1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 */
28
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dsl_deadlist.h>
46 #include <sys/bptree.h>
47 #include <sys/zfeature.h>
48 #include <sys/zil_impl.h>
49 #include <sys/dsl_userhold.h>
50
51 /*
52 * ZFS Write Throttle
53 * ------------------
54 *
55 * ZFS must limit the rate of incoming writes to the rate at which it is able
56 * to sync data modifications to the backend storage. Throttling by too much
57 * creates an artificial limit; throttling by too little can only be sustained
58 * for short periods and would lead to highly lumpy performance. On a per-pool
59 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
60 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
61 * of dirty data decreases. When the amount of dirty data exceeds a
62 * predetermined threshold further modifications are blocked until the amount
63 * of dirty data decreases (as data is synced out).
64 *
65 * The limit on dirty data is tunable, and should be adjusted according to
66 * both the IO capacity and available memory of the system. The larger the
67 * window, the more ZFS is able to aggregate and amortize metadata (and data)
68 * changes. However, memory is a limited resource, and allowing for more dirty
69 * data comes at the cost of keeping other useful data in memory (for example
70 * ZFS data cached by the ARC).
71 *
72 * Implementation
73 *
74 * As buffers are modified dsl_pool_willuse_space() increments both the per-
75 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
76 * dirty space used; dsl_pool_dirty_space() decrements those values as data
77 * is synced out from dsl_pool_sync(). While only the poolwide value is
78 * relevant, the per-txg value is useful for debugging. The tunable
79 * zfs_dirty_data_max determines the dirty space limit. Once that value is
80 * exceeded, new writes are halted until space frees up.
81 *
82 * The zfs_dirty_data_sync tunable dictates the threshold at which we
83 * ensure that there is a txg syncing (see the comment in txg.c for a full
84 * description of transaction group stages).
85 *
86 * The IO scheduler uses both the dirty space limit and current amount of
87 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
88 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
89 *
90 * The delay is also calculated based on the amount of dirty data. See the
91 * comment above dmu_tx_delay() for details.
92 */
93
94 /*
95 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
96 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
97 */
98 uint64_t zfs_dirty_data_max;
99 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
100 int zfs_dirty_data_max_percent = 10;
101
102 /*
103 * If there is at least this much dirty data, push out a txg.
104 */
105 uint64_t zfs_dirty_data_sync = 64 * 1024 * 1024;
106
107 /*
108 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
109 * and delay each transaction.
110 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
111 */
112 int zfs_delay_min_dirty_percent = 60;
113
114 /*
115 * This controls how quickly the delay approaches infinity.
116 * Larger values cause it to delay more for a given amount of dirty data.
117 * Therefore larger values will cause there to be less dirty data for a
118 * given throughput.
119 *
120 * For the smoothest delay, this value should be about 1 billion divided
121 * by the maximum number of operations per second. This will smoothly
122 * handle between 10x and 1/10th this number.
123 *
124 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
125 * multiply in dmu_tx_delay().
126 */
127 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
128
129
130 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
131 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
132
133 int
dsl_pool_open_special_dir(dsl_pool_t * dp,const char * name,dsl_dir_t ** ddp)134 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
135 {
136 uint64_t obj;
137 int err;
138
139 err = zap_lookup(dp->dp_meta_objset,
140 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
141 name, sizeof (obj), 1, &obj);
142 if (err)
143 return (err);
144
145 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
146 }
147
148 static dsl_pool_t *
dsl_pool_open_impl(spa_t * spa,uint64_t txg)149 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
150 {
151 dsl_pool_t *dp;
152 blkptr_t *bp = spa_get_rootblkptr(spa);
153
154 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
155 dp->dp_spa = spa;
156 dp->dp_meta_rootbp = *bp;
157 rrw_init(&dp->dp_config_rwlock, B_TRUE);
158 txg_init(dp, txg);
159
160 txg_list_create(&dp->dp_dirty_datasets,
161 offsetof(dsl_dataset_t, ds_dirty_link));
162 txg_list_create(&dp->dp_dirty_zilogs,
163 offsetof(zilog_t, zl_dirty_link));
164 txg_list_create(&dp->dp_dirty_dirs,
165 offsetof(dsl_dir_t, dd_dirty_link));
166 txg_list_create(&dp->dp_sync_tasks,
167 offsetof(dsl_sync_task_t, dst_node));
168
169 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
170 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
171
172 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
173 1, 4, 0);
174
175 return (dp);
176 }
177
178 int
dsl_pool_init(spa_t * spa,uint64_t txg,dsl_pool_t ** dpp)179 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
180 {
181 int err;
182 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
183
184 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
185 &dp->dp_meta_objset);
186 if (err != 0)
187 dsl_pool_close(dp);
188 else
189 *dpp = dp;
190
191 return (err);
192 }
193
194 int
dsl_pool_open(dsl_pool_t * dp)195 dsl_pool_open(dsl_pool_t *dp)
196 {
197 int err;
198 dsl_dir_t *dd;
199 dsl_dataset_t *ds;
200 uint64_t obj;
201
202 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
203 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
204 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
205 &dp->dp_root_dir_obj);
206 if (err)
207 goto out;
208
209 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
210 NULL, dp, &dp->dp_root_dir);
211 if (err)
212 goto out;
213
214 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
215 if (err)
216 goto out;
217
218 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
219 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
220 if (err)
221 goto out;
222 err = dsl_dataset_hold_obj(dp,
223 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
224 if (err == 0) {
225 err = dsl_dataset_hold_obj(dp,
226 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
227 &dp->dp_origin_snap);
228 dsl_dataset_rele(ds, FTAG);
229 }
230 dsl_dir_rele(dd, dp);
231 if (err)
232 goto out;
233 }
234
235 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
236 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
237 &dp->dp_free_dir);
238 if (err)
239 goto out;
240
241 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
242 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
243 if (err)
244 goto out;
245 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
246 dp->dp_meta_objset, obj));
247 }
248
249 /*
250 * Note: errors ignored, because the leak dir will not exist if we
251 * have not encountered a leak yet.
252 */
253 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
254 &dp->dp_leak_dir);
255
256 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
257 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
258 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
259 &dp->dp_bptree_obj);
260 if (err != 0)
261 goto out;
262 }
263
264 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
265 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
266 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
267 &dp->dp_empty_bpobj);
268 if (err != 0)
269 goto out;
270 }
271
272 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
274 &dp->dp_tmp_userrefs_obj);
275 if (err == ENOENT)
276 err = 0;
277 if (err)
278 goto out;
279
280 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
281
282 out:
283 rrw_exit(&dp->dp_config_rwlock, FTAG);
284 return (err);
285 }
286
287 void
dsl_pool_close(dsl_pool_t * dp)288 dsl_pool_close(dsl_pool_t *dp)
289 {
290 /*
291 * Drop our references from dsl_pool_open().
292 *
293 * Since we held the origin_snap from "syncing" context (which
294 * includes pool-opening context), it actually only got a "ref"
295 * and not a hold, so just drop that here.
296 */
297 if (dp->dp_origin_snap)
298 dsl_dataset_rele(dp->dp_origin_snap, dp);
299 if (dp->dp_mos_dir)
300 dsl_dir_rele(dp->dp_mos_dir, dp);
301 if (dp->dp_free_dir)
302 dsl_dir_rele(dp->dp_free_dir, dp);
303 if (dp->dp_leak_dir)
304 dsl_dir_rele(dp->dp_leak_dir, dp);
305 if (dp->dp_root_dir)
306 dsl_dir_rele(dp->dp_root_dir, dp);
307
308 bpobj_close(&dp->dp_free_bpobj);
309
310 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
311 if (dp->dp_meta_objset)
312 dmu_objset_evict(dp->dp_meta_objset);
313
314 txg_list_destroy(&dp->dp_dirty_datasets);
315 txg_list_destroy(&dp->dp_dirty_zilogs);
316 txg_list_destroy(&dp->dp_sync_tasks);
317 txg_list_destroy(&dp->dp_dirty_dirs);
318
319 /*
320 * We can't set retry to TRUE since we're explicitly specifying
321 * a spa to flush. This is good enough; any missed buffers for
322 * this spa won't cause trouble, and they'll eventually fall
323 * out of the ARC just like any other unused buffer.
324 */
325 arc_flush(dp->dp_spa, FALSE);
326
327 txg_fini(dp);
328 dsl_scan_fini(dp);
329 dmu_buf_user_evict_wait();
330
331 rrw_destroy(&dp->dp_config_rwlock);
332 mutex_destroy(&dp->dp_lock);
333 taskq_destroy(dp->dp_vnrele_taskq);
334 if (dp->dp_blkstats)
335 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
336 kmem_free(dp, sizeof (dsl_pool_t));
337 }
338
339 dsl_pool_t *
dsl_pool_create(spa_t * spa,nvlist_t * zplprops,uint64_t txg)340 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
341 {
342 int err;
343 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
344 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
345 objset_t *os;
346 dsl_dataset_t *ds;
347 uint64_t obj;
348
349 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
350
351 /* create and open the MOS (meta-objset) */
352 dp->dp_meta_objset = dmu_objset_create_impl(spa,
353 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
354
355 /* create the pool directory */
356 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
357 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
358 ASSERT0(err);
359
360 /* Initialize scan structures */
361 VERIFY0(dsl_scan_init(dp, txg));
362
363 /* create and open the root dir */
364 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
365 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
366 NULL, dp, &dp->dp_root_dir));
367
368 /* create and open the meta-objset dir */
369 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
370 VERIFY0(dsl_pool_open_special_dir(dp,
371 MOS_DIR_NAME, &dp->dp_mos_dir));
372
373 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
374 /* create and open the free dir */
375 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
376 FREE_DIR_NAME, tx);
377 VERIFY0(dsl_pool_open_special_dir(dp,
378 FREE_DIR_NAME, &dp->dp_free_dir));
379
380 /* create and open the free_bplist */
381 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
382 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
383 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
384 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
385 dp->dp_meta_objset, obj));
386 }
387
388 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
389 dsl_pool_create_origin(dp, tx);
390
391 /* create the root dataset */
392 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
393
394 /* create the root objset */
395 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
396 os = dmu_objset_create_impl(dp->dp_spa, ds,
397 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
398 #ifdef _KERNEL
399 zfs_create_fs(os, kcred, zplprops, tx);
400 #endif
401 dsl_dataset_rele(ds, FTAG);
402
403 dmu_tx_commit(tx);
404
405 rrw_exit(&dp->dp_config_rwlock, FTAG);
406
407 return (dp);
408 }
409
410 /*
411 * Account for the meta-objset space in its placeholder dsl_dir.
412 */
413 void
dsl_pool_mos_diduse_space(dsl_pool_t * dp,int64_t used,int64_t comp,int64_t uncomp)414 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
415 int64_t used, int64_t comp, int64_t uncomp)
416 {
417 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
418 mutex_enter(&dp->dp_lock);
419 dp->dp_mos_used_delta += used;
420 dp->dp_mos_compressed_delta += comp;
421 dp->dp_mos_uncompressed_delta += uncomp;
422 mutex_exit(&dp->dp_lock);
423 }
424
425 static int
deadlist_enqueue_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)426 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
427 {
428 dsl_deadlist_t *dl = arg;
429 dsl_deadlist_insert(dl, bp, tx);
430 return (0);
431 }
432
433 static void
dsl_pool_sync_mos(dsl_pool_t * dp,dmu_tx_t * tx)434 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
435 {
436 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
437 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
438 VERIFY0(zio_wait(zio));
439 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
440 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
441 }
442
443 static void
dsl_pool_dirty_delta(dsl_pool_t * dp,int64_t delta)444 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
445 {
446 ASSERT(MUTEX_HELD(&dp->dp_lock));
447
448 if (delta < 0)
449 ASSERT3U(-delta, <=, dp->dp_dirty_total);
450
451 dp->dp_dirty_total += delta;
452
453 /*
454 * Note: we signal even when increasing dp_dirty_total.
455 * This ensures forward progress -- each thread wakes the next waiter.
456 */
457 if (dp->dp_dirty_total <= zfs_dirty_data_max)
458 cv_signal(&dp->dp_spaceavail_cv);
459 }
460
461 void
dsl_pool_sync(dsl_pool_t * dp,uint64_t txg)462 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
463 {
464 zio_t *zio;
465 dmu_tx_t *tx;
466 dsl_dir_t *dd;
467 dsl_dataset_t *ds;
468 objset_t *mos = dp->dp_meta_objset;
469 list_t synced_datasets;
470
471 list_create(&synced_datasets, sizeof (dsl_dataset_t),
472 offsetof(dsl_dataset_t, ds_synced_link));
473
474 tx = dmu_tx_create_assigned(dp, txg);
475
476 /*
477 * Write out all dirty blocks of dirty datasets.
478 */
479 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
480 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
481 /*
482 * We must not sync any non-MOS datasets twice, because
483 * we may have taken a snapshot of them. However, we
484 * may sync newly-created datasets on pass 2.
485 */
486 ASSERT(!list_link_active(&ds->ds_synced_link));
487 list_insert_tail(&synced_datasets, ds);
488 dsl_dataset_sync(ds, zio, tx);
489 }
490 VERIFY0(zio_wait(zio));
491
492 /*
493 * We have written all of the accounted dirty data, so our
494 * dp_space_towrite should now be zero. However, some seldom-used
495 * code paths do not adhere to this (e.g. dbuf_undirty(), also
496 * rounding error in dbuf_write_physdone).
497 * Shore up the accounting of any dirtied space now.
498 */
499 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
500
501 /*
502 * After the data blocks have been written (ensured by the zio_wait()
503 * above), update the user/group space accounting.
504 */
505 for (ds = list_head(&synced_datasets); ds != NULL;
506 ds = list_next(&synced_datasets, ds)) {
507 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
508 }
509
510 /*
511 * Sync the datasets again to push out the changes due to
512 * userspace updates. This must be done before we process the
513 * sync tasks, so that any snapshots will have the correct
514 * user accounting information (and we won't get confused
515 * about which blocks are part of the snapshot).
516 */
517 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
518 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
519 ASSERT(list_link_active(&ds->ds_synced_link));
520 dmu_buf_rele(ds->ds_dbuf, ds);
521 dsl_dataset_sync(ds, zio, tx);
522 }
523 VERIFY0(zio_wait(zio));
524
525 /*
526 * Now that the datasets have been completely synced, we can
527 * clean up our in-memory structures accumulated while syncing:
528 *
529 * - move dead blocks from the pending deadlist to the on-disk deadlist
530 * - release hold from dsl_dataset_dirty()
531 */
532 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
533 objset_t *os = ds->ds_objset;
534 bplist_iterate(&ds->ds_pending_deadlist,
535 deadlist_enqueue_cb, &ds->ds_deadlist, tx);
536 ASSERT(!dmu_objset_is_dirty(os, txg));
537 dmu_buf_rele(ds->ds_dbuf, ds);
538 }
539 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
540 dsl_dir_sync(dd, tx);
541 }
542
543 /*
544 * The MOS's space is accounted for in the pool/$MOS
545 * (dp_mos_dir). We can't modify the mos while we're syncing
546 * it, so we remember the deltas and apply them here.
547 */
548 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
549 dp->dp_mos_uncompressed_delta != 0) {
550 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
551 dp->dp_mos_used_delta,
552 dp->dp_mos_compressed_delta,
553 dp->dp_mos_uncompressed_delta, tx);
554 dp->dp_mos_used_delta = 0;
555 dp->dp_mos_compressed_delta = 0;
556 dp->dp_mos_uncompressed_delta = 0;
557 }
558
559 if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
560 list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
561 dsl_pool_sync_mos(dp, tx);
562 }
563
564 /*
565 * If we modify a dataset in the same txg that we want to destroy it,
566 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
567 * dsl_dir_destroy_check() will fail if there are unexpected holds.
568 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
569 * and clearing the hold on it) before we process the sync_tasks.
570 * The MOS data dirtied by the sync_tasks will be synced on the next
571 * pass.
572 */
573 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
574 dsl_sync_task_t *dst;
575 /*
576 * No more sync tasks should have been added while we
577 * were syncing.
578 */
579 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
580 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
581 dsl_sync_task_sync(dst, tx);
582 }
583
584 dmu_tx_commit(tx);
585
586 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
587 }
588
589 void
dsl_pool_sync_done(dsl_pool_t * dp,uint64_t txg)590 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
591 {
592 zilog_t *zilog;
593
594 while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
595 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
596 zil_clean(zilog, txg);
597 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
598 dmu_buf_rele(ds->ds_dbuf, zilog);
599 }
600 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
601 }
602
603 /*
604 * TRUE if the current thread is the tx_sync_thread or if we
605 * are being called from SPA context during pool initialization.
606 */
607 int
dsl_pool_sync_context(dsl_pool_t * dp)608 dsl_pool_sync_context(dsl_pool_t *dp)
609 {
610 return (curthread == dp->dp_tx.tx_sync_thread ||
611 spa_is_initializing(dp->dp_spa));
612 }
613
614 uint64_t
dsl_pool_adjustedsize(dsl_pool_t * dp,boolean_t netfree)615 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
616 {
617 uint64_t space, resv;
618
619 /*
620 * If we're trying to assess whether it's OK to do a free,
621 * cut the reservation in half to allow forward progress
622 * (e.g. make it possible to rm(1) files from a full pool).
623 */
624 space = spa_get_dspace(dp->dp_spa);
625 resv = spa_get_slop_space(dp->dp_spa);
626 if (netfree)
627 resv >>= 1;
628
629 return (space - resv);
630 }
631
632 boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t * dp)633 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
634 {
635 uint64_t delay_min_bytes =
636 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
637 boolean_t rv;
638
639 mutex_enter(&dp->dp_lock);
640 if (dp->dp_dirty_total > zfs_dirty_data_sync)
641 txg_kick(dp);
642 rv = (dp->dp_dirty_total > delay_min_bytes);
643 mutex_exit(&dp->dp_lock);
644 return (rv);
645 }
646
647 void
dsl_pool_dirty_space(dsl_pool_t * dp,int64_t space,dmu_tx_t * tx)648 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
649 {
650 if (space > 0) {
651 mutex_enter(&dp->dp_lock);
652 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
653 dsl_pool_dirty_delta(dp, space);
654 mutex_exit(&dp->dp_lock);
655 }
656 }
657
658 void
dsl_pool_undirty_space(dsl_pool_t * dp,int64_t space,uint64_t txg)659 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
660 {
661 ASSERT3S(space, >=, 0);
662 if (space == 0)
663 return;
664 mutex_enter(&dp->dp_lock);
665 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
666 /* XXX writing something we didn't dirty? */
667 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
668 }
669 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
670 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
671 ASSERT3U(dp->dp_dirty_total, >=, space);
672 dsl_pool_dirty_delta(dp, -space);
673 mutex_exit(&dp->dp_lock);
674 }
675
676 /* ARGSUSED */
677 static int
upgrade_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)678 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
679 {
680 dmu_tx_t *tx = arg;
681 dsl_dataset_t *ds, *prev = NULL;
682 int err;
683
684 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
685 if (err)
686 return (err);
687
688 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
689 err = dsl_dataset_hold_obj(dp,
690 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
691 if (err) {
692 dsl_dataset_rele(ds, FTAG);
693 return (err);
694 }
695
696 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
697 break;
698 dsl_dataset_rele(ds, FTAG);
699 ds = prev;
700 prev = NULL;
701 }
702
703 if (prev == NULL) {
704 prev = dp->dp_origin_snap;
705
706 /*
707 * The $ORIGIN can't have any data, or the accounting
708 * will be wrong.
709 */
710 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
711
712 /* The origin doesn't get attached to itself */
713 if (ds->ds_object == prev->ds_object) {
714 dsl_dataset_rele(ds, FTAG);
715 return (0);
716 }
717
718 dmu_buf_will_dirty(ds->ds_dbuf, tx);
719 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
720 dsl_dataset_phys(ds)->ds_prev_snap_txg =
721 dsl_dataset_phys(prev)->ds_creation_txg;
722
723 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
724 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
725
726 dmu_buf_will_dirty(prev->ds_dbuf, tx);
727 dsl_dataset_phys(prev)->ds_num_children++;
728
729 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
730 ASSERT(ds->ds_prev == NULL);
731 VERIFY0(dsl_dataset_hold_obj(dp,
732 dsl_dataset_phys(ds)->ds_prev_snap_obj,
733 ds, &ds->ds_prev));
734 }
735 }
736
737 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
738 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
739
740 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
741 dmu_buf_will_dirty(prev->ds_dbuf, tx);
742 dsl_dataset_phys(prev)->ds_next_clones_obj =
743 zap_create(dp->dp_meta_objset,
744 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
745 }
746 VERIFY0(zap_add_int(dp->dp_meta_objset,
747 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
748
749 dsl_dataset_rele(ds, FTAG);
750 if (prev != dp->dp_origin_snap)
751 dsl_dataset_rele(prev, FTAG);
752 return (0);
753 }
754
755 void
dsl_pool_upgrade_clones(dsl_pool_t * dp,dmu_tx_t * tx)756 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
757 {
758 ASSERT(dmu_tx_is_syncing(tx));
759 ASSERT(dp->dp_origin_snap != NULL);
760
761 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
762 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
763 }
764
765 /* ARGSUSED */
766 static int
upgrade_dir_clones_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)767 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
768 {
769 dmu_tx_t *tx = arg;
770 objset_t *mos = dp->dp_meta_objset;
771
772 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
773 dsl_dataset_t *origin;
774
775 VERIFY0(dsl_dataset_hold_obj(dp,
776 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
777
778 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
779 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
780 dsl_dir_phys(origin->ds_dir)->dd_clones =
781 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
782 0, tx);
783 }
784
785 VERIFY0(zap_add_int(dp->dp_meta_objset,
786 dsl_dir_phys(origin->ds_dir)->dd_clones,
787 ds->ds_object, tx));
788
789 dsl_dataset_rele(origin, FTAG);
790 }
791 return (0);
792 }
793
794 void
dsl_pool_upgrade_dir_clones(dsl_pool_t * dp,dmu_tx_t * tx)795 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
796 {
797 ASSERT(dmu_tx_is_syncing(tx));
798 uint64_t obj;
799
800 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
801 VERIFY0(dsl_pool_open_special_dir(dp,
802 FREE_DIR_NAME, &dp->dp_free_dir));
803
804 /*
805 * We can't use bpobj_alloc(), because spa_version() still
806 * returns the old version, and we need a new-version bpobj with
807 * subobj support. So call dmu_object_alloc() directly.
808 */
809 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
810 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
811 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
812 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
813 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
814
815 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
816 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
817 }
818
819 void
dsl_pool_create_origin(dsl_pool_t * dp,dmu_tx_t * tx)820 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
821 {
822 uint64_t dsobj;
823 dsl_dataset_t *ds;
824
825 ASSERT(dmu_tx_is_syncing(tx));
826 ASSERT(dp->dp_origin_snap == NULL);
827 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
828
829 /* create the origin dir, ds, & snap-ds */
830 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
831 NULL, 0, kcred, tx);
832 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
833 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
834 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
835 dp, &dp->dp_origin_snap));
836 dsl_dataset_rele(ds, FTAG);
837 }
838
839 taskq_t *
dsl_pool_vnrele_taskq(dsl_pool_t * dp)840 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
841 {
842 return (dp->dp_vnrele_taskq);
843 }
844
845 /*
846 * Walk through the pool-wide zap object of temporary snapshot user holds
847 * and release them.
848 */
849 void
dsl_pool_clean_tmp_userrefs(dsl_pool_t * dp)850 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
851 {
852 zap_attribute_t za;
853 zap_cursor_t zc;
854 objset_t *mos = dp->dp_meta_objset;
855 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
856 nvlist_t *holds;
857
858 if (zapobj == 0)
859 return;
860 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
861
862 holds = fnvlist_alloc();
863
864 for (zap_cursor_init(&zc, mos, zapobj);
865 zap_cursor_retrieve(&zc, &za) == 0;
866 zap_cursor_advance(&zc)) {
867 char *htag;
868 nvlist_t *tags;
869
870 htag = strchr(za.za_name, '-');
871 *htag = '\0';
872 ++htag;
873 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
874 tags = fnvlist_alloc();
875 fnvlist_add_boolean(tags, htag);
876 fnvlist_add_nvlist(holds, za.za_name, tags);
877 fnvlist_free(tags);
878 } else {
879 fnvlist_add_boolean(tags, htag);
880 }
881 }
882 dsl_dataset_user_release_tmp(dp, holds);
883 fnvlist_free(holds);
884 zap_cursor_fini(&zc);
885 }
886
887 /*
888 * Create the pool-wide zap object for storing temporary snapshot holds.
889 */
890 void
dsl_pool_user_hold_create_obj(dsl_pool_t * dp,dmu_tx_t * tx)891 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
892 {
893 objset_t *mos = dp->dp_meta_objset;
894
895 ASSERT(dp->dp_tmp_userrefs_obj == 0);
896 ASSERT(dmu_tx_is_syncing(tx));
897
898 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
899 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
900 }
901
902 static int
dsl_pool_user_hold_rele_impl(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx,boolean_t holding)903 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
904 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
905 {
906 objset_t *mos = dp->dp_meta_objset;
907 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
908 char *name;
909 int error;
910
911 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
912 ASSERT(dmu_tx_is_syncing(tx));
913
914 /*
915 * If the pool was created prior to SPA_VERSION_USERREFS, the
916 * zap object for temporary holds might not exist yet.
917 */
918 if (zapobj == 0) {
919 if (holding) {
920 dsl_pool_user_hold_create_obj(dp, tx);
921 zapobj = dp->dp_tmp_userrefs_obj;
922 } else {
923 return (SET_ERROR(ENOENT));
924 }
925 }
926
927 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
928 if (holding)
929 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
930 else
931 error = zap_remove(mos, zapobj, name, tx);
932 strfree(name);
933
934 return (error);
935 }
936
937 /*
938 * Add a temporary hold for the given dataset object and tag.
939 */
940 int
dsl_pool_user_hold(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx)941 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
942 uint64_t now, dmu_tx_t *tx)
943 {
944 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
945 }
946
947 /*
948 * Release a temporary hold for the given dataset object and tag.
949 */
950 int
dsl_pool_user_release(dsl_pool_t * dp,uint64_t dsobj,const char * tag,dmu_tx_t * tx)951 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
952 dmu_tx_t *tx)
953 {
954 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
955 tx, B_FALSE));
956 }
957
958 /*
959 * DSL Pool Configuration Lock
960 *
961 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
962 * creation / destruction / rename / property setting). It must be held for
963 * read to hold a dataset or dsl_dir. I.e. you must call
964 * dsl_pool_config_enter() or dsl_pool_hold() before calling
965 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
966 * must be held continuously until all datasets and dsl_dirs are released.
967 *
968 * The only exception to this rule is that if a "long hold" is placed on
969 * a dataset, then the dp_config_rwlock may be dropped while the dataset
970 * is still held. The long hold will prevent the dataset from being
971 * destroyed -- the destroy will fail with EBUSY. A long hold can be
972 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
973 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
974 *
975 * Legitimate long-holders (including owners) should be long-running, cancelable
976 * tasks that should cause "zfs destroy" to fail. This includes DMU
977 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
978 * "zfs send", and "zfs diff". There are several other long-holders whose
979 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
980 *
981 * The usual formula for long-holding would be:
982 * dsl_pool_hold()
983 * dsl_dataset_hold()
984 * ... perform checks ...
985 * dsl_dataset_long_hold()
986 * dsl_pool_rele()
987 * ... perform long-running task ...
988 * dsl_dataset_long_rele()
989 * dsl_dataset_rele()
990 *
991 * Note that when the long hold is released, the dataset is still held but
992 * the pool is not held. The dataset may change arbitrarily during this time
993 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
994 * dataset except release it.
995 *
996 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
997 * or modifying operations.
998 *
999 * Modifying operations should generally use dsl_sync_task(). The synctask
1000 * infrastructure enforces proper locking strategy with respect to the
1001 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1002 *
1003 * Read-only operations will manually hold the pool, then the dataset, obtain
1004 * information from the dataset, then release the pool and dataset.
1005 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1006 * hold/rele.
1007 */
1008
1009 int
dsl_pool_hold(const char * name,void * tag,dsl_pool_t ** dp)1010 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1011 {
1012 spa_t *spa;
1013 int error;
1014
1015 error = spa_open(name, &spa, tag);
1016 if (error == 0) {
1017 *dp = spa_get_dsl(spa);
1018 dsl_pool_config_enter(*dp, tag);
1019 }
1020 return (error);
1021 }
1022
1023 void
dsl_pool_rele(dsl_pool_t * dp,void * tag)1024 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1025 {
1026 dsl_pool_config_exit(dp, tag);
1027 spa_close(dp->dp_spa, tag);
1028 }
1029
1030 void
dsl_pool_config_enter(dsl_pool_t * dp,void * tag)1031 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1032 {
1033 /*
1034 * We use a "reentrant" reader-writer lock, but not reentrantly.
1035 *
1036 * The rrwlock can (with the track_all flag) track all reading threads,
1037 * which is very useful for debugging which code path failed to release
1038 * the lock, and for verifying that the *current* thread does hold
1039 * the lock.
1040 *
1041 * (Unlike a rwlock, which knows that N threads hold it for
1042 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1043 * if any thread holds it for read, even if this thread doesn't).
1044 */
1045 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1046 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1047 }
1048
1049 void
dsl_pool_config_enter_prio(dsl_pool_t * dp,void * tag)1050 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1051 {
1052 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1053 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1054 }
1055
1056 void
dsl_pool_config_exit(dsl_pool_t * dp,void * tag)1057 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1058 {
1059 rrw_exit(&dp->dp_config_rwlock, tag);
1060 }
1061
1062 boolean_t
dsl_pool_config_held(dsl_pool_t * dp)1063 dsl_pool_config_held(dsl_pool_t *dp)
1064 {
1065 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1066 }
1067
1068 boolean_t
dsl_pool_config_held_writer(dsl_pool_t * dp)1069 dsl_pool_config_held_writer(dsl_pool_t *dp)
1070 {
1071 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1072 }
1073