1 // SPDX-License-Identifier: GPL-1.0+
2 /*
3 * Device driver for Microgate SyncLink GT serial adapters.
4 *
5 * written by Paul Fulghum for Microgate Corporation
6 * paulkf@microgate.com
7 *
8 * Microgate and SyncLink are trademarks of Microgate Corporation
9 *
10 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
11 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
12 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
13 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
14 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
15 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
17 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
18 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
19 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
20 * OF THE POSSIBILITY OF SUCH DAMAGE.
21 */
22
23 /*
24 * DEBUG OUTPUT DEFINITIONS
25 *
26 * uncomment lines below to enable specific types of debug output
27 *
28 * DBGINFO information - most verbose output
29 * DBGERR serious errors
30 * DBGBH bottom half service routine debugging
31 * DBGISR interrupt service routine debugging
32 * DBGDATA output receive and transmit data
33 * DBGTBUF output transmit DMA buffers and registers
34 * DBGRBUF output receive DMA buffers and registers
35 */
36
37 #define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt
38 #define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt
39 #define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt
40 #define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt
41 #define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label))
42 /*#define DBGTBUF(info) dump_tbufs(info)*/
43 /*#define DBGRBUF(info) dump_rbufs(info)*/
44
45
46 #include <linux/module.h>
47 #include <linux/errno.h>
48 #include <linux/signal.h>
49 #include <linux/sched.h>
50 #include <linux/timer.h>
51 #include <linux/interrupt.h>
52 #include <linux/pci.h>
53 #include <linux/tty.h>
54 #include <linux/tty_flip.h>
55 #include <linux/serial.h>
56 #include <linux/major.h>
57 #include <linux/string.h>
58 #include <linux/fcntl.h>
59 #include <linux/ptrace.h>
60 #include <linux/ioport.h>
61 #include <linux/mm.h>
62 #include <linux/seq_file.h>
63 #include <linux/slab.h>
64 #include <linux/netdevice.h>
65 #include <linux/vmalloc.h>
66 #include <linux/init.h>
67 #include <linux/delay.h>
68 #include <linux/ioctl.h>
69 #include <linux/termios.h>
70 #include <linux/bitops.h>
71 #include <linux/workqueue.h>
72 #include <linux/hdlc.h>
73 #include <linux/synclink.h>
74
75 #include <asm/io.h>
76 #include <asm/irq.h>
77 #include <asm/dma.h>
78 #include <asm/types.h>
79 #include <linux/uaccess.h>
80
81 #if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE))
82 #define SYNCLINK_GENERIC_HDLC 1
83 #else
84 #define SYNCLINK_GENERIC_HDLC 0
85 #endif
86
87 /*
88 * module identification
89 */
90 static const char driver_name[] = "SyncLink GT";
91 static const char tty_dev_prefix[] = "ttySLG";
92 MODULE_DESCRIPTION("Device driver for Microgate SyncLink GT serial adapters");
93 MODULE_LICENSE("GPL");
94 #define MAX_DEVICES 32
95
96 static const struct pci_device_id pci_table[] = {
97 { PCI_VDEVICE(MICROGATE, SYNCLINK_GT_DEVICE_ID) },
98 { PCI_VDEVICE(MICROGATE, SYNCLINK_GT2_DEVICE_ID) },
99 { PCI_VDEVICE(MICROGATE, SYNCLINK_GT4_DEVICE_ID) },
100 { PCI_VDEVICE(MICROGATE, SYNCLINK_AC_DEVICE_ID) },
101 { 0 }, /* terminate list */
102 };
103 MODULE_DEVICE_TABLE(pci, pci_table);
104
105 static int init_one(struct pci_dev *dev,const struct pci_device_id *ent);
106 static void remove_one(struct pci_dev *dev);
107 static struct pci_driver pci_driver = {
108 .name = "synclink_gt",
109 .id_table = pci_table,
110 .probe = init_one,
111 .remove = remove_one,
112 };
113
114 static bool pci_registered;
115
116 /*
117 * module configuration and status
118 */
119 static struct slgt_info *slgt_device_list;
120 static int slgt_device_count;
121
122 static int ttymajor;
123 static int debug_level;
124 static int maxframe[MAX_DEVICES];
125
126 module_param(ttymajor, int, 0);
127 module_param(debug_level, int, 0);
128 module_param_array(maxframe, int, NULL, 0);
129
130 MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned");
131 MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail");
132 MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)");
133
134 /*
135 * tty support and callbacks
136 */
137 static struct tty_driver *serial_driver;
138
139 static void wait_until_sent(struct tty_struct *tty, int timeout);
140 static void flush_buffer(struct tty_struct *tty);
141 static void tx_release(struct tty_struct *tty);
142
143 /*
144 * generic HDLC support
145 */
146 #define dev_to_port(D) (dev_to_hdlc(D)->priv)
147
148
149 /*
150 * device specific structures, macros and functions
151 */
152
153 #define SLGT_MAX_PORTS 4
154 #define SLGT_REG_SIZE 256
155
156 /*
157 * conditional wait facility
158 */
159 struct cond_wait {
160 struct cond_wait *next;
161 wait_queue_head_t q;
162 wait_queue_entry_t wait;
163 unsigned int data;
164 };
165 static void flush_cond_wait(struct cond_wait **head);
166
167 /*
168 * DMA buffer descriptor and access macros
169 */
170 struct slgt_desc
171 {
172 __le16 count;
173 __le16 status;
174 __le32 pbuf; /* physical address of data buffer */
175 __le32 next; /* physical address of next descriptor */
176
177 /* driver book keeping */
178 char *buf; /* virtual address of data buffer */
179 unsigned int pdesc; /* physical address of this descriptor */
180 dma_addr_t buf_dma_addr;
181 unsigned short buf_count;
182 };
183
184 #define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b))
185 #define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b))
186 #define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b))
187 #define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0))
188 #define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b))
189 #define desc_count(a) (le16_to_cpu((a).count))
190 #define desc_status(a) (le16_to_cpu((a).status))
191 #define desc_complete(a) (le16_to_cpu((a).status) & BIT15)
192 #define desc_eof(a) (le16_to_cpu((a).status) & BIT2)
193 #define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1)
194 #define desc_abort(a) (le16_to_cpu((a).status) & BIT0)
195 #define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3)
196
197 struct _input_signal_events {
198 int ri_up;
199 int ri_down;
200 int dsr_up;
201 int dsr_down;
202 int dcd_up;
203 int dcd_down;
204 int cts_up;
205 int cts_down;
206 };
207
208 /*
209 * device instance data structure
210 */
211 struct slgt_info {
212 void *if_ptr; /* General purpose pointer (used by SPPP) */
213 struct tty_port port;
214
215 struct slgt_info *next_device; /* device list link */
216
217 char device_name[25];
218 struct pci_dev *pdev;
219
220 int port_count; /* count of ports on adapter */
221 int adapter_num; /* adapter instance number */
222 int port_num; /* port instance number */
223
224 /* array of pointers to port contexts on this adapter */
225 struct slgt_info *port_array[SLGT_MAX_PORTS];
226
227 int line; /* tty line instance number */
228
229 struct mgsl_icount icount;
230
231 int timeout;
232 int x_char; /* xon/xoff character */
233 unsigned int read_status_mask;
234 unsigned int ignore_status_mask;
235
236 wait_queue_head_t status_event_wait_q;
237 wait_queue_head_t event_wait_q;
238 struct timer_list tx_timer;
239 struct timer_list rx_timer;
240
241 unsigned int gpio_present;
242 struct cond_wait *gpio_wait_q;
243
244 spinlock_t lock; /* spinlock for synchronizing with ISR */
245
246 struct work_struct task;
247 u32 pending_bh;
248 bool bh_requested;
249 bool bh_running;
250
251 int isr_overflow;
252 bool irq_requested; /* true if IRQ requested */
253 bool irq_occurred; /* for diagnostics use */
254
255 /* device configuration */
256
257 unsigned int bus_type;
258 unsigned int irq_level;
259 unsigned long irq_flags;
260
261 unsigned char __iomem * reg_addr; /* memory mapped registers address */
262 u32 phys_reg_addr;
263 bool reg_addr_requested;
264
265 MGSL_PARAMS params; /* communications parameters */
266 u32 idle_mode;
267 u32 max_frame_size; /* as set by device config */
268
269 unsigned int rbuf_fill_level;
270 unsigned int rx_pio;
271 unsigned int if_mode;
272 unsigned int base_clock;
273 unsigned int xsync;
274 unsigned int xctrl;
275
276 /* device status */
277
278 bool rx_enabled;
279 bool rx_restart;
280
281 bool tx_enabled;
282 bool tx_active;
283
284 unsigned char signals; /* serial signal states */
285 int init_error; /* initialization error */
286
287 unsigned char *tx_buf;
288 int tx_count;
289
290 bool drop_rts_on_tx_done;
291 struct _input_signal_events input_signal_events;
292
293 int dcd_chkcount; /* check counts to prevent */
294 int cts_chkcount; /* too many IRQs if a signal */
295 int dsr_chkcount; /* is floating */
296 int ri_chkcount;
297
298 char *bufs; /* virtual address of DMA buffer lists */
299 dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */
300
301 unsigned int rbuf_count;
302 struct slgt_desc *rbufs;
303 unsigned int rbuf_current;
304 unsigned int rbuf_index;
305 unsigned int rbuf_fill_index;
306 unsigned short rbuf_fill_count;
307
308 unsigned int tbuf_count;
309 struct slgt_desc *tbufs;
310 unsigned int tbuf_current;
311 unsigned int tbuf_start;
312
313 unsigned char *tmp_rbuf;
314 unsigned int tmp_rbuf_count;
315
316 /* SPPP/Cisco HDLC device parts */
317
318 int netcount;
319 spinlock_t netlock;
320 #if SYNCLINK_GENERIC_HDLC
321 struct net_device *netdev;
322 #endif
323
324 };
325
326 static const MGSL_PARAMS default_params = {
327 .mode = MGSL_MODE_HDLC,
328 .loopback = 0,
329 .flags = HDLC_FLAG_UNDERRUN_ABORT15,
330 .encoding = HDLC_ENCODING_NRZI_SPACE,
331 .clock_speed = 0,
332 .addr_filter = 0xff,
333 .crc_type = HDLC_CRC_16_CCITT,
334 .preamble_length = HDLC_PREAMBLE_LENGTH_8BITS,
335 .preamble = HDLC_PREAMBLE_PATTERN_NONE,
336 .data_rate = 9600,
337 .data_bits = 8,
338 .stop_bits = 1,
339 .parity = ASYNC_PARITY_NONE
340 };
341
342
343 #define BH_RECEIVE 1
344 #define BH_TRANSMIT 2
345 #define BH_STATUS 4
346 #define IO_PIN_SHUTDOWN_LIMIT 100
347
348 #define DMABUFSIZE 256
349 #define DESC_LIST_SIZE 4096
350
351 #define MASK_PARITY BIT1
352 #define MASK_FRAMING BIT0
353 #define MASK_BREAK BIT14
354 #define MASK_OVERRUN BIT4
355
356 #define GSR 0x00 /* global status */
357 #define JCR 0x04 /* JTAG control */
358 #define IODR 0x08 /* GPIO direction */
359 #define IOER 0x0c /* GPIO interrupt enable */
360 #define IOVR 0x10 /* GPIO value */
361 #define IOSR 0x14 /* GPIO interrupt status */
362 #define TDR 0x80 /* tx data */
363 #define RDR 0x80 /* rx data */
364 #define TCR 0x82 /* tx control */
365 #define TIR 0x84 /* tx idle */
366 #define TPR 0x85 /* tx preamble */
367 #define RCR 0x86 /* rx control */
368 #define VCR 0x88 /* V.24 control */
369 #define CCR 0x89 /* clock control */
370 #define BDR 0x8a /* baud divisor */
371 #define SCR 0x8c /* serial control */
372 #define SSR 0x8e /* serial status */
373 #define RDCSR 0x90 /* rx DMA control/status */
374 #define TDCSR 0x94 /* tx DMA control/status */
375 #define RDDAR 0x98 /* rx DMA descriptor address */
376 #define TDDAR 0x9c /* tx DMA descriptor address */
377 #define XSR 0x40 /* extended sync pattern */
378 #define XCR 0x44 /* extended control */
379
380 #define RXIDLE BIT14
381 #define RXBREAK BIT14
382 #define IRQ_TXDATA BIT13
383 #define IRQ_TXIDLE BIT12
384 #define IRQ_TXUNDER BIT11 /* HDLC */
385 #define IRQ_RXDATA BIT10
386 #define IRQ_RXIDLE BIT9 /* HDLC */
387 #define IRQ_RXBREAK BIT9 /* async */
388 #define IRQ_RXOVER BIT8
389 #define IRQ_DSR BIT7
390 #define IRQ_CTS BIT6
391 #define IRQ_DCD BIT5
392 #define IRQ_RI BIT4
393 #define IRQ_ALL 0x3ff0
394 #define IRQ_MASTER BIT0
395
396 #define slgt_irq_on(info, mask) \
397 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask)))
398 #define slgt_irq_off(info, mask) \
399 wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask)))
400
401 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr);
402 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value);
403 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr);
404 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value);
405 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr);
406 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value);
407
408 static void msc_set_vcr(struct slgt_info *info);
409
410 static int startup(struct slgt_info *info);
411 static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info);
412 static void shutdown(struct slgt_info *info);
413 static void program_hw(struct slgt_info *info);
414 static void change_params(struct slgt_info *info);
415
416 static int adapter_test(struct slgt_info *info);
417
418 static void reset_port(struct slgt_info *info);
419 static void async_mode(struct slgt_info *info);
420 static void sync_mode(struct slgt_info *info);
421
422 static void rx_stop(struct slgt_info *info);
423 static void rx_start(struct slgt_info *info);
424 static void reset_rbufs(struct slgt_info *info);
425 static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last);
426 static bool rx_get_frame(struct slgt_info *info);
427 static bool rx_get_buf(struct slgt_info *info);
428
429 static void tx_start(struct slgt_info *info);
430 static void tx_stop(struct slgt_info *info);
431 static void tx_set_idle(struct slgt_info *info);
432 static unsigned int tbuf_bytes(struct slgt_info *info);
433 static void reset_tbufs(struct slgt_info *info);
434 static void tdma_reset(struct slgt_info *info);
435 static bool tx_load(struct slgt_info *info, const u8 *buf, unsigned int count);
436
437 static void get_gtsignals(struct slgt_info *info);
438 static void set_gtsignals(struct slgt_info *info);
439 static void set_rate(struct slgt_info *info, u32 data_rate);
440
441 static void bh_transmit(struct slgt_info *info);
442 static void isr_txeom(struct slgt_info *info, unsigned short status);
443
444 static void tx_timeout(struct timer_list *t);
445 static void rx_timeout(struct timer_list *t);
446
447 /*
448 * ioctl handlers
449 */
450 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount);
451 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params);
452 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params);
453 static int get_txidle(struct slgt_info *info, int __user *idle_mode);
454 static int set_txidle(struct slgt_info *info, int idle_mode);
455 static int tx_enable(struct slgt_info *info, int enable);
456 static int tx_abort(struct slgt_info *info);
457 static int rx_enable(struct slgt_info *info, int enable);
458 static int modem_input_wait(struct slgt_info *info,int arg);
459 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr);
460 static int get_interface(struct slgt_info *info, int __user *if_mode);
461 static int set_interface(struct slgt_info *info, int if_mode);
462 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
463 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
464 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
465 static int get_xsync(struct slgt_info *info, int __user *if_mode);
466 static int set_xsync(struct slgt_info *info, int if_mode);
467 static int get_xctrl(struct slgt_info *info, int __user *if_mode);
468 static int set_xctrl(struct slgt_info *info, int if_mode);
469
470 /*
471 * driver functions
472 */
473 static void release_resources(struct slgt_info *info);
474
475 /*
476 * DEBUG OUTPUT CODE
477 */
478 #ifndef DBGINFO
479 #define DBGINFO(fmt)
480 #endif
481 #ifndef DBGERR
482 #define DBGERR(fmt)
483 #endif
484 #ifndef DBGBH
485 #define DBGBH(fmt)
486 #endif
487 #ifndef DBGISR
488 #define DBGISR(fmt)
489 #endif
490
491 #ifdef DBGDATA
trace_block(struct slgt_info * info,const char * data,int count,const char * label)492 static void trace_block(struct slgt_info *info, const char *data, int count, const char *label)
493 {
494 int i;
495 int linecount;
496 printk("%s %s data:\n",info->device_name, label);
497 while(count) {
498 linecount = (count > 16) ? 16 : count;
499 for(i=0; i < linecount; i++)
500 printk("%02X ",(unsigned char)data[i]);
501 for(;i<17;i++)
502 printk(" ");
503 for(i=0;i<linecount;i++) {
504 if (data[i]>=040 && data[i]<=0176)
505 printk("%c",data[i]);
506 else
507 printk(".");
508 }
509 printk("\n");
510 data += linecount;
511 count -= linecount;
512 }
513 }
514 #else
515 #define DBGDATA(info, buf, size, label)
516 #endif
517
518 #ifdef DBGTBUF
dump_tbufs(struct slgt_info * info)519 static void dump_tbufs(struct slgt_info *info)
520 {
521 int i;
522 printk("tbuf_current=%d\n", info->tbuf_current);
523 for (i=0 ; i < info->tbuf_count ; i++) {
524 printk("%d: count=%04X status=%04X\n",
525 i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status));
526 }
527 }
528 #else
529 #define DBGTBUF(info)
530 #endif
531
532 #ifdef DBGRBUF
dump_rbufs(struct slgt_info * info)533 static void dump_rbufs(struct slgt_info *info)
534 {
535 int i;
536 printk("rbuf_current=%d\n", info->rbuf_current);
537 for (i=0 ; i < info->rbuf_count ; i++) {
538 printk("%d: count=%04X status=%04X\n",
539 i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status));
540 }
541 }
542 #else
543 #define DBGRBUF(info)
544 #endif
545
sanity_check(struct slgt_info * info,char * devname,const char * name)546 static inline int sanity_check(struct slgt_info *info, char *devname, const char *name)
547 {
548 #ifdef SANITY_CHECK
549 if (!info) {
550 printk("null struct slgt_info for (%s) in %s\n", devname, name);
551 return 1;
552 }
553 #else
554 if (!info)
555 return 1;
556 #endif
557 return 0;
558 }
559
560 /*
561 * line discipline callback wrappers
562 *
563 * The wrappers maintain line discipline references
564 * while calling into the line discipline.
565 *
566 * ldisc_receive_buf - pass receive data to line discipline
567 */
ldisc_receive_buf(struct tty_struct * tty,const __u8 * data,char * flags,int count)568 static void ldisc_receive_buf(struct tty_struct *tty,
569 const __u8 *data, char *flags, int count)
570 {
571 struct tty_ldisc *ld;
572 if (!tty)
573 return;
574 ld = tty_ldisc_ref(tty);
575 if (ld) {
576 if (ld->ops->receive_buf)
577 ld->ops->receive_buf(tty, data, flags, count);
578 tty_ldisc_deref(ld);
579 }
580 }
581
582 /* tty callbacks */
583
open(struct tty_struct * tty,struct file * filp)584 static int open(struct tty_struct *tty, struct file *filp)
585 {
586 struct slgt_info *info;
587 int retval, line;
588 unsigned long flags;
589
590 line = tty->index;
591 if (line >= slgt_device_count) {
592 DBGERR(("%s: open with invalid line #%d.\n", driver_name, line));
593 return -ENODEV;
594 }
595
596 info = slgt_device_list;
597 while(info && info->line != line)
598 info = info->next_device;
599 if (sanity_check(info, tty->name, "open"))
600 return -ENODEV;
601 if (info->init_error) {
602 DBGERR(("%s init error=%d\n", info->device_name, info->init_error));
603 return -ENODEV;
604 }
605
606 tty->driver_data = info;
607 info->port.tty = tty;
608
609 DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count));
610
611 mutex_lock(&info->port.mutex);
612
613 spin_lock_irqsave(&info->netlock, flags);
614 if (info->netcount) {
615 retval = -EBUSY;
616 spin_unlock_irqrestore(&info->netlock, flags);
617 mutex_unlock(&info->port.mutex);
618 goto cleanup;
619 }
620 info->port.count++;
621 spin_unlock_irqrestore(&info->netlock, flags);
622
623 if (info->port.count == 1) {
624 /* 1st open on this device, init hardware */
625 retval = startup(info);
626 if (retval < 0) {
627 mutex_unlock(&info->port.mutex);
628 goto cleanup;
629 }
630 }
631 mutex_unlock(&info->port.mutex);
632 retval = block_til_ready(tty, filp, info);
633 if (retval) {
634 DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval));
635 goto cleanup;
636 }
637
638 retval = 0;
639
640 cleanup:
641 if (retval) {
642 if (tty->count == 1)
643 info->port.tty = NULL; /* tty layer will release tty struct */
644 if(info->port.count)
645 info->port.count--;
646 }
647
648 DBGINFO(("%s open rc=%d\n", info->device_name, retval));
649 return retval;
650 }
651
close(struct tty_struct * tty,struct file * filp)652 static void close(struct tty_struct *tty, struct file *filp)
653 {
654 struct slgt_info *info = tty->driver_data;
655
656 if (sanity_check(info, tty->name, "close"))
657 return;
658 DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count));
659
660 if (tty_port_close_start(&info->port, tty, filp) == 0)
661 goto cleanup;
662
663 mutex_lock(&info->port.mutex);
664 if (tty_port_initialized(&info->port))
665 wait_until_sent(tty, info->timeout);
666 flush_buffer(tty);
667 tty_ldisc_flush(tty);
668
669 shutdown(info);
670 mutex_unlock(&info->port.mutex);
671
672 tty_port_close_end(&info->port, tty);
673 info->port.tty = NULL;
674 cleanup:
675 DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count));
676 }
677
hangup(struct tty_struct * tty)678 static void hangup(struct tty_struct *tty)
679 {
680 struct slgt_info *info = tty->driver_data;
681 unsigned long flags;
682
683 if (sanity_check(info, tty->name, "hangup"))
684 return;
685 DBGINFO(("%s hangup\n", info->device_name));
686
687 flush_buffer(tty);
688
689 mutex_lock(&info->port.mutex);
690 shutdown(info);
691
692 spin_lock_irqsave(&info->port.lock, flags);
693 info->port.count = 0;
694 info->port.tty = NULL;
695 spin_unlock_irqrestore(&info->port.lock, flags);
696 tty_port_set_active(&info->port, false);
697 mutex_unlock(&info->port.mutex);
698
699 wake_up_interruptible(&info->port.open_wait);
700 }
701
set_termios(struct tty_struct * tty,const struct ktermios * old_termios)702 static void set_termios(struct tty_struct *tty,
703 const struct ktermios *old_termios)
704 {
705 struct slgt_info *info = tty->driver_data;
706 unsigned long flags;
707
708 DBGINFO(("%s set_termios\n", tty->driver->name));
709
710 change_params(info);
711
712 /* Handle transition to B0 status */
713 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
714 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
715 spin_lock_irqsave(&info->lock,flags);
716 set_gtsignals(info);
717 spin_unlock_irqrestore(&info->lock,flags);
718 }
719
720 /* Handle transition away from B0 status */
721 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
722 info->signals |= SerialSignal_DTR;
723 if (!C_CRTSCTS(tty) || !tty_throttled(tty))
724 info->signals |= SerialSignal_RTS;
725 spin_lock_irqsave(&info->lock,flags);
726 set_gtsignals(info);
727 spin_unlock_irqrestore(&info->lock,flags);
728 }
729
730 /* Handle turning off CRTSCTS */
731 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty)) {
732 tty->hw_stopped = false;
733 tx_release(tty);
734 }
735 }
736
update_tx_timer(struct slgt_info * info)737 static void update_tx_timer(struct slgt_info *info)
738 {
739 /*
740 * use worst case speed of 1200bps to calculate transmit timeout
741 * based on data in buffers (tbuf_bytes) and FIFO (128 bytes)
742 */
743 if (info->params.mode == MGSL_MODE_HDLC) {
744 int timeout = (tbuf_bytes(info) * 7) + 1000;
745 mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout));
746 }
747 }
748
write(struct tty_struct * tty,const u8 * buf,size_t count)749 static ssize_t write(struct tty_struct *tty, const u8 *buf, size_t count)
750 {
751 int ret = 0;
752 struct slgt_info *info = tty->driver_data;
753 unsigned long flags;
754
755 if (sanity_check(info, tty->name, "write"))
756 return -EIO;
757
758 DBGINFO(("%s write count=%zu\n", info->device_name, count));
759
760 if (!info->tx_buf || (count > info->max_frame_size))
761 return -EIO;
762
763 if (!count || tty->flow.stopped || tty->hw_stopped)
764 return 0;
765
766 spin_lock_irqsave(&info->lock, flags);
767
768 if (info->tx_count) {
769 /* send accumulated data from send_char() */
770 if (!tx_load(info, info->tx_buf, info->tx_count))
771 goto cleanup;
772 info->tx_count = 0;
773 }
774
775 if (tx_load(info, buf, count))
776 ret = count;
777
778 cleanup:
779 spin_unlock_irqrestore(&info->lock, flags);
780 DBGINFO(("%s write rc=%d\n", info->device_name, ret));
781 return ret;
782 }
783
put_char(struct tty_struct * tty,u8 ch)784 static int put_char(struct tty_struct *tty, u8 ch)
785 {
786 struct slgt_info *info = tty->driver_data;
787 unsigned long flags;
788 int ret = 0;
789
790 if (sanity_check(info, tty->name, "put_char"))
791 return 0;
792 DBGINFO(("%s put_char(%u)\n", info->device_name, ch));
793 if (!info->tx_buf)
794 return 0;
795 spin_lock_irqsave(&info->lock,flags);
796 if (info->tx_count < info->max_frame_size) {
797 info->tx_buf[info->tx_count++] = ch;
798 ret = 1;
799 }
800 spin_unlock_irqrestore(&info->lock,flags);
801 return ret;
802 }
803
send_xchar(struct tty_struct * tty,char ch)804 static void send_xchar(struct tty_struct *tty, char ch)
805 {
806 struct slgt_info *info = tty->driver_data;
807 unsigned long flags;
808
809 if (sanity_check(info, tty->name, "send_xchar"))
810 return;
811 DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch));
812 info->x_char = ch;
813 if (ch) {
814 spin_lock_irqsave(&info->lock,flags);
815 if (!info->tx_enabled)
816 tx_start(info);
817 spin_unlock_irqrestore(&info->lock,flags);
818 }
819 }
820
wait_until_sent(struct tty_struct * tty,int timeout)821 static void wait_until_sent(struct tty_struct *tty, int timeout)
822 {
823 struct slgt_info *info = tty->driver_data;
824 unsigned long orig_jiffies, char_time;
825
826 if (!info )
827 return;
828 if (sanity_check(info, tty->name, "wait_until_sent"))
829 return;
830 DBGINFO(("%s wait_until_sent entry\n", info->device_name));
831 if (!tty_port_initialized(&info->port))
832 goto exit;
833
834 orig_jiffies = jiffies;
835
836 /* Set check interval to 1/5 of estimated time to
837 * send a character, and make it at least 1. The check
838 * interval should also be less than the timeout.
839 * Note: use tight timings here to satisfy the NIST-PCTS.
840 */
841
842 if (info->params.data_rate) {
843 char_time = info->timeout/(32 * 5);
844 if (!char_time)
845 char_time++;
846 } else
847 char_time = 1;
848
849 if (timeout)
850 char_time = min_t(unsigned long, char_time, timeout);
851
852 while (info->tx_active) {
853 msleep_interruptible(jiffies_to_msecs(char_time));
854 if (signal_pending(current))
855 break;
856 if (timeout && time_after(jiffies, orig_jiffies + timeout))
857 break;
858 }
859 exit:
860 DBGINFO(("%s wait_until_sent exit\n", info->device_name));
861 }
862
write_room(struct tty_struct * tty)863 static unsigned int write_room(struct tty_struct *tty)
864 {
865 struct slgt_info *info = tty->driver_data;
866 unsigned int ret;
867
868 if (sanity_check(info, tty->name, "write_room"))
869 return 0;
870 ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE;
871 DBGINFO(("%s write_room=%u\n", info->device_name, ret));
872 return ret;
873 }
874
flush_chars(struct tty_struct * tty)875 static void flush_chars(struct tty_struct *tty)
876 {
877 struct slgt_info *info = tty->driver_data;
878 unsigned long flags;
879
880 if (sanity_check(info, tty->name, "flush_chars"))
881 return;
882 DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count));
883
884 if (info->tx_count <= 0 || tty->flow.stopped ||
885 tty->hw_stopped || !info->tx_buf)
886 return;
887
888 DBGINFO(("%s flush_chars start transmit\n", info->device_name));
889
890 spin_lock_irqsave(&info->lock,flags);
891 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
892 info->tx_count = 0;
893 spin_unlock_irqrestore(&info->lock,flags);
894 }
895
flush_buffer(struct tty_struct * tty)896 static void flush_buffer(struct tty_struct *tty)
897 {
898 struct slgt_info *info = tty->driver_data;
899 unsigned long flags;
900
901 if (sanity_check(info, tty->name, "flush_buffer"))
902 return;
903 DBGINFO(("%s flush_buffer\n", info->device_name));
904
905 spin_lock_irqsave(&info->lock, flags);
906 info->tx_count = 0;
907 spin_unlock_irqrestore(&info->lock, flags);
908
909 tty_wakeup(tty);
910 }
911
912 /*
913 * throttle (stop) transmitter
914 */
tx_hold(struct tty_struct * tty)915 static void tx_hold(struct tty_struct *tty)
916 {
917 struct slgt_info *info = tty->driver_data;
918 unsigned long flags;
919
920 if (sanity_check(info, tty->name, "tx_hold"))
921 return;
922 DBGINFO(("%s tx_hold\n", info->device_name));
923 spin_lock_irqsave(&info->lock,flags);
924 if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC)
925 tx_stop(info);
926 spin_unlock_irqrestore(&info->lock,flags);
927 }
928
929 /*
930 * release (start) transmitter
931 */
tx_release(struct tty_struct * tty)932 static void tx_release(struct tty_struct *tty)
933 {
934 struct slgt_info *info = tty->driver_data;
935 unsigned long flags;
936
937 if (sanity_check(info, tty->name, "tx_release"))
938 return;
939 DBGINFO(("%s tx_release\n", info->device_name));
940 spin_lock_irqsave(&info->lock, flags);
941 if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
942 info->tx_count = 0;
943 spin_unlock_irqrestore(&info->lock, flags);
944 }
945
946 /*
947 * Service an IOCTL request
948 *
949 * Arguments
950 *
951 * tty pointer to tty instance data
952 * cmd IOCTL command code
953 * arg command argument/context
954 *
955 * Return 0 if success, otherwise error code
956 */
ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)957 static int ioctl(struct tty_struct *tty,
958 unsigned int cmd, unsigned long arg)
959 {
960 struct slgt_info *info = tty->driver_data;
961 void __user *argp = (void __user *)arg;
962 int ret;
963
964 if (sanity_check(info, tty->name, "ioctl"))
965 return -ENODEV;
966 DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd));
967
968 if (cmd != TIOCMIWAIT) {
969 if (tty_io_error(tty))
970 return -EIO;
971 }
972
973 switch (cmd) {
974 case MGSL_IOCWAITEVENT:
975 return wait_mgsl_event(info, argp);
976 case TIOCMIWAIT:
977 return modem_input_wait(info,(int)arg);
978 case MGSL_IOCSGPIO:
979 return set_gpio(info, argp);
980 case MGSL_IOCGGPIO:
981 return get_gpio(info, argp);
982 case MGSL_IOCWAITGPIO:
983 return wait_gpio(info, argp);
984 case MGSL_IOCGXSYNC:
985 return get_xsync(info, argp);
986 case MGSL_IOCSXSYNC:
987 return set_xsync(info, (int)arg);
988 case MGSL_IOCGXCTRL:
989 return get_xctrl(info, argp);
990 case MGSL_IOCSXCTRL:
991 return set_xctrl(info, (int)arg);
992 }
993 mutex_lock(&info->port.mutex);
994 switch (cmd) {
995 case MGSL_IOCGPARAMS:
996 ret = get_params(info, argp);
997 break;
998 case MGSL_IOCSPARAMS:
999 ret = set_params(info, argp);
1000 break;
1001 case MGSL_IOCGTXIDLE:
1002 ret = get_txidle(info, argp);
1003 break;
1004 case MGSL_IOCSTXIDLE:
1005 ret = set_txidle(info, (int)arg);
1006 break;
1007 case MGSL_IOCTXENABLE:
1008 ret = tx_enable(info, (int)arg);
1009 break;
1010 case MGSL_IOCRXENABLE:
1011 ret = rx_enable(info, (int)arg);
1012 break;
1013 case MGSL_IOCTXABORT:
1014 ret = tx_abort(info);
1015 break;
1016 case MGSL_IOCGSTATS:
1017 ret = get_stats(info, argp);
1018 break;
1019 case MGSL_IOCGIF:
1020 ret = get_interface(info, argp);
1021 break;
1022 case MGSL_IOCSIF:
1023 ret = set_interface(info,(int)arg);
1024 break;
1025 default:
1026 ret = -ENOIOCTLCMD;
1027 }
1028 mutex_unlock(&info->port.mutex);
1029 return ret;
1030 }
1031
get_icount(struct tty_struct * tty,struct serial_icounter_struct * icount)1032 static int get_icount(struct tty_struct *tty,
1033 struct serial_icounter_struct *icount)
1034
1035 {
1036 struct slgt_info *info = tty->driver_data;
1037 struct mgsl_icount cnow; /* kernel counter temps */
1038 unsigned long flags;
1039
1040 spin_lock_irqsave(&info->lock,flags);
1041 cnow = info->icount;
1042 spin_unlock_irqrestore(&info->lock,flags);
1043
1044 icount->cts = cnow.cts;
1045 icount->dsr = cnow.dsr;
1046 icount->rng = cnow.rng;
1047 icount->dcd = cnow.dcd;
1048 icount->rx = cnow.rx;
1049 icount->tx = cnow.tx;
1050 icount->frame = cnow.frame;
1051 icount->overrun = cnow.overrun;
1052 icount->parity = cnow.parity;
1053 icount->brk = cnow.brk;
1054 icount->buf_overrun = cnow.buf_overrun;
1055
1056 return 0;
1057 }
1058
1059 /*
1060 * support for 32 bit ioctl calls on 64 bit systems
1061 */
1062 #ifdef CONFIG_COMPAT
get_params32(struct slgt_info * info,struct MGSL_PARAMS32 __user * user_params)1063 static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params)
1064 {
1065 struct MGSL_PARAMS32 tmp_params;
1066
1067 DBGINFO(("%s get_params32\n", info->device_name));
1068 memset(&tmp_params, 0, sizeof(tmp_params));
1069 tmp_params.mode = (compat_ulong_t)info->params.mode;
1070 tmp_params.loopback = info->params.loopback;
1071 tmp_params.flags = info->params.flags;
1072 tmp_params.encoding = info->params.encoding;
1073 tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed;
1074 tmp_params.addr_filter = info->params.addr_filter;
1075 tmp_params.crc_type = info->params.crc_type;
1076 tmp_params.preamble_length = info->params.preamble_length;
1077 tmp_params.preamble = info->params.preamble;
1078 tmp_params.data_rate = (compat_ulong_t)info->params.data_rate;
1079 tmp_params.data_bits = info->params.data_bits;
1080 tmp_params.stop_bits = info->params.stop_bits;
1081 tmp_params.parity = info->params.parity;
1082 if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32)))
1083 return -EFAULT;
1084 return 0;
1085 }
1086
set_params32(struct slgt_info * info,struct MGSL_PARAMS32 __user * new_params)1087 static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params)
1088 {
1089 struct MGSL_PARAMS32 tmp_params;
1090 unsigned long flags;
1091
1092 DBGINFO(("%s set_params32\n", info->device_name));
1093 if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32)))
1094 return -EFAULT;
1095
1096 spin_lock_irqsave(&info->lock, flags);
1097 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) {
1098 info->base_clock = tmp_params.clock_speed;
1099 } else {
1100 info->params.mode = tmp_params.mode;
1101 info->params.loopback = tmp_params.loopback;
1102 info->params.flags = tmp_params.flags;
1103 info->params.encoding = tmp_params.encoding;
1104 info->params.clock_speed = tmp_params.clock_speed;
1105 info->params.addr_filter = tmp_params.addr_filter;
1106 info->params.crc_type = tmp_params.crc_type;
1107 info->params.preamble_length = tmp_params.preamble_length;
1108 info->params.preamble = tmp_params.preamble;
1109 info->params.data_rate = tmp_params.data_rate;
1110 info->params.data_bits = tmp_params.data_bits;
1111 info->params.stop_bits = tmp_params.stop_bits;
1112 info->params.parity = tmp_params.parity;
1113 }
1114 spin_unlock_irqrestore(&info->lock, flags);
1115
1116 program_hw(info);
1117
1118 return 0;
1119 }
1120
slgt_compat_ioctl(struct tty_struct * tty,unsigned int cmd,unsigned long arg)1121 static long slgt_compat_ioctl(struct tty_struct *tty,
1122 unsigned int cmd, unsigned long arg)
1123 {
1124 struct slgt_info *info = tty->driver_data;
1125 int rc;
1126
1127 if (sanity_check(info, tty->name, "compat_ioctl"))
1128 return -ENODEV;
1129 DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd));
1130
1131 switch (cmd) {
1132 case MGSL_IOCSPARAMS32:
1133 rc = set_params32(info, compat_ptr(arg));
1134 break;
1135
1136 case MGSL_IOCGPARAMS32:
1137 rc = get_params32(info, compat_ptr(arg));
1138 break;
1139
1140 case MGSL_IOCGPARAMS:
1141 case MGSL_IOCSPARAMS:
1142 case MGSL_IOCGTXIDLE:
1143 case MGSL_IOCGSTATS:
1144 case MGSL_IOCWAITEVENT:
1145 case MGSL_IOCGIF:
1146 case MGSL_IOCSGPIO:
1147 case MGSL_IOCGGPIO:
1148 case MGSL_IOCWAITGPIO:
1149 case MGSL_IOCGXSYNC:
1150 case MGSL_IOCGXCTRL:
1151 rc = ioctl(tty, cmd, (unsigned long)compat_ptr(arg));
1152 break;
1153 default:
1154 rc = ioctl(tty, cmd, arg);
1155 }
1156 DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc));
1157 return rc;
1158 }
1159 #else
1160 #define slgt_compat_ioctl NULL
1161 #endif /* ifdef CONFIG_COMPAT */
1162
1163 /*
1164 * proc fs support
1165 */
line_info(struct seq_file * m,struct slgt_info * info)1166 static inline void line_info(struct seq_file *m, struct slgt_info *info)
1167 {
1168 char stat_buf[30];
1169 unsigned long flags;
1170
1171 seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n",
1172 info->device_name, info->phys_reg_addr,
1173 info->irq_level, info->max_frame_size);
1174
1175 /* output current serial signal states */
1176 spin_lock_irqsave(&info->lock,flags);
1177 get_gtsignals(info);
1178 spin_unlock_irqrestore(&info->lock,flags);
1179
1180 stat_buf[0] = 0;
1181 stat_buf[1] = 0;
1182 if (info->signals & SerialSignal_RTS)
1183 strcat(stat_buf, "|RTS");
1184 if (info->signals & SerialSignal_CTS)
1185 strcat(stat_buf, "|CTS");
1186 if (info->signals & SerialSignal_DTR)
1187 strcat(stat_buf, "|DTR");
1188 if (info->signals & SerialSignal_DSR)
1189 strcat(stat_buf, "|DSR");
1190 if (info->signals & SerialSignal_DCD)
1191 strcat(stat_buf, "|CD");
1192 if (info->signals & SerialSignal_RI)
1193 strcat(stat_buf, "|RI");
1194
1195 if (info->params.mode != MGSL_MODE_ASYNC) {
1196 seq_printf(m, "\tHDLC txok:%d rxok:%d",
1197 info->icount.txok, info->icount.rxok);
1198 if (info->icount.txunder)
1199 seq_printf(m, " txunder:%d", info->icount.txunder);
1200 if (info->icount.txabort)
1201 seq_printf(m, " txabort:%d", info->icount.txabort);
1202 if (info->icount.rxshort)
1203 seq_printf(m, " rxshort:%d", info->icount.rxshort);
1204 if (info->icount.rxlong)
1205 seq_printf(m, " rxlong:%d", info->icount.rxlong);
1206 if (info->icount.rxover)
1207 seq_printf(m, " rxover:%d", info->icount.rxover);
1208 if (info->icount.rxcrc)
1209 seq_printf(m, " rxcrc:%d", info->icount.rxcrc);
1210 } else {
1211 seq_printf(m, "\tASYNC tx:%d rx:%d",
1212 info->icount.tx, info->icount.rx);
1213 if (info->icount.frame)
1214 seq_printf(m, " fe:%d", info->icount.frame);
1215 if (info->icount.parity)
1216 seq_printf(m, " pe:%d", info->icount.parity);
1217 if (info->icount.brk)
1218 seq_printf(m, " brk:%d", info->icount.brk);
1219 if (info->icount.overrun)
1220 seq_printf(m, " oe:%d", info->icount.overrun);
1221 }
1222
1223 /* Append serial signal status to end */
1224 seq_printf(m, " %s\n", stat_buf+1);
1225
1226 seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n",
1227 info->tx_active,info->bh_requested,info->bh_running,
1228 info->pending_bh);
1229 }
1230
1231 /* Called to print information about devices
1232 */
synclink_gt_proc_show(struct seq_file * m,void * v)1233 static int synclink_gt_proc_show(struct seq_file *m, void *v)
1234 {
1235 struct slgt_info *info;
1236
1237 seq_puts(m, "synclink_gt driver\n");
1238
1239 info = slgt_device_list;
1240 while( info ) {
1241 line_info(m, info);
1242 info = info->next_device;
1243 }
1244 return 0;
1245 }
1246
1247 /*
1248 * return count of bytes in transmit buffer
1249 */
chars_in_buffer(struct tty_struct * tty)1250 static unsigned int chars_in_buffer(struct tty_struct *tty)
1251 {
1252 struct slgt_info *info = tty->driver_data;
1253 unsigned int count;
1254 if (sanity_check(info, tty->name, "chars_in_buffer"))
1255 return 0;
1256 count = tbuf_bytes(info);
1257 DBGINFO(("%s chars_in_buffer()=%u\n", info->device_name, count));
1258 return count;
1259 }
1260
1261 /*
1262 * signal remote device to throttle send data (our receive data)
1263 */
throttle(struct tty_struct * tty)1264 static void throttle(struct tty_struct * tty)
1265 {
1266 struct slgt_info *info = tty->driver_data;
1267 unsigned long flags;
1268
1269 if (sanity_check(info, tty->name, "throttle"))
1270 return;
1271 DBGINFO(("%s throttle\n", info->device_name));
1272 if (I_IXOFF(tty))
1273 send_xchar(tty, STOP_CHAR(tty));
1274 if (C_CRTSCTS(tty)) {
1275 spin_lock_irqsave(&info->lock,flags);
1276 info->signals &= ~SerialSignal_RTS;
1277 set_gtsignals(info);
1278 spin_unlock_irqrestore(&info->lock,flags);
1279 }
1280 }
1281
1282 /*
1283 * signal remote device to stop throttling send data (our receive data)
1284 */
unthrottle(struct tty_struct * tty)1285 static void unthrottle(struct tty_struct * tty)
1286 {
1287 struct slgt_info *info = tty->driver_data;
1288 unsigned long flags;
1289
1290 if (sanity_check(info, tty->name, "unthrottle"))
1291 return;
1292 DBGINFO(("%s unthrottle\n", info->device_name));
1293 if (I_IXOFF(tty)) {
1294 if (info->x_char)
1295 info->x_char = 0;
1296 else
1297 send_xchar(tty, START_CHAR(tty));
1298 }
1299 if (C_CRTSCTS(tty)) {
1300 spin_lock_irqsave(&info->lock,flags);
1301 info->signals |= SerialSignal_RTS;
1302 set_gtsignals(info);
1303 spin_unlock_irqrestore(&info->lock,flags);
1304 }
1305 }
1306
1307 /*
1308 * set or clear transmit break condition
1309 * break_state -1=set break condition, 0=clear
1310 */
set_break(struct tty_struct * tty,int break_state)1311 static int set_break(struct tty_struct *tty, int break_state)
1312 {
1313 struct slgt_info *info = tty->driver_data;
1314 unsigned short value;
1315 unsigned long flags;
1316
1317 if (sanity_check(info, tty->name, "set_break"))
1318 return -EINVAL;
1319 DBGINFO(("%s set_break(%d)\n", info->device_name, break_state));
1320
1321 spin_lock_irqsave(&info->lock,flags);
1322 value = rd_reg16(info, TCR);
1323 if (break_state == -1)
1324 value |= BIT6;
1325 else
1326 value &= ~BIT6;
1327 wr_reg16(info, TCR, value);
1328 spin_unlock_irqrestore(&info->lock,flags);
1329 return 0;
1330 }
1331
1332 #if SYNCLINK_GENERIC_HDLC
1333
1334 /**
1335 * hdlcdev_attach - called by generic HDLC layer when protocol selected (PPP, frame relay, etc.)
1336 * @dev: pointer to network device structure
1337 * @encoding: serial encoding setting
1338 * @parity: FCS setting
1339 *
1340 * Set encoding and frame check sequence (FCS) options.
1341 *
1342 * Return: 0 if success, otherwise error code
1343 */
hdlcdev_attach(struct net_device * dev,unsigned short encoding,unsigned short parity)1344 static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
1345 unsigned short parity)
1346 {
1347 struct slgt_info *info = dev_to_port(dev);
1348 unsigned char new_encoding;
1349 unsigned short new_crctype;
1350
1351 /* return error if TTY interface open */
1352 if (info->port.count)
1353 return -EBUSY;
1354
1355 DBGINFO(("%s hdlcdev_attach\n", info->device_name));
1356
1357 switch (encoding)
1358 {
1359 case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break;
1360 case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break;
1361 case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break;
1362 case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break;
1363 case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break;
1364 default: return -EINVAL;
1365 }
1366
1367 switch (parity)
1368 {
1369 case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break;
1370 case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break;
1371 case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break;
1372 default: return -EINVAL;
1373 }
1374
1375 info->params.encoding = new_encoding;
1376 info->params.crc_type = new_crctype;
1377
1378 /* if network interface up, reprogram hardware */
1379 if (info->netcount)
1380 program_hw(info);
1381
1382 return 0;
1383 }
1384
1385 /**
1386 * hdlcdev_xmit - called by generic HDLC layer to send a frame
1387 * @skb: socket buffer containing HDLC frame
1388 * @dev: pointer to network device structure
1389 */
hdlcdev_xmit(struct sk_buff * skb,struct net_device * dev)1390 static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb,
1391 struct net_device *dev)
1392 {
1393 struct slgt_info *info = dev_to_port(dev);
1394 unsigned long flags;
1395
1396 DBGINFO(("%s hdlc_xmit\n", dev->name));
1397
1398 if (!skb->len)
1399 return NETDEV_TX_OK;
1400
1401 /* stop sending until this frame completes */
1402 netif_stop_queue(dev);
1403
1404 /* update network statistics */
1405 dev->stats.tx_packets++;
1406 dev->stats.tx_bytes += skb->len;
1407
1408 /* save start time for transmit timeout detection */
1409 netif_trans_update(dev);
1410
1411 spin_lock_irqsave(&info->lock, flags);
1412 tx_load(info, skb->data, skb->len);
1413 spin_unlock_irqrestore(&info->lock, flags);
1414
1415 /* done with socket buffer, so free it */
1416 dev_kfree_skb(skb);
1417
1418 return NETDEV_TX_OK;
1419 }
1420
1421 /**
1422 * hdlcdev_open - called by network layer when interface enabled
1423 * @dev: pointer to network device structure
1424 *
1425 * Claim resources and initialize hardware.
1426 *
1427 * Return: 0 if success, otherwise error code
1428 */
hdlcdev_open(struct net_device * dev)1429 static int hdlcdev_open(struct net_device *dev)
1430 {
1431 struct slgt_info *info = dev_to_port(dev);
1432 int rc;
1433 unsigned long flags;
1434
1435 DBGINFO(("%s hdlcdev_open\n", dev->name));
1436
1437 /* arbitrate between network and tty opens */
1438 spin_lock_irqsave(&info->netlock, flags);
1439 if (info->port.count != 0 || info->netcount != 0) {
1440 DBGINFO(("%s hdlc_open busy\n", dev->name));
1441 spin_unlock_irqrestore(&info->netlock, flags);
1442 return -EBUSY;
1443 }
1444 info->netcount=1;
1445 spin_unlock_irqrestore(&info->netlock, flags);
1446
1447 /* claim resources and init adapter */
1448 if ((rc = startup(info)) != 0) {
1449 spin_lock_irqsave(&info->netlock, flags);
1450 info->netcount=0;
1451 spin_unlock_irqrestore(&info->netlock, flags);
1452 return rc;
1453 }
1454
1455 /* generic HDLC layer open processing */
1456 rc = hdlc_open(dev);
1457 if (rc) {
1458 shutdown(info);
1459 spin_lock_irqsave(&info->netlock, flags);
1460 info->netcount = 0;
1461 spin_unlock_irqrestore(&info->netlock, flags);
1462 return rc;
1463 }
1464
1465 /* assert RTS and DTR, apply hardware settings */
1466 info->signals |= SerialSignal_RTS | SerialSignal_DTR;
1467 program_hw(info);
1468
1469 /* enable network layer transmit */
1470 netif_trans_update(dev);
1471 netif_start_queue(dev);
1472
1473 /* inform generic HDLC layer of current DCD status */
1474 spin_lock_irqsave(&info->lock, flags);
1475 get_gtsignals(info);
1476 spin_unlock_irqrestore(&info->lock, flags);
1477 if (info->signals & SerialSignal_DCD)
1478 netif_carrier_on(dev);
1479 else
1480 netif_carrier_off(dev);
1481 return 0;
1482 }
1483
1484 /**
1485 * hdlcdev_close - called by network layer when interface is disabled
1486 * @dev: pointer to network device structure
1487 *
1488 * Shutdown hardware and release resources.
1489 *
1490 * Return: 0 if success, otherwise error code
1491 */
hdlcdev_close(struct net_device * dev)1492 static int hdlcdev_close(struct net_device *dev)
1493 {
1494 struct slgt_info *info = dev_to_port(dev);
1495 unsigned long flags;
1496
1497 DBGINFO(("%s hdlcdev_close\n", dev->name));
1498
1499 netif_stop_queue(dev);
1500
1501 /* shutdown adapter and release resources */
1502 shutdown(info);
1503
1504 hdlc_close(dev);
1505
1506 spin_lock_irqsave(&info->netlock, flags);
1507 info->netcount=0;
1508 spin_unlock_irqrestore(&info->netlock, flags);
1509
1510 return 0;
1511 }
1512
1513 /**
1514 * hdlcdev_ioctl - called by network layer to process IOCTL call to network device
1515 * @dev: pointer to network device structure
1516 * @ifr: pointer to network interface request structure
1517 * @cmd: IOCTL command code
1518 *
1519 * Return: 0 if success, otherwise error code
1520 */
hdlcdev_ioctl(struct net_device * dev,struct if_settings * ifs)1521 static int hdlcdev_ioctl(struct net_device *dev, struct if_settings *ifs)
1522 {
1523 const size_t size = sizeof(sync_serial_settings);
1524 sync_serial_settings new_line;
1525 sync_serial_settings __user *line = ifs->ifs_ifsu.sync;
1526 struct slgt_info *info = dev_to_port(dev);
1527 unsigned int flags;
1528
1529 DBGINFO(("%s hdlcdev_ioctl\n", dev->name));
1530
1531 /* return error if TTY interface open */
1532 if (info->port.count)
1533 return -EBUSY;
1534
1535 memset(&new_line, 0, sizeof(new_line));
1536
1537 switch (ifs->type) {
1538 case IF_GET_IFACE: /* return current sync_serial_settings */
1539
1540 ifs->type = IF_IFACE_SYNC_SERIAL;
1541 if (ifs->size < size) {
1542 ifs->size = size; /* data size wanted */
1543 return -ENOBUFS;
1544 }
1545
1546 flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1547 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
1548 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1549 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
1550
1551 switch (flags){
1552 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break;
1553 case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break;
1554 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break;
1555 case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break;
1556 default: new_line.clock_type = CLOCK_DEFAULT;
1557 }
1558
1559 new_line.clock_rate = info->params.clock_speed;
1560 new_line.loopback = info->params.loopback ? 1:0;
1561
1562 if (copy_to_user(line, &new_line, size))
1563 return -EFAULT;
1564 return 0;
1565
1566 case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */
1567
1568 if(!capable(CAP_NET_ADMIN))
1569 return -EPERM;
1570 if (copy_from_user(&new_line, line, size))
1571 return -EFAULT;
1572
1573 switch (new_line.clock_type)
1574 {
1575 case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break;
1576 case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break;
1577 case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break;
1578 case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break;
1579 case CLOCK_DEFAULT: flags = info->params.flags &
1580 (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1581 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
1582 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1583 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break;
1584 default: return -EINVAL;
1585 }
1586
1587 if (new_line.loopback != 0 && new_line.loopback != 1)
1588 return -EINVAL;
1589
1590 info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
1591 HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
1592 HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
1593 HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
1594 info->params.flags |= flags;
1595
1596 info->params.loopback = new_line.loopback;
1597
1598 if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG))
1599 info->params.clock_speed = new_line.clock_rate;
1600 else
1601 info->params.clock_speed = 0;
1602
1603 /* if network interface up, reprogram hardware */
1604 if (info->netcount)
1605 program_hw(info);
1606 return 0;
1607
1608 default:
1609 return hdlc_ioctl(dev, ifs);
1610 }
1611 }
1612
1613 /**
1614 * hdlcdev_tx_timeout - called by network layer when transmit timeout is detected
1615 * @dev: pointer to network device structure
1616 * @txqueue: unused
1617 */
hdlcdev_tx_timeout(struct net_device * dev,unsigned int txqueue)1618 static void hdlcdev_tx_timeout(struct net_device *dev, unsigned int txqueue)
1619 {
1620 struct slgt_info *info = dev_to_port(dev);
1621 unsigned long flags;
1622
1623 DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name));
1624
1625 dev->stats.tx_errors++;
1626 dev->stats.tx_aborted_errors++;
1627
1628 spin_lock_irqsave(&info->lock,flags);
1629 tx_stop(info);
1630 spin_unlock_irqrestore(&info->lock,flags);
1631
1632 netif_wake_queue(dev);
1633 }
1634
1635 /**
1636 * hdlcdev_tx_done - called by device driver when transmit completes
1637 * @info: pointer to device instance information
1638 *
1639 * Reenable network layer transmit if stopped.
1640 */
hdlcdev_tx_done(struct slgt_info * info)1641 static void hdlcdev_tx_done(struct slgt_info *info)
1642 {
1643 if (netif_queue_stopped(info->netdev))
1644 netif_wake_queue(info->netdev);
1645 }
1646
1647 /**
1648 * hdlcdev_rx - called by device driver when frame received
1649 * @info: pointer to device instance information
1650 * @buf: pointer to buffer contianing frame data
1651 * @size: count of data bytes in buf
1652 *
1653 * Pass frame to network layer.
1654 */
hdlcdev_rx(struct slgt_info * info,char * buf,int size)1655 static void hdlcdev_rx(struct slgt_info *info, char *buf, int size)
1656 {
1657 struct sk_buff *skb = dev_alloc_skb(size);
1658 struct net_device *dev = info->netdev;
1659
1660 DBGINFO(("%s hdlcdev_rx\n", dev->name));
1661
1662 if (skb == NULL) {
1663 DBGERR(("%s: can't alloc skb, drop packet\n", dev->name));
1664 dev->stats.rx_dropped++;
1665 return;
1666 }
1667
1668 skb_put_data(skb, buf, size);
1669
1670 skb->protocol = hdlc_type_trans(skb, dev);
1671
1672 dev->stats.rx_packets++;
1673 dev->stats.rx_bytes += size;
1674
1675 netif_rx(skb);
1676 }
1677
1678 static const struct net_device_ops hdlcdev_ops = {
1679 .ndo_open = hdlcdev_open,
1680 .ndo_stop = hdlcdev_close,
1681 .ndo_start_xmit = hdlc_start_xmit,
1682 .ndo_siocwandev = hdlcdev_ioctl,
1683 .ndo_tx_timeout = hdlcdev_tx_timeout,
1684 };
1685
1686 /**
1687 * hdlcdev_init - called by device driver when adding device instance
1688 * @info: pointer to device instance information
1689 *
1690 * Do generic HDLC initialization.
1691 *
1692 * Return: 0 if success, otherwise error code
1693 */
hdlcdev_init(struct slgt_info * info)1694 static int hdlcdev_init(struct slgt_info *info)
1695 {
1696 int rc;
1697 struct net_device *dev;
1698 hdlc_device *hdlc;
1699
1700 /* allocate and initialize network and HDLC layer objects */
1701
1702 dev = alloc_hdlcdev(info);
1703 if (!dev) {
1704 printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name);
1705 return -ENOMEM;
1706 }
1707
1708 /* for network layer reporting purposes only */
1709 dev->mem_start = info->phys_reg_addr;
1710 dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1;
1711 dev->irq = info->irq_level;
1712
1713 /* network layer callbacks and settings */
1714 dev->netdev_ops = &hdlcdev_ops;
1715 dev->watchdog_timeo = 10 * HZ;
1716 dev->tx_queue_len = 50;
1717
1718 /* generic HDLC layer callbacks and settings */
1719 hdlc = dev_to_hdlc(dev);
1720 hdlc->attach = hdlcdev_attach;
1721 hdlc->xmit = hdlcdev_xmit;
1722
1723 /* register objects with HDLC layer */
1724 rc = register_hdlc_device(dev);
1725 if (rc) {
1726 printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__);
1727 free_netdev(dev);
1728 return rc;
1729 }
1730
1731 info->netdev = dev;
1732 return 0;
1733 }
1734
1735 /**
1736 * hdlcdev_exit - called by device driver when removing device instance
1737 * @info: pointer to device instance information
1738 *
1739 * Do generic HDLC cleanup.
1740 */
hdlcdev_exit(struct slgt_info * info)1741 static void hdlcdev_exit(struct slgt_info *info)
1742 {
1743 if (!info->netdev)
1744 return;
1745 unregister_hdlc_device(info->netdev);
1746 free_netdev(info->netdev);
1747 info->netdev = NULL;
1748 }
1749
1750 #endif /* ifdef CONFIG_HDLC */
1751
1752 /*
1753 * get async data from rx DMA buffers
1754 */
rx_async(struct slgt_info * info)1755 static void rx_async(struct slgt_info *info)
1756 {
1757 struct mgsl_icount *icount = &info->icount;
1758 unsigned int start, end;
1759 unsigned char *p;
1760 unsigned char status;
1761 struct slgt_desc *bufs = info->rbufs;
1762 int i, count;
1763 int chars = 0;
1764 int stat;
1765 unsigned char ch;
1766
1767 start = end = info->rbuf_current;
1768
1769 while(desc_complete(bufs[end])) {
1770 count = desc_count(bufs[end]) - info->rbuf_index;
1771 p = bufs[end].buf + info->rbuf_index;
1772
1773 DBGISR(("%s rx_async count=%d\n", info->device_name, count));
1774 DBGDATA(info, p, count, "rx");
1775
1776 for(i=0 ; i < count; i+=2, p+=2) {
1777 ch = *p;
1778 icount->rx++;
1779
1780 stat = 0;
1781
1782 status = *(p + 1) & (BIT1 + BIT0);
1783 if (status) {
1784 if (status & BIT1)
1785 icount->parity++;
1786 else if (status & BIT0)
1787 icount->frame++;
1788 /* discard char if tty control flags say so */
1789 if (status & info->ignore_status_mask)
1790 continue;
1791 if (status & BIT1)
1792 stat = TTY_PARITY;
1793 else if (status & BIT0)
1794 stat = TTY_FRAME;
1795 }
1796 tty_insert_flip_char(&info->port, ch, stat);
1797 chars++;
1798 }
1799
1800 if (i < count) {
1801 /* receive buffer not completed */
1802 info->rbuf_index += i;
1803 mod_timer(&info->rx_timer, jiffies + 1);
1804 break;
1805 }
1806
1807 info->rbuf_index = 0;
1808 free_rbufs(info, end, end);
1809
1810 if (++end == info->rbuf_count)
1811 end = 0;
1812
1813 /* if entire list searched then no frame available */
1814 if (end == start)
1815 break;
1816 }
1817
1818 if (chars)
1819 tty_flip_buffer_push(&info->port);
1820 }
1821
1822 /*
1823 * return next bottom half action to perform
1824 */
bh_action(struct slgt_info * info)1825 static int bh_action(struct slgt_info *info)
1826 {
1827 unsigned long flags;
1828 int rc;
1829
1830 spin_lock_irqsave(&info->lock,flags);
1831
1832 if (info->pending_bh & BH_RECEIVE) {
1833 info->pending_bh &= ~BH_RECEIVE;
1834 rc = BH_RECEIVE;
1835 } else if (info->pending_bh & BH_TRANSMIT) {
1836 info->pending_bh &= ~BH_TRANSMIT;
1837 rc = BH_TRANSMIT;
1838 } else if (info->pending_bh & BH_STATUS) {
1839 info->pending_bh &= ~BH_STATUS;
1840 rc = BH_STATUS;
1841 } else {
1842 /* Mark BH routine as complete */
1843 info->bh_running = false;
1844 info->bh_requested = false;
1845 rc = 0;
1846 }
1847
1848 spin_unlock_irqrestore(&info->lock,flags);
1849
1850 return rc;
1851 }
1852
1853 /*
1854 * perform bottom half processing
1855 */
bh_handler(struct work_struct * work)1856 static void bh_handler(struct work_struct *work)
1857 {
1858 struct slgt_info *info = container_of(work, struct slgt_info, task);
1859 int action;
1860
1861 info->bh_running = true;
1862
1863 while((action = bh_action(info))) {
1864 switch (action) {
1865 case BH_RECEIVE:
1866 DBGBH(("%s bh receive\n", info->device_name));
1867 switch(info->params.mode) {
1868 case MGSL_MODE_ASYNC:
1869 rx_async(info);
1870 break;
1871 case MGSL_MODE_HDLC:
1872 while(rx_get_frame(info));
1873 break;
1874 case MGSL_MODE_RAW:
1875 case MGSL_MODE_MONOSYNC:
1876 case MGSL_MODE_BISYNC:
1877 case MGSL_MODE_XSYNC:
1878 while(rx_get_buf(info));
1879 break;
1880 }
1881 /* restart receiver if rx DMA buffers exhausted */
1882 if (info->rx_restart)
1883 rx_start(info);
1884 break;
1885 case BH_TRANSMIT:
1886 bh_transmit(info);
1887 break;
1888 case BH_STATUS:
1889 DBGBH(("%s bh status\n", info->device_name));
1890 info->ri_chkcount = 0;
1891 info->dsr_chkcount = 0;
1892 info->dcd_chkcount = 0;
1893 info->cts_chkcount = 0;
1894 break;
1895 default:
1896 DBGBH(("%s unknown action\n", info->device_name));
1897 break;
1898 }
1899 }
1900 DBGBH(("%s bh_handler exit\n", info->device_name));
1901 }
1902
bh_transmit(struct slgt_info * info)1903 static void bh_transmit(struct slgt_info *info)
1904 {
1905 struct tty_struct *tty = info->port.tty;
1906
1907 DBGBH(("%s bh_transmit\n", info->device_name));
1908 if (tty)
1909 tty_wakeup(tty);
1910 }
1911
dsr_change(struct slgt_info * info,unsigned short status)1912 static void dsr_change(struct slgt_info *info, unsigned short status)
1913 {
1914 if (status & BIT3) {
1915 info->signals |= SerialSignal_DSR;
1916 info->input_signal_events.dsr_up++;
1917 } else {
1918 info->signals &= ~SerialSignal_DSR;
1919 info->input_signal_events.dsr_down++;
1920 }
1921 DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals));
1922 if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
1923 slgt_irq_off(info, IRQ_DSR);
1924 return;
1925 }
1926 info->icount.dsr++;
1927 wake_up_interruptible(&info->status_event_wait_q);
1928 wake_up_interruptible(&info->event_wait_q);
1929 info->pending_bh |= BH_STATUS;
1930 }
1931
cts_change(struct slgt_info * info,unsigned short status)1932 static void cts_change(struct slgt_info *info, unsigned short status)
1933 {
1934 if (status & BIT2) {
1935 info->signals |= SerialSignal_CTS;
1936 info->input_signal_events.cts_up++;
1937 } else {
1938 info->signals &= ~SerialSignal_CTS;
1939 info->input_signal_events.cts_down++;
1940 }
1941 DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals));
1942 if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
1943 slgt_irq_off(info, IRQ_CTS);
1944 return;
1945 }
1946 info->icount.cts++;
1947 wake_up_interruptible(&info->status_event_wait_q);
1948 wake_up_interruptible(&info->event_wait_q);
1949 info->pending_bh |= BH_STATUS;
1950
1951 if (tty_port_cts_enabled(&info->port)) {
1952 if (info->port.tty) {
1953 if (info->port.tty->hw_stopped) {
1954 if (info->signals & SerialSignal_CTS) {
1955 info->port.tty->hw_stopped = false;
1956 info->pending_bh |= BH_TRANSMIT;
1957 return;
1958 }
1959 } else {
1960 if (!(info->signals & SerialSignal_CTS))
1961 info->port.tty->hw_stopped = true;
1962 }
1963 }
1964 }
1965 }
1966
dcd_change(struct slgt_info * info,unsigned short status)1967 static void dcd_change(struct slgt_info *info, unsigned short status)
1968 {
1969 if (status & BIT1) {
1970 info->signals |= SerialSignal_DCD;
1971 info->input_signal_events.dcd_up++;
1972 } else {
1973 info->signals &= ~SerialSignal_DCD;
1974 info->input_signal_events.dcd_down++;
1975 }
1976 DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals));
1977 if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
1978 slgt_irq_off(info, IRQ_DCD);
1979 return;
1980 }
1981 info->icount.dcd++;
1982 #if SYNCLINK_GENERIC_HDLC
1983 if (info->netcount) {
1984 if (info->signals & SerialSignal_DCD)
1985 netif_carrier_on(info->netdev);
1986 else
1987 netif_carrier_off(info->netdev);
1988 }
1989 #endif
1990 wake_up_interruptible(&info->status_event_wait_q);
1991 wake_up_interruptible(&info->event_wait_q);
1992 info->pending_bh |= BH_STATUS;
1993
1994 if (tty_port_check_carrier(&info->port)) {
1995 if (info->signals & SerialSignal_DCD)
1996 wake_up_interruptible(&info->port.open_wait);
1997 else {
1998 if (info->port.tty)
1999 tty_hangup(info->port.tty);
2000 }
2001 }
2002 }
2003
ri_change(struct slgt_info * info,unsigned short status)2004 static void ri_change(struct slgt_info *info, unsigned short status)
2005 {
2006 if (status & BIT0) {
2007 info->signals |= SerialSignal_RI;
2008 info->input_signal_events.ri_up++;
2009 } else {
2010 info->signals &= ~SerialSignal_RI;
2011 info->input_signal_events.ri_down++;
2012 }
2013 DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals));
2014 if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
2015 slgt_irq_off(info, IRQ_RI);
2016 return;
2017 }
2018 info->icount.rng++;
2019 wake_up_interruptible(&info->status_event_wait_q);
2020 wake_up_interruptible(&info->event_wait_q);
2021 info->pending_bh |= BH_STATUS;
2022 }
2023
isr_rxdata(struct slgt_info * info)2024 static void isr_rxdata(struct slgt_info *info)
2025 {
2026 unsigned int count = info->rbuf_fill_count;
2027 unsigned int i = info->rbuf_fill_index;
2028 unsigned short reg;
2029
2030 while (rd_reg16(info, SSR) & IRQ_RXDATA) {
2031 reg = rd_reg16(info, RDR);
2032 DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg));
2033 if (desc_complete(info->rbufs[i])) {
2034 /* all buffers full */
2035 rx_stop(info);
2036 info->rx_restart = true;
2037 continue;
2038 }
2039 info->rbufs[i].buf[count++] = (unsigned char)reg;
2040 /* async mode saves status byte to buffer for each data byte */
2041 if (info->params.mode == MGSL_MODE_ASYNC)
2042 info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8);
2043 if (count == info->rbuf_fill_level || (reg & BIT10)) {
2044 /* buffer full or end of frame */
2045 set_desc_count(info->rbufs[i], count);
2046 set_desc_status(info->rbufs[i], BIT15 | (reg >> 8));
2047 info->rbuf_fill_count = count = 0;
2048 if (++i == info->rbuf_count)
2049 i = 0;
2050 info->pending_bh |= BH_RECEIVE;
2051 }
2052 }
2053
2054 info->rbuf_fill_index = i;
2055 info->rbuf_fill_count = count;
2056 }
2057
isr_serial(struct slgt_info * info)2058 static void isr_serial(struct slgt_info *info)
2059 {
2060 unsigned short status = rd_reg16(info, SSR);
2061
2062 DBGISR(("%s isr_serial status=%04X\n", info->device_name, status));
2063
2064 wr_reg16(info, SSR, status); /* clear pending */
2065
2066 info->irq_occurred = true;
2067
2068 if (info->params.mode == MGSL_MODE_ASYNC) {
2069 if (status & IRQ_TXIDLE) {
2070 if (info->tx_active)
2071 isr_txeom(info, status);
2072 }
2073 if (info->rx_pio && (status & IRQ_RXDATA))
2074 isr_rxdata(info);
2075 if ((status & IRQ_RXBREAK) && (status & RXBREAK)) {
2076 info->icount.brk++;
2077 /* process break detection if tty control allows */
2078 if (info->port.tty) {
2079 if (!(status & info->ignore_status_mask)) {
2080 if (info->read_status_mask & MASK_BREAK) {
2081 tty_insert_flip_char(&info->port, 0, TTY_BREAK);
2082 if (info->port.flags & ASYNC_SAK)
2083 do_SAK(info->port.tty);
2084 }
2085 }
2086 }
2087 }
2088 } else {
2089 if (status & (IRQ_TXIDLE + IRQ_TXUNDER))
2090 isr_txeom(info, status);
2091 if (info->rx_pio && (status & IRQ_RXDATA))
2092 isr_rxdata(info);
2093 if (status & IRQ_RXIDLE) {
2094 if (status & RXIDLE)
2095 info->icount.rxidle++;
2096 else
2097 info->icount.exithunt++;
2098 wake_up_interruptible(&info->event_wait_q);
2099 }
2100
2101 if (status & IRQ_RXOVER)
2102 rx_start(info);
2103 }
2104
2105 if (status & IRQ_DSR)
2106 dsr_change(info, status);
2107 if (status & IRQ_CTS)
2108 cts_change(info, status);
2109 if (status & IRQ_DCD)
2110 dcd_change(info, status);
2111 if (status & IRQ_RI)
2112 ri_change(info, status);
2113 }
2114
isr_rdma(struct slgt_info * info)2115 static void isr_rdma(struct slgt_info *info)
2116 {
2117 unsigned int status = rd_reg32(info, RDCSR);
2118
2119 DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status));
2120
2121 /* RDCSR (rx DMA control/status)
2122 *
2123 * 31..07 reserved
2124 * 06 save status byte to DMA buffer
2125 * 05 error
2126 * 04 eol (end of list)
2127 * 03 eob (end of buffer)
2128 * 02 IRQ enable
2129 * 01 reset
2130 * 00 enable
2131 */
2132 wr_reg32(info, RDCSR, status); /* clear pending */
2133
2134 if (status & (BIT5 + BIT4)) {
2135 DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name));
2136 info->rx_restart = true;
2137 }
2138 info->pending_bh |= BH_RECEIVE;
2139 }
2140
isr_tdma(struct slgt_info * info)2141 static void isr_tdma(struct slgt_info *info)
2142 {
2143 unsigned int status = rd_reg32(info, TDCSR);
2144
2145 DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status));
2146
2147 /* TDCSR (tx DMA control/status)
2148 *
2149 * 31..06 reserved
2150 * 05 error
2151 * 04 eol (end of list)
2152 * 03 eob (end of buffer)
2153 * 02 IRQ enable
2154 * 01 reset
2155 * 00 enable
2156 */
2157 wr_reg32(info, TDCSR, status); /* clear pending */
2158
2159 if (status & (BIT5 + BIT4 + BIT3)) {
2160 // another transmit buffer has completed
2161 // run bottom half to get more send data from user
2162 info->pending_bh |= BH_TRANSMIT;
2163 }
2164 }
2165
2166 /*
2167 * return true if there are unsent tx DMA buffers, otherwise false
2168 *
2169 * if there are unsent buffers then info->tbuf_start
2170 * is set to index of first unsent buffer
2171 */
unsent_tbufs(struct slgt_info * info)2172 static bool unsent_tbufs(struct slgt_info *info)
2173 {
2174 unsigned int i = info->tbuf_current;
2175 bool rc = false;
2176
2177 /*
2178 * search backwards from last loaded buffer (precedes tbuf_current)
2179 * for first unsent buffer (desc_count > 0)
2180 */
2181
2182 do {
2183 if (i)
2184 i--;
2185 else
2186 i = info->tbuf_count - 1;
2187 if (!desc_count(info->tbufs[i]))
2188 break;
2189 info->tbuf_start = i;
2190 rc = true;
2191 } while (i != info->tbuf_current);
2192
2193 return rc;
2194 }
2195
isr_txeom(struct slgt_info * info,unsigned short status)2196 static void isr_txeom(struct slgt_info *info, unsigned short status)
2197 {
2198 DBGISR(("%s txeom status=%04x\n", info->device_name, status));
2199
2200 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
2201 tdma_reset(info);
2202 if (status & IRQ_TXUNDER) {
2203 unsigned short val = rd_reg16(info, TCR);
2204 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
2205 wr_reg16(info, TCR, val); /* clear reset bit */
2206 }
2207
2208 if (info->tx_active) {
2209 if (info->params.mode != MGSL_MODE_ASYNC) {
2210 if (status & IRQ_TXUNDER)
2211 info->icount.txunder++;
2212 else if (status & IRQ_TXIDLE)
2213 info->icount.txok++;
2214 }
2215
2216 if (unsent_tbufs(info)) {
2217 tx_start(info);
2218 update_tx_timer(info);
2219 return;
2220 }
2221 info->tx_active = false;
2222
2223 del_timer(&info->tx_timer);
2224
2225 if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) {
2226 info->signals &= ~SerialSignal_RTS;
2227 info->drop_rts_on_tx_done = false;
2228 set_gtsignals(info);
2229 }
2230
2231 #if SYNCLINK_GENERIC_HDLC
2232 if (info->netcount)
2233 hdlcdev_tx_done(info);
2234 else
2235 #endif
2236 {
2237 if (info->port.tty && (info->port.tty->flow.stopped || info->port.tty->hw_stopped)) {
2238 tx_stop(info);
2239 return;
2240 }
2241 info->pending_bh |= BH_TRANSMIT;
2242 }
2243 }
2244 }
2245
isr_gpio(struct slgt_info * info,unsigned int changed,unsigned int state)2246 static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state)
2247 {
2248 struct cond_wait *w, *prev;
2249
2250 /* wake processes waiting for specific transitions */
2251 for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) {
2252 if (w->data & changed) {
2253 w->data = state;
2254 wake_up_interruptible(&w->q);
2255 if (prev != NULL)
2256 prev->next = w->next;
2257 else
2258 info->gpio_wait_q = w->next;
2259 } else
2260 prev = w;
2261 }
2262 }
2263
2264 /* interrupt service routine
2265 *
2266 * irq interrupt number
2267 * dev_id device ID supplied during interrupt registration
2268 */
slgt_interrupt(int dummy,void * dev_id)2269 static irqreturn_t slgt_interrupt(int dummy, void *dev_id)
2270 {
2271 struct slgt_info *info = dev_id;
2272 unsigned int gsr;
2273 unsigned int i;
2274
2275 DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level));
2276
2277 while((gsr = rd_reg32(info, GSR) & 0xffffff00)) {
2278 DBGISR(("%s gsr=%08x\n", info->device_name, gsr));
2279 info->irq_occurred = true;
2280 for(i=0; i < info->port_count ; i++) {
2281 if (info->port_array[i] == NULL)
2282 continue;
2283 spin_lock(&info->port_array[i]->lock);
2284 if (gsr & (BIT8 << i))
2285 isr_serial(info->port_array[i]);
2286 if (gsr & (BIT16 << (i*2)))
2287 isr_rdma(info->port_array[i]);
2288 if (gsr & (BIT17 << (i*2)))
2289 isr_tdma(info->port_array[i]);
2290 spin_unlock(&info->port_array[i]->lock);
2291 }
2292 }
2293
2294 if (info->gpio_present) {
2295 unsigned int state;
2296 unsigned int changed;
2297 spin_lock(&info->lock);
2298 while ((changed = rd_reg32(info, IOSR)) != 0) {
2299 DBGISR(("%s iosr=%08x\n", info->device_name, changed));
2300 /* read latched state of GPIO signals */
2301 state = rd_reg32(info, IOVR);
2302 /* clear pending GPIO interrupt bits */
2303 wr_reg32(info, IOSR, changed);
2304 for (i=0 ; i < info->port_count ; i++) {
2305 if (info->port_array[i] != NULL)
2306 isr_gpio(info->port_array[i], changed, state);
2307 }
2308 }
2309 spin_unlock(&info->lock);
2310 }
2311
2312 for(i=0; i < info->port_count ; i++) {
2313 struct slgt_info *port = info->port_array[i];
2314 if (port == NULL)
2315 continue;
2316 spin_lock(&port->lock);
2317 if ((port->port.count || port->netcount) &&
2318 port->pending_bh && !port->bh_running &&
2319 !port->bh_requested) {
2320 DBGISR(("%s bh queued\n", port->device_name));
2321 schedule_work(&port->task);
2322 port->bh_requested = true;
2323 }
2324 spin_unlock(&port->lock);
2325 }
2326
2327 DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level));
2328 return IRQ_HANDLED;
2329 }
2330
startup(struct slgt_info * info)2331 static int startup(struct slgt_info *info)
2332 {
2333 DBGINFO(("%s startup\n", info->device_name));
2334
2335 if (tty_port_initialized(&info->port))
2336 return 0;
2337
2338 if (!info->tx_buf) {
2339 info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL);
2340 if (!info->tx_buf) {
2341 DBGERR(("%s can't allocate tx buffer\n", info->device_name));
2342 return -ENOMEM;
2343 }
2344 }
2345
2346 info->pending_bh = 0;
2347
2348 memset(&info->icount, 0, sizeof(info->icount));
2349
2350 /* program hardware for current parameters */
2351 change_params(info);
2352
2353 if (info->port.tty)
2354 clear_bit(TTY_IO_ERROR, &info->port.tty->flags);
2355
2356 tty_port_set_initialized(&info->port, true);
2357
2358 return 0;
2359 }
2360
2361 /*
2362 * called by close() and hangup() to shutdown hardware
2363 */
shutdown(struct slgt_info * info)2364 static void shutdown(struct slgt_info *info)
2365 {
2366 unsigned long flags;
2367
2368 if (!tty_port_initialized(&info->port))
2369 return;
2370
2371 DBGINFO(("%s shutdown\n", info->device_name));
2372
2373 /* clear status wait queue because status changes */
2374 /* can't happen after shutting down the hardware */
2375 wake_up_interruptible(&info->status_event_wait_q);
2376 wake_up_interruptible(&info->event_wait_q);
2377
2378 del_timer_sync(&info->tx_timer);
2379 del_timer_sync(&info->rx_timer);
2380
2381 kfree(info->tx_buf);
2382 info->tx_buf = NULL;
2383
2384 spin_lock_irqsave(&info->lock,flags);
2385
2386 tx_stop(info);
2387 rx_stop(info);
2388
2389 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
2390
2391 if (!info->port.tty || info->port.tty->termios.c_cflag & HUPCL) {
2392 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
2393 set_gtsignals(info);
2394 }
2395
2396 flush_cond_wait(&info->gpio_wait_q);
2397
2398 spin_unlock_irqrestore(&info->lock,flags);
2399
2400 if (info->port.tty)
2401 set_bit(TTY_IO_ERROR, &info->port.tty->flags);
2402
2403 tty_port_set_initialized(&info->port, false);
2404 }
2405
program_hw(struct slgt_info * info)2406 static void program_hw(struct slgt_info *info)
2407 {
2408 unsigned long flags;
2409
2410 spin_lock_irqsave(&info->lock,flags);
2411
2412 rx_stop(info);
2413 tx_stop(info);
2414
2415 if (info->params.mode != MGSL_MODE_ASYNC ||
2416 info->netcount)
2417 sync_mode(info);
2418 else
2419 async_mode(info);
2420
2421 set_gtsignals(info);
2422
2423 info->dcd_chkcount = 0;
2424 info->cts_chkcount = 0;
2425 info->ri_chkcount = 0;
2426 info->dsr_chkcount = 0;
2427
2428 slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI);
2429 get_gtsignals(info);
2430
2431 if (info->netcount ||
2432 (info->port.tty && info->port.tty->termios.c_cflag & CREAD))
2433 rx_start(info);
2434
2435 spin_unlock_irqrestore(&info->lock,flags);
2436 }
2437
2438 /*
2439 * reconfigure adapter based on new parameters
2440 */
change_params(struct slgt_info * info)2441 static void change_params(struct slgt_info *info)
2442 {
2443 unsigned cflag;
2444 int bits_per_char;
2445
2446 if (!info->port.tty)
2447 return;
2448 DBGINFO(("%s change_params\n", info->device_name));
2449
2450 cflag = info->port.tty->termios.c_cflag;
2451
2452 /* if B0 rate (hangup) specified then negate RTS and DTR */
2453 /* otherwise assert RTS and DTR */
2454 if (cflag & CBAUD)
2455 info->signals |= SerialSignal_RTS | SerialSignal_DTR;
2456 else
2457 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
2458
2459 /* byte size and parity */
2460
2461 info->params.data_bits = tty_get_char_size(cflag);
2462 info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1;
2463
2464 if (cflag & PARENB)
2465 info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN;
2466 else
2467 info->params.parity = ASYNC_PARITY_NONE;
2468
2469 /* calculate number of jiffies to transmit a full
2470 * FIFO (32 bytes) at specified data rate
2471 */
2472 bits_per_char = info->params.data_bits +
2473 info->params.stop_bits + 1;
2474
2475 info->params.data_rate = tty_get_baud_rate(info->port.tty);
2476
2477 if (info->params.data_rate) {
2478 info->timeout = (32*HZ*bits_per_char) /
2479 info->params.data_rate;
2480 }
2481 info->timeout += HZ/50; /* Add .02 seconds of slop */
2482
2483 tty_port_set_cts_flow(&info->port, cflag & CRTSCTS);
2484 tty_port_set_check_carrier(&info->port, ~cflag & CLOCAL);
2485
2486 /* process tty input control flags */
2487
2488 info->read_status_mask = IRQ_RXOVER;
2489 if (I_INPCK(info->port.tty))
2490 info->read_status_mask |= MASK_PARITY | MASK_FRAMING;
2491 if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty))
2492 info->read_status_mask |= MASK_BREAK;
2493 if (I_IGNPAR(info->port.tty))
2494 info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING;
2495 if (I_IGNBRK(info->port.tty)) {
2496 info->ignore_status_mask |= MASK_BREAK;
2497 /* If ignoring parity and break indicators, ignore
2498 * overruns too. (For real raw support).
2499 */
2500 if (I_IGNPAR(info->port.tty))
2501 info->ignore_status_mask |= MASK_OVERRUN;
2502 }
2503
2504 program_hw(info);
2505 }
2506
get_stats(struct slgt_info * info,struct mgsl_icount __user * user_icount)2507 static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount)
2508 {
2509 DBGINFO(("%s get_stats\n", info->device_name));
2510 if (!user_icount) {
2511 memset(&info->icount, 0, sizeof(info->icount));
2512 } else {
2513 if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount)))
2514 return -EFAULT;
2515 }
2516 return 0;
2517 }
2518
get_params(struct slgt_info * info,MGSL_PARAMS __user * user_params)2519 static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params)
2520 {
2521 DBGINFO(("%s get_params\n", info->device_name));
2522 if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS)))
2523 return -EFAULT;
2524 return 0;
2525 }
2526
set_params(struct slgt_info * info,MGSL_PARAMS __user * new_params)2527 static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params)
2528 {
2529 unsigned long flags;
2530 MGSL_PARAMS tmp_params;
2531
2532 DBGINFO(("%s set_params\n", info->device_name));
2533 if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS)))
2534 return -EFAULT;
2535
2536 spin_lock_irqsave(&info->lock, flags);
2537 if (tmp_params.mode == MGSL_MODE_BASE_CLOCK)
2538 info->base_clock = tmp_params.clock_speed;
2539 else
2540 memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS));
2541 spin_unlock_irqrestore(&info->lock, flags);
2542
2543 program_hw(info);
2544
2545 return 0;
2546 }
2547
get_txidle(struct slgt_info * info,int __user * idle_mode)2548 static int get_txidle(struct slgt_info *info, int __user *idle_mode)
2549 {
2550 DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode));
2551 if (put_user(info->idle_mode, idle_mode))
2552 return -EFAULT;
2553 return 0;
2554 }
2555
set_txidle(struct slgt_info * info,int idle_mode)2556 static int set_txidle(struct slgt_info *info, int idle_mode)
2557 {
2558 unsigned long flags;
2559 DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode));
2560 spin_lock_irqsave(&info->lock,flags);
2561 info->idle_mode = idle_mode;
2562 if (info->params.mode != MGSL_MODE_ASYNC)
2563 tx_set_idle(info);
2564 spin_unlock_irqrestore(&info->lock,flags);
2565 return 0;
2566 }
2567
tx_enable(struct slgt_info * info,int enable)2568 static int tx_enable(struct slgt_info *info, int enable)
2569 {
2570 unsigned long flags;
2571 DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable));
2572 spin_lock_irqsave(&info->lock,flags);
2573 if (enable) {
2574 if (!info->tx_enabled)
2575 tx_start(info);
2576 } else {
2577 if (info->tx_enabled)
2578 tx_stop(info);
2579 }
2580 spin_unlock_irqrestore(&info->lock,flags);
2581 return 0;
2582 }
2583
2584 /*
2585 * abort transmit HDLC frame
2586 */
tx_abort(struct slgt_info * info)2587 static int tx_abort(struct slgt_info *info)
2588 {
2589 unsigned long flags;
2590 DBGINFO(("%s tx_abort\n", info->device_name));
2591 spin_lock_irqsave(&info->lock,flags);
2592 tdma_reset(info);
2593 spin_unlock_irqrestore(&info->lock,flags);
2594 return 0;
2595 }
2596
rx_enable(struct slgt_info * info,int enable)2597 static int rx_enable(struct slgt_info *info, int enable)
2598 {
2599 unsigned long flags;
2600 unsigned int rbuf_fill_level;
2601 DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable));
2602 spin_lock_irqsave(&info->lock,flags);
2603 /*
2604 * enable[31..16] = receive DMA buffer fill level
2605 * 0 = noop (leave fill level unchanged)
2606 * fill level must be multiple of 4 and <= buffer size
2607 */
2608 rbuf_fill_level = ((unsigned int)enable) >> 16;
2609 if (rbuf_fill_level) {
2610 if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) {
2611 spin_unlock_irqrestore(&info->lock, flags);
2612 return -EINVAL;
2613 }
2614 info->rbuf_fill_level = rbuf_fill_level;
2615 if (rbuf_fill_level < 128)
2616 info->rx_pio = 1; /* PIO mode */
2617 else
2618 info->rx_pio = 0; /* DMA mode */
2619 rx_stop(info); /* restart receiver to use new fill level */
2620 }
2621
2622 /*
2623 * enable[1..0] = receiver enable command
2624 * 0 = disable
2625 * 1 = enable
2626 * 2 = enable or force hunt mode if already enabled
2627 */
2628 enable &= 3;
2629 if (enable) {
2630 if (!info->rx_enabled)
2631 rx_start(info);
2632 else if (enable == 2) {
2633 /* force hunt mode (write 1 to RCR[3]) */
2634 wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3);
2635 }
2636 } else {
2637 if (info->rx_enabled)
2638 rx_stop(info);
2639 }
2640 spin_unlock_irqrestore(&info->lock,flags);
2641 return 0;
2642 }
2643
2644 /*
2645 * wait for specified event to occur
2646 */
wait_mgsl_event(struct slgt_info * info,int __user * mask_ptr)2647 static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr)
2648 {
2649 unsigned long flags;
2650 int s;
2651 int rc=0;
2652 struct mgsl_icount cprev, cnow;
2653 int events;
2654 int mask;
2655 struct _input_signal_events oldsigs, newsigs;
2656 DECLARE_WAITQUEUE(wait, current);
2657
2658 if (get_user(mask, mask_ptr))
2659 return -EFAULT;
2660
2661 DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask));
2662
2663 spin_lock_irqsave(&info->lock,flags);
2664
2665 /* return immediately if state matches requested events */
2666 get_gtsignals(info);
2667 s = info->signals;
2668
2669 events = mask &
2670 ( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) +
2671 ((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) +
2672 ((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) +
2673 ((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) );
2674 if (events) {
2675 spin_unlock_irqrestore(&info->lock,flags);
2676 goto exit;
2677 }
2678
2679 /* save current irq counts */
2680 cprev = info->icount;
2681 oldsigs = info->input_signal_events;
2682
2683 /* enable hunt and idle irqs if needed */
2684 if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) {
2685 unsigned short val = rd_reg16(info, SCR);
2686 if (!(val & IRQ_RXIDLE))
2687 wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE));
2688 }
2689
2690 set_current_state(TASK_INTERRUPTIBLE);
2691 add_wait_queue(&info->event_wait_q, &wait);
2692
2693 spin_unlock_irqrestore(&info->lock,flags);
2694
2695 for(;;) {
2696 schedule();
2697 if (signal_pending(current)) {
2698 rc = -ERESTARTSYS;
2699 break;
2700 }
2701
2702 /* get current irq counts */
2703 spin_lock_irqsave(&info->lock,flags);
2704 cnow = info->icount;
2705 newsigs = info->input_signal_events;
2706 set_current_state(TASK_INTERRUPTIBLE);
2707 spin_unlock_irqrestore(&info->lock,flags);
2708
2709 /* if no change, wait aborted for some reason */
2710 if (newsigs.dsr_up == oldsigs.dsr_up &&
2711 newsigs.dsr_down == oldsigs.dsr_down &&
2712 newsigs.dcd_up == oldsigs.dcd_up &&
2713 newsigs.dcd_down == oldsigs.dcd_down &&
2714 newsigs.cts_up == oldsigs.cts_up &&
2715 newsigs.cts_down == oldsigs.cts_down &&
2716 newsigs.ri_up == oldsigs.ri_up &&
2717 newsigs.ri_down == oldsigs.ri_down &&
2718 cnow.exithunt == cprev.exithunt &&
2719 cnow.rxidle == cprev.rxidle) {
2720 rc = -EIO;
2721 break;
2722 }
2723
2724 events = mask &
2725 ( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) +
2726 (newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) +
2727 (newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) +
2728 (newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) +
2729 (newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) +
2730 (newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) +
2731 (newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) +
2732 (newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) +
2733 (cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) +
2734 (cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) );
2735 if (events)
2736 break;
2737
2738 cprev = cnow;
2739 oldsigs = newsigs;
2740 }
2741
2742 remove_wait_queue(&info->event_wait_q, &wait);
2743 set_current_state(TASK_RUNNING);
2744
2745
2746 if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
2747 spin_lock_irqsave(&info->lock,flags);
2748 if (!waitqueue_active(&info->event_wait_q)) {
2749 /* disable enable exit hunt mode/idle rcvd IRQs */
2750 wr_reg16(info, SCR,
2751 (unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE));
2752 }
2753 spin_unlock_irqrestore(&info->lock,flags);
2754 }
2755 exit:
2756 if (rc == 0)
2757 rc = put_user(events, mask_ptr);
2758 return rc;
2759 }
2760
get_interface(struct slgt_info * info,int __user * if_mode)2761 static int get_interface(struct slgt_info *info, int __user *if_mode)
2762 {
2763 DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode));
2764 if (put_user(info->if_mode, if_mode))
2765 return -EFAULT;
2766 return 0;
2767 }
2768
set_interface(struct slgt_info * info,int if_mode)2769 static int set_interface(struct slgt_info *info, int if_mode)
2770 {
2771 unsigned long flags;
2772 unsigned short val;
2773
2774 DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode));
2775 spin_lock_irqsave(&info->lock,flags);
2776 info->if_mode = if_mode;
2777
2778 msc_set_vcr(info);
2779
2780 /* TCR (tx control) 07 1=RTS driver control */
2781 val = rd_reg16(info, TCR);
2782 if (info->if_mode & MGSL_INTERFACE_RTS_EN)
2783 val |= BIT7;
2784 else
2785 val &= ~BIT7;
2786 wr_reg16(info, TCR, val);
2787
2788 spin_unlock_irqrestore(&info->lock,flags);
2789 return 0;
2790 }
2791
get_xsync(struct slgt_info * info,int __user * xsync)2792 static int get_xsync(struct slgt_info *info, int __user *xsync)
2793 {
2794 DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync));
2795 if (put_user(info->xsync, xsync))
2796 return -EFAULT;
2797 return 0;
2798 }
2799
2800 /*
2801 * set extended sync pattern (1 to 4 bytes) for extended sync mode
2802 *
2803 * sync pattern is contained in least significant bytes of value
2804 * most significant byte of sync pattern is oldest (1st sent/detected)
2805 */
set_xsync(struct slgt_info * info,int xsync)2806 static int set_xsync(struct slgt_info *info, int xsync)
2807 {
2808 unsigned long flags;
2809
2810 DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync));
2811 spin_lock_irqsave(&info->lock, flags);
2812 info->xsync = xsync;
2813 wr_reg32(info, XSR, xsync);
2814 spin_unlock_irqrestore(&info->lock, flags);
2815 return 0;
2816 }
2817
get_xctrl(struct slgt_info * info,int __user * xctrl)2818 static int get_xctrl(struct slgt_info *info, int __user *xctrl)
2819 {
2820 DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl));
2821 if (put_user(info->xctrl, xctrl))
2822 return -EFAULT;
2823 return 0;
2824 }
2825
2826 /*
2827 * set extended control options
2828 *
2829 * xctrl[31:19] reserved, must be zero
2830 * xctrl[18:17] extended sync pattern length in bytes
2831 * 00 = 1 byte in xsr[7:0]
2832 * 01 = 2 bytes in xsr[15:0]
2833 * 10 = 3 bytes in xsr[23:0]
2834 * 11 = 4 bytes in xsr[31:0]
2835 * xctrl[16] 1 = enable terminal count, 0=disabled
2836 * xctrl[15:0] receive terminal count for fixed length packets
2837 * value is count minus one (0 = 1 byte packet)
2838 * when terminal count is reached, receiver
2839 * automatically returns to hunt mode and receive
2840 * FIFO contents are flushed to DMA buffers with
2841 * end of frame (EOF) status
2842 */
set_xctrl(struct slgt_info * info,int xctrl)2843 static int set_xctrl(struct slgt_info *info, int xctrl)
2844 {
2845 unsigned long flags;
2846
2847 DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl));
2848 spin_lock_irqsave(&info->lock, flags);
2849 info->xctrl = xctrl;
2850 wr_reg32(info, XCR, xctrl);
2851 spin_unlock_irqrestore(&info->lock, flags);
2852 return 0;
2853 }
2854
2855 /*
2856 * set general purpose IO pin state and direction
2857 *
2858 * user_gpio fields:
2859 * state each bit indicates a pin state
2860 * smask set bit indicates pin state to set
2861 * dir each bit indicates a pin direction (0=input, 1=output)
2862 * dmask set bit indicates pin direction to set
2863 */
set_gpio(struct slgt_info * info,struct gpio_desc __user * user_gpio)2864 static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
2865 {
2866 unsigned long flags;
2867 struct gpio_desc gpio;
2868 __u32 data;
2869
2870 if (!info->gpio_present)
2871 return -EINVAL;
2872 if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
2873 return -EFAULT;
2874 DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n",
2875 info->device_name, gpio.state, gpio.smask,
2876 gpio.dir, gpio.dmask));
2877
2878 spin_lock_irqsave(&info->port_array[0]->lock, flags);
2879 if (gpio.dmask) {
2880 data = rd_reg32(info, IODR);
2881 data |= gpio.dmask & gpio.dir;
2882 data &= ~(gpio.dmask & ~gpio.dir);
2883 wr_reg32(info, IODR, data);
2884 }
2885 if (gpio.smask) {
2886 data = rd_reg32(info, IOVR);
2887 data |= gpio.smask & gpio.state;
2888 data &= ~(gpio.smask & ~gpio.state);
2889 wr_reg32(info, IOVR, data);
2890 }
2891 spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
2892
2893 return 0;
2894 }
2895
2896 /*
2897 * get general purpose IO pin state and direction
2898 */
get_gpio(struct slgt_info * info,struct gpio_desc __user * user_gpio)2899 static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
2900 {
2901 struct gpio_desc gpio;
2902 if (!info->gpio_present)
2903 return -EINVAL;
2904 gpio.state = rd_reg32(info, IOVR);
2905 gpio.smask = 0xffffffff;
2906 gpio.dir = rd_reg32(info, IODR);
2907 gpio.dmask = 0xffffffff;
2908 if (copy_to_user(user_gpio, &gpio, sizeof(gpio)))
2909 return -EFAULT;
2910 DBGINFO(("%s get_gpio state=%08x dir=%08x\n",
2911 info->device_name, gpio.state, gpio.dir));
2912 return 0;
2913 }
2914
2915 /*
2916 * conditional wait facility
2917 */
init_cond_wait(struct cond_wait * w,unsigned int data)2918 static void init_cond_wait(struct cond_wait *w, unsigned int data)
2919 {
2920 init_waitqueue_head(&w->q);
2921 init_waitqueue_entry(&w->wait, current);
2922 w->data = data;
2923 }
2924
add_cond_wait(struct cond_wait ** head,struct cond_wait * w)2925 static void add_cond_wait(struct cond_wait **head, struct cond_wait *w)
2926 {
2927 set_current_state(TASK_INTERRUPTIBLE);
2928 add_wait_queue(&w->q, &w->wait);
2929 w->next = *head;
2930 *head = w;
2931 }
2932
remove_cond_wait(struct cond_wait ** head,struct cond_wait * cw)2933 static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw)
2934 {
2935 struct cond_wait *w, *prev;
2936 remove_wait_queue(&cw->q, &cw->wait);
2937 set_current_state(TASK_RUNNING);
2938 for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) {
2939 if (w == cw) {
2940 if (prev != NULL)
2941 prev->next = w->next;
2942 else
2943 *head = w->next;
2944 break;
2945 }
2946 }
2947 }
2948
flush_cond_wait(struct cond_wait ** head)2949 static void flush_cond_wait(struct cond_wait **head)
2950 {
2951 while (*head != NULL) {
2952 wake_up_interruptible(&(*head)->q);
2953 *head = (*head)->next;
2954 }
2955 }
2956
2957 /*
2958 * wait for general purpose I/O pin(s) to enter specified state
2959 *
2960 * user_gpio fields:
2961 * state - bit indicates target pin state
2962 * smask - set bit indicates watched pin
2963 *
2964 * The wait ends when at least one watched pin enters the specified
2965 * state. When 0 (no error) is returned, user_gpio->state is set to the
2966 * state of all GPIO pins when the wait ends.
2967 *
2968 * Note: Each pin may be a dedicated input, dedicated output, or
2969 * configurable input/output. The number and configuration of pins
2970 * varies with the specific adapter model. Only input pins (dedicated
2971 * or configured) can be monitored with this function.
2972 */
wait_gpio(struct slgt_info * info,struct gpio_desc __user * user_gpio)2973 static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
2974 {
2975 unsigned long flags;
2976 int rc = 0;
2977 struct gpio_desc gpio;
2978 struct cond_wait wait;
2979 u32 state;
2980
2981 if (!info->gpio_present)
2982 return -EINVAL;
2983 if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
2984 return -EFAULT;
2985 DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n",
2986 info->device_name, gpio.state, gpio.smask));
2987 /* ignore output pins identified by set IODR bit */
2988 if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0)
2989 return -EINVAL;
2990 init_cond_wait(&wait, gpio.smask);
2991
2992 spin_lock_irqsave(&info->port_array[0]->lock, flags);
2993 /* enable interrupts for watched pins */
2994 wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask);
2995 /* get current pin states */
2996 state = rd_reg32(info, IOVR);
2997
2998 if (gpio.smask & ~(state ^ gpio.state)) {
2999 /* already in target state */
3000 gpio.state = state;
3001 } else {
3002 /* wait for target state */
3003 add_cond_wait(&info->gpio_wait_q, &wait);
3004 spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
3005 schedule();
3006 if (signal_pending(current))
3007 rc = -ERESTARTSYS;
3008 else
3009 gpio.state = wait.data;
3010 spin_lock_irqsave(&info->port_array[0]->lock, flags);
3011 remove_cond_wait(&info->gpio_wait_q, &wait);
3012 }
3013
3014 /* disable all GPIO interrupts if no waiting processes */
3015 if (info->gpio_wait_q == NULL)
3016 wr_reg32(info, IOER, 0);
3017 spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
3018
3019 if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio)))
3020 rc = -EFAULT;
3021 return rc;
3022 }
3023
modem_input_wait(struct slgt_info * info,int arg)3024 static int modem_input_wait(struct slgt_info *info,int arg)
3025 {
3026 unsigned long flags;
3027 int rc;
3028 struct mgsl_icount cprev, cnow;
3029 DECLARE_WAITQUEUE(wait, current);
3030
3031 /* save current irq counts */
3032 spin_lock_irqsave(&info->lock,flags);
3033 cprev = info->icount;
3034 add_wait_queue(&info->status_event_wait_q, &wait);
3035 set_current_state(TASK_INTERRUPTIBLE);
3036 spin_unlock_irqrestore(&info->lock,flags);
3037
3038 for(;;) {
3039 schedule();
3040 if (signal_pending(current)) {
3041 rc = -ERESTARTSYS;
3042 break;
3043 }
3044
3045 /* get new irq counts */
3046 spin_lock_irqsave(&info->lock,flags);
3047 cnow = info->icount;
3048 set_current_state(TASK_INTERRUPTIBLE);
3049 spin_unlock_irqrestore(&info->lock,flags);
3050
3051 /* if no change, wait aborted for some reason */
3052 if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
3053 cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) {
3054 rc = -EIO;
3055 break;
3056 }
3057
3058 /* check for change in caller specified modem input */
3059 if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) ||
3060 (arg & TIOCM_DSR && cnow.dsr != cprev.dsr) ||
3061 (arg & TIOCM_CD && cnow.dcd != cprev.dcd) ||
3062 (arg & TIOCM_CTS && cnow.cts != cprev.cts)) {
3063 rc = 0;
3064 break;
3065 }
3066
3067 cprev = cnow;
3068 }
3069 remove_wait_queue(&info->status_event_wait_q, &wait);
3070 set_current_state(TASK_RUNNING);
3071 return rc;
3072 }
3073
3074 /*
3075 * return state of serial control and status signals
3076 */
tiocmget(struct tty_struct * tty)3077 static int tiocmget(struct tty_struct *tty)
3078 {
3079 struct slgt_info *info = tty->driver_data;
3080 unsigned int result;
3081 unsigned long flags;
3082
3083 spin_lock_irqsave(&info->lock,flags);
3084 get_gtsignals(info);
3085 spin_unlock_irqrestore(&info->lock,flags);
3086
3087 result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) +
3088 ((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) +
3089 ((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) +
3090 ((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) +
3091 ((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) +
3092 ((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0);
3093
3094 DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result));
3095 return result;
3096 }
3097
3098 /*
3099 * set modem control signals (DTR/RTS)
3100 *
3101 * cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit
3102 * TIOCMSET = set/clear signal values
3103 * value bit mask for command
3104 */
tiocmset(struct tty_struct * tty,unsigned int set,unsigned int clear)3105 static int tiocmset(struct tty_struct *tty,
3106 unsigned int set, unsigned int clear)
3107 {
3108 struct slgt_info *info = tty->driver_data;
3109 unsigned long flags;
3110
3111 DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear));
3112
3113 if (set & TIOCM_RTS)
3114 info->signals |= SerialSignal_RTS;
3115 if (set & TIOCM_DTR)
3116 info->signals |= SerialSignal_DTR;
3117 if (clear & TIOCM_RTS)
3118 info->signals &= ~SerialSignal_RTS;
3119 if (clear & TIOCM_DTR)
3120 info->signals &= ~SerialSignal_DTR;
3121
3122 spin_lock_irqsave(&info->lock,flags);
3123 set_gtsignals(info);
3124 spin_unlock_irqrestore(&info->lock,flags);
3125 return 0;
3126 }
3127
carrier_raised(struct tty_port * port)3128 static bool carrier_raised(struct tty_port *port)
3129 {
3130 unsigned long flags;
3131 struct slgt_info *info = container_of(port, struct slgt_info, port);
3132
3133 spin_lock_irqsave(&info->lock,flags);
3134 get_gtsignals(info);
3135 spin_unlock_irqrestore(&info->lock,flags);
3136
3137 return info->signals & SerialSignal_DCD;
3138 }
3139
dtr_rts(struct tty_port * port,bool active)3140 static void dtr_rts(struct tty_port *port, bool active)
3141 {
3142 unsigned long flags;
3143 struct slgt_info *info = container_of(port, struct slgt_info, port);
3144
3145 spin_lock_irqsave(&info->lock,flags);
3146 if (active)
3147 info->signals |= SerialSignal_RTS | SerialSignal_DTR;
3148 else
3149 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
3150 set_gtsignals(info);
3151 spin_unlock_irqrestore(&info->lock,flags);
3152 }
3153
3154
3155 /*
3156 * block current process until the device is ready to open
3157 */
block_til_ready(struct tty_struct * tty,struct file * filp,struct slgt_info * info)3158 static int block_til_ready(struct tty_struct *tty, struct file *filp,
3159 struct slgt_info *info)
3160 {
3161 DECLARE_WAITQUEUE(wait, current);
3162 int retval;
3163 bool do_clocal = false;
3164 unsigned long flags;
3165 bool cd;
3166 struct tty_port *port = &info->port;
3167
3168 DBGINFO(("%s block_til_ready\n", tty->driver->name));
3169
3170 if (filp->f_flags & O_NONBLOCK || tty_io_error(tty)) {
3171 /* nonblock mode is set or port is not enabled */
3172 tty_port_set_active(port, true);
3173 return 0;
3174 }
3175
3176 if (C_CLOCAL(tty))
3177 do_clocal = true;
3178
3179 /* Wait for carrier detect and the line to become
3180 * free (i.e., not in use by the callout). While we are in
3181 * this loop, port->count is dropped by one, so that
3182 * close() knows when to free things. We restore it upon
3183 * exit, either normal or abnormal.
3184 */
3185
3186 retval = 0;
3187 add_wait_queue(&port->open_wait, &wait);
3188
3189 spin_lock_irqsave(&info->lock, flags);
3190 port->count--;
3191 spin_unlock_irqrestore(&info->lock, flags);
3192 port->blocked_open++;
3193
3194 while (1) {
3195 if (C_BAUD(tty) && tty_port_initialized(port))
3196 tty_port_raise_dtr_rts(port);
3197
3198 set_current_state(TASK_INTERRUPTIBLE);
3199
3200 if (tty_hung_up_p(filp) || !tty_port_initialized(port)) {
3201 retval = (port->flags & ASYNC_HUP_NOTIFY) ?
3202 -EAGAIN : -ERESTARTSYS;
3203 break;
3204 }
3205
3206 cd = tty_port_carrier_raised(port);
3207 if (do_clocal || cd)
3208 break;
3209
3210 if (signal_pending(current)) {
3211 retval = -ERESTARTSYS;
3212 break;
3213 }
3214
3215 DBGINFO(("%s block_til_ready wait\n", tty->driver->name));
3216 tty_unlock(tty);
3217 schedule();
3218 tty_lock(tty);
3219 }
3220
3221 set_current_state(TASK_RUNNING);
3222 remove_wait_queue(&port->open_wait, &wait);
3223
3224 if (!tty_hung_up_p(filp))
3225 port->count++;
3226 port->blocked_open--;
3227
3228 if (!retval)
3229 tty_port_set_active(port, true);
3230
3231 DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval));
3232 return retval;
3233 }
3234
3235 /*
3236 * allocate buffers used for calling line discipline receive_buf
3237 * directly in synchronous mode
3238 * note: add 5 bytes to max frame size to allow appending
3239 * 32-bit CRC and status byte when configured to do so
3240 */
alloc_tmp_rbuf(struct slgt_info * info)3241 static int alloc_tmp_rbuf(struct slgt_info *info)
3242 {
3243 info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL);
3244 if (info->tmp_rbuf == NULL)
3245 return -ENOMEM;
3246
3247 return 0;
3248 }
3249
free_tmp_rbuf(struct slgt_info * info)3250 static void free_tmp_rbuf(struct slgt_info *info)
3251 {
3252 kfree(info->tmp_rbuf);
3253 info->tmp_rbuf = NULL;
3254 }
3255
3256 /*
3257 * allocate DMA descriptor lists.
3258 */
alloc_desc(struct slgt_info * info)3259 static int alloc_desc(struct slgt_info *info)
3260 {
3261 unsigned int i;
3262 unsigned int pbufs;
3263
3264 /* allocate memory to hold descriptor lists */
3265 info->bufs = dma_alloc_coherent(&info->pdev->dev, DESC_LIST_SIZE,
3266 &info->bufs_dma_addr, GFP_KERNEL);
3267 if (info->bufs == NULL)
3268 return -ENOMEM;
3269
3270 info->rbufs = (struct slgt_desc*)info->bufs;
3271 info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count;
3272
3273 pbufs = (unsigned int)info->bufs_dma_addr;
3274
3275 /*
3276 * Build circular lists of descriptors
3277 */
3278
3279 for (i=0; i < info->rbuf_count; i++) {
3280 /* physical address of this descriptor */
3281 info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc));
3282
3283 /* physical address of next descriptor */
3284 if (i == info->rbuf_count - 1)
3285 info->rbufs[i].next = cpu_to_le32(pbufs);
3286 else
3287 info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc)));
3288 set_desc_count(info->rbufs[i], DMABUFSIZE);
3289 }
3290
3291 for (i=0; i < info->tbuf_count; i++) {
3292 /* physical address of this descriptor */
3293 info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc));
3294
3295 /* physical address of next descriptor */
3296 if (i == info->tbuf_count - 1)
3297 info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc));
3298 else
3299 info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc)));
3300 }
3301
3302 return 0;
3303 }
3304
free_desc(struct slgt_info * info)3305 static void free_desc(struct slgt_info *info)
3306 {
3307 if (info->bufs != NULL) {
3308 dma_free_coherent(&info->pdev->dev, DESC_LIST_SIZE,
3309 info->bufs, info->bufs_dma_addr);
3310 info->bufs = NULL;
3311 info->rbufs = NULL;
3312 info->tbufs = NULL;
3313 }
3314 }
3315
alloc_bufs(struct slgt_info * info,struct slgt_desc * bufs,int count)3316 static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
3317 {
3318 int i;
3319 for (i=0; i < count; i++) {
3320 bufs[i].buf = dma_alloc_coherent(&info->pdev->dev, DMABUFSIZE,
3321 &bufs[i].buf_dma_addr, GFP_KERNEL);
3322 if (!bufs[i].buf)
3323 return -ENOMEM;
3324 bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr);
3325 }
3326 return 0;
3327 }
3328
free_bufs(struct slgt_info * info,struct slgt_desc * bufs,int count)3329 static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
3330 {
3331 int i;
3332 for (i=0; i < count; i++) {
3333 if (bufs[i].buf == NULL)
3334 continue;
3335 dma_free_coherent(&info->pdev->dev, DMABUFSIZE, bufs[i].buf,
3336 bufs[i].buf_dma_addr);
3337 bufs[i].buf = NULL;
3338 }
3339 }
3340
alloc_dma_bufs(struct slgt_info * info)3341 static int alloc_dma_bufs(struct slgt_info *info)
3342 {
3343 info->rbuf_count = 32;
3344 info->tbuf_count = 32;
3345
3346 if (alloc_desc(info) < 0 ||
3347 alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 ||
3348 alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 ||
3349 alloc_tmp_rbuf(info) < 0) {
3350 DBGERR(("%s DMA buffer alloc fail\n", info->device_name));
3351 return -ENOMEM;
3352 }
3353 reset_rbufs(info);
3354 return 0;
3355 }
3356
free_dma_bufs(struct slgt_info * info)3357 static void free_dma_bufs(struct slgt_info *info)
3358 {
3359 if (info->bufs) {
3360 free_bufs(info, info->rbufs, info->rbuf_count);
3361 free_bufs(info, info->tbufs, info->tbuf_count);
3362 free_desc(info);
3363 }
3364 free_tmp_rbuf(info);
3365 }
3366
claim_resources(struct slgt_info * info)3367 static int claim_resources(struct slgt_info *info)
3368 {
3369 if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) {
3370 DBGERR(("%s reg addr conflict, addr=%08X\n",
3371 info->device_name, info->phys_reg_addr));
3372 info->init_error = DiagStatus_AddressConflict;
3373 goto errout;
3374 }
3375 else
3376 info->reg_addr_requested = true;
3377
3378 info->reg_addr = ioremap(info->phys_reg_addr, SLGT_REG_SIZE);
3379 if (!info->reg_addr) {
3380 DBGERR(("%s can't map device registers, addr=%08X\n",
3381 info->device_name, info->phys_reg_addr));
3382 info->init_error = DiagStatus_CantAssignPciResources;
3383 goto errout;
3384 }
3385 return 0;
3386
3387 errout:
3388 release_resources(info);
3389 return -ENODEV;
3390 }
3391
release_resources(struct slgt_info * info)3392 static void release_resources(struct slgt_info *info)
3393 {
3394 if (info->irq_requested) {
3395 free_irq(info->irq_level, info);
3396 info->irq_requested = false;
3397 }
3398
3399 if (info->reg_addr_requested) {
3400 release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE);
3401 info->reg_addr_requested = false;
3402 }
3403
3404 if (info->reg_addr) {
3405 iounmap(info->reg_addr);
3406 info->reg_addr = NULL;
3407 }
3408 }
3409
3410 /* Add the specified device instance data structure to the
3411 * global linked list of devices and increment the device count.
3412 */
add_device(struct slgt_info * info)3413 static void add_device(struct slgt_info *info)
3414 {
3415 char *devstr;
3416
3417 info->next_device = NULL;
3418 info->line = slgt_device_count;
3419 sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line);
3420
3421 if (info->line < MAX_DEVICES) {
3422 if (maxframe[info->line])
3423 info->max_frame_size = maxframe[info->line];
3424 }
3425
3426 slgt_device_count++;
3427
3428 if (!slgt_device_list)
3429 slgt_device_list = info;
3430 else {
3431 struct slgt_info *current_dev = slgt_device_list;
3432 while(current_dev->next_device)
3433 current_dev = current_dev->next_device;
3434 current_dev->next_device = info;
3435 }
3436
3437 if (info->max_frame_size < 4096)
3438 info->max_frame_size = 4096;
3439 else if (info->max_frame_size > 65535)
3440 info->max_frame_size = 65535;
3441
3442 switch(info->pdev->device) {
3443 case SYNCLINK_GT_DEVICE_ID:
3444 devstr = "GT";
3445 break;
3446 case SYNCLINK_GT2_DEVICE_ID:
3447 devstr = "GT2";
3448 break;
3449 case SYNCLINK_GT4_DEVICE_ID:
3450 devstr = "GT4";
3451 break;
3452 case SYNCLINK_AC_DEVICE_ID:
3453 devstr = "AC";
3454 info->params.mode = MGSL_MODE_ASYNC;
3455 break;
3456 default:
3457 devstr = "(unknown model)";
3458 }
3459 printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n",
3460 devstr, info->device_name, info->phys_reg_addr,
3461 info->irq_level, info->max_frame_size);
3462
3463 #if SYNCLINK_GENERIC_HDLC
3464 hdlcdev_init(info);
3465 #endif
3466 }
3467
3468 static const struct tty_port_operations slgt_port_ops = {
3469 .carrier_raised = carrier_raised,
3470 .dtr_rts = dtr_rts,
3471 };
3472
3473 /*
3474 * allocate device instance structure, return NULL on failure
3475 */
alloc_dev(int adapter_num,int port_num,struct pci_dev * pdev)3476 static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev)
3477 {
3478 struct slgt_info *info;
3479
3480 info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL);
3481
3482 if (!info) {
3483 DBGERR(("%s device alloc failed adapter=%d port=%d\n",
3484 driver_name, adapter_num, port_num));
3485 } else {
3486 tty_port_init(&info->port);
3487 info->port.ops = &slgt_port_ops;
3488 INIT_WORK(&info->task, bh_handler);
3489 info->max_frame_size = 4096;
3490 info->base_clock = 14745600;
3491 info->rbuf_fill_level = DMABUFSIZE;
3492 init_waitqueue_head(&info->status_event_wait_q);
3493 init_waitqueue_head(&info->event_wait_q);
3494 spin_lock_init(&info->netlock);
3495 memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
3496 info->idle_mode = HDLC_TXIDLE_FLAGS;
3497 info->adapter_num = adapter_num;
3498 info->port_num = port_num;
3499
3500 timer_setup(&info->tx_timer, tx_timeout, 0);
3501 timer_setup(&info->rx_timer, rx_timeout, 0);
3502
3503 /* Copy configuration info to device instance data */
3504 info->pdev = pdev;
3505 info->irq_level = pdev->irq;
3506 info->phys_reg_addr = pci_resource_start(pdev,0);
3507
3508 info->bus_type = MGSL_BUS_TYPE_PCI;
3509 info->irq_flags = IRQF_SHARED;
3510
3511 info->init_error = -1; /* assume error, set to 0 on successful init */
3512 }
3513
3514 return info;
3515 }
3516
device_init(int adapter_num,struct pci_dev * pdev)3517 static void device_init(int adapter_num, struct pci_dev *pdev)
3518 {
3519 struct slgt_info *port_array[SLGT_MAX_PORTS];
3520 int i;
3521 int port_count = 1;
3522
3523 if (pdev->device == SYNCLINK_GT2_DEVICE_ID)
3524 port_count = 2;
3525 else if (pdev->device == SYNCLINK_GT4_DEVICE_ID)
3526 port_count = 4;
3527
3528 /* allocate device instances for all ports */
3529 for (i=0; i < port_count; ++i) {
3530 port_array[i] = alloc_dev(adapter_num, i, pdev);
3531 if (port_array[i] == NULL) {
3532 for (--i; i >= 0; --i) {
3533 tty_port_destroy(&port_array[i]->port);
3534 kfree(port_array[i]);
3535 }
3536 return;
3537 }
3538 }
3539
3540 /* give copy of port_array to all ports and add to device list */
3541 for (i=0; i < port_count; ++i) {
3542 memcpy(port_array[i]->port_array, port_array, sizeof(port_array));
3543 add_device(port_array[i]);
3544 port_array[i]->port_count = port_count;
3545 spin_lock_init(&port_array[i]->lock);
3546 }
3547
3548 /* Allocate and claim adapter resources */
3549 if (!claim_resources(port_array[0])) {
3550
3551 alloc_dma_bufs(port_array[0]);
3552
3553 /* copy resource information from first port to others */
3554 for (i = 1; i < port_count; ++i) {
3555 port_array[i]->irq_level = port_array[0]->irq_level;
3556 port_array[i]->reg_addr = port_array[0]->reg_addr;
3557 alloc_dma_bufs(port_array[i]);
3558 }
3559
3560 if (request_irq(port_array[0]->irq_level,
3561 slgt_interrupt,
3562 port_array[0]->irq_flags,
3563 port_array[0]->device_name,
3564 port_array[0]) < 0) {
3565 DBGERR(("%s request_irq failed IRQ=%d\n",
3566 port_array[0]->device_name,
3567 port_array[0]->irq_level));
3568 } else {
3569 port_array[0]->irq_requested = true;
3570 adapter_test(port_array[0]);
3571 for (i=1 ; i < port_count ; i++) {
3572 port_array[i]->init_error = port_array[0]->init_error;
3573 port_array[i]->gpio_present = port_array[0]->gpio_present;
3574 }
3575 }
3576 }
3577
3578 for (i = 0; i < port_count; ++i) {
3579 struct slgt_info *info = port_array[i];
3580 tty_port_register_device(&info->port, serial_driver, info->line,
3581 &info->pdev->dev);
3582 }
3583 }
3584
init_one(struct pci_dev * dev,const struct pci_device_id * ent)3585 static int init_one(struct pci_dev *dev,
3586 const struct pci_device_id *ent)
3587 {
3588 if (pci_enable_device(dev)) {
3589 printk("error enabling pci device %p\n", dev);
3590 return -EIO;
3591 }
3592 pci_set_master(dev);
3593 device_init(slgt_device_count, dev);
3594 return 0;
3595 }
3596
remove_one(struct pci_dev * dev)3597 static void remove_one(struct pci_dev *dev)
3598 {
3599 }
3600
3601 static const struct tty_operations ops = {
3602 .open = open,
3603 .close = close,
3604 .write = write,
3605 .put_char = put_char,
3606 .flush_chars = flush_chars,
3607 .write_room = write_room,
3608 .chars_in_buffer = chars_in_buffer,
3609 .flush_buffer = flush_buffer,
3610 .ioctl = ioctl,
3611 .compat_ioctl = slgt_compat_ioctl,
3612 .throttle = throttle,
3613 .unthrottle = unthrottle,
3614 .send_xchar = send_xchar,
3615 .break_ctl = set_break,
3616 .wait_until_sent = wait_until_sent,
3617 .set_termios = set_termios,
3618 .stop = tx_hold,
3619 .start = tx_release,
3620 .hangup = hangup,
3621 .tiocmget = tiocmget,
3622 .tiocmset = tiocmset,
3623 .get_icount = get_icount,
3624 .proc_show = synclink_gt_proc_show,
3625 };
3626
slgt_cleanup(void)3627 static void slgt_cleanup(void)
3628 {
3629 struct slgt_info *info;
3630 struct slgt_info *tmp;
3631
3632 if (serial_driver) {
3633 for (info=slgt_device_list ; info != NULL ; info=info->next_device)
3634 tty_unregister_device(serial_driver, info->line);
3635 tty_unregister_driver(serial_driver);
3636 tty_driver_kref_put(serial_driver);
3637 }
3638
3639 /* reset devices */
3640 info = slgt_device_list;
3641 while(info) {
3642 reset_port(info);
3643 info = info->next_device;
3644 }
3645
3646 /* release devices */
3647 info = slgt_device_list;
3648 while(info) {
3649 #if SYNCLINK_GENERIC_HDLC
3650 hdlcdev_exit(info);
3651 #endif
3652 free_dma_bufs(info);
3653 free_tmp_rbuf(info);
3654 if (info->port_num == 0)
3655 release_resources(info);
3656 tmp = info;
3657 info = info->next_device;
3658 tty_port_destroy(&tmp->port);
3659 kfree(tmp);
3660 }
3661
3662 if (pci_registered)
3663 pci_unregister_driver(&pci_driver);
3664 }
3665
3666 /*
3667 * Driver initialization entry point.
3668 */
slgt_init(void)3669 static int __init slgt_init(void)
3670 {
3671 int rc;
3672
3673 serial_driver = tty_alloc_driver(MAX_DEVICES, TTY_DRIVER_REAL_RAW |
3674 TTY_DRIVER_DYNAMIC_DEV);
3675 if (IS_ERR(serial_driver)) {
3676 printk("%s can't allocate tty driver\n", driver_name);
3677 return PTR_ERR(serial_driver);
3678 }
3679
3680 /* Initialize the tty_driver structure */
3681
3682 serial_driver->driver_name = "synclink_gt";
3683 serial_driver->name = tty_dev_prefix;
3684 serial_driver->major = ttymajor;
3685 serial_driver->minor_start = 64;
3686 serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
3687 serial_driver->subtype = SERIAL_TYPE_NORMAL;
3688 serial_driver->init_termios = tty_std_termios;
3689 serial_driver->init_termios.c_cflag =
3690 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
3691 serial_driver->init_termios.c_ispeed = 9600;
3692 serial_driver->init_termios.c_ospeed = 9600;
3693 tty_set_operations(serial_driver, &ops);
3694 if ((rc = tty_register_driver(serial_driver)) < 0) {
3695 DBGERR(("%s can't register serial driver\n", driver_name));
3696 tty_driver_kref_put(serial_driver);
3697 serial_driver = NULL;
3698 goto error;
3699 }
3700
3701 slgt_device_count = 0;
3702 if ((rc = pci_register_driver(&pci_driver)) < 0) {
3703 printk("%s pci_register_driver error=%d\n", driver_name, rc);
3704 goto error;
3705 }
3706 pci_registered = true;
3707
3708 return 0;
3709
3710 error:
3711 slgt_cleanup();
3712 return rc;
3713 }
3714
slgt_exit(void)3715 static void __exit slgt_exit(void)
3716 {
3717 slgt_cleanup();
3718 }
3719
3720 module_init(slgt_init);
3721 module_exit(slgt_exit);
3722
3723 /*
3724 * register access routines
3725 */
3726
calc_regaddr(struct slgt_info * info,unsigned int addr)3727 static inline void __iomem *calc_regaddr(struct slgt_info *info,
3728 unsigned int addr)
3729 {
3730 void __iomem *reg_addr = info->reg_addr + addr;
3731
3732 if (addr >= 0x80)
3733 reg_addr += info->port_num * 32;
3734 else if (addr >= 0x40)
3735 reg_addr += info->port_num * 16;
3736
3737 return reg_addr;
3738 }
3739
rd_reg8(struct slgt_info * info,unsigned int addr)3740 static __u8 rd_reg8(struct slgt_info *info, unsigned int addr)
3741 {
3742 return readb(calc_regaddr(info, addr));
3743 }
3744
wr_reg8(struct slgt_info * info,unsigned int addr,__u8 value)3745 static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value)
3746 {
3747 writeb(value, calc_regaddr(info, addr));
3748 }
3749
rd_reg16(struct slgt_info * info,unsigned int addr)3750 static __u16 rd_reg16(struct slgt_info *info, unsigned int addr)
3751 {
3752 return readw(calc_regaddr(info, addr));
3753 }
3754
wr_reg16(struct slgt_info * info,unsigned int addr,__u16 value)3755 static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value)
3756 {
3757 writew(value, calc_regaddr(info, addr));
3758 }
3759
rd_reg32(struct slgt_info * info,unsigned int addr)3760 static __u32 rd_reg32(struct slgt_info *info, unsigned int addr)
3761 {
3762 return readl(calc_regaddr(info, addr));
3763 }
3764
wr_reg32(struct slgt_info * info,unsigned int addr,__u32 value)3765 static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value)
3766 {
3767 writel(value, calc_regaddr(info, addr));
3768 }
3769
rdma_reset(struct slgt_info * info)3770 static void rdma_reset(struct slgt_info *info)
3771 {
3772 unsigned int i;
3773
3774 /* set reset bit */
3775 wr_reg32(info, RDCSR, BIT1);
3776
3777 /* wait for enable bit cleared */
3778 for(i=0 ; i < 1000 ; i++)
3779 if (!(rd_reg32(info, RDCSR) & BIT0))
3780 break;
3781 }
3782
tdma_reset(struct slgt_info * info)3783 static void tdma_reset(struct slgt_info *info)
3784 {
3785 unsigned int i;
3786
3787 /* set reset bit */
3788 wr_reg32(info, TDCSR, BIT1);
3789
3790 /* wait for enable bit cleared */
3791 for(i=0 ; i < 1000 ; i++)
3792 if (!(rd_reg32(info, TDCSR) & BIT0))
3793 break;
3794 }
3795
3796 /*
3797 * enable internal loopback
3798 * TxCLK and RxCLK are generated from BRG
3799 * and TxD is looped back to RxD internally.
3800 */
enable_loopback(struct slgt_info * info)3801 static void enable_loopback(struct slgt_info *info)
3802 {
3803 /* SCR (serial control) BIT2=loopback enable */
3804 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2));
3805
3806 if (info->params.mode != MGSL_MODE_ASYNC) {
3807 /* CCR (clock control)
3808 * 07..05 tx clock source (010 = BRG)
3809 * 04..02 rx clock source (010 = BRG)
3810 * 01 auxclk enable (0 = disable)
3811 * 00 BRG enable (1 = enable)
3812 *
3813 * 0100 1001
3814 */
3815 wr_reg8(info, CCR, 0x49);
3816
3817 /* set speed if available, otherwise use default */
3818 if (info->params.clock_speed)
3819 set_rate(info, info->params.clock_speed);
3820 else
3821 set_rate(info, 3686400);
3822 }
3823 }
3824
3825 /*
3826 * set baud rate generator to specified rate
3827 */
set_rate(struct slgt_info * info,u32 rate)3828 static void set_rate(struct slgt_info *info, u32 rate)
3829 {
3830 unsigned int div;
3831 unsigned int osc = info->base_clock;
3832
3833 /* div = osc/rate - 1
3834 *
3835 * Round div up if osc/rate is not integer to
3836 * force to next slowest rate.
3837 */
3838
3839 if (rate) {
3840 div = osc/rate;
3841 if (!(osc % rate) && div)
3842 div--;
3843 wr_reg16(info, BDR, (unsigned short)div);
3844 }
3845 }
3846
rx_stop(struct slgt_info * info)3847 static void rx_stop(struct slgt_info *info)
3848 {
3849 unsigned short val;
3850
3851 /* disable and reset receiver */
3852 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
3853 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
3854 wr_reg16(info, RCR, val); /* clear reset bit */
3855
3856 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE);
3857
3858 /* clear pending rx interrupts */
3859 wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER);
3860
3861 rdma_reset(info);
3862
3863 info->rx_enabled = false;
3864 info->rx_restart = false;
3865 }
3866
rx_start(struct slgt_info * info)3867 static void rx_start(struct slgt_info *info)
3868 {
3869 unsigned short val;
3870
3871 slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA);
3872
3873 /* clear pending rx overrun IRQ */
3874 wr_reg16(info, SSR, IRQ_RXOVER);
3875
3876 /* reset and disable receiver */
3877 val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
3878 wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
3879 wr_reg16(info, RCR, val); /* clear reset bit */
3880
3881 rdma_reset(info);
3882 reset_rbufs(info);
3883
3884 if (info->rx_pio) {
3885 /* rx request when rx FIFO not empty */
3886 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14));
3887 slgt_irq_on(info, IRQ_RXDATA);
3888 if (info->params.mode == MGSL_MODE_ASYNC) {
3889 /* enable saving of rx status */
3890 wr_reg32(info, RDCSR, BIT6);
3891 }
3892 } else {
3893 /* rx request when rx FIFO half full */
3894 wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14));
3895 /* set 1st descriptor address */
3896 wr_reg32(info, RDDAR, info->rbufs[0].pdesc);
3897
3898 if (info->params.mode != MGSL_MODE_ASYNC) {
3899 /* enable rx DMA and DMA interrupt */
3900 wr_reg32(info, RDCSR, (BIT2 + BIT0));
3901 } else {
3902 /* enable saving of rx status, rx DMA and DMA interrupt */
3903 wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0));
3904 }
3905 }
3906
3907 slgt_irq_on(info, IRQ_RXOVER);
3908
3909 /* enable receiver */
3910 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1));
3911
3912 info->rx_restart = false;
3913 info->rx_enabled = true;
3914 }
3915
tx_start(struct slgt_info * info)3916 static void tx_start(struct slgt_info *info)
3917 {
3918 if (!info->tx_enabled) {
3919 wr_reg16(info, TCR,
3920 (unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2));
3921 info->tx_enabled = true;
3922 }
3923
3924 if (desc_count(info->tbufs[info->tbuf_start])) {
3925 info->drop_rts_on_tx_done = false;
3926
3927 if (info->params.mode != MGSL_MODE_ASYNC) {
3928 if (info->params.flags & HDLC_FLAG_AUTO_RTS) {
3929 get_gtsignals(info);
3930 if (!(info->signals & SerialSignal_RTS)) {
3931 info->signals |= SerialSignal_RTS;
3932 set_gtsignals(info);
3933 info->drop_rts_on_tx_done = true;
3934 }
3935 }
3936
3937 slgt_irq_off(info, IRQ_TXDATA);
3938 slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE);
3939 /* clear tx idle and underrun status bits */
3940 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
3941 } else {
3942 slgt_irq_off(info, IRQ_TXDATA);
3943 slgt_irq_on(info, IRQ_TXIDLE);
3944 /* clear tx idle status bit */
3945 wr_reg16(info, SSR, IRQ_TXIDLE);
3946 }
3947 /* set 1st descriptor address and start DMA */
3948 wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc);
3949 wr_reg32(info, TDCSR, BIT2 + BIT0);
3950 info->tx_active = true;
3951 }
3952 }
3953
tx_stop(struct slgt_info * info)3954 static void tx_stop(struct slgt_info *info)
3955 {
3956 unsigned short val;
3957
3958 del_timer(&info->tx_timer);
3959
3960 tdma_reset(info);
3961
3962 /* reset and disable transmitter */
3963 val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */
3964 wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
3965
3966 slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
3967
3968 /* clear tx idle and underrun status bit */
3969 wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
3970
3971 reset_tbufs(info);
3972
3973 info->tx_enabled = false;
3974 info->tx_active = false;
3975 }
3976
reset_port(struct slgt_info * info)3977 static void reset_port(struct slgt_info *info)
3978 {
3979 if (!info->reg_addr)
3980 return;
3981
3982 tx_stop(info);
3983 rx_stop(info);
3984
3985 info->signals &= ~(SerialSignal_RTS | SerialSignal_DTR);
3986 set_gtsignals(info);
3987
3988 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
3989 }
3990
reset_adapter(struct slgt_info * info)3991 static void reset_adapter(struct slgt_info *info)
3992 {
3993 int i;
3994 for (i=0; i < info->port_count; ++i) {
3995 if (info->port_array[i])
3996 reset_port(info->port_array[i]);
3997 }
3998 }
3999
async_mode(struct slgt_info * info)4000 static void async_mode(struct slgt_info *info)
4001 {
4002 unsigned short val;
4003
4004 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
4005 tx_stop(info);
4006 rx_stop(info);
4007
4008 /* TCR (tx control)
4009 *
4010 * 15..13 mode, 010=async
4011 * 12..10 encoding, 000=NRZ
4012 * 09 parity enable
4013 * 08 1=odd parity, 0=even parity
4014 * 07 1=RTS driver control
4015 * 06 1=break enable
4016 * 05..04 character length
4017 * 00=5 bits
4018 * 01=6 bits
4019 * 10=7 bits
4020 * 11=8 bits
4021 * 03 0=1 stop bit, 1=2 stop bits
4022 * 02 reset
4023 * 01 enable
4024 * 00 auto-CTS enable
4025 */
4026 val = 0x4000;
4027
4028 if (info->if_mode & MGSL_INTERFACE_RTS_EN)
4029 val |= BIT7;
4030
4031 if (info->params.parity != ASYNC_PARITY_NONE) {
4032 val |= BIT9;
4033 if (info->params.parity == ASYNC_PARITY_ODD)
4034 val |= BIT8;
4035 }
4036
4037 switch (info->params.data_bits)
4038 {
4039 case 6: val |= BIT4; break;
4040 case 7: val |= BIT5; break;
4041 case 8: val |= BIT5 + BIT4; break;
4042 }
4043
4044 if (info->params.stop_bits != 1)
4045 val |= BIT3;
4046
4047 if (info->params.flags & HDLC_FLAG_AUTO_CTS)
4048 val |= BIT0;
4049
4050 wr_reg16(info, TCR, val);
4051
4052 /* RCR (rx control)
4053 *
4054 * 15..13 mode, 010=async
4055 * 12..10 encoding, 000=NRZ
4056 * 09 parity enable
4057 * 08 1=odd parity, 0=even parity
4058 * 07..06 reserved, must be 0
4059 * 05..04 character length
4060 * 00=5 bits
4061 * 01=6 bits
4062 * 10=7 bits
4063 * 11=8 bits
4064 * 03 reserved, must be zero
4065 * 02 reset
4066 * 01 enable
4067 * 00 auto-DCD enable
4068 */
4069 val = 0x4000;
4070
4071 if (info->params.parity != ASYNC_PARITY_NONE) {
4072 val |= BIT9;
4073 if (info->params.parity == ASYNC_PARITY_ODD)
4074 val |= BIT8;
4075 }
4076
4077 switch (info->params.data_bits)
4078 {
4079 case 6: val |= BIT4; break;
4080 case 7: val |= BIT5; break;
4081 case 8: val |= BIT5 + BIT4; break;
4082 }
4083
4084 if (info->params.flags & HDLC_FLAG_AUTO_DCD)
4085 val |= BIT0;
4086
4087 wr_reg16(info, RCR, val);
4088
4089 /* CCR (clock control)
4090 *
4091 * 07..05 011 = tx clock source is BRG/16
4092 * 04..02 010 = rx clock source is BRG
4093 * 01 0 = auxclk disabled
4094 * 00 1 = BRG enabled
4095 *
4096 * 0110 1001
4097 */
4098 wr_reg8(info, CCR, 0x69);
4099
4100 msc_set_vcr(info);
4101
4102 /* SCR (serial control)
4103 *
4104 * 15 1=tx req on FIFO half empty
4105 * 14 1=rx req on FIFO half full
4106 * 13 tx data IRQ enable
4107 * 12 tx idle IRQ enable
4108 * 11 rx break on IRQ enable
4109 * 10 rx data IRQ enable
4110 * 09 rx break off IRQ enable
4111 * 08 overrun IRQ enable
4112 * 07 DSR IRQ enable
4113 * 06 CTS IRQ enable
4114 * 05 DCD IRQ enable
4115 * 04 RI IRQ enable
4116 * 03 0=16x sampling, 1=8x sampling
4117 * 02 1=txd->rxd internal loopback enable
4118 * 01 reserved, must be zero
4119 * 00 1=master IRQ enable
4120 */
4121 val = BIT15 + BIT14 + BIT0;
4122 /* JCR[8] : 1 = x8 async mode feature available */
4123 if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate &&
4124 ((info->base_clock < (info->params.data_rate * 16)) ||
4125 (info->base_clock % (info->params.data_rate * 16)))) {
4126 /* use 8x sampling */
4127 val |= BIT3;
4128 set_rate(info, info->params.data_rate * 8);
4129 } else {
4130 /* use 16x sampling */
4131 set_rate(info, info->params.data_rate * 16);
4132 }
4133 wr_reg16(info, SCR, val);
4134
4135 slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER);
4136
4137 if (info->params.loopback)
4138 enable_loopback(info);
4139 }
4140
sync_mode(struct slgt_info * info)4141 static void sync_mode(struct slgt_info *info)
4142 {
4143 unsigned short val;
4144
4145 slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
4146 tx_stop(info);
4147 rx_stop(info);
4148
4149 /* TCR (tx control)
4150 *
4151 * 15..13 mode
4152 * 000=HDLC/SDLC
4153 * 001=raw bit synchronous
4154 * 010=asynchronous/isochronous
4155 * 011=monosync byte synchronous
4156 * 100=bisync byte synchronous
4157 * 101=xsync byte synchronous
4158 * 12..10 encoding
4159 * 09 CRC enable
4160 * 08 CRC32
4161 * 07 1=RTS driver control
4162 * 06 preamble enable
4163 * 05..04 preamble length
4164 * 03 share open/close flag
4165 * 02 reset
4166 * 01 enable
4167 * 00 auto-CTS enable
4168 */
4169 val = BIT2;
4170
4171 switch(info->params.mode) {
4172 case MGSL_MODE_XSYNC:
4173 val |= BIT15 + BIT13;
4174 break;
4175 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
4176 case MGSL_MODE_BISYNC: val |= BIT15; break;
4177 case MGSL_MODE_RAW: val |= BIT13; break;
4178 }
4179 if (info->if_mode & MGSL_INTERFACE_RTS_EN)
4180 val |= BIT7;
4181
4182 switch(info->params.encoding)
4183 {
4184 case HDLC_ENCODING_NRZB: val |= BIT10; break;
4185 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
4186 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
4187 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
4188 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
4189 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
4190 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
4191 }
4192
4193 switch (info->params.crc_type & HDLC_CRC_MASK)
4194 {
4195 case HDLC_CRC_16_CCITT: val |= BIT9; break;
4196 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
4197 }
4198
4199 if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE)
4200 val |= BIT6;
4201
4202 switch (info->params.preamble_length)
4203 {
4204 case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break;
4205 case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break;
4206 case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break;
4207 }
4208
4209 if (info->params.flags & HDLC_FLAG_AUTO_CTS)
4210 val |= BIT0;
4211
4212 wr_reg16(info, TCR, val);
4213
4214 /* TPR (transmit preamble) */
4215
4216 switch (info->params.preamble)
4217 {
4218 case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break;
4219 case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break;
4220 case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break;
4221 case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break;
4222 case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break;
4223 default: val = 0x7e; break;
4224 }
4225 wr_reg8(info, TPR, (unsigned char)val);
4226
4227 /* RCR (rx control)
4228 *
4229 * 15..13 mode
4230 * 000=HDLC/SDLC
4231 * 001=raw bit synchronous
4232 * 010=asynchronous/isochronous
4233 * 011=monosync byte synchronous
4234 * 100=bisync byte synchronous
4235 * 101=xsync byte synchronous
4236 * 12..10 encoding
4237 * 09 CRC enable
4238 * 08 CRC32
4239 * 07..03 reserved, must be 0
4240 * 02 reset
4241 * 01 enable
4242 * 00 auto-DCD enable
4243 */
4244 val = 0;
4245
4246 switch(info->params.mode) {
4247 case MGSL_MODE_XSYNC:
4248 val |= BIT15 + BIT13;
4249 break;
4250 case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
4251 case MGSL_MODE_BISYNC: val |= BIT15; break;
4252 case MGSL_MODE_RAW: val |= BIT13; break;
4253 }
4254
4255 switch(info->params.encoding)
4256 {
4257 case HDLC_ENCODING_NRZB: val |= BIT10; break;
4258 case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
4259 case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
4260 case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
4261 case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
4262 case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
4263 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
4264 }
4265
4266 switch (info->params.crc_type & HDLC_CRC_MASK)
4267 {
4268 case HDLC_CRC_16_CCITT: val |= BIT9; break;
4269 case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
4270 }
4271
4272 if (info->params.flags & HDLC_FLAG_AUTO_DCD)
4273 val |= BIT0;
4274
4275 wr_reg16(info, RCR, val);
4276
4277 /* CCR (clock control)
4278 *
4279 * 07..05 tx clock source
4280 * 04..02 rx clock source
4281 * 01 auxclk enable
4282 * 00 BRG enable
4283 */
4284 val = 0;
4285
4286 if (info->params.flags & HDLC_FLAG_TXC_BRG)
4287 {
4288 // when RxC source is DPLL, BRG generates 16X DPLL
4289 // reference clock, so take TxC from BRG/16 to get
4290 // transmit clock at actual data rate
4291 if (info->params.flags & HDLC_FLAG_RXC_DPLL)
4292 val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */
4293 else
4294 val |= BIT6; /* 010, txclk = BRG */
4295 }
4296 else if (info->params.flags & HDLC_FLAG_TXC_DPLL)
4297 val |= BIT7; /* 100, txclk = DPLL Input */
4298 else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN)
4299 val |= BIT5; /* 001, txclk = RXC Input */
4300
4301 if (info->params.flags & HDLC_FLAG_RXC_BRG)
4302 val |= BIT3; /* 010, rxclk = BRG */
4303 else if (info->params.flags & HDLC_FLAG_RXC_DPLL)
4304 val |= BIT4; /* 100, rxclk = DPLL */
4305 else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN)
4306 val |= BIT2; /* 001, rxclk = TXC Input */
4307
4308 if (info->params.clock_speed)
4309 val |= BIT1 + BIT0;
4310
4311 wr_reg8(info, CCR, (unsigned char)val);
4312
4313 if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL))
4314 {
4315 // program DPLL mode
4316 switch(info->params.encoding)
4317 {
4318 case HDLC_ENCODING_BIPHASE_MARK:
4319 case HDLC_ENCODING_BIPHASE_SPACE:
4320 val = BIT7; break;
4321 case HDLC_ENCODING_BIPHASE_LEVEL:
4322 case HDLC_ENCODING_DIFF_BIPHASE_LEVEL:
4323 val = BIT7 + BIT6; break;
4324 default: val = BIT6; // NRZ encodings
4325 }
4326 wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val));
4327
4328 // DPLL requires a 16X reference clock from BRG
4329 set_rate(info, info->params.clock_speed * 16);
4330 }
4331 else
4332 set_rate(info, info->params.clock_speed);
4333
4334 tx_set_idle(info);
4335
4336 msc_set_vcr(info);
4337
4338 /* SCR (serial control)
4339 *
4340 * 15 1=tx req on FIFO half empty
4341 * 14 1=rx req on FIFO half full
4342 * 13 tx data IRQ enable
4343 * 12 tx idle IRQ enable
4344 * 11 underrun IRQ enable
4345 * 10 rx data IRQ enable
4346 * 09 rx idle IRQ enable
4347 * 08 overrun IRQ enable
4348 * 07 DSR IRQ enable
4349 * 06 CTS IRQ enable
4350 * 05 DCD IRQ enable
4351 * 04 RI IRQ enable
4352 * 03 reserved, must be zero
4353 * 02 1=txd->rxd internal loopback enable
4354 * 01 reserved, must be zero
4355 * 00 1=master IRQ enable
4356 */
4357 wr_reg16(info, SCR, BIT15 + BIT14 + BIT0);
4358
4359 if (info->params.loopback)
4360 enable_loopback(info);
4361 }
4362
4363 /*
4364 * set transmit idle mode
4365 */
tx_set_idle(struct slgt_info * info)4366 static void tx_set_idle(struct slgt_info *info)
4367 {
4368 unsigned char val;
4369 unsigned short tcr;
4370
4371 /* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits
4372 * else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits
4373 */
4374 tcr = rd_reg16(info, TCR);
4375 if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) {
4376 /* disable preamble, set idle size to 16 bits */
4377 tcr = (tcr & ~(BIT6 + BIT5)) | BIT4;
4378 /* MSB of 16 bit idle specified in tx preamble register (TPR) */
4379 wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff));
4380 } else if (!(tcr & BIT6)) {
4381 /* preamble is disabled, set idle size to 8 bits */
4382 tcr &= ~(BIT5 + BIT4);
4383 }
4384 wr_reg16(info, TCR, tcr);
4385
4386 if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) {
4387 /* LSB of custom tx idle specified in tx idle register */
4388 val = (unsigned char)(info->idle_mode & 0xff);
4389 } else {
4390 /* standard 8 bit idle patterns */
4391 switch(info->idle_mode)
4392 {
4393 case HDLC_TXIDLE_FLAGS: val = 0x7e; break;
4394 case HDLC_TXIDLE_ALT_ZEROS_ONES:
4395 case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break;
4396 case HDLC_TXIDLE_ZEROS:
4397 case HDLC_TXIDLE_SPACE: val = 0x00; break;
4398 default: val = 0xff;
4399 }
4400 }
4401
4402 wr_reg8(info, TIR, val);
4403 }
4404
4405 /*
4406 * get state of V24 status (input) signals
4407 */
get_gtsignals(struct slgt_info * info)4408 static void get_gtsignals(struct slgt_info *info)
4409 {
4410 unsigned short status = rd_reg16(info, SSR);
4411
4412 /* clear all serial signals except RTS and DTR */
4413 info->signals &= SerialSignal_RTS | SerialSignal_DTR;
4414
4415 if (status & BIT3)
4416 info->signals |= SerialSignal_DSR;
4417 if (status & BIT2)
4418 info->signals |= SerialSignal_CTS;
4419 if (status & BIT1)
4420 info->signals |= SerialSignal_DCD;
4421 if (status & BIT0)
4422 info->signals |= SerialSignal_RI;
4423 }
4424
4425 /*
4426 * set V.24 Control Register based on current configuration
4427 */
msc_set_vcr(struct slgt_info * info)4428 static void msc_set_vcr(struct slgt_info *info)
4429 {
4430 unsigned char val = 0;
4431
4432 /* VCR (V.24 control)
4433 *
4434 * 07..04 serial IF select
4435 * 03 DTR
4436 * 02 RTS
4437 * 01 LL
4438 * 00 RL
4439 */
4440
4441 switch(info->if_mode & MGSL_INTERFACE_MASK)
4442 {
4443 case MGSL_INTERFACE_RS232:
4444 val |= BIT5; /* 0010 */
4445 break;
4446 case MGSL_INTERFACE_V35:
4447 val |= BIT7 + BIT6 + BIT5; /* 1110 */
4448 break;
4449 case MGSL_INTERFACE_RS422:
4450 val |= BIT6; /* 0100 */
4451 break;
4452 }
4453
4454 if (info->if_mode & MGSL_INTERFACE_MSB_FIRST)
4455 val |= BIT4;
4456 if (info->signals & SerialSignal_DTR)
4457 val |= BIT3;
4458 if (info->signals & SerialSignal_RTS)
4459 val |= BIT2;
4460 if (info->if_mode & MGSL_INTERFACE_LL)
4461 val |= BIT1;
4462 if (info->if_mode & MGSL_INTERFACE_RL)
4463 val |= BIT0;
4464 wr_reg8(info, VCR, val);
4465 }
4466
4467 /*
4468 * set state of V24 control (output) signals
4469 */
set_gtsignals(struct slgt_info * info)4470 static void set_gtsignals(struct slgt_info *info)
4471 {
4472 unsigned char val = rd_reg8(info, VCR);
4473 if (info->signals & SerialSignal_DTR)
4474 val |= BIT3;
4475 else
4476 val &= ~BIT3;
4477 if (info->signals & SerialSignal_RTS)
4478 val |= BIT2;
4479 else
4480 val &= ~BIT2;
4481 wr_reg8(info, VCR, val);
4482 }
4483
4484 /*
4485 * free range of receive DMA buffers (i to last)
4486 */
free_rbufs(struct slgt_info * info,unsigned int i,unsigned int last)4487 static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last)
4488 {
4489 int done = 0;
4490
4491 while(!done) {
4492 /* reset current buffer for reuse */
4493 info->rbufs[i].status = 0;
4494 set_desc_count(info->rbufs[i], info->rbuf_fill_level);
4495 if (i == last)
4496 done = 1;
4497 if (++i == info->rbuf_count)
4498 i = 0;
4499 }
4500 info->rbuf_current = i;
4501 }
4502
4503 /*
4504 * mark all receive DMA buffers as free
4505 */
reset_rbufs(struct slgt_info * info)4506 static void reset_rbufs(struct slgt_info *info)
4507 {
4508 free_rbufs(info, 0, info->rbuf_count - 1);
4509 info->rbuf_fill_index = 0;
4510 info->rbuf_fill_count = 0;
4511 }
4512
4513 /*
4514 * pass receive HDLC frame to upper layer
4515 *
4516 * return true if frame available, otherwise false
4517 */
rx_get_frame(struct slgt_info * info)4518 static bool rx_get_frame(struct slgt_info *info)
4519 {
4520 unsigned int start, end;
4521 unsigned short status;
4522 unsigned int framesize = 0;
4523 unsigned long flags;
4524 struct tty_struct *tty = info->port.tty;
4525 unsigned char addr_field = 0xff;
4526 unsigned int crc_size = 0;
4527
4528 switch (info->params.crc_type & HDLC_CRC_MASK) {
4529 case HDLC_CRC_16_CCITT: crc_size = 2; break;
4530 case HDLC_CRC_32_CCITT: crc_size = 4; break;
4531 }
4532
4533 check_again:
4534
4535 framesize = 0;
4536 addr_field = 0xff;
4537 start = end = info->rbuf_current;
4538
4539 for (;;) {
4540 if (!desc_complete(info->rbufs[end]))
4541 goto cleanup;
4542
4543 if (framesize == 0 && info->params.addr_filter != 0xff)
4544 addr_field = info->rbufs[end].buf[0];
4545
4546 framesize += desc_count(info->rbufs[end]);
4547
4548 if (desc_eof(info->rbufs[end]))
4549 break;
4550
4551 if (++end == info->rbuf_count)
4552 end = 0;
4553
4554 if (end == info->rbuf_current) {
4555 if (info->rx_enabled){
4556 spin_lock_irqsave(&info->lock,flags);
4557 rx_start(info);
4558 spin_unlock_irqrestore(&info->lock,flags);
4559 }
4560 goto cleanup;
4561 }
4562 }
4563
4564 /* status
4565 *
4566 * 15 buffer complete
4567 * 14..06 reserved
4568 * 05..04 residue
4569 * 02 eof (end of frame)
4570 * 01 CRC error
4571 * 00 abort
4572 */
4573 status = desc_status(info->rbufs[end]);
4574
4575 /* ignore CRC bit if not using CRC (bit is undefined) */
4576 if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE)
4577 status &= ~BIT1;
4578
4579 if (framesize == 0 ||
4580 (addr_field != 0xff && addr_field != info->params.addr_filter)) {
4581 free_rbufs(info, start, end);
4582 goto check_again;
4583 }
4584
4585 if (framesize < (2 + crc_size) || status & BIT0) {
4586 info->icount.rxshort++;
4587 framesize = 0;
4588 } else if (status & BIT1) {
4589 info->icount.rxcrc++;
4590 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX))
4591 framesize = 0;
4592 }
4593
4594 #if SYNCLINK_GENERIC_HDLC
4595 if (framesize == 0) {
4596 info->netdev->stats.rx_errors++;
4597 info->netdev->stats.rx_frame_errors++;
4598 }
4599 #endif
4600
4601 DBGBH(("%s rx frame status=%04X size=%d\n",
4602 info->device_name, status, framesize));
4603 DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx");
4604
4605 if (framesize) {
4606 if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) {
4607 framesize -= crc_size;
4608 crc_size = 0;
4609 }
4610
4611 if (framesize > info->max_frame_size + crc_size)
4612 info->icount.rxlong++;
4613 else {
4614 /* copy dma buffer(s) to contiguous temp buffer */
4615 int copy_count = framesize;
4616 int i = start;
4617 unsigned char *p = info->tmp_rbuf;
4618 info->tmp_rbuf_count = framesize;
4619
4620 info->icount.rxok++;
4621
4622 while(copy_count) {
4623 int partial_count = min_t(int, copy_count, info->rbuf_fill_level);
4624 memcpy(p, info->rbufs[i].buf, partial_count);
4625 p += partial_count;
4626 copy_count -= partial_count;
4627 if (++i == info->rbuf_count)
4628 i = 0;
4629 }
4630
4631 if (info->params.crc_type & HDLC_CRC_RETURN_EX) {
4632 *p = (status & BIT1) ? RX_CRC_ERROR : RX_OK;
4633 framesize++;
4634 }
4635
4636 #if SYNCLINK_GENERIC_HDLC
4637 if (info->netcount)
4638 hdlcdev_rx(info,info->tmp_rbuf, framesize);
4639 else
4640 #endif
4641 ldisc_receive_buf(tty, info->tmp_rbuf, NULL,
4642 framesize);
4643 }
4644 }
4645 free_rbufs(info, start, end);
4646 return true;
4647
4648 cleanup:
4649 return false;
4650 }
4651
4652 /*
4653 * pass receive buffer (RAW synchronous mode) to tty layer
4654 * return true if buffer available, otherwise false
4655 */
rx_get_buf(struct slgt_info * info)4656 static bool rx_get_buf(struct slgt_info *info)
4657 {
4658 unsigned int i = info->rbuf_current;
4659 unsigned int count;
4660
4661 if (!desc_complete(info->rbufs[i]))
4662 return false;
4663 count = desc_count(info->rbufs[i]);
4664 switch(info->params.mode) {
4665 case MGSL_MODE_MONOSYNC:
4666 case MGSL_MODE_BISYNC:
4667 case MGSL_MODE_XSYNC:
4668 /* ignore residue in byte synchronous modes */
4669 if (desc_residue(info->rbufs[i]))
4670 count--;
4671 break;
4672 }
4673 DBGDATA(info, info->rbufs[i].buf, count, "rx");
4674 DBGINFO(("rx_get_buf size=%d\n", count));
4675 if (count)
4676 ldisc_receive_buf(info->port.tty, info->rbufs[i].buf, NULL,
4677 count);
4678 free_rbufs(info, i, i);
4679 return true;
4680 }
4681
reset_tbufs(struct slgt_info * info)4682 static void reset_tbufs(struct slgt_info *info)
4683 {
4684 unsigned int i;
4685 info->tbuf_current = 0;
4686 for (i=0 ; i < info->tbuf_count ; i++) {
4687 info->tbufs[i].status = 0;
4688 info->tbufs[i].count = 0;
4689 }
4690 }
4691
4692 /*
4693 * return number of free transmit DMA buffers
4694 */
free_tbuf_count(struct slgt_info * info)4695 static unsigned int free_tbuf_count(struct slgt_info *info)
4696 {
4697 unsigned int count = 0;
4698 unsigned int i = info->tbuf_current;
4699
4700 do
4701 {
4702 if (desc_count(info->tbufs[i]))
4703 break; /* buffer in use */
4704 ++count;
4705 if (++i == info->tbuf_count)
4706 i=0;
4707 } while (i != info->tbuf_current);
4708
4709 /* if tx DMA active, last zero count buffer is in use */
4710 if (count && (rd_reg32(info, TDCSR) & BIT0))
4711 --count;
4712
4713 return count;
4714 }
4715
4716 /*
4717 * return number of bytes in unsent transmit DMA buffers
4718 * and the serial controller tx FIFO
4719 */
tbuf_bytes(struct slgt_info * info)4720 static unsigned int tbuf_bytes(struct slgt_info *info)
4721 {
4722 unsigned int total_count = 0;
4723 unsigned int i = info->tbuf_current;
4724 unsigned int reg_value;
4725 unsigned int count;
4726 unsigned int active_buf_count = 0;
4727
4728 /*
4729 * Add descriptor counts for all tx DMA buffers.
4730 * If count is zero (cleared by DMA controller after read),
4731 * the buffer is complete or is actively being read from.
4732 *
4733 * Record buf_count of last buffer with zero count starting
4734 * from current ring position. buf_count is mirror
4735 * copy of count and is not cleared by serial controller.
4736 * If DMA controller is active, that buffer is actively
4737 * being read so add to total.
4738 */
4739 do {
4740 count = desc_count(info->tbufs[i]);
4741 if (count)
4742 total_count += count;
4743 else if (!total_count)
4744 active_buf_count = info->tbufs[i].buf_count;
4745 if (++i == info->tbuf_count)
4746 i = 0;
4747 } while (i != info->tbuf_current);
4748
4749 /* read tx DMA status register */
4750 reg_value = rd_reg32(info, TDCSR);
4751
4752 /* if tx DMA active, last zero count buffer is in use */
4753 if (reg_value & BIT0)
4754 total_count += active_buf_count;
4755
4756 /* add tx FIFO count = reg_value[15..8] */
4757 total_count += (reg_value >> 8) & 0xff;
4758
4759 /* if transmitter active add one byte for shift register */
4760 if (info->tx_active)
4761 total_count++;
4762
4763 return total_count;
4764 }
4765
4766 /*
4767 * load data into transmit DMA buffer ring and start transmitter if needed
4768 * return true if data accepted, otherwise false (buffers full)
4769 */
tx_load(struct slgt_info * info,const u8 * buf,unsigned int size)4770 static bool tx_load(struct slgt_info *info, const u8 *buf, unsigned int size)
4771 {
4772 unsigned short count;
4773 unsigned int i;
4774 struct slgt_desc *d;
4775
4776 /* check required buffer space */
4777 if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info))
4778 return false;
4779
4780 DBGDATA(info, buf, size, "tx");
4781
4782 /*
4783 * copy data to one or more DMA buffers in circular ring
4784 * tbuf_start = first buffer for this data
4785 * tbuf_current = next free buffer
4786 *
4787 * Copy all data before making data visible to DMA controller by
4788 * setting descriptor count of the first buffer.
4789 * This prevents an active DMA controller from reading the first DMA
4790 * buffers of a frame and stopping before the final buffers are filled.
4791 */
4792
4793 info->tbuf_start = i = info->tbuf_current;
4794
4795 while (size) {
4796 d = &info->tbufs[i];
4797
4798 count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size);
4799 memcpy(d->buf, buf, count);
4800
4801 size -= count;
4802 buf += count;
4803
4804 /*
4805 * set EOF bit for last buffer of HDLC frame or
4806 * for every buffer in raw mode
4807 */
4808 if ((!size && info->params.mode == MGSL_MODE_HDLC) ||
4809 info->params.mode == MGSL_MODE_RAW)
4810 set_desc_eof(*d, 1);
4811 else
4812 set_desc_eof(*d, 0);
4813
4814 /* set descriptor count for all but first buffer */
4815 if (i != info->tbuf_start)
4816 set_desc_count(*d, count);
4817 d->buf_count = count;
4818
4819 if (++i == info->tbuf_count)
4820 i = 0;
4821 }
4822
4823 info->tbuf_current = i;
4824
4825 /* set first buffer count to make new data visible to DMA controller */
4826 d = &info->tbufs[info->tbuf_start];
4827 set_desc_count(*d, d->buf_count);
4828
4829 /* start transmitter if needed and update transmit timeout */
4830 if (!info->tx_active)
4831 tx_start(info);
4832 update_tx_timer(info);
4833
4834 return true;
4835 }
4836
register_test(struct slgt_info * info)4837 static int register_test(struct slgt_info *info)
4838 {
4839 static unsigned short patterns[] =
4840 {0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696};
4841 static unsigned int count = ARRAY_SIZE(patterns);
4842 unsigned int i;
4843 int rc = 0;
4844
4845 for (i=0 ; i < count ; i++) {
4846 wr_reg16(info, TIR, patterns[i]);
4847 wr_reg16(info, BDR, patterns[(i+1)%count]);
4848 if ((rd_reg16(info, TIR) != patterns[i]) ||
4849 (rd_reg16(info, BDR) != patterns[(i+1)%count])) {
4850 rc = -ENODEV;
4851 break;
4852 }
4853 }
4854 info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0;
4855 info->init_error = rc ? 0 : DiagStatus_AddressFailure;
4856 return rc;
4857 }
4858
irq_test(struct slgt_info * info)4859 static int irq_test(struct slgt_info *info)
4860 {
4861 unsigned long timeout;
4862 unsigned long flags;
4863 struct tty_struct *oldtty = info->port.tty;
4864 u32 speed = info->params.data_rate;
4865
4866 info->params.data_rate = 921600;
4867 info->port.tty = NULL;
4868
4869 spin_lock_irqsave(&info->lock, flags);
4870 async_mode(info);
4871 slgt_irq_on(info, IRQ_TXIDLE);
4872
4873 /* enable transmitter */
4874 wr_reg16(info, TCR,
4875 (unsigned short)(rd_reg16(info, TCR) | BIT1));
4876
4877 /* write one byte and wait for tx idle */
4878 wr_reg16(info, TDR, 0);
4879
4880 /* assume failure */
4881 info->init_error = DiagStatus_IrqFailure;
4882 info->irq_occurred = false;
4883
4884 spin_unlock_irqrestore(&info->lock, flags);
4885
4886 timeout=100;
4887 while(timeout-- && !info->irq_occurred)
4888 msleep_interruptible(10);
4889
4890 spin_lock_irqsave(&info->lock,flags);
4891 reset_port(info);
4892 spin_unlock_irqrestore(&info->lock,flags);
4893
4894 info->params.data_rate = speed;
4895 info->port.tty = oldtty;
4896
4897 info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure;
4898 return info->irq_occurred ? 0 : -ENODEV;
4899 }
4900
loopback_test_rx(struct slgt_info * info)4901 static int loopback_test_rx(struct slgt_info *info)
4902 {
4903 unsigned char *src, *dest;
4904 int count;
4905
4906 if (desc_complete(info->rbufs[0])) {
4907 count = desc_count(info->rbufs[0]);
4908 src = info->rbufs[0].buf;
4909 dest = info->tmp_rbuf;
4910
4911 for( ; count ; count-=2, src+=2) {
4912 /* src=data byte (src+1)=status byte */
4913 if (!(*(src+1) & (BIT9 + BIT8))) {
4914 *dest = *src;
4915 dest++;
4916 info->tmp_rbuf_count++;
4917 }
4918 }
4919 DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx");
4920 return 1;
4921 }
4922 return 0;
4923 }
4924
loopback_test(struct slgt_info * info)4925 static int loopback_test(struct slgt_info *info)
4926 {
4927 #define TESTFRAMESIZE 20
4928
4929 unsigned long timeout;
4930 u16 count;
4931 unsigned char buf[TESTFRAMESIZE];
4932 int rc = -ENODEV;
4933 unsigned long flags;
4934
4935 struct tty_struct *oldtty = info->port.tty;
4936 MGSL_PARAMS params;
4937
4938 memcpy(¶ms, &info->params, sizeof(params));
4939
4940 info->params.mode = MGSL_MODE_ASYNC;
4941 info->params.data_rate = 921600;
4942 info->params.loopback = 1;
4943 info->port.tty = NULL;
4944
4945 /* build and send transmit frame */
4946 for (count = 0; count < TESTFRAMESIZE; ++count)
4947 buf[count] = (unsigned char)count;
4948
4949 info->tmp_rbuf_count = 0;
4950 memset(info->tmp_rbuf, 0, TESTFRAMESIZE);
4951
4952 /* program hardware for HDLC and enabled receiver */
4953 spin_lock_irqsave(&info->lock,flags);
4954 async_mode(info);
4955 rx_start(info);
4956 tx_load(info, buf, count);
4957 spin_unlock_irqrestore(&info->lock, flags);
4958
4959 /* wait for receive complete */
4960 for (timeout = 100; timeout; --timeout) {
4961 msleep_interruptible(10);
4962 if (loopback_test_rx(info)) {
4963 rc = 0;
4964 break;
4965 }
4966 }
4967
4968 /* verify received frame length and contents */
4969 if (!rc && (info->tmp_rbuf_count != count ||
4970 memcmp(buf, info->tmp_rbuf, count))) {
4971 rc = -ENODEV;
4972 }
4973
4974 spin_lock_irqsave(&info->lock,flags);
4975 reset_adapter(info);
4976 spin_unlock_irqrestore(&info->lock,flags);
4977
4978 memcpy(&info->params, ¶ms, sizeof(info->params));
4979 info->port.tty = oldtty;
4980
4981 info->init_error = rc ? DiagStatus_DmaFailure : 0;
4982 return rc;
4983 }
4984
adapter_test(struct slgt_info * info)4985 static int adapter_test(struct slgt_info *info)
4986 {
4987 DBGINFO(("testing %s\n", info->device_name));
4988 if (register_test(info) < 0) {
4989 printk("register test failure %s addr=%08X\n",
4990 info->device_name, info->phys_reg_addr);
4991 } else if (irq_test(info) < 0) {
4992 printk("IRQ test failure %s IRQ=%d\n",
4993 info->device_name, info->irq_level);
4994 } else if (loopback_test(info) < 0) {
4995 printk("loopback test failure %s\n", info->device_name);
4996 }
4997 return info->init_error;
4998 }
4999
5000 /*
5001 * transmit timeout handler
5002 */
tx_timeout(struct timer_list * t)5003 static void tx_timeout(struct timer_list *t)
5004 {
5005 struct slgt_info *info = from_timer(info, t, tx_timer);
5006 unsigned long flags;
5007
5008 DBGINFO(("%s tx_timeout\n", info->device_name));
5009 if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) {
5010 info->icount.txtimeout++;
5011 }
5012 spin_lock_irqsave(&info->lock,flags);
5013 tx_stop(info);
5014 spin_unlock_irqrestore(&info->lock,flags);
5015
5016 #if SYNCLINK_GENERIC_HDLC
5017 if (info->netcount)
5018 hdlcdev_tx_done(info);
5019 else
5020 #endif
5021 bh_transmit(info);
5022 }
5023
5024 /*
5025 * receive buffer polling timer
5026 */
rx_timeout(struct timer_list * t)5027 static void rx_timeout(struct timer_list *t)
5028 {
5029 struct slgt_info *info = from_timer(info, t, rx_timer);
5030 unsigned long flags;
5031
5032 DBGINFO(("%s rx_timeout\n", info->device_name));
5033 spin_lock_irqsave(&info->lock, flags);
5034 info->pending_bh |= BH_RECEIVE;
5035 spin_unlock_irqrestore(&info->lock, flags);
5036 bh_handler(&info->task);
5037 }
5038
5039