1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #include <alloca.h>
39 #include <dt_impl.h>
40 #include <dt_pq.h>
41
42 #define DT_MASK_LO 0x00000000FFFFFFFFULL
43
44 /*
45 * We declare this here because (1) we need it and (2) we want to avoid a
46 * dependency on libm in libdtrace.
47 */
48 static long double
dt_fabsl(long double x)49 dt_fabsl(long double x)
50 {
51 if (x < 0)
52 return (-x);
53
54 return (x);
55 }
56
57 static int
dt_ndigits(long long val)58 dt_ndigits(long long val)
59 {
60 int rval = 1;
61 long long cmp = 10;
62
63 if (val < 0) {
64 val = val == INT64_MIN ? INT64_MAX : -val;
65 rval++;
66 }
67
68 while (val > cmp && cmp > 0) {
69 rval++;
70 cmp *= 10;
71 }
72
73 return (rval < 4 ? 4 : rval);
74 }
75
76 /*
77 * 128-bit arithmetic functions needed to support the stddev() aggregating
78 * action.
79 */
80 static int
dt_gt_128(uint64_t * a,uint64_t * b)81 dt_gt_128(uint64_t *a, uint64_t *b)
82 {
83 return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
84 }
85
86 static int
dt_ge_128(uint64_t * a,uint64_t * b)87 dt_ge_128(uint64_t *a, uint64_t *b)
88 {
89 return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
90 }
91
92 static int
dt_le_128(uint64_t * a,uint64_t * b)93 dt_le_128(uint64_t *a, uint64_t *b)
94 {
95 return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
96 }
97
98 /*
99 * Shift the 128-bit value in a by b. If b is positive, shift left.
100 * If b is negative, shift right.
101 */
102 static void
dt_shift_128(uint64_t * a,int b)103 dt_shift_128(uint64_t *a, int b)
104 {
105 uint64_t mask;
106
107 if (b == 0)
108 return;
109
110 if (b < 0) {
111 b = -b;
112 if (b >= 64) {
113 a[0] = a[1] >> (b - 64);
114 a[1] = 0;
115 } else {
116 a[0] >>= b;
117 mask = 1LL << (64 - b);
118 mask -= 1;
119 a[0] |= ((a[1] & mask) << (64 - b));
120 a[1] >>= b;
121 }
122 } else {
123 if (b >= 64) {
124 a[1] = a[0] << (b - 64);
125 a[0] = 0;
126 } else {
127 a[1] <<= b;
128 mask = a[0] >> (64 - b);
129 a[1] |= mask;
130 a[0] <<= b;
131 }
132 }
133 }
134
135 static int
dt_nbits_128(uint64_t * a)136 dt_nbits_128(uint64_t *a)
137 {
138 int nbits = 0;
139 uint64_t tmp[2];
140 uint64_t zero[2] = { 0, 0 };
141
142 tmp[0] = a[0];
143 tmp[1] = a[1];
144
145 dt_shift_128(tmp, -1);
146 while (dt_gt_128(tmp, zero)) {
147 dt_shift_128(tmp, -1);
148 nbits++;
149 }
150
151 return (nbits);
152 }
153
154 static void
dt_subtract_128(uint64_t * minuend,uint64_t * subtrahend,uint64_t * difference)155 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
156 {
157 uint64_t result[2];
158
159 result[0] = minuend[0] - subtrahend[0];
160 result[1] = minuend[1] - subtrahend[1] -
161 (minuend[0] < subtrahend[0] ? 1 : 0);
162
163 difference[0] = result[0];
164 difference[1] = result[1];
165 }
166
167 static void
dt_add_128(uint64_t * addend1,uint64_t * addend2,uint64_t * sum)168 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
169 {
170 uint64_t result[2];
171
172 result[0] = addend1[0] + addend2[0];
173 result[1] = addend1[1] + addend2[1] +
174 (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
175
176 sum[0] = result[0];
177 sum[1] = result[1];
178 }
179
180 /*
181 * The basic idea is to break the 2 64-bit values into 4 32-bit values,
182 * use native multiplication on those, and then re-combine into the
183 * resulting 128-bit value.
184 *
185 * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
186 * hi1 * hi2 << 64 +
187 * hi1 * lo2 << 32 +
188 * hi2 * lo1 << 32 +
189 * lo1 * lo2
190 */
191 static void
dt_multiply_128(uint64_t factor1,uint64_t factor2,uint64_t * product)192 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
193 {
194 uint64_t hi1, hi2, lo1, lo2;
195 uint64_t tmp[2];
196
197 hi1 = factor1 >> 32;
198 hi2 = factor2 >> 32;
199
200 lo1 = factor1 & DT_MASK_LO;
201 lo2 = factor2 & DT_MASK_LO;
202
203 product[0] = lo1 * lo2;
204 product[1] = hi1 * hi2;
205
206 tmp[0] = hi1 * lo2;
207 tmp[1] = 0;
208 dt_shift_128(tmp, 32);
209 dt_add_128(product, tmp, product);
210
211 tmp[0] = hi2 * lo1;
212 tmp[1] = 0;
213 dt_shift_128(tmp, 32);
214 dt_add_128(product, tmp, product);
215 }
216
217 /*
218 * This is long-hand division.
219 *
220 * We initialize subtrahend by shifting divisor left as far as possible. We
221 * loop, comparing subtrahend to dividend: if subtrahend is smaller, we
222 * subtract and set the appropriate bit in the result. We then shift
223 * subtrahend right by one bit for the next comparison.
224 */
225 static void
dt_divide_128(uint64_t * dividend,uint64_t divisor,uint64_t * quotient)226 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
227 {
228 uint64_t result[2] = { 0, 0 };
229 uint64_t remainder[2];
230 uint64_t subtrahend[2];
231 uint64_t divisor_128[2];
232 uint64_t mask[2] = { 1, 0 };
233 int log = 0;
234
235 assert(divisor != 0);
236
237 divisor_128[0] = divisor;
238 divisor_128[1] = 0;
239
240 remainder[0] = dividend[0];
241 remainder[1] = dividend[1];
242
243 subtrahend[0] = divisor;
244 subtrahend[1] = 0;
245
246 while (divisor > 0) {
247 log++;
248 divisor >>= 1;
249 }
250
251 dt_shift_128(subtrahend, 128 - log);
252 dt_shift_128(mask, 128 - log);
253
254 while (dt_ge_128(remainder, divisor_128)) {
255 if (dt_ge_128(remainder, subtrahend)) {
256 dt_subtract_128(remainder, subtrahend, remainder);
257 result[0] |= mask[0];
258 result[1] |= mask[1];
259 }
260
261 dt_shift_128(subtrahend, -1);
262 dt_shift_128(mask, -1);
263 }
264
265 quotient[0] = result[0];
266 quotient[1] = result[1];
267 }
268
269 /*
270 * This is the long-hand method of calculating a square root.
271 * The algorithm is as follows:
272 *
273 * 1. Group the digits by 2 from the right.
274 * 2. Over the leftmost group, find the largest single-digit number
275 * whose square is less than that group.
276 * 3. Subtract the result of the previous step (2 or 4, depending) and
277 * bring down the next two-digit group.
278 * 4. For the result R we have so far, find the largest single-digit number
279 * x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
280 * (Note that this is doubling R and performing a decimal left-shift by 1
281 * and searching for the appropriate decimal to fill the one's place.)
282 * The value x is the next digit in the square root.
283 * Repeat steps 3 and 4 until the desired precision is reached. (We're
284 * dealing with integers, so the above is sufficient.)
285 *
286 * In decimal, the square root of 582,734 would be calculated as so:
287 *
288 * __7__6__3
289 * | 58 27 34
290 * -49 (7^2 == 49 => 7 is the first digit in the square root)
291 * --
292 * 9 27 (Subtract and bring down the next group.)
293 * 146 8 76 (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
294 * ----- the square root)
295 * 51 34 (Subtract and bring down the next group.)
296 * 1523 45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
297 * ----- the square root)
298 * 5 65 (remainder)
299 *
300 * The above algorithm applies similarly in binary, but note that the
301 * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
302 * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
303 * preceding difference?
304 *
305 * In binary, the square root of 11011011 would be calculated as so:
306 *
307 * __1__1__1__0
308 * | 11 01 10 11
309 * 01 (0 << 2 + 1 == 1 < 11 => this bit is 1)
310 * --
311 * 10 01 10 11
312 * 101 1 01 (1 << 2 + 1 == 101 < 1001 => next bit is 1)
313 * -----
314 * 1 00 10 11
315 * 1101 11 01 (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
316 * -------
317 * 1 01 11
318 * 11101 1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
319 *
320 */
321 static uint64_t
dt_sqrt_128(uint64_t * square)322 dt_sqrt_128(uint64_t *square)
323 {
324 uint64_t result[2] = { 0, 0 };
325 uint64_t diff[2] = { 0, 0 };
326 uint64_t one[2] = { 1, 0 };
327 uint64_t next_pair[2];
328 uint64_t next_try[2];
329 uint64_t bit_pairs, pair_shift;
330 int i;
331
332 bit_pairs = dt_nbits_128(square) / 2;
333 pair_shift = bit_pairs * 2;
334
335 for (i = 0; i <= bit_pairs; i++) {
336 /*
337 * Bring down the next pair of bits.
338 */
339 next_pair[0] = square[0];
340 next_pair[1] = square[1];
341 dt_shift_128(next_pair, -pair_shift);
342 next_pair[0] &= 0x3;
343 next_pair[1] = 0;
344
345 dt_shift_128(diff, 2);
346 dt_add_128(diff, next_pair, diff);
347
348 /*
349 * next_try = R << 2 + 1
350 */
351 next_try[0] = result[0];
352 next_try[1] = result[1];
353 dt_shift_128(next_try, 2);
354 dt_add_128(next_try, one, next_try);
355
356 if (dt_le_128(next_try, diff)) {
357 dt_subtract_128(diff, next_try, diff);
358 dt_shift_128(result, 1);
359 dt_add_128(result, one, result);
360 } else {
361 dt_shift_128(result, 1);
362 }
363
364 pair_shift -= 2;
365 }
366
367 assert(result[1] == 0);
368
369 return (result[0]);
370 }
371
372 uint64_t
dt_stddev(uint64_t * data,uint64_t normal)373 dt_stddev(uint64_t *data, uint64_t normal)
374 {
375 uint64_t avg_of_squares[2];
376 uint64_t square_of_avg[2];
377 int64_t norm_avg;
378 uint64_t diff[2];
379
380 /*
381 * The standard approximation for standard deviation is
382 * sqrt(average(x**2) - average(x)**2), i.e. the square root
383 * of the average of the squares minus the square of the average.
384 */
385 dt_divide_128(data + 2, normal, avg_of_squares);
386 dt_divide_128(avg_of_squares, data[0], avg_of_squares);
387
388 norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
389
390 if (norm_avg < 0)
391 norm_avg = -norm_avg;
392
393 dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
394
395 dt_subtract_128(avg_of_squares, square_of_avg, diff);
396
397 return (dt_sqrt_128(diff));
398 }
399
400 static int
dt_flowindent(dtrace_hdl_t * dtp,dtrace_probedata_t * data,dtrace_epid_t last,dtrace_bufdesc_t * buf,size_t offs)401 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
402 dtrace_bufdesc_t *buf, size_t offs)
403 {
404 dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
405 dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
406 char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
407 dtrace_flowkind_t flow = DTRACEFLOW_NONE;
408 const char *str = NULL;
409 static const char *e_str[2] = { " -> ", " => " };
410 static const char *r_str[2] = { " <- ", " <= " };
411 static const char *ent = "entry", *ret = "return";
412 static int entlen = 0, retlen = 0;
413 dtrace_epid_t next, id = epd->dtepd_epid;
414 int rval;
415
416 if (entlen == 0) {
417 assert(retlen == 0);
418 entlen = strlen(ent);
419 retlen = strlen(ret);
420 }
421
422 /*
423 * If the name of the probe is "entry" or ends with "-entry", we
424 * treat it as an entry; if it is "return" or ends with "-return",
425 * we treat it as a return. (This allows application-provided probes
426 * like "method-entry" or "function-entry" to participate in flow
427 * indentation -- without accidentally misinterpreting popular probe
428 * names like "carpentry", "gentry" or "Coventry".)
429 */
430 if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
431 (sub == n || sub[-1] == '-')) {
432 flow = DTRACEFLOW_ENTRY;
433 str = e_str[strcmp(p, "syscall") == 0];
434 } else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
435 (sub == n || sub[-1] == '-')) {
436 flow = DTRACEFLOW_RETURN;
437 str = r_str[strcmp(p, "syscall") == 0];
438 }
439
440 /*
441 * If we're going to indent this, we need to check the ID of our last
442 * call. If we're looking at the same probe ID but a different EPID,
443 * we _don't_ want to indent. (Yes, there are some minor holes in
444 * this scheme -- it's a heuristic.)
445 */
446 if (flow == DTRACEFLOW_ENTRY) {
447 if ((last != DTRACE_EPIDNONE && id != last &&
448 pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
449 flow = DTRACEFLOW_NONE;
450 }
451
452 /*
453 * If we're going to unindent this, it's more difficult to see if
454 * we don't actually want to unindent it -- we need to look at the
455 * _next_ EPID.
456 */
457 if (flow == DTRACEFLOW_RETURN) {
458 offs += epd->dtepd_size;
459
460 do {
461 if (offs >= buf->dtbd_size)
462 goto out;
463
464 next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
465
466 if (next == DTRACE_EPIDNONE)
467 offs += sizeof (id);
468 } while (next == DTRACE_EPIDNONE);
469
470 if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
471 return (rval);
472
473 if (next != id && npd->dtpd_id == pd->dtpd_id)
474 flow = DTRACEFLOW_NONE;
475 }
476
477 out:
478 if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
479 data->dtpda_prefix = str;
480 } else {
481 data->dtpda_prefix = "| ";
482 }
483
484 if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
485 data->dtpda_indent -= 2;
486
487 data->dtpda_flow = flow;
488
489 return (0);
490 }
491
492 static int
dt_nullprobe()493 dt_nullprobe()
494 {
495 return (DTRACE_CONSUME_THIS);
496 }
497
498 static int
dt_nullrec()499 dt_nullrec()
500 {
501 return (DTRACE_CONSUME_NEXT);
502 }
503
504 static void
dt_quantize_total(dtrace_hdl_t * dtp,int64_t datum,long double * total)505 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
506 {
507 long double val = dt_fabsl((long double)datum);
508
509 if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
510 *total += val;
511 return;
512 }
513
514 /*
515 * If we're zooming in on an aggregation, we want the height of the
516 * highest value to be approximately 95% of total bar height -- so we
517 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
518 * our highest value.
519 */
520 val *= 1 / DTRACE_AGGZOOM_MAX;
521
522 if (*total < val)
523 *total = val;
524 }
525
526 static int
dt_print_quanthdr(dtrace_hdl_t * dtp,FILE * fp,int width)527 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
528 {
529 return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
530 width ? width : 16, width ? "key" : "value",
531 "------------- Distribution -------------", "count"));
532 }
533
534 static int
dt_print_quanthdr_packed(dtrace_hdl_t * dtp,FILE * fp,int width,const dtrace_aggdata_t * aggdata,dtrace_actkind_t action)535 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
536 const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
537 {
538 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
539 int minwidth, maxwidth, i;
540
541 assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
542
543 if (action == DTRACEAGG_QUANTIZE) {
544 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
545 min--;
546
547 if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
548 max++;
549
550 minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
551 maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
552 } else {
553 maxwidth = 8;
554 minwidth = maxwidth - 1;
555 max++;
556 }
557
558 if (dt_printf(dtp, fp, "\n%*s %*s .",
559 width, width > 0 ? "key" : "", minwidth, "min") < 0)
560 return (-1);
561
562 for (i = min; i <= max; i++) {
563 if (dt_printf(dtp, fp, "-") < 0)
564 return (-1);
565 }
566
567 return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
568 }
569
570 /*
571 * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
572 * inclusive) to represent aggregations via UTF-8 -- which are expressed via
573 * 3-byte UTF-8 sequences.
574 */
575 #define DTRACE_AGGUTF8_FULL 0x2588
576 #define DTRACE_AGGUTF8_BASE 0x258f
577 #define DTRACE_AGGUTF8_LEVELS 8
578
579 #define DTRACE_AGGUTF8_BYTE0(val) (0xe0 | ((val) >> 12))
580 #define DTRACE_AGGUTF8_BYTE1(val) (0x80 | (((val) >> 6) & 0x3f))
581 #define DTRACE_AGGUTF8_BYTE2(val) (0x80 | ((val) & 0x3f))
582
583 static int
dt_print_quantline_utf8(dtrace_hdl_t * dtp,FILE * fp,int64_t val,uint64_t normal,long double total)584 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
585 uint64_t normal, long double total)
586 {
587 uint_t len = 40, i, whole, partial;
588 long double f = (dt_fabsl((long double)val) * len) / total;
589 const char *spaces = " ";
590
591 whole = (uint_t)f;
592 partial = (uint_t)((f - (long double)(uint_t)f) *
593 (long double)DTRACE_AGGUTF8_LEVELS);
594
595 if (dt_printf(dtp, fp, "|") < 0)
596 return (-1);
597
598 for (i = 0; i < whole; i++) {
599 if (dt_printf(dtp, fp, "%c%c%c",
600 DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
601 DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
602 DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
603 return (-1);
604 }
605
606 if (partial != 0) {
607 partial = DTRACE_AGGUTF8_BASE - (partial - 1);
608
609 if (dt_printf(dtp, fp, "%c%c%c",
610 DTRACE_AGGUTF8_BYTE0(partial),
611 DTRACE_AGGUTF8_BYTE1(partial),
612 DTRACE_AGGUTF8_BYTE2(partial)) < 0)
613 return (-1);
614
615 i++;
616 }
617
618 return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
619 (long long)val / normal));
620 }
621
622 static int
dt_print_quantline(dtrace_hdl_t * dtp,FILE * fp,int64_t val,uint64_t normal,long double total,char positives,char negatives)623 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
624 uint64_t normal, long double total, char positives, char negatives)
625 {
626 long double f;
627 uint_t depth, len = 40;
628
629 const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
630 const char *spaces = " ";
631
632 assert(strlen(ats) == len && strlen(spaces) == len);
633 assert(!(total == 0 && (positives || negatives)));
634 assert(!(val < 0 && !negatives));
635 assert(!(val > 0 && !positives));
636 assert(!(val != 0 && total == 0));
637
638 if (!negatives) {
639 if (positives) {
640 if (dtp->dt_encoding == DT_ENCODING_UTF8) {
641 return (dt_print_quantline_utf8(dtp, fp, val,
642 normal, total));
643 }
644
645 f = (dt_fabsl((long double)val) * len) / total;
646 depth = (uint_t)(f + 0.5);
647 } else {
648 depth = 0;
649 }
650
651 return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
652 spaces + depth, (long long)val / normal));
653 }
654
655 if (!positives) {
656 f = (dt_fabsl((long double)val) * len) / total;
657 depth = (uint_t)(f + 0.5);
658
659 return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
660 ats + len - depth, (long long)val / normal));
661 }
662
663 /*
664 * If we're here, we have both positive and negative bucket values.
665 * To express this graphically, we're going to generate both positive
666 * and negative bars separated by a centerline. These bars are half
667 * the size of normal quantize()/lquantize() bars, so we divide the
668 * length in half before calculating the bar length.
669 */
670 len /= 2;
671 ats = &ats[len];
672 spaces = &spaces[len];
673
674 f = (dt_fabsl((long double)val) * len) / total;
675 depth = (uint_t)(f + 0.5);
676
677 if (val <= 0) {
678 return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
679 ats + len - depth, len, "", (long long)val / normal));
680 } else {
681 return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
682 ats + len - depth, spaces + depth,
683 (long long)val / normal));
684 }
685 }
686
687 /*
688 * As with UTF-8 printing of aggregations, we use a subset of the Unicode
689 * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
690 * aggregation.
691 */
692 #define DTRACE_AGGPACK_BASE 0x2581
693 #define DTRACE_AGGPACK_LEVELS 8
694
695 static int
dt_print_packed(dtrace_hdl_t * dtp,FILE * fp,long double datum,long double total)696 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
697 long double datum, long double total)
698 {
699 static boolean_t utf8_checked = B_FALSE;
700 static boolean_t utf8;
701 char *ascii = "__xxxxXX";
702 char *neg = "vvvvVV";
703 unsigned int len;
704 long double val;
705
706 if (!utf8_checked) {
707 char *term;
708
709 /*
710 * We want to determine if we can reasonably emit UTF-8 for our
711 * packed aggregation. To do this, we will check for terminals
712 * that are known to be primitive to emit UTF-8 on these.
713 */
714 utf8_checked = B_TRUE;
715
716 if (dtp->dt_encoding == DT_ENCODING_ASCII) {
717 utf8 = B_FALSE;
718 } else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
719 utf8 = B_TRUE;
720 } else if ((term = getenv("TERM")) != NULL &&
721 (strcmp(term, "sun") == 0 ||
722 strcmp(term, "sun-color") == 0) ||
723 strcmp(term, "dumb") == 0) {
724 utf8 = B_FALSE;
725 } else {
726 utf8 = B_TRUE;
727 }
728 }
729
730 if (datum == 0)
731 return (dt_printf(dtp, fp, " "));
732
733 if (datum < 0) {
734 len = strlen(neg);
735 val = dt_fabsl(datum * (len - 1)) / total;
736 return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
737 }
738
739 if (utf8) {
740 int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
741 (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
742
743 return (dt_printf(dtp, fp, "%c%c%c",
744 DTRACE_AGGUTF8_BYTE0(block),
745 DTRACE_AGGUTF8_BYTE1(block),
746 DTRACE_AGGUTF8_BYTE2(block)));
747 }
748
749 len = strlen(ascii);
750 val = (datum * (len - 1)) / total;
751 return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
752 }
753
754 int
dt_print_quantize(dtrace_hdl_t * dtp,FILE * fp,const void * addr,size_t size,uint64_t normal)755 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
756 size_t size, uint64_t normal)
757 {
758 const int64_t *data = addr;
759 int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
760 long double total = 0;
761 char positives = 0, negatives = 0;
762
763 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
764 return (dt_set_errno(dtp, EDT_DMISMATCH));
765
766 while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
767 first_bin++;
768
769 if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
770 /*
771 * There isn't any data. This is possible if the aggregation
772 * has been clear()'d or if negative increment values have been
773 * used. Regardless, we'll print the buckets around 0.
774 */
775 first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
776 last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
777 } else {
778 if (first_bin > 0)
779 first_bin--;
780
781 while (last_bin > 0 && data[last_bin] == 0)
782 last_bin--;
783
784 if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
785 last_bin++;
786 }
787
788 for (i = first_bin; i <= last_bin; i++) {
789 positives |= (data[i] > 0);
790 negatives |= (data[i] < 0);
791 dt_quantize_total(dtp, data[i], &total);
792 }
793
794 if (dt_print_quanthdr(dtp, fp, 0) < 0)
795 return (-1);
796
797 for (i = first_bin; i <= last_bin; i++) {
798 if (dt_printf(dtp, fp, "%16lld ",
799 (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
800 return (-1);
801
802 if (dt_print_quantline(dtp, fp, data[i], normal, total,
803 positives, negatives) < 0)
804 return (-1);
805 }
806
807 return (0);
808 }
809
810 int
dt_print_quantize_packed(dtrace_hdl_t * dtp,FILE * fp,const void * addr,size_t size,const dtrace_aggdata_t * aggdata)811 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
812 size_t size, const dtrace_aggdata_t *aggdata)
813 {
814 const int64_t *data = addr;
815 long double total = 0, count = 0;
816 int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
817 int64_t minval, maxval;
818
819 if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
820 return (dt_set_errno(dtp, EDT_DMISMATCH));
821
822 if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
823 min--;
824
825 if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
826 max++;
827
828 minval = DTRACE_QUANTIZE_BUCKETVAL(min);
829 maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
830
831 if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
832 (long long)minval) < 0)
833 return (-1);
834
835 for (i = min; i <= max; i++) {
836 dt_quantize_total(dtp, data[i], &total);
837 count += data[i];
838 }
839
840 for (i = min; i <= max; i++) {
841 if (dt_print_packed(dtp, fp, data[i], total) < 0)
842 return (-1);
843 }
844
845 if (dt_printf(dtp, fp, ": %*lld | %lld\n",
846 -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
847 return (-1);
848
849 return (0);
850 }
851
852 int
dt_print_lquantize(dtrace_hdl_t * dtp,FILE * fp,const void * addr,size_t size,uint64_t normal)853 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
854 size_t size, uint64_t normal)
855 {
856 const int64_t *data = addr;
857 int i, first_bin, last_bin, base;
858 uint64_t arg;
859 long double total = 0;
860 uint16_t step, levels;
861 char positives = 0, negatives = 0;
862
863 if (size < sizeof (uint64_t))
864 return (dt_set_errno(dtp, EDT_DMISMATCH));
865
866 arg = *data++;
867 size -= sizeof (uint64_t);
868
869 base = DTRACE_LQUANTIZE_BASE(arg);
870 step = DTRACE_LQUANTIZE_STEP(arg);
871 levels = DTRACE_LQUANTIZE_LEVELS(arg);
872
873 first_bin = 0;
874 last_bin = levels + 1;
875
876 if (size != sizeof (uint64_t) * (levels + 2))
877 return (dt_set_errno(dtp, EDT_DMISMATCH));
878
879 while (first_bin <= levels + 1 && data[first_bin] == 0)
880 first_bin++;
881
882 if (first_bin > levels + 1) {
883 first_bin = 0;
884 last_bin = 2;
885 } else {
886 if (first_bin > 0)
887 first_bin--;
888
889 while (last_bin > 0 && data[last_bin] == 0)
890 last_bin--;
891
892 if (last_bin < levels + 1)
893 last_bin++;
894 }
895
896 for (i = first_bin; i <= last_bin; i++) {
897 positives |= (data[i] > 0);
898 negatives |= (data[i] < 0);
899 dt_quantize_total(dtp, data[i], &total);
900 }
901
902 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
903 "------------- Distribution -------------", "count") < 0)
904 return (-1);
905
906 for (i = first_bin; i <= last_bin; i++) {
907 char c[32];
908 int err;
909
910 if (i == 0) {
911 (void) snprintf(c, sizeof (c), "< %d", base);
912 err = dt_printf(dtp, fp, "%16s ", c);
913 } else if (i == levels + 1) {
914 (void) snprintf(c, sizeof (c), ">= %d",
915 base + (levels * step));
916 err = dt_printf(dtp, fp, "%16s ", c);
917 } else {
918 err = dt_printf(dtp, fp, "%16d ",
919 base + (i - 1) * step);
920 }
921
922 if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
923 total, positives, negatives) < 0)
924 return (-1);
925 }
926
927 return (0);
928 }
929
930 /*ARGSUSED*/
931 int
dt_print_lquantize_packed(dtrace_hdl_t * dtp,FILE * fp,const void * addr,size_t size,const dtrace_aggdata_t * aggdata)932 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
933 size_t size, const dtrace_aggdata_t *aggdata)
934 {
935 const int64_t *data = addr;
936 long double total = 0, count = 0;
937 int min, max, base, err;
938 uint64_t arg;
939 uint16_t step, levels;
940 char c[32];
941 unsigned int i;
942
943 if (size < sizeof (uint64_t))
944 return (dt_set_errno(dtp, EDT_DMISMATCH));
945
946 arg = *data++;
947 size -= sizeof (uint64_t);
948
949 base = DTRACE_LQUANTIZE_BASE(arg);
950 step = DTRACE_LQUANTIZE_STEP(arg);
951 levels = DTRACE_LQUANTIZE_LEVELS(arg);
952
953 if (size != sizeof (uint64_t) * (levels + 2))
954 return (dt_set_errno(dtp, EDT_DMISMATCH));
955
956 min = 0;
957 max = levels + 1;
958
959 if (min == 0) {
960 (void) snprintf(c, sizeof (c), "< %d", base);
961 err = dt_printf(dtp, fp, "%8s :", c);
962 } else {
963 err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
964 }
965
966 if (err < 0)
967 return (-1);
968
969 for (i = min; i <= max; i++) {
970 dt_quantize_total(dtp, data[i], &total);
971 count += data[i];
972 }
973
974 for (i = min; i <= max; i++) {
975 if (dt_print_packed(dtp, fp, data[i], total) < 0)
976 return (-1);
977 }
978
979 (void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
980 return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
981 }
982
983 int
dt_print_llquantize(dtrace_hdl_t * dtp,FILE * fp,const void * addr,size_t size,uint64_t normal)984 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
985 size_t size, uint64_t normal)
986 {
987 int i, first_bin, last_bin, bin = 1, order, levels;
988 uint16_t factor, low, high, nsteps;
989 const int64_t *data = addr;
990 int64_t value = 1, next, step;
991 char positives = 0, negatives = 0;
992 long double total = 0;
993 uint64_t arg;
994 char c[32];
995
996 if (size < sizeof (uint64_t))
997 return (dt_set_errno(dtp, EDT_DMISMATCH));
998
999 arg = *data++;
1000 size -= sizeof (uint64_t);
1001
1002 factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1003 low = DTRACE_LLQUANTIZE_LOW(arg);
1004 high = DTRACE_LLQUANTIZE_HIGH(arg);
1005 nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1006
1007 /*
1008 * We don't expect to be handed invalid llquantize() parameters here,
1009 * but sanity check them (to a degree) nonetheless.
1010 */
1011 if (size > INT32_MAX || factor < 2 || low >= high ||
1012 nsteps == 0 || factor > nsteps)
1013 return (dt_set_errno(dtp, EDT_DMISMATCH));
1014
1015 levels = (int)size / sizeof (uint64_t);
1016
1017 first_bin = 0;
1018 last_bin = levels - 1;
1019
1020 while (first_bin < levels && data[first_bin] == 0)
1021 first_bin++;
1022
1023 if (first_bin == levels) {
1024 first_bin = 0;
1025 last_bin = 1;
1026 } else {
1027 if (first_bin > 0)
1028 first_bin--;
1029
1030 while (last_bin > 0 && data[last_bin] == 0)
1031 last_bin--;
1032
1033 if (last_bin < levels - 1)
1034 last_bin++;
1035 }
1036
1037 for (i = first_bin; i <= last_bin; i++) {
1038 positives |= (data[i] > 0);
1039 negatives |= (data[i] < 0);
1040 dt_quantize_total(dtp, data[i], &total);
1041 }
1042
1043 if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1044 "------------- Distribution -------------", "count") < 0)
1045 return (-1);
1046
1047 for (order = 0; order < low; order++)
1048 value *= factor;
1049
1050 next = value * factor;
1051 step = next > nsteps ? next / nsteps : 1;
1052
1053 if (first_bin == 0) {
1054 (void) snprintf(c, sizeof (c), "< %lld", value);
1055
1056 if (dt_printf(dtp, fp, "%16s ", c) < 0)
1057 return (-1);
1058
1059 if (dt_print_quantline(dtp, fp, data[0], normal,
1060 total, positives, negatives) < 0)
1061 return (-1);
1062 }
1063
1064 while (order <= high) {
1065 if (bin >= first_bin && bin <= last_bin) {
1066 if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1067 return (-1);
1068
1069 if (dt_print_quantline(dtp, fp, data[bin],
1070 normal, total, positives, negatives) < 0)
1071 return (-1);
1072 }
1073
1074 assert(value < next);
1075 bin++;
1076
1077 if ((value += step) != next)
1078 continue;
1079
1080 next = value * factor;
1081 step = next > nsteps ? next / nsteps : 1;
1082 order++;
1083 }
1084
1085 if (last_bin < bin)
1086 return (0);
1087
1088 assert(last_bin == bin);
1089 (void) snprintf(c, sizeof (c), ">= %lld", value);
1090
1091 if (dt_printf(dtp, fp, "%16s ", c) < 0)
1092 return (-1);
1093
1094 return (dt_print_quantline(dtp, fp, data[bin], normal,
1095 total, positives, negatives));
1096 }
1097
1098 /*ARGSUSED*/
1099 static int
dt_print_average(dtrace_hdl_t * dtp,FILE * fp,caddr_t addr,size_t size,uint64_t normal)1100 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1101 size_t size, uint64_t normal)
1102 {
1103 /* LINTED - alignment */
1104 int64_t *data = (int64_t *)addr;
1105
1106 return (dt_printf(dtp, fp, " %16lld", data[0] ?
1107 (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1108 }
1109
1110 /*ARGSUSED*/
1111 static int
dt_print_stddev(dtrace_hdl_t * dtp,FILE * fp,caddr_t addr,size_t size,uint64_t normal)1112 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1113 size_t size, uint64_t normal)
1114 {
1115 /* LINTED - alignment */
1116 uint64_t *data = (uint64_t *)addr;
1117
1118 return (dt_printf(dtp, fp, " %16llu", data[0] ?
1119 (unsigned long long) dt_stddev(data, normal) : 0));
1120 }
1121
1122 /*ARGSUSED*/
1123 static int
dt_print_bytes(dtrace_hdl_t * dtp,FILE * fp,caddr_t addr,size_t nbytes,int width,int quiet,int forceraw)1124 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1125 size_t nbytes, int width, int quiet, int forceraw)
1126 {
1127 /*
1128 * If the byte stream is a series of printable characters, followed by
1129 * a terminating byte, we print it out as a string. Otherwise, we
1130 * assume that it's something else and just print the bytes.
1131 */
1132 int i, j, margin = 5;
1133 char *c = (char *)addr;
1134
1135 if (nbytes == 0)
1136 return (0);
1137
1138 if (forceraw)
1139 goto raw;
1140
1141 if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1142 goto raw;
1143
1144 for (i = 0; i < nbytes; i++) {
1145 /*
1146 * We define a "printable character" to be one for which
1147 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1148 * or a character which is either backspace or the bell.
1149 * Backspace and the bell are regrettably special because
1150 * they fail the first two tests -- and yet they are entirely
1151 * printable. These are the only two control characters that
1152 * have meaning for the terminal and for which isprint(3C) and
1153 * isspace(3C) return 0.
1154 */
1155 if (isprint(c[i]) || isspace(c[i]) ||
1156 c[i] == '\b' || c[i] == '\a')
1157 continue;
1158
1159 if (c[i] == '\0' && i > 0) {
1160 /*
1161 * This looks like it might be a string. Before we
1162 * assume that it is indeed a string, check the
1163 * remainder of the byte range; if it contains
1164 * additional non-nul characters, we'll assume that
1165 * it's a binary stream that just happens to look like
1166 * a string, and we'll print out the individual bytes.
1167 */
1168 for (j = i + 1; j < nbytes; j++) {
1169 if (c[j] != '\0')
1170 break;
1171 }
1172
1173 if (j != nbytes)
1174 break;
1175
1176 if (quiet) {
1177 return (dt_printf(dtp, fp, "%s", c));
1178 } else {
1179 return (dt_printf(dtp, fp, " %s%*s",
1180 width < 0 ? " " : "", width, c));
1181 }
1182 }
1183
1184 break;
1185 }
1186
1187 if (i == nbytes) {
1188 /*
1189 * The byte range is all printable characters, but there is
1190 * no trailing nul byte. We'll assume that it's a string and
1191 * print it as such.
1192 */
1193 char *s = alloca(nbytes + 1);
1194 bcopy(c, s, nbytes);
1195 s[nbytes] = '\0';
1196 return (dt_printf(dtp, fp, " %-*s", width, s));
1197 }
1198
1199 raw:
1200 if (dt_printf(dtp, fp, "\n%*s ", margin, "") < 0)
1201 return (-1);
1202
1203 for (i = 0; i < 16; i++)
1204 if (dt_printf(dtp, fp, " %c", "0123456789abcdef"[i]) < 0)
1205 return (-1);
1206
1207 if (dt_printf(dtp, fp, " 0123456789abcdef\n") < 0)
1208 return (-1);
1209
1210
1211 for (i = 0; i < nbytes; i += 16) {
1212 if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1213 return (-1);
1214
1215 for (j = i; j < i + 16 && j < nbytes; j++) {
1216 if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1217 return (-1);
1218 }
1219
1220 while (j++ % 16) {
1221 if (dt_printf(dtp, fp, " ") < 0)
1222 return (-1);
1223 }
1224
1225 if (dt_printf(dtp, fp, " ") < 0)
1226 return (-1);
1227
1228 for (j = i; j < i + 16 && j < nbytes; j++) {
1229 if (dt_printf(dtp, fp, "%c",
1230 c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1231 return (-1);
1232 }
1233
1234 if (dt_printf(dtp, fp, "\n") < 0)
1235 return (-1);
1236 }
1237
1238 return (0);
1239 }
1240
1241 int
dt_print_stack(dtrace_hdl_t * dtp,FILE * fp,const char * format,caddr_t addr,int depth,int size)1242 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1243 caddr_t addr, int depth, int size)
1244 {
1245 dtrace_syminfo_t dts;
1246 GElf_Sym sym;
1247 int i, indent;
1248 char c[PATH_MAX * 2];
1249 uint64_t pc;
1250
1251 if (dt_printf(dtp, fp, "\n") < 0)
1252 return (-1);
1253
1254 if (format == NULL)
1255 format = "%s";
1256
1257 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1258 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1259 else
1260 indent = _dtrace_stkindent;
1261
1262 for (i = 0; i < depth; i++) {
1263 switch (size) {
1264 case sizeof (uint32_t):
1265 /* LINTED - alignment */
1266 pc = *((uint32_t *)addr);
1267 break;
1268
1269 case sizeof (uint64_t):
1270 /* LINTED - alignment */
1271 pc = *((uint64_t *)addr);
1272 break;
1273
1274 default:
1275 return (dt_set_errno(dtp, EDT_BADSTACKPC));
1276 }
1277
1278 if (pc == NULL)
1279 break;
1280
1281 addr += size;
1282
1283 if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1284 return (-1);
1285
1286 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1287 if (pc > sym.st_value) {
1288 (void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1289 dts.dts_object, dts.dts_name,
1290 pc - sym.st_value);
1291 } else {
1292 (void) snprintf(c, sizeof (c), "%s`%s",
1293 dts.dts_object, dts.dts_name);
1294 }
1295 } else {
1296 /*
1297 * We'll repeat the lookup, but this time we'll specify
1298 * a NULL GElf_Sym -- indicating that we're only
1299 * interested in the containing module.
1300 */
1301 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1302 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1303 dts.dts_object, pc);
1304 } else {
1305 (void) snprintf(c, sizeof (c), "0x%llx", pc);
1306 }
1307 }
1308
1309 if (dt_printf(dtp, fp, format, c) < 0)
1310 return (-1);
1311
1312 if (dt_printf(dtp, fp, "\n") < 0)
1313 return (-1);
1314 }
1315
1316 return (0);
1317 }
1318
1319 int
dt_print_ustack(dtrace_hdl_t * dtp,FILE * fp,const char * format,caddr_t addr,uint64_t arg)1320 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1321 caddr_t addr, uint64_t arg)
1322 {
1323 /* LINTED - alignment */
1324 uint64_t *pc = (uint64_t *)addr;
1325 uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1326 uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1327 const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1328 const char *str = strsize ? strbase : NULL;
1329 int err = 0;
1330
1331 char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1332 struct ps_prochandle *P;
1333 GElf_Sym sym;
1334 int i, indent;
1335 pid_t pid;
1336
1337 if (depth == 0)
1338 return (0);
1339
1340 pid = (pid_t)*pc++;
1341
1342 if (dt_printf(dtp, fp, "\n") < 0)
1343 return (-1);
1344
1345 if (format == NULL)
1346 format = "%s";
1347
1348 if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1349 indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1350 else
1351 indent = _dtrace_stkindent;
1352
1353 /*
1354 * Ultimately, we need to add an entry point in the library vector for
1355 * determining <symbol, offset> from <pid, address>. For now, if
1356 * this is a vector open, we just print the raw address or string.
1357 */
1358 if (dtp->dt_vector == NULL)
1359 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1360 else
1361 P = NULL;
1362
1363 if (P != NULL)
1364 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1365
1366 for (i = 0; i < depth && pc[i] != NULL; i++) {
1367 const prmap_t *map;
1368
1369 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1370 break;
1371
1372 if (P != NULL && Plookup_by_addr(P, pc[i],
1373 name, sizeof (name), &sym) == 0) {
1374 (void) Pobjname(P, pc[i], objname, sizeof (objname));
1375
1376 if (pc[i] > sym.st_value) {
1377 (void) snprintf(c, sizeof (c),
1378 "%s`%s+0x%llx", dt_basename(objname), name,
1379 (u_longlong_t)(pc[i] - sym.st_value));
1380 } else {
1381 (void) snprintf(c, sizeof (c),
1382 "%s`%s", dt_basename(objname), name);
1383 }
1384 } else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1385 (P == NULL || (map = Paddr_to_map(P, pc[i])) == NULL ||
1386 map->pr_mflags & MA_WRITE)) {
1387 /*
1388 * If the current string pointer in the string table
1389 * does not point to an empty string _and_ the program
1390 * counter falls in a writable region, we'll use the
1391 * string from the string table instead of the raw
1392 * address. This last condition is necessary because
1393 * some (broken) ustack helpers will return a string
1394 * even for a program counter that they can't
1395 * identify. If we have a string for a program
1396 * counter that falls in a segment that isn't
1397 * writable, we assume that we have fallen into this
1398 * case and we refuse to use the string. Finally,
1399 * note that if we could not grab the process (e.g.,
1400 * because it exited), the information from the helper
1401 * is better than nothing.
1402 */
1403 (void) snprintf(c, sizeof (c), "%s", str);
1404 } else {
1405 if (P != NULL && Pobjname(P, pc[i], objname,
1406 sizeof (objname)) != NULL) {
1407 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1408 dt_basename(objname), (u_longlong_t)pc[i]);
1409 } else {
1410 (void) snprintf(c, sizeof (c), "0x%llx",
1411 (u_longlong_t)pc[i]);
1412 }
1413 }
1414
1415 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1416 break;
1417
1418 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1419 break;
1420
1421 if (str != NULL && str[0] == '@') {
1422 /*
1423 * If the first character of the string is an "at" sign,
1424 * then the string is inferred to be an annotation --
1425 * and it is printed out beneath the frame and offset
1426 * with brackets.
1427 */
1428 if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1429 break;
1430
1431 (void) snprintf(c, sizeof (c), " [ %s ]", &str[1]);
1432
1433 if ((err = dt_printf(dtp, fp, format, c)) < 0)
1434 break;
1435
1436 if ((err = dt_printf(dtp, fp, "\n")) < 0)
1437 break;
1438 }
1439
1440 if (str != NULL) {
1441 str += strlen(str) + 1;
1442 if (str - strbase >= strsize)
1443 str = NULL;
1444 }
1445 }
1446
1447 if (P != NULL) {
1448 dt_proc_unlock(dtp, P);
1449 dt_proc_release(dtp, P);
1450 }
1451
1452 return (err);
1453 }
1454
1455 static int
dt_print_usym(dtrace_hdl_t * dtp,FILE * fp,caddr_t addr,dtrace_actkind_t act)1456 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1457 {
1458 /* LINTED - alignment */
1459 uint64_t pid = ((uint64_t *)addr)[0];
1460 /* LINTED - alignment */
1461 uint64_t pc = ((uint64_t *)addr)[1];
1462 const char *format = " %-50s";
1463 char *s;
1464 int n, len = 256;
1465
1466 if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1467 struct ps_prochandle *P;
1468
1469 if ((P = dt_proc_grab(dtp, pid,
1470 PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1471 GElf_Sym sym;
1472
1473 dt_proc_lock(dtp, P);
1474
1475 if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1476 pc = sym.st_value;
1477
1478 dt_proc_unlock(dtp, P);
1479 dt_proc_release(dtp, P);
1480 }
1481 }
1482
1483 do {
1484 n = len;
1485 s = alloca(n);
1486 } while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1487
1488 return (dt_printf(dtp, fp, format, s));
1489 }
1490
1491 int
dt_print_umod(dtrace_hdl_t * dtp,FILE * fp,const char * format,caddr_t addr)1492 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1493 {
1494 /* LINTED - alignment */
1495 uint64_t pid = ((uint64_t *)addr)[0];
1496 /* LINTED - alignment */
1497 uint64_t pc = ((uint64_t *)addr)[1];
1498 int err = 0;
1499
1500 char objname[PATH_MAX], c[PATH_MAX * 2];
1501 struct ps_prochandle *P;
1502
1503 if (format == NULL)
1504 format = " %-50s";
1505
1506 /*
1507 * See the comment in dt_print_ustack() for the rationale for
1508 * printing raw addresses in the vectored case.
1509 */
1510 if (dtp->dt_vector == NULL)
1511 P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1512 else
1513 P = NULL;
1514
1515 if (P != NULL)
1516 dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1517
1518 if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != NULL) {
1519 (void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1520 } else {
1521 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1522 }
1523
1524 err = dt_printf(dtp, fp, format, c);
1525
1526 if (P != NULL) {
1527 dt_proc_unlock(dtp, P);
1528 dt_proc_release(dtp, P);
1529 }
1530
1531 return (err);
1532 }
1533
1534 static int
dt_print_sym(dtrace_hdl_t * dtp,FILE * fp,const char * format,caddr_t addr)1535 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1536 {
1537 /* LINTED - alignment */
1538 uint64_t pc = *((uint64_t *)addr);
1539 dtrace_syminfo_t dts;
1540 GElf_Sym sym;
1541 char c[PATH_MAX * 2];
1542
1543 if (format == NULL)
1544 format = " %-50s";
1545
1546 if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1547 (void) snprintf(c, sizeof (c), "%s`%s",
1548 dts.dts_object, dts.dts_name);
1549 } else {
1550 /*
1551 * We'll repeat the lookup, but this time we'll specify a
1552 * NULL GElf_Sym -- indicating that we're only interested in
1553 * the containing module.
1554 */
1555 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1556 (void) snprintf(c, sizeof (c), "%s`0x%llx",
1557 dts.dts_object, (u_longlong_t)pc);
1558 } else {
1559 (void) snprintf(c, sizeof (c), "0x%llx",
1560 (u_longlong_t)pc);
1561 }
1562 }
1563
1564 if (dt_printf(dtp, fp, format, c) < 0)
1565 return (-1);
1566
1567 return (0);
1568 }
1569
1570 int
dt_print_mod(dtrace_hdl_t * dtp,FILE * fp,const char * format,caddr_t addr)1571 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1572 {
1573 /* LINTED - alignment */
1574 uint64_t pc = *((uint64_t *)addr);
1575 dtrace_syminfo_t dts;
1576 char c[PATH_MAX * 2];
1577
1578 if (format == NULL)
1579 format = " %-50s";
1580
1581 if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1582 (void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1583 } else {
1584 (void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1585 }
1586
1587 if (dt_printf(dtp, fp, format, c) < 0)
1588 return (-1);
1589
1590 return (0);
1591 }
1592
1593 typedef struct dt_normal {
1594 dtrace_aggvarid_t dtnd_id;
1595 uint64_t dtnd_normal;
1596 } dt_normal_t;
1597
1598 static int
dt_normalize_agg(const dtrace_aggdata_t * aggdata,void * arg)1599 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1600 {
1601 dt_normal_t *normal = arg;
1602 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1603 dtrace_aggvarid_t id = normal->dtnd_id;
1604
1605 if (agg->dtagd_nrecs == 0)
1606 return (DTRACE_AGGWALK_NEXT);
1607
1608 if (agg->dtagd_varid != id)
1609 return (DTRACE_AGGWALK_NEXT);
1610
1611 ((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1612 return (DTRACE_AGGWALK_NORMALIZE);
1613 }
1614
1615 static int
dt_normalize(dtrace_hdl_t * dtp,caddr_t base,dtrace_recdesc_t * rec)1616 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1617 {
1618 dt_normal_t normal;
1619 caddr_t addr;
1620
1621 /*
1622 * We (should) have two records: the aggregation ID followed by the
1623 * normalization value.
1624 */
1625 addr = base + rec->dtrd_offset;
1626
1627 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1628 return (dt_set_errno(dtp, EDT_BADNORMAL));
1629
1630 /* LINTED - alignment */
1631 normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1632 rec++;
1633
1634 if (rec->dtrd_action != DTRACEACT_LIBACT)
1635 return (dt_set_errno(dtp, EDT_BADNORMAL));
1636
1637 if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1638 return (dt_set_errno(dtp, EDT_BADNORMAL));
1639
1640 addr = base + rec->dtrd_offset;
1641
1642 switch (rec->dtrd_size) {
1643 case sizeof (uint64_t):
1644 /* LINTED - alignment */
1645 normal.dtnd_normal = *((uint64_t *)addr);
1646 break;
1647 case sizeof (uint32_t):
1648 /* LINTED - alignment */
1649 normal.dtnd_normal = *((uint32_t *)addr);
1650 break;
1651 case sizeof (uint16_t):
1652 /* LINTED - alignment */
1653 normal.dtnd_normal = *((uint16_t *)addr);
1654 break;
1655 case sizeof (uint8_t):
1656 normal.dtnd_normal = *((uint8_t *)addr);
1657 break;
1658 default:
1659 return (dt_set_errno(dtp, EDT_BADNORMAL));
1660 }
1661
1662 (void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1663
1664 return (0);
1665 }
1666
1667 static int
dt_denormalize_agg(const dtrace_aggdata_t * aggdata,void * arg)1668 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1669 {
1670 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1671 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1672
1673 if (agg->dtagd_nrecs == 0)
1674 return (DTRACE_AGGWALK_NEXT);
1675
1676 if (agg->dtagd_varid != id)
1677 return (DTRACE_AGGWALK_NEXT);
1678
1679 return (DTRACE_AGGWALK_DENORMALIZE);
1680 }
1681
1682 static int
dt_clear_agg(const dtrace_aggdata_t * aggdata,void * arg)1683 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1684 {
1685 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1686 dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1687
1688 if (agg->dtagd_nrecs == 0)
1689 return (DTRACE_AGGWALK_NEXT);
1690
1691 if (agg->dtagd_varid != id)
1692 return (DTRACE_AGGWALK_NEXT);
1693
1694 return (DTRACE_AGGWALK_CLEAR);
1695 }
1696
1697 typedef struct dt_trunc {
1698 dtrace_aggvarid_t dttd_id;
1699 uint64_t dttd_remaining;
1700 } dt_trunc_t;
1701
1702 static int
dt_trunc_agg(const dtrace_aggdata_t * aggdata,void * arg)1703 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1704 {
1705 dt_trunc_t *trunc = arg;
1706 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1707 dtrace_aggvarid_t id = trunc->dttd_id;
1708
1709 if (agg->dtagd_nrecs == 0)
1710 return (DTRACE_AGGWALK_NEXT);
1711
1712 if (agg->dtagd_varid != id)
1713 return (DTRACE_AGGWALK_NEXT);
1714
1715 if (trunc->dttd_remaining == 0)
1716 return (DTRACE_AGGWALK_REMOVE);
1717
1718 trunc->dttd_remaining--;
1719 return (DTRACE_AGGWALK_NEXT);
1720 }
1721
1722 static int
dt_trunc(dtrace_hdl_t * dtp,caddr_t base,dtrace_recdesc_t * rec)1723 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1724 {
1725 dt_trunc_t trunc;
1726 caddr_t addr;
1727 int64_t remaining;
1728 int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1729
1730 /*
1731 * We (should) have two records: the aggregation ID followed by the
1732 * number of aggregation entries after which the aggregation is to be
1733 * truncated.
1734 */
1735 addr = base + rec->dtrd_offset;
1736
1737 if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1738 return (dt_set_errno(dtp, EDT_BADTRUNC));
1739
1740 /* LINTED - alignment */
1741 trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1742 rec++;
1743
1744 if (rec->dtrd_action != DTRACEACT_LIBACT)
1745 return (dt_set_errno(dtp, EDT_BADTRUNC));
1746
1747 if (rec->dtrd_arg != DT_ACT_TRUNC)
1748 return (dt_set_errno(dtp, EDT_BADTRUNC));
1749
1750 addr = base + rec->dtrd_offset;
1751
1752 switch (rec->dtrd_size) {
1753 case sizeof (uint64_t):
1754 /* LINTED - alignment */
1755 remaining = *((int64_t *)addr);
1756 break;
1757 case sizeof (uint32_t):
1758 /* LINTED - alignment */
1759 remaining = *((int32_t *)addr);
1760 break;
1761 case sizeof (uint16_t):
1762 /* LINTED - alignment */
1763 remaining = *((int16_t *)addr);
1764 break;
1765 case sizeof (uint8_t):
1766 remaining = *((int8_t *)addr);
1767 break;
1768 default:
1769 return (dt_set_errno(dtp, EDT_BADNORMAL));
1770 }
1771
1772 if (remaining < 0) {
1773 func = dtrace_aggregate_walk_valsorted;
1774 remaining = -remaining;
1775 } else {
1776 func = dtrace_aggregate_walk_valrevsorted;
1777 }
1778
1779 assert(remaining >= 0);
1780 trunc.dttd_remaining = remaining;
1781
1782 (void) func(dtp, dt_trunc_agg, &trunc);
1783
1784 return (0);
1785 }
1786
1787 static int
dt_print_datum(dtrace_hdl_t * dtp,FILE * fp,dtrace_recdesc_t * rec,caddr_t addr,size_t size,const dtrace_aggdata_t * aggdata,uint64_t normal,dt_print_aggdata_t * pd)1788 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1789 caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1790 uint64_t normal, dt_print_aggdata_t *pd)
1791 {
1792 int err, width;
1793 dtrace_actkind_t act = rec->dtrd_action;
1794 boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1795 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1796
1797 static struct {
1798 size_t size;
1799 int width;
1800 int packedwidth;
1801 } *fmt, fmttab[] = {
1802 { sizeof (uint8_t), 3, 3 },
1803 { sizeof (uint16_t), 5, 5 },
1804 { sizeof (uint32_t), 8, 8 },
1805 { sizeof (uint64_t), 16, 16 },
1806 { 0, -50, 16 }
1807 };
1808
1809 if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1810 dtrace_recdesc_t *r;
1811
1812 width = 0;
1813
1814 /*
1815 * To print our quantization header for either an agghist or
1816 * aggpack aggregation, we need to iterate through all of our
1817 * of our records to determine their width.
1818 */
1819 for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1820 for (fmt = fmttab; fmt->size &&
1821 fmt->size != r->dtrd_size; fmt++)
1822 continue;
1823
1824 width += fmt->packedwidth + 1;
1825 }
1826
1827 if (pd->dtpa_agghist) {
1828 if (dt_print_quanthdr(dtp, fp, width) < 0)
1829 return (-1);
1830 } else {
1831 if (dt_print_quanthdr_packed(dtp, fp,
1832 width, aggdata, r->dtrd_action) < 0)
1833 return (-1);
1834 }
1835
1836 pd->dtpa_agghisthdr = agg->dtagd_varid;
1837 }
1838
1839 if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1840 char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1841 char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1842 int64_t val;
1843
1844 assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1845 val = (long long)*((uint64_t *)addr);
1846
1847 if (dt_printf(dtp, fp, " ") < 0)
1848 return (-1);
1849
1850 return (dt_print_quantline(dtp, fp, val, normal,
1851 aggdata->dtada_total, positives, negatives));
1852 }
1853
1854 if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1855 switch (act) {
1856 case DTRACEAGG_QUANTIZE:
1857 return (dt_print_quantize_packed(dtp,
1858 fp, addr, size, aggdata));
1859 case DTRACEAGG_LQUANTIZE:
1860 return (dt_print_lquantize_packed(dtp,
1861 fp, addr, size, aggdata));
1862 default:
1863 break;
1864 }
1865 }
1866
1867 switch (act) {
1868 case DTRACEACT_STACK:
1869 return (dt_print_stack(dtp, fp, NULL, addr,
1870 rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1871
1872 case DTRACEACT_USTACK:
1873 case DTRACEACT_JSTACK:
1874 return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1875
1876 case DTRACEACT_USYM:
1877 case DTRACEACT_UADDR:
1878 return (dt_print_usym(dtp, fp, addr, act));
1879
1880 case DTRACEACT_UMOD:
1881 return (dt_print_umod(dtp, fp, NULL, addr));
1882
1883 case DTRACEACT_SYM:
1884 return (dt_print_sym(dtp, fp, NULL, addr));
1885
1886 case DTRACEACT_MOD:
1887 return (dt_print_mod(dtp, fp, NULL, addr));
1888
1889 case DTRACEAGG_QUANTIZE:
1890 return (dt_print_quantize(dtp, fp, addr, size, normal));
1891
1892 case DTRACEAGG_LQUANTIZE:
1893 return (dt_print_lquantize(dtp, fp, addr, size, normal));
1894
1895 case DTRACEAGG_LLQUANTIZE:
1896 return (dt_print_llquantize(dtp, fp, addr, size, normal));
1897
1898 case DTRACEAGG_AVG:
1899 return (dt_print_average(dtp, fp, addr, size, normal));
1900
1901 case DTRACEAGG_STDDEV:
1902 return (dt_print_stddev(dtp, fp, addr, size, normal));
1903
1904 default:
1905 break;
1906 }
1907
1908 for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1909 continue;
1910
1911 width = packed ? fmt->packedwidth : fmt->width;
1912
1913 switch (size) {
1914 case sizeof (uint64_t):
1915 err = dt_printf(dtp, fp, " %*lld", width,
1916 /* LINTED - alignment */
1917 (long long)*((uint64_t *)addr) / normal);
1918 break;
1919 case sizeof (uint32_t):
1920 /* LINTED - alignment */
1921 err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1922 (uint32_t)normal);
1923 break;
1924 case sizeof (uint16_t):
1925 /* LINTED - alignment */
1926 err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1927 (uint32_t)normal);
1928 break;
1929 case sizeof (uint8_t):
1930 err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1931 (uint32_t)normal);
1932 break;
1933 default:
1934 err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1935 break;
1936 }
1937
1938 return (err);
1939 }
1940
1941 int
dt_print_aggs(const dtrace_aggdata_t ** aggsdata,int naggvars,void * arg)1942 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1943 {
1944 int i, aggact = 0;
1945 dt_print_aggdata_t *pd = arg;
1946 const dtrace_aggdata_t *aggdata = aggsdata[0];
1947 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1948 FILE *fp = pd->dtpa_fp;
1949 dtrace_hdl_t *dtp = pd->dtpa_dtp;
1950 dtrace_recdesc_t *rec;
1951 dtrace_actkind_t act;
1952 caddr_t addr;
1953 size_t size;
1954
1955 pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1956 pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1957
1958 /*
1959 * Iterate over each record description in the key, printing the traced
1960 * data, skipping the first datum (the tuple member created by the
1961 * compiler).
1962 */
1963 for (i = 1; i < agg->dtagd_nrecs; i++) {
1964 rec = &agg->dtagd_rec[i];
1965 act = rec->dtrd_action;
1966 addr = aggdata->dtada_data + rec->dtrd_offset;
1967 size = rec->dtrd_size;
1968
1969 if (DTRACEACT_ISAGG(act)) {
1970 aggact = i;
1971 break;
1972 }
1973
1974 if (dt_print_datum(dtp, fp, rec, addr,
1975 size, aggdata, 1, pd) < 0)
1976 return (-1);
1977
1978 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1979 DTRACE_BUFDATA_AGGKEY) < 0)
1980 return (-1);
1981 }
1982
1983 assert(aggact != 0);
1984
1985 for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
1986 uint64_t normal;
1987
1988 aggdata = aggsdata[i];
1989 agg = aggdata->dtada_desc;
1990 rec = &agg->dtagd_rec[aggact];
1991 act = rec->dtrd_action;
1992 addr = aggdata->dtada_data + rec->dtrd_offset;
1993 size = rec->dtrd_size;
1994
1995 assert(DTRACEACT_ISAGG(act));
1996 normal = aggdata->dtada_normal;
1997
1998 if (dt_print_datum(dtp, fp, rec, addr,
1999 size, aggdata, normal, pd) < 0)
2000 return (-1);
2001
2002 if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2003 DTRACE_BUFDATA_AGGVAL) < 0)
2004 return (-1);
2005
2006 if (!pd->dtpa_allunprint)
2007 agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2008 }
2009
2010 if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2011 if (dt_printf(dtp, fp, "\n") < 0)
2012 return (-1);
2013 }
2014
2015 if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2016 DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2017 return (-1);
2018
2019 return (0);
2020 }
2021
2022 int
dt_print_agg(const dtrace_aggdata_t * aggdata,void * arg)2023 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2024 {
2025 dt_print_aggdata_t *pd = arg;
2026 dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2027 dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2028
2029 if (pd->dtpa_allunprint) {
2030 if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2031 return (0);
2032 } else {
2033 /*
2034 * If we're not printing all unprinted aggregations, then the
2035 * aggregation variable ID denotes a specific aggregation
2036 * variable that we should print -- skip any other aggregations
2037 * that we encounter.
2038 */
2039 if (agg->dtagd_nrecs == 0)
2040 return (0);
2041
2042 if (aggvarid != agg->dtagd_varid)
2043 return (0);
2044 }
2045
2046 return (dt_print_aggs(&aggdata, 1, arg));
2047 }
2048
2049 int
dt_setopt(dtrace_hdl_t * dtp,const dtrace_probedata_t * data,const char * option,const char * value)2050 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2051 const char *option, const char *value)
2052 {
2053 int len, rval;
2054 char *msg;
2055 const char *errstr;
2056 dtrace_setoptdata_t optdata;
2057
2058 bzero(&optdata, sizeof (optdata));
2059 (void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2060
2061 if (dtrace_setopt(dtp, option, value) == 0) {
2062 (void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2063 optdata.dtsda_probe = data;
2064 optdata.dtsda_option = option;
2065 optdata.dtsda_handle = dtp;
2066
2067 if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2068 return (rval);
2069
2070 return (0);
2071 }
2072
2073 errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2074 len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2075 msg = alloca(len);
2076
2077 (void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2078 option, value, errstr);
2079
2080 if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2081 return (0);
2082
2083 return (rval);
2084 }
2085
2086 static int
dt_consume_cpu(dtrace_hdl_t * dtp,FILE * fp,int cpu,dtrace_bufdesc_t * buf,boolean_t just_one,dtrace_consume_probe_f * efunc,dtrace_consume_rec_f * rfunc,void * arg)2087 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2088 dtrace_bufdesc_t *buf, boolean_t just_one,
2089 dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2090 {
2091 dtrace_epid_t id;
2092 size_t offs;
2093 int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2094 int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2095 int rval, i, n;
2096 uint64_t tracememsize = 0;
2097 dtrace_probedata_t data;
2098 uint64_t drops;
2099
2100 bzero(&data, sizeof (data));
2101 data.dtpda_handle = dtp;
2102 data.dtpda_cpu = cpu;
2103 data.dtpda_flow = dtp->dt_flow;
2104 data.dtpda_indent = dtp->dt_indent;
2105 data.dtpda_prefix = dtp->dt_prefix;
2106
2107 for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2108 dtrace_eprobedesc_t *epd;
2109
2110 /*
2111 * We're guaranteed to have an ID.
2112 */
2113 id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2114
2115 if (id == DTRACE_EPIDNONE) {
2116 /*
2117 * This is filler to assure proper alignment of the
2118 * next record; we simply ignore it.
2119 */
2120 offs += sizeof (id);
2121 continue;
2122 }
2123
2124 if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2125 &data.dtpda_pdesc)) != 0)
2126 return (rval);
2127
2128 epd = data.dtpda_edesc;
2129 data.dtpda_data = buf->dtbd_data + offs;
2130
2131 if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2132 rval = dt_handle(dtp, &data);
2133
2134 if (rval == DTRACE_CONSUME_NEXT)
2135 goto nextepid;
2136
2137 if (rval == DTRACE_CONSUME_ERROR)
2138 return (-1);
2139 }
2140
2141 if (flow)
2142 (void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2143 buf, offs);
2144
2145 rval = (*efunc)(&data, arg);
2146
2147 if (flow) {
2148 if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2149 data.dtpda_indent += 2;
2150 }
2151
2152 if (rval == DTRACE_CONSUME_NEXT)
2153 goto nextepid;
2154
2155 if (rval == DTRACE_CONSUME_ABORT)
2156 return (dt_set_errno(dtp, EDT_DIRABORT));
2157
2158 if (rval != DTRACE_CONSUME_THIS)
2159 return (dt_set_errno(dtp, EDT_BADRVAL));
2160
2161 for (i = 0; i < epd->dtepd_nrecs; i++) {
2162 caddr_t addr;
2163 dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2164 dtrace_actkind_t act = rec->dtrd_action;
2165
2166 data.dtpda_data = buf->dtbd_data + offs +
2167 rec->dtrd_offset;
2168 addr = data.dtpda_data;
2169
2170 if (act == DTRACEACT_LIBACT) {
2171 uint64_t arg = rec->dtrd_arg;
2172 dtrace_aggvarid_t id;
2173
2174 switch (arg) {
2175 case DT_ACT_CLEAR:
2176 /* LINTED - alignment */
2177 id = *((dtrace_aggvarid_t *)addr);
2178 (void) dtrace_aggregate_walk(dtp,
2179 dt_clear_agg, &id);
2180 continue;
2181
2182 case DT_ACT_DENORMALIZE:
2183 /* LINTED - alignment */
2184 id = *((dtrace_aggvarid_t *)addr);
2185 (void) dtrace_aggregate_walk(dtp,
2186 dt_denormalize_agg, &id);
2187 continue;
2188
2189 case DT_ACT_FTRUNCATE:
2190 if (fp == NULL)
2191 continue;
2192
2193 (void) fflush(fp);
2194 (void) ftruncate(fileno(fp), 0);
2195 (void) fseeko(fp, 0, SEEK_SET);
2196 continue;
2197
2198 case DT_ACT_NORMALIZE:
2199 if (i == epd->dtepd_nrecs - 1)
2200 return (dt_set_errno(dtp,
2201 EDT_BADNORMAL));
2202
2203 if (dt_normalize(dtp,
2204 buf->dtbd_data + offs, rec) != 0)
2205 return (-1);
2206
2207 i++;
2208 continue;
2209
2210 case DT_ACT_SETOPT: {
2211 uint64_t *opts = dtp->dt_options;
2212 dtrace_recdesc_t *valrec;
2213 uint32_t valsize;
2214 caddr_t val;
2215 int rv;
2216
2217 if (i == epd->dtepd_nrecs - 1) {
2218 return (dt_set_errno(dtp,
2219 EDT_BADSETOPT));
2220 }
2221
2222 valrec = &epd->dtepd_rec[++i];
2223 valsize = valrec->dtrd_size;
2224
2225 if (valrec->dtrd_action != act ||
2226 valrec->dtrd_arg != arg) {
2227 return (dt_set_errno(dtp,
2228 EDT_BADSETOPT));
2229 }
2230
2231 if (valsize > sizeof (uint64_t)) {
2232 val = buf->dtbd_data + offs +
2233 valrec->dtrd_offset;
2234 } else {
2235 val = "1";
2236 }
2237
2238 rv = dt_setopt(dtp, &data, addr, val);
2239
2240 if (rv != 0)
2241 return (-1);
2242
2243 flow = (opts[DTRACEOPT_FLOWINDENT] !=
2244 DTRACEOPT_UNSET);
2245 quiet = (opts[DTRACEOPT_QUIET] !=
2246 DTRACEOPT_UNSET);
2247
2248 continue;
2249 }
2250
2251 case DT_ACT_TRUNC:
2252 if (i == epd->dtepd_nrecs - 1)
2253 return (dt_set_errno(dtp,
2254 EDT_BADTRUNC));
2255
2256 if (dt_trunc(dtp,
2257 buf->dtbd_data + offs, rec) != 0)
2258 return (-1);
2259
2260 i++;
2261 continue;
2262
2263 default:
2264 continue;
2265 }
2266 }
2267
2268 if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2269 rec->dtrd_size == sizeof (uint64_t)) {
2270 /* LINTED - alignment */
2271 tracememsize = *((unsigned long long *)addr);
2272 continue;
2273 }
2274
2275 rval = (*rfunc)(&data, rec, arg);
2276
2277 if (rval == DTRACE_CONSUME_NEXT)
2278 continue;
2279
2280 if (rval == DTRACE_CONSUME_ABORT)
2281 return (dt_set_errno(dtp, EDT_DIRABORT));
2282
2283 if (rval != DTRACE_CONSUME_THIS)
2284 return (dt_set_errno(dtp, EDT_BADRVAL));
2285
2286 if (act == DTRACEACT_STACK) {
2287 int depth = rec->dtrd_arg;
2288
2289 if (dt_print_stack(dtp, fp, NULL, addr, depth,
2290 rec->dtrd_size / depth) < 0)
2291 return (-1);
2292 goto nextrec;
2293 }
2294
2295 if (act == DTRACEACT_USTACK ||
2296 act == DTRACEACT_JSTACK) {
2297 if (dt_print_ustack(dtp, fp, NULL,
2298 addr, rec->dtrd_arg) < 0)
2299 return (-1);
2300 goto nextrec;
2301 }
2302
2303 if (act == DTRACEACT_SYM) {
2304 if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2305 return (-1);
2306 goto nextrec;
2307 }
2308
2309 if (act == DTRACEACT_MOD) {
2310 if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2311 return (-1);
2312 goto nextrec;
2313 }
2314
2315 if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2316 if (dt_print_usym(dtp, fp, addr, act) < 0)
2317 return (-1);
2318 goto nextrec;
2319 }
2320
2321 if (act == DTRACEACT_UMOD) {
2322 if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2323 return (-1);
2324 goto nextrec;
2325 }
2326
2327 if (DTRACEACT_ISPRINTFLIKE(act)) {
2328 void *fmtdata;
2329 int (*func)(dtrace_hdl_t *, FILE *, void *,
2330 const dtrace_probedata_t *,
2331 const dtrace_recdesc_t *, uint_t,
2332 const void *buf, size_t);
2333
2334 if ((fmtdata = dt_format_lookup(dtp,
2335 rec->dtrd_format)) == NULL)
2336 goto nofmt;
2337
2338 switch (act) {
2339 case DTRACEACT_PRINTF:
2340 func = dtrace_fprintf;
2341 break;
2342 case DTRACEACT_PRINTA:
2343 func = dtrace_fprinta;
2344 break;
2345 case DTRACEACT_SYSTEM:
2346 func = dtrace_system;
2347 break;
2348 case DTRACEACT_FREOPEN:
2349 func = dtrace_freopen;
2350 break;
2351 }
2352
2353 n = (*func)(dtp, fp, fmtdata, &data,
2354 rec, epd->dtepd_nrecs - i,
2355 (uchar_t *)buf->dtbd_data + offs,
2356 buf->dtbd_size - offs);
2357
2358 if (n < 0)
2359 return (-1); /* errno is set for us */
2360
2361 if (n > 0)
2362 i += n - 1;
2363 goto nextrec;
2364 }
2365
2366 /*
2367 * If this is a DIF expression, and the record has a
2368 * format set, this indicates we have a CTF type name
2369 * associated with the data and we should try to print
2370 * it out by type.
2371 */
2372 if (act == DTRACEACT_DIFEXPR) {
2373 const char *strdata = dt_strdata_lookup(dtp,
2374 rec->dtrd_format);
2375 if (strdata != NULL) {
2376 n = dtrace_print(dtp, fp, strdata,
2377 addr, rec->dtrd_size);
2378
2379 /*
2380 * dtrace_print() will return -1 on
2381 * error, or return the number of bytes
2382 * consumed. It will return 0 if the
2383 * type couldn't be determined, and we
2384 * should fall through to the normal
2385 * trace method.
2386 */
2387 if (n < 0)
2388 return (-1);
2389
2390 if (n > 0)
2391 goto nextrec;
2392 }
2393 }
2394
2395 nofmt:
2396 if (act == DTRACEACT_PRINTA) {
2397 dt_print_aggdata_t pd;
2398 dtrace_aggvarid_t *aggvars;
2399 int j, naggvars = 0;
2400 size_t size = ((epd->dtepd_nrecs - i) *
2401 sizeof (dtrace_aggvarid_t));
2402
2403 if ((aggvars = dt_alloc(dtp, size)) == NULL)
2404 return (-1);
2405
2406 /*
2407 * This might be a printa() with multiple
2408 * aggregation variables. We need to scan
2409 * forward through the records until we find
2410 * a record from a different statement.
2411 */
2412 for (j = i; j < epd->dtepd_nrecs; j++) {
2413 dtrace_recdesc_t *nrec;
2414 caddr_t naddr;
2415
2416 nrec = &epd->dtepd_rec[j];
2417
2418 if (nrec->dtrd_uarg != rec->dtrd_uarg)
2419 break;
2420
2421 if (nrec->dtrd_action != act) {
2422 return (dt_set_errno(dtp,
2423 EDT_BADAGG));
2424 }
2425
2426 naddr = buf->dtbd_data + offs +
2427 nrec->dtrd_offset;
2428
2429 aggvars[naggvars++] =
2430 /* LINTED - alignment */
2431 *((dtrace_aggvarid_t *)naddr);
2432 }
2433
2434 i = j - 1;
2435 bzero(&pd, sizeof (pd));
2436 pd.dtpa_dtp = dtp;
2437 pd.dtpa_fp = fp;
2438
2439 assert(naggvars >= 1);
2440
2441 if (naggvars == 1) {
2442 pd.dtpa_id = aggvars[0];
2443 dt_free(dtp, aggvars);
2444
2445 if (dt_printf(dtp, fp, "\n") < 0 ||
2446 dtrace_aggregate_walk_sorted(dtp,
2447 dt_print_agg, &pd) < 0)
2448 return (-1);
2449 goto nextrec;
2450 }
2451
2452 if (dt_printf(dtp, fp, "\n") < 0 ||
2453 dtrace_aggregate_walk_joined(dtp, aggvars,
2454 naggvars, dt_print_aggs, &pd) < 0) {
2455 dt_free(dtp, aggvars);
2456 return (-1);
2457 }
2458
2459 dt_free(dtp, aggvars);
2460 goto nextrec;
2461 }
2462
2463 if (act == DTRACEACT_TRACEMEM) {
2464 if (tracememsize == 0 ||
2465 tracememsize > rec->dtrd_size) {
2466 tracememsize = rec->dtrd_size;
2467 }
2468
2469 n = dt_print_bytes(dtp, fp, addr,
2470 tracememsize, -33, quiet, 1);
2471
2472 tracememsize = 0;
2473
2474 if (n < 0)
2475 return (-1);
2476
2477 goto nextrec;
2478 }
2479
2480 switch (rec->dtrd_size) {
2481 case sizeof (uint64_t):
2482 n = dt_printf(dtp, fp,
2483 quiet ? "%lld" : " %16lld",
2484 /* LINTED - alignment */
2485 *((unsigned long long *)addr));
2486 break;
2487 case sizeof (uint32_t):
2488 n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2489 /* LINTED - alignment */
2490 *((uint32_t *)addr));
2491 break;
2492 case sizeof (uint16_t):
2493 n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2494 /* LINTED - alignment */
2495 *((uint16_t *)addr));
2496 break;
2497 case sizeof (uint8_t):
2498 n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2499 *((uint8_t *)addr));
2500 break;
2501 default:
2502 n = dt_print_bytes(dtp, fp, addr,
2503 rec->dtrd_size, -33, quiet, 0);
2504 break;
2505 }
2506
2507 if (n < 0)
2508 return (-1); /* errno is set for us */
2509
2510 nextrec:
2511 if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2512 return (-1); /* errno is set for us */
2513 }
2514
2515 /*
2516 * Call the record callback with a NULL record to indicate
2517 * that we're done processing this EPID.
2518 */
2519 rval = (*rfunc)(&data, NULL, arg);
2520 nextepid:
2521 offs += epd->dtepd_size;
2522 dtp->dt_last_epid = id;
2523 if (just_one) {
2524 buf->dtbd_oldest = offs;
2525 break;
2526 }
2527 }
2528
2529 dtp->dt_flow = data.dtpda_flow;
2530 dtp->dt_indent = data.dtpda_indent;
2531 dtp->dt_prefix = data.dtpda_prefix;
2532
2533 if ((drops = buf->dtbd_drops) == 0)
2534 return (0);
2535
2536 /*
2537 * Explicitly zero the drops to prevent us from processing them again.
2538 */
2539 buf->dtbd_drops = 0;
2540
2541 return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2542 }
2543
2544 /*
2545 * Reduce memory usage by shrinking the buffer if it's no more than half full.
2546 * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2547 * only 4-byte aligned.
2548 */
2549 static void
dt_realloc_buf(dtrace_hdl_t * dtp,dtrace_bufdesc_t * buf,int cursize)2550 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2551 {
2552 uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2553 if (used < cursize / 2) {
2554 int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2555 char *newdata = dt_alloc(dtp, used + misalign);
2556 if (newdata == NULL)
2557 return;
2558 bzero(newdata, misalign);
2559 bcopy(buf->dtbd_data + buf->dtbd_oldest,
2560 newdata + misalign, used);
2561 dt_free(dtp, buf->dtbd_data);
2562 buf->dtbd_oldest = misalign;
2563 buf->dtbd_size = used + misalign;
2564 buf->dtbd_data = newdata;
2565 }
2566 }
2567
2568 /*
2569 * If the ring buffer has wrapped, the data is not in order. Rearrange it
2570 * so that it is. Note, we need to preserve the alignment of the data at
2571 * dtbd_oldest, which is only 4-byte aligned.
2572 */
2573 static int
dt_unring_buf(dtrace_hdl_t * dtp,dtrace_bufdesc_t * buf)2574 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2575 {
2576 int misalign;
2577 char *newdata, *ndp;
2578
2579 if (buf->dtbd_oldest == 0)
2580 return (0);
2581
2582 misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2583 newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2584
2585 if (newdata == NULL)
2586 return (-1);
2587
2588 assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2589
2590 bzero(ndp, misalign);
2591 ndp += misalign;
2592
2593 bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2594 buf->dtbd_size - buf->dtbd_oldest);
2595 ndp += buf->dtbd_size - buf->dtbd_oldest;
2596
2597 bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2598
2599 dt_free(dtp, buf->dtbd_data);
2600 buf->dtbd_oldest = 0;
2601 buf->dtbd_data = newdata;
2602 buf->dtbd_size += misalign;
2603
2604 return (0);
2605 }
2606
2607 static void
dt_put_buf(dtrace_hdl_t * dtp,dtrace_bufdesc_t * buf)2608 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2609 {
2610 dt_free(dtp, buf->dtbd_data);
2611 dt_free(dtp, buf);
2612 }
2613
2614 /*
2615 * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2616 * data, or NULL if there is no data for this CPU.
2617 * Returns -1 on failure and sets dt_errno.
2618 */
2619 static int
dt_get_buf(dtrace_hdl_t * dtp,int cpu,dtrace_bufdesc_t ** bufp)2620 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2621 {
2622 dtrace_optval_t size;
2623 dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2624 int error;
2625
2626 if (buf == NULL)
2627 return (-1);
2628
2629 (void) dtrace_getopt(dtp, "bufsize", &size);
2630 buf->dtbd_data = dt_alloc(dtp, size);
2631 if (buf->dtbd_data == NULL) {
2632 dt_free(dtp, buf);
2633 return (-1);
2634 }
2635 buf->dtbd_size = size;
2636 buf->dtbd_cpu = cpu;
2637
2638 if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2639 dt_put_buf(dtp, buf);
2640 /*
2641 * If we failed with ENOENT, it may be because the
2642 * CPU was unconfigured -- this is okay. Any other
2643 * error, however, is unexpected.
2644 */
2645 if (errno == ENOENT) {
2646 *bufp = NULL;
2647 return (0);
2648 }
2649
2650 return (dt_set_errno(dtp, errno));
2651 }
2652
2653 error = dt_unring_buf(dtp, buf);
2654 if (error != 0) {
2655 dt_put_buf(dtp, buf);
2656 return (error);
2657 }
2658 dt_realloc_buf(dtp, buf, size);
2659
2660 *bufp = buf;
2661 return (0);
2662 }
2663
2664 typedef struct dt_begin {
2665 dtrace_consume_probe_f *dtbgn_probefunc;
2666 dtrace_consume_rec_f *dtbgn_recfunc;
2667 void *dtbgn_arg;
2668 dtrace_handle_err_f *dtbgn_errhdlr;
2669 void *dtbgn_errarg;
2670 int dtbgn_beginonly;
2671 } dt_begin_t;
2672
2673 static int
dt_consume_begin_probe(const dtrace_probedata_t * data,void * arg)2674 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2675 {
2676 dt_begin_t *begin = arg;
2677 dtrace_probedesc_t *pd = data->dtpda_pdesc;
2678
2679 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2680 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2681
2682 if (begin->dtbgn_beginonly) {
2683 if (!(r1 && r2))
2684 return (DTRACE_CONSUME_NEXT);
2685 } else {
2686 if (r1 && r2)
2687 return (DTRACE_CONSUME_NEXT);
2688 }
2689
2690 /*
2691 * We have a record that we're interested in. Now call the underlying
2692 * probe function...
2693 */
2694 return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2695 }
2696
2697 static int
dt_consume_begin_record(const dtrace_probedata_t * data,const dtrace_recdesc_t * rec,void * arg)2698 dt_consume_begin_record(const dtrace_probedata_t *data,
2699 const dtrace_recdesc_t *rec, void *arg)
2700 {
2701 dt_begin_t *begin = arg;
2702
2703 return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2704 }
2705
2706 static int
dt_consume_begin_error(const dtrace_errdata_t * data,void * arg)2707 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2708 {
2709 dt_begin_t *begin = (dt_begin_t *)arg;
2710 dtrace_probedesc_t *pd = data->dteda_pdesc;
2711
2712 int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2713 int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2714
2715 if (begin->dtbgn_beginonly) {
2716 if (!(r1 && r2))
2717 return (DTRACE_HANDLE_OK);
2718 } else {
2719 if (r1 && r2)
2720 return (DTRACE_HANDLE_OK);
2721 }
2722
2723 return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2724 }
2725
2726 static int
dt_consume_begin(dtrace_hdl_t * dtp,FILE * fp,dtrace_consume_probe_f * pf,dtrace_consume_rec_f * rf,void * arg)2727 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2728 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2729 {
2730 /*
2731 * There's this idea that the BEGIN probe should be processed before
2732 * everything else, and that the END probe should be processed after
2733 * anything else. In the common case, this is pretty easy to deal
2734 * with. However, a situation may arise where the BEGIN enabling and
2735 * END enabling are on the same CPU, and some enabling in the middle
2736 * occurred on a different CPU. To deal with this (blech!) we need to
2737 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2738 * then set it aside. We will then process every other CPU, and then
2739 * we'll return to the BEGIN CPU and process the rest of the data
2740 * (which will inevitably include the END probe, if any). Making this
2741 * even more complicated (!) is the library's ERROR enabling. Because
2742 * this enabling is processed before we even get into the consume call
2743 * back, any ERROR firing would result in the library's ERROR enabling
2744 * being processed twice -- once in our first pass (for BEGIN probes),
2745 * and again in our second pass (for everything but BEGIN probes). To
2746 * deal with this, we interpose on the ERROR handler to assure that we
2747 * only process ERROR enablings induced by BEGIN enablings in the
2748 * first pass, and that we only process ERROR enablings _not_ induced
2749 * by BEGIN enablings in the second pass.
2750 */
2751
2752 dt_begin_t begin;
2753 processorid_t cpu = dtp->dt_beganon;
2754 int rval, i;
2755 static int max_ncpus;
2756 dtrace_bufdesc_t *buf;
2757
2758 dtp->dt_beganon = -1;
2759
2760 if (dt_get_buf(dtp, cpu, &buf) != 0)
2761 return (-1);
2762 if (buf == NULL)
2763 return (0);
2764
2765 if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2766 /*
2767 * This is the simple case. We're either not stopped, or if
2768 * we are, we actually processed any END probes on another
2769 * CPU. We can simply consume this buffer and return.
2770 */
2771 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2772 pf, rf, arg);
2773 dt_put_buf(dtp, buf);
2774 return (rval);
2775 }
2776
2777 begin.dtbgn_probefunc = pf;
2778 begin.dtbgn_recfunc = rf;
2779 begin.dtbgn_arg = arg;
2780 begin.dtbgn_beginonly = 1;
2781
2782 /*
2783 * We need to interpose on the ERROR handler to be sure that we
2784 * only process ERRORs induced by BEGIN.
2785 */
2786 begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2787 begin.dtbgn_errarg = dtp->dt_errarg;
2788 dtp->dt_errhdlr = dt_consume_begin_error;
2789 dtp->dt_errarg = &begin;
2790
2791 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2792 dt_consume_begin_probe, dt_consume_begin_record, &begin);
2793
2794 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2795 dtp->dt_errarg = begin.dtbgn_errarg;
2796
2797 if (rval != 0) {
2798 dt_put_buf(dtp, buf);
2799 return (rval);
2800 }
2801
2802 if (max_ncpus == 0)
2803 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2804
2805 for (i = 0; i < max_ncpus; i++) {
2806 dtrace_bufdesc_t *nbuf;
2807 if (i == cpu)
2808 continue;
2809
2810 if (dt_get_buf(dtp, i, &nbuf) != 0) {
2811 dt_put_buf(dtp, buf);
2812 return (-1);
2813 }
2814 if (nbuf == NULL)
2815 continue;
2816
2817 rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2818 pf, rf, arg);
2819 dt_put_buf(dtp, nbuf);
2820 if (rval != 0) {
2821 dt_put_buf(dtp, buf);
2822 return (rval);
2823 }
2824 }
2825
2826 /*
2827 * Okay -- we're done with the other buffers. Now we want to
2828 * reconsume the first buffer -- but this time we're looking for
2829 * everything _but_ BEGIN. And of course, in order to only consume
2830 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2831 * ERROR interposition function...
2832 */
2833 begin.dtbgn_beginonly = 0;
2834
2835 assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2836 assert(begin.dtbgn_errarg == dtp->dt_errarg);
2837 dtp->dt_errhdlr = dt_consume_begin_error;
2838 dtp->dt_errarg = &begin;
2839
2840 rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2841 dt_consume_begin_probe, dt_consume_begin_record, &begin);
2842
2843 dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2844 dtp->dt_errarg = begin.dtbgn_errarg;
2845
2846 return (rval);
2847 }
2848
2849 /* ARGSUSED */
2850 static uint64_t
dt_buf_oldest(void * elem,void * arg)2851 dt_buf_oldest(void *elem, void *arg)
2852 {
2853 dtrace_bufdesc_t *buf = elem;
2854 size_t offs = buf->dtbd_oldest;
2855
2856 while (offs < buf->dtbd_size) {
2857 dtrace_rechdr_t *dtrh =
2858 /* LINTED - alignment */
2859 (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2860 if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2861 offs += sizeof (dtrace_epid_t);
2862 } else {
2863 return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2864 }
2865 }
2866
2867 /* There are no records left; use the time the buffer was retrieved. */
2868 return (buf->dtbd_timestamp);
2869 }
2870
2871 int
dtrace_consume(dtrace_hdl_t * dtp,FILE * fp,dtrace_consume_probe_f * pf,dtrace_consume_rec_f * rf,void * arg)2872 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2873 dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2874 {
2875 dtrace_optval_t size;
2876 static int max_ncpus;
2877 int i, rval;
2878 dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2879 hrtime_t now = gethrtime();
2880
2881 if (dtp->dt_lastswitch != 0) {
2882 if (now - dtp->dt_lastswitch < interval)
2883 return (0);
2884
2885 dtp->dt_lastswitch += interval;
2886 } else {
2887 dtp->dt_lastswitch = now;
2888 }
2889
2890 if (!dtp->dt_active)
2891 return (dt_set_errno(dtp, EINVAL));
2892
2893 if (max_ncpus == 0)
2894 max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2895
2896 if (pf == NULL)
2897 pf = (dtrace_consume_probe_f *)dt_nullprobe;
2898
2899 if (rf == NULL)
2900 rf = (dtrace_consume_rec_f *)dt_nullrec;
2901
2902 if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2903 /*
2904 * The output will not be in the order it was traced. Rather,
2905 * we will consume all of the data from each CPU's buffer in
2906 * turn. We apply special handling for the records from BEGIN
2907 * and END probes so that they are consumed first and last,
2908 * respectively.
2909 *
2910 * If we have just begun, we want to first process the CPU that
2911 * executed the BEGIN probe (if any).
2912 */
2913 if (dtp->dt_active && dtp->dt_beganon != -1 &&
2914 (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2915 return (rval);
2916
2917 for (i = 0; i < max_ncpus; i++) {
2918 dtrace_bufdesc_t *buf;
2919
2920 /*
2921 * If we have stopped, we want to process the CPU on
2922 * which the END probe was processed only _after_ we
2923 * have processed everything else.
2924 */
2925 if (dtp->dt_stopped && (i == dtp->dt_endedon))
2926 continue;
2927
2928 if (dt_get_buf(dtp, i, &buf) != 0)
2929 return (-1);
2930 if (buf == NULL)
2931 continue;
2932
2933 dtp->dt_flow = 0;
2934 dtp->dt_indent = 0;
2935 dtp->dt_prefix = NULL;
2936 rval = dt_consume_cpu(dtp, fp, i,
2937 buf, B_FALSE, pf, rf, arg);
2938 dt_put_buf(dtp, buf);
2939 if (rval != 0)
2940 return (rval);
2941 }
2942 if (dtp->dt_stopped) {
2943 dtrace_bufdesc_t *buf;
2944
2945 if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2946 return (-1);
2947 if (buf == NULL)
2948 return (0);
2949
2950 rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2951 buf, B_FALSE, pf, rf, arg);
2952 dt_put_buf(dtp, buf);
2953 return (rval);
2954 }
2955 } else {
2956 /*
2957 * The output will be in the order it was traced (or for
2958 * speculations, when it was committed). We retrieve a buffer
2959 * from each CPU and put it into a priority queue, which sorts
2960 * based on the first entry in the buffer. This is sufficient
2961 * because entries within a buffer are already sorted.
2962 *
2963 * We then consume records one at a time, always consuming the
2964 * oldest record, as determined by the priority queue. When
2965 * we reach the end of the time covered by these buffers,
2966 * we need to stop and retrieve more records on the next pass.
2967 * The kernel tells us the time covered by each buffer, in
2968 * dtbd_timestamp. The first buffer's timestamp tells us the
2969 * time covered by all buffers, as subsequently retrieved
2970 * buffers will cover to a more recent time.
2971 */
2972
2973 uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
2974 uint64_t first_timestamp = 0;
2975 uint_t cookie = 0;
2976 dtrace_bufdesc_t *buf;
2977
2978 bzero(drops, max_ncpus * sizeof (uint64_t));
2979
2980 if (dtp->dt_bufq == NULL) {
2981 dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
2982 dt_buf_oldest, NULL);
2983 if (dtp->dt_bufq == NULL) /* ENOMEM */
2984 return (-1);
2985 }
2986
2987 /* Retrieve data from each CPU. */
2988 (void) dtrace_getopt(dtp, "bufsize", &size);
2989 for (i = 0; i < max_ncpus; i++) {
2990 dtrace_bufdesc_t *buf;
2991
2992 if (dt_get_buf(dtp, i, &buf) != 0)
2993 return (-1);
2994 if (buf != NULL) {
2995 if (first_timestamp == 0)
2996 first_timestamp = buf->dtbd_timestamp;
2997 assert(buf->dtbd_timestamp >= first_timestamp);
2998
2999 dt_pq_insert(dtp->dt_bufq, buf);
3000 drops[i] = buf->dtbd_drops;
3001 buf->dtbd_drops = 0;
3002 }
3003 }
3004
3005 /* Consume records. */
3006 for (;;) {
3007 dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3008 uint64_t timestamp;
3009
3010 if (buf == NULL)
3011 break;
3012
3013 timestamp = dt_buf_oldest(buf, dtp);
3014 assert(timestamp >= dtp->dt_last_timestamp);
3015 dtp->dt_last_timestamp = timestamp;
3016
3017 if (timestamp == buf->dtbd_timestamp) {
3018 /*
3019 * We've reached the end of the time covered
3020 * by this buffer. If this is the oldest
3021 * buffer, we must do another pass
3022 * to retrieve more data.
3023 */
3024 dt_put_buf(dtp, buf);
3025 if (timestamp == first_timestamp &&
3026 !dtp->dt_stopped)
3027 break;
3028 continue;
3029 }
3030
3031 if ((rval = dt_consume_cpu(dtp, fp,
3032 buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3033 return (rval);
3034 dt_pq_insert(dtp->dt_bufq, buf);
3035 }
3036
3037 /* Consume drops. */
3038 for (i = 0; i < max_ncpus; i++) {
3039 if (drops[i] != 0) {
3040 int error = dt_handle_cpudrop(dtp, i,
3041 DTRACEDROP_PRINCIPAL, drops[i]);
3042 if (error != 0)
3043 return (error);
3044 }
3045 }
3046
3047 /*
3048 * Reduce memory usage by re-allocating smaller buffers
3049 * for the "remnants".
3050 */
3051 while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3052 dt_realloc_buf(dtp, buf, buf->dtbd_size);
3053 }
3054
3055 return (0);
3056 }
3057