1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2013 Martin Matuska. All rights reserved.
26 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
29 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
31 * Copyright (c) 2025, Rob Norris <robn@despairlabs.com>
32 */
33
34 #include <sys/dmu.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_prop.h>
40 #include <sys/dsl_synctask.h>
41 #include <sys/dsl_deleg.h>
42 #include <sys/dmu_impl.h>
43 #include <sys/spa.h>
44 #include <sys/spa_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/zap.h>
47 #include <sys/zio.h>
48 #include <sys/arc.h>
49 #include <sys/sunddi.h>
50 #include <sys/zfeature.h>
51 #include <sys/policy.h>
52 #include <sys/zfs_vfsops.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zvol.h>
55 #include <sys/zthr.h>
56 #include "zfs_namecheck.h"
57 #include "zfs_prop.h"
58
59 /*
60 * This controls if we verify the ZVOL quota or not.
61 * Currently, quotas are not implemented for ZVOLs.
62 * The quota size is the size of the ZVOL.
63 * The size of the volume already implies the ZVOL size quota.
64 * The quota mechanism can introduce a significant performance drop.
65 */
66 static int zvol_enforce_quotas = B_TRUE;
67
68 /*
69 * Filesystem and Snapshot Limits
70 * ------------------------------
71 *
72 * These limits are used to restrict the number of filesystems and/or snapshots
73 * that can be created at a given level in the tree or below. A typical
74 * use-case is with a delegated dataset where the administrator wants to ensure
75 * that a user within the zone is not creating too many additional filesystems
76 * or snapshots, even though they're not exceeding their space quota.
77 *
78 * The filesystem and snapshot counts are stored as extensible properties. This
79 * capability is controlled by a feature flag and must be enabled to be used.
80 * Once enabled, the feature is not active until the first limit is set. At
81 * that point, future operations to create/destroy filesystems or snapshots
82 * will validate and update the counts.
83 *
84 * Because the count properties will not exist before the feature is active,
85 * the counts are updated when a limit is first set on an uninitialized
86 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
87 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
88 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
89 * snapshot count properties on a node indicate uninitialized counts on that
90 * node.) When first setting a limit on an uninitialized node, the code starts
91 * at the filesystem with the new limit and descends into all sub-filesystems
92 * to add the count properties.
93 *
94 * In practice this is lightweight since a limit is typically set when the
95 * filesystem is created and thus has no children. Once valid, changing the
96 * limit value won't require a re-traversal since the counts are already valid.
97 * When recursively fixing the counts, if a node with a limit is encountered
98 * during the descent, the counts are known to be valid and there is no need to
99 * descend into that filesystem's children. The counts on filesystems above the
100 * one with the new limit will still be uninitialized, unless a limit is
101 * eventually set on one of those filesystems. The counts are always recursively
102 * updated when a limit is set on a dataset, unless there is already a limit.
103 * When a new limit value is set on a filesystem with an existing limit, it is
104 * possible for the new limit to be less than the current count at that level
105 * since a user who can change the limit is also allowed to exceed the limit.
106 *
107 * Once the feature is active, then whenever a filesystem or snapshot is
108 * created, the code recurses up the tree, validating the new count against the
109 * limit at each initialized level. In practice, most levels will not have a
110 * limit set. If there is a limit at any initialized level up the tree, the
111 * check must pass or the creation will fail. Likewise, when a filesystem or
112 * snapshot is destroyed, the counts are recursively adjusted all the way up
113 * the initialized nodes in the tree. Renaming a filesystem into different point
114 * in the tree will first validate, then update the counts on each branch up to
115 * the common ancestor. A receive will also validate the counts and then update
116 * them.
117 *
118 * An exception to the above behavior is that the limit is not enforced if the
119 * user has permission to modify the limit. This is primarily so that
120 * recursive snapshots in the global zone always work. We want to prevent a
121 * denial-of-service in which a lower level delegated dataset could max out its
122 * limit and thus block recursive snapshots from being taken in the global zone.
123 * Because of this, it is possible for the snapshot count to be over the limit
124 * and snapshots taken in the global zone could cause a lower level dataset to
125 * hit or exceed its limit. The administrator taking the global zone recursive
126 * snapshot should be aware of this side-effect and behave accordingly.
127 * For consistency, the filesystem limit is also not enforced if the user can
128 * modify the limit.
129 *
130 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
131 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
132 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
133 * dsl_dir_init_fs_ss_count().
134 */
135
136 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
137
138 typedef struct ddulrt_arg {
139 dsl_dir_t *ddulrta_dd;
140 uint64_t ddlrta_txg;
141 } ddulrt_arg_t;
142
143 static void
dsl_dir_evict_async(void * dbu)144 dsl_dir_evict_async(void *dbu)
145 {
146 dsl_dir_t *dd = dbu;
147 int t;
148 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
149
150 dd->dd_dbuf = NULL;
151
152 for (t = 0; t < TXG_SIZE; t++) {
153 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
154 ASSERT(dd->dd_tempreserved[t] == 0);
155 ASSERT(dd->dd_space_towrite[t] == 0);
156 }
157
158 if (dd->dd_parent)
159 dsl_dir_async_rele(dd->dd_parent, dd);
160
161 spa_async_close(dd->dd_pool->dp_spa, dd);
162
163 if (dsl_deadlist_is_open(&dd->dd_livelist))
164 dsl_dir_livelist_close(dd);
165
166 dsl_prop_fini(dd);
167 cv_destroy(&dd->dd_activity_cv);
168 mutex_destroy(&dd->dd_activity_lock);
169 mutex_destroy(&dd->dd_lock);
170 kmem_free(dd, sizeof (dsl_dir_t));
171 }
172
173 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,const void * tag,dsl_dir_t ** ddp)174 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
175 const char *tail, const void *tag, dsl_dir_t **ddp)
176 {
177 dmu_buf_t *dbuf;
178 dsl_dir_t *dd;
179 dmu_object_info_t doi;
180 int err;
181
182 ASSERT(dsl_pool_config_held(dp));
183
184 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
185 if (err != 0)
186 return (err);
187 dd = dmu_buf_get_user(dbuf);
188
189 dmu_object_info_from_db(dbuf, &doi);
190 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
191 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
192
193 if (dd == NULL) {
194 dsl_dir_t *winner;
195
196 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
197 dd->dd_object = ddobj;
198 dd->dd_dbuf = dbuf;
199 dd->dd_pool = dp;
200
201 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
202 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
203 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
204 dsl_prop_init(dd);
205
206 if (dsl_dir_is_zapified(dd)) {
207 err = zap_lookup(dp->dp_meta_objset,
208 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
209 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
210 if (err == 0) {
211 /* check for on-disk format errata */
212 if (dsl_dir_incompatible_encryption_version(
213 dd)) {
214 dp->dp_spa->spa_errata =
215 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
216 }
217 } else if (err != ENOENT) {
218 goto errout;
219 }
220 }
221
222 if (dsl_dir_phys(dd)->dd_parent_obj) {
223 err = dsl_dir_hold_obj(dp,
224 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
225 &dd->dd_parent);
226 if (err != 0)
227 goto errout;
228 if (tail) {
229 #ifdef ZFS_DEBUG
230 uint64_t foundobj;
231
232 err = zap_lookup(dp->dp_meta_objset,
233 dsl_dir_phys(dd->dd_parent)->
234 dd_child_dir_zapobj, tail,
235 sizeof (foundobj), 1, &foundobj);
236 ASSERT(err || foundobj == ddobj);
237 #endif
238 (void) strlcpy(dd->dd_myname, tail,
239 sizeof (dd->dd_myname));
240 } else {
241 err = zap_value_search(dp->dp_meta_objset,
242 dsl_dir_phys(dd->dd_parent)->
243 dd_child_dir_zapobj,
244 ddobj, 0, dd->dd_myname,
245 sizeof (dd->dd_myname));
246 }
247 if (err != 0)
248 goto errout;
249 } else {
250 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
251 sizeof (dd->dd_myname));
252 }
253
254 if (dsl_dir_is_clone(dd)) {
255 dmu_buf_t *origin_bonus;
256 dsl_dataset_phys_t *origin_phys;
257
258 /*
259 * We can't open the origin dataset, because
260 * that would require opening this dsl_dir.
261 * Just look at its phys directly instead.
262 */
263 err = dmu_bonus_hold(dp->dp_meta_objset,
264 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
265 &origin_bonus);
266 if (err != 0)
267 goto errout;
268 origin_phys = origin_bonus->db_data;
269 dd->dd_origin_txg =
270 origin_phys->ds_creation_txg;
271 dmu_buf_rele(origin_bonus, FTAG);
272 if (dsl_dir_is_zapified(dd)) {
273 uint64_t obj;
274 err = zap_lookup(dp->dp_meta_objset,
275 dd->dd_object, DD_FIELD_LIVELIST,
276 sizeof (uint64_t), 1, &obj);
277 if (err == 0) {
278 err = dsl_dir_livelist_open(dd, obj);
279 if (err != 0)
280 goto errout;
281 } else if (err != ENOENT)
282 goto errout;
283 }
284 }
285
286 if (dsl_dir_is_zapified(dd)) {
287 inode_timespec_t t = {0};
288 (void) zap_lookup(dp->dp_meta_objset, ddobj,
289 DD_FIELD_SNAPSHOTS_CHANGED,
290 sizeof (uint64_t),
291 sizeof (inode_timespec_t) / sizeof (uint64_t),
292 &t);
293 dd->dd_snap_cmtime = t;
294 }
295
296 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
297 &dd->dd_dbuf);
298 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
299 if (winner != NULL) {
300 if (dd->dd_parent)
301 dsl_dir_rele(dd->dd_parent, dd);
302 if (dsl_deadlist_is_open(&dd->dd_livelist))
303 dsl_dir_livelist_close(dd);
304 dsl_prop_fini(dd);
305 cv_destroy(&dd->dd_activity_cv);
306 mutex_destroy(&dd->dd_activity_lock);
307 mutex_destroy(&dd->dd_lock);
308 kmem_free(dd, sizeof (dsl_dir_t));
309 dd = winner;
310 } else {
311 spa_open_ref(dp->dp_spa, dd);
312 }
313 }
314
315 /*
316 * The dsl_dir_t has both open-to-close and instantiate-to-evict
317 * holds on the spa. We need the open-to-close holds because
318 * otherwise the spa_refcnt wouldn't change when we open a
319 * dir which the spa also has open, so we could incorrectly
320 * think it was OK to unload/export/destroy the pool. We need
321 * the instantiate-to-evict hold because the dsl_dir_t has a
322 * pointer to the dd_pool, which has a pointer to the spa_t.
323 */
324 spa_open_ref(dp->dp_spa, tag);
325 ASSERT3P(dd->dd_pool, ==, dp);
326 ASSERT3U(dd->dd_object, ==, ddobj);
327 ASSERT3P(dd->dd_dbuf, ==, dbuf);
328 *ddp = dd;
329 return (0);
330
331 errout:
332 if (dd->dd_parent)
333 dsl_dir_rele(dd->dd_parent, dd);
334 if (dsl_deadlist_is_open(&dd->dd_livelist))
335 dsl_dir_livelist_close(dd);
336 dsl_prop_fini(dd);
337 cv_destroy(&dd->dd_activity_cv);
338 mutex_destroy(&dd->dd_activity_lock);
339 mutex_destroy(&dd->dd_lock);
340 kmem_free(dd, sizeof (dsl_dir_t));
341 dmu_buf_rele(dbuf, tag);
342 return (err);
343 }
344
345 void
dsl_dir_rele(dsl_dir_t * dd,const void * tag)346 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
347 {
348 dprintf_dd(dd, "%s\n", "");
349 spa_close(dd->dd_pool->dp_spa, tag);
350 dmu_buf_rele(dd->dd_dbuf, tag);
351 }
352
353 /*
354 * Remove a reference to the given dsl dir that is being asynchronously
355 * released. Async releases occur from a taskq performing eviction of
356 * dsl datasets and dirs. This process is identical to a normal release
357 * with the exception of using the async API for releasing the reference on
358 * the spa.
359 */
360 void
dsl_dir_async_rele(dsl_dir_t * dd,const void * tag)361 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
362 {
363 dprintf_dd(dd, "%s\n", "");
364 spa_async_close(dd->dd_pool->dp_spa, tag);
365 dmu_buf_rele(dd->dd_dbuf, tag);
366 }
367
368 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
369 void
dsl_dir_name(dsl_dir_t * dd,char * buf)370 dsl_dir_name(dsl_dir_t *dd, char *buf)
371 {
372 if (dd->dd_parent) {
373 dsl_dir_name(dd->dd_parent, buf);
374 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
375 ZFS_MAX_DATASET_NAME_LEN);
376 } else {
377 buf[0] = '\0';
378 }
379 if (!MUTEX_HELD(&dd->dd_lock)) {
380 /*
381 * recursive mutex so that we can use
382 * dprintf_dd() with dd_lock held
383 */
384 mutex_enter(&dd->dd_lock);
385 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
386 <, ZFS_MAX_DATASET_NAME_LEN);
387 mutex_exit(&dd->dd_lock);
388 } else {
389 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
390 <, ZFS_MAX_DATASET_NAME_LEN);
391 }
392 }
393
394 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
395 int
dsl_dir_namelen(dsl_dir_t * dd)396 dsl_dir_namelen(dsl_dir_t *dd)
397 {
398 int result = 0;
399
400 if (dd->dd_parent) {
401 /* parent's name + 1 for the "/" */
402 result = dsl_dir_namelen(dd->dd_parent) + 1;
403 }
404
405 if (!MUTEX_HELD(&dd->dd_lock)) {
406 /* see dsl_dir_name */
407 mutex_enter(&dd->dd_lock);
408 result += strlen(dd->dd_myname);
409 mutex_exit(&dd->dd_lock);
410 } else {
411 result += strlen(dd->dd_myname);
412 }
413
414 return (result);
415 }
416
417 static int
getcomponent(const char * path,char * component,const char ** nextp)418 getcomponent(const char *path, char *component, const char **nextp)
419 {
420 char *p;
421
422 if ((path == NULL) || (path[0] == '\0'))
423 return (SET_ERROR(ENOENT));
424 /* This would be a good place to reserve some namespace... */
425 p = strpbrk(path, "/@");
426 if (p && (p[1] == '/' || p[1] == '@')) {
427 /* two separators in a row */
428 return (SET_ERROR(EINVAL));
429 }
430 if (p == NULL || p == path) {
431 /*
432 * if the first thing is an @ or /, it had better be an
433 * @ and it had better not have any more ats or slashes,
434 * and it had better have something after the @.
435 */
436 if (p != NULL &&
437 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
438 return (SET_ERROR(EINVAL));
439 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
440 return (SET_ERROR(ENAMETOOLONG));
441 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
442 p = NULL;
443 } else if (p[0] == '/') {
444 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
445 return (SET_ERROR(ENAMETOOLONG));
446 (void) strlcpy(component, path, p - path + 1);
447 p++;
448 } else if (p[0] == '@') {
449 /*
450 * if the next separator is an @, there better not be
451 * any more slashes.
452 */
453 if (strchr(path, '/'))
454 return (SET_ERROR(EINVAL));
455 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
456 return (SET_ERROR(ENAMETOOLONG));
457 (void) strlcpy(component, path, p - path + 1);
458 } else {
459 panic("invalid p=%p", (void *)p);
460 }
461 *nextp = p;
462 return (0);
463 }
464
465 /*
466 * Return the dsl_dir_t, and possibly the last component which couldn't
467 * be found in *tail. The name must be in the specified dsl_pool_t. This
468 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
469 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
470 * (*tail)[0] == '@' means that the last component is a snapshot.
471 */
472 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,const void * tag,dsl_dir_t ** ddp,const char ** tailp)473 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
474 dsl_dir_t **ddp, const char **tailp)
475 {
476 char *buf;
477 const char *spaname, *next, *nextnext = NULL;
478 int err;
479 dsl_dir_t *dd;
480 uint64_t ddobj;
481
482 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
483 err = getcomponent(name, buf, &next);
484 if (err != 0)
485 goto error;
486
487 /* Make sure the name is in the specified pool. */
488 spaname = spa_name(dp->dp_spa);
489 if (strcmp(buf, spaname) != 0) {
490 err = SET_ERROR(EXDEV);
491 goto error;
492 }
493
494 ASSERT(dsl_pool_config_held(dp));
495
496 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
497 if (err != 0) {
498 goto error;
499 }
500
501 while (next != NULL) {
502 dsl_dir_t *child_dd;
503 err = getcomponent(next, buf, &nextnext);
504 if (err != 0)
505 break;
506 ASSERT(next[0] != '\0');
507 if (next[0] == '@')
508 break;
509 dprintf("looking up %s in obj%lld\n",
510 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
511
512 err = zap_lookup(dp->dp_meta_objset,
513 dsl_dir_phys(dd)->dd_child_dir_zapobj,
514 buf, sizeof (ddobj), 1, &ddobj);
515 if (err != 0) {
516 if (err == ENOENT)
517 err = 0;
518 break;
519 }
520
521 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
522 if (err != 0)
523 break;
524 dsl_dir_rele(dd, tag);
525 dd = child_dd;
526 next = nextnext;
527 }
528
529 if (err != 0) {
530 dsl_dir_rele(dd, tag);
531 goto error;
532 }
533
534 /*
535 * It's an error if there's more than one component left, or
536 * tailp==NULL and there's any component left.
537 */
538 if (next != NULL &&
539 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
540 /* bad path name */
541 dsl_dir_rele(dd, tag);
542 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
543 err = SET_ERROR(ENOENT);
544 }
545 if (tailp != NULL)
546 *tailp = next;
547 if (err == 0)
548 *ddp = dd;
549 error:
550 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
551 return (err);
552 }
553
554 /*
555 * If the counts are already initialized for this filesystem and its
556 * descendants then do nothing, otherwise initialize the counts.
557 *
558 * The counts on this filesystem, and those below, may be uninitialized due to
559 * either the use of a pre-existing pool which did not support the
560 * filesystem/snapshot limit feature, or one in which the feature had not yet
561 * been enabled.
562 *
563 * Recursively descend the filesystem tree and update the filesystem/snapshot
564 * counts on each filesystem below, then update the cumulative count on the
565 * current filesystem. If the filesystem already has a count set on it,
566 * then we know that its counts, and the counts on the filesystems below it,
567 * are already correct, so we don't have to update this filesystem.
568 */
569 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)570 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
571 {
572 uint64_t my_fs_cnt = 0;
573 uint64_t my_ss_cnt = 0;
574 dsl_pool_t *dp = dd->dd_pool;
575 objset_t *os = dp->dp_meta_objset;
576 zap_cursor_t *zc;
577 zap_attribute_t *za;
578 dsl_dataset_t *ds;
579
580 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
581 ASSERT(dsl_pool_config_held(dp));
582 ASSERT(dmu_tx_is_syncing(tx));
583
584 dsl_dir_zapify(dd, tx);
585
586 /*
587 * If the filesystem count has already been initialized then we
588 * don't need to recurse down any further.
589 */
590 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
591 return;
592
593 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
594 za = zap_attribute_alloc();
595
596 /* Iterate my child dirs */
597 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
598 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
599 dsl_dir_t *chld_dd;
600 uint64_t count;
601
602 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
603 &chld_dd));
604
605 /*
606 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
607 */
608 if (chld_dd->dd_myname[0] == '$') {
609 dsl_dir_rele(chld_dd, FTAG);
610 continue;
611 }
612
613 my_fs_cnt++; /* count this child */
614
615 dsl_dir_init_fs_ss_count(chld_dd, tx);
616
617 VERIFY0(zap_lookup(os, chld_dd->dd_object,
618 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
619 my_fs_cnt += count;
620 VERIFY0(zap_lookup(os, chld_dd->dd_object,
621 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
622 my_ss_cnt += count;
623
624 dsl_dir_rele(chld_dd, FTAG);
625 }
626 zap_cursor_fini(zc);
627 /* Count my snapshots (we counted children's snapshots above) */
628 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
629 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
630
631 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
632 zap_cursor_retrieve(zc, za) == 0;
633 zap_cursor_advance(zc)) {
634 /* Don't count temporary snapshots */
635 if (za->za_name[0] != '%')
636 my_ss_cnt++;
637 }
638 zap_cursor_fini(zc);
639
640 dsl_dataset_rele(ds, FTAG);
641
642 kmem_free(zc, sizeof (zap_cursor_t));
643 zap_attribute_free(za);
644
645 /* we're in a sync task, update counts */
646 dmu_buf_will_dirty(dd->dd_dbuf, tx);
647 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
648 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
649 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
650 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
651 }
652
653 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)654 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
655 {
656 char *ddname = (char *)arg;
657 dsl_pool_t *dp = dmu_tx_pool(tx);
658 dsl_dataset_t *ds;
659 dsl_dir_t *dd;
660 int error;
661
662 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
663 if (error != 0)
664 return (error);
665
666 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
667 dsl_dataset_rele(ds, FTAG);
668 return (SET_ERROR(ENOTSUP));
669 }
670
671 dd = ds->ds_dir;
672 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
673 dsl_dir_is_zapified(dd) &&
674 zap_contains(dp->dp_meta_objset, dd->dd_object,
675 DD_FIELD_FILESYSTEM_COUNT) == 0) {
676 dsl_dataset_rele(ds, FTAG);
677 return (SET_ERROR(EALREADY));
678 }
679
680 dsl_dataset_rele(ds, FTAG);
681 return (0);
682 }
683
684 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)685 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
686 {
687 char *ddname = (char *)arg;
688 dsl_pool_t *dp = dmu_tx_pool(tx);
689 dsl_dataset_t *ds;
690 spa_t *spa;
691
692 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
693
694 spa = dsl_dataset_get_spa(ds);
695
696 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
697 /*
698 * Since the feature was not active and we're now setting a
699 * limit, increment the feature-active counter so that the
700 * feature becomes active for the first time.
701 *
702 * We are already in a sync task so we can update the MOS.
703 */
704 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
705 }
706
707 /*
708 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
709 * we need to ensure the counts are correct. Descend down the tree from
710 * this point and update all of the counts to be accurate.
711 */
712 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
713
714 dsl_dataset_rele(ds, FTAG);
715 }
716
717 /*
718 * Make sure the feature is enabled and activate it if necessary.
719 * Since we're setting a limit, ensure the on-disk counts are valid.
720 * This is only called by the ioctl path when setting a limit value.
721 *
722 * We do not need to validate the new limit, since users who can change the
723 * limit are also allowed to exceed the limit.
724 */
725 int
dsl_dir_activate_fs_ss_limit(const char * ddname)726 dsl_dir_activate_fs_ss_limit(const char *ddname)
727 {
728 int error;
729
730 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
731 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
732 ZFS_SPACE_CHECK_RESERVED);
733
734 if (error == EALREADY)
735 error = 0;
736
737 return (error);
738 }
739
740 /*
741 * Used to determine if the filesystem_limit or snapshot_limit should be
742 * enforced. We allow the limit to be exceeded if the user has permission to
743 * write the property value. We pass in the creds that we got in the open
744 * context since we will always be the GZ root in syncing context. We also have
745 * to handle the case where we are allowed to change the limit on the current
746 * dataset, but there may be another limit in the tree above.
747 *
748 * We can never modify these two properties within a non-global zone. In
749 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
750 * can't use that function since we are already holding the dp_config_rwlock.
751 * In addition, we already have the dd and dealing with snapshots is simplified
752 * in this code.
753 */
754
755 typedef enum {
756 ENFORCE_ALWAYS,
757 ENFORCE_NEVER,
758 ENFORCE_ABOVE
759 } enforce_res_t;
760
761 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr)762 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
763 cred_t *cr)
764 {
765 enforce_res_t enforce = ENFORCE_ALWAYS;
766 uint64_t obj;
767 dsl_dataset_t *ds;
768 uint64_t zoned;
769 const char *zonedstr;
770
771 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
772 prop == ZFS_PROP_SNAPSHOT_LIMIT);
773
774 #ifdef _KERNEL
775 if (crgetzoneid(cr) != GLOBAL_ZONEID)
776 return (ENFORCE_ALWAYS);
777
778 if (secpolicy_zfs(cr) == 0)
779 return (ENFORCE_NEVER);
780 #endif
781
782 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
783 return (ENFORCE_ALWAYS);
784
785 ASSERT(dsl_pool_config_held(dd->dd_pool));
786
787 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
788 return (ENFORCE_ALWAYS);
789
790 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
791 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
792 /* Only root can access zoned fs's from the GZ */
793 enforce = ENFORCE_ALWAYS;
794 } else {
795 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
796 enforce = ENFORCE_ABOVE;
797 }
798
799 dsl_dataset_rele(ds, FTAG);
800 return (enforce);
801 }
802
803 /*
804 * Check if adding additional child filesystem(s) would exceed any filesystem
805 * limits or adding additional snapshot(s) would exceed any snapshot limits.
806 * The prop argument indicates which limit to check.
807 *
808 * Note that all filesystem limits up to the root (or the highest
809 * initialized) filesystem or the given ancestor must be satisfied.
810 */
811 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr)812 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
813 dsl_dir_t *ancestor, cred_t *cr)
814 {
815 objset_t *os = dd->dd_pool->dp_meta_objset;
816 uint64_t limit, count;
817 const char *count_prop;
818 enforce_res_t enforce;
819 int err = 0;
820
821 ASSERT(dsl_pool_config_held(dd->dd_pool));
822 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
823 prop == ZFS_PROP_SNAPSHOT_LIMIT);
824
825 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
826 /*
827 * We don't enforce the limit for temporary snapshots. This is
828 * indicated by a NULL cred_t argument.
829 */
830 if (cr == NULL)
831 return (0);
832
833 count_prop = DD_FIELD_SNAPSHOT_COUNT;
834 } else {
835 count_prop = DD_FIELD_FILESYSTEM_COUNT;
836 }
837 /*
838 * If we're allowed to change the limit, don't enforce the limit
839 * e.g. this can happen if a snapshot is taken by an administrative
840 * user in the global zone (i.e. a recursive snapshot by root).
841 * However, we must handle the case of delegated permissions where we
842 * are allowed to change the limit on the current dataset, but there
843 * is another limit in the tree above.
844 */
845 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
846 if (enforce == ENFORCE_NEVER)
847 return (0);
848
849 /*
850 * e.g. if renaming a dataset with no snapshots, count adjustment
851 * is 0.
852 */
853 if (delta == 0)
854 return (0);
855
856 /*
857 * If an ancestor has been provided, stop checking the limit once we
858 * hit that dir. We need this during rename so that we don't overcount
859 * the check once we recurse up to the common ancestor.
860 */
861 if (ancestor == dd)
862 return (0);
863
864 /*
865 * If we hit an uninitialized node while recursing up the tree, we can
866 * stop since we know there is no limit here (or above). The counts are
867 * not valid on this node and we know we won't touch this node's counts.
868 */
869 if (!dsl_dir_is_zapified(dd))
870 return (0);
871 err = zap_lookup(os, dd->dd_object,
872 count_prop, sizeof (count), 1, &count);
873 if (err == ENOENT)
874 return (0);
875 if (err != 0)
876 return (err);
877
878 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
879 B_FALSE);
880 if (err != 0)
881 return (err);
882
883 /* Is there a limit which we've hit? */
884 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
885 return (SET_ERROR(EDQUOT));
886
887 if (dd->dd_parent != NULL)
888 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
889 ancestor, cr);
890
891 return (err);
892 }
893
894 /*
895 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
896 * parents. When a new filesystem/snapshot is created, increment the count on
897 * all parents, and when a filesystem/snapshot is destroyed, decrement the
898 * count.
899 */
900 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)901 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
902 dmu_tx_t *tx)
903 {
904 int err;
905 objset_t *os = dd->dd_pool->dp_meta_objset;
906 uint64_t count;
907
908 ASSERT(dsl_pool_config_held(dd->dd_pool));
909 ASSERT(dmu_tx_is_syncing(tx));
910 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
911 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
912
913 /*
914 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
915 */
916 if (dd->dd_myname[0] == '$' && strcmp(prop,
917 DD_FIELD_FILESYSTEM_COUNT) == 0) {
918 return;
919 }
920
921 /*
922 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
923 */
924 if (delta == 0)
925 return;
926
927 /*
928 * If we hit an uninitialized node while recursing up the tree, we can
929 * stop since we know the counts are not valid on this node and we
930 * know we shouldn't touch this node's counts. An uninitialized count
931 * on the node indicates that either the feature has not yet been
932 * activated or there are no limits on this part of the tree.
933 */
934 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
935 prop, sizeof (count), 1, &count)) == ENOENT)
936 return;
937 VERIFY0(err);
938
939 count += delta;
940 /* Use a signed verify to make sure we're not neg. */
941 VERIFY3S(count, >=, 0);
942
943 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
944 tx));
945
946 /* Roll up this additional count into our ancestors */
947 if (dd->dd_parent != NULL)
948 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
949 }
950
951 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)952 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
953 dmu_tx_t *tx)
954 {
955 objset_t *mos = dp->dp_meta_objset;
956 uint64_t ddobj;
957 dsl_dir_phys_t *ddphys;
958 dmu_buf_t *dbuf;
959
960 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
961 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
962 if (pds) {
963 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
964 name, sizeof (uint64_t), 1, &ddobj, tx));
965 } else {
966 /* it's the root dir */
967 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
968 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
969 }
970 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
971 dmu_buf_will_dirty(dbuf, tx);
972 ddphys = dbuf->db_data;
973
974 ddphys->dd_creation_time = gethrestime_sec();
975 if (pds) {
976 ddphys->dd_parent_obj = pds->dd_object;
977
978 /* update the filesystem counts */
979 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
980 }
981 ddphys->dd_props_zapobj = zap_create(mos,
982 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
983 ddphys->dd_child_dir_zapobj = zap_create(mos,
984 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
985 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
986 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
987
988 dmu_buf_rele(dbuf, FTAG);
989
990 return (ddobj);
991 }
992
993 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)994 dsl_dir_is_clone(dsl_dir_t *dd)
995 {
996 return (dsl_dir_phys(dd)->dd_origin_obj &&
997 (dd->dd_pool->dp_origin_snap == NULL ||
998 dsl_dir_phys(dd)->dd_origin_obj !=
999 dd->dd_pool->dp_origin_snap->ds_object));
1000 }
1001
1002 uint64_t
dsl_dir_get_used(dsl_dir_t * dd)1003 dsl_dir_get_used(dsl_dir_t *dd)
1004 {
1005 return (dsl_dir_phys(dd)->dd_used_bytes);
1006 }
1007
1008 uint64_t
dsl_dir_get_compressed(dsl_dir_t * dd)1009 dsl_dir_get_compressed(dsl_dir_t *dd)
1010 {
1011 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1012 }
1013
1014 uint64_t
dsl_dir_get_quota(dsl_dir_t * dd)1015 dsl_dir_get_quota(dsl_dir_t *dd)
1016 {
1017 return (dsl_dir_phys(dd)->dd_quota);
1018 }
1019
1020 uint64_t
dsl_dir_get_reservation(dsl_dir_t * dd)1021 dsl_dir_get_reservation(dsl_dir_t *dd)
1022 {
1023 return (dsl_dir_phys(dd)->dd_reserved);
1024 }
1025
1026 uint64_t
dsl_dir_get_compressratio(dsl_dir_t * dd)1027 dsl_dir_get_compressratio(dsl_dir_t *dd)
1028 {
1029 /* a fixed point number, 100x the ratio */
1030 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1031 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1032 dsl_dir_phys(dd)->dd_compressed_bytes));
1033 }
1034
1035 uint64_t
dsl_dir_get_logicalused(dsl_dir_t * dd)1036 dsl_dir_get_logicalused(dsl_dir_t *dd)
1037 {
1038 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1039 }
1040
1041 uint64_t
dsl_dir_get_usedsnap(dsl_dir_t * dd)1042 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1043 {
1044 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1045 }
1046
1047 uint64_t
dsl_dir_get_usedds(dsl_dir_t * dd)1048 dsl_dir_get_usedds(dsl_dir_t *dd)
1049 {
1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1051 }
1052
1053 uint64_t
dsl_dir_get_usedrefreserv(dsl_dir_t * dd)1054 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1055 {
1056 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1057 }
1058
1059 uint64_t
dsl_dir_get_usedchild(dsl_dir_t * dd)1060 dsl_dir_get_usedchild(dsl_dir_t *dd)
1061 {
1062 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1063 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1064 }
1065
1066 void
dsl_dir_get_origin(dsl_dir_t * dd,char * buf)1067 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1068 {
1069 dsl_dataset_t *ds;
1070 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1071 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1072
1073 dsl_dataset_name(ds, buf);
1074
1075 dsl_dataset_rele(ds, FTAG);
1076 }
1077
1078 int
dsl_dir_get_filesystem_count(dsl_dir_t * dd,uint64_t * count)1079 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1080 {
1081 if (dsl_dir_is_zapified(dd)) {
1082 objset_t *os = dd->dd_pool->dp_meta_objset;
1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1084 sizeof (*count), 1, count));
1085 } else {
1086 return (SET_ERROR(ENOENT));
1087 }
1088 }
1089
1090 int
dsl_dir_get_snapshot_count(dsl_dir_t * dd,uint64_t * count)1091 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1092 {
1093 if (dsl_dir_is_zapified(dd)) {
1094 objset_t *os = dd->dd_pool->dp_meta_objset;
1095 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1096 sizeof (*count), 1, count));
1097 } else {
1098 return (SET_ERROR(ENOENT));
1099 }
1100 }
1101
1102 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)1103 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1104 {
1105 mutex_enter(&dd->dd_lock);
1106 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1107 dsl_dir_get_quota(dd));
1108 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1109 dsl_dir_get_reservation(dd));
1110 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1111 dsl_dir_get_logicalused(dd));
1112 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1113 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1114 dsl_dir_get_usedsnap(dd));
1115 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1116 dsl_dir_get_usedds(dd));
1117 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1118 dsl_dir_get_usedrefreserv(dd));
1119 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1120 dsl_dir_get_usedchild(dd));
1121 }
1122 mutex_exit(&dd->dd_lock);
1123
1124 uint64_t count;
1125 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1126 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1127 count);
1128 }
1129 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1130 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1131 count);
1132 }
1133
1134 if (dsl_dir_is_clone(dd)) {
1135 char buf[ZFS_MAX_DATASET_NAME_LEN];
1136 dsl_dir_get_origin(dd, buf);
1137 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1138 }
1139
1140 }
1141
1142 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1143 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1144 {
1145 dsl_pool_t *dp = dd->dd_pool;
1146
1147 ASSERT(dsl_dir_phys(dd));
1148
1149 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1150 /* up the hold count until we can be written out */
1151 dmu_buf_add_ref(dd->dd_dbuf, dd);
1152 }
1153 }
1154
1155 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1156 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1157 {
1158 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1159 uint64_t new_accounted =
1160 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1161 return (new_accounted - old_accounted);
1162 }
1163
1164 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1165 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1166 {
1167 ASSERT(dmu_tx_is_syncing(tx));
1168
1169 mutex_enter(&dd->dd_lock);
1170 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1171 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1172 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1173 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1174 mutex_exit(&dd->dd_lock);
1175
1176 /* release the hold from dsl_dir_dirty */
1177 dmu_buf_rele(dd->dd_dbuf, dd);
1178 }
1179
1180 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1181 dsl_dir_space_towrite(dsl_dir_t *dd)
1182 {
1183 uint64_t space = 0;
1184
1185 ASSERT(MUTEX_HELD(&dd->dd_lock));
1186
1187 for (int i = 0; i < TXG_SIZE; i++)
1188 space += dd->dd_space_towrite[i & TXG_MASK];
1189
1190 return (space);
1191 }
1192
1193 /*
1194 * How much space would dd have available if ancestor had delta applied
1195 * to it? If ondiskonly is set, we're only interested in what's
1196 * on-disk, not estimated pending changes.
1197 */
1198 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1199 dsl_dir_space_available(dsl_dir_t *dd,
1200 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1201 {
1202 uint64_t parentspace, myspace, quota, used;
1203
1204 /*
1205 * If there are no restrictions otherwise, assume we have
1206 * unlimited space available.
1207 */
1208 quota = UINT64_MAX;
1209 parentspace = UINT64_MAX;
1210
1211 if (dd->dd_parent != NULL) {
1212 parentspace = dsl_dir_space_available(dd->dd_parent,
1213 ancestor, delta, ondiskonly);
1214 }
1215
1216 mutex_enter(&dd->dd_lock);
1217 if (dsl_dir_phys(dd)->dd_quota != 0)
1218 quota = dsl_dir_phys(dd)->dd_quota;
1219 used = dsl_dir_phys(dd)->dd_used_bytes;
1220 if (!ondiskonly)
1221 used += dsl_dir_space_towrite(dd);
1222
1223 if (dd->dd_parent == NULL) {
1224 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1225 ZFS_SPACE_CHECK_NORMAL);
1226 quota = MIN(quota, poolsize);
1227 }
1228
1229 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1230 /*
1231 * We have some space reserved, in addition to what our
1232 * parent gave us.
1233 */
1234 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1235 }
1236
1237 if (dd == ancestor) {
1238 ASSERT(delta <= 0);
1239 ASSERT(used >= -delta);
1240 used += delta;
1241 if (parentspace != UINT64_MAX)
1242 parentspace -= delta;
1243 }
1244
1245 if (used > quota) {
1246 /* over quota */
1247 myspace = 0;
1248 } else {
1249 /*
1250 * the lesser of the space provided by our parent and
1251 * the space left in our quota
1252 */
1253 myspace = MIN(parentspace, quota - used);
1254 }
1255
1256 mutex_exit(&dd->dd_lock);
1257
1258 return (myspace);
1259 }
1260
1261 struct tempreserve {
1262 list_node_t tr_node;
1263 dsl_dir_t *tr_ds;
1264 uint64_t tr_size;
1265 };
1266
1267 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1268 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1269 boolean_t ignorequota, list_t *tr_list,
1270 dmu_tx_t *tx, boolean_t first)
1271 {
1272 uint64_t txg;
1273 uint64_t quota;
1274 struct tempreserve *tr;
1275 int retval;
1276 uint64_t ext_quota;
1277 uint64_t ref_rsrv;
1278
1279 top_of_function:
1280 txg = tx->tx_txg;
1281 retval = EDQUOT;
1282 ref_rsrv = 0;
1283
1284 ASSERT3U(txg, !=, 0);
1285 ASSERT3S(asize, >, 0);
1286
1287 mutex_enter(&dd->dd_lock);
1288
1289 /*
1290 * Check against the dsl_dir's quota. We don't add in the delta
1291 * when checking for over-quota because they get one free hit.
1292 */
1293 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1294 for (int i = 0; i < TXG_SIZE; i++)
1295 est_inflight += dd->dd_tempreserved[i];
1296 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1297
1298 /*
1299 * On the first iteration, fetch the dataset's used-on-disk and
1300 * refreservation values. Also, if checkrefquota is set, test if
1301 * allocating this space would exceed the dataset's refquota.
1302 */
1303 if (first && tx->tx_objset) {
1304 int error;
1305 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1306
1307 error = dsl_dataset_check_quota(ds, !netfree,
1308 asize, est_inflight, &used_on_disk, &ref_rsrv);
1309 if (error != 0) {
1310 mutex_exit(&dd->dd_lock);
1311 DMU_TX_STAT_BUMP(dmu_tx_quota);
1312 return (error);
1313 }
1314 }
1315
1316 /*
1317 * If this transaction will result in a net free of space,
1318 * we want to let it through.
1319 */
1320 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1321 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1322 zvol_enforce_quotas == B_FALSE))
1323 quota = UINT64_MAX;
1324 else
1325 quota = dsl_dir_phys(dd)->dd_quota;
1326
1327 /*
1328 * Adjust the quota against the actual pool size at the root
1329 * minus any outstanding deferred frees.
1330 * To ensure that it's possible to remove files from a full
1331 * pool without inducing transient overcommits, we throttle
1332 * netfree transactions against a quota that is slightly larger,
1333 * but still within the pool's allocation slop. In cases where
1334 * we're very close to full, this will allow a steady trickle of
1335 * removes to get through.
1336 */
1337 if (dd->dd_parent == NULL) {
1338 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1339 (netfree) ?
1340 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1341
1342 if (avail < quota) {
1343 quota = avail;
1344 retval = SET_ERROR(ENOSPC);
1345 }
1346 }
1347
1348 /*
1349 * If they are requesting more space, and our current estimate
1350 * is over quota, they get to try again unless the actual
1351 * on-disk is over quota and there are no pending changes
1352 * or deferred frees (which may free up space for us).
1353 */
1354 ext_quota = quota >> 5;
1355 if (quota == UINT64_MAX)
1356 ext_quota = 0;
1357
1358 if (used_on_disk >= quota) {
1359 if (retval == ENOSPC && (used_on_disk - quota) <
1360 dsl_pool_deferred_space(dd->dd_pool)) {
1361 retval = SET_ERROR(ERESTART);
1362 }
1363 /* Quota exceeded */
1364 mutex_exit(&dd->dd_lock);
1365 DMU_TX_STAT_BUMP(dmu_tx_quota);
1366 return (retval);
1367 } else if (used_on_disk + est_inflight >= quota + ext_quota) {
1368 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1369 "quota=%lluK tr=%lluK\n",
1370 (u_longlong_t)used_on_disk>>10,
1371 (u_longlong_t)est_inflight>>10,
1372 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1373 mutex_exit(&dd->dd_lock);
1374 DMU_TX_STAT_BUMP(dmu_tx_quota);
1375 return (SET_ERROR(ERESTART));
1376 }
1377
1378 /* We need to up our estimated delta before dropping dd_lock */
1379 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1380
1381 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1382 asize - ref_rsrv);
1383 mutex_exit(&dd->dd_lock);
1384
1385 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1386 tr->tr_ds = dd;
1387 tr->tr_size = asize;
1388 list_insert_tail(tr_list, tr);
1389
1390 /* see if it's OK with our parent */
1391 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1392 /*
1393 * Recurse on our parent without recursion. This has been
1394 * observed to be potentially large stack usage even within
1395 * the test suite. Largest seen stack was 7632 bytes on linux.
1396 */
1397
1398 dd = dd->dd_parent;
1399 asize = parent_rsrv;
1400 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1401 first = B_FALSE;
1402 goto top_of_function;
1403 }
1404
1405 return (0);
1406 }
1407
1408 /*
1409 * Reserve space in this dsl_dir, to be used in this tx's txg.
1410 * After the space has been dirtied (and dsl_dir_willuse_space()
1411 * has been called), the reservation should be canceled, using
1412 * dsl_dir_tempreserve_clear().
1413 */
1414 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,boolean_t netfree,void ** tr_cookiep,dmu_tx_t * tx)1415 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1416 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1417 {
1418 int err;
1419 list_t *tr_list;
1420
1421 if (asize == 0) {
1422 *tr_cookiep = NULL;
1423 return (0);
1424 }
1425
1426 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1427 list_create(tr_list, sizeof (struct tempreserve),
1428 offsetof(struct tempreserve, tr_node));
1429 ASSERT3S(asize, >, 0);
1430
1431 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1432 if (err == 0) {
1433 struct tempreserve *tr;
1434
1435 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1436 tr->tr_size = lsize;
1437 list_insert_tail(tr_list, tr);
1438 } else {
1439 if (err == EAGAIN) {
1440 /*
1441 * If arc_memory_throttle() detected that pageout
1442 * is running and we are low on memory, we delay new
1443 * non-pageout transactions to give pageout an
1444 * advantage.
1445 *
1446 * It is unfortunate to be delaying while the caller's
1447 * locks are held.
1448 */
1449 txg_delay(dd->dd_pool, tx->tx_txg,
1450 MSEC2NSEC(10), MSEC2NSEC(10));
1451 err = SET_ERROR(ERESTART);
1452 }
1453 }
1454
1455 if (err == 0) {
1456 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1457 B_FALSE, tr_list, tx, B_TRUE);
1458 }
1459
1460 if (err != 0)
1461 dsl_dir_tempreserve_clear(tr_list, tx);
1462 else
1463 *tr_cookiep = tr_list;
1464
1465 return (err);
1466 }
1467
1468 /*
1469 * Clear a temporary reservation that we previously made with
1470 * dsl_dir_tempreserve_space().
1471 */
1472 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1473 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1474 {
1475 int txgidx = tx->tx_txg & TXG_MASK;
1476 list_t *tr_list = tr_cookie;
1477 struct tempreserve *tr;
1478
1479 ASSERT3U(tx->tx_txg, !=, 0);
1480
1481 if (tr_cookie == NULL)
1482 return;
1483
1484 while ((tr = list_remove_head(tr_list)) != NULL) {
1485 if (tr->tr_ds) {
1486 mutex_enter(&tr->tr_ds->dd_lock);
1487 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1488 tr->tr_size);
1489 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1490 mutex_exit(&tr->tr_ds->dd_lock);
1491 } else {
1492 arc_tempreserve_clear(tr->tr_size);
1493 }
1494 kmem_free(tr, sizeof (struct tempreserve));
1495 }
1496
1497 kmem_free(tr_list, sizeof (list_t));
1498 }
1499
1500 /*
1501 * This should be called from open context when we think we're going to write
1502 * or free space, for example when dirtying data. Be conservative; it's okay
1503 * to write less space or free more, but we don't want to write more or free
1504 * less than the amount specified.
1505 *
1506 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1507 * version however it has been adjusted to use an iterative rather than
1508 * recursive algorithm to minimize stack usage.
1509 */
1510 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1511 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1512 {
1513 int64_t parent_space;
1514 uint64_t est_used;
1515
1516 do {
1517 mutex_enter(&dd->dd_lock);
1518 if (space > 0)
1519 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1520
1521 est_used = dsl_dir_space_towrite(dd) +
1522 dsl_dir_phys(dd)->dd_used_bytes;
1523 parent_space = parent_delta(dd, est_used, space);
1524 mutex_exit(&dd->dd_lock);
1525
1526 /* Make sure that we clean up dd_space_to* */
1527 dsl_dir_dirty(dd, tx);
1528
1529 dd = dd->dd_parent;
1530 space = parent_space;
1531 } while (space && dd);
1532 }
1533
1534 /* call from syncing context when we actually write/free space for this dd */
1535 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1536 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1537 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1538 {
1539 int64_t accounted_delta;
1540
1541 ASSERT(dmu_tx_is_syncing(tx));
1542 ASSERT(type < DD_USED_NUM);
1543
1544 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1545
1546 /*
1547 * dsl_dataset_set_refreservation_sync_impl() calls this with
1548 * dd_lock held, so that it can atomically update
1549 * ds->ds_reserved and the dsl_dir accounting, so that
1550 * dsl_dataset_check_quota() can see dataset and dir accounting
1551 * consistently.
1552 */
1553 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1554 if (needlock)
1555 mutex_enter(&dd->dd_lock);
1556 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1557 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1558 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1559 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1560 ASSERT(uncompressed >= 0 ||
1561 ddp->dd_uncompressed_bytes >= -uncompressed);
1562 ddp->dd_used_bytes += used;
1563 ddp->dd_uncompressed_bytes += uncompressed;
1564 ddp->dd_compressed_bytes += compressed;
1565
1566 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1567 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1568 ddp->dd_used_breakdown[type] += used;
1569 #ifdef ZFS_DEBUG
1570 {
1571 dd_used_t t;
1572 uint64_t u = 0;
1573 for (t = 0; t < DD_USED_NUM; t++)
1574 u += ddp->dd_used_breakdown[t];
1575 ASSERT3U(u, ==, ddp->dd_used_bytes);
1576 }
1577 #endif
1578 }
1579 if (needlock)
1580 mutex_exit(&dd->dd_lock);
1581
1582 if (dd->dd_parent != NULL) {
1583 dsl_dir_diduse_transfer_space(dd->dd_parent,
1584 accounted_delta, compressed, uncompressed,
1585 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1586 }
1587 }
1588
1589 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1590 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1591 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1592 {
1593 ASSERT(dmu_tx_is_syncing(tx));
1594 ASSERT(oldtype < DD_USED_NUM);
1595 ASSERT(newtype < DD_USED_NUM);
1596
1597 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1598 if (delta == 0 ||
1599 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1600 return;
1601
1602 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1603 mutex_enter(&dd->dd_lock);
1604 ASSERT(delta > 0 ?
1605 ddp->dd_used_breakdown[oldtype] >= delta :
1606 ddp->dd_used_breakdown[newtype] >= -delta);
1607 ASSERT(ddp->dd_used_bytes >= ABS(delta));
1608 ddp->dd_used_breakdown[oldtype] -= delta;
1609 ddp->dd_used_breakdown[newtype] += delta;
1610 mutex_exit(&dd->dd_lock);
1611 }
1612
1613 void
dsl_dir_diduse_transfer_space(dsl_dir_t * dd,int64_t used,int64_t compressed,int64_t uncompressed,int64_t tonew,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1614 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1615 int64_t compressed, int64_t uncompressed, int64_t tonew,
1616 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1617 {
1618 int64_t accounted_delta;
1619
1620 ASSERT(dmu_tx_is_syncing(tx));
1621 ASSERT(oldtype < DD_USED_NUM);
1622 ASSERT(newtype < DD_USED_NUM);
1623
1624 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1625
1626 mutex_enter(&dd->dd_lock);
1627 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1628 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1629 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1630 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1631 ASSERT(uncompressed >= 0 ||
1632 ddp->dd_uncompressed_bytes >= -uncompressed);
1633 ddp->dd_used_bytes += used;
1634 ddp->dd_uncompressed_bytes += uncompressed;
1635 ddp->dd_compressed_bytes += compressed;
1636
1637 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1638 ASSERT(tonew - used <= 0 ||
1639 ddp->dd_used_breakdown[oldtype] >= tonew - used);
1640 ASSERT(tonew >= 0 ||
1641 ddp->dd_used_breakdown[newtype] >= -tonew);
1642 ddp->dd_used_breakdown[oldtype] -= tonew - used;
1643 ddp->dd_used_breakdown[newtype] += tonew;
1644 #ifdef ZFS_DEBUG
1645 {
1646 dd_used_t t;
1647 uint64_t u = 0;
1648 for (t = 0; t < DD_USED_NUM; t++)
1649 u += ddp->dd_used_breakdown[t];
1650 ASSERT3U(u, ==, ddp->dd_used_bytes);
1651 }
1652 #endif
1653 }
1654 mutex_exit(&dd->dd_lock);
1655
1656 if (dd->dd_parent != NULL) {
1657 dsl_dir_diduse_transfer_space(dd->dd_parent,
1658 accounted_delta, compressed, uncompressed,
1659 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1660 }
1661 }
1662
1663 typedef struct dsl_dir_set_qr_arg {
1664 const char *ddsqra_name;
1665 zprop_source_t ddsqra_source;
1666 uint64_t ddsqra_value;
1667 } dsl_dir_set_qr_arg_t;
1668
1669 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1670 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1671 {
1672 dsl_dir_set_qr_arg_t *ddsqra = arg;
1673 dsl_pool_t *dp = dmu_tx_pool(tx);
1674 dsl_dataset_t *ds;
1675 int error;
1676 uint64_t towrite, newval;
1677
1678 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1679 if (error != 0)
1680 return (error);
1681
1682 error = dsl_prop_predict(ds->ds_dir, "quota",
1683 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1684 if (error != 0) {
1685 dsl_dataset_rele(ds, FTAG);
1686 return (error);
1687 }
1688
1689 if (newval == 0) {
1690 dsl_dataset_rele(ds, FTAG);
1691 return (0);
1692 }
1693
1694 mutex_enter(&ds->ds_dir->dd_lock);
1695 /*
1696 * If we are doing the preliminary check in open context, and
1697 * there are pending changes, then don't fail it, since the
1698 * pending changes could under-estimate the amount of space to be
1699 * freed up.
1700 */
1701 towrite = dsl_dir_space_towrite(ds->ds_dir);
1702 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1703 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1704 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1705 error = SET_ERROR(ENOSPC);
1706 }
1707 mutex_exit(&ds->ds_dir->dd_lock);
1708 dsl_dataset_rele(ds, FTAG);
1709 return (error);
1710 }
1711
1712 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1713 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1714 {
1715 dsl_dir_set_qr_arg_t *ddsqra = arg;
1716 dsl_pool_t *dp = dmu_tx_pool(tx);
1717 dsl_dataset_t *ds;
1718 uint64_t newval;
1719
1720 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1721
1722 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1723 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1724 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1725 &ddsqra->ddsqra_value, tx);
1726
1727 VERIFY0(dsl_prop_get_int_ds(ds,
1728 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1729 } else {
1730 newval = ddsqra->ddsqra_value;
1731 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1732 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1733 }
1734
1735 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1736 mutex_enter(&ds->ds_dir->dd_lock);
1737 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1738 mutex_exit(&ds->ds_dir->dd_lock);
1739 dsl_dataset_rele(ds, FTAG);
1740 }
1741
1742 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1743 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1744 {
1745 dsl_dir_set_qr_arg_t ddsqra;
1746
1747 ddsqra.ddsqra_name = ddname;
1748 ddsqra.ddsqra_source = source;
1749 ddsqra.ddsqra_value = quota;
1750
1751 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1752 dsl_dir_set_quota_sync, &ddsqra, 0,
1753 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1754 }
1755
1756 static int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1757 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1758 {
1759 dsl_dir_set_qr_arg_t *ddsqra = arg;
1760 dsl_pool_t *dp = dmu_tx_pool(tx);
1761 dsl_dataset_t *ds;
1762 dsl_dir_t *dd;
1763 uint64_t newval, used, avail;
1764 int error;
1765
1766 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1767 if (error != 0)
1768 return (error);
1769 dd = ds->ds_dir;
1770
1771 /*
1772 * If we are doing the preliminary check in open context, the
1773 * space estimates may be inaccurate.
1774 */
1775 if (!dmu_tx_is_syncing(tx)) {
1776 dsl_dataset_rele(ds, FTAG);
1777 return (0);
1778 }
1779
1780 error = dsl_prop_predict(ds->ds_dir,
1781 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1782 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1783 if (error != 0) {
1784 dsl_dataset_rele(ds, FTAG);
1785 return (error);
1786 }
1787
1788 mutex_enter(&dd->dd_lock);
1789 used = dsl_dir_phys(dd)->dd_used_bytes;
1790 mutex_exit(&dd->dd_lock);
1791
1792 if (dd->dd_parent) {
1793 avail = dsl_dir_space_available(dd->dd_parent,
1794 NULL, 0, FALSE);
1795 } else {
1796 avail = dsl_pool_adjustedsize(dd->dd_pool,
1797 ZFS_SPACE_CHECK_NORMAL) - used;
1798 }
1799
1800 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1801 uint64_t delta = MAX(used, newval) -
1802 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1803
1804 if (delta > avail ||
1805 (dsl_dir_phys(dd)->dd_quota > 0 &&
1806 newval > dsl_dir_phys(dd)->dd_quota))
1807 error = SET_ERROR(ENOSPC);
1808 }
1809
1810 dsl_dataset_rele(ds, FTAG);
1811 return (error);
1812 }
1813
1814 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1815 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1816 {
1817 uint64_t used;
1818 int64_t delta;
1819
1820 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1821
1822 mutex_enter(&dd->dd_lock);
1823 used = dsl_dir_phys(dd)->dd_used_bytes;
1824 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1825 dsl_dir_phys(dd)->dd_reserved = value;
1826
1827 if (dd->dd_parent != NULL) {
1828 /* Roll up this additional usage into our ancestors */
1829 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1830 delta, 0, 0, tx);
1831 }
1832 mutex_exit(&dd->dd_lock);
1833 }
1834
1835 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1836 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1837 {
1838 dsl_dir_set_qr_arg_t *ddsqra = arg;
1839 dsl_pool_t *dp = dmu_tx_pool(tx);
1840 dsl_dataset_t *ds;
1841 uint64_t newval;
1842
1843 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1844
1845 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1846 dsl_prop_set_sync_impl(ds,
1847 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1848 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1849 &ddsqra->ddsqra_value, tx);
1850
1851 VERIFY0(dsl_prop_get_int_ds(ds,
1852 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1853 } else {
1854 newval = ddsqra->ddsqra_value;
1855 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1856 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1857 (longlong_t)newval);
1858 }
1859
1860 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1861 dsl_dataset_rele(ds, FTAG);
1862 }
1863
1864 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1865 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1866 uint64_t reservation)
1867 {
1868 dsl_dir_set_qr_arg_t ddsqra;
1869
1870 ddsqra.ddsqra_name = ddname;
1871 ddsqra.ddsqra_source = source;
1872 ddsqra.ddsqra_value = reservation;
1873
1874 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1875 dsl_dir_set_reservation_sync, &ddsqra, 0,
1876 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1877 }
1878
1879 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1880 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1881 {
1882 for (; ds1; ds1 = ds1->dd_parent) {
1883 dsl_dir_t *dd;
1884 for (dd = ds2; dd; dd = dd->dd_parent) {
1885 if (ds1 == dd)
1886 return (dd);
1887 }
1888 }
1889 return (NULL);
1890 }
1891
1892 /*
1893 * If delta is applied to dd, how much of that delta would be applied to
1894 * ancestor? Syncing context only.
1895 */
1896 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1897 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1898 {
1899 if (dd == ancestor)
1900 return (delta);
1901
1902 mutex_enter(&dd->dd_lock);
1903 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1904 mutex_exit(&dd->dd_lock);
1905 return (would_change(dd->dd_parent, delta, ancestor));
1906 }
1907
1908 typedef struct dsl_dir_rename_arg {
1909 const char *ddra_oldname;
1910 const char *ddra_newname;
1911 cred_t *ddra_cred;
1912 } dsl_dir_rename_arg_t;
1913
1914 typedef struct dsl_valid_rename_arg {
1915 int char_delta;
1916 int nest_delta;
1917 } dsl_valid_rename_arg_t;
1918
1919 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1920 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1921 {
1922 (void) dp;
1923 dsl_valid_rename_arg_t *dvra = arg;
1924 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1925
1926 dsl_dataset_name(ds, namebuf);
1927
1928 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1929 <, ZFS_MAX_DATASET_NAME_LEN);
1930 int namelen = strlen(namebuf) + dvra->char_delta;
1931 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1932
1933 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1934 return (SET_ERROR(ENAMETOOLONG));
1935 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1936 return (SET_ERROR(ENAMETOOLONG));
1937 return (0);
1938 }
1939
1940 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1941 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1942 {
1943 dsl_dir_rename_arg_t *ddra = arg;
1944 dsl_pool_t *dp = dmu_tx_pool(tx);
1945 dsl_dir_t *dd, *newparent;
1946 dsl_valid_rename_arg_t dvra;
1947 dsl_dataset_t *parentds;
1948 objset_t *parentos;
1949 const char *mynewname;
1950 int error;
1951
1952 /* target dir should exist */
1953 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1954 if (error != 0)
1955 return (error);
1956
1957 /* new parent should exist */
1958 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1959 &newparent, &mynewname);
1960 if (error != 0) {
1961 dsl_dir_rele(dd, FTAG);
1962 return (error);
1963 }
1964
1965 /* can't rename to different pool */
1966 if (dd->dd_pool != newparent->dd_pool) {
1967 dsl_dir_rele(newparent, FTAG);
1968 dsl_dir_rele(dd, FTAG);
1969 return (SET_ERROR(EXDEV));
1970 }
1971
1972 /* new name should not already exist */
1973 if (mynewname == NULL) {
1974 dsl_dir_rele(newparent, FTAG);
1975 dsl_dir_rele(dd, FTAG);
1976 return (SET_ERROR(EEXIST));
1977 }
1978
1979 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1980 error = dsl_dataset_hold_obj(newparent->dd_pool,
1981 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1982 if (error != 0) {
1983 dsl_dir_rele(newparent, FTAG);
1984 dsl_dir_rele(dd, FTAG);
1985 return (error);
1986 }
1987 error = dmu_objset_from_ds(parentds, &parentos);
1988 if (error != 0) {
1989 dsl_dataset_rele(parentds, FTAG);
1990 dsl_dir_rele(newparent, FTAG);
1991 dsl_dir_rele(dd, FTAG);
1992 return (error);
1993 }
1994 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1995 dsl_dataset_rele(parentds, FTAG);
1996 dsl_dir_rele(newparent, FTAG);
1997 dsl_dir_rele(dd, FTAG);
1998 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1999 }
2000 dsl_dataset_rele(parentds, FTAG);
2001
2002 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2003 <, ZFS_MAX_DATASET_NAME_LEN);
2004 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2005 <, ZFS_MAX_DATASET_NAME_LEN);
2006 dvra.char_delta = strlen(ddra->ddra_newname)
2007 - strlen(ddra->ddra_oldname);
2008 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2009 - get_dataset_depth(ddra->ddra_oldname);
2010
2011 /* if the name length is growing, validate child name lengths */
2012 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2013 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2014 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2015 if (error != 0) {
2016 dsl_dir_rele(newparent, FTAG);
2017 dsl_dir_rele(dd, FTAG);
2018 return (error);
2019 }
2020 }
2021
2022 if (dmu_tx_is_syncing(tx)) {
2023 if (spa_feature_is_active(dp->dp_spa,
2024 SPA_FEATURE_FS_SS_LIMIT)) {
2025 /*
2026 * Although this is the check function and we don't
2027 * normally make on-disk changes in check functions,
2028 * we need to do that here.
2029 *
2030 * Ensure this portion of the tree's counts have been
2031 * initialized in case the new parent has limits set.
2032 */
2033 dsl_dir_init_fs_ss_count(dd, tx);
2034 }
2035 }
2036
2037 if (newparent != dd->dd_parent) {
2038 /* is there enough space? */
2039 uint64_t myspace =
2040 MAX(dsl_dir_phys(dd)->dd_used_bytes,
2041 dsl_dir_phys(dd)->dd_reserved);
2042 objset_t *os = dd->dd_pool->dp_meta_objset;
2043 uint64_t fs_cnt = 0;
2044 uint64_t ss_cnt = 0;
2045
2046 if (dsl_dir_is_zapified(dd)) {
2047 int err;
2048
2049 err = zap_lookup(os, dd->dd_object,
2050 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2051 &fs_cnt);
2052 if (err != ENOENT && err != 0) {
2053 dsl_dir_rele(newparent, FTAG);
2054 dsl_dir_rele(dd, FTAG);
2055 return (err);
2056 }
2057
2058 /*
2059 * have to add 1 for the filesystem itself that we're
2060 * moving
2061 */
2062 fs_cnt++;
2063
2064 err = zap_lookup(os, dd->dd_object,
2065 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2066 &ss_cnt);
2067 if (err != ENOENT && err != 0) {
2068 dsl_dir_rele(newparent, FTAG);
2069 dsl_dir_rele(dd, FTAG);
2070 return (err);
2071 }
2072 }
2073
2074 /* check for encryption errors */
2075 error = dsl_dir_rename_crypt_check(dd, newparent);
2076 if (error != 0) {
2077 dsl_dir_rele(newparent, FTAG);
2078 dsl_dir_rele(dd, FTAG);
2079 return (SET_ERROR(EACCES));
2080 }
2081
2082 /* no rename into our descendant */
2083 if (closest_common_ancestor(dd, newparent) == dd) {
2084 dsl_dir_rele(newparent, FTAG);
2085 dsl_dir_rele(dd, FTAG);
2086 return (SET_ERROR(EINVAL));
2087 }
2088
2089 error = dsl_dir_transfer_possible(dd->dd_parent,
2090 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
2091 if (error != 0) {
2092 dsl_dir_rele(newparent, FTAG);
2093 dsl_dir_rele(dd, FTAG);
2094 return (error);
2095 }
2096 }
2097
2098 dsl_dir_rele(newparent, FTAG);
2099 dsl_dir_rele(dd, FTAG);
2100 return (0);
2101 }
2102
2103 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)2104 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2105 {
2106 dsl_dir_rename_arg_t *ddra = arg;
2107 dsl_pool_t *dp = dmu_tx_pool(tx);
2108 dsl_dir_t *dd, *newparent;
2109 const char *mynewname;
2110 objset_t *mos = dp->dp_meta_objset;
2111
2112 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2113 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2114 &mynewname));
2115
2116 ASSERT3P(mynewname, !=, NULL);
2117
2118 /* Log this before we change the name. */
2119 spa_history_log_internal_dd(dd, "rename", tx,
2120 "-> %s", ddra->ddra_newname);
2121
2122 if (newparent != dd->dd_parent) {
2123 objset_t *os = dd->dd_pool->dp_meta_objset;
2124 uint64_t fs_cnt = 0;
2125 uint64_t ss_cnt = 0;
2126
2127 /*
2128 * We already made sure the dd counts were initialized in the
2129 * check function.
2130 */
2131 if (spa_feature_is_active(dp->dp_spa,
2132 SPA_FEATURE_FS_SS_LIMIT)) {
2133 VERIFY0(zap_lookup(os, dd->dd_object,
2134 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2135 &fs_cnt));
2136 /* add 1 for the filesystem itself that we're moving */
2137 fs_cnt++;
2138
2139 VERIFY0(zap_lookup(os, dd->dd_object,
2140 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2141 &ss_cnt));
2142 }
2143
2144 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2145 DD_FIELD_FILESYSTEM_COUNT, tx);
2146 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2147 DD_FIELD_FILESYSTEM_COUNT, tx);
2148
2149 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2150 DD_FIELD_SNAPSHOT_COUNT, tx);
2151 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2152 DD_FIELD_SNAPSHOT_COUNT, tx);
2153
2154 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2155 -dsl_dir_phys(dd)->dd_used_bytes,
2156 -dsl_dir_phys(dd)->dd_compressed_bytes,
2157 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2158 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2159 dsl_dir_phys(dd)->dd_used_bytes,
2160 dsl_dir_phys(dd)->dd_compressed_bytes,
2161 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2162
2163 if (dsl_dir_phys(dd)->dd_reserved >
2164 dsl_dir_phys(dd)->dd_used_bytes) {
2165 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2166 dsl_dir_phys(dd)->dd_used_bytes;
2167
2168 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2169 -unused_rsrv, 0, 0, tx);
2170 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2171 unused_rsrv, 0, 0, tx);
2172 }
2173 }
2174
2175 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2176
2177 /* remove from old parent zapobj */
2178 VERIFY0(zap_remove(mos,
2179 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2180 dd->dd_myname, tx));
2181
2182 (void) strlcpy(dd->dd_myname, mynewname,
2183 sizeof (dd->dd_myname));
2184 dsl_dir_rele(dd->dd_parent, dd);
2185 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2186 VERIFY0(dsl_dir_hold_obj(dp,
2187 newparent->dd_object, NULL, dd, &dd->dd_parent));
2188
2189 /* add to new parent zapobj */
2190 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2191 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2192
2193 /* TODO: A rename callback to avoid these layering violations. */
2194 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2195 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2196 ddra->ddra_newname, B_TRUE);
2197
2198 dsl_prop_notify_all(dd);
2199
2200 dsl_dir_rele(newparent, FTAG);
2201 dsl_dir_rele(dd, FTAG);
2202 }
2203
2204 int
dsl_dir_rename(const char * oldname,const char * newname)2205 dsl_dir_rename(const char *oldname, const char *newname)
2206 {
2207 cred_t *cr = CRED();
2208 crhold(cr);
2209
2210 dsl_dir_rename_arg_t ddra;
2211
2212 ddra.ddra_oldname = oldname;
2213 ddra.ddra_newname = newname;
2214 ddra.ddra_cred = cr;
2215
2216 int err = dsl_sync_task(oldname,
2217 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2218 3, ZFS_SPACE_CHECK_RESERVED);
2219
2220 crfree(cr);
2221 return (err);
2222 }
2223
2224 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr)2225 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2226 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2227 cred_t *cr)
2228 {
2229 dsl_dir_t *ancestor;
2230 int64_t adelta;
2231 uint64_t avail;
2232 int err;
2233
2234 ancestor = closest_common_ancestor(sdd, tdd);
2235 adelta = would_change(sdd, -space, ancestor);
2236 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2237 if (avail < space)
2238 return (SET_ERROR(ENOSPC));
2239
2240 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2241 ancestor, cr);
2242 if (err != 0)
2243 return (err);
2244 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2245 ancestor, cr);
2246 if (err != 0)
2247 return (err);
2248
2249 return (0);
2250 }
2251
2252 inode_timespec_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)2253 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2254 {
2255 inode_timespec_t t;
2256
2257 mutex_enter(&dd->dd_lock);
2258 t = dd->dd_snap_cmtime;
2259 mutex_exit(&dd->dd_lock);
2260
2261 return (t);
2262 }
2263
2264 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd,dmu_tx_t * tx)2265 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2266 {
2267 dsl_pool_t *dp = dmu_tx_pool(tx);
2268 inode_timespec_t t;
2269 gethrestime(&t);
2270
2271 mutex_enter(&dd->dd_lock);
2272 dd->dd_snap_cmtime = t;
2273 if (spa_feature_is_enabled(dp->dp_spa,
2274 SPA_FEATURE_EXTENSIBLE_DATASET)) {
2275 objset_t *mos = dd->dd_pool->dp_meta_objset;
2276 uint64_t ddobj = dd->dd_object;
2277 dsl_dir_zapify(dd, tx);
2278 VERIFY0(zap_update(mos, ddobj,
2279 DD_FIELD_SNAPSHOTS_CHANGED,
2280 sizeof (uint64_t),
2281 sizeof (inode_timespec_t) / sizeof (uint64_t),
2282 &t, tx));
2283 }
2284 mutex_exit(&dd->dd_lock);
2285 }
2286
2287 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)2288 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2289 {
2290 objset_t *mos = dd->dd_pool->dp_meta_objset;
2291 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2292 }
2293
2294 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)2295 dsl_dir_is_zapified(dsl_dir_t *dd)
2296 {
2297 dmu_object_info_t doi;
2298
2299 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2300 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2301 }
2302
2303 int
dsl_dir_livelist_open(dsl_dir_t * dd,uint64_t obj)2304 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2305 {
2306 objset_t *mos = dd->dd_pool->dp_meta_objset;
2307 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2308 SPA_FEATURE_LIVELIST));
2309 int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2310 if (err != 0)
2311 return (err);
2312 bplist_create(&dd->dd_pending_allocs);
2313 bplist_create(&dd->dd_pending_frees);
2314 return (0);
2315 }
2316
2317 void
dsl_dir_livelist_close(dsl_dir_t * dd)2318 dsl_dir_livelist_close(dsl_dir_t *dd)
2319 {
2320 dsl_deadlist_close(&dd->dd_livelist);
2321 bplist_destroy(&dd->dd_pending_allocs);
2322 bplist_destroy(&dd->dd_pending_frees);
2323 }
2324
2325 void
dsl_dir_remove_livelist(dsl_dir_t * dd,dmu_tx_t * tx,boolean_t total)2326 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2327 {
2328 uint64_t obj;
2329 dsl_pool_t *dp = dmu_tx_pool(tx);
2330 spa_t *spa = dp->dp_spa;
2331 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2332
2333 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2334 return;
2335
2336 /*
2337 * If the livelist being removed is set to be condensed, stop the
2338 * condense zthr and indicate the cancellation in the spa_to_condense
2339 * struct in case the condense no-wait synctask has already started
2340 */
2341 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2342 if (ll_condense_thread != NULL &&
2343 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2344 /*
2345 * We use zthr_wait_cycle_done instead of zthr_cancel
2346 * because we don't want to destroy the zthr, just have
2347 * it skip its current task.
2348 */
2349 spa->spa_to_condense.cancelled = B_TRUE;
2350 zthr_wait_cycle_done(ll_condense_thread);
2351 /*
2352 * If we've returned from zthr_wait_cycle_done without
2353 * clearing the to_condense data structure it's either
2354 * because the no-wait synctask has started (which is
2355 * indicated by 'syncing' field of to_condense) and we
2356 * can expect it to clear to_condense on its own.
2357 * Otherwise, we returned before the zthr ran. The
2358 * checkfunc will now fail as cancelled == B_TRUE so we
2359 * can safely NULL out ds, allowing a different dir's
2360 * livelist to be condensed.
2361 *
2362 * We can be sure that the to_condense struct will not
2363 * be repopulated at this stage because both this
2364 * function and dsl_livelist_try_condense execute in
2365 * syncing context.
2366 */
2367 if ((spa->spa_to_condense.ds != NULL) &&
2368 !spa->spa_to_condense.syncing) {
2369 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2370 spa);
2371 spa->spa_to_condense.ds = NULL;
2372 }
2373 }
2374
2375 dsl_dir_livelist_close(dd);
2376 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2377 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2378 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2379 DD_FIELD_LIVELIST, tx));
2380 if (total) {
2381 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2382 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2383 }
2384 }
2385
2386 static int
dsl_dir_activity_in_progress(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * in_progress)2387 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2388 zfs_wait_activity_t activity, boolean_t *in_progress)
2389 {
2390 int error = 0;
2391
2392 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2393
2394 switch (activity) {
2395 case ZFS_WAIT_DELETEQ: {
2396 #ifdef _KERNEL
2397 objset_t *os;
2398 error = dmu_objset_from_ds(ds, &os);
2399 if (error != 0)
2400 break;
2401
2402 mutex_enter(&os->os_user_ptr_lock);
2403 void *user = dmu_objset_get_user(os);
2404 mutex_exit(&os->os_user_ptr_lock);
2405 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2406 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2407 *in_progress = B_FALSE;
2408 return (0);
2409 }
2410
2411 uint64_t readonly = B_FALSE;
2412 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2413 NULL);
2414
2415 if (error != 0)
2416 break;
2417
2418 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2419 *in_progress = B_FALSE;
2420 return (0);
2421 }
2422
2423 uint64_t count, unlinked_obj;
2424 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2425 &unlinked_obj);
2426 if (error != 0) {
2427 dsl_dataset_rele(ds, FTAG);
2428 break;
2429 }
2430 error = zap_count(os, unlinked_obj, &count);
2431
2432 if (error == 0)
2433 *in_progress = (count != 0);
2434 break;
2435 #else
2436 /*
2437 * The delete queue is ZPL specific, and libzpool doesn't have
2438 * it. It doesn't make sense to wait for it.
2439 */
2440 (void) ds;
2441 *in_progress = B_FALSE;
2442 break;
2443 #endif
2444 }
2445 default:
2446 panic("unrecognized value for activity %d", activity);
2447 }
2448
2449 return (error);
2450 }
2451
2452 int
dsl_dir_wait(dsl_dir_t * dd,dsl_dataset_t * ds,zfs_wait_activity_t activity,boolean_t * waited)2453 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2454 boolean_t *waited)
2455 {
2456 int error = 0;
2457 boolean_t in_progress;
2458 dsl_pool_t *dp = dd->dd_pool;
2459 for (;;) {
2460 dsl_pool_config_enter(dp, FTAG);
2461 error = dsl_dir_activity_in_progress(dd, ds, activity,
2462 &in_progress);
2463 dsl_pool_config_exit(dp, FTAG);
2464 if (error != 0 || !in_progress)
2465 break;
2466
2467 *waited = B_TRUE;
2468
2469 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2470 0 || dd->dd_activity_cancelled) {
2471 error = SET_ERROR(EINTR);
2472 break;
2473 }
2474 }
2475 return (error);
2476 }
2477
2478 void
dsl_dir_cancel_waiters(dsl_dir_t * dd)2479 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2480 {
2481 mutex_enter(&dd->dd_activity_lock);
2482 dd->dd_activity_cancelled = B_TRUE;
2483 cv_broadcast(&dd->dd_activity_cv);
2484 while (dd->dd_activity_waiters > 0)
2485 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2486 mutex_exit(&dd->dd_activity_lock);
2487 }
2488
2489 #if defined(_KERNEL)
2490 EXPORT_SYMBOL(dsl_dir_set_quota);
2491 EXPORT_SYMBOL(dsl_dir_set_reservation);
2492 #endif
2493
2494 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2495 "Enable strict ZVOL quota enforcment");
2496