1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50
51 /*
52 * Filesystem and Snapshot Limits
53 * ------------------------------
54 *
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
60 *
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
66 *
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
76 *
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
89 *
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
100 *
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
112 *
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
117 *
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
121 *
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
124 */
125
126 /*
127 * Tunable to control EDQUOT behaviour. With this set to a value != 0, zfs
128 * doesn't always wait for a dirty txg to complete when an operation can't
129 * get through due to space exhaustion. Instead it fails early in a range
130 * of the tunable around the quota.
131 * This vastly helps to reduce the number of threads waiting for the txg
132 * to commit when a busy filesystem is near quota, especially in combination
133 * with NFS, where each waiter takes up a server thread.
134 */
135 uint64_t early_edquot_threshold = 32 * 1048576; /* tunable */
136
137 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
138
139 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
140
141 static void
dsl_dir_evict_async(void * dbu)142 dsl_dir_evict_async(void *dbu)
143 {
144 dsl_dir_t *dd = dbu;
145 dsl_pool_t *dp = dd->dd_pool;
146 int t;
147
148 dd->dd_dbuf = NULL;
149
150 for (t = 0; t < TXG_SIZE; t++) {
151 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 ASSERT(dd->dd_tempreserved[t] == 0);
153 ASSERT(dd->dd_space_towrite[t] == 0);
154 }
155
156 if (dd->dd_parent)
157 dsl_dir_async_rele(dd->dd_parent, dd);
158
159 spa_async_close(dd->dd_pool->dp_spa, dd);
160
161 dsl_prop_fini(dd);
162 mutex_destroy(&dd->dd_lock);
163 kmem_free(dd, sizeof (dsl_dir_t));
164 }
165
166 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,void * tag,dsl_dir_t ** ddp)167 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
168 const char *tail, void *tag, dsl_dir_t **ddp)
169 {
170 dmu_buf_t *dbuf;
171 dsl_dir_t *dd;
172 int err;
173
174 ASSERT(dsl_pool_config_held(dp));
175
176 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
177 if (err != 0)
178 return (err);
179 dd = dmu_buf_get_user(dbuf);
180 #ifdef ZFS_DEBUG
181 {
182 dmu_object_info_t doi;
183 dmu_object_info_from_db(dbuf, &doi);
184 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
185 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
186 }
187 #endif
188 if (dd == NULL) {
189 dsl_dir_t *winner;
190
191 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
192 dd->dd_object = ddobj;
193 dd->dd_dbuf = dbuf;
194 dd->dd_pool = dp;
195 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
196 dsl_prop_init(dd);
197
198 dsl_dir_snap_cmtime_update(dd);
199
200 if (dsl_dir_phys(dd)->dd_parent_obj) {
201 err = dsl_dir_hold_obj(dp,
202 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
203 &dd->dd_parent);
204 if (err != 0)
205 goto errout;
206 if (tail) {
207 #ifdef ZFS_DEBUG
208 uint64_t foundobj;
209
210 err = zap_lookup(dp->dp_meta_objset,
211 dsl_dir_phys(dd->dd_parent)->
212 dd_child_dir_zapobj, tail,
213 sizeof (foundobj), 1, &foundobj);
214 ASSERT(err || foundobj == ddobj);
215 #endif
216 (void) strcpy(dd->dd_myname, tail);
217 } else {
218 err = zap_value_search(dp->dp_meta_objset,
219 dsl_dir_phys(dd->dd_parent)->
220 dd_child_dir_zapobj,
221 ddobj, 0, dd->dd_myname);
222 }
223 if (err != 0)
224 goto errout;
225 } else {
226 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
227 }
228
229 if (dsl_dir_is_clone(dd)) {
230 dmu_buf_t *origin_bonus;
231 dsl_dataset_phys_t *origin_phys;
232
233 /*
234 * We can't open the origin dataset, because
235 * that would require opening this dsl_dir.
236 * Just look at its phys directly instead.
237 */
238 err = dmu_bonus_hold(dp->dp_meta_objset,
239 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
240 &origin_bonus);
241 if (err != 0)
242 goto errout;
243 origin_phys = origin_bonus->db_data;
244 dd->dd_origin_txg =
245 origin_phys->ds_creation_txg;
246 dmu_buf_rele(origin_bonus, FTAG);
247 }
248
249 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
250 &dd->dd_dbuf);
251 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
252 if (winner != NULL) {
253 if (dd->dd_parent)
254 dsl_dir_rele(dd->dd_parent, dd);
255 dsl_prop_fini(dd);
256 mutex_destroy(&dd->dd_lock);
257 kmem_free(dd, sizeof (dsl_dir_t));
258 dd = winner;
259 } else {
260 spa_open_ref(dp->dp_spa, dd);
261 }
262 }
263
264 /*
265 * The dsl_dir_t has both open-to-close and instantiate-to-evict
266 * holds on the spa. We need the open-to-close holds because
267 * otherwise the spa_refcnt wouldn't change when we open a
268 * dir which the spa also has open, so we could incorrectly
269 * think it was OK to unload/export/destroy the pool. We need
270 * the instantiate-to-evict hold because the dsl_dir_t has a
271 * pointer to the dd_pool, which has a pointer to the spa_t.
272 */
273 spa_open_ref(dp->dp_spa, tag);
274 ASSERT3P(dd->dd_pool, ==, dp);
275 ASSERT3U(dd->dd_object, ==, ddobj);
276 ASSERT3P(dd->dd_dbuf, ==, dbuf);
277 *ddp = dd;
278 return (0);
279
280 errout:
281 if (dd->dd_parent)
282 dsl_dir_rele(dd->dd_parent, dd);
283 dsl_prop_fini(dd);
284 mutex_destroy(&dd->dd_lock);
285 kmem_free(dd, sizeof (dsl_dir_t));
286 dmu_buf_rele(dbuf, tag);
287 return (err);
288 }
289
290 void
dsl_dir_rele(dsl_dir_t * dd,void * tag)291 dsl_dir_rele(dsl_dir_t *dd, void *tag)
292 {
293 dprintf_dd(dd, "%s\n", "");
294 spa_close(dd->dd_pool->dp_spa, tag);
295 dmu_buf_rele(dd->dd_dbuf, tag);
296 }
297
298 /*
299 * Remove a reference to the given dsl dir that is being asynchronously
300 * released. Async releases occur from a taskq performing eviction of
301 * dsl datasets and dirs. This process is identical to a normal release
302 * with the exception of using the async API for releasing the reference on
303 * the spa.
304 */
305 void
dsl_dir_async_rele(dsl_dir_t * dd,void * tag)306 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
307 {
308 dprintf_dd(dd, "%s\n", "");
309 spa_async_close(dd->dd_pool->dp_spa, tag);
310 dmu_buf_rele(dd->dd_dbuf, tag);
311 }
312
313 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
314 void
dsl_dir_name(dsl_dir_t * dd,char * buf)315 dsl_dir_name(dsl_dir_t *dd, char *buf)
316 {
317 if (dd->dd_parent) {
318 dsl_dir_name(dd->dd_parent, buf);
319 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
320 ZFS_MAX_DATASET_NAME_LEN);
321 } else {
322 buf[0] = '\0';
323 }
324 if (!MUTEX_HELD(&dd->dd_lock)) {
325 /*
326 * recursive mutex so that we can use
327 * dprintf_dd() with dd_lock held
328 */
329 mutex_enter(&dd->dd_lock);
330 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
331 <, ZFS_MAX_DATASET_NAME_LEN);
332 mutex_exit(&dd->dd_lock);
333 } else {
334 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
335 <, ZFS_MAX_DATASET_NAME_LEN);
336 }
337 }
338
339 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
340 int
dsl_dir_namelen(dsl_dir_t * dd)341 dsl_dir_namelen(dsl_dir_t *dd)
342 {
343 int result = 0;
344
345 if (dd->dd_parent) {
346 /* parent's name + 1 for the "/" */
347 result = dsl_dir_namelen(dd->dd_parent) + 1;
348 }
349
350 if (!MUTEX_HELD(&dd->dd_lock)) {
351 /* see dsl_dir_name */
352 mutex_enter(&dd->dd_lock);
353 result += strlen(dd->dd_myname);
354 mutex_exit(&dd->dd_lock);
355 } else {
356 result += strlen(dd->dd_myname);
357 }
358
359 return (result);
360 }
361
362 static int
getcomponent(const char * path,char * component,const char ** nextp)363 getcomponent(const char *path, char *component, const char **nextp)
364 {
365 char *p;
366
367 if ((path == NULL) || (path[0] == '\0'))
368 return (SET_ERROR(ENOENT));
369 /* This would be a good place to reserve some namespace... */
370 p = strpbrk(path, "/@");
371 if (p && (p[1] == '/' || p[1] == '@')) {
372 /* two separators in a row */
373 return (SET_ERROR(EINVAL));
374 }
375 if (p == NULL || p == path) {
376 /*
377 * if the first thing is an @ or /, it had better be an
378 * @ and it had better not have any more ats or slashes,
379 * and it had better have something after the @.
380 */
381 if (p != NULL &&
382 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
383 return (SET_ERROR(EINVAL));
384 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
385 return (SET_ERROR(ENAMETOOLONG));
386 (void) strcpy(component, path);
387 p = NULL;
388 } else if (p[0] == '/') {
389 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
390 return (SET_ERROR(ENAMETOOLONG));
391 (void) strncpy(component, path, p - path);
392 component[p - path] = '\0';
393 p++;
394 } else if (p[0] == '@') {
395 /*
396 * if the next separator is an @, there better not be
397 * any more slashes.
398 */
399 if (strchr(path, '/'))
400 return (SET_ERROR(EINVAL));
401 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
402 return (SET_ERROR(ENAMETOOLONG));
403 (void) strncpy(component, path, p - path);
404 component[p - path] = '\0';
405 } else {
406 panic("invalid p=%p", (void *)p);
407 }
408 *nextp = p;
409 return (0);
410 }
411
412 /*
413 * Return the dsl_dir_t, and possibly the last component which couldn't
414 * be found in *tail. The name must be in the specified dsl_pool_t. This
415 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
416 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
417 * (*tail)[0] == '@' means that the last component is a snapshot.
418 */
419 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,void * tag,dsl_dir_t ** ddp,const char ** tailp)420 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
421 dsl_dir_t **ddp, const char **tailp)
422 {
423 char buf[ZFS_MAX_DATASET_NAME_LEN];
424 const char *spaname, *next, *nextnext = NULL;
425 int err;
426 dsl_dir_t *dd;
427 uint64_t ddobj;
428
429 err = getcomponent(name, buf, &next);
430 if (err != 0)
431 return (err);
432
433 /* Make sure the name is in the specified pool. */
434 spaname = spa_name(dp->dp_spa);
435 if (strcmp(buf, spaname) != 0)
436 return (SET_ERROR(EXDEV));
437
438 ASSERT(dsl_pool_config_held(dp));
439
440 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
441 if (err != 0) {
442 return (err);
443 }
444
445 while (next != NULL) {
446 dsl_dir_t *child_dd;
447 err = getcomponent(next, buf, &nextnext);
448 if (err != 0)
449 break;
450 ASSERT(next[0] != '\0');
451 if (next[0] == '@')
452 break;
453 dprintf("looking up %s in obj%lld\n",
454 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
455
456 err = zap_lookup(dp->dp_meta_objset,
457 dsl_dir_phys(dd)->dd_child_dir_zapobj,
458 buf, sizeof (ddobj), 1, &ddobj);
459 if (err != 0) {
460 if (err == ENOENT)
461 err = 0;
462 break;
463 }
464
465 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
466 if (err != 0)
467 break;
468 dsl_dir_rele(dd, tag);
469 dd = child_dd;
470 next = nextnext;
471 }
472
473 if (err != 0) {
474 dsl_dir_rele(dd, tag);
475 return (err);
476 }
477
478 /*
479 * It's an error if there's more than one component left, or
480 * tailp==NULL and there's any component left.
481 */
482 if (next != NULL &&
483 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
484 /* bad path name */
485 dsl_dir_rele(dd, tag);
486 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
487 err = SET_ERROR(ENOENT);
488 }
489 if (tailp != NULL)
490 *tailp = next;
491 *ddp = dd;
492 return (err);
493 }
494
495 /*
496 * If the counts are already initialized for this filesystem and its
497 * descendants then do nothing, otherwise initialize the counts.
498 *
499 * The counts on this filesystem, and those below, may be uninitialized due to
500 * either the use of a pre-existing pool which did not support the
501 * filesystem/snapshot limit feature, or one in which the feature had not yet
502 * been enabled.
503 *
504 * Recursively descend the filesystem tree and update the filesystem/snapshot
505 * counts on each filesystem below, then update the cumulative count on the
506 * current filesystem. If the filesystem already has a count set on it,
507 * then we know that its counts, and the counts on the filesystems below it,
508 * are already correct, so we don't have to update this filesystem.
509 */
510 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)511 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
512 {
513 uint64_t my_fs_cnt = 0;
514 uint64_t my_ss_cnt = 0;
515 dsl_pool_t *dp = dd->dd_pool;
516 objset_t *os = dp->dp_meta_objset;
517 zap_cursor_t *zc;
518 zap_attribute_t *za;
519 dsl_dataset_t *ds;
520
521 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
522 ASSERT(dsl_pool_config_held(dp));
523 ASSERT(dmu_tx_is_syncing(tx));
524
525 dsl_dir_zapify(dd, tx);
526
527 /*
528 * If the filesystem count has already been initialized then we
529 * don't need to recurse down any further.
530 */
531 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
532 return;
533
534 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
535 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
536
537 /* Iterate my child dirs */
538 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
539 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
540 dsl_dir_t *chld_dd;
541 uint64_t count;
542
543 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
544 &chld_dd));
545
546 /*
547 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
548 * temporary datasets.
549 */
550 if (chld_dd->dd_myname[0] == '$' ||
551 chld_dd->dd_myname[0] == '%') {
552 dsl_dir_rele(chld_dd, FTAG);
553 continue;
554 }
555
556 my_fs_cnt++; /* count this child */
557
558 dsl_dir_init_fs_ss_count(chld_dd, tx);
559
560 VERIFY0(zap_lookup(os, chld_dd->dd_object,
561 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
562 my_fs_cnt += count;
563 VERIFY0(zap_lookup(os, chld_dd->dd_object,
564 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
565 my_ss_cnt += count;
566
567 dsl_dir_rele(chld_dd, FTAG);
568 }
569 zap_cursor_fini(zc);
570 /* Count my snapshots (we counted children's snapshots above) */
571 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
572 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
573
574 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
575 zap_cursor_retrieve(zc, za) == 0;
576 zap_cursor_advance(zc)) {
577 /* Don't count temporary snapshots */
578 if (za->za_name[0] != '%')
579 my_ss_cnt++;
580 }
581 zap_cursor_fini(zc);
582
583 dsl_dataset_rele(ds, FTAG);
584
585 kmem_free(zc, sizeof (zap_cursor_t));
586 kmem_free(za, sizeof (zap_attribute_t));
587
588 /* we're in a sync task, update counts */
589 dmu_buf_will_dirty(dd->dd_dbuf, tx);
590 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
591 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
592 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
593 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
594 }
595
596 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)597 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
598 {
599 char *ddname = (char *)arg;
600 dsl_pool_t *dp = dmu_tx_pool(tx);
601 dsl_dataset_t *ds;
602 dsl_dir_t *dd;
603 int error;
604
605 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
606 if (error != 0)
607 return (error);
608
609 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
610 dsl_dataset_rele(ds, FTAG);
611 return (SET_ERROR(ENOTSUP));
612 }
613
614 dd = ds->ds_dir;
615 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
616 dsl_dir_is_zapified(dd) &&
617 zap_contains(dp->dp_meta_objset, dd->dd_object,
618 DD_FIELD_FILESYSTEM_COUNT) == 0) {
619 dsl_dataset_rele(ds, FTAG);
620 return (SET_ERROR(EALREADY));
621 }
622
623 dsl_dataset_rele(ds, FTAG);
624 return (0);
625 }
626
627 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)628 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
629 {
630 char *ddname = (char *)arg;
631 dsl_pool_t *dp = dmu_tx_pool(tx);
632 dsl_dataset_t *ds;
633 spa_t *spa;
634
635 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
636
637 spa = dsl_dataset_get_spa(ds);
638
639 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
640 /*
641 * Since the feature was not active and we're now setting a
642 * limit, increment the feature-active counter so that the
643 * feature becomes active for the first time.
644 *
645 * We are already in a sync task so we can update the MOS.
646 */
647 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
648 }
649
650 /*
651 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
652 * we need to ensure the counts are correct. Descend down the tree from
653 * this point and update all of the counts to be accurate.
654 */
655 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
656
657 dsl_dataset_rele(ds, FTAG);
658 }
659
660 /*
661 * Make sure the feature is enabled and activate it if necessary.
662 * Since we're setting a limit, ensure the on-disk counts are valid.
663 * This is only called by the ioctl path when setting a limit value.
664 *
665 * We do not need to validate the new limit, since users who can change the
666 * limit are also allowed to exceed the limit.
667 */
668 int
dsl_dir_activate_fs_ss_limit(const char * ddname)669 dsl_dir_activate_fs_ss_limit(const char *ddname)
670 {
671 int error;
672
673 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
674 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
675 ZFS_SPACE_CHECK_RESERVED);
676
677 if (error == EALREADY)
678 error = 0;
679
680 return (error);
681 }
682
683 /*
684 * Used to determine if the filesystem_limit or snapshot_limit should be
685 * enforced. We allow the limit to be exceeded if the user has permission to
686 * write the property value. We pass in the creds that we got in the open
687 * context since we will always be the GZ root in syncing context. We also have
688 * to handle the case where we are allowed to change the limit on the current
689 * dataset, but there may be another limit in the tree above.
690 *
691 * We can never modify these two properties within a non-global zone. In
692 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
693 * can't use that function since we are already holding the dp_config_rwlock.
694 * In addition, we already have the dd and dealing with snapshots is simplified
695 * in this code.
696 */
697
698 typedef enum {
699 ENFORCE_ALWAYS,
700 ENFORCE_NEVER,
701 ENFORCE_ABOVE
702 } enforce_res_t;
703
704 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr)705 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
706 {
707 enforce_res_t enforce = ENFORCE_ALWAYS;
708 uint64_t obj;
709 dsl_dataset_t *ds;
710 uint64_t zoned;
711
712 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
713 prop == ZFS_PROP_SNAPSHOT_LIMIT);
714
715 #ifdef _KERNEL
716 if (crgetzoneid(cr) != GLOBAL_ZONEID)
717 return (ENFORCE_ALWAYS);
718
719 if (secpolicy_zfs(cr) == 0)
720 return (ENFORCE_NEVER);
721 #endif
722
723 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
724 return (ENFORCE_ALWAYS);
725
726 ASSERT(dsl_pool_config_held(dd->dd_pool));
727
728 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
729 return (ENFORCE_ALWAYS);
730
731 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
732 /* Only root can access zoned fs's from the GZ */
733 enforce = ENFORCE_ALWAYS;
734 } else {
735 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
736 enforce = ENFORCE_ABOVE;
737 }
738
739 dsl_dataset_rele(ds, FTAG);
740 return (enforce);
741 }
742
743 /*
744 * Check if adding additional child filesystem(s) would exceed any filesystem
745 * limits or adding additional snapshot(s) would exceed any snapshot limits.
746 * The prop argument indicates which limit to check.
747 *
748 * Note that all filesystem limits up to the root (or the highest
749 * initialized) filesystem or the given ancestor must be satisfied.
750 */
751 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr)752 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
753 dsl_dir_t *ancestor, cred_t *cr)
754 {
755 objset_t *os = dd->dd_pool->dp_meta_objset;
756 uint64_t limit, count;
757 char *count_prop;
758 enforce_res_t enforce;
759 int err = 0;
760
761 ASSERT(dsl_pool_config_held(dd->dd_pool));
762 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
763 prop == ZFS_PROP_SNAPSHOT_LIMIT);
764
765 /*
766 * If we're allowed to change the limit, don't enforce the limit
767 * e.g. this can happen if a snapshot is taken by an administrative
768 * user in the global zone (i.e. a recursive snapshot by root).
769 * However, we must handle the case of delegated permissions where we
770 * are allowed to change the limit on the current dataset, but there
771 * is another limit in the tree above.
772 */
773 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
774 if (enforce == ENFORCE_NEVER)
775 return (0);
776
777 /*
778 * e.g. if renaming a dataset with no snapshots, count adjustment
779 * is 0.
780 */
781 if (delta == 0)
782 return (0);
783
784 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
785 /*
786 * We don't enforce the limit for temporary snapshots. This is
787 * indicated by a NULL cred_t argument.
788 */
789 if (cr == NULL)
790 return (0);
791
792 count_prop = DD_FIELD_SNAPSHOT_COUNT;
793 } else {
794 count_prop = DD_FIELD_FILESYSTEM_COUNT;
795 }
796
797 /*
798 * If an ancestor has been provided, stop checking the limit once we
799 * hit that dir. We need this during rename so that we don't overcount
800 * the check once we recurse up to the common ancestor.
801 */
802 if (ancestor == dd)
803 return (0);
804
805 /*
806 * If we hit an uninitialized node while recursing up the tree, we can
807 * stop since we know there is no limit here (or above). The counts are
808 * not valid on this node and we know we won't touch this node's counts.
809 */
810 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
811 count_prop, sizeof (count), 1, &count) == ENOENT)
812 return (0);
813
814 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
815 B_FALSE);
816 if (err != 0)
817 return (err);
818
819 /* Is there a limit which we've hit? */
820 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
821 return (SET_ERROR(EDQUOT));
822
823 if (dd->dd_parent != NULL)
824 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
825 ancestor, cr);
826
827 return (err);
828 }
829
830 /*
831 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
832 * parents. When a new filesystem/snapshot is created, increment the count on
833 * all parents, and when a filesystem/snapshot is destroyed, decrement the
834 * count.
835 */
836 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)837 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
838 dmu_tx_t *tx)
839 {
840 int err;
841 objset_t *os = dd->dd_pool->dp_meta_objset;
842 uint64_t count;
843
844 ASSERT(dsl_pool_config_held(dd->dd_pool));
845 ASSERT(dmu_tx_is_syncing(tx));
846 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
847 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
848
849 /*
850 * When we receive an incremental stream into a filesystem that already
851 * exists, a temporary clone is created. We don't count this temporary
852 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
853 * $MOS & $ORIGIN) objsets.
854 */
855 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
856 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
857 return;
858
859 /*
860 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
861 */
862 if (delta == 0)
863 return;
864
865 /*
866 * If we hit an uninitialized node while recursing up the tree, we can
867 * stop since we know the counts are not valid on this node and we
868 * know we shouldn't touch this node's counts. An uninitialized count
869 * on the node indicates that either the feature has not yet been
870 * activated or there are no limits on this part of the tree.
871 */
872 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
873 prop, sizeof (count), 1, &count)) == ENOENT)
874 return;
875 VERIFY0(err);
876
877 count += delta;
878 /* Use a signed verify to make sure we're not neg. */
879 VERIFY3S(count, >=, 0);
880
881 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
882 tx));
883
884 /* Roll up this additional count into our ancestors */
885 if (dd->dd_parent != NULL)
886 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
887 }
888
889 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)890 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
891 dmu_tx_t *tx)
892 {
893 objset_t *mos = dp->dp_meta_objset;
894 uint64_t ddobj;
895 dsl_dir_phys_t *ddphys;
896 dmu_buf_t *dbuf;
897
898 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
899 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
900 if (pds) {
901 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
902 name, sizeof (uint64_t), 1, &ddobj, tx));
903 } else {
904 /* it's the root dir */
905 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
906 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
907 }
908 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
909 dmu_buf_will_dirty(dbuf, tx);
910 ddphys = dbuf->db_data;
911
912 ddphys->dd_creation_time = gethrestime_sec();
913 if (pds) {
914 ddphys->dd_parent_obj = pds->dd_object;
915
916 /* update the filesystem counts */
917 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
918 }
919 ddphys->dd_props_zapobj = zap_create(mos,
920 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
921 ddphys->dd_child_dir_zapobj = zap_create(mos,
922 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
923 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
924 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
925 dmu_buf_rele(dbuf, FTAG);
926
927 return (ddobj);
928 }
929
930 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)931 dsl_dir_is_clone(dsl_dir_t *dd)
932 {
933 return (dsl_dir_phys(dd)->dd_origin_obj &&
934 (dd->dd_pool->dp_origin_snap == NULL ||
935 dsl_dir_phys(dd)->dd_origin_obj !=
936 dd->dd_pool->dp_origin_snap->ds_object));
937 }
938
939 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)940 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
941 {
942 mutex_enter(&dd->dd_lock);
943 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
944 dsl_dir_phys(dd)->dd_used_bytes);
945 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
946 dsl_dir_phys(dd)->dd_quota);
947 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
948 dsl_dir_phys(dd)->dd_reserved);
949 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
950 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
951 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
952 dsl_dir_phys(dd)->dd_compressed_bytes));
953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
954 dsl_dir_phys(dd)->dd_uncompressed_bytes);
955 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
956 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
957 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
958 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
959 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
960 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
961 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
962 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
963 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
964 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
965 }
966 mutex_exit(&dd->dd_lock);
967
968 if (dsl_dir_is_zapified(dd)) {
969 uint64_t count;
970 objset_t *os = dd->dd_pool->dp_meta_objset;
971
972 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
973 sizeof (count), 1, &count) == 0) {
974 dsl_prop_nvlist_add_uint64(nv,
975 ZFS_PROP_FILESYSTEM_COUNT, count);
976 }
977 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
978 sizeof (count), 1, &count) == 0) {
979 dsl_prop_nvlist_add_uint64(nv,
980 ZFS_PROP_SNAPSHOT_COUNT, count);
981 }
982 }
983
984 if (dsl_dir_is_clone(dd)) {
985 dsl_dataset_t *ds;
986 char buf[ZFS_MAX_DATASET_NAME_LEN];
987
988 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
989 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
990 dsl_dataset_name(ds, buf);
991 dsl_dataset_rele(ds, FTAG);
992 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
993 }
994 }
995
996 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)997 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
998 {
999 dsl_pool_t *dp = dd->dd_pool;
1000
1001 ASSERT(dsl_dir_phys(dd));
1002
1003 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1004 /* up the hold count until we can be written out */
1005 dmu_buf_add_ref(dd->dd_dbuf, dd);
1006 }
1007 }
1008
1009 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1010 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1011 {
1012 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1013 uint64_t new_accounted =
1014 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1015 return (new_accounted - old_accounted);
1016 }
1017
1018 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1019 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1020 {
1021 ASSERT(dmu_tx_is_syncing(tx));
1022
1023 mutex_enter(&dd->dd_lock);
1024 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1025 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1026 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1027 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1028 mutex_exit(&dd->dd_lock);
1029
1030 /* release the hold from dsl_dir_dirty */
1031 dmu_buf_rele(dd->dd_dbuf, dd);
1032 }
1033
1034 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1035 dsl_dir_space_towrite(dsl_dir_t *dd)
1036 {
1037 uint64_t space = 0;
1038 int i;
1039
1040 ASSERT(MUTEX_HELD(&dd->dd_lock));
1041
1042 for (i = 0; i < TXG_SIZE; i++) {
1043 space += dd->dd_space_towrite[i&TXG_MASK];
1044 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1045 }
1046 return (space);
1047 }
1048
1049 /*
1050 * How much space would dd have available if ancestor had delta applied
1051 * to it? If ondiskonly is set, we're only interested in what's
1052 * on-disk, not estimated pending changes.
1053 */
1054 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1055 dsl_dir_space_available(dsl_dir_t *dd,
1056 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1057 {
1058 uint64_t parentspace, myspace, quota, used;
1059
1060 /*
1061 * If there are no restrictions otherwise, assume we have
1062 * unlimited space available.
1063 */
1064 quota = UINT64_MAX;
1065 parentspace = UINT64_MAX;
1066
1067 if (dd->dd_parent != NULL) {
1068 parentspace = dsl_dir_space_available(dd->dd_parent,
1069 ancestor, delta, ondiskonly);
1070 }
1071
1072 mutex_enter(&dd->dd_lock);
1073 if (dsl_dir_phys(dd)->dd_quota != 0)
1074 quota = dsl_dir_phys(dd)->dd_quota;
1075 used = dsl_dir_phys(dd)->dd_used_bytes;
1076 if (!ondiskonly)
1077 used += dsl_dir_space_towrite(dd);
1078
1079 if (dd->dd_parent == NULL) {
1080 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1081 quota = MIN(quota, poolsize);
1082 }
1083
1084 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1085 /*
1086 * We have some space reserved, in addition to what our
1087 * parent gave us.
1088 */
1089 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1090 }
1091
1092 if (dd == ancestor) {
1093 ASSERT(delta <= 0);
1094 ASSERT(used >= -delta);
1095 used += delta;
1096 if (parentspace != UINT64_MAX)
1097 parentspace -= delta;
1098 }
1099
1100 if (used > quota) {
1101 /* over quota */
1102 myspace = 0;
1103 } else {
1104 /*
1105 * the lesser of the space provided by our parent and
1106 * the space left in our quota
1107 */
1108 myspace = MIN(parentspace, quota - used);
1109 }
1110
1111 mutex_exit(&dd->dd_lock);
1112
1113 return (myspace);
1114 }
1115
1116 struct tempreserve {
1117 list_node_t tr_node;
1118 dsl_dir_t *tr_ds;
1119 uint64_t tr_size;
1120 };
1121
1122 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,boolean_t checkrefquota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1123 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1124 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1125 dmu_tx_t *tx, boolean_t first)
1126 {
1127 uint64_t txg = tx->tx_txg;
1128 uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1129 uint64_t deferred = 0;
1130 struct tempreserve *tr;
1131 int retval = EDQUOT;
1132 int txgidx = txg & TXG_MASK;
1133 int i;
1134 uint64_t ref_rsrv = 0;
1135
1136 ASSERT3U(txg, !=, 0);
1137 ASSERT3S(asize, >, 0);
1138
1139 mutex_enter(&dd->dd_lock);
1140
1141 /*
1142 * Check against the dsl_dir's quota. We don't add in the delta
1143 * when checking for over-quota because they get one free hit.
1144 */
1145 est_inflight = dsl_dir_space_towrite(dd);
1146 for (i = 0; i < TXG_SIZE; i++)
1147 est_inflight += dd->dd_tempreserved[i];
1148 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1149
1150 /*
1151 * On the first iteration, fetch the dataset's used-on-disk and
1152 * refreservation values. Also, if checkrefquota is set, test if
1153 * allocating this space would exceed the dataset's refquota.
1154 */
1155 if (first && tx->tx_objset) {
1156 int error;
1157 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1158
1159 error = dsl_dataset_check_quota(ds, checkrefquota,
1160 asize, est_inflight, &used_on_disk, &ref_rsrv);
1161 if (error) {
1162 mutex_exit(&dd->dd_lock);
1163 return (error);
1164 }
1165 }
1166
1167 /*
1168 * If this transaction will result in a net free of space,
1169 * we want to let it through.
1170 */
1171 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1172 quota = UINT64_MAX;
1173 else
1174 quota = dsl_dir_phys(dd)->dd_quota;
1175
1176 /*
1177 * Adjust the quota against the actual pool size at the root
1178 * minus any outstanding deferred frees.
1179 * To ensure that it's possible to remove files from a full
1180 * pool without inducing transient overcommits, we throttle
1181 * netfree transactions against a quota that is slightly larger,
1182 * but still within the pool's allocation slop. In cases where
1183 * we're very close to full, this will allow a steady trickle of
1184 * removes to get through.
1185 */
1186 if (dd->dd_parent == NULL) {
1187 spa_t *spa = dd->dd_pool->dp_spa;
1188 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1189 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1190 if (poolsize - deferred < quota) {
1191 quota = poolsize - deferred;
1192 retval = ENOSPC;
1193 }
1194 }
1195
1196 /*
1197 * If they are requesting more space, and our current estimate
1198 * is over quota, they get to try again unless the actual
1199 * on-disk is over quota and there are no pending changes (which
1200 * may free up space for us).
1201 */
1202 if (used_on_disk + est_inflight >= quota) {
1203 if (est_inflight > early_edquot_threshold ||
1204 used_on_disk + early_edquot_threshold < quota ||
1205 (retval == ENOSPC && used_on_disk < quota + deferred))
1206 retval = ERESTART;
1207 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1208 "quota=%lluK tr=%lluK err=%d\n",
1209 used_on_disk>>10, est_inflight>>10,
1210 quota>>10, asize>>10, retval);
1211 mutex_exit(&dd->dd_lock);
1212 return (SET_ERROR(retval));
1213 }
1214
1215 /* We need to up our estimated delta before dropping dd_lock */
1216 dd->dd_tempreserved[txgidx] += asize;
1217
1218 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1219 asize - ref_rsrv);
1220 mutex_exit(&dd->dd_lock);
1221
1222 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1223 tr->tr_ds = dd;
1224 tr->tr_size = asize;
1225 list_insert_tail(tr_list, tr);
1226
1227 /* see if it's OK with our parent */
1228 if (dd->dd_parent && parent_rsrv) {
1229 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1230
1231 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1232 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1233 } else {
1234 return (0);
1235 }
1236 }
1237
1238 /*
1239 * Reserve space in this dsl_dir, to be used in this tx's txg.
1240 * After the space has been dirtied (and dsl_dir_willuse_space()
1241 * has been called), the reservation should be canceled, using
1242 * dsl_dir_tempreserve_clear().
1243 */
1244 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,uint64_t fsize,uint64_t usize,void ** tr_cookiep,dmu_tx_t * tx)1245 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1246 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1247 {
1248 int err;
1249 list_t *tr_list;
1250
1251 if (asize == 0) {
1252 *tr_cookiep = NULL;
1253 return (0);
1254 }
1255
1256 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1257 list_create(tr_list, sizeof (struct tempreserve),
1258 offsetof(struct tempreserve, tr_node));
1259 ASSERT3S(asize, >, 0);
1260 ASSERT3S(fsize, >=, 0);
1261
1262 err = arc_tempreserve_space(lsize, tx->tx_txg);
1263 if (err == 0) {
1264 struct tempreserve *tr;
1265
1266 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1267 tr->tr_size = lsize;
1268 list_insert_tail(tr_list, tr);
1269 } else {
1270 if (err == EAGAIN) {
1271 /*
1272 * If arc_memory_throttle() detected that pageout
1273 * is running and we are low on memory, we delay new
1274 * non-pageout transactions to give pageout an
1275 * advantage.
1276 *
1277 * It is unfortunate to be delaying while the caller's
1278 * locks are held.
1279 */
1280 txg_delay(dd->dd_pool, tx->tx_txg,
1281 MSEC2NSEC(10), MSEC2NSEC(10));
1282 err = SET_ERROR(ERESTART);
1283 }
1284 }
1285
1286 if (err == 0) {
1287 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1288 FALSE, asize > usize, tr_list, tx, TRUE);
1289 }
1290
1291 if (err != 0)
1292 dsl_dir_tempreserve_clear(tr_list, tx);
1293 else
1294 *tr_cookiep = tr_list;
1295
1296 return (err);
1297 }
1298
1299 /*
1300 * Clear a temporary reservation that we previously made with
1301 * dsl_dir_tempreserve_space().
1302 */
1303 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1304 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1305 {
1306 int txgidx = tx->tx_txg & TXG_MASK;
1307 list_t *tr_list = tr_cookie;
1308 struct tempreserve *tr;
1309
1310 ASSERT3U(tx->tx_txg, !=, 0);
1311
1312 if (tr_cookie == NULL)
1313 return;
1314
1315 while ((tr = list_head(tr_list)) != NULL) {
1316 if (tr->tr_ds) {
1317 mutex_enter(&tr->tr_ds->dd_lock);
1318 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1319 tr->tr_size);
1320 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1321 mutex_exit(&tr->tr_ds->dd_lock);
1322 } else {
1323 arc_tempreserve_clear(tr->tr_size);
1324 }
1325 list_remove(tr_list, tr);
1326 kmem_free(tr, sizeof (struct tempreserve));
1327 }
1328
1329 kmem_free(tr_list, sizeof (list_t));
1330 }
1331
1332 /*
1333 * This should be called from open context when we think we're going to write
1334 * or free space, for example when dirtying data. Be conservative; it's okay
1335 * to write less space or free more, but we don't want to write more or free
1336 * less than the amount specified.
1337 */
1338 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1339 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1340 {
1341 int64_t parent_space;
1342 uint64_t est_used;
1343
1344 mutex_enter(&dd->dd_lock);
1345 if (space > 0)
1346 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1347
1348 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1349 parent_space = parent_delta(dd, est_used, space);
1350 mutex_exit(&dd->dd_lock);
1351
1352 /* Make sure that we clean up dd_space_to* */
1353 dsl_dir_dirty(dd, tx);
1354
1355 /* XXX this is potentially expensive and unnecessary... */
1356 if (parent_space && dd->dd_parent)
1357 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1358 }
1359
1360 /* call from syncing context when we actually write/free space for this dd */
1361 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1362 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1363 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1364 {
1365 int64_t accounted_delta;
1366
1367 /*
1368 * dsl_dataset_set_refreservation_sync_impl() calls this with
1369 * dd_lock held, so that it can atomically update
1370 * ds->ds_reserved and the dsl_dir accounting, so that
1371 * dsl_dataset_check_quota() can see dataset and dir accounting
1372 * consistently.
1373 */
1374 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1375
1376 ASSERT(dmu_tx_is_syncing(tx));
1377 ASSERT(type < DD_USED_NUM);
1378
1379 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1380
1381 if (needlock)
1382 mutex_enter(&dd->dd_lock);
1383 accounted_delta =
1384 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1385 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1386 ASSERT(compressed >= 0 ||
1387 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1388 ASSERT(uncompressed >= 0 ||
1389 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1390 dsl_dir_phys(dd)->dd_used_bytes += used;
1391 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1392 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1393
1394 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1395 ASSERT(used > 0 ||
1396 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1397 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1398 #ifdef DEBUG
1399 dd_used_t t;
1400 uint64_t u = 0;
1401 for (t = 0; t < DD_USED_NUM; t++)
1402 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1403 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1404 #endif
1405 }
1406 if (needlock)
1407 mutex_exit(&dd->dd_lock);
1408
1409 if (dd->dd_parent != NULL) {
1410 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1411 accounted_delta, compressed, uncompressed, tx);
1412 dsl_dir_transfer_space(dd->dd_parent,
1413 used - accounted_delta,
1414 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1415 }
1416 }
1417
1418 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1419 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1420 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1421 {
1422 ASSERT(dmu_tx_is_syncing(tx));
1423 ASSERT(oldtype < DD_USED_NUM);
1424 ASSERT(newtype < DD_USED_NUM);
1425
1426 if (delta == 0 ||
1427 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1428 return;
1429
1430 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1431 mutex_enter(&dd->dd_lock);
1432 ASSERT(delta > 0 ?
1433 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1434 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1435 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1436 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1437 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1438 mutex_exit(&dd->dd_lock);
1439 }
1440
1441 typedef struct dsl_dir_set_qr_arg {
1442 const char *ddsqra_name;
1443 zprop_source_t ddsqra_source;
1444 uint64_t ddsqra_value;
1445 } dsl_dir_set_qr_arg_t;
1446
1447 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1448 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1449 {
1450 dsl_dir_set_qr_arg_t *ddsqra = arg;
1451 dsl_pool_t *dp = dmu_tx_pool(tx);
1452 dsl_dataset_t *ds;
1453 int error;
1454 uint64_t towrite, newval;
1455
1456 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1457 if (error != 0)
1458 return (error);
1459
1460 error = dsl_prop_predict(ds->ds_dir, "quota",
1461 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1462 if (error != 0) {
1463 dsl_dataset_rele(ds, FTAG);
1464 return (error);
1465 }
1466
1467 if (newval == 0) {
1468 dsl_dataset_rele(ds, FTAG);
1469 return (0);
1470 }
1471
1472 mutex_enter(&ds->ds_dir->dd_lock);
1473 /*
1474 * If we are doing the preliminary check in open context, and
1475 * there are pending changes, then don't fail it, since the
1476 * pending changes could under-estimate the amount of space to be
1477 * freed up.
1478 */
1479 towrite = dsl_dir_space_towrite(ds->ds_dir);
1480 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1481 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1482 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1483 error = SET_ERROR(ENOSPC);
1484 }
1485 mutex_exit(&ds->ds_dir->dd_lock);
1486 dsl_dataset_rele(ds, FTAG);
1487 return (error);
1488 }
1489
1490 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1491 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1492 {
1493 dsl_dir_set_qr_arg_t *ddsqra = arg;
1494 dsl_pool_t *dp = dmu_tx_pool(tx);
1495 dsl_dataset_t *ds;
1496 uint64_t newval;
1497
1498 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1499
1500 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1501 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1502 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1503 &ddsqra->ddsqra_value, tx);
1504
1505 VERIFY0(dsl_prop_get_int_ds(ds,
1506 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1507 } else {
1508 newval = ddsqra->ddsqra_value;
1509 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1510 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1511 }
1512
1513 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1514 mutex_enter(&ds->ds_dir->dd_lock);
1515 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1516 mutex_exit(&ds->ds_dir->dd_lock);
1517 dsl_dataset_rele(ds, FTAG);
1518 }
1519
1520 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1521 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1522 {
1523 dsl_dir_set_qr_arg_t ddsqra;
1524
1525 ddsqra.ddsqra_name = ddname;
1526 ddsqra.ddsqra_source = source;
1527 ddsqra.ddsqra_value = quota;
1528
1529 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1530 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1531 }
1532
1533 int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1534 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1535 {
1536 dsl_dir_set_qr_arg_t *ddsqra = arg;
1537 dsl_pool_t *dp = dmu_tx_pool(tx);
1538 dsl_dataset_t *ds;
1539 dsl_dir_t *dd;
1540 uint64_t newval, used, avail;
1541 int error;
1542
1543 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1544 if (error != 0)
1545 return (error);
1546 dd = ds->ds_dir;
1547
1548 /*
1549 * If we are doing the preliminary check in open context, the
1550 * space estimates may be inaccurate.
1551 */
1552 if (!dmu_tx_is_syncing(tx)) {
1553 dsl_dataset_rele(ds, FTAG);
1554 return (0);
1555 }
1556
1557 error = dsl_prop_predict(ds->ds_dir,
1558 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1559 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1560 if (error != 0) {
1561 dsl_dataset_rele(ds, FTAG);
1562 return (error);
1563 }
1564
1565 mutex_enter(&dd->dd_lock);
1566 used = dsl_dir_phys(dd)->dd_used_bytes;
1567 mutex_exit(&dd->dd_lock);
1568
1569 if (dd->dd_parent) {
1570 avail = dsl_dir_space_available(dd->dd_parent,
1571 NULL, 0, FALSE);
1572 } else {
1573 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1574 }
1575
1576 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1577 uint64_t delta = MAX(used, newval) -
1578 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1579
1580 if (delta > avail ||
1581 (dsl_dir_phys(dd)->dd_quota > 0 &&
1582 newval > dsl_dir_phys(dd)->dd_quota))
1583 error = SET_ERROR(ENOSPC);
1584 }
1585
1586 dsl_dataset_rele(ds, FTAG);
1587 return (error);
1588 }
1589
1590 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1591 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1592 {
1593 uint64_t used;
1594 int64_t delta;
1595
1596 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1597
1598 mutex_enter(&dd->dd_lock);
1599 used = dsl_dir_phys(dd)->dd_used_bytes;
1600 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1601 dsl_dir_phys(dd)->dd_reserved = value;
1602
1603 if (dd->dd_parent != NULL) {
1604 /* Roll up this additional usage into our ancestors */
1605 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1606 delta, 0, 0, tx);
1607 }
1608 mutex_exit(&dd->dd_lock);
1609 }
1610
1611
1612 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1613 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1614 {
1615 dsl_dir_set_qr_arg_t *ddsqra = arg;
1616 dsl_pool_t *dp = dmu_tx_pool(tx);
1617 dsl_dataset_t *ds;
1618 uint64_t newval;
1619
1620 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1621
1622 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1623 dsl_prop_set_sync_impl(ds,
1624 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1625 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1626 &ddsqra->ddsqra_value, tx);
1627
1628 VERIFY0(dsl_prop_get_int_ds(ds,
1629 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1630 } else {
1631 newval = ddsqra->ddsqra_value;
1632 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1633 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1634 (longlong_t)newval);
1635 }
1636
1637 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1638 dsl_dataset_rele(ds, FTAG);
1639 }
1640
1641 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1642 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1643 uint64_t reservation)
1644 {
1645 dsl_dir_set_qr_arg_t ddsqra;
1646
1647 ddsqra.ddsqra_name = ddname;
1648 ddsqra.ddsqra_source = source;
1649 ddsqra.ddsqra_value = reservation;
1650
1651 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1652 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1653 }
1654
1655 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1656 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1657 {
1658 for (; ds1; ds1 = ds1->dd_parent) {
1659 dsl_dir_t *dd;
1660 for (dd = ds2; dd; dd = dd->dd_parent) {
1661 if (ds1 == dd)
1662 return (dd);
1663 }
1664 }
1665 return (NULL);
1666 }
1667
1668 /*
1669 * If delta is applied to dd, how much of that delta would be applied to
1670 * ancestor? Syncing context only.
1671 */
1672 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1673 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1674 {
1675 if (dd == ancestor)
1676 return (delta);
1677
1678 mutex_enter(&dd->dd_lock);
1679 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1680 mutex_exit(&dd->dd_lock);
1681 return (would_change(dd->dd_parent, delta, ancestor));
1682 }
1683
1684 typedef struct dsl_dir_rename_arg {
1685 const char *ddra_oldname;
1686 const char *ddra_newname;
1687 cred_t *ddra_cred;
1688 } dsl_dir_rename_arg_t;
1689
1690 /* ARGSUSED */
1691 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1692 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1693 {
1694 int *deltap = arg;
1695 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1696
1697 dsl_dataset_name(ds, namebuf);
1698
1699 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1700 return (SET_ERROR(ENAMETOOLONG));
1701 return (0);
1702 }
1703
1704 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1705 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1706 {
1707 dsl_dir_rename_arg_t *ddra = arg;
1708 dsl_pool_t *dp = dmu_tx_pool(tx);
1709 dsl_dir_t *dd, *newparent;
1710 const char *mynewname;
1711 int error;
1712 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1713
1714 /* target dir should exist */
1715 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1716 if (error != 0)
1717 return (error);
1718
1719 /* new parent should exist */
1720 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1721 &newparent, &mynewname);
1722 if (error != 0) {
1723 dsl_dir_rele(dd, FTAG);
1724 return (error);
1725 }
1726
1727 /* can't rename to different pool */
1728 if (dd->dd_pool != newparent->dd_pool) {
1729 dsl_dir_rele(newparent, FTAG);
1730 dsl_dir_rele(dd, FTAG);
1731 return (SET_ERROR(ENXIO));
1732 }
1733
1734 /* new name should not already exist */
1735 if (mynewname == NULL) {
1736 dsl_dir_rele(newparent, FTAG);
1737 dsl_dir_rele(dd, FTAG);
1738 return (SET_ERROR(EEXIST));
1739 }
1740
1741 /* if the name length is growing, validate child name lengths */
1742 if (delta > 0) {
1743 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1744 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1745 if (error != 0) {
1746 dsl_dir_rele(newparent, FTAG);
1747 dsl_dir_rele(dd, FTAG);
1748 return (error);
1749 }
1750 }
1751
1752 if (dmu_tx_is_syncing(tx)) {
1753 if (spa_feature_is_active(dp->dp_spa,
1754 SPA_FEATURE_FS_SS_LIMIT)) {
1755 /*
1756 * Although this is the check function and we don't
1757 * normally make on-disk changes in check functions,
1758 * we need to do that here.
1759 *
1760 * Ensure this portion of the tree's counts have been
1761 * initialized in case the new parent has limits set.
1762 */
1763 dsl_dir_init_fs_ss_count(dd, tx);
1764 }
1765 }
1766
1767 if (newparent != dd->dd_parent) {
1768 /* is there enough space? */
1769 uint64_t myspace =
1770 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1771 dsl_dir_phys(dd)->dd_reserved);
1772 objset_t *os = dd->dd_pool->dp_meta_objset;
1773 uint64_t fs_cnt = 0;
1774 uint64_t ss_cnt = 0;
1775
1776 if (dsl_dir_is_zapified(dd)) {
1777 int err;
1778
1779 err = zap_lookup(os, dd->dd_object,
1780 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1781 &fs_cnt);
1782 if (err != ENOENT && err != 0) {
1783 dsl_dir_rele(newparent, FTAG);
1784 dsl_dir_rele(dd, FTAG);
1785 return (err);
1786 }
1787
1788 /*
1789 * have to add 1 for the filesystem itself that we're
1790 * moving
1791 */
1792 fs_cnt++;
1793
1794 err = zap_lookup(os, dd->dd_object,
1795 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1796 &ss_cnt);
1797 if (err != ENOENT && err != 0) {
1798 dsl_dir_rele(newparent, FTAG);
1799 dsl_dir_rele(dd, FTAG);
1800 return (err);
1801 }
1802 }
1803
1804 /* no rename into our descendant */
1805 if (closest_common_ancestor(dd, newparent) == dd) {
1806 dsl_dir_rele(newparent, FTAG);
1807 dsl_dir_rele(dd, FTAG);
1808 return (SET_ERROR(EINVAL));
1809 }
1810
1811 error = dsl_dir_transfer_possible(dd->dd_parent,
1812 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1813 if (error != 0) {
1814 dsl_dir_rele(newparent, FTAG);
1815 dsl_dir_rele(dd, FTAG);
1816 return (error);
1817 }
1818 }
1819
1820 dsl_dir_rele(newparent, FTAG);
1821 dsl_dir_rele(dd, FTAG);
1822 return (0);
1823 }
1824
1825 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)1826 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1827 {
1828 dsl_dir_rename_arg_t *ddra = arg;
1829 dsl_pool_t *dp = dmu_tx_pool(tx);
1830 dsl_dir_t *dd, *newparent;
1831 const char *mynewname;
1832 int error;
1833 objset_t *mos = dp->dp_meta_objset;
1834
1835 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1836 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1837 &mynewname));
1838
1839 /* Log this before we change the name. */
1840 spa_history_log_internal_dd(dd, "rename", tx,
1841 "-> %s", ddra->ddra_newname);
1842
1843 if (newparent != dd->dd_parent) {
1844 objset_t *os = dd->dd_pool->dp_meta_objset;
1845 uint64_t fs_cnt = 0;
1846 uint64_t ss_cnt = 0;
1847
1848 /*
1849 * We already made sure the dd counts were initialized in the
1850 * check function.
1851 */
1852 if (spa_feature_is_active(dp->dp_spa,
1853 SPA_FEATURE_FS_SS_LIMIT)) {
1854 VERIFY0(zap_lookup(os, dd->dd_object,
1855 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1856 &fs_cnt));
1857 /* add 1 for the filesystem itself that we're moving */
1858 fs_cnt++;
1859
1860 VERIFY0(zap_lookup(os, dd->dd_object,
1861 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1862 &ss_cnt));
1863 }
1864
1865 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1866 DD_FIELD_FILESYSTEM_COUNT, tx);
1867 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1868 DD_FIELD_FILESYSTEM_COUNT, tx);
1869
1870 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1871 DD_FIELD_SNAPSHOT_COUNT, tx);
1872 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1873 DD_FIELD_SNAPSHOT_COUNT, tx);
1874
1875 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1876 -dsl_dir_phys(dd)->dd_used_bytes,
1877 -dsl_dir_phys(dd)->dd_compressed_bytes,
1878 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1879 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1880 dsl_dir_phys(dd)->dd_used_bytes,
1881 dsl_dir_phys(dd)->dd_compressed_bytes,
1882 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1883
1884 if (dsl_dir_phys(dd)->dd_reserved >
1885 dsl_dir_phys(dd)->dd_used_bytes) {
1886 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1887 dsl_dir_phys(dd)->dd_used_bytes;
1888
1889 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1890 -unused_rsrv, 0, 0, tx);
1891 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1892 unused_rsrv, 0, 0, tx);
1893 }
1894 }
1895
1896 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1897
1898 /* remove from old parent zapobj */
1899 error = zap_remove(mos,
1900 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1901 dd->dd_myname, tx);
1902 ASSERT0(error);
1903
1904 (void) strcpy(dd->dd_myname, mynewname);
1905 dsl_dir_rele(dd->dd_parent, dd);
1906 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1907 VERIFY0(dsl_dir_hold_obj(dp,
1908 newparent->dd_object, NULL, dd, &dd->dd_parent));
1909
1910 /* add to new parent zapobj */
1911 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1912 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1913
1914 dsl_prop_notify_all(dd);
1915
1916 dsl_dir_rele(newparent, FTAG);
1917 dsl_dir_rele(dd, FTAG);
1918 }
1919
1920 int
dsl_dir_rename(const char * oldname,const char * newname)1921 dsl_dir_rename(const char *oldname, const char *newname)
1922 {
1923 dsl_dir_rename_arg_t ddra;
1924
1925 ddra.ddra_oldname = oldname;
1926 ddra.ddra_newname = newname;
1927 ddra.ddra_cred = CRED();
1928
1929 return (dsl_sync_task(oldname,
1930 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1931 3, ZFS_SPACE_CHECK_RESERVED));
1932 }
1933
1934 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr)1935 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1936 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1937 {
1938 dsl_dir_t *ancestor;
1939 int64_t adelta;
1940 uint64_t avail;
1941 int err;
1942
1943 ancestor = closest_common_ancestor(sdd, tdd);
1944 adelta = would_change(sdd, -space, ancestor);
1945 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1946 if (avail < space)
1947 return (SET_ERROR(ENOSPC));
1948
1949 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1950 ancestor, cr);
1951 if (err != 0)
1952 return (err);
1953 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1954 ancestor, cr);
1955 if (err != 0)
1956 return (err);
1957
1958 return (0);
1959 }
1960
1961 timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)1962 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1963 {
1964 timestruc_t t;
1965
1966 mutex_enter(&dd->dd_lock);
1967 t = dd->dd_snap_cmtime;
1968 mutex_exit(&dd->dd_lock);
1969
1970 return (t);
1971 }
1972
1973 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd)1974 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1975 {
1976 timestruc_t t;
1977
1978 gethrestime(&t);
1979 mutex_enter(&dd->dd_lock);
1980 dd->dd_snap_cmtime = t;
1981 mutex_exit(&dd->dd_lock);
1982 }
1983
1984 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)1985 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1986 {
1987 objset_t *mos = dd->dd_pool->dp_meta_objset;
1988 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1989 }
1990
1991 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)1992 dsl_dir_is_zapified(dsl_dir_t *dd)
1993 {
1994 dmu_object_info_t doi;
1995
1996 dmu_object_info_from_db(dd->dd_dbuf, &doi);
1997 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
1998 }
1999