1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25 * Copyright 2016 Gary Mills
26 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28 * Copyright 2019 Joyent, Inc.
29 */
30
31 #include <sys/dsl_scan.h>
32 #include <sys/dsl_pool.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_prop.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dnode.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/arc_impl.h>
42 #include <sys/zap.h>
43 #include <sys/zio.h>
44 #include <sys/zfs_context.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/zfs_znode.h>
47 #include <sys/spa_impl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/zil_impl.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/brt.h>
52 #include <sys/ddt.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/zfeature.h>
56 #include <sys/abd.h>
57 #include <sys/range_tree.h>
58 #include <sys/dbuf.h>
59 #ifdef _KERNEL
60 #include <sys/zfs_vfsops.h>
61 #endif
62
63 /*
64 * Grand theory statement on scan queue sorting
65 *
66 * Scanning is implemented by recursively traversing all indirection levels
67 * in an object and reading all blocks referenced from said objects. This
68 * results in us approximately traversing the object from lowest logical
69 * offset to the highest. For best performance, we would want the logical
70 * blocks to be physically contiguous. However, this is frequently not the
71 * case with pools given the allocation patterns of copy-on-write filesystems.
72 * So instead, we put the I/Os into a reordering queue and issue them in a
73 * way that will most benefit physical disks (LBA-order).
74 *
75 * Queue management:
76 *
77 * Ideally, we would want to scan all metadata and queue up all block I/O
78 * prior to starting to issue it, because that allows us to do an optimal
79 * sorting job. This can however consume large amounts of memory. Therefore
80 * we continuously monitor the size of the queues and constrain them to 5%
81 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82 * limit, we clear out a few of the largest extents at the head of the queues
83 * to make room for more scanning. Hopefully, these extents will be fairly
84 * large and contiguous, allowing us to approach sequential I/O throughput
85 * even without a fully sorted tree.
86 *
87 * Metadata scanning takes place in dsl_scan_visit(), which is called from
88 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89 * metadata on the pool, or we need to make room in memory because our
90 * queues are too large, dsl_scan_visit() is postponed and
91 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92 * that metadata scanning and queued I/O issuing are mutually exclusive. This
93 * allows us to provide maximum sequential I/O throughput for the majority of
94 * I/O's issued since sequential I/O performance is significantly negatively
95 * impacted if it is interleaved with random I/O.
96 *
97 * Implementation Notes
98 *
99 * One side effect of the queued scanning algorithm is that the scanning code
100 * needs to be notified whenever a block is freed. This is needed to allow
101 * the scanning code to remove these I/Os from the issuing queue. Additionally,
102 * we do not attempt to queue gang blocks to be issued sequentially since this
103 * is very hard to do and would have an extremely limited performance benefit.
104 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
105 * algorithm.
106 *
107 * Backwards compatibility
108 *
109 * This new algorithm is backwards compatible with the legacy on-disk data
110 * structures (and therefore does not require a new feature flag).
111 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112 * will stop scanning metadata (in logical order) and wait for all outstanding
113 * sorted I/O to complete. Once this is done, we write out a checkpoint
114 * bookmark, indicating that we have scanned everything logically before it.
115 * If the pool is imported on a machine without the new sorting algorithm,
116 * the scan simply resumes from the last checkpoint using the legacy algorithm.
117 */
118
119 typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120 const zbookmark_phys_t *);
121
122 static scan_cb_t dsl_scan_scrub_cb;
123
124 static int scan_ds_queue_compare(const void *a, const void *b);
125 static int scan_prefetch_queue_compare(const void *a, const void *b);
126 static void scan_ds_queue_clear(dsl_scan_t *scn);
127 static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128 static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129 uint64_t *txg);
130 static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131 static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132 static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133 static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134 static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136 extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137 static int zfs_scan_blkstats = 0;
138
139 /*
140 * 'zpool status' uses bytes processed per pass to report throughput and
141 * estimate time remaining. We define a pass to start when the scanning
142 * phase completes for a sequential resilver. Optionally, this value
143 * may be used to reset the pass statistics every N txgs to provide an
144 * estimated completion time based on currently observed performance.
145 */
146 static uint_t zfs_scan_report_txgs = 0;
147
148 /*
149 * By default zfs will check to ensure it is not over the hard memory
150 * limit before each txg. If finer-grained control of this is needed
151 * this value can be set to 1 to enable checking before scanning each
152 * block.
153 */
154 static int zfs_scan_strict_mem_lim = B_FALSE;
155
156 /*
157 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
158 * to strike a balance here between keeping the vdev queues full of I/Os
159 * at all times and not overflowing the queues to cause long latency,
160 * which would cause long txg sync times. No matter what, we will not
161 * overload the drives with I/O, since that is protected by
162 * zfs_vdev_scrub_max_active.
163 */
164 static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166 static uint_t zfs_scan_issue_strategy = 0;
167
168 /* don't queue & sort zios, go direct */
169 static int zfs_scan_legacy = B_FALSE;
170 static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172 /*
173 * fill_weight is non-tunable at runtime, so we copy it at module init from
174 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175 * break queue sorting.
176 */
177 static uint_t zfs_scan_fill_weight = 3;
178 static uint64_t fill_weight;
179
180 /* See dsl_scan_should_clear() for details on the memory limit tunables */
181 static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182 static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185 /* fraction of physmem */
186 static uint_t zfs_scan_mem_lim_fact = 20;
187
188 /* fraction of mem lim above */
189 static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191 /* minimum milliseconds to scrub per txg */
192 static uint_t zfs_scrub_min_time_ms = 1000;
193
194 /* minimum milliseconds to obsolete per txg */
195 static uint_t zfs_obsolete_min_time_ms = 500;
196
197 /* minimum milliseconds to free per txg */
198 static uint_t zfs_free_min_time_ms = 1000;
199
200 /* minimum milliseconds to resilver per txg */
201 static uint_t zfs_resilver_min_time_ms = 3000;
202
203 static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204 int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205 static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206 static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207 static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208 /* max number of blocks to free in a single TXG */
209 static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210 /* max number of dedup blocks to free in a single TXG */
211 static uint64_t zfs_max_async_dedup_frees = 100000;
212
213 /* set to disable resilver deferring */
214 static int zfs_resilver_disable_defer = B_FALSE;
215
216 /* Don't defer a resilver if the one in progress only got this far: */
217 static uint_t zfs_resilver_defer_percent = 10;
218
219 /*
220 * We wait a few txgs after importing a pool to begin scanning so that
221 * the import / mounting code isn't held up by scrub / resilver IO.
222 * Unfortunately, it is a bit difficult to determine exactly how long
223 * this will take since userspace will trigger fs mounts asynchronously
224 * and the kernel will create zvol minors asynchronously. As a result,
225 * the value provided here is a bit arbitrary, but represents a
226 * reasonable estimate of how many txgs it will take to finish fully
227 * importing a pool
228 */
229 #define SCAN_IMPORT_WAIT_TXGS 5
230
231 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
232 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
233 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
234
235 #define DSL_SCAN_IS_SCRUB(scn) \
236 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
237
238 #define DSL_SCAN_IS_RESILVER(scn) \
239 ((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
240
241 /*
242 * Enable/disable the processing of the free_bpobj object.
243 */
244 static int zfs_free_bpobj_enabled = 1;
245
246 /* Error blocks to be scrubbed in one txg. */
247 static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
248
249 /* the order has to match pool_scan_type */
250 static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
251 NULL,
252 dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
253 dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
254 };
255
256 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
257 typedef struct {
258 uint64_t sds_dsobj;
259 uint64_t sds_txg;
260 avl_node_t sds_node;
261 } scan_ds_t;
262
263 /*
264 * This controls what conditions are placed on dsl_scan_sync_state():
265 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
266 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
267 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
268 * write out the scn_phys_cached version.
269 * See dsl_scan_sync_state for details.
270 */
271 typedef enum {
272 SYNC_OPTIONAL,
273 SYNC_MANDATORY,
274 SYNC_CACHED
275 } state_sync_type_t;
276
277 /*
278 * This struct represents the minimum information needed to reconstruct a
279 * zio for sequential scanning. This is useful because many of these will
280 * accumulate in the sequential IO queues before being issued, so saving
281 * memory matters here.
282 */
283 typedef struct scan_io {
284 /* fields from blkptr_t */
285 uint64_t sio_blk_prop;
286 uint64_t sio_phys_birth;
287 uint64_t sio_birth;
288 zio_cksum_t sio_cksum;
289 uint32_t sio_nr_dvas;
290
291 /* fields from zio_t */
292 uint32_t sio_flags;
293 zbookmark_phys_t sio_zb;
294
295 /* members for queue sorting */
296 union {
297 avl_node_t sio_addr_node; /* link into issuing queue */
298 list_node_t sio_list_node; /* link for issuing to disk */
299 } sio_nodes;
300
301 /*
302 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
303 * depending on how many were in the original bp. Only the
304 * first DVA is really used for sorting and issuing purposes.
305 * The other DVAs (if provided) simply exist so that the zio
306 * layer can find additional copies to repair from in the
307 * event of an error. This array must go at the end of the
308 * struct to allow this for the variable number of elements.
309 */
310 dva_t sio_dva[];
311 } scan_io_t;
312
313 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
314 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
315 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
316 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
317 #define SIO_GET_END_OFFSET(sio) \
318 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
319 #define SIO_GET_MUSED(sio) \
320 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
321
322 struct dsl_scan_io_queue {
323 dsl_scan_t *q_scn; /* associated dsl_scan_t */
324 vdev_t *q_vd; /* top-level vdev that this queue represents */
325 zio_t *q_zio; /* scn_zio_root child for waiting on IO */
326
327 /* trees used for sorting I/Os and extents of I/Os */
328 zfs_range_tree_t *q_exts_by_addr;
329 zfs_btree_t q_exts_by_size;
330 avl_tree_t q_sios_by_addr;
331 uint64_t q_sio_memused;
332 uint64_t q_last_ext_addr;
333
334 /* members for zio rate limiting */
335 uint64_t q_maxinflight_bytes;
336 uint64_t q_inflight_bytes;
337 kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
338
339 /* per txg statistics */
340 uint64_t q_total_seg_size_this_txg;
341 uint64_t q_segs_this_txg;
342 uint64_t q_total_zio_size_this_txg;
343 uint64_t q_zios_this_txg;
344 };
345
346 /* private data for dsl_scan_prefetch_cb() */
347 typedef struct scan_prefetch_ctx {
348 zfs_refcount_t spc_refcnt; /* refcount for memory management */
349 dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
350 boolean_t spc_root; /* is this prefetch for an objset? */
351 uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
352 uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
353 } scan_prefetch_ctx_t;
354
355 /* private data for dsl_scan_prefetch() */
356 typedef struct scan_prefetch_issue_ctx {
357 avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
358 scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
359 blkptr_t spic_bp; /* bp to prefetch */
360 zbookmark_phys_t spic_zb; /* bookmark to prefetch */
361 } scan_prefetch_issue_ctx_t;
362
363 static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
364 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
365 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
366 scan_io_t *sio);
367
368 static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
369 static void scan_io_queues_destroy(dsl_scan_t *scn);
370
371 static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
372
373 /* sio->sio_nr_dvas must be set so we know which cache to free from */
374 static void
sio_free(scan_io_t * sio)375 sio_free(scan_io_t *sio)
376 {
377 ASSERT3U(sio->sio_nr_dvas, >, 0);
378 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
379
380 kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
381 }
382
383 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
384 static scan_io_t *
sio_alloc(unsigned short nr_dvas)385 sio_alloc(unsigned short nr_dvas)
386 {
387 ASSERT3U(nr_dvas, >, 0);
388 ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
389
390 return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
391 }
392
393 void
scan_init(void)394 scan_init(void)
395 {
396 /*
397 * This is used in ext_size_compare() to weight segments
398 * based on how sparse they are. This cannot be changed
399 * mid-scan and the tree comparison functions don't currently
400 * have a mechanism for passing additional context to the
401 * compare functions. Thus we store this value globally and
402 * we only allow it to be set at module initialization time
403 */
404 fill_weight = zfs_scan_fill_weight;
405
406 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
407 char name[36];
408
409 (void) snprintf(name, sizeof (name), "sio_cache_%d", i);
410 sio_cache[i] = kmem_cache_create(name,
411 (sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
412 0, NULL, NULL, NULL, NULL, NULL, 0);
413 }
414 }
415
416 void
scan_fini(void)417 scan_fini(void)
418 {
419 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
420 kmem_cache_destroy(sio_cache[i]);
421 }
422 }
423
424 static inline boolean_t
dsl_scan_is_running(const dsl_scan_t * scn)425 dsl_scan_is_running(const dsl_scan_t *scn)
426 {
427 return (scn->scn_phys.scn_state == DSS_SCANNING);
428 }
429
430 boolean_t
dsl_scan_resilvering(dsl_pool_t * dp)431 dsl_scan_resilvering(dsl_pool_t *dp)
432 {
433 return (dsl_scan_is_running(dp->dp_scan) &&
434 dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
435 }
436
437 static inline void
sio2bp(const scan_io_t * sio,blkptr_t * bp)438 sio2bp(const scan_io_t *sio, blkptr_t *bp)
439 {
440 memset(bp, 0, sizeof (*bp));
441 bp->blk_prop = sio->sio_blk_prop;
442 BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
443 BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
444 bp->blk_fill = 1; /* we always only work with data pointers */
445 bp->blk_cksum = sio->sio_cksum;
446
447 ASSERT3U(sio->sio_nr_dvas, >, 0);
448 ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
449
450 memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
451 }
452
453 static inline void
bp2sio(const blkptr_t * bp,scan_io_t * sio,int dva_i)454 bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
455 {
456 sio->sio_blk_prop = bp->blk_prop;
457 sio->sio_phys_birth = BP_GET_RAW_PHYSICAL_BIRTH(bp);
458 sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
459 sio->sio_cksum = bp->blk_cksum;
460 sio->sio_nr_dvas = BP_GET_NDVAS(bp);
461
462 /*
463 * Copy the DVAs to the sio. We need all copies of the block so
464 * that the self healing code can use the alternate copies if the
465 * first is corrupted. We want the DVA at index dva_i to be first
466 * in the sio since this is the primary one that we want to issue.
467 */
468 for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
469 sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
470 }
471 }
472
473 int
dsl_scan_init(dsl_pool_t * dp,uint64_t txg)474 dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
475 {
476 int err;
477 dsl_scan_t *scn;
478 spa_t *spa = dp->dp_spa;
479 uint64_t f;
480
481 scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
482 scn->scn_dp = dp;
483
484 /*
485 * It's possible that we're resuming a scan after a reboot so
486 * make sure that the scan_async_destroying flag is initialized
487 * appropriately.
488 */
489 ASSERT(!scn->scn_async_destroying);
490 scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
491 SPA_FEATURE_ASYNC_DESTROY);
492
493 /*
494 * Calculate the max number of in-flight bytes for pool-wide
495 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
496 * Limits for the issuing phase are done per top-level vdev and
497 * are handled separately.
498 */
499 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
500 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
501
502 avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
503 offsetof(scan_ds_t, sds_node));
504 mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
505 avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
506 sizeof (scan_prefetch_issue_ctx_t),
507 offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
508
509 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
510 "scrub_func", sizeof (uint64_t), 1, &f);
511 if (err == 0) {
512 /*
513 * There was an old-style scrub in progress. Restart a
514 * new-style scrub from the beginning.
515 */
516 scn->scn_restart_txg = txg;
517 zfs_dbgmsg("old-style scrub was in progress for %s; "
518 "restarting new-style scrub in txg %llu",
519 spa->spa_name,
520 (longlong_t)scn->scn_restart_txg);
521
522 /*
523 * Load the queue obj from the old location so that it
524 * can be freed by dsl_scan_done().
525 */
526 (void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527 "scrub_queue", sizeof (uint64_t), 1,
528 &scn->scn_phys.scn_queue_obj);
529 } else {
530 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531 DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
532 ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
533
534 if (err != 0 && err != ENOENT)
535 return (err);
536
537 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
538 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
539 &scn->scn_phys);
540
541 /*
542 * Detect if the pool contains the signature of #2094. If it
543 * does properly update the scn->scn_phys structure and notify
544 * the administrator by setting an errata for the pool.
545 */
546 if (err == EOVERFLOW) {
547 uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
548 VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
549 VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
550 (23 * sizeof (uint64_t)));
551
552 err = zap_lookup(dp->dp_meta_objset,
553 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
554 sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
555 if (err == 0) {
556 uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
557
558 if (overflow & ~DSL_SCAN_FLAGS_MASK ||
559 scn->scn_async_destroying) {
560 spa->spa_errata =
561 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
562 return (EOVERFLOW);
563 }
564
565 memcpy(&scn->scn_phys, zaptmp,
566 SCAN_PHYS_NUMINTS * sizeof (uint64_t));
567 scn->scn_phys.scn_flags = overflow;
568
569 /* Required scrub already in progress. */
570 if (scn->scn_phys.scn_state == DSS_FINISHED ||
571 scn->scn_phys.scn_state == DSS_CANCELED)
572 spa->spa_errata =
573 ZPOOL_ERRATA_ZOL_2094_SCRUB;
574 }
575 }
576
577 if (err == ENOENT)
578 return (0);
579 else if (err)
580 return (err);
581
582 /*
583 * We might be restarting after a reboot, so jump the issued
584 * counter to how far we've scanned. We know we're consistent
585 * up to here.
586 */
587 scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
588 scn->scn_phys.scn_skipped;
589
590 if (dsl_scan_is_running(scn) &&
591 spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
592 /*
593 * A new-type scrub was in progress on an old
594 * pool, and the pool was accessed by old
595 * software. Restart from the beginning, since
596 * the old software may have changed the pool in
597 * the meantime.
598 */
599 scn->scn_restart_txg = txg;
600 zfs_dbgmsg("new-style scrub for %s was modified "
601 "by old software; restarting in txg %llu",
602 spa->spa_name,
603 (longlong_t)scn->scn_restart_txg);
604 } else if (dsl_scan_resilvering(dp)) {
605 /*
606 * If a resilver is in progress and there are already
607 * errors, restart it instead of finishing this scan and
608 * then restarting it. If there haven't been any errors
609 * then remember that the incore DTL is valid.
610 */
611 if (scn->scn_phys.scn_errors > 0) {
612 scn->scn_restart_txg = txg;
613 zfs_dbgmsg("resilver can't excise DTL_MISSING "
614 "when finished; restarting on %s in txg "
615 "%llu",
616 spa->spa_name,
617 (u_longlong_t)scn->scn_restart_txg);
618 } else {
619 /* it's safe to excise DTL when finished */
620 spa->spa_scrub_started = B_TRUE;
621 }
622 }
623 }
624
625 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
626
627 /* reload the queue into the in-core state */
628 if (scn->scn_phys.scn_queue_obj != 0) {
629 zap_cursor_t zc;
630 zap_attribute_t *za = zap_attribute_alloc();
631
632 for (zap_cursor_init(&zc, dp->dp_meta_objset,
633 scn->scn_phys.scn_queue_obj);
634 zap_cursor_retrieve(&zc, za) == 0;
635 (void) zap_cursor_advance(&zc)) {
636 scan_ds_queue_insert(scn,
637 zfs_strtonum(za->za_name, NULL),
638 za->za_first_integer);
639 }
640 zap_cursor_fini(&zc);
641 zap_attribute_free(za);
642 }
643
644 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
645
646 spa_scan_stat_init(spa);
647 vdev_scan_stat_init(spa->spa_root_vdev);
648
649 return (0);
650 }
651
652 void
dsl_scan_fini(dsl_pool_t * dp)653 dsl_scan_fini(dsl_pool_t *dp)
654 {
655 if (dp->dp_scan != NULL) {
656 dsl_scan_t *scn = dp->dp_scan;
657
658 if (scn->scn_taskq != NULL)
659 taskq_destroy(scn->scn_taskq);
660
661 scan_ds_queue_clear(scn);
662 avl_destroy(&scn->scn_queue);
663 mutex_destroy(&scn->scn_queue_lock);
664 scan_ds_prefetch_queue_clear(scn);
665 avl_destroy(&scn->scn_prefetch_queue);
666
667 kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
668 dp->dp_scan = NULL;
669 }
670 }
671
672 static boolean_t
dsl_scan_restarting(dsl_scan_t * scn,dmu_tx_t * tx)673 dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
674 {
675 return (scn->scn_restart_txg != 0 &&
676 scn->scn_restart_txg <= tx->tx_txg);
677 }
678
679 boolean_t
dsl_scan_resilver_scheduled(dsl_pool_t * dp)680 dsl_scan_resilver_scheduled(dsl_pool_t *dp)
681 {
682 return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
683 (spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
684 }
685
686 boolean_t
dsl_scan_scrubbing(const dsl_pool_t * dp)687 dsl_scan_scrubbing(const dsl_pool_t *dp)
688 {
689 dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
690
691 return (scn_phys->scn_state == DSS_SCANNING &&
692 scn_phys->scn_func == POOL_SCAN_SCRUB);
693 }
694
695 boolean_t
dsl_errorscrubbing(const dsl_pool_t * dp)696 dsl_errorscrubbing(const dsl_pool_t *dp)
697 {
698 dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
699
700 return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
701 errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
702 }
703
704 boolean_t
dsl_errorscrub_is_paused(const dsl_scan_t * scn)705 dsl_errorscrub_is_paused(const dsl_scan_t *scn)
706 {
707 return (dsl_errorscrubbing(scn->scn_dp) &&
708 scn->errorscrub_phys.dep_paused_flags);
709 }
710
711 boolean_t
dsl_scan_is_paused_scrub(const dsl_scan_t * scn)712 dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
713 {
714 return (dsl_scan_scrubbing(scn->scn_dp) &&
715 scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
716 }
717
718 static void
dsl_errorscrub_sync_state(dsl_scan_t * scn,dmu_tx_t * tx)719 dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
720 {
721 scn->errorscrub_phys.dep_cursor =
722 zap_cursor_serialize(&scn->errorscrub_cursor);
723
724 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
725 DMU_POOL_DIRECTORY_OBJECT,
726 DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
727 &scn->errorscrub_phys, tx));
728 }
729
730 static void
dsl_errorscrub_setup_sync(void * arg,dmu_tx_t * tx)731 dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
732 {
733 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
734 pool_scan_func_t *funcp = arg;
735 dsl_pool_t *dp = scn->scn_dp;
736 spa_t *spa = dp->dp_spa;
737
738 ASSERT(!dsl_scan_is_running(scn));
739 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
740 ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
741
742 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
743 scn->errorscrub_phys.dep_func = *funcp;
744 scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
745 scn->errorscrub_phys.dep_start_time = gethrestime_sec();
746 scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
747 scn->errorscrub_phys.dep_examined = 0;
748 scn->errorscrub_phys.dep_errors = 0;
749 scn->errorscrub_phys.dep_cursor = 0;
750 zap_cursor_init_serialized(&scn->errorscrub_cursor,
751 spa->spa_meta_objset, spa->spa_errlog_last,
752 scn->errorscrub_phys.dep_cursor);
753
754 vdev_config_dirty(spa->spa_root_vdev);
755 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
756
757 dsl_errorscrub_sync_state(scn, tx);
758
759 spa_history_log_internal(spa, "error scrub setup", tx,
760 "func=%u mintxg=%u maxtxg=%llu",
761 *funcp, 0, (u_longlong_t)tx->tx_txg);
762 }
763
764 static int
dsl_errorscrub_setup_check(void * arg,dmu_tx_t * tx)765 dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
766 {
767 (void) arg;
768 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
769
770 if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
771 return (SET_ERROR(EBUSY));
772 }
773
774 if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
775 return (ECANCELED);
776 }
777 return (0);
778 }
779
780 /*
781 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
782 * Because we can be running in the block sorting algorithm, we do not always
783 * want to write out the record, only when it is "safe" to do so. This safety
784 * condition is achieved by making sure that the sorting queues are empty
785 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
786 * is inconsistent with how much actual scanning progress has been made. The
787 * kind of sync to be performed is specified by the sync_type argument. If the
788 * sync is optional, we only sync if the queues are empty. If the sync is
789 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
790 * third possible state is a "cached" sync. This is done in response to:
791 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
792 * destroyed, so we wouldn't be able to restart scanning from it.
793 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
794 * superseded by a newer snapshot.
795 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
796 * swapped with its clone.
797 * In all cases, a cached sync simply rewrites the last record we've written,
798 * just slightly modified. For the modifications that are performed to the
799 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
800 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
801 */
802 static void
dsl_scan_sync_state(dsl_scan_t * scn,dmu_tx_t * tx,state_sync_type_t sync_type)803 dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
804 {
805 int i;
806 spa_t *spa = scn->scn_dp->dp_spa;
807
808 ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
809 if (scn->scn_queues_pending == 0) {
810 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
811 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
812 dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
813
814 if (q == NULL)
815 continue;
816
817 mutex_enter(&vd->vdev_scan_io_queue_lock);
818 ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
819 ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
820 NULL);
821 ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
822 NULL);
823 mutex_exit(&vd->vdev_scan_io_queue_lock);
824 }
825
826 if (scn->scn_phys.scn_queue_obj != 0)
827 scan_ds_queue_sync(scn, tx);
828 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
829 DMU_POOL_DIRECTORY_OBJECT,
830 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
831 &scn->scn_phys, tx));
832 memcpy(&scn->scn_phys_cached, &scn->scn_phys,
833 sizeof (scn->scn_phys));
834
835 if (scn->scn_checkpointing)
836 zfs_dbgmsg("finish scan checkpoint for %s",
837 spa->spa_name);
838
839 scn->scn_checkpointing = B_FALSE;
840 scn->scn_last_checkpoint = ddi_get_lbolt();
841 } else if (sync_type == SYNC_CACHED) {
842 VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
843 DMU_POOL_DIRECTORY_OBJECT,
844 DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
845 &scn->scn_phys_cached, tx));
846 }
847 }
848
849 int
dsl_scan_setup_check(void * arg,dmu_tx_t * tx)850 dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
851 {
852 (void) arg;
853 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
854 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
855
856 if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
857 dsl_errorscrubbing(scn->scn_dp))
858 return (SET_ERROR(EBUSY));
859
860 return (0);
861 }
862
863 void
dsl_scan_setup_sync(void * arg,dmu_tx_t * tx)864 dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
865 {
866 setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
867 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
868 dmu_object_type_t ot = 0;
869 dsl_pool_t *dp = scn->scn_dp;
870 spa_t *spa = dp->dp_spa;
871
872 ASSERT(!dsl_scan_is_running(scn));
873 ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
874 ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
875 memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
876
877 /*
878 * If we are starting a fresh scrub, we erase the error scrub
879 * information from disk.
880 */
881 memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
882 dsl_errorscrub_sync_state(scn, tx);
883
884 scn->scn_phys.scn_func = setup_sync_arg->func;
885 scn->scn_phys.scn_state = DSS_SCANNING;
886 scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
887 if (setup_sync_arg->txgend == 0) {
888 scn->scn_phys.scn_max_txg = tx->tx_txg;
889 } else {
890 scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
891 }
892 scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
893 scn->scn_phys.scn_start_time = gethrestime_sec();
894 scn->scn_phys.scn_errors = 0;
895 scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
896 scn->scn_issued_before_pass = 0;
897 scn->scn_restart_txg = 0;
898 scn->scn_done_txg = 0;
899 scn->scn_last_checkpoint = 0;
900 scn->scn_checkpointing = B_FALSE;
901 spa_scan_stat_init(spa);
902 vdev_scan_stat_init(spa->spa_root_vdev);
903
904 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
905 scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
906
907 /* rewrite all disk labels */
908 vdev_config_dirty(spa->spa_root_vdev);
909
910 if (vdev_resilver_needed(spa->spa_root_vdev,
911 &scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
912 nvlist_t *aux = fnvlist_alloc();
913 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
914 "healing");
915 spa_event_notify(spa, NULL, aux,
916 ESC_ZFS_RESILVER_START);
917 nvlist_free(aux);
918 } else {
919 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
920 }
921
922 spa->spa_scrub_started = B_TRUE;
923 /*
924 * If this is an incremental scrub, limit the DDT scrub phase
925 * to just the auto-ditto class (for correctness); the rest
926 * of the scrub should go faster using top-down pruning.
927 */
928 if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
929 scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
930
931 /*
932 * When starting a resilver clear any existing rebuild state.
933 * This is required to prevent stale rebuild status from
934 * being reported when a rebuild is run, then a resilver and
935 * finally a scrub. In which case only the scrub status
936 * should be reported by 'zpool status'.
937 */
938 if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
939 vdev_t *rvd = spa->spa_root_vdev;
940 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
941 vdev_t *vd = rvd->vdev_child[i];
942 vdev_rebuild_clear_sync(
943 (void *)(uintptr_t)vd->vdev_id, tx);
944 }
945 }
946 }
947
948 /* back to the generic stuff */
949
950 if (zfs_scan_blkstats) {
951 if (dp->dp_blkstats == NULL) {
952 dp->dp_blkstats =
953 vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
954 }
955 memset(&dp->dp_blkstats->zab_type, 0,
956 sizeof (dp->dp_blkstats->zab_type));
957 } else {
958 if (dp->dp_blkstats) {
959 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
960 dp->dp_blkstats = NULL;
961 }
962 }
963
964 if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
965 ot = DMU_OT_ZAP_OTHER;
966
967 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
968 ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
969
970 memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
971
972 ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
973
974 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
975
976 spa_history_log_internal(spa, "scan setup", tx,
977 "func=%u mintxg=%llu maxtxg=%llu",
978 setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
979 (u_longlong_t)scn->scn_phys.scn_max_txg);
980 }
981
982 /*
983 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
984 * error scrub or resilver. Can also be called to resume a paused scrub or
985 * error scrub.
986 */
987 int
dsl_scan(dsl_pool_t * dp,pool_scan_func_t func,uint64_t txgstart,uint64_t txgend)988 dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
989 uint64_t txgend)
990 {
991 spa_t *spa = dp->dp_spa;
992 dsl_scan_t *scn = dp->dp_scan;
993 setup_sync_arg_t setup_sync_arg;
994
995 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
996 return (EINVAL);
997 }
998
999 /*
1000 * Purge all vdev caches and probe all devices. We do this here
1001 * rather than in sync context because this requires a writer lock
1002 * on the spa_config lock, which we can't do from sync context. The
1003 * spa_scrub_reopen flag indicates that vdev_open() should not
1004 * attempt to start another scrub.
1005 */
1006 spa_vdev_state_enter(spa, SCL_NONE);
1007 spa->spa_scrub_reopen = B_TRUE;
1008 vdev_reopen(spa->spa_root_vdev);
1009 spa->spa_scrub_reopen = B_FALSE;
1010 (void) spa_vdev_state_exit(spa, NULL, 0);
1011
1012 if (func == POOL_SCAN_RESILVER) {
1013 dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1014 return (0);
1015 }
1016
1017 if (func == POOL_SCAN_ERRORSCRUB) {
1018 if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1019 /*
1020 * got error scrub start cmd, resume paused error scrub.
1021 */
1022 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1023 POOL_SCRUB_NORMAL);
1024 if (err == 0) {
1025 spa_event_notify(spa, NULL, NULL,
1026 ESC_ZFS_ERRORSCRUB_RESUME);
1027 return (0);
1028 }
1029 return (SET_ERROR(err));
1030 }
1031
1032 return (dsl_sync_task(spa_name(dp->dp_spa),
1033 dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1034 &func, 0, ZFS_SPACE_CHECK_RESERVED));
1035 }
1036
1037 if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1038 /* got scrub start cmd, resume paused scrub */
1039 int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1040 POOL_SCRUB_NORMAL);
1041 if (err == 0) {
1042 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1043 return (0);
1044 }
1045 return (SET_ERROR(err));
1046 }
1047
1048 setup_sync_arg.func = func;
1049 setup_sync_arg.txgstart = txgstart;
1050 setup_sync_arg.txgend = txgend;
1051
1052 return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1053 dsl_scan_setup_sync, &setup_sync_arg, 0,
1054 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1055 }
1056
1057 static void
dsl_errorscrub_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1058 dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1059 {
1060 dsl_pool_t *dp = scn->scn_dp;
1061 spa_t *spa = dp->dp_spa;
1062
1063 if (complete) {
1064 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1065 spa_history_log_internal(spa, "error scrub done", tx,
1066 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1067 } else {
1068 spa_history_log_internal(spa, "error scrub canceled", tx,
1069 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1070 }
1071
1072 scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1073 spa->spa_scrub_active = B_FALSE;
1074 spa_errlog_rotate(spa);
1075 scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1076 zap_cursor_fini(&scn->errorscrub_cursor);
1077
1078 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1079 spa->spa_errata = 0;
1080
1081 ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1082 }
1083
1084 static void
dsl_scan_done(dsl_scan_t * scn,boolean_t complete,dmu_tx_t * tx)1085 dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1086 {
1087 static const char *old_names[] = {
1088 "scrub_bookmark",
1089 "scrub_ddt_bookmark",
1090 "scrub_ddt_class_max",
1091 "scrub_queue",
1092 "scrub_min_txg",
1093 "scrub_max_txg",
1094 "scrub_func",
1095 "scrub_errors",
1096 NULL
1097 };
1098
1099 dsl_pool_t *dp = scn->scn_dp;
1100 spa_t *spa = dp->dp_spa;
1101 int i;
1102
1103 /* Remove any remnants of an old-style scrub. */
1104 for (i = 0; old_names[i]; i++) {
1105 (void) zap_remove(dp->dp_meta_objset,
1106 DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1107 }
1108
1109 if (scn->scn_phys.scn_queue_obj != 0) {
1110 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1111 scn->scn_phys.scn_queue_obj, tx));
1112 scn->scn_phys.scn_queue_obj = 0;
1113 }
1114 scan_ds_queue_clear(scn);
1115 scan_ds_prefetch_queue_clear(scn);
1116
1117 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1118
1119 /*
1120 * If we were "restarted" from a stopped state, don't bother
1121 * with anything else.
1122 */
1123 if (!dsl_scan_is_running(scn)) {
1124 ASSERT(!scn->scn_is_sorted);
1125 return;
1126 }
1127
1128 if (scn->scn_is_sorted) {
1129 scan_io_queues_destroy(scn);
1130 scn->scn_is_sorted = B_FALSE;
1131
1132 if (scn->scn_taskq != NULL) {
1133 taskq_destroy(scn->scn_taskq);
1134 scn->scn_taskq = NULL;
1135 }
1136 }
1137
1138 if (dsl_scan_restarting(scn, tx)) {
1139 spa_history_log_internal(spa, "scan aborted, restarting", tx,
1140 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1141 } else if (!complete) {
1142 spa_history_log_internal(spa, "scan cancelled", tx,
1143 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1144 } else {
1145 spa_history_log_internal(spa, "scan done", tx,
1146 "errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1147 if (DSL_SCAN_IS_SCRUB(scn)) {
1148 VERIFY0(zap_update(dp->dp_meta_objset,
1149 DMU_POOL_DIRECTORY_OBJECT,
1150 DMU_POOL_LAST_SCRUBBED_TXG,
1151 sizeof (uint64_t), 1,
1152 &scn->scn_phys.scn_max_txg, tx));
1153 spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1154 }
1155 }
1156
1157 if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1158 spa->spa_scrub_active = B_FALSE;
1159
1160 /*
1161 * If the scrub/resilver completed, update all DTLs to
1162 * reflect this. Whether it succeeded or not, vacate
1163 * all temporary scrub DTLs.
1164 *
1165 * As the scrub does not currently support traversing
1166 * data that have been freed but are part of a checkpoint,
1167 * we don't mark the scrub as done in the DTLs as faults
1168 * may still exist in those vdevs.
1169 */
1170 if (complete &&
1171 !spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1172 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1173 scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1174
1175 if (DSL_SCAN_IS_RESILVER(scn)) {
1176 nvlist_t *aux = fnvlist_alloc();
1177 fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1178 "healing");
1179 spa_event_notify(spa, NULL, aux,
1180 ESC_ZFS_RESILVER_FINISH);
1181 nvlist_free(aux);
1182 } else {
1183 spa_event_notify(spa, NULL, NULL,
1184 ESC_ZFS_SCRUB_FINISH);
1185 }
1186 } else {
1187 vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1188 0, B_TRUE, B_FALSE);
1189 }
1190 spa_errlog_rotate(spa);
1191
1192 /*
1193 * Don't clear flag until after vdev_dtl_reassess to ensure that
1194 * DTL_MISSING will get updated when possible.
1195 */
1196 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1197 DSS_CANCELED;
1198 scn->scn_phys.scn_end_time = gethrestime_sec();
1199 spa->spa_scrub_started = B_FALSE;
1200
1201 /*
1202 * We may have finished replacing a device.
1203 * Let the async thread assess this and handle the detach.
1204 */
1205 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1206
1207 /*
1208 * Clear any resilver_deferred flags in the config.
1209 * If there are drives that need resilvering, kick
1210 * off an asynchronous request to start resilver.
1211 * vdev_clear_resilver_deferred() may update the config
1212 * before the resilver can restart. In the event of
1213 * a crash during this period, the spa loading code
1214 * will find the drives that need to be resilvered
1215 * and start the resilver then.
1216 */
1217 if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1218 vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1219 spa_history_log_internal(spa,
1220 "starting deferred resilver", tx, "errors=%llu",
1221 (u_longlong_t)spa_approx_errlog_size(spa));
1222 spa_async_request(spa, SPA_ASYNC_RESILVER);
1223 }
1224
1225 /* Clear recent error events (i.e. duplicate events tracking) */
1226 if (complete)
1227 zfs_ereport_clear(spa, NULL);
1228 } else {
1229 scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1230 DSS_CANCELED;
1231 scn->scn_phys.scn_end_time = gethrestime_sec();
1232 }
1233
1234 spa_notify_waiters(spa);
1235
1236 if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1237 spa->spa_errata = 0;
1238
1239 ASSERT(!dsl_scan_is_running(scn));
1240 }
1241
1242 static int
dsl_errorscrub_pause_resume_check(void * arg,dmu_tx_t * tx)1243 dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1244 {
1245 pool_scrub_cmd_t *cmd = arg;
1246 dsl_pool_t *dp = dmu_tx_pool(tx);
1247 dsl_scan_t *scn = dp->dp_scan;
1248
1249 if (*cmd == POOL_SCRUB_PAUSE) {
1250 /*
1251 * can't pause a error scrub when there is no in-progress
1252 * error scrub.
1253 */
1254 if (!dsl_errorscrubbing(dp))
1255 return (SET_ERROR(ENOENT));
1256
1257 /* can't pause a paused error scrub */
1258 if (dsl_errorscrub_is_paused(scn))
1259 return (SET_ERROR(EBUSY));
1260 } else if (*cmd != POOL_SCRUB_NORMAL) {
1261 return (SET_ERROR(ENOTSUP));
1262 }
1263
1264 return (0);
1265 }
1266
1267 static void
dsl_errorscrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1268 dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1269 {
1270 pool_scrub_cmd_t *cmd = arg;
1271 dsl_pool_t *dp = dmu_tx_pool(tx);
1272 spa_t *spa = dp->dp_spa;
1273 dsl_scan_t *scn = dp->dp_scan;
1274
1275 if (*cmd == POOL_SCRUB_PAUSE) {
1276 spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1277 scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1278 dsl_errorscrub_sync_state(scn, tx);
1279 spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1280 } else {
1281 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1282 if (dsl_errorscrub_is_paused(scn)) {
1283 /*
1284 * We need to keep track of how much time we spend
1285 * paused per pass so that we can adjust the error scrub
1286 * rate shown in the output of 'zpool status'.
1287 */
1288 spa->spa_scan_pass_errorscrub_spent_paused +=
1289 gethrestime_sec() -
1290 spa->spa_scan_pass_errorscrub_pause;
1291
1292 spa->spa_scan_pass_errorscrub_pause = 0;
1293 scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1294
1295 zap_cursor_init_serialized(
1296 &scn->errorscrub_cursor,
1297 spa->spa_meta_objset, spa->spa_errlog_last,
1298 scn->errorscrub_phys.dep_cursor);
1299
1300 dsl_errorscrub_sync_state(scn, tx);
1301 }
1302 }
1303 }
1304
1305 static int
dsl_errorscrub_cancel_check(void * arg,dmu_tx_t * tx)1306 dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1307 {
1308 (void) arg;
1309 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1310 /* can't cancel a error scrub when there is no one in-progress */
1311 if (!dsl_errorscrubbing(scn->scn_dp))
1312 return (SET_ERROR(ENOENT));
1313 return (0);
1314 }
1315
1316 static void
dsl_errorscrub_cancel_sync(void * arg,dmu_tx_t * tx)1317 dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1318 {
1319 (void) arg;
1320 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1321
1322 dsl_errorscrub_done(scn, B_FALSE, tx);
1323 dsl_errorscrub_sync_state(scn, tx);
1324 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1325 ESC_ZFS_ERRORSCRUB_ABORT);
1326 }
1327
1328 static int
dsl_scan_cancel_check(void * arg,dmu_tx_t * tx)1329 dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1330 {
1331 (void) arg;
1332 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1333
1334 if (!dsl_scan_is_running(scn))
1335 return (SET_ERROR(ENOENT));
1336 return (0);
1337 }
1338
1339 static void
dsl_scan_cancel_sync(void * arg,dmu_tx_t * tx)1340 dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1341 {
1342 (void) arg;
1343 dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1344
1345 dsl_scan_done(scn, B_FALSE, tx);
1346 dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1347 spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1348 }
1349
1350 int
dsl_scan_cancel(dsl_pool_t * dp)1351 dsl_scan_cancel(dsl_pool_t *dp)
1352 {
1353 if (dsl_errorscrubbing(dp)) {
1354 return (dsl_sync_task(spa_name(dp->dp_spa),
1355 dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1356 NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1357 }
1358 return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1359 dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1360 }
1361
1362 static int
dsl_scrub_pause_resume_check(void * arg,dmu_tx_t * tx)1363 dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1364 {
1365 pool_scrub_cmd_t *cmd = arg;
1366 dsl_pool_t *dp = dmu_tx_pool(tx);
1367 dsl_scan_t *scn = dp->dp_scan;
1368
1369 if (*cmd == POOL_SCRUB_PAUSE) {
1370 /* can't pause a scrub when there is no in-progress scrub */
1371 if (!dsl_scan_scrubbing(dp))
1372 return (SET_ERROR(ENOENT));
1373
1374 /* can't pause a paused scrub */
1375 if (dsl_scan_is_paused_scrub(scn))
1376 return (SET_ERROR(EBUSY));
1377 } else if (*cmd != POOL_SCRUB_NORMAL) {
1378 return (SET_ERROR(ENOTSUP));
1379 }
1380
1381 return (0);
1382 }
1383
1384 static void
dsl_scrub_pause_resume_sync(void * arg,dmu_tx_t * tx)1385 dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1386 {
1387 pool_scrub_cmd_t *cmd = arg;
1388 dsl_pool_t *dp = dmu_tx_pool(tx);
1389 spa_t *spa = dp->dp_spa;
1390 dsl_scan_t *scn = dp->dp_scan;
1391
1392 if (*cmd == POOL_SCRUB_PAUSE) {
1393 /* can't pause a scrub when there is no in-progress scrub */
1394 spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1395 scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1396 scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1397 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1398 spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1399 spa_notify_waiters(spa);
1400 } else {
1401 ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1402 if (dsl_scan_is_paused_scrub(scn)) {
1403 /*
1404 * We need to keep track of how much time we spend
1405 * paused per pass so that we can adjust the scrub rate
1406 * shown in the output of 'zpool status'
1407 */
1408 spa->spa_scan_pass_scrub_spent_paused +=
1409 gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1410 spa->spa_scan_pass_scrub_pause = 0;
1411 scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1412 scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1413 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1414 }
1415 }
1416 }
1417
1418 /*
1419 * Set scrub pause/resume state if it makes sense to do so
1420 */
1421 int
dsl_scrub_set_pause_resume(const dsl_pool_t * dp,pool_scrub_cmd_t cmd)1422 dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1423 {
1424 if (dsl_errorscrubbing(dp)) {
1425 return (dsl_sync_task(spa_name(dp->dp_spa),
1426 dsl_errorscrub_pause_resume_check,
1427 dsl_errorscrub_pause_resume_sync, &cmd, 3,
1428 ZFS_SPACE_CHECK_RESERVED));
1429 }
1430 return (dsl_sync_task(spa_name(dp->dp_spa),
1431 dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1432 ZFS_SPACE_CHECK_RESERVED));
1433 }
1434
1435
1436 /* start a new scan, or restart an existing one. */
1437 void
dsl_scan_restart_resilver(dsl_pool_t * dp,uint64_t txg)1438 dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1439 {
1440 if (txg == 0) {
1441 dmu_tx_t *tx;
1442 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1443 VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1444
1445 txg = dmu_tx_get_txg(tx);
1446 dp->dp_scan->scn_restart_txg = txg;
1447 dmu_tx_commit(tx);
1448 } else {
1449 dp->dp_scan->scn_restart_txg = txg;
1450 }
1451 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1452 dp->dp_spa->spa_name, (longlong_t)txg);
1453 }
1454
1455 void
dsl_free(dsl_pool_t * dp,uint64_t txg,const blkptr_t * bp)1456 dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1457 {
1458 zio_free(dp->dp_spa, txg, bp);
1459 }
1460
1461 void
dsl_free_sync(zio_t * pio,dsl_pool_t * dp,uint64_t txg,const blkptr_t * bpp)1462 dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1463 {
1464 ASSERT(dsl_pool_sync_context(dp));
1465 zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1466 }
1467
1468 static int
scan_ds_queue_compare(const void * a,const void * b)1469 scan_ds_queue_compare(const void *a, const void *b)
1470 {
1471 const scan_ds_t *sds_a = a, *sds_b = b;
1472
1473 if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1474 return (-1);
1475 if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1476 return (0);
1477 return (1);
1478 }
1479
1480 static void
scan_ds_queue_clear(dsl_scan_t * scn)1481 scan_ds_queue_clear(dsl_scan_t *scn)
1482 {
1483 void *cookie = NULL;
1484 scan_ds_t *sds;
1485 while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1486 kmem_free(sds, sizeof (*sds));
1487 }
1488 }
1489
1490 static boolean_t
scan_ds_queue_contains(dsl_scan_t * scn,uint64_t dsobj,uint64_t * txg)1491 scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1492 {
1493 scan_ds_t srch, *sds;
1494
1495 srch.sds_dsobj = dsobj;
1496 sds = avl_find(&scn->scn_queue, &srch, NULL);
1497 if (sds != NULL && txg != NULL)
1498 *txg = sds->sds_txg;
1499 return (sds != NULL);
1500 }
1501
1502 static void
scan_ds_queue_insert(dsl_scan_t * scn,uint64_t dsobj,uint64_t txg)1503 scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1504 {
1505 scan_ds_t *sds;
1506 avl_index_t where;
1507
1508 sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1509 sds->sds_dsobj = dsobj;
1510 sds->sds_txg = txg;
1511
1512 VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1513 avl_insert(&scn->scn_queue, sds, where);
1514 }
1515
1516 static void
scan_ds_queue_remove(dsl_scan_t * scn,uint64_t dsobj)1517 scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1518 {
1519 scan_ds_t srch, *sds;
1520
1521 srch.sds_dsobj = dsobj;
1522
1523 sds = avl_find(&scn->scn_queue, &srch, NULL);
1524 VERIFY(sds != NULL);
1525 avl_remove(&scn->scn_queue, sds);
1526 kmem_free(sds, sizeof (*sds));
1527 }
1528
1529 static void
scan_ds_queue_sync(dsl_scan_t * scn,dmu_tx_t * tx)1530 scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1531 {
1532 dsl_pool_t *dp = scn->scn_dp;
1533 spa_t *spa = dp->dp_spa;
1534 dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1535 DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1536
1537 ASSERT0(scn->scn_queues_pending);
1538 ASSERT(scn->scn_phys.scn_queue_obj != 0);
1539
1540 VERIFY0(dmu_object_free(dp->dp_meta_objset,
1541 scn->scn_phys.scn_queue_obj, tx));
1542 scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1543 DMU_OT_NONE, 0, tx);
1544 for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1545 sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1546 VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1547 scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1548 sds->sds_txg, tx));
1549 }
1550 }
1551
1552 /*
1553 * Computes the memory limit state that we're currently in. A sorted scan
1554 * needs quite a bit of memory to hold the sorting queue, so we need to
1555 * reasonably constrain the size so it doesn't impact overall system
1556 * performance. We compute two limits:
1557 * 1) Hard memory limit: if the amount of memory used by the sorting
1558 * queues on a pool gets above this value, we stop the metadata
1559 * scanning portion and start issuing the queued up and sorted
1560 * I/Os to reduce memory usage.
1561 * This limit is calculated as a fraction of physmem (by default 5%).
1562 * We constrain the lower bound of the hard limit to an absolute
1563 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1564 * the upper bound to 5% of the total pool size - no chance we'll
1565 * ever need that much memory, but just to keep the value in check.
1566 * 2) Soft memory limit: once we hit the hard memory limit, we start
1567 * issuing I/O to reduce queue memory usage, but we don't want to
1568 * completely empty out the queues, since we might be able to find I/Os
1569 * that will fill in the gaps of our non-sequential IOs at some point
1570 * in the future. So we stop the issuing of I/Os once the amount of
1571 * memory used drops below the soft limit (at which point we stop issuing
1572 * I/O and start scanning metadata again).
1573 *
1574 * This limit is calculated by subtracting a fraction of the hard
1575 * limit from the hard limit. By default this fraction is 5%, so
1576 * the soft limit is 95% of the hard limit. We cap the size of the
1577 * difference between the hard and soft limits at an absolute
1578 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1579 * sufficient to not cause too frequent switching between the
1580 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1581 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1582 * that should take at least a decent fraction of a second).
1583 */
1584 static boolean_t
dsl_scan_should_clear(dsl_scan_t * scn)1585 dsl_scan_should_clear(dsl_scan_t *scn)
1586 {
1587 spa_t *spa = scn->scn_dp->dp_spa;
1588 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1589 uint64_t alloc, mlim_hard, mlim_soft, mused;
1590
1591 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1592 alloc += metaslab_class_get_alloc(spa_special_class(spa));
1593 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1594
1595 mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1596 zfs_scan_mem_lim_min);
1597 mlim_hard = MIN(mlim_hard, alloc / 20);
1598 mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1599 zfs_scan_mem_lim_soft_max);
1600 mused = 0;
1601 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1602 vdev_t *tvd = rvd->vdev_child[i];
1603 dsl_scan_io_queue_t *queue;
1604
1605 mutex_enter(&tvd->vdev_scan_io_queue_lock);
1606 queue = tvd->vdev_scan_io_queue;
1607 if (queue != NULL) {
1608 /*
1609 * # of extents in exts_by_addr = # in exts_by_size.
1610 * B-tree efficiency is ~75%, but can be as low as 50%.
1611 */
1612 mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1613 sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1614 3 / 2) + queue->q_sio_memused;
1615 }
1616 mutex_exit(&tvd->vdev_scan_io_queue_lock);
1617 }
1618
1619 dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1620
1621 if (mused == 0)
1622 ASSERT0(scn->scn_queues_pending);
1623
1624 /*
1625 * If we are above our hard limit, we need to clear out memory.
1626 * If we are below our soft limit, we need to accumulate sequential IOs.
1627 * Otherwise, we should keep doing whatever we are currently doing.
1628 */
1629 if (mused >= mlim_hard)
1630 return (B_TRUE);
1631 else if (mused < mlim_soft)
1632 return (B_FALSE);
1633 else
1634 return (scn->scn_clearing);
1635 }
1636
1637 static boolean_t
dsl_scan_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1638 dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1639 {
1640 /* we never skip user/group accounting objects */
1641 if (zb && (int64_t)zb->zb_object < 0)
1642 return (B_FALSE);
1643
1644 if (scn->scn_suspending)
1645 return (B_TRUE); /* we're already suspending */
1646
1647 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1648 return (B_FALSE); /* we're resuming */
1649
1650 /* We only know how to resume from level-0 and objset blocks. */
1651 if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1652 return (B_FALSE);
1653
1654 /*
1655 * We suspend if:
1656 * - we have scanned for at least the minimum time (default 1 sec
1657 * for scrub, 3 sec for resilver), and either we have sufficient
1658 * dirty data that we are starting to write more quickly
1659 * (default 30%), someone is explicitly waiting for this txg
1660 * to complete, or we have used up all of the time in the txg
1661 * timeout (default 5 sec).
1662 * or
1663 * - the spa is shutting down because this pool is being exported
1664 * or the machine is rebooting.
1665 * or
1666 * - the scan queue has reached its memory use limit
1667 */
1668 uint64_t curr_time_ns = gethrtime();
1669 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1670 uint64_t sync_time_ns = curr_time_ns -
1671 scn->scn_dp->dp_spa->spa_sync_starttime;
1672 uint64_t dirty_min_bytes = zfs_dirty_data_max *
1673 zfs_vdev_async_write_active_min_dirty_percent / 100;
1674 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1675 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1676
1677 if ((NSEC2MSEC(scan_time_ns) > mintime &&
1678 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1679 txg_sync_waiting(scn->scn_dp) ||
1680 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1681 spa_shutting_down(scn->scn_dp->dp_spa) ||
1682 (zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1683 !ddt_walk_ready(scn->scn_dp->dp_spa)) {
1684 if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1685 dprintf("suspending at first available bookmark "
1686 "%llx/%llx/%llx/%llx\n",
1687 (longlong_t)zb->zb_objset,
1688 (longlong_t)zb->zb_object,
1689 (longlong_t)zb->zb_level,
1690 (longlong_t)zb->zb_blkid);
1691 SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1692 zb->zb_objset, 0, 0, 0);
1693 } else if (zb != NULL) {
1694 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1695 (longlong_t)zb->zb_objset,
1696 (longlong_t)zb->zb_object,
1697 (longlong_t)zb->zb_level,
1698 (longlong_t)zb->zb_blkid);
1699 scn->scn_phys.scn_bookmark = *zb;
1700 } else {
1701 #ifdef ZFS_DEBUG
1702 dsl_scan_phys_t *scnp = &scn->scn_phys;
1703 dprintf("suspending at at DDT bookmark "
1704 "%llx/%llx/%llx/%llx\n",
1705 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1706 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1707 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1708 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1709 #endif
1710 }
1711 scn->scn_suspending = B_TRUE;
1712 return (B_TRUE);
1713 }
1714 return (B_FALSE);
1715 }
1716
1717 static boolean_t
dsl_error_scrub_check_suspend(dsl_scan_t * scn,const zbookmark_phys_t * zb)1718 dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1719 {
1720 /*
1721 * We suspend if:
1722 * - we have scrubbed for at least the minimum time (default 1 sec
1723 * for error scrub), someone is explicitly waiting for this txg
1724 * to complete, or we have used up all of the time in the txg
1725 * timeout (default 5 sec).
1726 * or
1727 * - the spa is shutting down because this pool is being exported
1728 * or the machine is rebooting.
1729 */
1730 uint64_t curr_time_ns = gethrtime();
1731 uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1732 uint64_t sync_time_ns = curr_time_ns -
1733 scn->scn_dp->dp_spa->spa_sync_starttime;
1734 int mintime = zfs_scrub_min_time_ms;
1735
1736 if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1737 (txg_sync_waiting(scn->scn_dp) ||
1738 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1739 spa_shutting_down(scn->scn_dp->dp_spa)) {
1740 if (zb) {
1741 dprintf("error scrub suspending at bookmark "
1742 "%llx/%llx/%llx/%llx\n",
1743 (longlong_t)zb->zb_objset,
1744 (longlong_t)zb->zb_object,
1745 (longlong_t)zb->zb_level,
1746 (longlong_t)zb->zb_blkid);
1747 }
1748 return (B_TRUE);
1749 }
1750 return (B_FALSE);
1751 }
1752
1753 typedef struct zil_scan_arg {
1754 dsl_pool_t *zsa_dp;
1755 zil_header_t *zsa_zh;
1756 } zil_scan_arg_t;
1757
1758 static int
dsl_scan_zil_block(zilog_t * zilog,const blkptr_t * bp,void * arg,uint64_t claim_txg)1759 dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1760 uint64_t claim_txg)
1761 {
1762 (void) zilog;
1763 zil_scan_arg_t *zsa = arg;
1764 dsl_pool_t *dp = zsa->zsa_dp;
1765 dsl_scan_t *scn = dp->dp_scan;
1766 zil_header_t *zh = zsa->zsa_zh;
1767 zbookmark_phys_t zb;
1768
1769 ASSERT(!BP_IS_REDACTED(bp));
1770 if (BP_IS_HOLE(bp) ||
1771 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1772 return (0);
1773
1774 /*
1775 * One block ("stubby") can be allocated a long time ago; we
1776 * want to visit that one because it has been allocated
1777 * (on-disk) even if it hasn't been claimed (even though for
1778 * scrub there's nothing to do to it).
1779 */
1780 if (claim_txg == 0 &&
1781 BP_GET_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1782 return (0);
1783
1784 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1785 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1786
1787 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1788 return (0);
1789 }
1790
1791 static int
dsl_scan_zil_record(zilog_t * zilog,const lr_t * lrc,void * arg,uint64_t claim_txg)1792 dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1793 uint64_t claim_txg)
1794 {
1795 (void) zilog;
1796 if (lrc->lrc_txtype == TX_WRITE) {
1797 zil_scan_arg_t *zsa = arg;
1798 dsl_pool_t *dp = zsa->zsa_dp;
1799 dsl_scan_t *scn = dp->dp_scan;
1800 zil_header_t *zh = zsa->zsa_zh;
1801 const lr_write_t *lr = (const lr_write_t *)lrc;
1802 const blkptr_t *bp = &lr->lr_blkptr;
1803 zbookmark_phys_t zb;
1804
1805 ASSERT(!BP_IS_REDACTED(bp));
1806 if (BP_IS_HOLE(bp) ||
1807 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1808 return (0);
1809
1810 /*
1811 * birth can be < claim_txg if this record's txg is
1812 * already txg sync'ed (but this log block contains
1813 * other records that are not synced)
1814 */
1815 if (claim_txg == 0 || BP_GET_BIRTH(bp) < claim_txg)
1816 return (0);
1817
1818 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1819 SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1820 lr->lr_foid, ZB_ZIL_LEVEL,
1821 lr->lr_offset / BP_GET_LSIZE(bp));
1822
1823 VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1824 }
1825 return (0);
1826 }
1827
1828 static void
dsl_scan_zil(dsl_pool_t * dp,zil_header_t * zh)1829 dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1830 {
1831 uint64_t claim_txg = zh->zh_claim_txg;
1832 zil_scan_arg_t zsa = { dp, zh };
1833 zilog_t *zilog;
1834
1835 ASSERT(spa_writeable(dp->dp_spa));
1836
1837 /*
1838 * We only want to visit blocks that have been claimed but not yet
1839 * replayed (or, in read-only mode, blocks that *would* be claimed).
1840 */
1841 if (claim_txg == 0)
1842 return;
1843
1844 zilog = zil_alloc(dp->dp_meta_objset, zh);
1845
1846 (void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1847 claim_txg, B_FALSE);
1848
1849 zil_free(zilog);
1850 }
1851
1852 /*
1853 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1854 * here is to sort the AVL tree by the order each block will be needed.
1855 */
1856 static int
scan_prefetch_queue_compare(const void * a,const void * b)1857 scan_prefetch_queue_compare(const void *a, const void *b)
1858 {
1859 const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1860 const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1861 const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1862
1863 return (zbookmark_compare(spc_a->spc_datablkszsec,
1864 spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1865 spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1866 }
1867
1868 static void
scan_prefetch_ctx_rele(scan_prefetch_ctx_t * spc,const void * tag)1869 scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1870 {
1871 if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1872 zfs_refcount_destroy(&spc->spc_refcnt);
1873 kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1874 }
1875 }
1876
1877 static scan_prefetch_ctx_t *
scan_prefetch_ctx_create(dsl_scan_t * scn,dnode_phys_t * dnp,const void * tag)1878 scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1879 {
1880 scan_prefetch_ctx_t *spc;
1881
1882 spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1883 zfs_refcount_create(&spc->spc_refcnt);
1884 zfs_refcount_add(&spc->spc_refcnt, tag);
1885 spc->spc_scn = scn;
1886 if (dnp != NULL) {
1887 spc->spc_datablkszsec = dnp->dn_datablkszsec;
1888 spc->spc_indblkshift = dnp->dn_indblkshift;
1889 spc->spc_root = B_FALSE;
1890 } else {
1891 spc->spc_datablkszsec = 0;
1892 spc->spc_indblkshift = 0;
1893 spc->spc_root = B_TRUE;
1894 }
1895
1896 return (spc);
1897 }
1898
1899 static void
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t * spc,const void * tag)1900 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1901 {
1902 zfs_refcount_add(&spc->spc_refcnt, tag);
1903 }
1904
1905 static void
scan_ds_prefetch_queue_clear(dsl_scan_t * scn)1906 scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1907 {
1908 spa_t *spa = scn->scn_dp->dp_spa;
1909 void *cookie = NULL;
1910 scan_prefetch_issue_ctx_t *spic = NULL;
1911
1912 mutex_enter(&spa->spa_scrub_lock);
1913 while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1914 &cookie)) != NULL) {
1915 scan_prefetch_ctx_rele(spic->spic_spc, scn);
1916 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1917 }
1918 mutex_exit(&spa->spa_scrub_lock);
1919 }
1920
1921 static boolean_t
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t * spc,const zbookmark_phys_t * zb)1922 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1923 const zbookmark_phys_t *zb)
1924 {
1925 zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1926 dnode_phys_t tmp_dnp;
1927 dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1928
1929 if (zb->zb_objset != last_zb->zb_objset)
1930 return (B_TRUE);
1931 if ((int64_t)zb->zb_object < 0)
1932 return (B_FALSE);
1933
1934 tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1935 tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1936
1937 if (zbookmark_subtree_completed(dnp, zb, last_zb))
1938 return (B_TRUE);
1939
1940 return (B_FALSE);
1941 }
1942
1943 static void
dsl_scan_prefetch(scan_prefetch_ctx_t * spc,blkptr_t * bp,zbookmark_phys_t * zb)1944 dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1945 {
1946 avl_index_t idx;
1947 dsl_scan_t *scn = spc->spc_scn;
1948 spa_t *spa = scn->scn_dp->dp_spa;
1949 scan_prefetch_issue_ctx_t *spic;
1950
1951 if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1952 return;
1953
1954 if (BP_IS_HOLE(bp) ||
1955 BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1956 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1957 BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1958 return;
1959
1960 if (dsl_scan_check_prefetch_resume(spc, zb))
1961 return;
1962
1963 scan_prefetch_ctx_add_ref(spc, scn);
1964 spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1965 spic->spic_spc = spc;
1966 spic->spic_bp = *bp;
1967 spic->spic_zb = *zb;
1968
1969 /*
1970 * Add the IO to the queue of blocks to prefetch. This allows us to
1971 * prioritize blocks that we will need first for the main traversal
1972 * thread.
1973 */
1974 mutex_enter(&spa->spa_scrub_lock);
1975 if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1976 /* this block is already queued for prefetch */
1977 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1978 scan_prefetch_ctx_rele(spc, scn);
1979 mutex_exit(&spa->spa_scrub_lock);
1980 return;
1981 }
1982
1983 avl_insert(&scn->scn_prefetch_queue, spic, idx);
1984 cv_broadcast(&spa->spa_scrub_io_cv);
1985 mutex_exit(&spa->spa_scrub_lock);
1986 }
1987
1988 static void
dsl_scan_prefetch_dnode(dsl_scan_t * scn,dnode_phys_t * dnp,uint64_t objset,uint64_t object)1989 dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1990 uint64_t objset, uint64_t object)
1991 {
1992 int i;
1993 zbookmark_phys_t zb;
1994 scan_prefetch_ctx_t *spc;
1995
1996 if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1997 return;
1998
1999 SET_BOOKMARK(&zb, objset, object, 0, 0);
2000
2001 spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
2002
2003 for (i = 0; i < dnp->dn_nblkptr; i++) {
2004 zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
2005 zb.zb_blkid = i;
2006 dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2007 }
2008
2009 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2010 zb.zb_level = 0;
2011 zb.zb_blkid = DMU_SPILL_BLKID;
2012 dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2013 }
2014
2015 scan_prefetch_ctx_rele(spc, FTAG);
2016 }
2017
2018 static void
dsl_scan_prefetch_cb(zio_t * zio,const zbookmark_phys_t * zb,const blkptr_t * bp,arc_buf_t * buf,void * private)2019 dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2020 arc_buf_t *buf, void *private)
2021 {
2022 (void) zio;
2023 scan_prefetch_ctx_t *spc = private;
2024 dsl_scan_t *scn = spc->spc_scn;
2025 spa_t *spa = scn->scn_dp->dp_spa;
2026
2027 /* broadcast that the IO has completed for rate limiting purposes */
2028 mutex_enter(&spa->spa_scrub_lock);
2029 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2030 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2031 cv_broadcast(&spa->spa_scrub_io_cv);
2032 mutex_exit(&spa->spa_scrub_lock);
2033
2034 /* if there was an error or we are done prefetching, just cleanup */
2035 if (buf == NULL || scn->scn_prefetch_stop)
2036 goto out;
2037
2038 if (BP_GET_LEVEL(bp) > 0) {
2039 int i;
2040 blkptr_t *cbp;
2041 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2042 zbookmark_phys_t czb;
2043
2044 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2045 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2046 zb->zb_level - 1, zb->zb_blkid * epb + i);
2047 dsl_scan_prefetch(spc, cbp, &czb);
2048 }
2049 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2050 dnode_phys_t *cdnp;
2051 int i;
2052 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2053
2054 for (i = 0, cdnp = buf->b_data; i < epb;
2055 i += cdnp->dn_extra_slots + 1,
2056 cdnp += cdnp->dn_extra_slots + 1) {
2057 dsl_scan_prefetch_dnode(scn, cdnp,
2058 zb->zb_objset, zb->zb_blkid * epb + i);
2059 }
2060 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2061 objset_phys_t *osp = buf->b_data;
2062
2063 dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2064 zb->zb_objset, DMU_META_DNODE_OBJECT);
2065
2066 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2067 if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2068 dsl_scan_prefetch_dnode(scn,
2069 &osp->os_projectused_dnode, zb->zb_objset,
2070 DMU_PROJECTUSED_OBJECT);
2071 }
2072 dsl_scan_prefetch_dnode(scn,
2073 &osp->os_groupused_dnode, zb->zb_objset,
2074 DMU_GROUPUSED_OBJECT);
2075 dsl_scan_prefetch_dnode(scn,
2076 &osp->os_userused_dnode, zb->zb_objset,
2077 DMU_USERUSED_OBJECT);
2078 }
2079 }
2080
2081 out:
2082 if (buf != NULL)
2083 arc_buf_destroy(buf, private);
2084 scan_prefetch_ctx_rele(spc, scn);
2085 }
2086
2087 static void
dsl_scan_prefetch_thread(void * arg)2088 dsl_scan_prefetch_thread(void *arg)
2089 {
2090 dsl_scan_t *scn = arg;
2091 spa_t *spa = scn->scn_dp->dp_spa;
2092 scan_prefetch_issue_ctx_t *spic;
2093
2094 /* loop until we are told to stop */
2095 while (!scn->scn_prefetch_stop) {
2096 arc_flags_t flags = ARC_FLAG_NOWAIT |
2097 ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2098 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2099
2100 mutex_enter(&spa->spa_scrub_lock);
2101
2102 /*
2103 * Wait until we have an IO to issue and are not above our
2104 * maximum in flight limit.
2105 */
2106 while (!scn->scn_prefetch_stop &&
2107 (avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2108 spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2109 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2110 }
2111
2112 /* recheck if we should stop since we waited for the cv */
2113 if (scn->scn_prefetch_stop) {
2114 mutex_exit(&spa->spa_scrub_lock);
2115 break;
2116 }
2117
2118 /* remove the prefetch IO from the tree */
2119 spic = avl_first(&scn->scn_prefetch_queue);
2120 spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2121 avl_remove(&scn->scn_prefetch_queue, spic);
2122
2123 mutex_exit(&spa->spa_scrub_lock);
2124
2125 if (BP_IS_PROTECTED(&spic->spic_bp)) {
2126 ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2127 BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2128 ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2129 zio_flags |= ZIO_FLAG_RAW;
2130 }
2131
2132 /* We don't need data L1 buffer since we do not prefetch L0. */
2133 blkptr_t *bp = &spic->spic_bp;
2134 if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2135 BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2136 flags |= ARC_FLAG_NO_BUF;
2137
2138 /* issue the prefetch asynchronously */
2139 (void) arc_read(scn->scn_zio_root, spa, bp,
2140 dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2141 zio_flags, &flags, &spic->spic_zb);
2142
2143 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2144 }
2145
2146 ASSERT(scn->scn_prefetch_stop);
2147
2148 /* free any prefetches we didn't get to complete */
2149 mutex_enter(&spa->spa_scrub_lock);
2150 while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2151 avl_remove(&scn->scn_prefetch_queue, spic);
2152 scan_prefetch_ctx_rele(spic->spic_spc, scn);
2153 kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2154 }
2155 ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2156 mutex_exit(&spa->spa_scrub_lock);
2157 }
2158
2159 static boolean_t
dsl_scan_check_resume(dsl_scan_t * scn,const dnode_phys_t * dnp,const zbookmark_phys_t * zb)2160 dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2161 const zbookmark_phys_t *zb)
2162 {
2163 /*
2164 * We never skip over user/group accounting objects (obj<0)
2165 */
2166 if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2167 (int64_t)zb->zb_object >= 0) {
2168 /*
2169 * If we already visited this bp & everything below (in
2170 * a prior txg sync), don't bother doing it again.
2171 */
2172 if (zbookmark_subtree_completed(dnp, zb,
2173 &scn->scn_phys.scn_bookmark))
2174 return (B_TRUE);
2175
2176 /*
2177 * If we found the block we're trying to resume from, or
2178 * we went past it, zero it out to indicate that it's OK
2179 * to start checking for suspending again.
2180 */
2181 if (zbookmark_subtree_tbd(dnp, zb,
2182 &scn->scn_phys.scn_bookmark)) {
2183 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2184 (longlong_t)zb->zb_objset,
2185 (longlong_t)zb->zb_object,
2186 (longlong_t)zb->zb_level,
2187 (longlong_t)zb->zb_blkid);
2188 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2189 }
2190 }
2191 return (B_FALSE);
2192 }
2193
2194 static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2195 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2196 dmu_objset_type_t ostype, dmu_tx_t *tx);
2197 inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2198 dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2199 dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2200
2201 /*
2202 * Return nonzero on i/o error.
2203 * Return new buf to write out in *bufp.
2204 */
2205 inline __attribute__((always_inline)) static int
dsl_scan_recurse(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,const blkptr_t * bp,const zbookmark_phys_t * zb,dmu_tx_t * tx)2206 dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2207 dnode_phys_t *dnp, const blkptr_t *bp,
2208 const zbookmark_phys_t *zb, dmu_tx_t *tx)
2209 {
2210 dsl_pool_t *dp = scn->scn_dp;
2211 spa_t *spa = dp->dp_spa;
2212 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2213 int err;
2214
2215 ASSERT(!BP_IS_REDACTED(bp));
2216
2217 /*
2218 * There is an unlikely case of encountering dnodes with contradicting
2219 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2220 * or modified before commit 4254acb was merged. As it is not possible
2221 * to know which of the two is correct, report an error.
2222 */
2223 if (dnp != NULL &&
2224 dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2225 scn->scn_phys.scn_errors++;
2226 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2227 return (SET_ERROR(EINVAL));
2228 }
2229
2230 if (BP_GET_LEVEL(bp) > 0) {
2231 arc_flags_t flags = ARC_FLAG_WAIT;
2232 int i;
2233 blkptr_t *cbp;
2234 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2235 arc_buf_t *buf;
2236
2237 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2238 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2239 if (err) {
2240 scn->scn_phys.scn_errors++;
2241 return (err);
2242 }
2243 for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2244 zbookmark_phys_t czb;
2245
2246 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2247 zb->zb_level - 1,
2248 zb->zb_blkid * epb + i);
2249 dsl_scan_visitbp(cbp, &czb, dnp,
2250 ds, scn, ostype, tx);
2251 }
2252 arc_buf_destroy(buf, &buf);
2253 } else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2254 arc_flags_t flags = ARC_FLAG_WAIT;
2255 dnode_phys_t *cdnp;
2256 int i;
2257 int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2258 arc_buf_t *buf;
2259
2260 if (BP_IS_PROTECTED(bp)) {
2261 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2262 zio_flags |= ZIO_FLAG_RAW;
2263 }
2264
2265 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2266 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2267 if (err) {
2268 scn->scn_phys.scn_errors++;
2269 return (err);
2270 }
2271 for (i = 0, cdnp = buf->b_data; i < epb;
2272 i += cdnp->dn_extra_slots + 1,
2273 cdnp += cdnp->dn_extra_slots + 1) {
2274 dsl_scan_visitdnode(scn, ds, ostype,
2275 cdnp, zb->zb_blkid * epb + i, tx);
2276 }
2277
2278 arc_buf_destroy(buf, &buf);
2279 } else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2280 arc_flags_t flags = ARC_FLAG_WAIT;
2281 objset_phys_t *osp;
2282 arc_buf_t *buf;
2283
2284 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2285 ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2286 if (err) {
2287 scn->scn_phys.scn_errors++;
2288 return (err);
2289 }
2290
2291 osp = buf->b_data;
2292
2293 dsl_scan_visitdnode(scn, ds, osp->os_type,
2294 &osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2295
2296 if (OBJSET_BUF_HAS_USERUSED(buf)) {
2297 /*
2298 * We also always visit user/group/project accounting
2299 * objects, and never skip them, even if we are
2300 * suspending. This is necessary so that the
2301 * space deltas from this txg get integrated.
2302 */
2303 if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2304 dsl_scan_visitdnode(scn, ds, osp->os_type,
2305 &osp->os_projectused_dnode,
2306 DMU_PROJECTUSED_OBJECT, tx);
2307 dsl_scan_visitdnode(scn, ds, osp->os_type,
2308 &osp->os_groupused_dnode,
2309 DMU_GROUPUSED_OBJECT, tx);
2310 dsl_scan_visitdnode(scn, ds, osp->os_type,
2311 &osp->os_userused_dnode,
2312 DMU_USERUSED_OBJECT, tx);
2313 }
2314 arc_buf_destroy(buf, &buf);
2315 } else if (zfs_blkptr_verify(spa, bp,
2316 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2317 /*
2318 * Sanity check the block pointer contents, this is handled
2319 * by arc_read() for the cases above.
2320 */
2321 scn->scn_phys.scn_errors++;
2322 spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2323 return (SET_ERROR(EINVAL));
2324 }
2325
2326 return (0);
2327 }
2328
2329 inline __attribute__((always_inline)) static void
dsl_scan_visitdnode(dsl_scan_t * scn,dsl_dataset_t * ds,dmu_objset_type_t ostype,dnode_phys_t * dnp,uint64_t object,dmu_tx_t * tx)2330 dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2331 dmu_objset_type_t ostype, dnode_phys_t *dnp,
2332 uint64_t object, dmu_tx_t *tx)
2333 {
2334 int j;
2335
2336 for (j = 0; j < dnp->dn_nblkptr; j++) {
2337 zbookmark_phys_t czb;
2338
2339 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2340 dnp->dn_nlevels - 1, j);
2341 dsl_scan_visitbp(&dnp->dn_blkptr[j],
2342 &czb, dnp, ds, scn, ostype, tx);
2343 }
2344
2345 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2346 zbookmark_phys_t czb;
2347 SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2348 0, DMU_SPILL_BLKID);
2349 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2350 &czb, dnp, ds, scn, ostype, tx);
2351 }
2352 }
2353
2354 /*
2355 * The arguments are in this order because mdb can only print the
2356 * first 5; we want them to be useful.
2357 */
2358 static void
dsl_scan_visitbp(const blkptr_t * bp,const zbookmark_phys_t * zb,dnode_phys_t * dnp,dsl_dataset_t * ds,dsl_scan_t * scn,dmu_objset_type_t ostype,dmu_tx_t * tx)2359 dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2360 dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2361 dmu_objset_type_t ostype, dmu_tx_t *tx)
2362 {
2363 dsl_pool_t *dp = scn->scn_dp;
2364
2365 if (dsl_scan_check_suspend(scn, zb))
2366 return;
2367
2368 if (dsl_scan_check_resume(scn, dnp, zb))
2369 return;
2370
2371 scn->scn_visited_this_txg++;
2372
2373 if (BP_IS_HOLE(bp)) {
2374 scn->scn_holes_this_txg++;
2375 return;
2376 }
2377
2378 if (BP_IS_REDACTED(bp)) {
2379 ASSERT(dsl_dataset_feature_is_active(ds,
2380 SPA_FEATURE_REDACTED_DATASETS));
2381 return;
2382 }
2383
2384 /*
2385 * Check if this block contradicts any filesystem flags.
2386 */
2387 spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2388 if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2389 ASSERT(dsl_dataset_feature_is_active(ds, f));
2390
2391 f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2392 if (f != SPA_FEATURE_NONE)
2393 ASSERT(dsl_dataset_feature_is_active(ds, f));
2394
2395 f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2396 if (f != SPA_FEATURE_NONE)
2397 ASSERT(dsl_dataset_feature_is_active(ds, f));
2398
2399 /*
2400 * Recurse any blocks that were written either logically or physically
2401 * at or after cur_min_txg. About logical birth we care for traversal,
2402 * looking for any changes, while about physical for the actual scan.
2403 */
2404 if (BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2405 scn->scn_lt_min_this_txg++;
2406 return;
2407 }
2408
2409 if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2410 return;
2411
2412 /*
2413 * If dsl_scan_ddt() has already visited this block, it will have
2414 * already done any translations or scrubbing, so don't call the
2415 * callback again.
2416 */
2417 if (ddt_class_contains(dp->dp_spa,
2418 scn->scn_phys.scn_ddt_class_max, bp)) {
2419 scn->scn_ddt_contained_this_txg++;
2420 return;
2421 }
2422
2423 /*
2424 * If this block is from the future (after cur_max_txg), then we
2425 * are doing this on behalf of a deleted snapshot, and we will
2426 * revisit the future block on the next pass of this dataset.
2427 * Don't scan it now unless we need to because something
2428 * under it was modified.
2429 */
2430 if (BP_GET_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2431 scn->scn_gt_max_this_txg++;
2432 return;
2433 }
2434
2435 scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2436 }
2437
2438 static void
dsl_scan_visit_rootbp(dsl_scan_t * scn,dsl_dataset_t * ds,blkptr_t * bp,dmu_tx_t * tx)2439 dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2440 dmu_tx_t *tx)
2441 {
2442 zbookmark_phys_t zb;
2443 scan_prefetch_ctx_t *spc;
2444
2445 SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2446 ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2447
2448 if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2449 SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2450 zb.zb_objset, 0, 0, 0);
2451 } else {
2452 scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2453 }
2454
2455 scn->scn_objsets_visited_this_txg++;
2456
2457 spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2458 dsl_scan_prefetch(spc, bp, &zb);
2459 scan_prefetch_ctx_rele(spc, FTAG);
2460
2461 dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2462
2463 dprintf_ds(ds, "finished scan%s", "");
2464 }
2465
2466 static void
ds_destroyed_scn_phys(dsl_dataset_t * ds,dsl_scan_phys_t * scn_phys)2467 ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2468 {
2469 if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2470 if (ds->ds_is_snapshot) {
2471 /*
2472 * Note:
2473 * - scn_cur_{min,max}_txg stays the same.
2474 * - Setting the flag is not really necessary if
2475 * scn_cur_max_txg == scn_max_txg, because there
2476 * is nothing after this snapshot that we care
2477 * about. However, we set it anyway and then
2478 * ignore it when we retraverse it in
2479 * dsl_scan_visitds().
2480 */
2481 scn_phys->scn_bookmark.zb_objset =
2482 dsl_dataset_phys(ds)->ds_next_snap_obj;
2483 zfs_dbgmsg("destroying ds %llu on %s; currently "
2484 "traversing; reset zb_objset to %llu",
2485 (u_longlong_t)ds->ds_object,
2486 ds->ds_dir->dd_pool->dp_spa->spa_name,
2487 (u_longlong_t)dsl_dataset_phys(ds)->
2488 ds_next_snap_obj);
2489 scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2490 } else {
2491 SET_BOOKMARK(&scn_phys->scn_bookmark,
2492 ZB_DESTROYED_OBJSET, 0, 0, 0);
2493 zfs_dbgmsg("destroying ds %llu on %s; currently "
2494 "traversing; reset bookmark to -1,0,0,0",
2495 (u_longlong_t)ds->ds_object,
2496 ds->ds_dir->dd_pool->dp_spa->spa_name);
2497 }
2498 }
2499 }
2500
2501 /*
2502 * Invoked when a dataset is destroyed. We need to make sure that:
2503 *
2504 * 1) If it is the dataset that was currently being scanned, we write
2505 * a new dsl_scan_phys_t and marking the objset reference in it
2506 * as destroyed.
2507 * 2) Remove it from the work queue, if it was present.
2508 *
2509 * If the dataset was actually a snapshot, instead of marking the dataset
2510 * as destroyed, we instead substitute the next snapshot in line.
2511 */
2512 void
dsl_scan_ds_destroyed(dsl_dataset_t * ds,dmu_tx_t * tx)2513 dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2514 {
2515 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2516 dsl_scan_t *scn = dp->dp_scan;
2517 uint64_t mintxg;
2518
2519 if (!dsl_scan_is_running(scn))
2520 return;
2521
2522 ds_destroyed_scn_phys(ds, &scn->scn_phys);
2523 ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2524
2525 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2526 scan_ds_queue_remove(scn, ds->ds_object);
2527 if (ds->ds_is_snapshot)
2528 scan_ds_queue_insert(scn,
2529 dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2530 }
2531
2532 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2533 ds->ds_object, &mintxg) == 0) {
2534 ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2535 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2536 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2537 if (ds->ds_is_snapshot) {
2538 /*
2539 * We keep the same mintxg; it could be >
2540 * ds_creation_txg if the previous snapshot was
2541 * deleted too.
2542 */
2543 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2544 scn->scn_phys.scn_queue_obj,
2545 dsl_dataset_phys(ds)->ds_next_snap_obj,
2546 mintxg, tx) == 0);
2547 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2548 "replacing with %llu",
2549 (u_longlong_t)ds->ds_object,
2550 dp->dp_spa->spa_name,
2551 (u_longlong_t)dsl_dataset_phys(ds)->
2552 ds_next_snap_obj);
2553 } else {
2554 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2555 "removing",
2556 (u_longlong_t)ds->ds_object,
2557 dp->dp_spa->spa_name);
2558 }
2559 }
2560
2561 /*
2562 * dsl_scan_sync() should be called after this, and should sync
2563 * out our changed state, but just to be safe, do it here.
2564 */
2565 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2566 }
2567
2568 static void
ds_snapshotted_bookmark(dsl_dataset_t * ds,zbookmark_phys_t * scn_bookmark)2569 ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2570 {
2571 if (scn_bookmark->zb_objset == ds->ds_object) {
2572 scn_bookmark->zb_objset =
2573 dsl_dataset_phys(ds)->ds_prev_snap_obj;
2574 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2575 "reset zb_objset to %llu",
2576 (u_longlong_t)ds->ds_object,
2577 ds->ds_dir->dd_pool->dp_spa->spa_name,
2578 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2579 }
2580 }
2581
2582 /*
2583 * Called when a dataset is snapshotted. If we were currently traversing
2584 * this snapshot, we reset our bookmark to point at the newly created
2585 * snapshot. We also modify our work queue to remove the old snapshot and
2586 * replace with the new one.
2587 */
2588 void
dsl_scan_ds_snapshotted(dsl_dataset_t * ds,dmu_tx_t * tx)2589 dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2590 {
2591 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2592 dsl_scan_t *scn = dp->dp_scan;
2593 uint64_t mintxg;
2594
2595 if (!dsl_scan_is_running(scn))
2596 return;
2597
2598 ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2599
2600 ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2601 ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2602
2603 if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2604 scan_ds_queue_remove(scn, ds->ds_object);
2605 scan_ds_queue_insert(scn,
2606 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2607 }
2608
2609 if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2610 ds->ds_object, &mintxg) == 0) {
2611 VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2612 scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2613 VERIFY(zap_add_int_key(dp->dp_meta_objset,
2614 scn->scn_phys.scn_queue_obj,
2615 dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2616 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2617 "replacing with %llu",
2618 (u_longlong_t)ds->ds_object,
2619 dp->dp_spa->spa_name,
2620 (u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2621 }
2622
2623 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2624 }
2625
2626 static void
ds_clone_swapped_bookmark(dsl_dataset_t * ds1,dsl_dataset_t * ds2,zbookmark_phys_t * scn_bookmark)2627 ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2628 zbookmark_phys_t *scn_bookmark)
2629 {
2630 if (scn_bookmark->zb_objset == ds1->ds_object) {
2631 scn_bookmark->zb_objset = ds2->ds_object;
2632 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2633 "reset zb_objset to %llu",
2634 (u_longlong_t)ds1->ds_object,
2635 ds1->ds_dir->dd_pool->dp_spa->spa_name,
2636 (u_longlong_t)ds2->ds_object);
2637 } else if (scn_bookmark->zb_objset == ds2->ds_object) {
2638 scn_bookmark->zb_objset = ds1->ds_object;
2639 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2640 "reset zb_objset to %llu",
2641 (u_longlong_t)ds2->ds_object,
2642 ds2->ds_dir->dd_pool->dp_spa->spa_name,
2643 (u_longlong_t)ds1->ds_object);
2644 }
2645 }
2646
2647 /*
2648 * Called when an origin dataset and its clone are swapped. If we were
2649 * currently traversing the dataset, we need to switch to traversing the
2650 * newly promoted clone.
2651 */
2652 void
dsl_scan_ds_clone_swapped(dsl_dataset_t * ds1,dsl_dataset_t * ds2,dmu_tx_t * tx)2653 dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2654 {
2655 dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2656 dsl_scan_t *scn = dp->dp_scan;
2657 uint64_t mintxg1, mintxg2;
2658 boolean_t ds1_queued, ds2_queued;
2659
2660 if (!dsl_scan_is_running(scn))
2661 return;
2662
2663 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2664 ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2665
2666 /*
2667 * Handle the in-memory scan queue.
2668 */
2669 ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2670 ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2671
2672 /* Sanity checking. */
2673 if (ds1_queued) {
2674 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2675 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2676 }
2677 if (ds2_queued) {
2678 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2679 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2680 }
2681
2682 if (ds1_queued && ds2_queued) {
2683 /*
2684 * If both are queued, we don't need to do anything.
2685 * The swapping code below would not handle this case correctly,
2686 * since we can't insert ds2 if it is already there. That's
2687 * because scan_ds_queue_insert() prohibits a duplicate insert
2688 * and panics.
2689 */
2690 } else if (ds1_queued) {
2691 scan_ds_queue_remove(scn, ds1->ds_object);
2692 scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2693 } else if (ds2_queued) {
2694 scan_ds_queue_remove(scn, ds2->ds_object);
2695 scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2696 }
2697
2698 /*
2699 * Handle the on-disk scan queue.
2700 * The on-disk state is an out-of-date version of the in-memory state,
2701 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2702 * be different. Therefore we need to apply the swap logic to the
2703 * on-disk state independently of the in-memory state.
2704 */
2705 ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2706 scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2707 ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2708 scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2709
2710 /* Sanity checking. */
2711 if (ds1_queued) {
2712 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2713 ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2714 }
2715 if (ds2_queued) {
2716 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2717 ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2718 }
2719
2720 if (ds1_queued && ds2_queued) {
2721 /*
2722 * If both are queued, we don't need to do anything.
2723 * Alternatively, we could check for EEXIST from
2724 * zap_add_int_key() and back out to the original state, but
2725 * that would be more work than checking for this case upfront.
2726 */
2727 } else if (ds1_queued) {
2728 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2729 scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2730 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2731 scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2732 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2733 "replacing with %llu",
2734 (u_longlong_t)ds1->ds_object,
2735 dp->dp_spa->spa_name,
2736 (u_longlong_t)ds2->ds_object);
2737 } else if (ds2_queued) {
2738 VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2739 scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2740 VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2741 scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2742 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2743 "replacing with %llu",
2744 (u_longlong_t)ds2->ds_object,
2745 dp->dp_spa->spa_name,
2746 (u_longlong_t)ds1->ds_object);
2747 }
2748
2749 dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2750 }
2751
2752 static int
enqueue_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2753 enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2754 {
2755 uint64_t originobj = *(uint64_t *)arg;
2756 dsl_dataset_t *ds;
2757 int err;
2758 dsl_scan_t *scn = dp->dp_scan;
2759
2760 if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2761 return (0);
2762
2763 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2764 if (err)
2765 return (err);
2766
2767 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2768 dsl_dataset_t *prev;
2769 err = dsl_dataset_hold_obj(dp,
2770 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2771
2772 dsl_dataset_rele(ds, FTAG);
2773 if (err)
2774 return (err);
2775 ds = prev;
2776 }
2777 mutex_enter(&scn->scn_queue_lock);
2778 scan_ds_queue_insert(scn, ds->ds_object,
2779 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2780 mutex_exit(&scn->scn_queue_lock);
2781 dsl_dataset_rele(ds, FTAG);
2782 return (0);
2783 }
2784
2785 static void
dsl_scan_visitds(dsl_scan_t * scn,uint64_t dsobj,dmu_tx_t * tx)2786 dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2787 {
2788 dsl_pool_t *dp = scn->scn_dp;
2789 dsl_dataset_t *ds;
2790
2791 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2792
2793 if (scn->scn_phys.scn_cur_min_txg >=
2794 scn->scn_phys.scn_max_txg) {
2795 /*
2796 * This can happen if this snapshot was created after the
2797 * scan started, and we already completed a previous snapshot
2798 * that was created after the scan started. This snapshot
2799 * only references blocks with:
2800 *
2801 * birth < our ds_creation_txg
2802 * cur_min_txg is no less than ds_creation_txg.
2803 * We have already visited these blocks.
2804 * or
2805 * birth > scn_max_txg
2806 * The scan requested not to visit these blocks.
2807 *
2808 * Subsequent snapshots (and clones) can reference our
2809 * blocks, or blocks with even higher birth times.
2810 * Therefore we do not need to visit them either,
2811 * so we do not add them to the work queue.
2812 *
2813 * Note that checking for cur_min_txg >= cur_max_txg
2814 * is not sufficient, because in that case we may need to
2815 * visit subsequent snapshots. This happens when min_txg > 0,
2816 * which raises cur_min_txg. In this case we will visit
2817 * this dataset but skip all of its blocks, because the
2818 * rootbp's birth time is < cur_min_txg. Then we will
2819 * add the next snapshots/clones to the work queue.
2820 */
2821 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2822 dsl_dataset_name(ds, dsname);
2823 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2824 "cur_min_txg (%llu) >= max_txg (%llu)",
2825 (longlong_t)dsobj, dsname,
2826 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2827 (longlong_t)scn->scn_phys.scn_max_txg);
2828 kmem_free(dsname, MAXNAMELEN);
2829
2830 goto out;
2831 }
2832
2833 /*
2834 * Only the ZIL in the head (non-snapshot) is valid. Even though
2835 * snapshots can have ZIL block pointers (which may be the same
2836 * BP as in the head), they must be ignored. In addition, $ORIGIN
2837 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2838 * need to look for a ZIL in it either. So we traverse the ZIL here,
2839 * rather than in scan_recurse(), because the regular snapshot
2840 * block-sharing rules don't apply to it.
2841 */
2842 if (!dsl_dataset_is_snapshot(ds) &&
2843 (dp->dp_origin_snap == NULL ||
2844 ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2845 objset_t *os;
2846 if (dmu_objset_from_ds(ds, &os) != 0) {
2847 goto out;
2848 }
2849 dsl_scan_zil(dp, &os->os_zil_header);
2850 }
2851
2852 /*
2853 * Iterate over the bps in this ds.
2854 */
2855 dmu_buf_will_dirty(ds->ds_dbuf, tx);
2856 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2857 dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2858 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2859
2860 char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2861 dsl_dataset_name(ds, dsname);
2862 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2863 "suspending=%u",
2864 (longlong_t)dsobj, dsname,
2865 (longlong_t)scn->scn_phys.scn_cur_min_txg,
2866 (longlong_t)scn->scn_phys.scn_cur_max_txg,
2867 (int)scn->scn_suspending);
2868 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2869
2870 if (scn->scn_suspending)
2871 goto out;
2872
2873 /*
2874 * We've finished this pass over this dataset.
2875 */
2876
2877 /*
2878 * If we did not completely visit this dataset, do another pass.
2879 */
2880 if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2881 zfs_dbgmsg("incomplete pass on %s; visiting again",
2882 dp->dp_spa->spa_name);
2883 scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2884 scan_ds_queue_insert(scn, ds->ds_object,
2885 scn->scn_phys.scn_cur_max_txg);
2886 goto out;
2887 }
2888
2889 /*
2890 * Add descendant datasets to work queue.
2891 */
2892 if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2893 scan_ds_queue_insert(scn,
2894 dsl_dataset_phys(ds)->ds_next_snap_obj,
2895 dsl_dataset_phys(ds)->ds_creation_txg);
2896 }
2897 if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2898 boolean_t usenext = B_FALSE;
2899 if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2900 uint64_t count;
2901 /*
2902 * A bug in a previous version of the code could
2903 * cause upgrade_clones_cb() to not set
2904 * ds_next_snap_obj when it should, leading to a
2905 * missing entry. Therefore we can only use the
2906 * next_clones_obj when its count is correct.
2907 */
2908 int err = zap_count(dp->dp_meta_objset,
2909 dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2910 if (err == 0 &&
2911 count == dsl_dataset_phys(ds)->ds_num_children - 1)
2912 usenext = B_TRUE;
2913 }
2914
2915 if (usenext) {
2916 zap_cursor_t zc;
2917 zap_attribute_t *za = zap_attribute_alloc();
2918 for (zap_cursor_init(&zc, dp->dp_meta_objset,
2919 dsl_dataset_phys(ds)->ds_next_clones_obj);
2920 zap_cursor_retrieve(&zc, za) == 0;
2921 (void) zap_cursor_advance(&zc)) {
2922 scan_ds_queue_insert(scn,
2923 zfs_strtonum(za->za_name, NULL),
2924 dsl_dataset_phys(ds)->ds_creation_txg);
2925 }
2926 zap_cursor_fini(&zc);
2927 zap_attribute_free(za);
2928 } else {
2929 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2930 enqueue_clones_cb, &ds->ds_object,
2931 DS_FIND_CHILDREN));
2932 }
2933 }
2934
2935 out:
2936 dsl_dataset_rele(ds, FTAG);
2937 }
2938
2939 static int
enqueue_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)2940 enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2941 {
2942 (void) arg;
2943 dsl_dataset_t *ds;
2944 int err;
2945 dsl_scan_t *scn = dp->dp_scan;
2946
2947 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2948 if (err)
2949 return (err);
2950
2951 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2952 dsl_dataset_t *prev;
2953 err = dsl_dataset_hold_obj(dp,
2954 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2955 if (err) {
2956 dsl_dataset_rele(ds, FTAG);
2957 return (err);
2958 }
2959
2960 /*
2961 * If this is a clone, we don't need to worry about it for now.
2962 */
2963 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2964 dsl_dataset_rele(ds, FTAG);
2965 dsl_dataset_rele(prev, FTAG);
2966 return (0);
2967 }
2968 dsl_dataset_rele(ds, FTAG);
2969 ds = prev;
2970 }
2971
2972 mutex_enter(&scn->scn_queue_lock);
2973 scan_ds_queue_insert(scn, ds->ds_object,
2974 dsl_dataset_phys(ds)->ds_prev_snap_txg);
2975 mutex_exit(&scn->scn_queue_lock);
2976 dsl_dataset_rele(ds, FTAG);
2977 return (0);
2978 }
2979
2980 void
dsl_scan_ddt_entry(dsl_scan_t * scn,enum zio_checksum checksum,ddt_t * ddt,ddt_lightweight_entry_t * ddlwe,dmu_tx_t * tx)2981 dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2982 ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2983 {
2984 (void) tx;
2985 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2986 blkptr_t bp;
2987 zbookmark_phys_t zb = { 0 };
2988
2989 if (!dsl_scan_is_running(scn))
2990 return;
2991
2992 /*
2993 * This function is special because it is the only thing
2994 * that can add scan_io_t's to the vdev scan queues from
2995 * outside dsl_scan_sync(). For the most part this is ok
2996 * as long as it is called from within syncing context.
2997 * However, dsl_scan_sync() expects that no new sio's will
2998 * be added between when all the work for a scan is done
2999 * and the next txg when the scan is actually marked as
3000 * completed. This check ensures we do not issue new sio's
3001 * during this period.
3002 */
3003 if (scn->scn_done_txg != 0)
3004 return;
3005
3006 for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3007 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3008 uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
3009
3010 if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3011 continue;
3012 ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3013
3014 scn->scn_visited_this_txg++;
3015 scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3016 }
3017 }
3018
3019 /*
3020 * Scrub/dedup interaction.
3021 *
3022 * If there are N references to a deduped block, we don't want to scrub it
3023 * N times -- ideally, we should scrub it exactly once.
3024 *
3025 * We leverage the fact that the dde's replication class (ddt_class_t)
3026 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3027 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3028 *
3029 * To prevent excess scrubbing, the scrub begins by walking the DDT
3030 * to find all blocks with refcnt > 1, and scrubs each of these once.
3031 * Since there are two replication classes which contain blocks with
3032 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3033 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3034 *
3035 * There would be nothing more to say if a block's refcnt couldn't change
3036 * during a scrub, but of course it can so we must account for changes
3037 * in a block's replication class.
3038 *
3039 * Here's an example of what can occur:
3040 *
3041 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3042 * when visited during the top-down scrub phase, it will be scrubbed twice.
3043 * This negates our scrub optimization, but is otherwise harmless.
3044 *
3045 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3046 * on each visit during the top-down scrub phase, it will never be scrubbed.
3047 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3048 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3049 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3050 * while a scrub is in progress, it scrubs the block right then.
3051 */
3052 static void
dsl_scan_ddt(dsl_scan_t * scn,dmu_tx_t * tx)3053 dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3054 {
3055 ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3056 ddt_lightweight_entry_t ddlwe = {0};
3057 int error;
3058 uint64_t n = 0;
3059
3060 while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3061 ddt_t *ddt;
3062
3063 if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3064 break;
3065 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3066 (longlong_t)ddb->ddb_class,
3067 (longlong_t)ddb->ddb_type,
3068 (longlong_t)ddb->ddb_checksum,
3069 (longlong_t)ddb->ddb_cursor);
3070
3071 /* There should be no pending changes to the dedup table */
3072 ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3073 ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3074
3075 dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3076 n++;
3077
3078 if (dsl_scan_check_suspend(scn, NULL))
3079 break;
3080 }
3081
3082 if (error == EAGAIN) {
3083 dsl_scan_check_suspend(scn, NULL);
3084 error = 0;
3085
3086 zfs_dbgmsg("waiting for ddt to become ready for scan "
3087 "on %s with class_max = %u; suspending=%u",
3088 scn->scn_dp->dp_spa->spa_name,
3089 (int)scn->scn_phys.scn_ddt_class_max,
3090 (int)scn->scn_suspending);
3091 } else
3092 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3093 "class_max = %u; suspending=%u", (longlong_t)n,
3094 scn->scn_dp->dp_spa->spa_name,
3095 (int)scn->scn_phys.scn_ddt_class_max,
3096 (int)scn->scn_suspending);
3097
3098 ASSERT(error == 0 || error == ENOENT);
3099 ASSERT(error != ENOENT ||
3100 ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3101 }
3102
3103 static uint64_t
dsl_scan_ds_maxtxg(dsl_dataset_t * ds)3104 dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3105 {
3106 uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3107 if (ds->ds_is_snapshot)
3108 return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3109 return (smt);
3110 }
3111
3112 static void
dsl_scan_visit(dsl_scan_t * scn,dmu_tx_t * tx)3113 dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3114 {
3115 scan_ds_t *sds;
3116 dsl_pool_t *dp = scn->scn_dp;
3117
3118 if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3119 scn->scn_phys.scn_ddt_class_max) {
3120 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3121 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3122 dsl_scan_ddt(scn, tx);
3123 if (scn->scn_suspending)
3124 return;
3125 }
3126
3127 if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3128 /* First do the MOS & ORIGIN */
3129
3130 scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3131 scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3132 dsl_scan_visit_rootbp(scn, NULL,
3133 &dp->dp_meta_rootbp, tx);
3134 if (scn->scn_suspending)
3135 return;
3136
3137 if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3138 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3139 enqueue_cb, NULL, DS_FIND_CHILDREN));
3140 } else {
3141 dsl_scan_visitds(scn,
3142 dp->dp_origin_snap->ds_object, tx);
3143 }
3144 ASSERT(!scn->scn_suspending);
3145 } else if (scn->scn_phys.scn_bookmark.zb_objset !=
3146 ZB_DESTROYED_OBJSET) {
3147 uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3148 /*
3149 * If we were suspended, continue from here. Note if the
3150 * ds we were suspended on was deleted, the zb_objset may
3151 * be -1, so we will skip this and find a new objset
3152 * below.
3153 */
3154 dsl_scan_visitds(scn, dsobj, tx);
3155 if (scn->scn_suspending)
3156 return;
3157 }
3158
3159 /*
3160 * In case we suspended right at the end of the ds, zero the
3161 * bookmark so we don't think that we're still trying to resume.
3162 */
3163 memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3164
3165 /*
3166 * Keep pulling things out of the dataset avl queue. Updates to the
3167 * persistent zap-object-as-queue happen only at checkpoints.
3168 */
3169 while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3170 dsl_dataset_t *ds;
3171 uint64_t dsobj = sds->sds_dsobj;
3172 uint64_t txg = sds->sds_txg;
3173
3174 /* dequeue and free the ds from the queue */
3175 scan_ds_queue_remove(scn, dsobj);
3176 sds = NULL;
3177
3178 /* set up min / max txg */
3179 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3180 if (txg != 0) {
3181 scn->scn_phys.scn_cur_min_txg =
3182 MAX(scn->scn_phys.scn_min_txg, txg);
3183 } else {
3184 scn->scn_phys.scn_cur_min_txg =
3185 MAX(scn->scn_phys.scn_min_txg,
3186 dsl_dataset_phys(ds)->ds_prev_snap_txg);
3187 }
3188 scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3189 dsl_dataset_rele(ds, FTAG);
3190
3191 dsl_scan_visitds(scn, dsobj, tx);
3192 if (scn->scn_suspending)
3193 return;
3194 }
3195
3196 /* No more objsets to fetch, we're done */
3197 scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3198 ASSERT0(scn->scn_suspending);
3199 }
3200
3201 static uint64_t
dsl_scan_count_data_disks(spa_t * spa)3202 dsl_scan_count_data_disks(spa_t *spa)
3203 {
3204 vdev_t *rvd = spa->spa_root_vdev;
3205 uint64_t i, leaves = 0;
3206
3207 for (i = 0; i < rvd->vdev_children; i++) {
3208 vdev_t *vd = rvd->vdev_child[i];
3209 if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3210 continue;
3211 leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3212 }
3213 return (leaves);
3214 }
3215
3216 static void
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t * q,const blkptr_t * bp)3217 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3218 {
3219 int i;
3220 uint64_t cur_size = 0;
3221
3222 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3223 cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3224 }
3225
3226 q->q_total_zio_size_this_txg += cur_size;
3227 q->q_zios_this_txg++;
3228 }
3229
3230 static void
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t * q,uint64_t start,uint64_t end)3231 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3232 uint64_t end)
3233 {
3234 q->q_total_seg_size_this_txg += end - start;
3235 q->q_segs_this_txg++;
3236 }
3237
3238 static boolean_t
scan_io_queue_check_suspend(dsl_scan_t * scn)3239 scan_io_queue_check_suspend(dsl_scan_t *scn)
3240 {
3241 /* See comment in dsl_scan_check_suspend() */
3242 uint64_t curr_time_ns = gethrtime();
3243 uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3244 uint64_t sync_time_ns = curr_time_ns -
3245 scn->scn_dp->dp_spa->spa_sync_starttime;
3246 uint64_t dirty_min_bytes = zfs_dirty_data_max *
3247 zfs_vdev_async_write_active_min_dirty_percent / 100;
3248 uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3249 zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3250
3251 return ((NSEC2MSEC(scan_time_ns) > mintime &&
3252 (scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3253 txg_sync_waiting(scn->scn_dp) ||
3254 NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3255 spa_shutting_down(scn->scn_dp->dp_spa));
3256 }
3257
3258 /*
3259 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3260 * disk. This consumes the io_list and frees the scan_io_t's. This is
3261 * called when emptying queues, either when we're up against the memory
3262 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3263 * processing the list before we finished. Any sios that were not issued
3264 * will remain in the io_list.
3265 */
3266 static boolean_t
scan_io_queue_issue(dsl_scan_io_queue_t * queue,list_t * io_list)3267 scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3268 {
3269 dsl_scan_t *scn = queue->q_scn;
3270 scan_io_t *sio;
3271 boolean_t suspended = B_FALSE;
3272
3273 while ((sio = list_head(io_list)) != NULL) {
3274 blkptr_t bp;
3275
3276 if (scan_io_queue_check_suspend(scn)) {
3277 suspended = B_TRUE;
3278 break;
3279 }
3280
3281 sio2bp(sio, &bp);
3282 scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3283 &sio->sio_zb, queue);
3284 (void) list_remove_head(io_list);
3285 scan_io_queues_update_zio_stats(queue, &bp);
3286 sio_free(sio);
3287 }
3288 return (suspended);
3289 }
3290
3291 /*
3292 * This function removes sios from an IO queue which reside within a given
3293 * zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3294 * we only ever return a maximum of 32 sios at once. If there are more sios
3295 * to process within this segment that did not make it onto the list we
3296 * return B_TRUE and otherwise B_FALSE.
3297 */
3298 static boolean_t
scan_io_queue_gather(dsl_scan_io_queue_t * queue,zfs_range_seg_t * rs,list_t * list)3299 scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3300 list_t *list)
3301 {
3302 scan_io_t *srch_sio, *sio, *next_sio;
3303 avl_index_t idx;
3304 uint_t num_sios = 0;
3305 int64_t bytes_issued = 0;
3306
3307 ASSERT(rs != NULL);
3308 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3309
3310 srch_sio = sio_alloc(1);
3311 srch_sio->sio_nr_dvas = 1;
3312 SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3313
3314 /*
3315 * The exact start of the extent might not contain any matching zios,
3316 * so if that's the case, examine the next one in the tree.
3317 */
3318 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3319 sio_free(srch_sio);
3320
3321 if (sio == NULL)
3322 sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3323
3324 while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3325 queue->q_exts_by_addr) && num_sios <= 32) {
3326 ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3327 queue->q_exts_by_addr));
3328 ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3329 queue->q_exts_by_addr));
3330
3331 next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3332 avl_remove(&queue->q_sios_by_addr, sio);
3333 if (avl_is_empty(&queue->q_sios_by_addr))
3334 atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3335 queue->q_sio_memused -= SIO_GET_MUSED(sio);
3336
3337 bytes_issued += SIO_GET_ASIZE(sio);
3338 num_sios++;
3339 list_insert_tail(list, sio);
3340 sio = next_sio;
3341 }
3342
3343 /*
3344 * We limit the number of sios we process at once to 32 to avoid
3345 * biting off more than we can chew. If we didn't take everything
3346 * in the segment we update it to reflect the work we were able to
3347 * complete. Otherwise, we remove it from the range tree entirely.
3348 */
3349 if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3350 queue->q_exts_by_addr)) {
3351 zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3352 -bytes_issued);
3353 zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3354 SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3355 queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3356 queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3357 return (B_TRUE);
3358 } else {
3359 uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3360 uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3361 zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3362 rstart);
3363 queue->q_last_ext_addr = -1;
3364 return (B_FALSE);
3365 }
3366 }
3367
3368 /*
3369 * This is called from the queue emptying thread and selects the next
3370 * extent from which we are to issue I/Os. The behavior of this function
3371 * depends on the state of the scan, the current memory consumption and
3372 * whether or not we are performing a scan shutdown.
3373 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3374 * needs to perform a checkpoint
3375 * 2) We select the largest available extent if we are up against the
3376 * memory limit.
3377 * 3) Otherwise we don't select any extents.
3378 */
3379 static zfs_range_seg_t *
scan_io_queue_fetch_ext(dsl_scan_io_queue_t * queue)3380 scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3381 {
3382 dsl_scan_t *scn = queue->q_scn;
3383 zfs_range_tree_t *rt = queue->q_exts_by_addr;
3384
3385 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3386 ASSERT(scn->scn_is_sorted);
3387
3388 if (!scn->scn_checkpointing && !scn->scn_clearing)
3389 return (NULL);
3390
3391 /*
3392 * During normal clearing, we want to issue our largest segments
3393 * first, keeping IO as sequential as possible, and leaving the
3394 * smaller extents for later with the hope that they might eventually
3395 * grow to larger sequential segments. However, when the scan is
3396 * checkpointing, no new extents will be added to the sorting queue,
3397 * so the way we are sorted now is as good as it will ever get.
3398 * In this case, we instead switch to issuing extents in LBA order.
3399 */
3400 if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3401 zfs_scan_issue_strategy == 1)
3402 return (zfs_range_tree_first(rt));
3403
3404 /*
3405 * Try to continue previous extent if it is not completed yet. After
3406 * shrink in scan_io_queue_gather() it may no longer be the best, but
3407 * otherwise we leave shorter remnant every txg.
3408 */
3409 uint64_t start;
3410 uint64_t size = 1ULL << rt->rt_shift;
3411 zfs_range_seg_t *addr_rs;
3412 if (queue->q_last_ext_addr != -1) {
3413 start = queue->q_last_ext_addr;
3414 addr_rs = zfs_range_tree_find(rt, start, size);
3415 if (addr_rs != NULL)
3416 return (addr_rs);
3417 }
3418
3419 /*
3420 * Nothing to continue, so find new best extent.
3421 */
3422 uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3423 if (v == NULL)
3424 return (NULL);
3425 queue->q_last_ext_addr = start = *v << rt->rt_shift;
3426
3427 /*
3428 * We need to get the original entry in the by_addr tree so we can
3429 * modify it.
3430 */
3431 addr_rs = zfs_range_tree_find(rt, start, size);
3432 ASSERT3P(addr_rs, !=, NULL);
3433 ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3434 ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3435 return (addr_rs);
3436 }
3437
3438 static void
scan_io_queues_run_one(void * arg)3439 scan_io_queues_run_one(void *arg)
3440 {
3441 dsl_scan_io_queue_t *queue = arg;
3442 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3443 boolean_t suspended = B_FALSE;
3444 zfs_range_seg_t *rs;
3445 scan_io_t *sio;
3446 zio_t *zio;
3447 list_t sio_list;
3448
3449 ASSERT(queue->q_scn->scn_is_sorted);
3450
3451 list_create(&sio_list, sizeof (scan_io_t),
3452 offsetof(scan_io_t, sio_nodes.sio_list_node));
3453 zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3454 NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3455 mutex_enter(q_lock);
3456 queue->q_zio = zio;
3457
3458 /* Calculate maximum in-flight bytes for this vdev. */
3459 queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3460 (vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3461
3462 /* reset per-queue scan statistics for this txg */
3463 queue->q_total_seg_size_this_txg = 0;
3464 queue->q_segs_this_txg = 0;
3465 queue->q_total_zio_size_this_txg = 0;
3466 queue->q_zios_this_txg = 0;
3467
3468 /* loop until we run out of time or sios */
3469 while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3470 uint64_t seg_start = 0, seg_end = 0;
3471 boolean_t more_left;
3472
3473 ASSERT(list_is_empty(&sio_list));
3474
3475 /* loop while we still have sios left to process in this rs */
3476 do {
3477 scan_io_t *first_sio, *last_sio;
3478
3479 /*
3480 * We have selected which extent needs to be
3481 * processed next. Gather up the corresponding sios.
3482 */
3483 more_left = scan_io_queue_gather(queue, rs, &sio_list);
3484 ASSERT(!list_is_empty(&sio_list));
3485 first_sio = list_head(&sio_list);
3486 last_sio = list_tail(&sio_list);
3487
3488 seg_end = SIO_GET_END_OFFSET(last_sio);
3489 if (seg_start == 0)
3490 seg_start = SIO_GET_OFFSET(first_sio);
3491
3492 /*
3493 * Issuing sios can take a long time so drop the
3494 * queue lock. The sio queue won't be updated by
3495 * other threads since we're in syncing context so
3496 * we can be sure that our trees will remain exactly
3497 * as we left them.
3498 */
3499 mutex_exit(q_lock);
3500 suspended = scan_io_queue_issue(queue, &sio_list);
3501 mutex_enter(q_lock);
3502
3503 if (suspended)
3504 break;
3505 } while (more_left);
3506
3507 /* update statistics for debugging purposes */
3508 scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3509
3510 if (suspended)
3511 break;
3512 }
3513
3514 /*
3515 * If we were suspended in the middle of processing,
3516 * requeue any unfinished sios and exit.
3517 */
3518 while ((sio = list_remove_head(&sio_list)) != NULL)
3519 scan_io_queue_insert_impl(queue, sio);
3520
3521 queue->q_zio = NULL;
3522 mutex_exit(q_lock);
3523 zio_nowait(zio);
3524 list_destroy(&sio_list);
3525 }
3526
3527 /*
3528 * Performs an emptying run on all scan queues in the pool. This just
3529 * punches out one thread per top-level vdev, each of which processes
3530 * only that vdev's scan queue. We can parallelize the I/O here because
3531 * we know that each queue's I/Os only affect its own top-level vdev.
3532 *
3533 * This function waits for the queue runs to complete, and must be
3534 * called from dsl_scan_sync (or in general, syncing context).
3535 */
3536 static void
scan_io_queues_run(dsl_scan_t * scn)3537 scan_io_queues_run(dsl_scan_t *scn)
3538 {
3539 spa_t *spa = scn->scn_dp->dp_spa;
3540
3541 ASSERT(scn->scn_is_sorted);
3542 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3543
3544 if (scn->scn_queues_pending == 0)
3545 return;
3546
3547 if (scn->scn_taskq == NULL) {
3548 int nthreads = spa->spa_root_vdev->vdev_children;
3549
3550 /*
3551 * We need to make this taskq *always* execute as many
3552 * threads in parallel as we have top-level vdevs and no
3553 * less, otherwise strange serialization of the calls to
3554 * scan_io_queues_run_one can occur during spa_sync runs
3555 * and that significantly impacts performance.
3556 */
3557 scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3558 minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3559 }
3560
3561 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3562 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3563
3564 mutex_enter(&vd->vdev_scan_io_queue_lock);
3565 if (vd->vdev_scan_io_queue != NULL) {
3566 VERIFY(taskq_dispatch(scn->scn_taskq,
3567 scan_io_queues_run_one, vd->vdev_scan_io_queue,
3568 TQ_SLEEP) != TASKQID_INVALID);
3569 }
3570 mutex_exit(&vd->vdev_scan_io_queue_lock);
3571 }
3572
3573 /*
3574 * Wait for the queues to finish issuing their IOs for this run
3575 * before we return. There may still be IOs in flight at this
3576 * point.
3577 */
3578 taskq_wait(scn->scn_taskq);
3579 }
3580
3581 static boolean_t
dsl_scan_async_block_should_pause(dsl_scan_t * scn)3582 dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3583 {
3584 uint64_t elapsed_nanosecs;
3585
3586 if (zfs_recover)
3587 return (B_FALSE);
3588
3589 if (zfs_async_block_max_blocks != 0 &&
3590 scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3591 return (B_TRUE);
3592 }
3593
3594 if (zfs_max_async_dedup_frees != 0 &&
3595 scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3596 return (B_TRUE);
3597 }
3598
3599 elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3600 return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3601 (NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3602 txg_sync_waiting(scn->scn_dp)) ||
3603 spa_shutting_down(scn->scn_dp->dp_spa));
3604 }
3605
3606 static int
dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)3607 dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3608 {
3609 dsl_scan_t *scn = arg;
3610
3611 if (!scn->scn_is_bptree ||
3612 (BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3613 if (dsl_scan_async_block_should_pause(scn))
3614 return (SET_ERROR(ERESTART));
3615 }
3616
3617 zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3618 dmu_tx_get_txg(tx), bp, 0));
3619 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3620 -bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3621 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3622 scn->scn_visited_this_txg++;
3623 if (BP_GET_DEDUP(bp))
3624 scn->scn_dedup_frees_this_txg++;
3625 return (0);
3626 }
3627
3628 static void
dsl_scan_update_stats(dsl_scan_t * scn)3629 dsl_scan_update_stats(dsl_scan_t *scn)
3630 {
3631 spa_t *spa = scn->scn_dp->dp_spa;
3632 uint64_t i;
3633 uint64_t seg_size_total = 0, zio_size_total = 0;
3634 uint64_t seg_count_total = 0, zio_count_total = 0;
3635
3636 for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3637 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3638 dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3639
3640 if (queue == NULL)
3641 continue;
3642
3643 seg_size_total += queue->q_total_seg_size_this_txg;
3644 zio_size_total += queue->q_total_zio_size_this_txg;
3645 seg_count_total += queue->q_segs_this_txg;
3646 zio_count_total += queue->q_zios_this_txg;
3647 }
3648
3649 if (seg_count_total == 0 || zio_count_total == 0) {
3650 scn->scn_avg_seg_size_this_txg = 0;
3651 scn->scn_avg_zio_size_this_txg = 0;
3652 scn->scn_segs_this_txg = 0;
3653 scn->scn_zios_this_txg = 0;
3654 return;
3655 }
3656
3657 scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3658 scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3659 scn->scn_segs_this_txg = seg_count_total;
3660 scn->scn_zios_this_txg = zio_count_total;
3661 }
3662
3663 static int
bpobj_dsl_scan_free_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3664 bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3665 dmu_tx_t *tx)
3666 {
3667 ASSERT(!bp_freed);
3668 return (dsl_scan_free_block_cb(arg, bp, tx));
3669 }
3670
3671 static int
dsl_scan_obsolete_block_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)3672 dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3673 dmu_tx_t *tx)
3674 {
3675 ASSERT(!bp_freed);
3676 dsl_scan_t *scn = arg;
3677 const dva_t *dva = &bp->blk_dva[0];
3678
3679 if (dsl_scan_async_block_should_pause(scn))
3680 return (SET_ERROR(ERESTART));
3681
3682 spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3683 DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3684 DVA_GET_ASIZE(dva), tx);
3685 scn->scn_visited_this_txg++;
3686 return (0);
3687 }
3688
3689 boolean_t
dsl_scan_active(dsl_scan_t * scn)3690 dsl_scan_active(dsl_scan_t *scn)
3691 {
3692 spa_t *spa = scn->scn_dp->dp_spa;
3693 uint64_t used = 0, comp, uncomp;
3694 boolean_t clones_left;
3695
3696 if (spa->spa_load_state != SPA_LOAD_NONE)
3697 return (B_FALSE);
3698 if (spa_shutting_down(spa))
3699 return (B_FALSE);
3700 if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3701 (scn->scn_async_destroying && !scn->scn_async_stalled))
3702 return (B_TRUE);
3703
3704 if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3705 (void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3706 &used, &comp, &uncomp);
3707 }
3708 clones_left = spa_livelist_delete_check(spa);
3709 return ((used != 0) || (clones_left));
3710 }
3711
3712 boolean_t
dsl_errorscrub_active(dsl_scan_t * scn)3713 dsl_errorscrub_active(dsl_scan_t *scn)
3714 {
3715 spa_t *spa = scn->scn_dp->dp_spa;
3716 if (spa->spa_load_state != SPA_LOAD_NONE)
3717 return (B_FALSE);
3718 if (spa_shutting_down(spa))
3719 return (B_FALSE);
3720 if (dsl_errorscrubbing(scn->scn_dp))
3721 return (B_TRUE);
3722 return (B_FALSE);
3723 }
3724
3725 static boolean_t
dsl_scan_check_deferred(vdev_t * vd)3726 dsl_scan_check_deferred(vdev_t *vd)
3727 {
3728 boolean_t need_resilver = B_FALSE;
3729
3730 for (int c = 0; c < vd->vdev_children; c++) {
3731 need_resilver |=
3732 dsl_scan_check_deferred(vd->vdev_child[c]);
3733 }
3734
3735 if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3736 !vd->vdev_ops->vdev_op_leaf)
3737 return (need_resilver);
3738
3739 if (!vd->vdev_resilver_deferred)
3740 need_resilver = B_TRUE;
3741
3742 return (need_resilver);
3743 }
3744
3745 static boolean_t
dsl_scan_need_resilver(spa_t * spa,const dva_t * dva,size_t psize,uint64_t phys_birth)3746 dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3747 uint64_t phys_birth)
3748 {
3749 vdev_t *vd;
3750
3751 vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3752
3753 if (vd->vdev_ops == &vdev_indirect_ops) {
3754 /*
3755 * The indirect vdev can point to multiple
3756 * vdevs. For simplicity, always create
3757 * the resilver zio_t. zio_vdev_io_start()
3758 * will bypass the child resilver i/o's if
3759 * they are on vdevs that don't have DTL's.
3760 */
3761 return (B_TRUE);
3762 }
3763
3764 if (DVA_GET_GANG(dva)) {
3765 /*
3766 * Gang members may be spread across multiple
3767 * vdevs, so the best estimate we have is the
3768 * scrub range, which has already been checked.
3769 * XXX -- it would be better to change our
3770 * allocation policy to ensure that all
3771 * gang members reside on the same vdev.
3772 */
3773 return (B_TRUE);
3774 }
3775
3776 /*
3777 * Check if the top-level vdev must resilver this offset.
3778 * When the offset does not intersect with a dirty leaf DTL
3779 * then it may be possible to skip the resilver IO. The psize
3780 * is provided instead of asize to simplify the check for RAIDZ.
3781 */
3782 if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3783 return (B_FALSE);
3784
3785 /*
3786 * Check that this top-level vdev has a device under it which
3787 * is resilvering and is not deferred.
3788 */
3789 if (!dsl_scan_check_deferred(vd))
3790 return (B_FALSE);
3791
3792 return (B_TRUE);
3793 }
3794
3795 static int
dsl_process_async_destroys(dsl_pool_t * dp,dmu_tx_t * tx)3796 dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3797 {
3798 dsl_scan_t *scn = dp->dp_scan;
3799 spa_t *spa = dp->dp_spa;
3800 int err = 0;
3801
3802 if (spa_suspend_async_destroy(spa))
3803 return (0);
3804
3805 if (zfs_free_bpobj_enabled &&
3806 spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3807 scn->scn_is_bptree = B_FALSE;
3808 scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3809 scn->scn_zio_root = zio_root(spa, NULL,
3810 NULL, ZIO_FLAG_MUSTSUCCEED);
3811 err = bpobj_iterate(&dp->dp_free_bpobj,
3812 bpobj_dsl_scan_free_block_cb, scn, tx);
3813 VERIFY0(zio_wait(scn->scn_zio_root));
3814 scn->scn_zio_root = NULL;
3815
3816 if (err != 0 && err != ERESTART)
3817 zfs_panic_recover("error %u from bpobj_iterate()", err);
3818 }
3819
3820 if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3821 ASSERT(scn->scn_async_destroying);
3822 scn->scn_is_bptree = B_TRUE;
3823 scn->scn_zio_root = zio_root(spa, NULL,
3824 NULL, ZIO_FLAG_MUSTSUCCEED);
3825 err = bptree_iterate(dp->dp_meta_objset,
3826 dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3827 VERIFY0(zio_wait(scn->scn_zio_root));
3828 scn->scn_zio_root = NULL;
3829
3830 if (err == EIO || err == ECKSUM) {
3831 err = 0;
3832 } else if (err != 0 && err != ERESTART) {
3833 zfs_panic_recover("error %u from "
3834 "traverse_dataset_destroyed()", err);
3835 }
3836
3837 if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3838 /* finished; deactivate async destroy feature */
3839 spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3840 ASSERT(!spa_feature_is_active(spa,
3841 SPA_FEATURE_ASYNC_DESTROY));
3842 VERIFY0(zap_remove(dp->dp_meta_objset,
3843 DMU_POOL_DIRECTORY_OBJECT,
3844 DMU_POOL_BPTREE_OBJ, tx));
3845 VERIFY0(bptree_free(dp->dp_meta_objset,
3846 dp->dp_bptree_obj, tx));
3847 dp->dp_bptree_obj = 0;
3848 scn->scn_async_destroying = B_FALSE;
3849 scn->scn_async_stalled = B_FALSE;
3850 } else {
3851 /*
3852 * If we didn't make progress, mark the async
3853 * destroy as stalled, so that we will not initiate
3854 * a spa_sync() on its behalf. Note that we only
3855 * check this if we are not finished, because if the
3856 * bptree had no blocks for us to visit, we can
3857 * finish without "making progress".
3858 */
3859 scn->scn_async_stalled =
3860 (scn->scn_visited_this_txg == 0);
3861 }
3862 }
3863 if (scn->scn_visited_this_txg) {
3864 zfs_dbgmsg("freed %llu blocks in %llums from "
3865 "free_bpobj/bptree on %s in txg %llu; err=%u",
3866 (longlong_t)scn->scn_visited_this_txg,
3867 (longlong_t)
3868 NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3869 spa->spa_name, (longlong_t)tx->tx_txg, err);
3870 scn->scn_visited_this_txg = 0;
3871 scn->scn_dedup_frees_this_txg = 0;
3872
3873 /*
3874 * Write out changes to the DDT and the BRT that may be required
3875 * as a result of the blocks freed. This ensures that the DDT
3876 * and the BRT are clean when a scrub/resilver runs.
3877 */
3878 ddt_sync(spa, tx->tx_txg);
3879 brt_sync(spa, tx->tx_txg);
3880 }
3881 if (err != 0)
3882 return (err);
3883 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3884 zfs_free_leak_on_eio &&
3885 (dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3886 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3887 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3888 /*
3889 * We have finished background destroying, but there is still
3890 * some space left in the dp_free_dir. Transfer this leaked
3891 * space to the dp_leak_dir.
3892 */
3893 if (dp->dp_leak_dir == NULL) {
3894 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3895 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3896 LEAK_DIR_NAME, tx);
3897 VERIFY0(dsl_pool_open_special_dir(dp,
3898 LEAK_DIR_NAME, &dp->dp_leak_dir));
3899 rrw_exit(&dp->dp_config_rwlock, FTAG);
3900 }
3901 dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3902 dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3903 dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3904 dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3905 dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3906 -dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3907 -dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3908 -dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3909 }
3910
3911 if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3912 !spa_livelist_delete_check(spa)) {
3913 /* finished; verify that space accounting went to zero */
3914 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3915 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3916 ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3917 }
3918
3919 spa_notify_waiters(spa);
3920
3921 EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3922 0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3923 DMU_POOL_OBSOLETE_BPOBJ));
3924 if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3925 ASSERT(spa_feature_is_active(dp->dp_spa,
3926 SPA_FEATURE_OBSOLETE_COUNTS));
3927
3928 scn->scn_is_bptree = B_FALSE;
3929 scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3930 err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3931 dsl_scan_obsolete_block_cb, scn, tx);
3932 if (err != 0 && err != ERESTART)
3933 zfs_panic_recover("error %u from bpobj_iterate()", err);
3934
3935 if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3936 dsl_pool_destroy_obsolete_bpobj(dp, tx);
3937 }
3938 return (0);
3939 }
3940
3941 static void
name_to_bookmark(char * buf,zbookmark_phys_t * zb)3942 name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3943 {
3944 zb->zb_objset = zfs_strtonum(buf, &buf);
3945 ASSERT(*buf == ':');
3946 zb->zb_object = zfs_strtonum(buf + 1, &buf);
3947 ASSERT(*buf == ':');
3948 zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3949 ASSERT(*buf == ':');
3950 zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3951 ASSERT(*buf == '\0');
3952 }
3953
3954 static void
name_to_object(char * buf,uint64_t * obj)3955 name_to_object(char *buf, uint64_t *obj)
3956 {
3957 *obj = zfs_strtonum(buf, &buf);
3958 ASSERT(*buf == '\0');
3959 }
3960
3961 static void
read_by_block_level(dsl_scan_t * scn,zbookmark_phys_t zb)3962 read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3963 {
3964 dsl_pool_t *dp = scn->scn_dp;
3965 dsl_dataset_t *ds;
3966 objset_t *os;
3967 if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3968 return;
3969
3970 if (dmu_objset_from_ds(ds, &os) != 0) {
3971 dsl_dataset_rele(ds, FTAG);
3972 return;
3973 }
3974
3975 /*
3976 * If the key is not loaded dbuf_dnode_findbp() will error out with
3977 * EACCES. However in that case dnode_hold() will eventually call
3978 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3979 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3980 * Avoid this by checking here if the keys are loaded, if not return.
3981 * If the keys are not loaded the head_errlog feature is meaningless
3982 * as we cannot figure out the birth txg of the block pointer.
3983 */
3984 if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3985 ZFS_KEYSTATUS_UNAVAILABLE) {
3986 dsl_dataset_rele(ds, FTAG);
3987 return;
3988 }
3989
3990 dnode_t *dn;
3991 blkptr_t bp;
3992
3993 if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3994 dsl_dataset_rele(ds, FTAG);
3995 return;
3996 }
3997
3998 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3999 int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
4000 NULL);
4001
4002 if (error) {
4003 rw_exit(&dn->dn_struct_rwlock);
4004 dnode_rele(dn, FTAG);
4005 dsl_dataset_rele(ds, FTAG);
4006 return;
4007 }
4008
4009 if (!error && BP_IS_HOLE(&bp)) {
4010 rw_exit(&dn->dn_struct_rwlock);
4011 dnode_rele(dn, FTAG);
4012 dsl_dataset_rele(ds, FTAG);
4013 return;
4014 }
4015
4016 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4017 ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4018
4019 /* If it's an intent log block, failure is expected. */
4020 if (zb.zb_level == ZB_ZIL_LEVEL)
4021 zio_flags |= ZIO_FLAG_SPECULATIVE;
4022
4023 ASSERT(!BP_IS_EMBEDDED(&bp));
4024 scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4025 rw_exit(&dn->dn_struct_rwlock);
4026 dnode_rele(dn, FTAG);
4027 dsl_dataset_rele(ds, FTAG);
4028 }
4029
4030 /*
4031 * We keep track of the scrubbed error blocks in "count". This will be used
4032 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4033 * function is modelled after check_filesystem().
4034 */
4035 static int
scrub_filesystem(spa_t * spa,uint64_t fs,zbookmark_err_phys_t * zep,int * count)4036 scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4037 int *count)
4038 {
4039 dsl_dataset_t *ds;
4040 dsl_pool_t *dp = spa->spa_dsl_pool;
4041 dsl_scan_t *scn = dp->dp_scan;
4042
4043 int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4044 if (error != 0)
4045 return (error);
4046
4047 uint64_t latest_txg;
4048 uint64_t txg_to_consider = spa->spa_syncing_txg;
4049 boolean_t check_snapshot = B_TRUE;
4050
4051 error = find_birth_txg(ds, zep, &latest_txg);
4052
4053 /*
4054 * If find_birth_txg() errors out, then err on the side of caution and
4055 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4056 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4057 * scrub all objects.
4058 */
4059 if (error == 0 && zep->zb_birth == latest_txg) {
4060 /* Block neither free nor re written. */
4061 zbookmark_phys_t zb;
4062 zep_to_zb(fs, zep, &zb);
4063 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4064 ZIO_FLAG_CANFAIL);
4065 /* We have already acquired the config lock for spa */
4066 read_by_block_level(scn, zb);
4067
4068 (void) zio_wait(scn->scn_zio_root);
4069 scn->scn_zio_root = NULL;
4070
4071 scn->errorscrub_phys.dep_examined++;
4072 scn->errorscrub_phys.dep_to_examine--;
4073 (*count)++;
4074 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4075 dsl_error_scrub_check_suspend(scn, &zb)) {
4076 dsl_dataset_rele(ds, FTAG);
4077 return (SET_ERROR(EFAULT));
4078 }
4079
4080 check_snapshot = B_FALSE;
4081 } else if (error == 0) {
4082 txg_to_consider = latest_txg;
4083 }
4084
4085 /*
4086 * Retrieve the number of snapshots if the dataset is not a snapshot.
4087 */
4088 uint64_t snap_count = 0;
4089 if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4090
4091 error = zap_count(spa->spa_meta_objset,
4092 dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4093
4094 if (error != 0) {
4095 dsl_dataset_rele(ds, FTAG);
4096 return (error);
4097 }
4098 }
4099
4100 if (snap_count == 0) {
4101 /* Filesystem without snapshots. */
4102 dsl_dataset_rele(ds, FTAG);
4103 return (0);
4104 }
4105
4106 uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4107 uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4108
4109 dsl_dataset_rele(ds, FTAG);
4110
4111 /* Check only snapshots created from this file system. */
4112 while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4113 snap_obj_txg <= txg_to_consider) {
4114
4115 error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4116 if (error != 0)
4117 return (error);
4118
4119 if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4120 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4121 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4122 dsl_dataset_rele(ds, FTAG);
4123 continue;
4124 }
4125
4126 boolean_t affected = B_TRUE;
4127 if (check_snapshot) {
4128 uint64_t blk_txg;
4129 error = find_birth_txg(ds, zep, &blk_txg);
4130
4131 /*
4132 * Scrub the snapshot also when zb_birth == 0 or when
4133 * find_birth_txg() returns an error.
4134 */
4135 affected = (error == 0 && zep->zb_birth == blk_txg) ||
4136 (error != 0) || (zep->zb_birth == 0);
4137 }
4138
4139 /* Scrub snapshots. */
4140 if (affected) {
4141 zbookmark_phys_t zb;
4142 zep_to_zb(snap_obj, zep, &zb);
4143 scn->scn_zio_root = zio_root(spa, NULL, NULL,
4144 ZIO_FLAG_CANFAIL);
4145 /* We have already acquired the config lock for spa */
4146 read_by_block_level(scn, zb);
4147
4148 (void) zio_wait(scn->scn_zio_root);
4149 scn->scn_zio_root = NULL;
4150
4151 scn->errorscrub_phys.dep_examined++;
4152 scn->errorscrub_phys.dep_to_examine--;
4153 (*count)++;
4154 if ((*count) == zfs_scrub_error_blocks_per_txg ||
4155 dsl_error_scrub_check_suspend(scn, &zb)) {
4156 dsl_dataset_rele(ds, FTAG);
4157 return (EFAULT);
4158 }
4159 }
4160 snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4161 snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4162 dsl_dataset_rele(ds, FTAG);
4163 }
4164 return (0);
4165 }
4166
4167 void
dsl_errorscrub_sync(dsl_pool_t * dp,dmu_tx_t * tx)4168 dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4169 {
4170 spa_t *spa = dp->dp_spa;
4171 dsl_scan_t *scn = dp->dp_scan;
4172
4173 /*
4174 * Only process scans in sync pass 1.
4175 */
4176
4177 if (spa_sync_pass(spa) > 1)
4178 return;
4179
4180 /*
4181 * If the spa is shutting down, then stop scanning. This will
4182 * ensure that the scan does not dirty any new data during the
4183 * shutdown phase.
4184 */
4185 if (spa_shutting_down(spa))
4186 return;
4187
4188 if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4189 return;
4190 }
4191
4192 if (dsl_scan_resilvering(scn->scn_dp)) {
4193 /* cancel the error scrub if resilver started */
4194 dsl_scan_cancel(scn->scn_dp);
4195 return;
4196 }
4197
4198 spa->spa_scrub_active = B_TRUE;
4199 scn->scn_sync_start_time = gethrtime();
4200
4201 /*
4202 * zfs_scan_suspend_progress can be set to disable scrub progress.
4203 * See more detailed comment in dsl_scan_sync().
4204 */
4205 if (zfs_scan_suspend_progress) {
4206 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4207 int mintime = zfs_scrub_min_time_ms;
4208
4209 while (zfs_scan_suspend_progress &&
4210 !txg_sync_waiting(scn->scn_dp) &&
4211 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4212 NSEC2MSEC(scan_time_ns) < mintime) {
4213 delay(hz);
4214 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4215 }
4216 return;
4217 }
4218
4219 int i = 0;
4220 zap_attribute_t *za;
4221 zbookmark_phys_t *zb;
4222 boolean_t limit_exceeded = B_FALSE;
4223
4224 za = zap_attribute_alloc();
4225 zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4226
4227 if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4228 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4229 zap_cursor_advance(&scn->errorscrub_cursor)) {
4230 name_to_bookmark(za->za_name, zb);
4231
4232 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4233 NULL, ZIO_FLAG_CANFAIL);
4234 dsl_pool_config_enter(dp, FTAG);
4235 read_by_block_level(scn, *zb);
4236 dsl_pool_config_exit(dp, FTAG);
4237
4238 (void) zio_wait(scn->scn_zio_root);
4239 scn->scn_zio_root = NULL;
4240
4241 scn->errorscrub_phys.dep_examined += 1;
4242 scn->errorscrub_phys.dep_to_examine -= 1;
4243 i++;
4244 if (i == zfs_scrub_error_blocks_per_txg ||
4245 dsl_error_scrub_check_suspend(scn, zb)) {
4246 limit_exceeded = B_TRUE;
4247 break;
4248 }
4249 }
4250
4251 if (!limit_exceeded)
4252 dsl_errorscrub_done(scn, B_TRUE, tx);
4253
4254 dsl_errorscrub_sync_state(scn, tx);
4255 zap_attribute_free(za);
4256 kmem_free(zb, sizeof (*zb));
4257 return;
4258 }
4259
4260 int error = 0;
4261 for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4262 zap_cursor_advance(&scn->errorscrub_cursor)) {
4263
4264 zap_cursor_t *head_ds_cursor;
4265 zap_attribute_t *head_ds_attr;
4266 zbookmark_err_phys_t head_ds_block;
4267
4268 head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4269 head_ds_attr = zap_attribute_alloc();
4270
4271 uint64_t head_ds_err_obj = za->za_first_integer;
4272 uint64_t head_ds;
4273 name_to_object(za->za_name, &head_ds);
4274 boolean_t config_held = B_FALSE;
4275 uint64_t top_affected_fs;
4276
4277 for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4278 head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4279 head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4280
4281 name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4282
4283 /*
4284 * In case we are called from spa_sync the pool
4285 * config is already held.
4286 */
4287 if (!dsl_pool_config_held(dp)) {
4288 dsl_pool_config_enter(dp, FTAG);
4289 config_held = B_TRUE;
4290 }
4291
4292 error = find_top_affected_fs(spa,
4293 head_ds, &head_ds_block, &top_affected_fs);
4294 if (error)
4295 break;
4296
4297 error = scrub_filesystem(spa, top_affected_fs,
4298 &head_ds_block, &i);
4299
4300 if (error == SET_ERROR(EFAULT)) {
4301 limit_exceeded = B_TRUE;
4302 break;
4303 }
4304 }
4305
4306 zap_cursor_fini(head_ds_cursor);
4307 kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4308 zap_attribute_free(head_ds_attr);
4309
4310 if (config_held)
4311 dsl_pool_config_exit(dp, FTAG);
4312 }
4313
4314 zap_attribute_free(za);
4315 kmem_free(zb, sizeof (*zb));
4316 if (!limit_exceeded)
4317 dsl_errorscrub_done(scn, B_TRUE, tx);
4318
4319 dsl_errorscrub_sync_state(scn, tx);
4320 }
4321
4322 /*
4323 * This is the primary entry point for scans that is called from syncing
4324 * context. Scans must happen entirely during syncing context so that we
4325 * can guarantee that blocks we are currently scanning will not change out
4326 * from under us. While a scan is active, this function controls how quickly
4327 * transaction groups proceed, instead of the normal handling provided by
4328 * txg_sync_thread().
4329 */
4330 void
dsl_scan_sync(dsl_pool_t * dp,dmu_tx_t * tx)4331 dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4332 {
4333 int err = 0;
4334 dsl_scan_t *scn = dp->dp_scan;
4335 spa_t *spa = dp->dp_spa;
4336 state_sync_type_t sync_type = SYNC_OPTIONAL;
4337 int restart_early = 0;
4338
4339 if (spa->spa_resilver_deferred) {
4340 uint64_t to_issue, issued;
4341
4342 if (!spa_feature_is_active(dp->dp_spa,
4343 SPA_FEATURE_RESILVER_DEFER))
4344 spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4345
4346 /*
4347 * See print_scan_scrub_resilver_status() issued/total_i
4348 * @ cmd/zpool/zpool_main.c
4349 */
4350 to_issue =
4351 scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4352 issued =
4353 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4354 restart_early =
4355 zfs_resilver_disable_defer ||
4356 (issued < (to_issue * zfs_resilver_defer_percent / 100));
4357 }
4358
4359 /*
4360 * Only process scans in sync pass 1.
4361 */
4362 if (spa_sync_pass(spa) > 1)
4363 return;
4364
4365
4366 /*
4367 * Check for scn_restart_txg before checking spa_load_state, so
4368 * that we can restart an old-style scan while the pool is being
4369 * imported (see dsl_scan_init). We also restart scans if there
4370 * is a deferred resilver and the user has manually disabled
4371 * deferred resilvers via zfs_resilver_disable_defer, or if the
4372 * current scan progress is below zfs_resilver_defer_percent.
4373 */
4374 if (dsl_scan_restarting(scn, tx) || restart_early) {
4375 setup_sync_arg_t setup_sync_arg = {
4376 .func = POOL_SCAN_SCRUB,
4377 .txgstart = 0,
4378 .txgend = 0,
4379 };
4380 dsl_scan_done(scn, B_FALSE, tx);
4381 if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4382 setup_sync_arg.func = POOL_SCAN_RESILVER;
4383 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4384 setup_sync_arg.func, dp->dp_spa->spa_name,
4385 (longlong_t)tx->tx_txg, restart_early);
4386 dsl_scan_setup_sync(&setup_sync_arg, tx);
4387 }
4388
4389 /*
4390 * If the spa is shutting down, then stop scanning. This will
4391 * ensure that the scan does not dirty any new data during the
4392 * shutdown phase.
4393 */
4394 if (spa_shutting_down(spa))
4395 return;
4396
4397 /*
4398 * If the scan is inactive due to a stalled async destroy, try again.
4399 */
4400 if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4401 return;
4402
4403 /* reset scan statistics */
4404 scn->scn_visited_this_txg = 0;
4405 scn->scn_dedup_frees_this_txg = 0;
4406 scn->scn_holes_this_txg = 0;
4407 scn->scn_lt_min_this_txg = 0;
4408 scn->scn_gt_max_this_txg = 0;
4409 scn->scn_ddt_contained_this_txg = 0;
4410 scn->scn_objsets_visited_this_txg = 0;
4411 scn->scn_avg_seg_size_this_txg = 0;
4412 scn->scn_segs_this_txg = 0;
4413 scn->scn_avg_zio_size_this_txg = 0;
4414 scn->scn_zios_this_txg = 0;
4415 scn->scn_suspending = B_FALSE;
4416 scn->scn_sync_start_time = gethrtime();
4417 spa->spa_scrub_active = B_TRUE;
4418
4419 /*
4420 * First process the async destroys. If we suspend, don't do
4421 * any scrubbing or resilvering. This ensures that there are no
4422 * async destroys while we are scanning, so the scan code doesn't
4423 * have to worry about traversing it. It is also faster to free the
4424 * blocks than to scrub them.
4425 */
4426 err = dsl_process_async_destroys(dp, tx);
4427 if (err != 0)
4428 return;
4429
4430 if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4431 return;
4432
4433 /*
4434 * Wait a few txgs after importing to begin scanning so that
4435 * we can get the pool imported quickly.
4436 */
4437 if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4438 return;
4439
4440 /*
4441 * zfs_scan_suspend_progress can be set to disable scan progress.
4442 * We don't want to spin the txg_sync thread, so we add a delay
4443 * here to simulate the time spent doing a scan. This is mostly
4444 * useful for testing and debugging.
4445 */
4446 if (zfs_scan_suspend_progress) {
4447 uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4448 uint_t mintime = (scn->scn_phys.scn_func ==
4449 POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4450 zfs_scrub_min_time_ms;
4451
4452 while (zfs_scan_suspend_progress &&
4453 !txg_sync_waiting(scn->scn_dp) &&
4454 !spa_shutting_down(scn->scn_dp->dp_spa) &&
4455 NSEC2MSEC(scan_time_ns) < mintime) {
4456 delay(hz);
4457 scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4458 }
4459 return;
4460 }
4461
4462 /*
4463 * Disabled by default, set zfs_scan_report_txgs to report
4464 * average performance over the last zfs_scan_report_txgs TXGs.
4465 */
4466 if (zfs_scan_report_txgs != 0 &&
4467 tx->tx_txg % zfs_scan_report_txgs == 0) {
4468 scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4469 spa_scan_stat_init(spa);
4470 }
4471
4472 /*
4473 * It is possible to switch from unsorted to sorted at any time,
4474 * but afterwards the scan will remain sorted unless reloaded from
4475 * a checkpoint after a reboot.
4476 */
4477 if (!zfs_scan_legacy) {
4478 scn->scn_is_sorted = B_TRUE;
4479 if (scn->scn_last_checkpoint == 0)
4480 scn->scn_last_checkpoint = ddi_get_lbolt();
4481 }
4482
4483 /*
4484 * For sorted scans, determine what kind of work we will be doing
4485 * this txg based on our memory limitations and whether or not we
4486 * need to perform a checkpoint.
4487 */
4488 if (scn->scn_is_sorted) {
4489 /*
4490 * If we are over our checkpoint interval, set scn_clearing
4491 * so that we can begin checkpointing immediately. The
4492 * checkpoint allows us to save a consistent bookmark
4493 * representing how much data we have scrubbed so far.
4494 * Otherwise, use the memory limit to determine if we should
4495 * scan for metadata or start issue scrub IOs. We accumulate
4496 * metadata until we hit our hard memory limit at which point
4497 * we issue scrub IOs until we are at our soft memory limit.
4498 */
4499 if (scn->scn_checkpointing ||
4500 ddi_get_lbolt() - scn->scn_last_checkpoint >
4501 SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4502 if (!scn->scn_checkpointing)
4503 zfs_dbgmsg("begin scan checkpoint for %s",
4504 spa->spa_name);
4505
4506 scn->scn_checkpointing = B_TRUE;
4507 scn->scn_clearing = B_TRUE;
4508 } else {
4509 boolean_t should_clear = dsl_scan_should_clear(scn);
4510 if (should_clear && !scn->scn_clearing) {
4511 zfs_dbgmsg("begin scan clearing for %s",
4512 spa->spa_name);
4513 scn->scn_clearing = B_TRUE;
4514 } else if (!should_clear && scn->scn_clearing) {
4515 zfs_dbgmsg("finish scan clearing for %s",
4516 spa->spa_name);
4517 scn->scn_clearing = B_FALSE;
4518 }
4519 }
4520 } else {
4521 ASSERT0(scn->scn_checkpointing);
4522 ASSERT0(scn->scn_clearing);
4523 }
4524
4525 if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4526 /* Need to scan metadata for more blocks to scrub */
4527 dsl_scan_phys_t *scnp = &scn->scn_phys;
4528 taskqid_t prefetch_tqid;
4529
4530 /*
4531 * Calculate the max number of in-flight bytes for pool-wide
4532 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4533 * Limits for the issuing phase are done per top-level vdev and
4534 * are handled separately.
4535 */
4536 scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4537 zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4538
4539 if (scnp->scn_ddt_bookmark.ddb_class <=
4540 scnp->scn_ddt_class_max) {
4541 ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4542 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4543 "ddt bm=%llu/%llu/%llu/%llx",
4544 spa->spa_name,
4545 (longlong_t)tx->tx_txg,
4546 (longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4547 (longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4548 (longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4549 (longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4550 } else {
4551 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4552 "bm=%llu/%llu/%llu/%llu",
4553 spa->spa_name,
4554 (longlong_t)tx->tx_txg,
4555 (longlong_t)scnp->scn_bookmark.zb_objset,
4556 (longlong_t)scnp->scn_bookmark.zb_object,
4557 (longlong_t)scnp->scn_bookmark.zb_level,
4558 (longlong_t)scnp->scn_bookmark.zb_blkid);
4559 }
4560
4561 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4562 NULL, ZIO_FLAG_CANFAIL);
4563
4564 scn->scn_prefetch_stop = B_FALSE;
4565 prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4566 dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4567 ASSERT(prefetch_tqid != TASKQID_INVALID);
4568
4569 dsl_pool_config_enter(dp, FTAG);
4570 dsl_scan_visit(scn, tx);
4571 dsl_pool_config_exit(dp, FTAG);
4572
4573 mutex_enter(&dp->dp_spa->spa_scrub_lock);
4574 scn->scn_prefetch_stop = B_TRUE;
4575 cv_broadcast(&spa->spa_scrub_io_cv);
4576 mutex_exit(&dp->dp_spa->spa_scrub_lock);
4577
4578 taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4579 (void) zio_wait(scn->scn_zio_root);
4580 scn->scn_zio_root = NULL;
4581
4582 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4583 "(%llu os's, %llu holes, %llu < mintxg, "
4584 "%llu in ddt, %llu > maxtxg)",
4585 (longlong_t)scn->scn_visited_this_txg,
4586 spa->spa_name,
4587 (longlong_t)NSEC2MSEC(gethrtime() -
4588 scn->scn_sync_start_time),
4589 (longlong_t)scn->scn_objsets_visited_this_txg,
4590 (longlong_t)scn->scn_holes_this_txg,
4591 (longlong_t)scn->scn_lt_min_this_txg,
4592 (longlong_t)scn->scn_ddt_contained_this_txg,
4593 (longlong_t)scn->scn_gt_max_this_txg);
4594
4595 if (!scn->scn_suspending) {
4596 ASSERT0(avl_numnodes(&scn->scn_queue));
4597 scn->scn_done_txg = tx->tx_txg + 1;
4598 if (scn->scn_is_sorted) {
4599 scn->scn_checkpointing = B_TRUE;
4600 scn->scn_clearing = B_TRUE;
4601 scn->scn_issued_before_pass +=
4602 spa->spa_scan_pass_issued;
4603 spa_scan_stat_init(spa);
4604 }
4605 zfs_dbgmsg("scan complete for %s txg %llu",
4606 spa->spa_name,
4607 (longlong_t)tx->tx_txg);
4608 }
4609 } else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4610 ASSERT(scn->scn_clearing);
4611
4612 /* need to issue scrubbing IOs from per-vdev queues */
4613 scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4614 NULL, ZIO_FLAG_CANFAIL);
4615 scan_io_queues_run(scn);
4616 (void) zio_wait(scn->scn_zio_root);
4617 scn->scn_zio_root = NULL;
4618
4619 /* calculate and dprintf the current memory usage */
4620 (void) dsl_scan_should_clear(scn);
4621 dsl_scan_update_stats(scn);
4622
4623 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4624 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4625 (longlong_t)scn->scn_zios_this_txg,
4626 spa->spa_name,
4627 (longlong_t)scn->scn_segs_this_txg,
4628 (longlong_t)NSEC2MSEC(gethrtime() -
4629 scn->scn_sync_start_time),
4630 (longlong_t)scn->scn_avg_zio_size_this_txg,
4631 (longlong_t)scn->scn_avg_seg_size_this_txg);
4632 } else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4633 /* Finished with everything. Mark the scrub as complete */
4634 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4635 (longlong_t)tx->tx_txg,
4636 spa->spa_name);
4637 ASSERT3U(scn->scn_done_txg, !=, 0);
4638 ASSERT0(spa->spa_scrub_inflight);
4639 ASSERT0(scn->scn_queues_pending);
4640 dsl_scan_done(scn, B_TRUE, tx);
4641 sync_type = SYNC_MANDATORY;
4642 }
4643
4644 dsl_scan_sync_state(scn, tx, sync_type);
4645 }
4646
4647 static void
count_block_issued(spa_t * spa,const blkptr_t * bp,boolean_t all)4648 count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4649 {
4650 /*
4651 * Don't count embedded bp's, since we already did the work of
4652 * scanning these when we scanned the containing block.
4653 */
4654 if (BP_IS_EMBEDDED(bp))
4655 return;
4656
4657 /*
4658 * Update the spa's stats on how many bytes we have issued.
4659 * Sequential scrubs create a zio for each DVA of the bp. Each
4660 * of these will include all DVAs for repair purposes, but the
4661 * zio code will only try the first one unless there is an issue.
4662 * Therefore, we should only count the first DVA for these IOs.
4663 */
4664 atomic_add_64(&spa->spa_scan_pass_issued,
4665 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4666 }
4667
4668 static void
count_block_skipped(dsl_scan_t * scn,const blkptr_t * bp,boolean_t all)4669 count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4670 {
4671 if (BP_IS_EMBEDDED(bp))
4672 return;
4673 atomic_add_64(&scn->scn_phys.scn_skipped,
4674 all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4675 }
4676
4677 static void
count_block(zfs_all_blkstats_t * zab,const blkptr_t * bp)4678 count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4679 {
4680 /*
4681 * If we resume after a reboot, zab will be NULL; don't record
4682 * incomplete stats in that case.
4683 */
4684 if (zab == NULL)
4685 return;
4686
4687 for (int i = 0; i < 4; i++) {
4688 int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4689 int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4690
4691 if (t & DMU_OT_NEWTYPE)
4692 t = DMU_OT_OTHER;
4693 zfs_blkstat_t *zb = &zab->zab_type[l][t];
4694 int equal;
4695
4696 zb->zb_count++;
4697 zb->zb_asize += BP_GET_ASIZE(bp);
4698 zb->zb_lsize += BP_GET_LSIZE(bp);
4699 zb->zb_psize += BP_GET_PSIZE(bp);
4700 zb->zb_gangs += BP_COUNT_GANG(bp);
4701
4702 switch (BP_GET_NDVAS(bp)) {
4703 case 2:
4704 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4705 DVA_GET_VDEV(&bp->blk_dva[1]))
4706 zb->zb_ditto_2_of_2_samevdev++;
4707 break;
4708 case 3:
4709 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4710 DVA_GET_VDEV(&bp->blk_dva[1])) +
4711 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4712 DVA_GET_VDEV(&bp->blk_dva[2])) +
4713 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
4714 DVA_GET_VDEV(&bp->blk_dva[2]));
4715 if (equal == 1)
4716 zb->zb_ditto_2_of_3_samevdev++;
4717 else if (equal == 3)
4718 zb->zb_ditto_3_of_3_samevdev++;
4719 break;
4720 }
4721 }
4722 }
4723
4724 static void
scan_io_queue_insert_impl(dsl_scan_io_queue_t * queue,scan_io_t * sio)4725 scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4726 {
4727 avl_index_t idx;
4728 dsl_scan_t *scn = queue->q_scn;
4729
4730 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4731
4732 if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4733 atomic_add_64(&scn->scn_queues_pending, 1);
4734 if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4735 /* block is already scheduled for reading */
4736 sio_free(sio);
4737 return;
4738 }
4739 avl_insert(&queue->q_sios_by_addr, sio, idx);
4740 queue->q_sio_memused += SIO_GET_MUSED(sio);
4741 zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4742 SIO_GET_ASIZE(sio));
4743 }
4744
4745 /*
4746 * Given all the info we got from our metadata scanning process, we
4747 * construct a scan_io_t and insert it into the scan sorting queue. The
4748 * I/O must already be suitable for us to process. This is controlled
4749 * by dsl_scan_enqueue().
4750 */
4751 static void
scan_io_queue_insert(dsl_scan_io_queue_t * queue,const blkptr_t * bp,int dva_i,int zio_flags,const zbookmark_phys_t * zb)4752 scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4753 int zio_flags, const zbookmark_phys_t *zb)
4754 {
4755 scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4756
4757 ASSERT0(BP_IS_GANG(bp));
4758 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4759
4760 bp2sio(bp, sio, dva_i);
4761 sio->sio_flags = zio_flags;
4762 sio->sio_zb = *zb;
4763
4764 queue->q_last_ext_addr = -1;
4765 scan_io_queue_insert_impl(queue, sio);
4766 }
4767
4768 /*
4769 * Given a set of I/O parameters as discovered by the metadata traversal
4770 * process, attempts to place the I/O into the sorted queues (if allowed),
4771 * or immediately executes the I/O.
4772 */
4773 static void
dsl_scan_enqueue(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb)4774 dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4775 const zbookmark_phys_t *zb)
4776 {
4777 spa_t *spa = dp->dp_spa;
4778
4779 ASSERT(!BP_IS_EMBEDDED(bp));
4780
4781 /*
4782 * Gang blocks are hard to issue sequentially, so we just issue them
4783 * here immediately instead of queuing them.
4784 */
4785 if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4786 scan_exec_io(dp, bp, zio_flags, zb, NULL);
4787 return;
4788 }
4789
4790 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4791 dva_t dva;
4792 vdev_t *vdev;
4793
4794 dva = bp->blk_dva[i];
4795 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4796 ASSERT(vdev != NULL);
4797
4798 mutex_enter(&vdev->vdev_scan_io_queue_lock);
4799 if (vdev->vdev_scan_io_queue == NULL)
4800 vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4801 ASSERT(dp->dp_scan != NULL);
4802 scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4803 i, zio_flags, zb);
4804 mutex_exit(&vdev->vdev_scan_io_queue_lock);
4805 }
4806 }
4807
4808 static int
dsl_scan_scrub_cb(dsl_pool_t * dp,const blkptr_t * bp,const zbookmark_phys_t * zb)4809 dsl_scan_scrub_cb(dsl_pool_t *dp,
4810 const blkptr_t *bp, const zbookmark_phys_t *zb)
4811 {
4812 dsl_scan_t *scn = dp->dp_scan;
4813 spa_t *spa = dp->dp_spa;
4814 uint64_t phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
4815 size_t psize = BP_GET_PSIZE(bp);
4816 boolean_t needs_io = B_FALSE;
4817 int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4818
4819 count_block(dp->dp_blkstats, bp);
4820 if (phys_birth <= scn->scn_phys.scn_min_txg ||
4821 phys_birth >= scn->scn_phys.scn_max_txg) {
4822 count_block_skipped(scn, bp, B_TRUE);
4823 return (0);
4824 }
4825
4826 /* Embedded BP's have phys_birth==0, so we reject them above. */
4827 ASSERT(!BP_IS_EMBEDDED(bp));
4828
4829 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4830 if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4831 zio_flags |= ZIO_FLAG_SCRUB;
4832 needs_io = B_TRUE;
4833 } else {
4834 ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4835 zio_flags |= ZIO_FLAG_RESILVER;
4836 needs_io = B_FALSE;
4837 }
4838
4839 /* If it's an intent log block, failure is expected. */
4840 if (zb->zb_level == ZB_ZIL_LEVEL)
4841 zio_flags |= ZIO_FLAG_SPECULATIVE;
4842
4843 for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4844 const dva_t *dva = &bp->blk_dva[d];
4845
4846 /*
4847 * Keep track of how much data we've examined so that
4848 * zpool(8) status can make useful progress reports.
4849 */
4850 uint64_t asize = DVA_GET_ASIZE(dva);
4851 scn->scn_phys.scn_examined += asize;
4852 spa->spa_scan_pass_exam += asize;
4853
4854 /* if it's a resilver, this may not be in the target range */
4855 if (!needs_io)
4856 needs_io = dsl_scan_need_resilver(spa, dva, psize,
4857 phys_birth);
4858 }
4859
4860 if (needs_io && !zfs_no_scrub_io) {
4861 dsl_scan_enqueue(dp, bp, zio_flags, zb);
4862 } else {
4863 count_block_skipped(scn, bp, B_TRUE);
4864 }
4865
4866 /* do not relocate this block */
4867 return (0);
4868 }
4869
4870 static void
dsl_scan_scrub_done(zio_t * zio)4871 dsl_scan_scrub_done(zio_t *zio)
4872 {
4873 spa_t *spa = zio->io_spa;
4874 blkptr_t *bp = zio->io_bp;
4875 dsl_scan_io_queue_t *queue = zio->io_private;
4876
4877 abd_free(zio->io_abd);
4878
4879 if (queue == NULL) {
4880 mutex_enter(&spa->spa_scrub_lock);
4881 ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4882 spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4883 cv_broadcast(&spa->spa_scrub_io_cv);
4884 mutex_exit(&spa->spa_scrub_lock);
4885 } else {
4886 mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4887 ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4888 queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4889 cv_broadcast(&queue->q_zio_cv);
4890 mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4891 }
4892
4893 if (zio->io_error && (zio->io_error != ECKSUM ||
4894 !(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4895 if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4896 !dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4897 atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4898 ->errorscrub_phys.dep_errors);
4899 } else {
4900 atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4901 .scn_errors);
4902 }
4903 }
4904 }
4905
4906 /*
4907 * Given a scanning zio's information, executes the zio. The zio need
4908 * not necessarily be only sortable, this function simply executes the
4909 * zio, no matter what it is. The optional queue argument allows the
4910 * caller to specify that they want per top level vdev IO rate limiting
4911 * instead of the legacy global limiting.
4912 */
4913 static void
scan_exec_io(dsl_pool_t * dp,const blkptr_t * bp,int zio_flags,const zbookmark_phys_t * zb,dsl_scan_io_queue_t * queue)4914 scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4915 const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4916 {
4917 spa_t *spa = dp->dp_spa;
4918 dsl_scan_t *scn = dp->dp_scan;
4919 size_t size = BP_GET_PSIZE(bp);
4920 abd_t *data = abd_alloc_for_io(size, B_FALSE);
4921 zio_t *pio;
4922
4923 if (queue == NULL) {
4924 ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4925 mutex_enter(&spa->spa_scrub_lock);
4926 while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4927 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4928 spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4929 mutex_exit(&spa->spa_scrub_lock);
4930 pio = scn->scn_zio_root;
4931 } else {
4932 kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4933
4934 ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4935 mutex_enter(q_lock);
4936 while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4937 cv_wait(&queue->q_zio_cv, q_lock);
4938 queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4939 pio = queue->q_zio;
4940 mutex_exit(q_lock);
4941 }
4942
4943 ASSERT(pio != NULL);
4944 count_block_issued(spa, bp, queue == NULL);
4945 zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4946 queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4947 }
4948
4949 /*
4950 * This is the primary extent sorting algorithm. We balance two parameters:
4951 * 1) how many bytes of I/O are in an extent
4952 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4953 * Since we allow extents to have gaps between their constituent I/Os, it's
4954 * possible to have a fairly large extent that contains the same amount of
4955 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4956 * The algorithm sorts based on a score calculated from the extent's size,
4957 * the relative fill volume (in %) and a "fill weight" parameter that controls
4958 * the split between whether we prefer larger extents or more well populated
4959 * extents:
4960 *
4961 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4962 *
4963 * Example:
4964 * 1) assume extsz = 64 MiB
4965 * 2) assume fill = 32 MiB (extent is half full)
4966 * 3) assume fill_weight = 3
4967 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4968 * SCORE = 32M + (50 * 3 * 32M) / 100
4969 * SCORE = 32M + (4800M / 100)
4970 * SCORE = 32M + 48M
4971 * ^ ^
4972 * | +--- final total relative fill-based score
4973 * +--------- final total fill-based score
4974 * SCORE = 80M
4975 *
4976 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4977 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4978 * Note that as an optimization, we replace multiplication and division by
4979 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4980 *
4981 * Since we do not care if one extent is only few percent better than another,
4982 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4983 * put into otherwise unused due to ashift high bits of offset. This allows
4984 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4985 * with single operation. Plus it makes scrubs more sequential and reduces
4986 * chances that minor extent change move it within the B-tree.
4987 */
4988 __attribute__((always_inline)) inline
4989 static int
ext_size_compare(const void * x,const void * y)4990 ext_size_compare(const void *x, const void *y)
4991 {
4992 const uint64_t *a = x, *b = y;
4993
4994 return (TREE_CMP(*a, *b));
4995 }
4996
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf,uint64_t,ext_size_compare)4997 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4998 ext_size_compare)
4999
5000 static void
5001 ext_size_create(zfs_range_tree_t *rt, void *arg)
5002 {
5003 (void) rt;
5004 zfs_btree_t *size_tree = arg;
5005
5006 zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
5007 sizeof (uint64_t));
5008 }
5009
5010 static void
ext_size_destroy(zfs_range_tree_t * rt,void * arg)5011 ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5012 {
5013 (void) rt;
5014 zfs_btree_t *size_tree = arg;
5015 ASSERT0(zfs_btree_numnodes(size_tree));
5016
5017 zfs_btree_destroy(size_tree);
5018 }
5019
5020 static uint64_t
ext_size_value(zfs_range_tree_t * rt,zfs_range_seg_gap_t * rsg)5021 ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5022 {
5023 (void) rt;
5024 uint64_t size = rsg->rs_end - rsg->rs_start;
5025 uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5026 fill_weight * rsg->rs_fill) >> 7);
5027 ASSERT3U(rt->rt_shift, >=, 8);
5028 return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5029 }
5030
5031 static void
ext_size_add(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5032 ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5033 {
5034 zfs_btree_t *size_tree = arg;
5035 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5036 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5037 zfs_btree_add(size_tree, &v);
5038 }
5039
5040 static void
ext_size_remove(zfs_range_tree_t * rt,zfs_range_seg_t * rs,void * arg)5041 ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5042 {
5043 zfs_btree_t *size_tree = arg;
5044 ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5045 uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5046 zfs_btree_remove(size_tree, &v);
5047 }
5048
5049 static void
ext_size_vacate(zfs_range_tree_t * rt,void * arg)5050 ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5051 {
5052 zfs_btree_t *size_tree = arg;
5053 zfs_btree_clear(size_tree);
5054 zfs_btree_destroy(size_tree);
5055
5056 ext_size_create(rt, arg);
5057 }
5058
5059 static const zfs_range_tree_ops_t ext_size_ops = {
5060 .rtop_create = ext_size_create,
5061 .rtop_destroy = ext_size_destroy,
5062 .rtop_add = ext_size_add,
5063 .rtop_remove = ext_size_remove,
5064 .rtop_vacate = ext_size_vacate
5065 };
5066
5067 /*
5068 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5069 * based on LBA-order (from lowest to highest).
5070 */
5071 static int
sio_addr_compare(const void * x,const void * y)5072 sio_addr_compare(const void *x, const void *y)
5073 {
5074 const scan_io_t *a = x, *b = y;
5075
5076 return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5077 }
5078
5079 /* IO queues are created on demand when they are needed. */
5080 static dsl_scan_io_queue_t *
scan_io_queue_create(vdev_t * vd)5081 scan_io_queue_create(vdev_t *vd)
5082 {
5083 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5084 dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5085
5086 q->q_scn = scn;
5087 q->q_vd = vd;
5088 q->q_sio_memused = 0;
5089 q->q_last_ext_addr = -1;
5090 cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5091 q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5092 ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5093 zfs_scan_max_ext_gap);
5094 avl_create(&q->q_sios_by_addr, sio_addr_compare,
5095 sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5096
5097 return (q);
5098 }
5099
5100 /*
5101 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5102 * No further execution of I/O occurs, anything pending in the queue is
5103 * simply freed without being executed.
5104 */
5105 void
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t * queue)5106 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5107 {
5108 dsl_scan_t *scn = queue->q_scn;
5109 scan_io_t *sio;
5110 void *cookie = NULL;
5111
5112 ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5113
5114 if (!avl_is_empty(&queue->q_sios_by_addr))
5115 atomic_add_64(&scn->scn_queues_pending, -1);
5116 while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5117 NULL) {
5118 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5119 SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5120 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5121 sio_free(sio);
5122 }
5123
5124 ASSERT0(queue->q_sio_memused);
5125 zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5126 zfs_range_tree_destroy(queue->q_exts_by_addr);
5127 avl_destroy(&queue->q_sios_by_addr);
5128 cv_destroy(&queue->q_zio_cv);
5129
5130 kmem_free(queue, sizeof (*queue));
5131 }
5132
5133 /*
5134 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5135 * called on behalf of vdev_top_transfer when creating or destroying
5136 * a mirror vdev due to zpool attach/detach.
5137 */
5138 void
dsl_scan_io_queue_vdev_xfer(vdev_t * svd,vdev_t * tvd)5139 dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5140 {
5141 mutex_enter(&svd->vdev_scan_io_queue_lock);
5142 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5143
5144 VERIFY0P(tvd->vdev_scan_io_queue);
5145 tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5146 svd->vdev_scan_io_queue = NULL;
5147 if (tvd->vdev_scan_io_queue != NULL)
5148 tvd->vdev_scan_io_queue->q_vd = tvd;
5149
5150 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5151 mutex_exit(&svd->vdev_scan_io_queue_lock);
5152 }
5153
5154 static void
scan_io_queues_destroy(dsl_scan_t * scn)5155 scan_io_queues_destroy(dsl_scan_t *scn)
5156 {
5157 vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5158
5159 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5160 vdev_t *tvd = rvd->vdev_child[i];
5161
5162 mutex_enter(&tvd->vdev_scan_io_queue_lock);
5163 if (tvd->vdev_scan_io_queue != NULL)
5164 dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5165 tvd->vdev_scan_io_queue = NULL;
5166 mutex_exit(&tvd->vdev_scan_io_queue_lock);
5167 }
5168 }
5169
5170 static void
dsl_scan_freed_dva(spa_t * spa,const blkptr_t * bp,int dva_i)5171 dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5172 {
5173 dsl_pool_t *dp = spa->spa_dsl_pool;
5174 dsl_scan_t *scn = dp->dp_scan;
5175 vdev_t *vdev;
5176 kmutex_t *q_lock;
5177 dsl_scan_io_queue_t *queue;
5178 scan_io_t *srch_sio, *sio;
5179 avl_index_t idx;
5180 uint64_t start, size;
5181
5182 vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5183 ASSERT(vdev != NULL);
5184 q_lock = &vdev->vdev_scan_io_queue_lock;
5185 queue = vdev->vdev_scan_io_queue;
5186
5187 mutex_enter(q_lock);
5188 if (queue == NULL) {
5189 mutex_exit(q_lock);
5190 return;
5191 }
5192
5193 srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5194 bp2sio(bp, srch_sio, dva_i);
5195 start = SIO_GET_OFFSET(srch_sio);
5196 size = SIO_GET_ASIZE(srch_sio);
5197
5198 /*
5199 * We can find the zio in two states:
5200 * 1) Cold, just sitting in the queue of zio's to be issued at
5201 * some point in the future. In this case, all we do is
5202 * remove the zio from the q_sios_by_addr tree, decrement
5203 * its data volume from the containing zfs_range_seg_t and
5204 * resort the q_exts_by_size tree to reflect that the
5205 * zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5206 * the zfs_range_seg_t - this is usually rare enough not to be
5207 * worth the extra hassle of trying keep track of precise
5208 * extent boundaries.
5209 * 2) Hot, where the zio is currently in-flight in
5210 * dsl_scan_issue_ios. In this case, we can't simply
5211 * reach in and stop the in-flight zio's, so we instead
5212 * block the caller. Eventually, dsl_scan_issue_ios will
5213 * be done with issuing the zio's it gathered and will
5214 * signal us.
5215 */
5216 sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5217 sio_free(srch_sio);
5218
5219 if (sio != NULL) {
5220 blkptr_t tmpbp;
5221
5222 /* Got it while it was cold in the queue */
5223 ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5224 ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5225 avl_remove(&queue->q_sios_by_addr, sio);
5226 if (avl_is_empty(&queue->q_sios_by_addr))
5227 atomic_add_64(&scn->scn_queues_pending, -1);
5228 queue->q_sio_memused -= SIO_GET_MUSED(sio);
5229
5230 ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5231 size));
5232 zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5233
5234 /* count the block as though we skipped it */
5235 sio2bp(sio, &tmpbp);
5236 count_block_skipped(scn, &tmpbp, B_FALSE);
5237
5238 sio_free(sio);
5239 }
5240 mutex_exit(q_lock);
5241 }
5242
5243 /*
5244 * Callback invoked when a zio_free() zio is executing. This needs to be
5245 * intercepted to prevent the zio from deallocating a particular portion
5246 * of disk space and it then getting reallocated and written to, while we
5247 * still have it queued up for processing.
5248 */
5249 void
dsl_scan_freed(spa_t * spa,const blkptr_t * bp)5250 dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5251 {
5252 dsl_pool_t *dp = spa->spa_dsl_pool;
5253 dsl_scan_t *scn = dp->dp_scan;
5254
5255 ASSERT(!BP_IS_EMBEDDED(bp));
5256 ASSERT(scn != NULL);
5257 if (!dsl_scan_is_running(scn))
5258 return;
5259
5260 for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5261 dsl_scan_freed_dva(spa, bp, i);
5262 }
5263
5264 /*
5265 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5266 * not started, start it. Otherwise, only restart if max txg in DTL range is
5267 * greater than the max txg in the current scan. If the DTL max is less than
5268 * the scan max, then the vdev has not missed any new data since the resilver
5269 * started, so a restart is not needed.
5270 */
5271 void
dsl_scan_assess_vdev(dsl_pool_t * dp,vdev_t * vd)5272 dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5273 {
5274 uint64_t min, max;
5275
5276 if (!vdev_resilver_needed(vd, &min, &max))
5277 return;
5278
5279 if (!dsl_scan_resilvering(dp)) {
5280 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5281 return;
5282 }
5283
5284 if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5285 return;
5286
5287 /* restart is needed, check if it can be deferred */
5288 if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5289 vdev_defer_resilver(vd);
5290 else
5291 spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5292 }
5293
5294 ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5295 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5296
5297 ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5298 "Min millisecs to scrub per txg");
5299
5300 ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5301 "Min millisecs to obsolete per txg");
5302
5303 ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5304 "Min millisecs to free per txg");
5305
5306 ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5307 "Min millisecs to resilver per txg");
5308
5309 ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5310 "Set to prevent scans from progressing");
5311
5312 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5313 "Set to disable scrub I/O");
5314
5315 ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5316 "Set to disable scrub prefetching");
5317
5318 ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5319 "Max number of blocks freed in one txg");
5320
5321 ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5322 "Max number of dedup blocks freed in one txg");
5323
5324 ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5325 "Enable processing of the free_bpobj");
5326
5327 ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5328 "Enable block statistics calculation during scrub");
5329
5330 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5331 "Fraction of RAM for scan hard limit");
5332
5333 ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5334 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5335
5336 ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5337 "Scrub using legacy non-sequential method");
5338
5339 ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5340 "Scan progress on-disk checkpointing interval");
5341
5342 ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5343 "Max gap in bytes between sequential scrub / resilver I/Os");
5344
5345 ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5346 "Fraction of hard limit used as soft limit");
5347
5348 ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5349 "Tunable to attempt to reduce lock contention");
5350
5351 ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5352 "Tunable to adjust bias towards more filled segments during scans");
5353
5354 ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5355 "Tunable to report resilver performance over the last N txgs");
5356
5357 ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5358 "Process all resilvers immediately");
5359
5360 ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5361 "Issued IO percent complete after which resilvers are deferred");
5362
5363 ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5364 "Error blocks to be scrubbed in one txg");
5365