable probes from this provider 1826 * 1827 * DTRACE_PRIV_USER <= Any user with privilege of PRIV_DTRACE_USER may 1828 * enable probes from this provider 1829 * 1830 * DTRACE_PRIV_KERNEL <= Any user with privilege of PRIV_DTRACE_KERNEL 1831 * may enable probes from this provider 1832 * 1833 * DTRACE_PRIV_OWNER <= This flag places an additional constraint on 1834 * the privilege requirements above. These probes 1835 * require either (a) a user ID matching the user 1836 * ID of the cred passed in the fourth argument 1837 * or (b) the PRIV_PROC_OWNER privilege. 1838 * 1839 * DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on 1840 * the privilege requirements above. These probes 1841 * require either (a) a zone ID matching the zone 1842 * ID of the cred passed in the fourth argument 1843 * or (b) the PRIV_PROC_ZONE privilege. 1844 * 1845 * Note that these flags designate the _visibility_ of the probes, not 1846 * the conditions under which they may or may not fire. 1847 * 1848 * The fourth argument is the credential that is associated with the 1849 * provider. This argument should be NULL if the privilege flags don't 1850 * include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER. If non-NULL, the 1851 * framework stashes the uid and zoneid represented by this credential 1852 * for use at probe-time, in implicit predicates. These limit visibility 1853 * of the probes to users and/or zones which have sufficient privilege to 1854 * access them. 1855 * 1856 * The fifth argument is a DTrace provider operations vector, which provides 1857 * the implementation for the Framework-to-Provider API. (See Section 1, 1858 * above.) This must be non-NULL, and each member must be non-NULL. The 1859 * exceptions to this are (1) the dtps_provide() and dtps_provide_module() 1860 * members (if the provider so desires, _one_ of these members may be left 1861 * NULL -- denoting that the provider only implements the other) and (2) 1862 * the dtps_suspend() and dtps_resume() members, which must either both be 1863 * NULL or both be non-NULL. 1864 * 1865 * The sixth argument is a cookie to be specified as the first argument for 1866 * each function in the Framework-to-Provider API. This argument may have 1867 * any value. 1868 * 1869 * The final argument is a pointer to dtrace_provider_id_t. If 1870 * dtrace_register() successfully completes, the provider identifier will be 1871 * stored in the memory pointed to be this argument. This argument must be 1872 * non-NULL. 1873 * 1874 * 2.2.3 Return value 1875 * 1876 * On success, dtrace_register() returns 0 and stores the new provider's 1877 * identifier into the memory pointed to by the idp argument. On failure, 1878 * dtrace_register() returns an errno: 1879 * 1880 * EINVAL The arguments passed to dtrace_register() were somehow invalid. 1881 * This may because a parameter that must be non-NULL was NULL, 1882 * because the name was invalid (either empty or an illegal 1883 * provider name) or because the attributes were invalid. 1884 * 1885 * No other failure code is returned. 1886 * 1887 * 2.2.4 Caller's context 1888 * 1889 * dtrace_register() may induce calls to dtrace_provide(); the provider must 1890 * hold no locks across dtrace_register() that may also be acquired by 1891 * dtrace_provide(). cpu_lock and mod_lock must not be held. 1892 * 1893 * 2.3 int dtrace_unregister(dtrace_provider_t id) 1894 * 1895 * 2.3.1 Overview 1896 * 1897 * Unregisters the specified provider from the DTrace framework. It should 1898 * generally be called by DTrace providers in their detach(9E) entry point. 1899 * 1900 * 2.3.2 Arguments and Notes 1901 * 1902 * The only argument is the provider identifier, as returned from a 1903 * successful call to dtrace_register(). As a result of calling 1904 * dtrace_unregister(), the DTrace framework will call back into the provider 1905 * via the dtps_destroy() entry point. Once dtrace_unregister() successfully 1906 * completes, however, the DTrace framework will no longer make calls through 1907 * the Framework-to-Provider API. 1908 * 1909 * 2.3.3 Return value 1910 * 1911 * On success, dtrace_unregister returns 0. On failure, dtrace_unregister() 1912 * returns an errno: 1913 * 1914 * EBUSY There are currently processes that have the DTrace pseudodevice 1915 * open, or there exists an anonymous enabling that hasn't yet 1916 * been claimed. 1917 * 1918 * No other failure code is returned. 1919 * 1920 * 2.3.4 Caller's context 1921 * 1922 * Because a call to dtrace_unregister() may induce calls through the 1923 * Framework-to-Provider API, the caller may not hold any lock across 1924 * dtrace_register() that is also acquired in any of the Framework-to- 1925 * Provider API functions. Additionally, mod_lock may not be held. 1926 * 1927 * 2.4 void dtrace_invalidate(dtrace_provider_id_t id) 1928 * 1929 * 2.4.1 Overview 1930 * 1931 * Invalidates the specified provider. All subsequent probe lookups for the 1932 * specified provider will fail, but its probes will not be removed. 1933 * 1934 * 2.4.2 Arguments and note 1935 * 1936 * The only argument is the provider identifier, as returned from a 1937 * successful call to dtrace_register(). In general, a provider's probes 1938 * always remain valid; dtrace_invalidate() is a mechanism for invalidating 1939 * an entire provider, regardless of whether or not probes are enabled or 1940 * not. Note that dtrace_invalidate() will _not_ prevent already enabled 1941 * probes from firing -- it will merely prevent any new enablings of the 1942 * provider's probes. 1943 * 1944 * 2.5 int dtrace_condense(dtrace_provider_id_t id) 1945 * 1946 * 2.5.1 Overview 1947 * 1948 * Removes all the unenabled probes for the given provider. This function is 1949 * not unlike dtrace_unregister(), except that it doesn't remove the 1950 * provider just as many of its associated probes as it can. 1951 * 1952 * 2.5.2 Arguments and Notes 1953 * 1954 * As with dtrace_unregister(), the sole argument is the provider identifier 1955 * as returned from a successful call to dtrace_register(). As a result of 1956 * calling dtrace_condense(), the DTrace framework will call back into the 1957 * given provider's dtps_destroy() entry point for each of the provider's 1958 * unenabled probes. 1959 * 1960 * 2.5.3 Return value 1961 * 1962 * Currently, dtrace_condense() always returns 0. However, consumers of this 1963 * function should check the return value as appropriate; its behavior may 1964 * change in the future. 1965 * 1966 * 2.5.4 Caller's context 1967 * 1968 * As with dtrace_unregister(), the caller may not hold any lock across 1969 * dtrace_condense() that is also acquired in the provider's entry points. 1970 * Also, mod_lock may not be held. 1971 * 1972 * 2.6 int dtrace_attached() 1973 * 1974 * 2.6.1 Overview 1975 * 1976 * Indicates whether or not DTrace has attached. 1977 * 1978 * 2.6.2 Arguments and Notes 1979 * 1980 * For most providers, DTrace makes initial contact beyond registration. 1981 * That is, once a provider has registered with DTrace, it waits to hear 1982 * from DTrace to create probes. However, some providers may wish to 1983 * proactively create probes without first being told by DTrace to do so. 1984 * If providers wish to do this, they must first call dtrace_attached() to 1985 * determine if DTrace itself has attached. If dtrace_attached() returns 0, 1986 * the provider must not make any other Provider-to-Framework API call. 1987 * 1988 * 2.6.3 Return value 1989 * 1990 * dtrace_attached() returns 1 if DTrace has attached, 0 otherwise. 1991 * 1992 * 2.7 int dtrace_probe_create(dtrace_provider_t id, const char *mod, 1993 * const char *func, const char *name, int aframes, void *arg) 1994 * 1995 * 2.7.1 Overview 1996 * 1997 * Creates a probe with specified module name, function name, and name. 1998 * 1999 * 2.7.2 Arguments and Notes 2000 * 2001 * The first argument is the provider identifier, as returned from a 2002 * successful call to dtrace_register(). The second, third, and fourth 2003 * arguments are the module name, function name, and probe name, 2004 * respectively. Of these, module name and function name may both be NULL 2005 * (in which case the probe is considered to be unanchored), or they may both 2006 * be non-NULL. The name must be non-NULL, and must point to a non-empty 2007 * string. 2008 * 2009 * The fifth argument is the number of artificial stack frames that will be 2010 * found on the stack when dtrace_probe() is called for the new probe. These 2011 * artificial frames will be automatically be pruned should the stack() or 2012 * stackdepth() functions be called as part of one of the probe's ECBs. If 2013 * the parameter doesn't add an artificial frame, this parameter should be 2014 * zero. 2015 * 2016 * The final argument is a probe argument that will be passed back to the 2017 * provider when a probe-specific operation is called. (e.g., via 2018 * dtps_enable(), dtps_disable(), etc.) 2019 * 2020 * Note that it is up to the provider to be sure that the probe that it 2021 * creates does not already exist -- if the provider is unsure of the probe's 2022 * existence, it should assure its absence with dtrace_probe_lookup() before 2023 * calling dtrace_probe_create(). 2024 * 2025 * 2.7.3 Return value 2026 * 2027 * dtrace_probe_create() always succeeds, and always returns the identifier 2028 * of the newly-created probe. 2029 * 2030 * 2.7.4 Caller's context 2031 * 2032 * While dtrace_probe_create() is generally expected to be called from 2033 * dtps_provide() and/or dtps_provide_module(), it may be called from other 2034 * non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2035 * 2036 * 2.8 dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod, 2037 * const char *func, const char *name) 2038 * 2039 * 2.8.1 Overview 2040 * 2041 * Looks up a probe based on provdider and one or more of module name, 2042 * function name and probe name. 2043 * 2044 * 2.8.2 Arguments and Notes 2045 * 2046 * The first argument is the provider identifier, as returned from a 2047 * successful call to dtrace_register(). The second, third, and fourth 2048 * arguments are the module name, function name, and probe name, 2049 * respectively. Any of these may be NULL; dtrace_probe_lookup() will return 2050 * the identifier of the first probe that is provided by the specified 2051 * provider and matches all of the non-NULL matching criteria. 2052 * dtrace_probe_lookup() is generally used by a provider to be check the 2053 * existence of a probe before creating it with dtrace_probe_create(). 2054 * 2055 * 2.8.3 Return value 2056 * 2057 * If the probe exists, returns its identifier. If the probe does not exist, 2058 * return DTRACE_IDNONE. 2059 * 2060 * 2.8.4 Caller's context 2061 * 2062 * While dtrace_probe_lookup() is generally expected to be called from 2063 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2064 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2065 * 2066 * 2.9 void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe) 2067 * 2068 * 2.9.1 Overview 2069 * 2070 * Returns the probe argument associated with the specified probe. 2071 * 2072 * 2.9.2 Arguments and Notes 2073 * 2074 * The first argument is the provider identifier, as returned from a 2075 * successful call to dtrace_register(). The second argument is a probe 2076 * identifier, as returned from dtrace_probe_lookup() or 2077 * dtrace_probe_create(). This is useful if a probe has multiple 2078 * provider-specific components to it: the provider can create the probe 2079 * once with provider-specific state, and then add to the state by looking 2080 * up the probe based on probe identifier. 2081 * 2082 * 2.9.3 Return value 2083 * 2084 * Returns the argument associated with the specified probe. If the 2085 * specified probe does not exist, or if the specified probe is not provided 2086 * by the specified provider, NULL is returned. 2087 * 2088 * 2.9.4 Caller's context 2089 * 2090 * While dtrace_probe_arg() is generally expected to be called from 2091 * dtps_provide() and/or dtps_provide_module(), it may also be called from 2092 * other non-DTrace contexts. Neither cpu_lock nor mod_lock may be held. 2093 * 2094 * 2.10 void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1, 2095 * uintptr_t arg2, uintptr_t arg3, uintptr_t arg4) 2096 * 2097 * 2.10.1 Overview 2098 * 2099 * The epicenter of DTrace: fires the specified probes with the specified 2100 * arguments. 2101 * 2102 * 2.10.2 Arguments and Notes 2103 * 2104 * The first argument is a probe identifier as returned by 2105 * dtrace_probe_create() or dtrace_probe_lookup(). The second through sixth 2106 * arguments are the values to which the D variables "arg0" through "arg4" 2107 * will be mapped. 2108 * 2109 * dtrace_probe() should be called whenever the specified probe has fired -- 2110 * however the provider defines it. 2111 * 2112 * 2.10.3 Return value 2113 * 2114 * None. 2115 * 2116 * 2.10.4 Caller's context 2117 * 2118 * dtrace_probe() may be called in virtually any context: kernel, user, 2119 * interrupt, high-level interrupt, with arbitrary adaptive locks held, with 2120 * dispatcher locks held, with interrupts disabled, etc. The only latitude 2121 * that must be afforded to DTrace is the ability to make calls within 2122 * itself (and to its in-kernel subroutines) and the ability to access 2123 * arbitrary (but mapped) memory. On some platforms, this constrains 2124 * context. For example, on UltraSPARC, dtrace_probe() cannot be called 2125 * from any context in which TL is greater than zero. dtrace_probe() may 2126 * also not be called from any routine which may be called by dtrace_probe() 2127 * -- which includes functions in the DTrace framework and some in-kernel 2128 * DTrace subroutines. All such functions "dtrace_"; providers that 2129 * instrument the kernel arbitrarily should be sure to not instrument these 2130 * routines. 2131 */ 2132 typedef struct dtrace_pops { 2133 void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec); 2134 void (*dtps_provide_module)(void *arg, modctl_t *mp); 2135 void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg); 2136 void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg); 2137 void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg); 2138 void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg); 2139 void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg, 2140 dtrace_argdesc_t *desc); 2141 uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg, 2142 int argno, int aframes); 2143 int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg); 2144 void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg); 2145 } dtrace_pops_t; 2146 2147 #define DTRACE_MODE_KERNEL 0x01 2148 #define DTRACE_MODE_USER 0x02 2149 #define DTRACE_MODE_NOPRIV_DROP 0x10 2150 #define DTRACE_MODE_NOPRIV_RESTRICT 0x20 2151 #define DTRACE_MODE_LIMITEDPRIV_RESTRICT 0x40 2152 2153 typedef uintptr_t dtrace_provider_id_t; 2154 2155 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t, 2156 cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *); 2157 extern int dtrace_unregister(dtrace_provider_id_t); 2158 extern int dtrace_condense(dtrace_provider_id_t); 2159 extern void dtrace_invalidate(dtrace_provider_id_t); 2160 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *, 2161 char *, char *); 2162 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *, 2163 const char *, const char *, int, void *); 2164 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t); 2165 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1, 2166 uintptr_t arg2, uintptr_t arg3, uintptr_t arg4); 2167 2168 /* 2169 * DTrace Meta Provider API 2170 * 2171 * The following functions are implemented by the DTrace framework and are 2172 * used to implement meta providers. Meta providers plug into the DTrace 2173 * framework and are used to instantiate new providers on the fly. At 2174 * present, there is only one type of meta provider and only one meta 2175 * provider may be registered with the DTrace framework at a time. The 2176 * sole meta provider type provides user-land static tracing facilities 2177 * by taking meta probe descriptions and adding a corresponding provider 2178 * into the DTrace framework. 2179 * 2180 * 1 Framework-to-Provider 2181 * 2182 * 1.1 Overview 2183 * 2184 * The Framework-to-Provider API is represented by the dtrace_mops structure 2185 * that the meta provider passes to the framework when registering itself as 2186 * a meta provider. This structure consists of the following members: 2187 * 2188 * dtms_create_probe() <-- Add a new probe to a created provider 2189 * dtms_provide_pid() <-- Create a new provider for a given process 2190 * dtms_remove_pid() <-- Remove a previously created provider 2191 * 2192 * 1.2 void dtms_create_probe(void *arg, void *parg, 2193 * dtrace_helper_probedesc_t *probedesc); 2194 * 2195 * 1.2.1 Overview 2196 * 2197 * Called by the DTrace framework to create a new probe in a provider 2198 * created by this meta provider. 2199 * 2200 * 1.2.2 Arguments and notes 2201 * 2202 * The first argument is the cookie as passed to dtrace_meta_register(). 2203 * The second argument is the provider cookie for the associated provider; 2204 * this is obtained from the return value of dtms_provide_pid(). The third 2205 * argument is the helper probe description. 2206 * 2207 * 1.2.3 Return value 2208 * 2209 * None 2210 * 2211 * 1.2.4 Caller's context 2212 * 2213 * dtms_create_probe() is called from either ioctl() or module load context 2214 * in the context of a newly-created provider (that is, a provider that 2215 * is a result of a call to dtms_provide_pid()). The DTrace framework is 2216 * locked in such a way that meta providers may not register or unregister, 2217 * such that no other thread can call into a meta provider operation and that 2218 * atomicity is assured with respect to meta provider operations across 2219 * dtms_provide_pid() and subsequent calls to dtms_create_probe(). 2220 * The context is thus effectively single-threaded with respect to the meta 2221 * provider, and that the meta provider cannot call dtrace_meta_register() 2222 * or dtrace_meta_unregister(). However, the context is such that the 2223 * provider may (and is expected to) call provider-related DTrace provider 2224 * APIs including dtrace_probe_create(). 2225 * 2226 * 1.3 void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov, 2227 * pid_t pid) 2228 * 2229 * 1.3.1 Overview 2230 * 2231 * Called by the DTrace framework to instantiate a new provider given the 2232 * description of the provider and probes in the mprov argument. The 2233 * meta provider should call dtrace_register() to insert the new provider 2234 * into the DTrace framework. 2235 * 2236 * 1.3.2 Arguments and notes 2237 * 2238 * The first argument is the cookie as passed to dtrace_meta_register(). 2239 * The second argument is a pointer to a structure describing the new 2240 * helper provider. The third argument is the process identifier for 2241 * process associated with this new provider. Note that the name of the 2242 * provider as passed to dtrace_register() should be the contatenation of 2243 * the dtmpb_provname member of the mprov argument and the processs 2244 * identifier as a string. 2245 * 2246 * 1.3.3 Return value 2247 * 2248 * The cookie for the provider that the meta provider creates. This is 2249 * the same value that it passed to dtrace_register(). 2250 * 2251 * 1.3.4 Caller's context 2252 * 2253 * dtms_provide_pid() is called from either ioctl() or module load context. 2254 * The DTrace framework is locked in such a way that meta providers may not 2255 * register or unregister. This means that the meta provider cannot call 2256 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2257 * is such that the provider may -- and is expected to -- call 2258 * provider-related DTrace provider APIs including dtrace_register(). 2259 * 2260 * 1.4 void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov, 2261 * pid_t pid) 2262 * 2263 * 1.4.1 Overview 2264 * 2265 * Called by the DTrace framework to remove a provider that had previously 2266 * been instantiated via the dtms_provide_pid() entry point. The meta 2267 * provider need not remove the provider immediately, but this entry 2268 * point indicates that the provider should be removed as soon as possible 2269 * using the dtrace_unregister() API. 2270 * 2271 * 1.4.2 Arguments and notes 2272 * 2273 * The first argument is the cookie as passed to dtrace_meta_register(). 2274 * The second argument is a pointer to a structure describing the helper 2275 * provider. The third argument is the process identifier for process 2276 * associated with this new provider. 2277 * 2278 * 1.4.3 Return value 2279 * 2280 * None 2281 * 2282 * 1.4.4 Caller's context 2283 * 2284 * dtms_remove_pid() is called from either ioctl() or exit() context. 2285 * The DTrace framework is locked in such a way that meta providers may not 2286 * register or unregister. This means that the meta provider cannot call 2287 * dtrace_meta_register() or dtrace_meta_unregister(). However, the context 2288 * is such that the provider may -- and is expected to -- call 2289 * provider-related DTrace provider APIs including dtrace_unregister(). 2290 */ 2291 typedef struct dtrace_helper_probedesc { 2292 char *dthpb_mod; /* probe module */ 2293 char *dthpb_func; /* probe function */ 2294 char *dthpb_name; /* probe name */ 2295 uint64_t dthpb_base; /* base address */ 2296 uint32_t *dthpb_offs; /* offsets array */ 2297 uint32_t *dthpb_enoffs; /* is-enabled offsets array */ 2298 uint32_t dthpb_noffs; /* offsets count */ 2299 uint32_t dthpb_nenoffs; /* is-enabled offsets count */ 2300 uint8_t *dthpb_args; /* argument mapping array */ 2301 uint8_t dthpb_xargc; /* translated argument count */ 2302 uint8_t dthpb_nargc; /* native argument count */ 2303 char *dthpb_xtypes; /* translated types strings */ 2304 char *dthpb_ntypes; /* native types strings */ 2305 } dtrace_helper_probedesc_t; 2306 2307 typedef struct dtrace_helper_provdesc { 2308 char *dthpv_provname; /* provider name */ 2309 dtrace_pattr_t dthpv_pattr; /* stability attributes */ 2310 } dtrace_helper_provdesc_t; 2311 2312 typedef struct dtrace_mops { 2313 void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *); 2314 void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2315 void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t); 2316 } dtrace_mops_t; 2317 2318 typedef uintptr_t dtrace_meta_provider_id_t; 2319 2320 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *, 2321 dtrace_meta_provider_id_t *); 2322 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t); 2323 2324 /* 2325 * DTrace Kernel Hooks 2326 * 2327 * The following functions are implemented by the base kernel and form a set of 2328 * hooks used by the DTrace framework. DTrace hooks are implemented in either 2329 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a 2330 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform. 2331 */ 2332 2333 typedef enum dtrace_vtime_state { 2334 DTRACE_VTIME_INACTIVE = 0, /* No DTrace, no TNF */ 2335 DTRACE_VTIME_ACTIVE, /* DTrace virtual time, no TNF */ 2336 DTRACE_VTIME_INACTIVE_TNF, /* No DTrace, TNF active */ 2337 DTRACE_VTIME_ACTIVE_TNF /* DTrace virtual time _and_ TNF */ 2338 } dtrace_vtime_state_t; 2339 2340 #ifdef illumos 2341 extern dtrace_vtime_state_t dtrace_vtime_active; 2342 #endif 2343 extern void dtrace_vtime_switch(kthread_t *next); 2344 extern void dtrace_vtime_enable_tnf(void); 2345 extern void dtrace_vtime_disable_tnf(void); 2346 extern void dtrace_vtime_enable(void); 2347 extern void dtrace_vtime_disable(void); 2348 2349 struct regs; 2350 struct reg; 2351 2352 #ifdef illumos 2353 extern int (*dtrace_pid_probe_ptr)(struct reg *); 2354 extern int (*dtrace_return_probe_ptr)(struct reg *); 2355 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *); 2356 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *); 2357 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *); 2358 extern void dtrace_fasttrap_fork(proc_t *, proc_t *); 2359 #endif 2360 2361 typedef uintptr_t dtrace_icookie_t; 2362 typedef void (*dtrace_xcall_t)(void *); 2363 2364 extern dtrace_icookie_t dtrace_interrupt_disable(void); 2365 extern void dtrace_interrupt_enable(dtrace_icookie_t); 2366 2367 extern void dtrace_membar_producer(void); 2368 extern void dtrace_membar_consumer(void); 2369 2370 extern void (*dtrace_cpu_init)(processorid_t); 2371 #ifdef illumos 2372 extern void (*dtrace_modload)(modctl_t *); 2373 extern void (*dtrace_modunload)(modctl_t *); 2374 #endif 2375 extern void (*dtrace_helpers_cleanup)(void); 2376 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child); 2377 extern void (*dtrace_cpustart_init)(void); 2378 extern void (*dtrace_cpustart_fini)(void); 2379 extern void (*dtrace_closef)(void); 2380 2381 extern void (*dtrace_debugger_init)(void); 2382 extern void (*dtrace_debugger_fini)(void); 2383 extern dtrace_cacheid_t dtrace_predcache_id; 2384 2385 #ifdef illumos 2386 extern hrtime_t dtrace_gethrtime(void); 2387 #else 2388 void dtrace_debug_printf(const char *, ...) __printflike(1, 2); 2389 #endif 2390 extern void dtrace_sync(void); 2391 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t)); 2392 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *); 2393 extern void dtrace_vpanic(const char *, __va_list); 2394 extern void dtrace_panic(const char *, ...); 2395 2396 extern int dtrace_safe_defer_signal(void); 2397 extern void dtrace_safe_synchronous_signal(void); 2398 2399 extern int dtrace_mach_aframes(void); 2400 2401 #if defined(__i386) || defined(__amd64) 2402 extern int dtrace_instr_size_isa(uint8_t *, model_t, int *); 2403 #ifdef __i386 2404 extern void dtrace_invop_callsite(void); 2405 #endif 2406 #endif 2407 extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t)); 2408 extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *, 2409 uintptr_t)); 2410 2411 #ifdef __sparc 2412 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int); 2413 extern void dtrace_getfsr(uint64_t *); 2414 #endif 2415 2416 #ifndef illumos 2417 extern void dtrace_helpers_duplicate(proc_t *, proc_t *); 2418 extern void dtrace_helpers_destroy(proc_t *); 2419 #endif 2420 2421 #define DTRACE_CPUFLAG_ISSET(flag) \ 2422 (cpu_core[curcpu].cpuc_dtrace_flags & (flag)) 2423 2424 #define DTRACE_CPUFLAG_SET(flag) \ 2425 (cpu_core[curcpu].cpuc_dtrace_flags |= (flag)) 2426 2427 #define DTRACE_CPUFLAG_CLEAR(flag) \ 2428 (cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag)) 2429 2430 #endif /* _KERNEL */ 2431 2432 extern int dtrace_instr_size(uint8_t *instr); 2433 2434 #if defined(__i386) || defined(__amd64) 2435 extern int dtrace_dis_get_byte(void *p); 2436 #endif 2437 2438 #if defined(__riscv) 2439 extern int dtrace_match_opcode(uint32_t insn, int match, int mask); 2440 extern int dtrace_instr_sdsp(uint32_t **instr); 2441 extern int dtrace_instr_ret(uint32_t **instr); 2442 extern int dtrace_instr_c_sdsp(uint32_t **instr); 2443 extern int dtrace_instr_c_ret(uint32_t **instr); 2444 #endif 2445 2446 #endif /* _ASM */ 2447 2448 #if defined(__i386) || defined(__amd64) 2449 2450 #define DTRACE_INVOP_PUSHL_EBP 1 2451 #define DTRACE_INVOP_PUSHQ_RBP DTRACE_INVOP_PUSHL_EBP 2452 #define DTRACE_INVOP_POPL_EBP 2 2453 #define DTRACE_INVOP_POPQ_RBP DTRACE_INVOP_POPL_EBP 2454 #define DTRACE_INVOP_LEAVE 3 2455 #define DTRACE_INVOP_NOP 4 2456 #define DTRACE_INVOP_RET 5 2457 2458 #if defined(__amd64) 2459 #define DTRACE_INVOP_CALL 6 2460 #endif 2461 2462 #elif defined(__powerpc__) 2463 2464 #define DTRACE_INVOP_BCTR 1 2465 #define DTRACE_INVOP_BLR 2 2466 #define DTRACE_INVOP_JUMP 3 2467 #define DTRACE_INVOP_MFLR_R0 4 2468 #define DTRACE_INVOP_NOP 5 2469 2470 #elif defined(__arm__) 2471 2472 #define DTRACE_INVOP_SHIFT 4 2473 #define DTRACE_INVOP_MASK ((1 << DTRACE_INVOP_SHIFT) - 1) 2474 #define DTRACE_INVOP_DATA(x) ((x) >> DTRACE_INVOP_SHIFT) 2475 2476 #define DTRACE_INVOP_PUSHM 1 2477 #define DTRACE_INVOP_POPM 2 2478 #define DTRACE_INVOP_B 3 2479 2480 #elif defined(__aarch64__) 2481 2482 #define INSN_SIZE 4 2483 2484 #define BRK_INSTR 0xd4200000 2485 #define BRK_IMM16_SHIFT 5 2486 #define BRK_IMM16_VAL (0x40d << BRK_IMM16_SHIFT) 2487 2488 #define B_MASK 0xff000000 2489 #define B_DATA_MASK 0x00ffffff 2490 #define B_INSTR 0x14000000 2491 2492 #define BTI_MASK 0xffffff3f 2493 #define BTI_INSTR 0xd503241f 2494 2495 #define NOP_INSTR 0xd503201f 2496 2497 #define RET_INSTR 0xd65f03c0 2498 2499 #define SUB_MASK 0xffc00000 2500 #define SUB_INSTR 0xd1000000 2501 #define SUB_RD_SHIFT 0 2502 #define SUB_RN_SHIFT 5 2503 #define SUB_R_MASK 0x1f 2504 #define SUB_IMM_SHIFT 10 2505 #define SUB_IMM_MASK 0xfff 2506 2507 #define LDP_STP_MASK 0xffc00000 2508 #define STP_32 0x29800000 2509 #define STP_64 0xa9800000 2510 #define LDP_32 0x28c00000 2511 #define LDP_64 0xa8c00000 2512 #define LDP_STP_PREIND (1 << 24) 2513 #define LDP_STP_DIR (1 << 22) /* Load instruction */ 2514 #define ARG1_SHIFT 0 2515 #define ARG1_MASK 0x1f 2516 #define ARG2_SHIFT 10 2517 #define ARG2_MASK 0x1f 2518 #define ADDR_SHIFT 5 2519 #define ADDR_MASK 0x1f 2520 #define OFFSET_SHIFT 15 2521 #define OFFSET_SIZE 7 2522 #define OFFSET_MASK ((1 << OFFSET_SIZE) - 1) 2523 2524 #define DTRACE_PATCHVAL (BRK_INSTR | BRK_IMM16_VAL) 2525 2526 #define DTRACE_INVOP_STP 1 2527 #define DTRACE_INVOP_RET 2 2528 #define DTRACE_INVOP_B 3 2529 #define DTRACE_INVOP_SUB 4 2530 2531 #elif defined(__mips__) 2532 2533 #define INSN_SIZE 4 2534 2535 /* Load/Store double RA to/from SP */ 2536 #define LDSD_RA_SP_MASK 0xffff0000 2537 #define LDSD_DATA_MASK 0x0000ffff 2538 #define SD_RA_SP 0xffbf0000 2539 #define LD_RA_SP 0xdfbf0000 2540 2541 #define DTRACE_INVOP_SD 1 2542 #define DTRACE_INVOP_LD 2 2543 2544 #elif defined(__riscv) 2545 2546 #define DTRACE_INVOP_SD 1 2547 #define DTRACE_INVOP_C_SDSP 2 2548 #define DTRACE_INVOP_RET 3 2549 #define DTRACE_INVOP_C_RET 4 2550 #define DTRACE_INVOP_NOP 5 2551 2552 #endif 2553 2554 #ifdef __cplusplus 2555 } 2556 #endif 2557 2558 #endif /* _SYS_DTRACE_H */ 2559