1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/spa_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/zap.h>
43 #include <sys/zio.h>
44 #include <sys/arc.h>
45 #include <sys/sunddi.h>
46 #include <sys/zfeature.h>
47 #include <sys/policy.h>
48 #include <sys/zfs_znode.h>
49 #include "zfs_namecheck.h"
50 #include "zfs_prop.h"
51
52 /*
53 * Filesystem and Snapshot Limits
54 * ------------------------------
55 *
56 * These limits are used to restrict the number of filesystems and/or snapshots
57 * that can be created at a given level in the tree or below. A typical
58 * use-case is with a delegated dataset where the administrator wants to ensure
59 * that a user within the zone is not creating too many additional filesystems
60 * or snapshots, even though they're not exceeding their space quota.
61 *
62 * The filesystem and snapshot counts are stored as extensible properties. This
63 * capability is controlled by a feature flag and must be enabled to be used.
64 * Once enabled, the feature is not active until the first limit is set. At
65 * that point, future operations to create/destroy filesystems or snapshots
66 * will validate and update the counts.
67 *
68 * Because the count properties will not exist before the feature is active,
69 * the counts are updated when a limit is first set on an uninitialized
70 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
71 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
72 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
73 * snapshot count properties on a node indicate uninitialized counts on that
74 * node.) When first setting a limit on an uninitialized node, the code starts
75 * at the filesystem with the new limit and descends into all sub-filesystems
76 * to add the count properties.
77 *
78 * In practice this is lightweight since a limit is typically set when the
79 * filesystem is created and thus has no children. Once valid, changing the
80 * limit value won't require a re-traversal since the counts are already valid.
81 * When recursively fixing the counts, if a node with a limit is encountered
82 * during the descent, the counts are known to be valid and there is no need to
83 * descend into that filesystem's children. The counts on filesystems above the
84 * one with the new limit will still be uninitialized, unless a limit is
85 * eventually set on one of those filesystems. The counts are always recursively
86 * updated when a limit is set on a dataset, unless there is already a limit.
87 * When a new limit value is set on a filesystem with an existing limit, it is
88 * possible for the new limit to be less than the current count at that level
89 * since a user who can change the limit is also allowed to exceed the limit.
90 *
91 * Once the feature is active, then whenever a filesystem or snapshot is
92 * created, the code recurses up the tree, validating the new count against the
93 * limit at each initialized level. In practice, most levels will not have a
94 * limit set. If there is a limit at any initialized level up the tree, the
95 * check must pass or the creation will fail. Likewise, when a filesystem or
96 * snapshot is destroyed, the counts are recursively adjusted all the way up
97 * the initizized nodes in the tree. Renaming a filesystem into different point
98 * in the tree will first validate, then update the counts on each branch up to
99 * the common ancestor. A receive will also validate the counts and then update
100 * them.
101 *
102 * An exception to the above behavior is that the limit is not enforced if the
103 * user has permission to modify the limit. This is primarily so that
104 * recursive snapshots in the global zone always work. We want to prevent a
105 * denial-of-service in which a lower level delegated dataset could max out its
106 * limit and thus block recursive snapshots from being taken in the global zone.
107 * Because of this, it is possible for the snapshot count to be over the limit
108 * and snapshots taken in the global zone could cause a lower level dataset to
109 * hit or exceed its limit. The administrator taking the global zone recursive
110 * snapshot should be aware of this side-effect and behave accordingly.
111 * For consistency, the filesystem limit is also not enforced if the user can
112 * modify the limit.
113 *
114 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
115 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
116 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
117 * dsl_dir_init_fs_ss_count().
118 *
119 * There is a special case when we receive a filesystem that already exists. In
120 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
121 * never update the filesystem counts for temporary clones.
122 *
123 * Likewise, we do not update the snapshot counts for temporary snapshots,
124 * such as those created by zfs diff.
125 */
126
127 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
128
129 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
130
131 typedef struct ddulrt_arg {
132 dsl_dir_t *ddulrta_dd;
133 uint64_t ddlrta_txg;
134 } ddulrt_arg_t;
135
136 static void
dsl_dir_evict_async(void * dbu)137 dsl_dir_evict_async(void *dbu)
138 {
139 dsl_dir_t *dd = dbu;
140 dsl_pool_t *dp = dd->dd_pool;
141 int t;
142
143 dd->dd_dbuf = NULL;
144
145 for (t = 0; t < TXG_SIZE; t++) {
146 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
147 ASSERT(dd->dd_tempreserved[t] == 0);
148 ASSERT(dd->dd_space_towrite[t] == 0);
149 }
150
151 if (dd->dd_parent)
152 dsl_dir_async_rele(dd->dd_parent, dd);
153
154 spa_async_close(dd->dd_pool->dp_spa, dd);
155
156 dsl_prop_fini(dd);
157 mutex_destroy(&dd->dd_lock);
158 kmem_free(dd, sizeof (dsl_dir_t));
159 }
160
161 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,void * tag,dsl_dir_t ** ddp)162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
163 const char *tail, void *tag, dsl_dir_t **ddp)
164 {
165 dmu_buf_t *dbuf;
166 dsl_dir_t *dd;
167 dmu_object_info_t doi;
168 int err;
169
170 ASSERT(dsl_pool_config_held(dp));
171
172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
173 if (err != 0)
174 return (err);
175 dd = dmu_buf_get_user(dbuf);
176
177 dmu_object_info_from_db(dbuf, &doi);
178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
180
181 if (dd == NULL) {
182 dsl_dir_t *winner;
183
184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 dd->dd_object = ddobj;
186 dd->dd_dbuf = dbuf;
187 dd->dd_pool = dp;
188
189 if (dsl_dir_is_zapified(dd) &&
190 zap_contains(dp->dp_meta_objset, ddobj,
191 DD_FIELD_CRYPTO_KEY_OBJ) == 0) {
192 VERIFY0(zap_lookup(dp->dp_meta_objset,
193 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
194 sizeof (uint64_t), 1, &dd->dd_crypto_obj));
195
196 /* check for on-disk format errata */
197 if (dsl_dir_incompatible_encryption_version(dd)) {
198 dp->dp_spa->spa_errata =
199 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
200 }
201 }
202
203 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
204 dsl_prop_init(dd);
205
206 dsl_dir_snap_cmtime_update(dd);
207
208 if (dsl_dir_phys(dd)->dd_parent_obj) {
209 err = dsl_dir_hold_obj(dp,
210 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
211 &dd->dd_parent);
212 if (err != 0)
213 goto errout;
214 if (tail) {
215 #ifdef ZFS_DEBUG
216 uint64_t foundobj;
217
218 err = zap_lookup(dp->dp_meta_objset,
219 dsl_dir_phys(dd->dd_parent)->
220 dd_child_dir_zapobj, tail,
221 sizeof (foundobj), 1, &foundobj);
222 ASSERT(err || foundobj == ddobj);
223 #endif
224 (void) strcpy(dd->dd_myname, tail);
225 } else {
226 err = zap_value_search(dp->dp_meta_objset,
227 dsl_dir_phys(dd->dd_parent)->
228 dd_child_dir_zapobj,
229 ddobj, 0, dd->dd_myname);
230 }
231 if (err != 0)
232 goto errout;
233 } else {
234 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
235 }
236
237 if (dsl_dir_is_clone(dd)) {
238 dmu_buf_t *origin_bonus;
239 dsl_dataset_phys_t *origin_phys;
240
241 /*
242 * We can't open the origin dataset, because
243 * that would require opening this dsl_dir.
244 * Just look at its phys directly instead.
245 */
246 err = dmu_bonus_hold(dp->dp_meta_objset,
247 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
248 &origin_bonus);
249 if (err != 0)
250 goto errout;
251 origin_phys = origin_bonus->db_data;
252 dd->dd_origin_txg =
253 origin_phys->ds_creation_txg;
254 dmu_buf_rele(origin_bonus, FTAG);
255 }
256
257 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
258 &dd->dd_dbuf);
259 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
260 if (winner != NULL) {
261 if (dd->dd_parent)
262 dsl_dir_rele(dd->dd_parent, dd);
263 dsl_prop_fini(dd);
264 mutex_destroy(&dd->dd_lock);
265 kmem_free(dd, sizeof (dsl_dir_t));
266 dd = winner;
267 } else {
268 spa_open_ref(dp->dp_spa, dd);
269 }
270 }
271
272 /*
273 * The dsl_dir_t has both open-to-close and instantiate-to-evict
274 * holds on the spa. We need the open-to-close holds because
275 * otherwise the spa_refcnt wouldn't change when we open a
276 * dir which the spa also has open, so we could incorrectly
277 * think it was OK to unload/export/destroy the pool. We need
278 * the instantiate-to-evict hold because the dsl_dir_t has a
279 * pointer to the dd_pool, which has a pointer to the spa_t.
280 */
281 spa_open_ref(dp->dp_spa, tag);
282 ASSERT3P(dd->dd_pool, ==, dp);
283 ASSERT3U(dd->dd_object, ==, ddobj);
284 ASSERT3P(dd->dd_dbuf, ==, dbuf);
285 *ddp = dd;
286 return (0);
287
288 errout:
289 if (dd->dd_parent)
290 dsl_dir_rele(dd->dd_parent, dd);
291 dsl_prop_fini(dd);
292 mutex_destroy(&dd->dd_lock);
293 kmem_free(dd, sizeof (dsl_dir_t));
294 dmu_buf_rele(dbuf, tag);
295 return (err);
296 }
297
298 void
dsl_dir_rele(dsl_dir_t * dd,void * tag)299 dsl_dir_rele(dsl_dir_t *dd, void *tag)
300 {
301 dprintf_dd(dd, "%s\n", "");
302 spa_close(dd->dd_pool->dp_spa, tag);
303 dmu_buf_rele(dd->dd_dbuf, tag);
304 }
305
306 /*
307 * Remove a reference to the given dsl dir that is being asynchronously
308 * released. Async releases occur from a taskq performing eviction of
309 * dsl datasets and dirs. This process is identical to a normal release
310 * with the exception of using the async API for releasing the reference on
311 * the spa.
312 */
313 void
dsl_dir_async_rele(dsl_dir_t * dd,void * tag)314 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
315 {
316 dprintf_dd(dd, "%s\n", "");
317 spa_async_close(dd->dd_pool->dp_spa, tag);
318 dmu_buf_rele(dd->dd_dbuf, tag);
319 }
320
321 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
322 void
dsl_dir_name(dsl_dir_t * dd,char * buf)323 dsl_dir_name(dsl_dir_t *dd, char *buf)
324 {
325 if (dd->dd_parent) {
326 dsl_dir_name(dd->dd_parent, buf);
327 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
328 ZFS_MAX_DATASET_NAME_LEN);
329 } else {
330 buf[0] = '\0';
331 }
332 if (!MUTEX_HELD(&dd->dd_lock)) {
333 /*
334 * recursive mutex so that we can use
335 * dprintf_dd() with dd_lock held
336 */
337 mutex_enter(&dd->dd_lock);
338 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
339 <, ZFS_MAX_DATASET_NAME_LEN);
340 mutex_exit(&dd->dd_lock);
341 } else {
342 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
343 <, ZFS_MAX_DATASET_NAME_LEN);
344 }
345 }
346
347 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
348 int
dsl_dir_namelen(dsl_dir_t * dd)349 dsl_dir_namelen(dsl_dir_t *dd)
350 {
351 int result = 0;
352
353 if (dd->dd_parent) {
354 /* parent's name + 1 for the "/" */
355 result = dsl_dir_namelen(dd->dd_parent) + 1;
356 }
357
358 if (!MUTEX_HELD(&dd->dd_lock)) {
359 /* see dsl_dir_name */
360 mutex_enter(&dd->dd_lock);
361 result += strlen(dd->dd_myname);
362 mutex_exit(&dd->dd_lock);
363 } else {
364 result += strlen(dd->dd_myname);
365 }
366
367 return (result);
368 }
369
370 static int
getcomponent(const char * path,char * component,const char ** nextp)371 getcomponent(const char *path, char *component, const char **nextp)
372 {
373 char *p;
374
375 if ((path == NULL) || (path[0] == '\0'))
376 return (SET_ERROR(ENOENT));
377 /* This would be a good place to reserve some namespace... */
378 p = strpbrk(path, "/@");
379 if (p && (p[1] == '/' || p[1] == '@')) {
380 /* two separators in a row */
381 return (SET_ERROR(EINVAL));
382 }
383 if (p == NULL || p == path) {
384 /*
385 * if the first thing is an @ or /, it had better be an
386 * @ and it had better not have any more ats or slashes,
387 * and it had better have something after the @.
388 */
389 if (p != NULL &&
390 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
391 return (SET_ERROR(EINVAL));
392 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
393 return (SET_ERROR(ENAMETOOLONG));
394 (void) strcpy(component, path);
395 p = NULL;
396 } else if (p[0] == '/') {
397 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
398 return (SET_ERROR(ENAMETOOLONG));
399 (void) strncpy(component, path, p - path);
400 component[p - path] = '\0';
401 p++;
402 } else if (p[0] == '@') {
403 /*
404 * if the next separator is an @, there better not be
405 * any more slashes.
406 */
407 if (strchr(path, '/'))
408 return (SET_ERROR(EINVAL));
409 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
410 return (SET_ERROR(ENAMETOOLONG));
411 (void) strncpy(component, path, p - path);
412 component[p - path] = '\0';
413 } else {
414 panic("invalid p=%p", (void *)p);
415 }
416 *nextp = p;
417 return (0);
418 }
419
420 /*
421 * Return the dsl_dir_t, and possibly the last component which couldn't
422 * be found in *tail. The name must be in the specified dsl_pool_t. This
423 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
424 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
425 * (*tail)[0] == '@' means that the last component is a snapshot.
426 */
427 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,void * tag,dsl_dir_t ** ddp,const char ** tailp)428 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
429 dsl_dir_t **ddp, const char **tailp)
430 {
431 char buf[ZFS_MAX_DATASET_NAME_LEN];
432 const char *spaname, *next, *nextnext = NULL;
433 int err;
434 dsl_dir_t *dd;
435 uint64_t ddobj;
436
437 err = getcomponent(name, buf, &next);
438 if (err != 0)
439 return (err);
440
441 /* Make sure the name is in the specified pool. */
442 spaname = spa_name(dp->dp_spa);
443 if (strcmp(buf, spaname) != 0)
444 return (SET_ERROR(EXDEV));
445
446 ASSERT(dsl_pool_config_held(dp));
447
448 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
449 if (err != 0) {
450 return (err);
451 }
452
453 while (next != NULL) {
454 dsl_dir_t *child_dd;
455 err = getcomponent(next, buf, &nextnext);
456 if (err != 0)
457 break;
458 ASSERT(next[0] != '\0');
459 if (next[0] == '@')
460 break;
461 dprintf("looking up %s in obj%lld\n",
462 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
463
464 err = zap_lookup(dp->dp_meta_objset,
465 dsl_dir_phys(dd)->dd_child_dir_zapobj,
466 buf, sizeof (ddobj), 1, &ddobj);
467 if (err != 0) {
468 if (err == ENOENT)
469 err = 0;
470 break;
471 }
472
473 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
474 if (err != 0)
475 break;
476 dsl_dir_rele(dd, tag);
477 dd = child_dd;
478 next = nextnext;
479 }
480
481 if (err != 0) {
482 dsl_dir_rele(dd, tag);
483 return (err);
484 }
485
486 /*
487 * It's an error if there's more than one component left, or
488 * tailp==NULL and there's any component left.
489 */
490 if (next != NULL &&
491 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
492 /* bad path name */
493 dsl_dir_rele(dd, tag);
494 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
495 err = SET_ERROR(ENOENT);
496 }
497 if (tailp != NULL)
498 *tailp = next;
499 *ddp = dd;
500 return (err);
501 }
502
503 /*
504 * If the counts are already initialized for this filesystem and its
505 * descendants then do nothing, otherwise initialize the counts.
506 *
507 * The counts on this filesystem, and those below, may be uninitialized due to
508 * either the use of a pre-existing pool which did not support the
509 * filesystem/snapshot limit feature, or one in which the feature had not yet
510 * been enabled.
511 *
512 * Recursively descend the filesystem tree and update the filesystem/snapshot
513 * counts on each filesystem below, then update the cumulative count on the
514 * current filesystem. If the filesystem already has a count set on it,
515 * then we know that its counts, and the counts on the filesystems below it,
516 * are already correct, so we don't have to update this filesystem.
517 */
518 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)519 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
520 {
521 uint64_t my_fs_cnt = 0;
522 uint64_t my_ss_cnt = 0;
523 dsl_pool_t *dp = dd->dd_pool;
524 objset_t *os = dp->dp_meta_objset;
525 zap_cursor_t *zc;
526 zap_attribute_t *za;
527 dsl_dataset_t *ds;
528
529 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
530 ASSERT(dsl_pool_config_held(dp));
531 ASSERT(dmu_tx_is_syncing(tx));
532
533 dsl_dir_zapify(dd, tx);
534
535 /*
536 * If the filesystem count has already been initialized then we
537 * don't need to recurse down any further.
538 */
539 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
540 return;
541
542 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
543 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
544
545 /* Iterate my child dirs */
546 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
547 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
548 dsl_dir_t *chld_dd;
549 uint64_t count;
550
551 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
552 &chld_dd));
553
554 /*
555 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
556 * temporary datasets.
557 */
558 if (chld_dd->dd_myname[0] == '$' ||
559 chld_dd->dd_myname[0] == '%') {
560 dsl_dir_rele(chld_dd, FTAG);
561 continue;
562 }
563
564 my_fs_cnt++; /* count this child */
565
566 dsl_dir_init_fs_ss_count(chld_dd, tx);
567
568 VERIFY0(zap_lookup(os, chld_dd->dd_object,
569 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
570 my_fs_cnt += count;
571 VERIFY0(zap_lookup(os, chld_dd->dd_object,
572 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
573 my_ss_cnt += count;
574
575 dsl_dir_rele(chld_dd, FTAG);
576 }
577 zap_cursor_fini(zc);
578 /* Count my snapshots (we counted children's snapshots above) */
579 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
580 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
581
582 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
583 zap_cursor_retrieve(zc, za) == 0;
584 zap_cursor_advance(zc)) {
585 /* Don't count temporary snapshots */
586 if (za->za_name[0] != '%')
587 my_ss_cnt++;
588 }
589 zap_cursor_fini(zc);
590
591 dsl_dataset_rele(ds, FTAG);
592
593 kmem_free(zc, sizeof (zap_cursor_t));
594 kmem_free(za, sizeof (zap_attribute_t));
595
596 /* we're in a sync task, update counts */
597 dmu_buf_will_dirty(dd->dd_dbuf, tx);
598 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
599 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
600 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
601 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
602 }
603
604 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)605 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
606 {
607 char *ddname = (char *)arg;
608 dsl_pool_t *dp = dmu_tx_pool(tx);
609 dsl_dataset_t *ds;
610 dsl_dir_t *dd;
611 int error;
612
613 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
614 if (error != 0)
615 return (error);
616
617 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
618 dsl_dataset_rele(ds, FTAG);
619 return (SET_ERROR(ENOTSUP));
620 }
621
622 dd = ds->ds_dir;
623 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
624 dsl_dir_is_zapified(dd) &&
625 zap_contains(dp->dp_meta_objset, dd->dd_object,
626 DD_FIELD_FILESYSTEM_COUNT) == 0) {
627 dsl_dataset_rele(ds, FTAG);
628 return (SET_ERROR(EALREADY));
629 }
630
631 dsl_dataset_rele(ds, FTAG);
632 return (0);
633 }
634
635 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)636 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
637 {
638 char *ddname = (char *)arg;
639 dsl_pool_t *dp = dmu_tx_pool(tx);
640 dsl_dataset_t *ds;
641 spa_t *spa;
642
643 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
644
645 spa = dsl_dataset_get_spa(ds);
646
647 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
648 /*
649 * Since the feature was not active and we're now setting a
650 * limit, increment the feature-active counter so that the
651 * feature becomes active for the first time.
652 *
653 * We are already in a sync task so we can update the MOS.
654 */
655 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
656 }
657
658 /*
659 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
660 * we need to ensure the counts are correct. Descend down the tree from
661 * this point and update all of the counts to be accurate.
662 */
663 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
664
665 dsl_dataset_rele(ds, FTAG);
666 }
667
668 /*
669 * Make sure the feature is enabled and activate it if necessary.
670 * Since we're setting a limit, ensure the on-disk counts are valid.
671 * This is only called by the ioctl path when setting a limit value.
672 *
673 * We do not need to validate the new limit, since users who can change the
674 * limit are also allowed to exceed the limit.
675 */
676 int
dsl_dir_activate_fs_ss_limit(const char * ddname)677 dsl_dir_activate_fs_ss_limit(const char *ddname)
678 {
679 int error;
680
681 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
682 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
683 ZFS_SPACE_CHECK_RESERVED);
684
685 if (error == EALREADY)
686 error = 0;
687
688 return (error);
689 }
690
691 /*
692 * Used to determine if the filesystem_limit or snapshot_limit should be
693 * enforced. We allow the limit to be exceeded if the user has permission to
694 * write the property value. We pass in the creds that we got in the open
695 * context since we will always be the GZ root in syncing context. We also have
696 * to handle the case where we are allowed to change the limit on the current
697 * dataset, but there may be another limit in the tree above.
698 *
699 * We can never modify these two properties within a non-global zone. In
700 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
701 * can't use that function since we are already holding the dp_config_rwlock.
702 * In addition, we already have the dd and dealing with snapshots is simplified
703 * in this code.
704 */
705
706 typedef enum {
707 ENFORCE_ALWAYS,
708 ENFORCE_NEVER,
709 ENFORCE_ABOVE
710 } enforce_res_t;
711
712 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr)713 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
714 {
715 enforce_res_t enforce = ENFORCE_ALWAYS;
716 uint64_t obj;
717 dsl_dataset_t *ds;
718 uint64_t zoned;
719
720 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
721 prop == ZFS_PROP_SNAPSHOT_LIMIT);
722
723 #ifdef _KERNEL
724 if (crgetzoneid(cr) != GLOBAL_ZONEID)
725 return (ENFORCE_ALWAYS);
726
727 if (secpolicy_zfs(cr) == 0)
728 return (ENFORCE_NEVER);
729 #endif
730
731 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
732 return (ENFORCE_ALWAYS);
733
734 ASSERT(dsl_pool_config_held(dd->dd_pool));
735
736 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
737 return (ENFORCE_ALWAYS);
738
739 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
740 /* Only root can access zoned fs's from the GZ */
741 enforce = ENFORCE_ALWAYS;
742 } else {
743 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
744 enforce = ENFORCE_ABOVE;
745 }
746
747 dsl_dataset_rele(ds, FTAG);
748 return (enforce);
749 }
750
751 static void
dsl_dir_update_last_remap_txg_sync(void * varg,dmu_tx_t * tx)752 dsl_dir_update_last_remap_txg_sync(void *varg, dmu_tx_t *tx)
753 {
754 ddulrt_arg_t *arg = varg;
755 uint64_t last_remap_txg;
756 dsl_dir_t *dd = arg->ddulrta_dd;
757 objset_t *mos = dd->dd_pool->dp_meta_objset;
758
759 dsl_dir_zapify(dd, tx);
760 if (zap_lookup(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
761 sizeof (last_remap_txg), 1, &last_remap_txg) != 0 ||
762 last_remap_txg < arg->ddlrta_txg) {
763 VERIFY0(zap_update(mos, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
764 sizeof (arg->ddlrta_txg), 1, &arg->ddlrta_txg, tx));
765 }
766 }
767
768 int
dsl_dir_update_last_remap_txg(dsl_dir_t * dd,uint64_t txg)769 dsl_dir_update_last_remap_txg(dsl_dir_t *dd, uint64_t txg)
770 {
771 ddulrt_arg_t arg;
772 arg.ddulrta_dd = dd;
773 arg.ddlrta_txg = txg;
774
775 return (dsl_sync_task(spa_name(dd->dd_pool->dp_spa),
776 NULL, dsl_dir_update_last_remap_txg_sync, &arg,
777 1, ZFS_SPACE_CHECK_RESERVED));
778 }
779
780 /*
781 * Check if adding additional child filesystem(s) would exceed any filesystem
782 * limits or adding additional snapshot(s) would exceed any snapshot limits.
783 * The prop argument indicates which limit to check.
784 *
785 * Note that all filesystem limits up to the root (or the highest
786 * initialized) filesystem or the given ancestor must be satisfied.
787 */
788 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr)789 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
790 dsl_dir_t *ancestor, cred_t *cr)
791 {
792 objset_t *os = dd->dd_pool->dp_meta_objset;
793 uint64_t limit, count;
794 char *count_prop;
795 enforce_res_t enforce;
796 int err = 0;
797
798 ASSERT(dsl_pool_config_held(dd->dd_pool));
799 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
800 prop == ZFS_PROP_SNAPSHOT_LIMIT);
801
802 /*
803 * If we're allowed to change the limit, don't enforce the limit
804 * e.g. this can happen if a snapshot is taken by an administrative
805 * user in the global zone (i.e. a recursive snapshot by root).
806 * However, we must handle the case of delegated permissions where we
807 * are allowed to change the limit on the current dataset, but there
808 * is another limit in the tree above.
809 */
810 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
811 if (enforce == ENFORCE_NEVER)
812 return (0);
813
814 /*
815 * e.g. if renaming a dataset with no snapshots, count adjustment
816 * is 0.
817 */
818 if (delta == 0)
819 return (0);
820
821 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
822 /*
823 * We don't enforce the limit for temporary snapshots. This is
824 * indicated by a NULL cred_t argument.
825 */
826 if (cr == NULL)
827 return (0);
828
829 count_prop = DD_FIELD_SNAPSHOT_COUNT;
830 } else {
831 count_prop = DD_FIELD_FILESYSTEM_COUNT;
832 }
833
834 /*
835 * If an ancestor has been provided, stop checking the limit once we
836 * hit that dir. We need this during rename so that we don't overcount
837 * the check once we recurse up to the common ancestor.
838 */
839 if (ancestor == dd)
840 return (0);
841
842 /*
843 * If we hit an uninitialized node while recursing up the tree, we can
844 * stop since we know there is no limit here (or above). The counts are
845 * not valid on this node and we know we won't touch this node's counts.
846 */
847 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
848 count_prop, sizeof (count), 1, &count) == ENOENT)
849 return (0);
850
851 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
852 B_FALSE);
853 if (err != 0)
854 return (err);
855
856 /* Is there a limit which we've hit? */
857 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
858 return (SET_ERROR(EDQUOT));
859
860 if (dd->dd_parent != NULL)
861 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
862 ancestor, cr);
863
864 return (err);
865 }
866
867 /*
868 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
869 * parents. When a new filesystem/snapshot is created, increment the count on
870 * all parents, and when a filesystem/snapshot is destroyed, decrement the
871 * count.
872 */
873 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)874 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
875 dmu_tx_t *tx)
876 {
877 int err;
878 objset_t *os = dd->dd_pool->dp_meta_objset;
879 uint64_t count;
880
881 ASSERT(dsl_pool_config_held(dd->dd_pool));
882 ASSERT(dmu_tx_is_syncing(tx));
883 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
884 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
885
886 /*
887 * When we receive an incremental stream into a filesystem that already
888 * exists, a temporary clone is created. We don't count this temporary
889 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
890 * $MOS & $ORIGIN) objsets.
891 */
892 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
893 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
894 return;
895
896 /*
897 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
898 */
899 if (delta == 0)
900 return;
901
902 /*
903 * If we hit an uninitialized node while recursing up the tree, we can
904 * stop since we know the counts are not valid on this node and we
905 * know we shouldn't touch this node's counts. An uninitialized count
906 * on the node indicates that either the feature has not yet been
907 * activated or there are no limits on this part of the tree.
908 */
909 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
910 prop, sizeof (count), 1, &count)) == ENOENT)
911 return;
912 VERIFY0(err);
913
914 count += delta;
915 /* Use a signed verify to make sure we're not neg. */
916 VERIFY3S(count, >=, 0);
917
918 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
919 tx));
920
921 /* Roll up this additional count into our ancestors */
922 if (dd->dd_parent != NULL)
923 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
924 }
925
926 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)927 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
928 dmu_tx_t *tx)
929 {
930 objset_t *mos = dp->dp_meta_objset;
931 uint64_t ddobj;
932 dsl_dir_phys_t *ddphys;
933 dmu_buf_t *dbuf;
934
935 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
936 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
937 if (pds) {
938 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
939 name, sizeof (uint64_t), 1, &ddobj, tx));
940 } else {
941 /* it's the root dir */
942 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
943 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
944 }
945 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
946 dmu_buf_will_dirty(dbuf, tx);
947 ddphys = dbuf->db_data;
948
949 ddphys->dd_creation_time = gethrestime_sec();
950 if (pds) {
951 ddphys->dd_parent_obj = pds->dd_object;
952
953 /* update the filesystem counts */
954 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
955 }
956 ddphys->dd_props_zapobj = zap_create(mos,
957 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
958 ddphys->dd_child_dir_zapobj = zap_create(mos,
959 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
960 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
961 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
962
963 dmu_buf_rele(dbuf, FTAG);
964
965 return (ddobj);
966 }
967
968 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)969 dsl_dir_is_clone(dsl_dir_t *dd)
970 {
971 return (dsl_dir_phys(dd)->dd_origin_obj &&
972 (dd->dd_pool->dp_origin_snap == NULL ||
973 dsl_dir_phys(dd)->dd_origin_obj !=
974 dd->dd_pool->dp_origin_snap->ds_object));
975 }
976
977
978 uint64_t
dsl_dir_get_used(dsl_dir_t * dd)979 dsl_dir_get_used(dsl_dir_t *dd)
980 {
981 return (dsl_dir_phys(dd)->dd_used_bytes);
982 }
983
984 uint64_t
dsl_dir_get_compressed(dsl_dir_t * dd)985 dsl_dir_get_compressed(dsl_dir_t *dd)
986 {
987 return (dsl_dir_phys(dd)->dd_compressed_bytes);
988 }
989
990 uint64_t
dsl_dir_get_quota(dsl_dir_t * dd)991 dsl_dir_get_quota(dsl_dir_t *dd)
992 {
993 return (dsl_dir_phys(dd)->dd_quota);
994 }
995
996 uint64_t
dsl_dir_get_reservation(dsl_dir_t * dd)997 dsl_dir_get_reservation(dsl_dir_t *dd)
998 {
999 return (dsl_dir_phys(dd)->dd_reserved);
1000 }
1001
1002 uint64_t
dsl_dir_get_compressratio(dsl_dir_t * dd)1003 dsl_dir_get_compressratio(dsl_dir_t *dd)
1004 {
1005 /* a fixed point number, 100x the ratio */
1006 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1007 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1008 dsl_dir_phys(dd)->dd_compressed_bytes));
1009 }
1010
1011 uint64_t
dsl_dir_get_logicalused(dsl_dir_t * dd)1012 dsl_dir_get_logicalused(dsl_dir_t *dd)
1013 {
1014 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1015 }
1016
1017 uint64_t
dsl_dir_get_usedsnap(dsl_dir_t * dd)1018 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1019 {
1020 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1021 }
1022
1023 uint64_t
dsl_dir_get_usedds(dsl_dir_t * dd)1024 dsl_dir_get_usedds(dsl_dir_t *dd)
1025 {
1026 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1027 }
1028
1029 uint64_t
dsl_dir_get_usedrefreserv(dsl_dir_t * dd)1030 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1031 {
1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1033 }
1034
1035 uint64_t
dsl_dir_get_usedchild(dsl_dir_t * dd)1036 dsl_dir_get_usedchild(dsl_dir_t *dd)
1037 {
1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1039 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1040 }
1041
1042 void
dsl_dir_get_origin(dsl_dir_t * dd,char * buf)1043 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1044 {
1045 dsl_dataset_t *ds;
1046 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1047 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1048
1049 dsl_dataset_name(ds, buf);
1050
1051 dsl_dataset_rele(ds, FTAG);
1052 }
1053
1054 int
dsl_dir_get_filesystem_count(dsl_dir_t * dd,uint64_t * count)1055 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1056 {
1057 if (dsl_dir_is_zapified(dd)) {
1058 objset_t *os = dd->dd_pool->dp_meta_objset;
1059 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1060 sizeof (*count), 1, count));
1061 } else {
1062 return (ENOENT);
1063 }
1064 }
1065
1066 int
dsl_dir_get_snapshot_count(dsl_dir_t * dd,uint64_t * count)1067 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1068 {
1069 if (dsl_dir_is_zapified(dd)) {
1070 objset_t *os = dd->dd_pool->dp_meta_objset;
1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1072 sizeof (*count), 1, count));
1073 } else {
1074 return (ENOENT);
1075 }
1076 }
1077
1078 int
dsl_dir_get_remaptxg(dsl_dir_t * dd,uint64_t * count)1079 dsl_dir_get_remaptxg(dsl_dir_t *dd, uint64_t *count)
1080 {
1081 if (dsl_dir_is_zapified(dd)) {
1082 objset_t *os = dd->dd_pool->dp_meta_objset;
1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_LAST_REMAP_TXG,
1084 sizeof (*count), 1, count));
1085 } else {
1086 return (ENOENT);
1087 }
1088 }
1089
1090 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1092 {
1093 mutex_enter(&dd->dd_lock);
1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1095 dsl_dir_get_quota(dd));
1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1097 dsl_dir_get_reservation(dd));
1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1099 dsl_dir_get_logicalused(dd));
1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1102 dsl_dir_get_usedsnap(dd));
1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1104 dsl_dir_get_usedds(dd));
1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1106 dsl_dir_get_usedrefreserv(dd));
1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1108 dsl_dir_get_usedchild(dd));
1109 }
1110 mutex_exit(&dd->dd_lock);
1111
1112 uint64_t count;
1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1115 count);
1116 }
1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1119 count);
1120 }
1121 if (dsl_dir_get_remaptxg(dd, &count) == 0) {
1122 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_REMAPTXG,
1123 count);
1124 }
1125
1126 if (dsl_dir_is_clone(dd)) {
1127 char buf[ZFS_MAX_DATASET_NAME_LEN];
1128 dsl_dir_get_origin(dd, buf);
1129 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1130 }
1131
1132 }
1133
1134 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1135 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1136 {
1137 dsl_pool_t *dp = dd->dd_pool;
1138
1139 ASSERT(dsl_dir_phys(dd));
1140
1141 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1142 /* up the hold count until we can be written out */
1143 dmu_buf_add_ref(dd->dd_dbuf, dd);
1144 }
1145 }
1146
1147 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1148 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1149 {
1150 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1151 uint64_t new_accounted =
1152 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1153 return (new_accounted - old_accounted);
1154 }
1155
1156 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1157 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1158 {
1159 ASSERT(dmu_tx_is_syncing(tx));
1160
1161 mutex_enter(&dd->dd_lock);
1162 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1163 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1164 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1165 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1166 mutex_exit(&dd->dd_lock);
1167
1168 /* release the hold from dsl_dir_dirty */
1169 dmu_buf_rele(dd->dd_dbuf, dd);
1170 }
1171
1172 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1173 dsl_dir_space_towrite(dsl_dir_t *dd)
1174 {
1175 uint64_t space = 0;
1176
1177 ASSERT(MUTEX_HELD(&dd->dd_lock));
1178
1179 for (int i = 0; i < TXG_SIZE; i++) {
1180 space += dd->dd_space_towrite[i & TXG_MASK];
1181 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1182 }
1183 return (space);
1184 }
1185
1186 /*
1187 * How much space would dd have available if ancestor had delta applied
1188 * to it? If ondiskonly is set, we're only interested in what's
1189 * on-disk, not estimated pending changes.
1190 */
1191 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1192 dsl_dir_space_available(dsl_dir_t *dd,
1193 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1194 {
1195 uint64_t parentspace, myspace, quota, used;
1196
1197 /*
1198 * If there are no restrictions otherwise, assume we have
1199 * unlimited space available.
1200 */
1201 quota = UINT64_MAX;
1202 parentspace = UINT64_MAX;
1203
1204 if (dd->dd_parent != NULL) {
1205 parentspace = dsl_dir_space_available(dd->dd_parent,
1206 ancestor, delta, ondiskonly);
1207 }
1208
1209 mutex_enter(&dd->dd_lock);
1210 if (dsl_dir_phys(dd)->dd_quota != 0)
1211 quota = dsl_dir_phys(dd)->dd_quota;
1212 used = dsl_dir_phys(dd)->dd_used_bytes;
1213 if (!ondiskonly)
1214 used += dsl_dir_space_towrite(dd);
1215
1216 if (dd->dd_parent == NULL) {
1217 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1218 ZFS_SPACE_CHECK_NORMAL);
1219 quota = MIN(quota, poolsize);
1220 }
1221
1222 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1223 /*
1224 * We have some space reserved, in addition to what our
1225 * parent gave us.
1226 */
1227 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1228 }
1229
1230 if (dd == ancestor) {
1231 ASSERT(delta <= 0);
1232 ASSERT(used >= -delta);
1233 used += delta;
1234 if (parentspace != UINT64_MAX)
1235 parentspace -= delta;
1236 }
1237
1238 if (used > quota) {
1239 /* over quota */
1240 myspace = 0;
1241 } else {
1242 /*
1243 * the lesser of the space provided by our parent and
1244 * the space left in our quota
1245 */
1246 myspace = MIN(parentspace, quota - used);
1247 }
1248
1249 mutex_exit(&dd->dd_lock);
1250
1251 return (myspace);
1252 }
1253
1254 struct tempreserve {
1255 list_node_t tr_node;
1256 dsl_dir_t *tr_ds;
1257 uint64_t tr_size;
1258 };
1259
1260 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1261 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1262 boolean_t ignorequota, list_t *tr_list,
1263 dmu_tx_t *tx, boolean_t first)
1264 {
1265 uint64_t txg = tx->tx_txg;
1266 uint64_t quota;
1267 struct tempreserve *tr;
1268 int retval = EDQUOT;
1269 uint64_t ref_rsrv = 0;
1270
1271 ASSERT3U(txg, !=, 0);
1272 ASSERT3S(asize, >, 0);
1273
1274 mutex_enter(&dd->dd_lock);
1275
1276 /*
1277 * Check against the dsl_dir's quota. We don't add in the delta
1278 * when checking for over-quota because they get one free hit.
1279 */
1280 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1281 for (int i = 0; i < TXG_SIZE; i++)
1282 est_inflight += dd->dd_tempreserved[i];
1283 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1284
1285 /*
1286 * On the first iteration, fetch the dataset's used-on-disk and
1287 * refreservation values. Also, if checkrefquota is set, test if
1288 * allocating this space would exceed the dataset's refquota.
1289 */
1290 if (first && tx->tx_objset) {
1291 int error;
1292 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1293
1294 error = dsl_dataset_check_quota(ds, !netfree,
1295 asize, est_inflight, &used_on_disk, &ref_rsrv);
1296 if (error != 0) {
1297 mutex_exit(&dd->dd_lock);
1298 return (error);
1299 }
1300 }
1301
1302 /*
1303 * If this transaction will result in a net free of space,
1304 * we want to let it through.
1305 */
1306 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1307 quota = UINT64_MAX;
1308 else
1309 quota = dsl_dir_phys(dd)->dd_quota;
1310
1311 /*
1312 * Adjust the quota against the actual pool size at the root
1313 * minus any outstanding deferred frees.
1314 * To ensure that it's possible to remove files from a full
1315 * pool without inducing transient overcommits, we throttle
1316 * netfree transactions against a quota that is slightly larger,
1317 * but still within the pool's allocation slop. In cases where
1318 * we're very close to full, this will allow a steady trickle of
1319 * removes to get through.
1320 */
1321 uint64_t deferred = 0;
1322 if (dd->dd_parent == NULL) {
1323 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1324 (netfree) ?
1325 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1326
1327 if (avail < quota) {
1328 quota = avail;
1329 retval = ENOSPC;
1330 }
1331 }
1332
1333 /*
1334 * If they are requesting more space, and our current estimate
1335 * is over quota, they get to try again unless the actual
1336 * on-disk is over quota and there are no pending changes (which
1337 * may free up space for us).
1338 */
1339 if (used_on_disk + est_inflight >= quota) {
1340 if (est_inflight > 0 || used_on_disk < quota ||
1341 (retval == ENOSPC && used_on_disk < quota + deferred))
1342 retval = ERESTART;
1343 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1344 "quota=%lluK tr=%lluK err=%d\n",
1345 used_on_disk>>10, est_inflight>>10,
1346 quota>>10, asize>>10, retval);
1347 mutex_exit(&dd->dd_lock);
1348 return (SET_ERROR(retval));
1349 }
1350
1351 /* We need to up our estimated delta before dropping dd_lock */
1352 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1353
1354 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1355 asize - ref_rsrv);
1356 mutex_exit(&dd->dd_lock);
1357
1358 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1359 tr->tr_ds = dd;
1360 tr->tr_size = asize;
1361 list_insert_tail(tr_list, tr);
1362
1363 /* see if it's OK with our parent */
1364 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1365 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1366
1367 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1368 parent_rsrv, netfree, ismos, tr_list, tx, B_FALSE));
1369 } else {
1370 return (0);
1371 }
1372 }
1373
1374 /*
1375 * Reserve space in this dsl_dir, to be used in this tx's txg.
1376 * After the space has been dirtied (and dsl_dir_willuse_space()
1377 * has been called), the reservation should be canceled, using
1378 * dsl_dir_tempreserve_clear().
1379 */
1380 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,boolean_t netfree,void ** tr_cookiep,dmu_tx_t * tx)1381 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1382 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1383 {
1384 int err;
1385 list_t *tr_list;
1386
1387 if (asize == 0) {
1388 *tr_cookiep = NULL;
1389 return (0);
1390 }
1391
1392 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1393 list_create(tr_list, sizeof (struct tempreserve),
1394 offsetof(struct tempreserve, tr_node));
1395 ASSERT3S(asize, >, 0);
1396
1397 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1398 if (err == 0) {
1399 struct tempreserve *tr;
1400
1401 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1402 tr->tr_size = lsize;
1403 list_insert_tail(tr_list, tr);
1404 } else {
1405 if (err == EAGAIN) {
1406 /*
1407 * If arc_memory_throttle() detected that pageout
1408 * is running and we are low on memory, we delay new
1409 * non-pageout transactions to give pageout an
1410 * advantage.
1411 *
1412 * It is unfortunate to be delaying while the caller's
1413 * locks are held.
1414 */
1415 txg_delay(dd->dd_pool, tx->tx_txg,
1416 MSEC2NSEC(10), MSEC2NSEC(10));
1417 err = SET_ERROR(ERESTART);
1418 }
1419 }
1420
1421 if (err == 0) {
1422 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1423 B_FALSE, tr_list, tx, B_TRUE);
1424 }
1425
1426 if (err != 0)
1427 dsl_dir_tempreserve_clear(tr_list, tx);
1428 else
1429 *tr_cookiep = tr_list;
1430
1431 return (err);
1432 }
1433
1434 /*
1435 * Clear a temporary reservation that we previously made with
1436 * dsl_dir_tempreserve_space().
1437 */
1438 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1439 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1440 {
1441 int txgidx = tx->tx_txg & TXG_MASK;
1442 list_t *tr_list = tr_cookie;
1443 struct tempreserve *tr;
1444
1445 ASSERT3U(tx->tx_txg, !=, 0);
1446
1447 if (tr_cookie == NULL)
1448 return;
1449
1450 while ((tr = list_head(tr_list)) != NULL) {
1451 if (tr->tr_ds) {
1452 mutex_enter(&tr->tr_ds->dd_lock);
1453 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1454 tr->tr_size);
1455 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1456 mutex_exit(&tr->tr_ds->dd_lock);
1457 } else {
1458 arc_tempreserve_clear(tr->tr_size);
1459 }
1460 list_remove(tr_list, tr);
1461 kmem_free(tr, sizeof (struct tempreserve));
1462 }
1463
1464 kmem_free(tr_list, sizeof (list_t));
1465 }
1466
1467 /*
1468 * This should be called from open context when we think we're going to write
1469 * or free space, for example when dirtying data. Be conservative; it's okay
1470 * to write less space or free more, but we don't want to write more or free
1471 * less than the amount specified.
1472 */
1473 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1474 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1475 {
1476 int64_t parent_space;
1477 uint64_t est_used;
1478
1479 mutex_enter(&dd->dd_lock);
1480 if (space > 0)
1481 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1482
1483 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1484 parent_space = parent_delta(dd, est_used, space);
1485 mutex_exit(&dd->dd_lock);
1486
1487 /* Make sure that we clean up dd_space_to* */
1488 dsl_dir_dirty(dd, tx);
1489
1490 /* XXX this is potentially expensive and unnecessary... */
1491 if (parent_space && dd->dd_parent)
1492 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1493 }
1494
1495 /* call from syncing context when we actually write/free space for this dd */
1496 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1497 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1498 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1499 {
1500 int64_t accounted_delta;
1501
1502 /*
1503 * dsl_dataset_set_refreservation_sync_impl() calls this with
1504 * dd_lock held, so that it can atomically update
1505 * ds->ds_reserved and the dsl_dir accounting, so that
1506 * dsl_dataset_check_quota() can see dataset and dir accounting
1507 * consistently.
1508 */
1509 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1510
1511 ASSERT(dmu_tx_is_syncing(tx));
1512 ASSERT(type < DD_USED_NUM);
1513
1514 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1515
1516 if (needlock)
1517 mutex_enter(&dd->dd_lock);
1518 accounted_delta =
1519 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1520 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1521 ASSERT(compressed >= 0 ||
1522 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1523 ASSERT(uncompressed >= 0 ||
1524 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1525 dsl_dir_phys(dd)->dd_used_bytes += used;
1526 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1527 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1528
1529 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1530 ASSERT(used > 0 ||
1531 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1532 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1533 #ifdef DEBUG
1534 dd_used_t t;
1535 uint64_t u = 0;
1536 for (t = 0; t < DD_USED_NUM; t++)
1537 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1538 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1539 #endif
1540 }
1541 if (needlock)
1542 mutex_exit(&dd->dd_lock);
1543
1544 if (dd->dd_parent != NULL) {
1545 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1546 accounted_delta, compressed, uncompressed, tx);
1547 dsl_dir_transfer_space(dd->dd_parent,
1548 used - accounted_delta,
1549 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1550 }
1551 }
1552
1553 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1554 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1555 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1556 {
1557 ASSERT(dmu_tx_is_syncing(tx));
1558 ASSERT(oldtype < DD_USED_NUM);
1559 ASSERT(newtype < DD_USED_NUM);
1560
1561 if (delta == 0 ||
1562 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1563 return;
1564
1565 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1566 mutex_enter(&dd->dd_lock);
1567 ASSERT(delta > 0 ?
1568 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1569 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1570 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1571 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1572 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1573 mutex_exit(&dd->dd_lock);
1574 }
1575
1576 typedef struct dsl_dir_set_qr_arg {
1577 const char *ddsqra_name;
1578 zprop_source_t ddsqra_source;
1579 uint64_t ddsqra_value;
1580 } dsl_dir_set_qr_arg_t;
1581
1582 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1583 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1584 {
1585 dsl_dir_set_qr_arg_t *ddsqra = arg;
1586 dsl_pool_t *dp = dmu_tx_pool(tx);
1587 dsl_dataset_t *ds;
1588 int error;
1589 uint64_t towrite, newval;
1590
1591 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1592 if (error != 0)
1593 return (error);
1594
1595 error = dsl_prop_predict(ds->ds_dir, "quota",
1596 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1597 if (error != 0) {
1598 dsl_dataset_rele(ds, FTAG);
1599 return (error);
1600 }
1601
1602 if (newval == 0) {
1603 dsl_dataset_rele(ds, FTAG);
1604 return (0);
1605 }
1606
1607 mutex_enter(&ds->ds_dir->dd_lock);
1608 /*
1609 * If we are doing the preliminary check in open context, and
1610 * there are pending changes, then don't fail it, since the
1611 * pending changes could under-estimate the amount of space to be
1612 * freed up.
1613 */
1614 towrite = dsl_dir_space_towrite(ds->ds_dir);
1615 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1616 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1617 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1618 error = SET_ERROR(ENOSPC);
1619 }
1620 mutex_exit(&ds->ds_dir->dd_lock);
1621 dsl_dataset_rele(ds, FTAG);
1622 return (error);
1623 }
1624
1625 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1626 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1627 {
1628 dsl_dir_set_qr_arg_t *ddsqra = arg;
1629 dsl_pool_t *dp = dmu_tx_pool(tx);
1630 dsl_dataset_t *ds;
1631 uint64_t newval;
1632
1633 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1634
1635 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1636 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1637 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1638 &ddsqra->ddsqra_value, tx);
1639
1640 VERIFY0(dsl_prop_get_int_ds(ds,
1641 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1642 } else {
1643 newval = ddsqra->ddsqra_value;
1644 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1645 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1646 }
1647
1648 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1649 mutex_enter(&ds->ds_dir->dd_lock);
1650 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1651 mutex_exit(&ds->ds_dir->dd_lock);
1652 dsl_dataset_rele(ds, FTAG);
1653 }
1654
1655 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1656 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1657 {
1658 dsl_dir_set_qr_arg_t ddsqra;
1659
1660 ddsqra.ddsqra_name = ddname;
1661 ddsqra.ddsqra_source = source;
1662 ddsqra.ddsqra_value = quota;
1663
1664 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1665 dsl_dir_set_quota_sync, &ddsqra, 0,
1666 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1667 }
1668
1669 int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1670 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1671 {
1672 dsl_dir_set_qr_arg_t *ddsqra = arg;
1673 dsl_pool_t *dp = dmu_tx_pool(tx);
1674 dsl_dataset_t *ds;
1675 dsl_dir_t *dd;
1676 uint64_t newval, used, avail;
1677 int error;
1678
1679 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1680 if (error != 0)
1681 return (error);
1682 dd = ds->ds_dir;
1683
1684 /*
1685 * If we are doing the preliminary check in open context, the
1686 * space estimates may be inaccurate.
1687 */
1688 if (!dmu_tx_is_syncing(tx)) {
1689 dsl_dataset_rele(ds, FTAG);
1690 return (0);
1691 }
1692
1693 error = dsl_prop_predict(ds->ds_dir,
1694 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1695 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1696 if (error != 0) {
1697 dsl_dataset_rele(ds, FTAG);
1698 return (error);
1699 }
1700
1701 mutex_enter(&dd->dd_lock);
1702 used = dsl_dir_phys(dd)->dd_used_bytes;
1703 mutex_exit(&dd->dd_lock);
1704
1705 if (dd->dd_parent) {
1706 avail = dsl_dir_space_available(dd->dd_parent,
1707 NULL, 0, FALSE);
1708 } else {
1709 avail = dsl_pool_adjustedsize(dd->dd_pool,
1710 ZFS_SPACE_CHECK_NORMAL) - used;
1711 }
1712
1713 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1714 uint64_t delta = MAX(used, newval) -
1715 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1716
1717 if (delta > avail ||
1718 (dsl_dir_phys(dd)->dd_quota > 0 &&
1719 newval > dsl_dir_phys(dd)->dd_quota))
1720 error = SET_ERROR(ENOSPC);
1721 }
1722
1723 dsl_dataset_rele(ds, FTAG);
1724 return (error);
1725 }
1726
1727 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1728 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1729 {
1730 uint64_t used;
1731 int64_t delta;
1732
1733 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1734
1735 mutex_enter(&dd->dd_lock);
1736 used = dsl_dir_phys(dd)->dd_used_bytes;
1737 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1738 dsl_dir_phys(dd)->dd_reserved = value;
1739
1740 if (dd->dd_parent != NULL) {
1741 /* Roll up this additional usage into our ancestors */
1742 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1743 delta, 0, 0, tx);
1744 }
1745 mutex_exit(&dd->dd_lock);
1746 }
1747
1748
1749 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1750 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1751 {
1752 dsl_dir_set_qr_arg_t *ddsqra = arg;
1753 dsl_pool_t *dp = dmu_tx_pool(tx);
1754 dsl_dataset_t *ds;
1755 uint64_t newval;
1756
1757 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1758
1759 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1760 dsl_prop_set_sync_impl(ds,
1761 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1762 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1763 &ddsqra->ddsqra_value, tx);
1764
1765 VERIFY0(dsl_prop_get_int_ds(ds,
1766 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1767 } else {
1768 newval = ddsqra->ddsqra_value;
1769 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1770 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1771 (longlong_t)newval);
1772 }
1773
1774 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1775 dsl_dataset_rele(ds, FTAG);
1776 }
1777
1778 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1779 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1780 uint64_t reservation)
1781 {
1782 dsl_dir_set_qr_arg_t ddsqra;
1783
1784 ddsqra.ddsqra_name = ddname;
1785 ddsqra.ddsqra_source = source;
1786 ddsqra.ddsqra_value = reservation;
1787
1788 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1789 dsl_dir_set_reservation_sync, &ddsqra, 0,
1790 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1791 }
1792
1793 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1794 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1795 {
1796 for (; ds1; ds1 = ds1->dd_parent) {
1797 dsl_dir_t *dd;
1798 for (dd = ds2; dd; dd = dd->dd_parent) {
1799 if (ds1 == dd)
1800 return (dd);
1801 }
1802 }
1803 return (NULL);
1804 }
1805
1806 /*
1807 * If delta is applied to dd, how much of that delta would be applied to
1808 * ancestor? Syncing context only.
1809 */
1810 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1811 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1812 {
1813 if (dd == ancestor)
1814 return (delta);
1815
1816 mutex_enter(&dd->dd_lock);
1817 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1818 mutex_exit(&dd->dd_lock);
1819 return (would_change(dd->dd_parent, delta, ancestor));
1820 }
1821
1822 typedef struct dsl_dir_rename_arg {
1823 const char *ddra_oldname;
1824 const char *ddra_newname;
1825 cred_t *ddra_cred;
1826 } dsl_dir_rename_arg_t;
1827
1828 typedef struct dsl_valid_rename_arg {
1829 int char_delta;
1830 int nest_delta;
1831 } dsl_valid_rename_arg_t;
1832
1833 /* ARGSUSED */
1834 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1835 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1836 {
1837 dsl_valid_rename_arg_t *dvra = arg;
1838 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1839
1840 dsl_dataset_name(ds, namebuf);
1841
1842 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1843 <, ZFS_MAX_DATASET_NAME_LEN);
1844 int namelen = strlen(namebuf) + dvra->char_delta;
1845 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1846
1847 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1848 return (SET_ERROR(ENAMETOOLONG));
1849 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1850 return (SET_ERROR(ENAMETOOLONG));
1851 return (0);
1852 }
1853
1854 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1855 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1856 {
1857 dsl_dir_rename_arg_t *ddra = arg;
1858 dsl_pool_t *dp = dmu_tx_pool(tx);
1859 dsl_dir_t *dd, *newparent;
1860 dsl_valid_rename_arg_t dvra;
1861 const char *mynewname;
1862 int error;
1863
1864 /* target dir should exist */
1865 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1866 if (error != 0)
1867 return (error);
1868
1869 /* new parent should exist */
1870 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1871 &newparent, &mynewname);
1872 if (error != 0) {
1873 dsl_dir_rele(dd, FTAG);
1874 return (error);
1875 }
1876
1877 /* can't rename to different pool */
1878 if (dd->dd_pool != newparent->dd_pool) {
1879 dsl_dir_rele(newparent, FTAG);
1880 dsl_dir_rele(dd, FTAG);
1881 return (SET_ERROR(ENXIO));
1882 }
1883
1884 /* new name should not already exist */
1885 if (mynewname == NULL) {
1886 dsl_dir_rele(newparent, FTAG);
1887 dsl_dir_rele(dd, FTAG);
1888 return (SET_ERROR(EEXIST));
1889 }
1890
1891 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1892 <, ZFS_MAX_DATASET_NAME_LEN);
1893 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
1894 <, ZFS_MAX_DATASET_NAME_LEN);
1895 dvra.char_delta = strlen(ddra->ddra_newname)
1896 - strlen(ddra->ddra_oldname);
1897 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
1898 - get_dataset_depth(ddra->ddra_oldname);
1899
1900 /* if the name length is growing, validate child name lengths */
1901 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
1902 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1903 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1904 if (error != 0) {
1905 dsl_dir_rele(newparent, FTAG);
1906 dsl_dir_rele(dd, FTAG);
1907 return (error);
1908 }
1909 }
1910
1911 if (dmu_tx_is_syncing(tx)) {
1912 if (spa_feature_is_active(dp->dp_spa,
1913 SPA_FEATURE_FS_SS_LIMIT)) {
1914 /*
1915 * Although this is the check function and we don't
1916 * normally make on-disk changes in check functions,
1917 * we need to do that here.
1918 *
1919 * Ensure this portion of the tree's counts have been
1920 * initialized in case the new parent has limits set.
1921 */
1922 dsl_dir_init_fs_ss_count(dd, tx);
1923 }
1924 }
1925
1926 if (newparent != dd->dd_parent) {
1927 /* is there enough space? */
1928 uint64_t myspace =
1929 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1930 dsl_dir_phys(dd)->dd_reserved);
1931 objset_t *os = dd->dd_pool->dp_meta_objset;
1932 uint64_t fs_cnt = 0;
1933 uint64_t ss_cnt = 0;
1934
1935 if (dsl_dir_is_zapified(dd)) {
1936 int err;
1937
1938 err = zap_lookup(os, dd->dd_object,
1939 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1940 &fs_cnt);
1941 if (err != ENOENT && err != 0) {
1942 dsl_dir_rele(newparent, FTAG);
1943 dsl_dir_rele(dd, FTAG);
1944 return (err);
1945 }
1946
1947 /*
1948 * have to add 1 for the filesystem itself that we're
1949 * moving
1950 */
1951 fs_cnt++;
1952
1953 err = zap_lookup(os, dd->dd_object,
1954 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1955 &ss_cnt);
1956 if (err != ENOENT && err != 0) {
1957 dsl_dir_rele(newparent, FTAG);
1958 dsl_dir_rele(dd, FTAG);
1959 return (err);
1960 }
1961 }
1962
1963 /* check for encryption errors */
1964 error = dsl_dir_rename_crypt_check(dd, newparent);
1965 if (error != 0) {
1966 dsl_dir_rele(newparent, FTAG);
1967 dsl_dir_rele(dd, FTAG);
1968 return (SET_ERROR(EACCES));
1969 }
1970
1971 /* no rename into our descendant */
1972 if (closest_common_ancestor(dd, newparent) == dd) {
1973 dsl_dir_rele(newparent, FTAG);
1974 dsl_dir_rele(dd, FTAG);
1975 return (SET_ERROR(EINVAL));
1976 }
1977
1978 error = dsl_dir_transfer_possible(dd->dd_parent,
1979 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1980 if (error != 0) {
1981 dsl_dir_rele(newparent, FTAG);
1982 dsl_dir_rele(dd, FTAG);
1983 return (error);
1984 }
1985 }
1986
1987 dsl_dir_rele(newparent, FTAG);
1988 dsl_dir_rele(dd, FTAG);
1989 return (0);
1990 }
1991
1992 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)1993 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1994 {
1995 dsl_dir_rename_arg_t *ddra = arg;
1996 dsl_pool_t *dp = dmu_tx_pool(tx);
1997 dsl_dir_t *dd, *newparent;
1998 const char *mynewname;
1999 int error;
2000 objset_t *mos = dp->dp_meta_objset;
2001
2002 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2003 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2004 &mynewname));
2005
2006 /* Log this before we change the name. */
2007 spa_history_log_internal_dd(dd, "rename", tx,
2008 "-> %s", ddra->ddra_newname);
2009
2010 if (newparent != dd->dd_parent) {
2011 objset_t *os = dd->dd_pool->dp_meta_objset;
2012 uint64_t fs_cnt = 0;
2013 uint64_t ss_cnt = 0;
2014
2015 /*
2016 * We already made sure the dd counts were initialized in the
2017 * check function.
2018 */
2019 if (spa_feature_is_active(dp->dp_spa,
2020 SPA_FEATURE_FS_SS_LIMIT)) {
2021 VERIFY0(zap_lookup(os, dd->dd_object,
2022 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2023 &fs_cnt));
2024 /* add 1 for the filesystem itself that we're moving */
2025 fs_cnt++;
2026
2027 VERIFY0(zap_lookup(os, dd->dd_object,
2028 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2029 &ss_cnt));
2030 }
2031
2032 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2033 DD_FIELD_FILESYSTEM_COUNT, tx);
2034 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2035 DD_FIELD_FILESYSTEM_COUNT, tx);
2036
2037 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2038 DD_FIELD_SNAPSHOT_COUNT, tx);
2039 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2040 DD_FIELD_SNAPSHOT_COUNT, tx);
2041
2042 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2043 -dsl_dir_phys(dd)->dd_used_bytes,
2044 -dsl_dir_phys(dd)->dd_compressed_bytes,
2045 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2046 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2047 dsl_dir_phys(dd)->dd_used_bytes,
2048 dsl_dir_phys(dd)->dd_compressed_bytes,
2049 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2050
2051 if (dsl_dir_phys(dd)->dd_reserved >
2052 dsl_dir_phys(dd)->dd_used_bytes) {
2053 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2054 dsl_dir_phys(dd)->dd_used_bytes;
2055
2056 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2057 -unused_rsrv, 0, 0, tx);
2058 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2059 unused_rsrv, 0, 0, tx);
2060 }
2061 }
2062
2063 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2064
2065 /* remove from old parent zapobj */
2066 error = zap_remove(mos,
2067 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2068 dd->dd_myname, tx);
2069 ASSERT0(error);
2070
2071 (void) strlcpy(dd->dd_myname, mynewname,
2072 sizeof (dd->dd_myname));
2073 dsl_dir_rele(dd->dd_parent, dd);
2074 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2075 VERIFY0(dsl_dir_hold_obj(dp,
2076 newparent->dd_object, NULL, dd, &dd->dd_parent));
2077
2078 /* add to new parent zapobj */
2079 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2080 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2081
2082 dsl_prop_notify_all(dd);
2083
2084 dsl_dir_rele(newparent, FTAG);
2085 dsl_dir_rele(dd, FTAG);
2086 }
2087
2088 int
dsl_dir_rename(const char * oldname,const char * newname)2089 dsl_dir_rename(const char *oldname, const char *newname)
2090 {
2091 dsl_dir_rename_arg_t ddra;
2092
2093 ddra.ddra_oldname = oldname;
2094 ddra.ddra_newname = newname;
2095 ddra.ddra_cred = CRED();
2096
2097 return (dsl_sync_task(oldname,
2098 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2099 3, ZFS_SPACE_CHECK_RESERVED));
2100 }
2101
2102 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr)2103 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2104 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
2105 {
2106 dsl_dir_t *ancestor;
2107 int64_t adelta;
2108 uint64_t avail;
2109 int err;
2110
2111 ancestor = closest_common_ancestor(sdd, tdd);
2112 adelta = would_change(sdd, -space, ancestor);
2113 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2114 if (avail < space)
2115 return (SET_ERROR(ENOSPC));
2116
2117 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2118 ancestor, cr);
2119 if (err != 0)
2120 return (err);
2121 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2122 ancestor, cr);
2123 if (err != 0)
2124 return (err);
2125
2126 return (0);
2127 }
2128
2129 timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)2130 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2131 {
2132 timestruc_t t;
2133
2134 mutex_enter(&dd->dd_lock);
2135 t = dd->dd_snap_cmtime;
2136 mutex_exit(&dd->dd_lock);
2137
2138 return (t);
2139 }
2140
2141 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd)2142 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2143 {
2144 timestruc_t t;
2145
2146 gethrestime(&t);
2147 mutex_enter(&dd->dd_lock);
2148 dd->dd_snap_cmtime = t;
2149 mutex_exit(&dd->dd_lock);
2150 }
2151
2152 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)2153 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2154 {
2155 objset_t *mos = dd->dd_pool->dp_meta_objset;
2156 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2157 }
2158
2159 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)2160 dsl_dir_is_zapified(dsl_dir_t *dd)
2161 {
2162 dmu_object_info_t doi;
2163
2164 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2165 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2166 }
2167