1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32 #include <sys/dsl_prop.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_synctask.h>
35 #include <sys/dsl_scan.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/arc.h>
40 #include <sys/zap.h>
41 #include <sys/zio.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dsl_deadlist.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/bptree.h>
50 #include <sys/zfeature.h>
51 #include <sys/zil_impl.h>
52 #include <sys/dsl_userhold.h>
53 #include <sys/mmp.h>
54
55 /*
56 * ZFS Write Throttle
57 * ------------------
58 *
59 * ZFS must limit the rate of incoming writes to the rate at which it is able
60 * to sync data modifications to the backend storage. Throttling by too much
61 * creates an artificial limit; throttling by too little can only be sustained
62 * for short periods and would lead to highly lumpy performance. On a per-pool
63 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
64 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
65 * of dirty data decreases. When the amount of dirty data exceeds a
66 * predetermined threshold further modifications are blocked until the amount
67 * of dirty data decreases (as data is synced out).
68 *
69 * The limit on dirty data is tunable, and should be adjusted according to
70 * both the IO capacity and available memory of the system. The larger the
71 * window, the more ZFS is able to aggregate and amortize metadata (and data)
72 * changes. However, memory is a limited resource, and allowing for more dirty
73 * data comes at the cost of keeping other useful data in memory (for example
74 * ZFS data cached by the ARC).
75 *
76 * Implementation
77 *
78 * As buffers are modified dsl_pool_willuse_space() increments both the per-
79 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
80 * dirty space used; dsl_pool_dirty_space() decrements those values as data
81 * is synced out from dsl_pool_sync(). While only the poolwide value is
82 * relevant, the per-txg value is useful for debugging. The tunable
83 * zfs_dirty_data_max determines the dirty space limit. Once that value is
84 * exceeded, new writes are halted until space frees up.
85 *
86 * The zfs_dirty_data_sync tunable dictates the threshold at which we
87 * ensure that there is a txg syncing (see the comment in txg.c for a full
88 * description of transaction group stages).
89 *
90 * The IO scheduler uses both the dirty space limit and current amount of
91 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
92 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 *
94 * The delay is also calculated based on the amount of dirty data. See the
95 * comment above dmu_tx_delay() for details.
96 */
97
98 /*
99 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
100 * capped at zfs_dirty_data_max_max. It can also be overridden in /etc/system.
101 */
102 uint64_t zfs_dirty_data_max;
103 uint64_t zfs_dirty_data_max_max = 4ULL * 1024 * 1024 * 1024;
104 int zfs_dirty_data_max_percent = 10;
105
106 /*
107 * If there's at least this much dirty data (as a percentage of
108 * zfs_dirty_data_max), push out a txg. This should be less than
109 * zfs_vdev_async_write_active_min_dirty_percent.
110 */
111 uint64_t zfs_dirty_data_sync_pct = 20;
112
113 /*
114 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
115 * and delay each transaction.
116 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
117 */
118 int zfs_delay_min_dirty_percent = 60;
119
120 /*
121 * This controls how quickly the delay approaches infinity.
122 * Larger values cause it to delay more for a given amount of dirty data.
123 * Therefore larger values will cause there to be less dirty data for a
124 * given throughput.
125 *
126 * For the smoothest delay, this value should be about 1 billion divided
127 * by the maximum number of operations per second. This will smoothly
128 * handle between 10x and 1/10th this number.
129 *
130 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
131 * multiply in dmu_tx_delay().
132 */
133 uint64_t zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
134
135 /*
136 * This determines the number of threads used by the dp_sync_taskq.
137 */
138 int zfs_sync_taskq_batch_pct = 75;
139
140 /*
141 * These tunables determine the behavior of how zil_itxg_clean() is
142 * called via zil_clean() in the context of spa_sync(). When an itxg
143 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
144 * If the dispatch fails, the call to zil_itxg_clean() will occur
145 * synchronously in the context of spa_sync(), which can negatively
146 * impact the performance of spa_sync() (e.g. in the case of the itxg
147 * list having a large number of itxs that needs to be cleaned).
148 *
149 * Thus, these tunables can be used to manipulate the behavior of the
150 * taskq used by zil_clean(); they determine the number of taskq entries
151 * that are pre-populated when the taskq is first created (via the
152 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
153 * taskq entries that are cached after an on-demand allocation (via the
154 * "zfs_zil_clean_taskq_maxalloc").
155 *
156 * The idea being, we want to try reasonably hard to ensure there will
157 * already be a taskq entry pre-allocated by the time that it is needed
158 * by zil_clean(). This way, we can avoid the possibility of an
159 * on-demand allocation of a new taskq entry from failing, which would
160 * result in zil_itxg_clean() being called synchronously from zil_clean()
161 * (which can adversely affect performance of spa_sync()).
162 *
163 * Additionally, the number of threads used by the taskq can be
164 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
165 */
166 int zfs_zil_clean_taskq_nthr_pct = 100;
167 int zfs_zil_clean_taskq_minalloc = 1024;
168 int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
169
170 int
dsl_pool_open_special_dir(dsl_pool_t * dp,const char * name,dsl_dir_t ** ddp)171 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
172 {
173 uint64_t obj;
174 int err;
175
176 err = zap_lookup(dp->dp_meta_objset,
177 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
178 name, sizeof (obj), 1, &obj);
179 if (err)
180 return (err);
181
182 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
183 }
184
185 static dsl_pool_t *
dsl_pool_open_impl(spa_t * spa,uint64_t txg)186 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
187 {
188 dsl_pool_t *dp;
189 blkptr_t *bp = spa_get_rootblkptr(spa);
190
191 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
192 dp->dp_spa = spa;
193 dp->dp_meta_rootbp = *bp;
194 rrw_init(&dp->dp_config_rwlock, B_TRUE);
195 txg_init(dp, txg);
196 mmp_init(spa);
197
198 txg_list_create(&dp->dp_dirty_datasets, spa,
199 offsetof(dsl_dataset_t, ds_dirty_link));
200 txg_list_create(&dp->dp_dirty_zilogs, spa,
201 offsetof(zilog_t, zl_dirty_link));
202 txg_list_create(&dp->dp_dirty_dirs, spa,
203 offsetof(dsl_dir_t, dd_dirty_link));
204 txg_list_create(&dp->dp_sync_tasks, spa,
205 offsetof(dsl_sync_task_t, dst_node));
206 txg_list_create(&dp->dp_early_sync_tasks, spa,
207 offsetof(dsl_sync_task_t, dst_node));
208
209 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
210 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
211 TASKQ_THREADS_CPU_PCT);
212
213 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
214 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
215 zfs_zil_clean_taskq_minalloc,
216 zfs_zil_clean_taskq_maxalloc,
217 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
218
219 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
220 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
221
222 dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
223 1, 4, 0);
224 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
225 max_ncpus, minclsyspri, max_ncpus, INT_MAX,
226 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
227
228 return (dp);
229 }
230
231 int
dsl_pool_init(spa_t * spa,uint64_t txg,dsl_pool_t ** dpp)232 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
233 {
234 int err;
235 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
236
237 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
238 &dp->dp_meta_objset);
239 if (err != 0)
240 dsl_pool_close(dp);
241 else
242 *dpp = dp;
243
244 return (err);
245 }
246
247 int
dsl_pool_open(dsl_pool_t * dp)248 dsl_pool_open(dsl_pool_t *dp)
249 {
250 int err;
251 dsl_dir_t *dd;
252 dsl_dataset_t *ds;
253 uint64_t obj;
254
255 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
256 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
257 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
258 &dp->dp_root_dir_obj);
259 if (err)
260 goto out;
261
262 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
263 NULL, dp, &dp->dp_root_dir);
264 if (err)
265 goto out;
266
267 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
268 if (err)
269 goto out;
270
271 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
272 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
273 if (err)
274 goto out;
275 err = dsl_dataset_hold_obj(dp,
276 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
277 if (err == 0) {
278 err = dsl_dataset_hold_obj(dp,
279 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
280 &dp->dp_origin_snap);
281 dsl_dataset_rele(ds, FTAG);
282 }
283 dsl_dir_rele(dd, dp);
284 if (err)
285 goto out;
286 }
287
288 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
289 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
290 &dp->dp_free_dir);
291 if (err)
292 goto out;
293
294 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
295 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
296 if (err)
297 goto out;
298 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
299 dp->dp_meta_objset, obj));
300 }
301
302 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
303 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
304 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
305 if (err == 0) {
306 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
307 dp->dp_meta_objset, obj));
308 } else if (err == ENOENT) {
309 /*
310 * We might not have created the remap bpobj yet.
311 */
312 err = 0;
313 } else {
314 goto out;
315 }
316 }
317
318 /*
319 * Note: errors ignored, because the these special dirs, used for
320 * space accounting, are only created on demand.
321 */
322 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
323 &dp->dp_leak_dir);
324
325 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
328 &dp->dp_bptree_obj);
329 if (err != 0)
330 goto out;
331 }
332
333 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
334 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
335 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
336 &dp->dp_empty_bpobj);
337 if (err != 0)
338 goto out;
339 }
340
341 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
342 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
343 &dp->dp_tmp_userrefs_obj);
344 if (err == ENOENT)
345 err = 0;
346 if (err)
347 goto out;
348
349 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
350
351 out:
352 rrw_exit(&dp->dp_config_rwlock, FTAG);
353 return (err);
354 }
355
356 void
dsl_pool_close(dsl_pool_t * dp)357 dsl_pool_close(dsl_pool_t *dp)
358 {
359 /*
360 * Drop our references from dsl_pool_open().
361 *
362 * Since we held the origin_snap from "syncing" context (which
363 * includes pool-opening context), it actually only got a "ref"
364 * and not a hold, so just drop that here.
365 */
366 if (dp->dp_origin_snap != NULL)
367 dsl_dataset_rele(dp->dp_origin_snap, dp);
368 if (dp->dp_mos_dir != NULL)
369 dsl_dir_rele(dp->dp_mos_dir, dp);
370 if (dp->dp_free_dir != NULL)
371 dsl_dir_rele(dp->dp_free_dir, dp);
372 if (dp->dp_leak_dir != NULL)
373 dsl_dir_rele(dp->dp_leak_dir, dp);
374 if (dp->dp_root_dir != NULL)
375 dsl_dir_rele(dp->dp_root_dir, dp);
376
377 bpobj_close(&dp->dp_free_bpobj);
378 bpobj_close(&dp->dp_obsolete_bpobj);
379
380 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
381 if (dp->dp_meta_objset != NULL)
382 dmu_objset_evict(dp->dp_meta_objset);
383
384 txg_list_destroy(&dp->dp_dirty_datasets);
385 txg_list_destroy(&dp->dp_dirty_zilogs);
386 txg_list_destroy(&dp->dp_sync_tasks);
387 txg_list_destroy(&dp->dp_early_sync_tasks);
388 txg_list_destroy(&dp->dp_dirty_dirs);
389
390 taskq_destroy(dp->dp_zil_clean_taskq);
391 taskq_destroy(dp->dp_sync_taskq);
392
393 /*
394 * We can't set retry to TRUE since we're explicitly specifying
395 * a spa to flush. This is good enough; any missed buffers for
396 * this spa won't cause trouble, and they'll eventually fall
397 * out of the ARC just like any other unused buffer.
398 */
399 arc_flush(dp->dp_spa, FALSE);
400
401 mmp_fini(dp->dp_spa);
402 txg_fini(dp);
403 dsl_scan_fini(dp);
404 dmu_buf_user_evict_wait();
405
406 rrw_destroy(&dp->dp_config_rwlock);
407 mutex_destroy(&dp->dp_lock);
408 taskq_destroy(dp->dp_unlinked_drain_taskq);
409 taskq_destroy(dp->dp_vnrele_taskq);
410 if (dp->dp_blkstats != NULL)
411 kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
412 kmem_free(dp, sizeof (dsl_pool_t));
413 }
414
415 void
dsl_pool_create_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)416 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
417 {
418 uint64_t obj;
419 /*
420 * Currently, we only create the obsolete_bpobj where there are
421 * indirect vdevs with referenced mappings.
422 */
423 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
424 /* create and open the obsolete_bpobj */
425 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
426 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
427 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
428 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
429 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
430 }
431
432 void
dsl_pool_destroy_obsolete_bpobj(dsl_pool_t * dp,dmu_tx_t * tx)433 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
434 {
435 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
436 VERIFY0(zap_remove(dp->dp_meta_objset,
437 DMU_POOL_DIRECTORY_OBJECT,
438 DMU_POOL_OBSOLETE_BPOBJ, tx));
439 bpobj_free(dp->dp_meta_objset,
440 dp->dp_obsolete_bpobj.bpo_object, tx);
441 bpobj_close(&dp->dp_obsolete_bpobj);
442 }
443
444 dsl_pool_t *
dsl_pool_create(spa_t * spa,nvlist_t * zplprops,dsl_crypto_params_t * dcp,uint64_t txg)445 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, dsl_crypto_params_t *dcp,
446 uint64_t txg)
447 {
448 int err;
449 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
450 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
451 dsl_dataset_t *ds;
452 uint64_t obj;
453
454 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
455
456 /* create and open the MOS (meta-objset) */
457 dp->dp_meta_objset = dmu_objset_create_impl(spa,
458 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
459 spa->spa_meta_objset = dp->dp_meta_objset;
460
461 /* create the pool directory */
462 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
463 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
464 ASSERT0(err);
465
466 /* Initialize scan structures */
467 VERIFY0(dsl_scan_init(dp, txg));
468
469 /* create and open the root dir */
470 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
471 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
472 NULL, dp, &dp->dp_root_dir));
473
474 /* create and open the meta-objset dir */
475 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
476 VERIFY0(dsl_pool_open_special_dir(dp,
477 MOS_DIR_NAME, &dp->dp_mos_dir));
478
479 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
480 /* create and open the free dir */
481 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
482 FREE_DIR_NAME, tx);
483 VERIFY0(dsl_pool_open_special_dir(dp,
484 FREE_DIR_NAME, &dp->dp_free_dir));
485
486 /* create and open the free_bplist */
487 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
488 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
489 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
490 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
491 dp->dp_meta_objset, obj));
492 }
493
494 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
495 dsl_pool_create_origin(dp, tx);
496
497 /*
498 * Some features may be needed when creating the root dataset, so we
499 * create the feature objects here.
500 */
501 if (spa_version(spa) >= SPA_VERSION_FEATURES)
502 spa_feature_create_zap_objects(spa, tx);
503
504 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
505 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
506 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
507
508 /* create the root dataset */
509 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
510
511 /* create the root objset */
512 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
513 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
514 #ifdef _KERNEL
515 {
516 objset_t *os;
517 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
518 os = dmu_objset_create_impl(dp->dp_spa, ds,
519 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
520 rrw_exit(&ds->ds_bp_rwlock, FTAG);
521 zfs_create_fs(os, kcred, zplprops, tx);
522 }
523 #endif
524 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
525
526 dmu_tx_commit(tx);
527
528 rrw_exit(&dp->dp_config_rwlock, FTAG);
529
530 return (dp);
531 }
532
533 /*
534 * Account for the meta-objset space in its placeholder dsl_dir.
535 */
536 void
dsl_pool_mos_diduse_space(dsl_pool_t * dp,int64_t used,int64_t comp,int64_t uncomp)537 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
538 int64_t used, int64_t comp, int64_t uncomp)
539 {
540 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
541 mutex_enter(&dp->dp_lock);
542 dp->dp_mos_used_delta += used;
543 dp->dp_mos_compressed_delta += comp;
544 dp->dp_mos_uncompressed_delta += uncomp;
545 mutex_exit(&dp->dp_lock);
546 }
547
548 static void
dsl_pool_sync_mos(dsl_pool_t * dp,dmu_tx_t * tx)549 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
550 {
551 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
552 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
553 VERIFY0(zio_wait(zio));
554 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
555 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
556 }
557
558 static void
dsl_pool_dirty_delta(dsl_pool_t * dp,int64_t delta)559 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
560 {
561 ASSERT(MUTEX_HELD(&dp->dp_lock));
562
563 if (delta < 0)
564 ASSERT3U(-delta, <=, dp->dp_dirty_total);
565
566 dp->dp_dirty_total += delta;
567
568 /*
569 * Note: we signal even when increasing dp_dirty_total.
570 * This ensures forward progress -- each thread wakes the next waiter.
571 */
572 if (dp->dp_dirty_total < zfs_dirty_data_max)
573 cv_signal(&dp->dp_spaceavail_cv);
574 }
575
576 static boolean_t
dsl_early_sync_task_verify(dsl_pool_t * dp,uint64_t txg)577 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
578 {
579 spa_t *spa = dp->dp_spa;
580 vdev_t *rvd = spa->spa_root_vdev;
581
582 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
583 vdev_t *vd = rvd->vdev_child[c];
584 txg_list_t *tl = &vd->vdev_ms_list;
585 metaslab_t *ms;
586
587 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
588 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
589 VERIFY(range_tree_is_empty(ms->ms_freeing));
590 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
591 }
592 }
593
594 return (B_TRUE);
595 }
596
597 void
dsl_pool_sync(dsl_pool_t * dp,uint64_t txg)598 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
599 {
600 zio_t *zio;
601 dmu_tx_t *tx;
602 dsl_dir_t *dd;
603 dsl_dataset_t *ds;
604 objset_t *mos = dp->dp_meta_objset;
605 list_t synced_datasets;
606
607 list_create(&synced_datasets, sizeof (dsl_dataset_t),
608 offsetof(dsl_dataset_t, ds_synced_link));
609
610 tx = dmu_tx_create_assigned(dp, txg);
611
612 /*
613 * Run all early sync tasks before writing out any dirty blocks.
614 * For more info on early sync tasks see block comment in
615 * dsl_early_sync_task().
616 */
617 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
618 dsl_sync_task_t *dst;
619
620 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
621 while ((dst =
622 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
623 ASSERT(dsl_early_sync_task_verify(dp, txg));
624 dsl_sync_task_sync(dst, tx);
625 }
626 ASSERT(dsl_early_sync_task_verify(dp, txg));
627 }
628
629 /*
630 * Write out all dirty blocks of dirty datasets.
631 */
632 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
633 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
634 /*
635 * We must not sync any non-MOS datasets twice, because
636 * we may have taken a snapshot of them. However, we
637 * may sync newly-created datasets on pass 2.
638 */
639 ASSERT(!list_link_active(&ds->ds_synced_link));
640 list_insert_tail(&synced_datasets, ds);
641 dsl_dataset_sync(ds, zio, tx);
642 }
643 VERIFY0(zio_wait(zio));
644
645 /*
646 * We have written all of the accounted dirty data, so our
647 * dp_space_towrite should now be zero. However, some seldom-used
648 * code paths do not adhere to this (e.g. dbuf_undirty(), also
649 * rounding error in dbuf_write_physdone).
650 * Shore up the accounting of any dirtied space now.
651 */
652 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
653
654 /*
655 * Update the long range free counter after
656 * we're done syncing user data
657 */
658 mutex_enter(&dp->dp_lock);
659 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
660 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
661 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
662 mutex_exit(&dp->dp_lock);
663
664 /*
665 * After the data blocks have been written (ensured by the zio_wait()
666 * above), update the user/group/project space accounting. This happens
667 * in tasks dispatched to dp_sync_taskq, so wait for them before
668 * continuing.
669 */
670 for (ds = list_head(&synced_datasets); ds != NULL;
671 ds = list_next(&synced_datasets, ds)) {
672 dmu_objset_do_userquota_updates(ds->ds_objset, tx);
673 }
674 taskq_wait(dp->dp_sync_taskq);
675
676 /*
677 * Sync the datasets again to push out the changes due to
678 * userspace updates. This must be done before we process the
679 * sync tasks, so that any snapshots will have the correct
680 * user accounting information (and we won't get confused
681 * about which blocks are part of the snapshot).
682 */
683 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
684 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
685 objset_t *os = ds->ds_objset;
686
687 ASSERT(list_link_active(&ds->ds_synced_link));
688 dmu_buf_rele(ds->ds_dbuf, ds);
689 dsl_dataset_sync(ds, zio, tx);
690
691 /*
692 * Release any key mappings created by calls to
693 * dsl_dataset_dirty() from the userquota accounting
694 * code paths.
695 */
696 if (os->os_encrypted && !os->os_raw_receive &&
697 !os->os_next_write_raw[txg & TXG_MASK]) {
698 ASSERT3P(ds->ds_key_mapping, !=, NULL);
699 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
700 }
701 }
702 VERIFY0(zio_wait(zio));
703
704 /*
705 * Now that the datasets have been completely synced, we can
706 * clean up our in-memory structures accumulated while syncing:
707 *
708 * - move dead blocks from the pending deadlist to the on-disk deadlist
709 * - release hold from dsl_dataset_dirty()
710 * - release key mapping hold from dsl_dataset_dirty()
711 */
712 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
713 objset_t *os = ds->ds_objset;
714
715 if (os->os_encrypted && !os->os_raw_receive &&
716 !os->os_next_write_raw[txg & TXG_MASK]) {
717 ASSERT3P(ds->ds_key_mapping, !=, NULL);
718 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
719 }
720
721 dsl_dataset_sync_done(ds, tx);
722 }
723 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
724 dsl_dir_sync(dd, tx);
725 }
726
727 /*
728 * The MOS's space is accounted for in the pool/$MOS
729 * (dp_mos_dir). We can't modify the mos while we're syncing
730 * it, so we remember the deltas and apply them here.
731 */
732 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
733 dp->dp_mos_uncompressed_delta != 0) {
734 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
735 dp->dp_mos_used_delta,
736 dp->dp_mos_compressed_delta,
737 dp->dp_mos_uncompressed_delta, tx);
738 dp->dp_mos_used_delta = 0;
739 dp->dp_mos_compressed_delta = 0;
740 dp->dp_mos_uncompressed_delta = 0;
741 }
742
743 if (dmu_objset_is_dirty(mos, txg)) {
744 dsl_pool_sync_mos(dp, tx);
745 }
746
747 /*
748 * If we modify a dataset in the same txg that we want to destroy it,
749 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
750 * dsl_dir_destroy_check() will fail if there are unexpected holds.
751 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
752 * and clearing the hold on it) before we process the sync_tasks.
753 * The MOS data dirtied by the sync_tasks will be synced on the next
754 * pass.
755 */
756 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
757 dsl_sync_task_t *dst;
758 /*
759 * No more sync tasks should have been added while we
760 * were syncing.
761 */
762 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
763 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
764 dsl_sync_task_sync(dst, tx);
765 }
766
767 dmu_tx_commit(tx);
768
769 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
770 }
771
772 void
dsl_pool_sync_done(dsl_pool_t * dp,uint64_t txg)773 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
774 {
775 zilog_t *zilog;
776
777 while (zilog = txg_list_head(&dp->dp_dirty_zilogs, txg)) {
778 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
779 /*
780 * We don't remove the zilog from the dp_dirty_zilogs
781 * list until after we've cleaned it. This ensures that
782 * callers of zilog_is_dirty() receive an accurate
783 * answer when they are racing with the spa sync thread.
784 */
785 zil_clean(zilog, txg);
786 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
787 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
788 dmu_buf_rele(ds->ds_dbuf, zilog);
789 }
790 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
791 }
792
793 /*
794 * TRUE if the current thread is the tx_sync_thread or if we
795 * are being called from SPA context during pool initialization.
796 */
797 int
dsl_pool_sync_context(dsl_pool_t * dp)798 dsl_pool_sync_context(dsl_pool_t *dp)
799 {
800 return (curthread == dp->dp_tx.tx_sync_thread ||
801 spa_is_initializing(dp->dp_spa) ||
802 taskq_member(dp->dp_sync_taskq, curthread));
803 }
804
805 /*
806 * This function returns the amount of allocatable space in the pool
807 * minus whatever space is currently reserved by ZFS for specific
808 * purposes. Specifically:
809 *
810 * 1] Any reserved SLOP space
811 * 2] Any space used by the checkpoint
812 * 3] Any space used for deferred frees
813 *
814 * The latter 2 are especially important because they are needed to
815 * rectify the SPA's and DMU's different understanding of how much space
816 * is used. Now the DMU is aware of that extra space tracked by the SPA
817 * without having to maintain a separate special dir (e.g similar to
818 * $MOS, $FREEING, and $LEAKED).
819 *
820 * Note: By deferred frees here, we mean the frees that were deferred
821 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
822 * segments placed in ms_defer trees during metaslab_sync_done().
823 */
824 uint64_t
dsl_pool_adjustedsize(dsl_pool_t * dp,zfs_space_check_t slop_policy)825 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
826 {
827 spa_t *spa = dp->dp_spa;
828 uint64_t space, resv, adjustedsize;
829 uint64_t spa_deferred_frees =
830 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
831
832 space = spa_get_dspace(spa)
833 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
834 resv = spa_get_slop_space(spa);
835
836 switch (slop_policy) {
837 case ZFS_SPACE_CHECK_NORMAL:
838 break;
839 case ZFS_SPACE_CHECK_RESERVED:
840 resv >>= 1;
841 break;
842 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
843 resv >>= 2;
844 break;
845 case ZFS_SPACE_CHECK_NONE:
846 resv = 0;
847 break;
848 default:
849 panic("invalid slop policy value: %d", slop_policy);
850 break;
851 }
852 adjustedsize = (space >= resv) ? (space - resv) : 0;
853
854 return (adjustedsize);
855 }
856
857 uint64_t
dsl_pool_unreserved_space(dsl_pool_t * dp,zfs_space_check_t slop_policy)858 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
859 {
860 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
861 uint64_t deferred =
862 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
863 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
864 return (quota);
865 }
866
867 boolean_t
dsl_pool_need_dirty_delay(dsl_pool_t * dp)868 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
869 {
870 uint64_t delay_min_bytes =
871 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
872 uint64_t dirty_min_bytes =
873 zfs_dirty_data_max * zfs_dirty_data_sync_pct / 100;
874 boolean_t rv;
875
876 mutex_enter(&dp->dp_lock);
877 if (dp->dp_dirty_total > dirty_min_bytes)
878 txg_kick(dp);
879 rv = (dp->dp_dirty_total > delay_min_bytes);
880 mutex_exit(&dp->dp_lock);
881 return (rv);
882 }
883
884 void
dsl_pool_dirty_space(dsl_pool_t * dp,int64_t space,dmu_tx_t * tx)885 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
886 {
887 if (space > 0) {
888 mutex_enter(&dp->dp_lock);
889 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
890 dsl_pool_dirty_delta(dp, space);
891 mutex_exit(&dp->dp_lock);
892 }
893 }
894
895 void
dsl_pool_undirty_space(dsl_pool_t * dp,int64_t space,uint64_t txg)896 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
897 {
898 ASSERT3S(space, >=, 0);
899 if (space == 0)
900 return;
901 mutex_enter(&dp->dp_lock);
902 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
903 /* XXX writing something we didn't dirty? */
904 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
905 }
906 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
907 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
908 ASSERT3U(dp->dp_dirty_total, >=, space);
909 dsl_pool_dirty_delta(dp, -space);
910 mutex_exit(&dp->dp_lock);
911 }
912
913 /* ARGSUSED */
914 static int
upgrade_clones_cb(dsl_pool_t * dp,dsl_dataset_t * hds,void * arg)915 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
916 {
917 dmu_tx_t *tx = arg;
918 dsl_dataset_t *ds, *prev = NULL;
919 int err;
920
921 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
922 if (err)
923 return (err);
924
925 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
926 err = dsl_dataset_hold_obj(dp,
927 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
928 if (err) {
929 dsl_dataset_rele(ds, FTAG);
930 return (err);
931 }
932
933 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
934 break;
935 dsl_dataset_rele(ds, FTAG);
936 ds = prev;
937 prev = NULL;
938 }
939
940 if (prev == NULL) {
941 prev = dp->dp_origin_snap;
942
943 /*
944 * The $ORIGIN can't have any data, or the accounting
945 * will be wrong.
946 */
947 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
948 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
949 rrw_exit(&ds->ds_bp_rwlock, FTAG);
950
951 /* The origin doesn't get attached to itself */
952 if (ds->ds_object == prev->ds_object) {
953 dsl_dataset_rele(ds, FTAG);
954 return (0);
955 }
956
957 dmu_buf_will_dirty(ds->ds_dbuf, tx);
958 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
959 dsl_dataset_phys(ds)->ds_prev_snap_txg =
960 dsl_dataset_phys(prev)->ds_creation_txg;
961
962 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
963 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
964
965 dmu_buf_will_dirty(prev->ds_dbuf, tx);
966 dsl_dataset_phys(prev)->ds_num_children++;
967
968 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
969 ASSERT(ds->ds_prev == NULL);
970 VERIFY0(dsl_dataset_hold_obj(dp,
971 dsl_dataset_phys(ds)->ds_prev_snap_obj,
972 ds, &ds->ds_prev));
973 }
974 }
975
976 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
977 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
978
979 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
980 dmu_buf_will_dirty(prev->ds_dbuf, tx);
981 dsl_dataset_phys(prev)->ds_next_clones_obj =
982 zap_create(dp->dp_meta_objset,
983 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
984 }
985 VERIFY0(zap_add_int(dp->dp_meta_objset,
986 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
987
988 dsl_dataset_rele(ds, FTAG);
989 if (prev != dp->dp_origin_snap)
990 dsl_dataset_rele(prev, FTAG);
991 return (0);
992 }
993
994 void
dsl_pool_upgrade_clones(dsl_pool_t * dp,dmu_tx_t * tx)995 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
996 {
997 ASSERT(dmu_tx_is_syncing(tx));
998 ASSERT(dp->dp_origin_snap != NULL);
999
1000 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1001 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1002 }
1003
1004 /* ARGSUSED */
1005 static int
upgrade_dir_clones_cb(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1006 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1007 {
1008 dmu_tx_t *tx = arg;
1009 objset_t *mos = dp->dp_meta_objset;
1010
1011 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1012 dsl_dataset_t *origin;
1013
1014 VERIFY0(dsl_dataset_hold_obj(dp,
1015 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1016
1017 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1018 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1019 dsl_dir_phys(origin->ds_dir)->dd_clones =
1020 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1021 0, tx);
1022 }
1023
1024 VERIFY0(zap_add_int(dp->dp_meta_objset,
1025 dsl_dir_phys(origin->ds_dir)->dd_clones,
1026 ds->ds_object, tx));
1027
1028 dsl_dataset_rele(origin, FTAG);
1029 }
1030 return (0);
1031 }
1032
1033 void
dsl_pool_upgrade_dir_clones(dsl_pool_t * dp,dmu_tx_t * tx)1034 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1035 {
1036 ASSERT(dmu_tx_is_syncing(tx));
1037 uint64_t obj;
1038
1039 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1040 VERIFY0(dsl_pool_open_special_dir(dp,
1041 FREE_DIR_NAME, &dp->dp_free_dir));
1042
1043 /*
1044 * We can't use bpobj_alloc(), because spa_version() still
1045 * returns the old version, and we need a new-version bpobj with
1046 * subobj support. So call dmu_object_alloc() directly.
1047 */
1048 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1049 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1050 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1051 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1052 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1053
1054 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1055 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1056 }
1057
1058 void
dsl_pool_create_origin(dsl_pool_t * dp,dmu_tx_t * tx)1059 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1060 {
1061 uint64_t dsobj;
1062 dsl_dataset_t *ds;
1063
1064 ASSERT(dmu_tx_is_syncing(tx));
1065 ASSERT(dp->dp_origin_snap == NULL);
1066 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1067
1068 /* create the origin dir, ds, & snap-ds */
1069 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1070 NULL, 0, kcred, NULL, tx);
1071 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1072 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1073 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1074 dp, &dp->dp_origin_snap));
1075 dsl_dataset_rele(ds, FTAG);
1076 }
1077
1078 taskq_t *
dsl_pool_vnrele_taskq(dsl_pool_t * dp)1079 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
1080 {
1081 return (dp->dp_vnrele_taskq);
1082 }
1083
1084 taskq_t *
dsl_pool_unlinked_drain_taskq(dsl_pool_t * dp)1085 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1086 {
1087 return (dp->dp_unlinked_drain_taskq);
1088 }
1089
1090 /*
1091 * Walk through the pool-wide zap object of temporary snapshot user holds
1092 * and release them.
1093 */
1094 void
dsl_pool_clean_tmp_userrefs(dsl_pool_t * dp)1095 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1096 {
1097 zap_attribute_t za;
1098 zap_cursor_t zc;
1099 objset_t *mos = dp->dp_meta_objset;
1100 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1101 nvlist_t *holds;
1102
1103 if (zapobj == 0)
1104 return;
1105 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1106
1107 holds = fnvlist_alloc();
1108
1109 for (zap_cursor_init(&zc, mos, zapobj);
1110 zap_cursor_retrieve(&zc, &za) == 0;
1111 zap_cursor_advance(&zc)) {
1112 char *htag;
1113 nvlist_t *tags;
1114
1115 htag = strchr(za.za_name, '-');
1116 *htag = '\0';
1117 ++htag;
1118 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1119 tags = fnvlist_alloc();
1120 fnvlist_add_boolean(tags, htag);
1121 fnvlist_add_nvlist(holds, za.za_name, tags);
1122 fnvlist_free(tags);
1123 } else {
1124 fnvlist_add_boolean(tags, htag);
1125 }
1126 }
1127 dsl_dataset_user_release_tmp(dp, holds);
1128 fnvlist_free(holds);
1129 zap_cursor_fini(&zc);
1130 }
1131
1132 /*
1133 * Create the pool-wide zap object for storing temporary snapshot holds.
1134 */
1135 void
dsl_pool_user_hold_create_obj(dsl_pool_t * dp,dmu_tx_t * tx)1136 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1137 {
1138 objset_t *mos = dp->dp_meta_objset;
1139
1140 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1141 ASSERT(dmu_tx_is_syncing(tx));
1142
1143 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1144 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1145 }
1146
1147 static int
dsl_pool_user_hold_rele_impl(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx,boolean_t holding)1148 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1149 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1150 {
1151 objset_t *mos = dp->dp_meta_objset;
1152 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1153 char *name;
1154 int error;
1155
1156 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1157 ASSERT(dmu_tx_is_syncing(tx));
1158
1159 /*
1160 * If the pool was created prior to SPA_VERSION_USERREFS, the
1161 * zap object for temporary holds might not exist yet.
1162 */
1163 if (zapobj == 0) {
1164 if (holding) {
1165 dsl_pool_user_hold_create_obj(dp, tx);
1166 zapobj = dp->dp_tmp_userrefs_obj;
1167 } else {
1168 return (SET_ERROR(ENOENT));
1169 }
1170 }
1171
1172 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1173 if (holding)
1174 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1175 else
1176 error = zap_remove(mos, zapobj, name, tx);
1177 strfree(name);
1178
1179 return (error);
1180 }
1181
1182 /*
1183 * Add a temporary hold for the given dataset object and tag.
1184 */
1185 int
dsl_pool_user_hold(dsl_pool_t * dp,uint64_t dsobj,const char * tag,uint64_t now,dmu_tx_t * tx)1186 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1187 uint64_t now, dmu_tx_t *tx)
1188 {
1189 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1190 }
1191
1192 /*
1193 * Release a temporary hold for the given dataset object and tag.
1194 */
1195 int
dsl_pool_user_release(dsl_pool_t * dp,uint64_t dsobj,const char * tag,dmu_tx_t * tx)1196 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1197 dmu_tx_t *tx)
1198 {
1199 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0, tx, B_FALSE));
1200 }
1201
1202 /*
1203 * DSL Pool Configuration Lock
1204 *
1205 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1206 * creation / destruction / rename / property setting). It must be held for
1207 * read to hold a dataset or dsl_dir. I.e. you must call
1208 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1209 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1210 * must be held continuously until all datasets and dsl_dirs are released.
1211 *
1212 * The only exception to this rule is that if a "long hold" is placed on
1213 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1214 * is still held. The long hold will prevent the dataset from being
1215 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1216 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1217 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1218 *
1219 * Legitimate long-holders (including owners) should be long-running, cancelable
1220 * tasks that should cause "zfs destroy" to fail. This includes DMU
1221 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1222 * "zfs send", and "zfs diff". There are several other long-holders whose
1223 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1224 *
1225 * The usual formula for long-holding would be:
1226 * dsl_pool_hold()
1227 * dsl_dataset_hold()
1228 * ... perform checks ...
1229 * dsl_dataset_long_hold()
1230 * dsl_pool_rele()
1231 * ... perform long-running task ...
1232 * dsl_dataset_long_rele()
1233 * dsl_dataset_rele()
1234 *
1235 * Note that when the long hold is released, the dataset is still held but
1236 * the pool is not held. The dataset may change arbitrarily during this time
1237 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1238 * dataset except release it.
1239 *
1240 * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
1241 * or modifying operations.
1242 *
1243 * Modifying operations should generally use dsl_sync_task(). The synctask
1244 * infrastructure enforces proper locking strategy with respect to the
1245 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1246 *
1247 * Read-only operations will manually hold the pool, then the dataset, obtain
1248 * information from the dataset, then release the pool and dataset.
1249 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1250 * hold/rele.
1251 */
1252
1253 int
dsl_pool_hold(const char * name,void * tag,dsl_pool_t ** dp)1254 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1255 {
1256 spa_t *spa;
1257 int error;
1258
1259 error = spa_open(name, &spa, tag);
1260 if (error == 0) {
1261 *dp = spa_get_dsl(spa);
1262 dsl_pool_config_enter(*dp, tag);
1263 }
1264 return (error);
1265 }
1266
1267 void
dsl_pool_rele(dsl_pool_t * dp,void * tag)1268 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1269 {
1270 dsl_pool_config_exit(dp, tag);
1271 spa_close(dp->dp_spa, tag);
1272 }
1273
1274 void
dsl_pool_config_enter(dsl_pool_t * dp,void * tag)1275 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1276 {
1277 /*
1278 * We use a "reentrant" reader-writer lock, but not reentrantly.
1279 *
1280 * The rrwlock can (with the track_all flag) track all reading threads,
1281 * which is very useful for debugging which code path failed to release
1282 * the lock, and for verifying that the *current* thread does hold
1283 * the lock.
1284 *
1285 * (Unlike a rwlock, which knows that N threads hold it for
1286 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1287 * if any thread holds it for read, even if this thread doesn't).
1288 */
1289 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1290 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1291 }
1292
1293 void
dsl_pool_config_enter_prio(dsl_pool_t * dp,void * tag)1294 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1295 {
1296 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1297 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1298 }
1299
1300 void
dsl_pool_config_exit(dsl_pool_t * dp,void * tag)1301 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1302 {
1303 rrw_exit(&dp->dp_config_rwlock, tag);
1304 }
1305
1306 boolean_t
dsl_pool_config_held(dsl_pool_t * dp)1307 dsl_pool_config_held(dsl_pool_t *dp)
1308 {
1309 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1310 }
1311
1312 boolean_t
dsl_pool_config_held_writer(dsl_pool_t * dp)1313 dsl_pool_config_held_writer(dsl_pool_t *dp)
1314 {
1315 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1316 }
1317