1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dsl_dataset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_prop.h>
36 #include <sys/dsl_synctask.h>
37 #include <sys/dsl_deleg.h>
38 #include <sys/dmu_impl.h>
39 #include <sys/spa.h>
40 #include <sys/metaslab.h>
41 #include <sys/zap.h>
42 #include <sys/zio.h>
43 #include <sys/arc.h>
44 #include <sys/sunddi.h>
45 #include <sys/zfeature.h>
46 #include <sys/policy.h>
47 #include <sys/zfs_znode.h>
48 #include "zfs_namecheck.h"
49 #include "zfs_prop.h"
50
51 /*
52 * Filesystem and Snapshot Limits
53 * ------------------------------
54 *
55 * These limits are used to restrict the number of filesystems and/or snapshots
56 * that can be created at a given level in the tree or below. A typical
57 * use-case is with a delegated dataset where the administrator wants to ensure
58 * that a user within the zone is not creating too many additional filesystems
59 * or snapshots, even though they're not exceeding their space quota.
60 *
61 * The filesystem and snapshot counts are stored as extensible properties. This
62 * capability is controlled by a feature flag and must be enabled to be used.
63 * Once enabled, the feature is not active until the first limit is set. At
64 * that point, future operations to create/destroy filesystems or snapshots
65 * will validate and update the counts.
66 *
67 * Because the count properties will not exist before the feature is active,
68 * the counts are updated when a limit is first set on an uninitialized
69 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
70 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
71 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
72 * snapshot count properties on a node indicate uninitialized counts on that
73 * node.) When first setting a limit on an uninitialized node, the code starts
74 * at the filesystem with the new limit and descends into all sub-filesystems
75 * to add the count properties.
76 *
77 * In practice this is lightweight since a limit is typically set when the
78 * filesystem is created and thus has no children. Once valid, changing the
79 * limit value won't require a re-traversal since the counts are already valid.
80 * When recursively fixing the counts, if a node with a limit is encountered
81 * during the descent, the counts are known to be valid and there is no need to
82 * descend into that filesystem's children. The counts on filesystems above the
83 * one with the new limit will still be uninitialized, unless a limit is
84 * eventually set on one of those filesystems. The counts are always recursively
85 * updated when a limit is set on a dataset, unless there is already a limit.
86 * When a new limit value is set on a filesystem with an existing limit, it is
87 * possible for the new limit to be less than the current count at that level
88 * since a user who can change the limit is also allowed to exceed the limit.
89 *
90 * Once the feature is active, then whenever a filesystem or snapshot is
91 * created, the code recurses up the tree, validating the new count against the
92 * limit at each initialized level. In practice, most levels will not have a
93 * limit set. If there is a limit at any initialized level up the tree, the
94 * check must pass or the creation will fail. Likewise, when a filesystem or
95 * snapshot is destroyed, the counts are recursively adjusted all the way up
96 * the initizized nodes in the tree. Renaming a filesystem into different point
97 * in the tree will first validate, then update the counts on each branch up to
98 * the common ancestor. A receive will also validate the counts and then update
99 * them.
100 *
101 * An exception to the above behavior is that the limit is not enforced if the
102 * user has permission to modify the limit. This is primarily so that
103 * recursive snapshots in the global zone always work. We want to prevent a
104 * denial-of-service in which a lower level delegated dataset could max out its
105 * limit and thus block recursive snapshots from being taken in the global zone.
106 * Because of this, it is possible for the snapshot count to be over the limit
107 * and snapshots taken in the global zone could cause a lower level dataset to
108 * hit or exceed its limit. The administrator taking the global zone recursive
109 * snapshot should be aware of this side-effect and behave accordingly.
110 * For consistency, the filesystem limit is also not enforced if the user can
111 * modify the limit.
112 *
113 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
114 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
115 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
116 * dsl_dir_init_fs_ss_count().
117 *
118 * There is a special case when we receive a filesystem that already exists. In
119 * this case a temporary clone name of %X is created (see dmu_recv_begin). We
120 * never update the filesystem counts for temporary clones.
121 *
122 * Likewise, we do not update the snapshot counts for temporary snapshots,
123 * such as those created by zfs diff.
124 */
125
126 /*
127 * Tunable to control EDQUOT behaviour. With this set to a value != 0, zfs
128 * doesn't always wait for a dirty txg to complete when an operation can't
129 * get through due to space exhaustion. Instead it fails early in a range
130 * of the tunable around the quota.
131 * This vastly helps to reduce the number of threads waiting for the txg
132 * to commit when a busy filesystem is near quota, especially in combination
133 * with NFS, where each waiter takes up a server thread.
134 */
135 uint64_t early_edquot_threshold = 32 * 1048576; /* tunable */
136
137 /*
138 * tunable. when set, zfs allows all tx into the running txg as long as the recorded
139 * on-disk quota from the previous is below the quota. On busy filesystems it can be
140 * possible to go over quota for several GB. The intention here is to never let a
141 * request wait for the next transaction. It either fails or passes immediately. This
142 * prevents NFS threads to pile up on busy filesystems near quota.
143 * This tunable takes precedence over early_edquot_threshold.
144 */
145 boolean_t late_edquot = TRUE; /* tunable */
146
147 extern inline dsl_dir_phys_t *dsl_dir_phys(dsl_dir_t *dd);
148
149 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
150
151 static void
dsl_dir_evict_async(void * dbu)152 dsl_dir_evict_async(void *dbu)
153 {
154 dsl_dir_t *dd = dbu;
155 dsl_pool_t *dp = dd->dd_pool;
156 int t;
157
158 dd->dd_dbuf = NULL;
159
160 for (t = 0; t < TXG_SIZE; t++) {
161 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
162 ASSERT(dd->dd_tempreserved[t] == 0);
163 ASSERT(dd->dd_space_towrite[t] == 0);
164 }
165
166 if (dd->dd_parent)
167 dsl_dir_async_rele(dd->dd_parent, dd);
168
169 spa_async_close(dd->dd_pool->dp_spa, dd);
170
171 dsl_prop_fini(dd);
172 mutex_destroy(&dd->dd_lock);
173 kmem_free(dd, sizeof (dsl_dir_t));
174 }
175
176 int
dsl_dir_hold_obj(dsl_pool_t * dp,uint64_t ddobj,const char * tail,void * tag,dsl_dir_t ** ddp)177 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
178 const char *tail, void *tag, dsl_dir_t **ddp)
179 {
180 dmu_buf_t *dbuf;
181 dsl_dir_t *dd;
182 int err;
183
184 ASSERT(dsl_pool_config_held(dp));
185
186 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
187 if (err != 0)
188 return (err);
189 dd = dmu_buf_get_user(dbuf);
190 #ifdef ZFS_DEBUG
191 {
192 dmu_object_info_t doi;
193 dmu_object_info_from_db(dbuf, &doi);
194 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
195 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
196 }
197 #endif
198 if (dd == NULL) {
199 dsl_dir_t *winner;
200
201 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
202 dd->dd_object = ddobj;
203 dd->dd_dbuf = dbuf;
204 dd->dd_pool = dp;
205 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
206 dsl_prop_init(dd);
207
208 dsl_dir_snap_cmtime_update(dd);
209
210 if (dsl_dir_phys(dd)->dd_parent_obj) {
211 err = dsl_dir_hold_obj(dp,
212 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
213 &dd->dd_parent);
214 if (err != 0)
215 goto errout;
216 if (tail) {
217 #ifdef ZFS_DEBUG
218 uint64_t foundobj;
219
220 err = zap_lookup(dp->dp_meta_objset,
221 dsl_dir_phys(dd->dd_parent)->
222 dd_child_dir_zapobj, tail,
223 sizeof (foundobj), 1, &foundobj);
224 ASSERT(err || foundobj == ddobj);
225 #endif
226 (void) strcpy(dd->dd_myname, tail);
227 } else {
228 err = zap_value_search(dp->dp_meta_objset,
229 dsl_dir_phys(dd->dd_parent)->
230 dd_child_dir_zapobj,
231 ddobj, 0, dd->dd_myname);
232 }
233 if (err != 0)
234 goto errout;
235 } else {
236 (void) strcpy(dd->dd_myname, spa_name(dp->dp_spa));
237 }
238
239 if (dsl_dir_is_clone(dd)) {
240 dmu_buf_t *origin_bonus;
241 dsl_dataset_phys_t *origin_phys;
242
243 /*
244 * We can't open the origin dataset, because
245 * that would require opening this dsl_dir.
246 * Just look at its phys directly instead.
247 */
248 err = dmu_bonus_hold(dp->dp_meta_objset,
249 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
250 &origin_bonus);
251 if (err != 0)
252 goto errout;
253 origin_phys = origin_bonus->db_data;
254 dd->dd_origin_txg =
255 origin_phys->ds_creation_txg;
256 dmu_buf_rele(origin_bonus, FTAG);
257 }
258
259 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
260 &dd->dd_dbuf);
261 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
262 if (winner != NULL) {
263 if (dd->dd_parent)
264 dsl_dir_rele(dd->dd_parent, dd);
265 dsl_prop_fini(dd);
266 mutex_destroy(&dd->dd_lock);
267 kmem_free(dd, sizeof (dsl_dir_t));
268 dd = winner;
269 } else {
270 spa_open_ref(dp->dp_spa, dd);
271 }
272 }
273
274 /*
275 * The dsl_dir_t has both open-to-close and instantiate-to-evict
276 * holds on the spa. We need the open-to-close holds because
277 * otherwise the spa_refcnt wouldn't change when we open a
278 * dir which the spa also has open, so we could incorrectly
279 * think it was OK to unload/export/destroy the pool. We need
280 * the instantiate-to-evict hold because the dsl_dir_t has a
281 * pointer to the dd_pool, which has a pointer to the spa_t.
282 */
283 spa_open_ref(dp->dp_spa, tag);
284 ASSERT3P(dd->dd_pool, ==, dp);
285 ASSERT3U(dd->dd_object, ==, ddobj);
286 ASSERT3P(dd->dd_dbuf, ==, dbuf);
287 *ddp = dd;
288 return (0);
289
290 errout:
291 if (dd->dd_parent)
292 dsl_dir_rele(dd->dd_parent, dd);
293 dsl_prop_fini(dd);
294 mutex_destroy(&dd->dd_lock);
295 kmem_free(dd, sizeof (dsl_dir_t));
296 dmu_buf_rele(dbuf, tag);
297 return (err);
298 }
299
300 void
dsl_dir_rele(dsl_dir_t * dd,void * tag)301 dsl_dir_rele(dsl_dir_t *dd, void *tag)
302 {
303 dprintf_dd(dd, "%s\n", "");
304 spa_close(dd->dd_pool->dp_spa, tag);
305 dmu_buf_rele(dd->dd_dbuf, tag);
306 }
307
308 /*
309 * Remove a reference to the given dsl dir that is being asynchronously
310 * released. Async releases occur from a taskq performing eviction of
311 * dsl datasets and dirs. This process is identical to a normal release
312 * with the exception of using the async API for releasing the reference on
313 * the spa.
314 */
315 void
dsl_dir_async_rele(dsl_dir_t * dd,void * tag)316 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
317 {
318 dprintf_dd(dd, "%s\n", "");
319 spa_async_close(dd->dd_pool->dp_spa, tag);
320 dmu_buf_rele(dd->dd_dbuf, tag);
321 }
322
323 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
324 void
dsl_dir_name(dsl_dir_t * dd,char * buf)325 dsl_dir_name(dsl_dir_t *dd, char *buf)
326 {
327 if (dd->dd_parent) {
328 dsl_dir_name(dd->dd_parent, buf);
329 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
330 ZFS_MAX_DATASET_NAME_LEN);
331 } else {
332 buf[0] = '\0';
333 }
334 if (!MUTEX_HELD(&dd->dd_lock)) {
335 /*
336 * recursive mutex so that we can use
337 * dprintf_dd() with dd_lock held
338 */
339 mutex_enter(&dd->dd_lock);
340 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
341 <, ZFS_MAX_DATASET_NAME_LEN);
342 mutex_exit(&dd->dd_lock);
343 } else {
344 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
345 <, ZFS_MAX_DATASET_NAME_LEN);
346 }
347 }
348
349 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
350 int
dsl_dir_namelen(dsl_dir_t * dd)351 dsl_dir_namelen(dsl_dir_t *dd)
352 {
353 int result = 0;
354
355 if (dd->dd_parent) {
356 /* parent's name + 1 for the "/" */
357 result = dsl_dir_namelen(dd->dd_parent) + 1;
358 }
359
360 if (!MUTEX_HELD(&dd->dd_lock)) {
361 /* see dsl_dir_name */
362 mutex_enter(&dd->dd_lock);
363 result += strlen(dd->dd_myname);
364 mutex_exit(&dd->dd_lock);
365 } else {
366 result += strlen(dd->dd_myname);
367 }
368
369 return (result);
370 }
371
372 static int
getcomponent(const char * path,char * component,const char ** nextp)373 getcomponent(const char *path, char *component, const char **nextp)
374 {
375 char *p;
376
377 if ((path == NULL) || (path[0] == '\0'))
378 return (SET_ERROR(ENOENT));
379 /* This would be a good place to reserve some namespace... */
380 p = strpbrk(path, "/@");
381 if (p && (p[1] == '/' || p[1] == '@')) {
382 /* two separators in a row */
383 return (SET_ERROR(EINVAL));
384 }
385 if (p == NULL || p == path) {
386 /*
387 * if the first thing is an @ or /, it had better be an
388 * @ and it had better not have any more ats or slashes,
389 * and it had better have something after the @.
390 */
391 if (p != NULL &&
392 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
393 return (SET_ERROR(EINVAL));
394 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
395 return (SET_ERROR(ENAMETOOLONG));
396 (void) strcpy(component, path);
397 p = NULL;
398 } else if (p[0] == '/') {
399 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
400 return (SET_ERROR(ENAMETOOLONG));
401 (void) strncpy(component, path, p - path);
402 component[p - path] = '\0';
403 p++;
404 } else if (p[0] == '@') {
405 /*
406 * if the next separator is an @, there better not be
407 * any more slashes.
408 */
409 if (strchr(path, '/'))
410 return (SET_ERROR(EINVAL));
411 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
412 return (SET_ERROR(ENAMETOOLONG));
413 (void) strncpy(component, path, p - path);
414 component[p - path] = '\0';
415 } else {
416 panic("invalid p=%p", (void *)p);
417 }
418 *nextp = p;
419 return (0);
420 }
421
422 /*
423 * Return the dsl_dir_t, and possibly the last component which couldn't
424 * be found in *tail. The name must be in the specified dsl_pool_t. This
425 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
426 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
427 * (*tail)[0] == '@' means that the last component is a snapshot.
428 */
429 int
dsl_dir_hold(dsl_pool_t * dp,const char * name,void * tag,dsl_dir_t ** ddp,const char ** tailp)430 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
431 dsl_dir_t **ddp, const char **tailp)
432 {
433 char buf[ZFS_MAX_DATASET_NAME_LEN];
434 const char *spaname, *next, *nextnext = NULL;
435 int err;
436 dsl_dir_t *dd;
437 uint64_t ddobj;
438
439 err = getcomponent(name, buf, &next);
440 if (err != 0)
441 return (err);
442
443 /* Make sure the name is in the specified pool. */
444 spaname = spa_name(dp->dp_spa);
445 if (strcmp(buf, spaname) != 0)
446 return (SET_ERROR(EXDEV));
447
448 ASSERT(dsl_pool_config_held(dp));
449
450 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
451 if (err != 0) {
452 return (err);
453 }
454
455 while (next != NULL) {
456 dsl_dir_t *child_dd;
457 err = getcomponent(next, buf, &nextnext);
458 if (err != 0)
459 break;
460 ASSERT(next[0] != '\0');
461 if (next[0] == '@')
462 break;
463 dprintf("looking up %s in obj%lld\n",
464 buf, dsl_dir_phys(dd)->dd_child_dir_zapobj);
465
466 err = zap_lookup(dp->dp_meta_objset,
467 dsl_dir_phys(dd)->dd_child_dir_zapobj,
468 buf, sizeof (ddobj), 1, &ddobj);
469 if (err != 0) {
470 if (err == ENOENT)
471 err = 0;
472 break;
473 }
474
475 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
476 if (err != 0)
477 break;
478 dsl_dir_rele(dd, tag);
479 dd = child_dd;
480 next = nextnext;
481 }
482
483 if (err != 0) {
484 dsl_dir_rele(dd, tag);
485 return (err);
486 }
487
488 /*
489 * It's an error if there's more than one component left, or
490 * tailp==NULL and there's any component left.
491 */
492 if (next != NULL &&
493 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
494 /* bad path name */
495 dsl_dir_rele(dd, tag);
496 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
497 err = SET_ERROR(ENOENT);
498 }
499 if (tailp != NULL)
500 *tailp = next;
501 *ddp = dd;
502 return (err);
503 }
504
505 /*
506 * If the counts are already initialized for this filesystem and its
507 * descendants then do nothing, otherwise initialize the counts.
508 *
509 * The counts on this filesystem, and those below, may be uninitialized due to
510 * either the use of a pre-existing pool which did not support the
511 * filesystem/snapshot limit feature, or one in which the feature had not yet
512 * been enabled.
513 *
514 * Recursively descend the filesystem tree and update the filesystem/snapshot
515 * counts on each filesystem below, then update the cumulative count on the
516 * current filesystem. If the filesystem already has a count set on it,
517 * then we know that its counts, and the counts on the filesystems below it,
518 * are already correct, so we don't have to update this filesystem.
519 */
520 static void
dsl_dir_init_fs_ss_count(dsl_dir_t * dd,dmu_tx_t * tx)521 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
522 {
523 uint64_t my_fs_cnt = 0;
524 uint64_t my_ss_cnt = 0;
525 dsl_pool_t *dp = dd->dd_pool;
526 objset_t *os = dp->dp_meta_objset;
527 zap_cursor_t *zc;
528 zap_attribute_t *za;
529 dsl_dataset_t *ds;
530
531 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
532 ASSERT(dsl_pool_config_held(dp));
533 ASSERT(dmu_tx_is_syncing(tx));
534
535 dsl_dir_zapify(dd, tx);
536
537 /*
538 * If the filesystem count has already been initialized then we
539 * don't need to recurse down any further.
540 */
541 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
542 return;
543
544 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
545 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
546
547 /* Iterate my child dirs */
548 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
549 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
550 dsl_dir_t *chld_dd;
551 uint64_t count;
552
553 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
554 &chld_dd));
555
556 /*
557 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets and
558 * temporary datasets.
559 */
560 if (chld_dd->dd_myname[0] == '$' ||
561 chld_dd->dd_myname[0] == '%') {
562 dsl_dir_rele(chld_dd, FTAG);
563 continue;
564 }
565
566 my_fs_cnt++; /* count this child */
567
568 dsl_dir_init_fs_ss_count(chld_dd, tx);
569
570 VERIFY0(zap_lookup(os, chld_dd->dd_object,
571 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
572 my_fs_cnt += count;
573 VERIFY0(zap_lookup(os, chld_dd->dd_object,
574 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
575 my_ss_cnt += count;
576
577 dsl_dir_rele(chld_dd, FTAG);
578 }
579 zap_cursor_fini(zc);
580 /* Count my snapshots (we counted children's snapshots above) */
581 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
582 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
583
584 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
585 zap_cursor_retrieve(zc, za) == 0;
586 zap_cursor_advance(zc)) {
587 /* Don't count temporary snapshots */
588 if (za->za_name[0] != '%')
589 my_ss_cnt++;
590 }
591 zap_cursor_fini(zc);
592
593 dsl_dataset_rele(ds, FTAG);
594
595 kmem_free(zc, sizeof (zap_cursor_t));
596 kmem_free(za, sizeof (zap_attribute_t));
597
598 /* we're in a sync task, update counts */
599 dmu_buf_will_dirty(dd->dd_dbuf, tx);
600 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
601 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
602 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
603 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
604 }
605
606 static int
dsl_dir_actv_fs_ss_limit_check(void * arg,dmu_tx_t * tx)607 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
608 {
609 char *ddname = (char *)arg;
610 dsl_pool_t *dp = dmu_tx_pool(tx);
611 dsl_dataset_t *ds;
612 dsl_dir_t *dd;
613 int error;
614
615 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
616 if (error != 0)
617 return (error);
618
619 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
620 dsl_dataset_rele(ds, FTAG);
621 return (SET_ERROR(ENOTSUP));
622 }
623
624 dd = ds->ds_dir;
625 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
626 dsl_dir_is_zapified(dd) &&
627 zap_contains(dp->dp_meta_objset, dd->dd_object,
628 DD_FIELD_FILESYSTEM_COUNT) == 0) {
629 dsl_dataset_rele(ds, FTAG);
630 return (SET_ERROR(EALREADY));
631 }
632
633 dsl_dataset_rele(ds, FTAG);
634 return (0);
635 }
636
637 static void
dsl_dir_actv_fs_ss_limit_sync(void * arg,dmu_tx_t * tx)638 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
639 {
640 char *ddname = (char *)arg;
641 dsl_pool_t *dp = dmu_tx_pool(tx);
642 dsl_dataset_t *ds;
643 spa_t *spa;
644
645 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
646
647 spa = dsl_dataset_get_spa(ds);
648
649 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
650 /*
651 * Since the feature was not active and we're now setting a
652 * limit, increment the feature-active counter so that the
653 * feature becomes active for the first time.
654 *
655 * We are already in a sync task so we can update the MOS.
656 */
657 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
658 }
659
660 /*
661 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
662 * we need to ensure the counts are correct. Descend down the tree from
663 * this point and update all of the counts to be accurate.
664 */
665 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
666
667 dsl_dataset_rele(ds, FTAG);
668 }
669
670 /*
671 * Make sure the feature is enabled and activate it if necessary.
672 * Since we're setting a limit, ensure the on-disk counts are valid.
673 * This is only called by the ioctl path when setting a limit value.
674 *
675 * We do not need to validate the new limit, since users who can change the
676 * limit are also allowed to exceed the limit.
677 */
678 int
dsl_dir_activate_fs_ss_limit(const char * ddname)679 dsl_dir_activate_fs_ss_limit(const char *ddname)
680 {
681 int error;
682
683 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
684 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
685 ZFS_SPACE_CHECK_RESERVED);
686
687 if (error == EALREADY)
688 error = 0;
689
690 return (error);
691 }
692
693 /*
694 * Used to determine if the filesystem_limit or snapshot_limit should be
695 * enforced. We allow the limit to be exceeded if the user has permission to
696 * write the property value. We pass in the creds that we got in the open
697 * context since we will always be the GZ root in syncing context. We also have
698 * to handle the case where we are allowed to change the limit on the current
699 * dataset, but there may be another limit in the tree above.
700 *
701 * We can never modify these two properties within a non-global zone. In
702 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
703 * can't use that function since we are already holding the dp_config_rwlock.
704 * In addition, we already have the dd and dealing with snapshots is simplified
705 * in this code.
706 */
707
708 typedef enum {
709 ENFORCE_ALWAYS,
710 ENFORCE_NEVER,
711 ENFORCE_ABOVE
712 } enforce_res_t;
713
714 static enforce_res_t
dsl_enforce_ds_ss_limits(dsl_dir_t * dd,zfs_prop_t prop,cred_t * cr)715 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop, cred_t *cr)
716 {
717 enforce_res_t enforce = ENFORCE_ALWAYS;
718 uint64_t obj;
719 dsl_dataset_t *ds;
720 uint64_t zoned;
721
722 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
723 prop == ZFS_PROP_SNAPSHOT_LIMIT);
724
725 #ifdef _KERNEL
726 if (crgetzoneid(cr) != GLOBAL_ZONEID)
727 return (ENFORCE_ALWAYS);
728
729 if (secpolicy_zfs(cr) == 0)
730 return (ENFORCE_NEVER);
731 #endif
732
733 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
734 return (ENFORCE_ALWAYS);
735
736 ASSERT(dsl_pool_config_held(dd->dd_pool));
737
738 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
739 return (ENFORCE_ALWAYS);
740
741 if (dsl_prop_get_ds(ds, "zoned", 8, 1, &zoned, NULL) || zoned) {
742 /* Only root can access zoned fs's from the GZ */
743 enforce = ENFORCE_ALWAYS;
744 } else {
745 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
746 enforce = ENFORCE_ABOVE;
747 }
748
749 dsl_dataset_rele(ds, FTAG);
750 return (enforce);
751 }
752
753 /*
754 * Check if adding additional child filesystem(s) would exceed any filesystem
755 * limits or adding additional snapshot(s) would exceed any snapshot limits.
756 * The prop argument indicates which limit to check.
757 *
758 * Note that all filesystem limits up to the root (or the highest
759 * initialized) filesystem or the given ancestor must be satisfied.
760 */
761 int
dsl_fs_ss_limit_check(dsl_dir_t * dd,uint64_t delta,zfs_prop_t prop,dsl_dir_t * ancestor,cred_t * cr)762 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
763 dsl_dir_t *ancestor, cred_t *cr)
764 {
765 objset_t *os = dd->dd_pool->dp_meta_objset;
766 uint64_t limit, count;
767 char *count_prop;
768 enforce_res_t enforce;
769 int err = 0;
770
771 ASSERT(dsl_pool_config_held(dd->dd_pool));
772 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
773 prop == ZFS_PROP_SNAPSHOT_LIMIT);
774
775 /*
776 * If we're allowed to change the limit, don't enforce the limit
777 * e.g. this can happen if a snapshot is taken by an administrative
778 * user in the global zone (i.e. a recursive snapshot by root).
779 * However, we must handle the case of delegated permissions where we
780 * are allowed to change the limit on the current dataset, but there
781 * is another limit in the tree above.
782 */
783 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
784 if (enforce == ENFORCE_NEVER)
785 return (0);
786
787 /*
788 * e.g. if renaming a dataset with no snapshots, count adjustment
789 * is 0.
790 */
791 if (delta == 0)
792 return (0);
793
794 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
795 /*
796 * We don't enforce the limit for temporary snapshots. This is
797 * indicated by a NULL cred_t argument.
798 */
799 if (cr == NULL)
800 return (0);
801
802 count_prop = DD_FIELD_SNAPSHOT_COUNT;
803 } else {
804 count_prop = DD_FIELD_FILESYSTEM_COUNT;
805 }
806
807 /*
808 * If an ancestor has been provided, stop checking the limit once we
809 * hit that dir. We need this during rename so that we don't overcount
810 * the check once we recurse up to the common ancestor.
811 */
812 if (ancestor == dd)
813 return (0);
814
815 /*
816 * If we hit an uninitialized node while recursing up the tree, we can
817 * stop since we know there is no limit here (or above). The counts are
818 * not valid on this node and we know we won't touch this node's counts.
819 */
820 if (!dsl_dir_is_zapified(dd) || zap_lookup(os, dd->dd_object,
821 count_prop, sizeof (count), 1, &count) == ENOENT)
822 return (0);
823
824 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
825 B_FALSE);
826 if (err != 0)
827 return (err);
828
829 /* Is there a limit which we've hit? */
830 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
831 return (SET_ERROR(EDQUOT));
832
833 if (dd->dd_parent != NULL)
834 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
835 ancestor, cr);
836
837 return (err);
838 }
839
840 /*
841 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
842 * parents. When a new filesystem/snapshot is created, increment the count on
843 * all parents, and when a filesystem/snapshot is destroyed, decrement the
844 * count.
845 */
846 void
dsl_fs_ss_count_adjust(dsl_dir_t * dd,int64_t delta,const char * prop,dmu_tx_t * tx)847 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
848 dmu_tx_t *tx)
849 {
850 int err;
851 objset_t *os = dd->dd_pool->dp_meta_objset;
852 uint64_t count;
853
854 ASSERT(dsl_pool_config_held(dd->dd_pool));
855 ASSERT(dmu_tx_is_syncing(tx));
856 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
857 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
858
859 /*
860 * When we receive an incremental stream into a filesystem that already
861 * exists, a temporary clone is created. We don't count this temporary
862 * clone, whose name begins with a '%'. We also ignore hidden ($FREE,
863 * $MOS & $ORIGIN) objsets.
864 */
865 if ((dd->dd_myname[0] == '%' || dd->dd_myname[0] == '$') &&
866 strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0)
867 return;
868
869 /*
870 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
871 */
872 if (delta == 0)
873 return;
874
875 /*
876 * If we hit an uninitialized node while recursing up the tree, we can
877 * stop since we know the counts are not valid on this node and we
878 * know we shouldn't touch this node's counts. An uninitialized count
879 * on the node indicates that either the feature has not yet been
880 * activated or there are no limits on this part of the tree.
881 */
882 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
883 prop, sizeof (count), 1, &count)) == ENOENT)
884 return;
885 VERIFY0(err);
886
887 count += delta;
888 /* Use a signed verify to make sure we're not neg. */
889 VERIFY3S(count, >=, 0);
890
891 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
892 tx));
893
894 /* Roll up this additional count into our ancestors */
895 if (dd->dd_parent != NULL)
896 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
897 }
898
899 uint64_t
dsl_dir_create_sync(dsl_pool_t * dp,dsl_dir_t * pds,const char * name,dmu_tx_t * tx)900 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
901 dmu_tx_t *tx)
902 {
903 objset_t *mos = dp->dp_meta_objset;
904 uint64_t ddobj;
905 dsl_dir_phys_t *ddphys;
906 dmu_buf_t *dbuf;
907
908 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
909 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
910 if (pds) {
911 VERIFY(0 == zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
912 name, sizeof (uint64_t), 1, &ddobj, tx));
913 } else {
914 /* it's the root dir */
915 VERIFY(0 == zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
916 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
917 }
918 VERIFY(0 == dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
919 dmu_buf_will_dirty(dbuf, tx);
920 ddphys = dbuf->db_data;
921
922 ddphys->dd_creation_time = gethrestime_sec();
923 if (pds) {
924 ddphys->dd_parent_obj = pds->dd_object;
925
926 /* update the filesystem counts */
927 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
928 }
929 ddphys->dd_props_zapobj = zap_create(mos,
930 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
931 ddphys->dd_child_dir_zapobj = zap_create(mos,
932 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
933 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
934 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
935 dmu_buf_rele(dbuf, FTAG);
936
937 return (ddobj);
938 }
939
940 boolean_t
dsl_dir_is_clone(dsl_dir_t * dd)941 dsl_dir_is_clone(dsl_dir_t *dd)
942 {
943 return (dsl_dir_phys(dd)->dd_origin_obj &&
944 (dd->dd_pool->dp_origin_snap == NULL ||
945 dsl_dir_phys(dd)->dd_origin_obj !=
946 dd->dd_pool->dp_origin_snap->ds_object));
947 }
948
949 void
dsl_dir_stats(dsl_dir_t * dd,nvlist_t * nv)950 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
951 {
952 mutex_enter(&dd->dd_lock);
953 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USED,
954 dsl_dir_phys(dd)->dd_used_bytes);
955 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
956 dsl_dir_phys(dd)->dd_quota);
957 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
958 dsl_dir_phys(dd)->dd_reserved);
959 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_COMPRESSRATIO,
960 dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
961 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
962 dsl_dir_phys(dd)->dd_compressed_bytes));
963 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
964 dsl_dir_phys(dd)->dd_uncompressed_bytes);
965 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
966 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
967 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
968 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
969 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
970 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
971 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
972 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
973 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
974 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
975 }
976 mutex_exit(&dd->dd_lock);
977
978 if (dsl_dir_is_zapified(dd)) {
979 uint64_t count;
980 objset_t *os = dd->dd_pool->dp_meta_objset;
981
982 if (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
983 sizeof (count), 1, &count) == 0) {
984 dsl_prop_nvlist_add_uint64(nv,
985 ZFS_PROP_FILESYSTEM_COUNT, count);
986 }
987 if (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
988 sizeof (count), 1, &count) == 0) {
989 dsl_prop_nvlist_add_uint64(nv,
990 ZFS_PROP_SNAPSHOT_COUNT, count);
991 }
992 }
993
994 if (dsl_dir_is_clone(dd)) {
995 dsl_dataset_t *ds;
996 char buf[ZFS_MAX_DATASET_NAME_LEN];
997
998 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
999 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1000 dsl_dataset_name(ds, buf);
1001 dsl_dataset_rele(ds, FTAG);
1002 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1003 }
1004 }
1005
1006 void
dsl_dir_dirty(dsl_dir_t * dd,dmu_tx_t * tx)1007 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1008 {
1009 dsl_pool_t *dp = dd->dd_pool;
1010
1011 ASSERT(dsl_dir_phys(dd));
1012
1013 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1014 /* up the hold count until we can be written out */
1015 dmu_buf_add_ref(dd->dd_dbuf, dd);
1016 }
1017 }
1018
1019 static int64_t
parent_delta(dsl_dir_t * dd,uint64_t used,int64_t delta)1020 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1021 {
1022 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1023 uint64_t new_accounted =
1024 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1025 return (new_accounted - old_accounted);
1026 }
1027
1028 void
dsl_dir_sync(dsl_dir_t * dd,dmu_tx_t * tx)1029 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1030 {
1031 ASSERT(dmu_tx_is_syncing(tx));
1032
1033 mutex_enter(&dd->dd_lock);
1034 ASSERT0(dd->dd_tempreserved[tx->tx_txg&TXG_MASK]);
1035 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", tx->tx_txg,
1036 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] / 1024);
1037 dd->dd_space_towrite[tx->tx_txg&TXG_MASK] = 0;
1038 mutex_exit(&dd->dd_lock);
1039
1040 /* release the hold from dsl_dir_dirty */
1041 dmu_buf_rele(dd->dd_dbuf, dd);
1042 }
1043
1044 static uint64_t
dsl_dir_space_towrite(dsl_dir_t * dd)1045 dsl_dir_space_towrite(dsl_dir_t *dd)
1046 {
1047 uint64_t space = 0;
1048 int i;
1049
1050 ASSERT(MUTEX_HELD(&dd->dd_lock));
1051
1052 for (i = 0; i < TXG_SIZE; i++) {
1053 space += dd->dd_space_towrite[i&TXG_MASK];
1054 ASSERT3U(dd->dd_space_towrite[i&TXG_MASK], >=, 0);
1055 }
1056 return (space);
1057 }
1058
1059 /*
1060 * How much space would dd have available if ancestor had delta applied
1061 * to it? If ondiskonly is set, we're only interested in what's
1062 * on-disk, not estimated pending changes.
1063 */
1064 uint64_t
dsl_dir_space_available(dsl_dir_t * dd,dsl_dir_t * ancestor,int64_t delta,int ondiskonly)1065 dsl_dir_space_available(dsl_dir_t *dd,
1066 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1067 {
1068 uint64_t parentspace, myspace, quota, used;
1069
1070 /*
1071 * If there are no restrictions otherwise, assume we have
1072 * unlimited space available.
1073 */
1074 quota = UINT64_MAX;
1075 parentspace = UINT64_MAX;
1076
1077 if (dd->dd_parent != NULL) {
1078 parentspace = dsl_dir_space_available(dd->dd_parent,
1079 ancestor, delta, ondiskonly);
1080 }
1081
1082 mutex_enter(&dd->dd_lock);
1083 if (dsl_dir_phys(dd)->dd_quota != 0)
1084 quota = dsl_dir_phys(dd)->dd_quota;
1085 used = dsl_dir_phys(dd)->dd_used_bytes;
1086 if (!ondiskonly)
1087 used += dsl_dir_space_towrite(dd);
1088
1089 if (dd->dd_parent == NULL) {
1090 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, FALSE);
1091 quota = MIN(quota, poolsize);
1092 }
1093
1094 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1095 /*
1096 * We have some space reserved, in addition to what our
1097 * parent gave us.
1098 */
1099 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1100 }
1101
1102 if (dd == ancestor) {
1103 ASSERT(delta <= 0);
1104 ASSERT(used >= -delta);
1105 used += delta;
1106 if (parentspace != UINT64_MAX)
1107 parentspace -= delta;
1108 }
1109
1110 if (used > quota) {
1111 /* over quota */
1112 myspace = 0;
1113 } else {
1114 /*
1115 * the lesser of the space provided by our parent and
1116 * the space left in our quota
1117 */
1118 myspace = MIN(parentspace, quota - used);
1119 }
1120
1121 mutex_exit(&dd->dd_lock);
1122
1123 return (myspace);
1124 }
1125
1126 struct tempreserve {
1127 list_node_t tr_node;
1128 dsl_dir_t *tr_ds;
1129 uint64_t tr_size;
1130 };
1131
1132 static int
dsl_dir_tempreserve_impl(dsl_dir_t * dd,uint64_t asize,boolean_t netfree,boolean_t ignorequota,boolean_t checkrefquota,list_t * tr_list,dmu_tx_t * tx,boolean_t first)1133 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1134 boolean_t ignorequota, boolean_t checkrefquota, list_t *tr_list,
1135 dmu_tx_t *tx, boolean_t first)
1136 {
1137 uint64_t txg = tx->tx_txg;
1138 uint64_t est_inflight, used_on_disk, quota, parent_rsrv;
1139 uint64_t deferred = 0;
1140 struct tempreserve *tr;
1141 int retval = EDQUOT;
1142 int txgidx = txg & TXG_MASK;
1143 int i;
1144 uint64_t ref_rsrv = 0;
1145
1146 ASSERT3U(txg, !=, 0);
1147 ASSERT3S(asize, >, 0);
1148
1149 mutex_enter(&dd->dd_lock);
1150
1151 /*
1152 * Check against the dsl_dir's quota. We don't add in the delta
1153 * when checking for over-quota because they get one free hit.
1154 */
1155 est_inflight = dsl_dir_space_towrite(dd);
1156 for (i = 0; i < TXG_SIZE; i++)
1157 est_inflight += dd->dd_tempreserved[i];
1158 used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1159
1160 /*
1161 * On the first iteration, fetch the dataset's used-on-disk and
1162 * refreservation values. Also, if checkrefquota is set, test if
1163 * allocating this space would exceed the dataset's refquota.
1164 */
1165 if (first && tx->tx_objset) {
1166 int error;
1167 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1168
1169 error = dsl_dataset_check_quota(ds, checkrefquota,
1170 asize, est_inflight, &used_on_disk, &ref_rsrv);
1171 if (error) {
1172 mutex_exit(&dd->dd_lock);
1173 return (error);
1174 }
1175 }
1176
1177 /*
1178 * If this transaction will result in a net free of space,
1179 * we want to let it through.
1180 */
1181 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1182 quota = UINT64_MAX;
1183 else
1184 quota = dsl_dir_phys(dd)->dd_quota;
1185
1186 /*
1187 * Adjust the quota against the actual pool size at the root
1188 * minus any outstanding deferred frees.
1189 * To ensure that it's possible to remove files from a full
1190 * pool without inducing transient overcommits, we throttle
1191 * netfree transactions against a quota that is slightly larger,
1192 * but still within the pool's allocation slop. In cases where
1193 * we're very close to full, this will allow a steady trickle of
1194 * removes to get through.
1195 */
1196 if (dd->dd_parent == NULL) {
1197 spa_t *spa = dd->dd_pool->dp_spa;
1198 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool, netfree);
1199 deferred = metaslab_class_get_deferred(spa_normal_class(spa));
1200 if (poolsize - deferred < quota) {
1201 quota = poolsize - deferred;
1202 retval = ENOSPC;
1203 }
1204 }
1205
1206 /*
1207 * If they are requesting more space, and our current estimate
1208 * is over quota, they get to try again unless the actual
1209 * on-disk is over quota and there are no pending changes (which
1210 * may free up space for us).
1211 */
1212 if (used_on_disk + (late_edquot ? 0 : est_inflight) >= quota) {
1213 if ((late_edquot == 0 && est_inflight > early_edquot_threshold) ||
1214 used_on_disk + early_edquot_threshold < quota ||
1215 (retval == ENOSPC && used_on_disk < quota + deferred))
1216 retval = ERESTART;
1217 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1218 "quota=%lluK tr=%lluK err=%d\n",
1219 used_on_disk>>10, est_inflight>>10,
1220 quota>>10, asize>>10, retval);
1221 mutex_exit(&dd->dd_lock);
1222 return (SET_ERROR(retval));
1223 }
1224
1225 /* We need to up our estimated delta before dropping dd_lock */
1226 dd->dd_tempreserved[txgidx] += asize;
1227
1228 parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1229 asize - ref_rsrv);
1230 mutex_exit(&dd->dd_lock);
1231
1232 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1233 tr->tr_ds = dd;
1234 tr->tr_size = asize;
1235 list_insert_tail(tr_list, tr);
1236
1237 /* see if it's OK with our parent */
1238 if (dd->dd_parent && parent_rsrv) {
1239 boolean_t ismos = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1240
1241 return (dsl_dir_tempreserve_impl(dd->dd_parent,
1242 parent_rsrv, netfree, ismos, TRUE, tr_list, tx, FALSE));
1243 } else {
1244 return (0);
1245 }
1246 }
1247
1248 /*
1249 * Reserve space in this dsl_dir, to be used in this tx's txg.
1250 * After the space has been dirtied (and dsl_dir_willuse_space()
1251 * has been called), the reservation should be canceled, using
1252 * dsl_dir_tempreserve_clear().
1253 */
1254 int
dsl_dir_tempreserve_space(dsl_dir_t * dd,uint64_t lsize,uint64_t asize,uint64_t fsize,uint64_t usize,void ** tr_cookiep,dmu_tx_t * tx)1255 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1256 uint64_t fsize, uint64_t usize, void **tr_cookiep, dmu_tx_t *tx)
1257 {
1258 int err;
1259 list_t *tr_list;
1260
1261 if (asize == 0) {
1262 *tr_cookiep = NULL;
1263 return (0);
1264 }
1265
1266 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1267 list_create(tr_list, sizeof (struct tempreserve),
1268 offsetof(struct tempreserve, tr_node));
1269 ASSERT3S(asize, >, 0);
1270 ASSERT3S(fsize, >=, 0);
1271
1272 err = arc_tempreserve_space(lsize, tx->tx_txg);
1273 if (err == 0) {
1274 struct tempreserve *tr;
1275
1276 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1277 tr->tr_size = lsize;
1278 list_insert_tail(tr_list, tr);
1279 } else {
1280 if (err == EAGAIN) {
1281 /*
1282 * If arc_memory_throttle() detected that pageout
1283 * is running and we are low on memory, we delay new
1284 * non-pageout transactions to give pageout an
1285 * advantage.
1286 *
1287 * It is unfortunate to be delaying while the caller's
1288 * locks are held.
1289 */
1290 txg_delay(dd->dd_pool, tx->tx_txg,
1291 MSEC2NSEC(10), MSEC2NSEC(10));
1292 err = SET_ERROR(ERESTART);
1293 }
1294 }
1295
1296 if (err == 0) {
1297 err = dsl_dir_tempreserve_impl(dd, asize, fsize >= asize,
1298 FALSE, asize > usize, tr_list, tx, TRUE);
1299 }
1300
1301 if (err != 0)
1302 dsl_dir_tempreserve_clear(tr_list, tx);
1303 else
1304 *tr_cookiep = tr_list;
1305
1306 return (err);
1307 }
1308
1309 /*
1310 * Clear a temporary reservation that we previously made with
1311 * dsl_dir_tempreserve_space().
1312 */
1313 void
dsl_dir_tempreserve_clear(void * tr_cookie,dmu_tx_t * tx)1314 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1315 {
1316 int txgidx = tx->tx_txg & TXG_MASK;
1317 list_t *tr_list = tr_cookie;
1318 struct tempreserve *tr;
1319
1320 ASSERT3U(tx->tx_txg, !=, 0);
1321
1322 if (tr_cookie == NULL)
1323 return;
1324
1325 while ((tr = list_head(tr_list)) != NULL) {
1326 if (tr->tr_ds) {
1327 mutex_enter(&tr->tr_ds->dd_lock);
1328 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1329 tr->tr_size);
1330 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1331 mutex_exit(&tr->tr_ds->dd_lock);
1332 } else {
1333 arc_tempreserve_clear(tr->tr_size);
1334 }
1335 list_remove(tr_list, tr);
1336 kmem_free(tr, sizeof (struct tempreserve));
1337 }
1338
1339 kmem_free(tr_list, sizeof (list_t));
1340 }
1341
1342 /*
1343 * This should be called from open context when we think we're going to write
1344 * or free space, for example when dirtying data. Be conservative; it's okay
1345 * to write less space or free more, but we don't want to write more or free
1346 * less than the amount specified.
1347 */
1348 void
dsl_dir_willuse_space(dsl_dir_t * dd,int64_t space,dmu_tx_t * tx)1349 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1350 {
1351 int64_t parent_space;
1352 uint64_t est_used;
1353
1354 mutex_enter(&dd->dd_lock);
1355 if (space > 0)
1356 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1357
1358 est_used = dsl_dir_space_towrite(dd) + dsl_dir_phys(dd)->dd_used_bytes;
1359 parent_space = parent_delta(dd, est_used, space);
1360 mutex_exit(&dd->dd_lock);
1361
1362 /* Make sure that we clean up dd_space_to* */
1363 dsl_dir_dirty(dd, tx);
1364
1365 /* XXX this is potentially expensive and unnecessary... */
1366 if (parent_space && dd->dd_parent)
1367 dsl_dir_willuse_space(dd->dd_parent, parent_space, tx);
1368 }
1369
1370 /* call from syncing context when we actually write/free space for this dd */
1371 void
dsl_dir_diduse_space(dsl_dir_t * dd,dd_used_t type,int64_t used,int64_t compressed,int64_t uncompressed,dmu_tx_t * tx)1372 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1373 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1374 {
1375 int64_t accounted_delta;
1376
1377 /*
1378 * dsl_dataset_set_refreservation_sync_impl() calls this with
1379 * dd_lock held, so that it can atomically update
1380 * ds->ds_reserved and the dsl_dir accounting, so that
1381 * dsl_dataset_check_quota() can see dataset and dir accounting
1382 * consistently.
1383 */
1384 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1385
1386 ASSERT(dmu_tx_is_syncing(tx));
1387 ASSERT(type < DD_USED_NUM);
1388
1389 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1390
1391 if (needlock)
1392 mutex_enter(&dd->dd_lock);
1393 accounted_delta =
1394 parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, used);
1395 ASSERT(used >= 0 || dsl_dir_phys(dd)->dd_used_bytes >= -used);
1396 ASSERT(compressed >= 0 ||
1397 dsl_dir_phys(dd)->dd_compressed_bytes >= -compressed);
1398 ASSERT(uncompressed >= 0 ||
1399 dsl_dir_phys(dd)->dd_uncompressed_bytes >= -uncompressed);
1400 dsl_dir_phys(dd)->dd_used_bytes += used;
1401 dsl_dir_phys(dd)->dd_uncompressed_bytes += uncompressed;
1402 dsl_dir_phys(dd)->dd_compressed_bytes += compressed;
1403
1404 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1405 ASSERT(used > 0 ||
1406 dsl_dir_phys(dd)->dd_used_breakdown[type] >= -used);
1407 dsl_dir_phys(dd)->dd_used_breakdown[type] += used;
1408 #ifdef DEBUG
1409 dd_used_t t;
1410 uint64_t u = 0;
1411 for (t = 0; t < DD_USED_NUM; t++)
1412 u += dsl_dir_phys(dd)->dd_used_breakdown[t];
1413 ASSERT3U(u, ==, dsl_dir_phys(dd)->dd_used_bytes);
1414 #endif
1415 }
1416 if (needlock)
1417 mutex_exit(&dd->dd_lock);
1418
1419 if (dd->dd_parent != NULL) {
1420 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1421 accounted_delta, compressed, uncompressed, tx);
1422 dsl_dir_transfer_space(dd->dd_parent,
1423 used - accounted_delta,
1424 DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1425 }
1426 }
1427
1428 void
dsl_dir_transfer_space(dsl_dir_t * dd,int64_t delta,dd_used_t oldtype,dd_used_t newtype,dmu_tx_t * tx)1429 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1430 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1431 {
1432 ASSERT(dmu_tx_is_syncing(tx));
1433 ASSERT(oldtype < DD_USED_NUM);
1434 ASSERT(newtype < DD_USED_NUM);
1435
1436 if (delta == 0 ||
1437 !(dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN))
1438 return;
1439
1440 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1441 mutex_enter(&dd->dd_lock);
1442 ASSERT(delta > 0 ?
1443 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] >= delta :
1444 dsl_dir_phys(dd)->dd_used_breakdown[newtype] >= -delta);
1445 ASSERT(dsl_dir_phys(dd)->dd_used_bytes >= ABS(delta));
1446 dsl_dir_phys(dd)->dd_used_breakdown[oldtype] -= delta;
1447 dsl_dir_phys(dd)->dd_used_breakdown[newtype] += delta;
1448 mutex_exit(&dd->dd_lock);
1449 }
1450
1451 typedef struct dsl_dir_set_qr_arg {
1452 const char *ddsqra_name;
1453 zprop_source_t ddsqra_source;
1454 uint64_t ddsqra_value;
1455 } dsl_dir_set_qr_arg_t;
1456
1457 static int
dsl_dir_set_quota_check(void * arg,dmu_tx_t * tx)1458 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1459 {
1460 dsl_dir_set_qr_arg_t *ddsqra = arg;
1461 dsl_pool_t *dp = dmu_tx_pool(tx);
1462 dsl_dataset_t *ds;
1463 int error;
1464 uint64_t towrite, newval;
1465
1466 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1467 if (error != 0)
1468 return (error);
1469
1470 error = dsl_prop_predict(ds->ds_dir, "quota",
1471 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1472 if (error != 0) {
1473 dsl_dataset_rele(ds, FTAG);
1474 return (error);
1475 }
1476
1477 if (newval == 0) {
1478 dsl_dataset_rele(ds, FTAG);
1479 return (0);
1480 }
1481
1482 mutex_enter(&ds->ds_dir->dd_lock);
1483 /*
1484 * If we are doing the preliminary check in open context, and
1485 * there are pending changes, then don't fail it, since the
1486 * pending changes could under-estimate the amount of space to be
1487 * freed up.
1488 */
1489 towrite = dsl_dir_space_towrite(ds->ds_dir);
1490 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1491 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1492 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1493 error = SET_ERROR(ENOSPC);
1494 }
1495 mutex_exit(&ds->ds_dir->dd_lock);
1496 dsl_dataset_rele(ds, FTAG);
1497 return (error);
1498 }
1499
1500 static void
dsl_dir_set_quota_sync(void * arg,dmu_tx_t * tx)1501 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1502 {
1503 dsl_dir_set_qr_arg_t *ddsqra = arg;
1504 dsl_pool_t *dp = dmu_tx_pool(tx);
1505 dsl_dataset_t *ds;
1506 uint64_t newval;
1507
1508 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1509
1510 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1511 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1512 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1513 &ddsqra->ddsqra_value, tx);
1514
1515 VERIFY0(dsl_prop_get_int_ds(ds,
1516 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1517 } else {
1518 newval = ddsqra->ddsqra_value;
1519 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1520 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1521 }
1522
1523 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1524 mutex_enter(&ds->ds_dir->dd_lock);
1525 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1526 mutex_exit(&ds->ds_dir->dd_lock);
1527 dsl_dataset_rele(ds, FTAG);
1528 }
1529
1530 int
dsl_dir_set_quota(const char * ddname,zprop_source_t source,uint64_t quota)1531 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1532 {
1533 dsl_dir_set_qr_arg_t ddsqra;
1534
1535 ddsqra.ddsqra_name = ddname;
1536 ddsqra.ddsqra_source = source;
1537 ddsqra.ddsqra_value = quota;
1538
1539 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1540 dsl_dir_set_quota_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1541 }
1542
1543 int
dsl_dir_set_reservation_check(void * arg,dmu_tx_t * tx)1544 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1545 {
1546 dsl_dir_set_qr_arg_t *ddsqra = arg;
1547 dsl_pool_t *dp = dmu_tx_pool(tx);
1548 dsl_dataset_t *ds;
1549 dsl_dir_t *dd;
1550 uint64_t newval, used, avail;
1551 int error;
1552
1553 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1554 if (error != 0)
1555 return (error);
1556 dd = ds->ds_dir;
1557
1558 /*
1559 * If we are doing the preliminary check in open context, the
1560 * space estimates may be inaccurate.
1561 */
1562 if (!dmu_tx_is_syncing(tx)) {
1563 dsl_dataset_rele(ds, FTAG);
1564 return (0);
1565 }
1566
1567 error = dsl_prop_predict(ds->ds_dir,
1568 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1569 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1570 if (error != 0) {
1571 dsl_dataset_rele(ds, FTAG);
1572 return (error);
1573 }
1574
1575 mutex_enter(&dd->dd_lock);
1576 used = dsl_dir_phys(dd)->dd_used_bytes;
1577 mutex_exit(&dd->dd_lock);
1578
1579 if (dd->dd_parent) {
1580 avail = dsl_dir_space_available(dd->dd_parent,
1581 NULL, 0, FALSE);
1582 } else {
1583 avail = dsl_pool_adjustedsize(dd->dd_pool, B_FALSE) - used;
1584 }
1585
1586 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1587 uint64_t delta = MAX(used, newval) -
1588 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1589
1590 if (delta > avail ||
1591 (dsl_dir_phys(dd)->dd_quota > 0 &&
1592 newval > dsl_dir_phys(dd)->dd_quota))
1593 error = SET_ERROR(ENOSPC);
1594 }
1595
1596 dsl_dataset_rele(ds, FTAG);
1597 return (error);
1598 }
1599
1600 void
dsl_dir_set_reservation_sync_impl(dsl_dir_t * dd,uint64_t value,dmu_tx_t * tx)1601 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1602 {
1603 uint64_t used;
1604 int64_t delta;
1605
1606 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1607
1608 mutex_enter(&dd->dd_lock);
1609 used = dsl_dir_phys(dd)->dd_used_bytes;
1610 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1611 dsl_dir_phys(dd)->dd_reserved = value;
1612
1613 if (dd->dd_parent != NULL) {
1614 /* Roll up this additional usage into our ancestors */
1615 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1616 delta, 0, 0, tx);
1617 }
1618 mutex_exit(&dd->dd_lock);
1619 }
1620
1621
1622 static void
dsl_dir_set_reservation_sync(void * arg,dmu_tx_t * tx)1623 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1624 {
1625 dsl_dir_set_qr_arg_t *ddsqra = arg;
1626 dsl_pool_t *dp = dmu_tx_pool(tx);
1627 dsl_dataset_t *ds;
1628 uint64_t newval;
1629
1630 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1631
1632 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1633 dsl_prop_set_sync_impl(ds,
1634 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1635 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1636 &ddsqra->ddsqra_value, tx);
1637
1638 VERIFY0(dsl_prop_get_int_ds(ds,
1639 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1640 } else {
1641 newval = ddsqra->ddsqra_value;
1642 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1643 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1644 (longlong_t)newval);
1645 }
1646
1647 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1648 dsl_dataset_rele(ds, FTAG);
1649 }
1650
1651 int
dsl_dir_set_reservation(const char * ddname,zprop_source_t source,uint64_t reservation)1652 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1653 uint64_t reservation)
1654 {
1655 dsl_dir_set_qr_arg_t ddsqra;
1656
1657 ddsqra.ddsqra_name = ddname;
1658 ddsqra.ddsqra_source = source;
1659 ddsqra.ddsqra_value = reservation;
1660
1661 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1662 dsl_dir_set_reservation_sync, &ddsqra, 0, ZFS_SPACE_CHECK_NONE));
1663 }
1664
1665 static dsl_dir_t *
closest_common_ancestor(dsl_dir_t * ds1,dsl_dir_t * ds2)1666 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1667 {
1668 for (; ds1; ds1 = ds1->dd_parent) {
1669 dsl_dir_t *dd;
1670 for (dd = ds2; dd; dd = dd->dd_parent) {
1671 if (ds1 == dd)
1672 return (dd);
1673 }
1674 }
1675 return (NULL);
1676 }
1677
1678 /*
1679 * If delta is applied to dd, how much of that delta would be applied to
1680 * ancestor? Syncing context only.
1681 */
1682 static int64_t
would_change(dsl_dir_t * dd,int64_t delta,dsl_dir_t * ancestor)1683 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1684 {
1685 if (dd == ancestor)
1686 return (delta);
1687
1688 mutex_enter(&dd->dd_lock);
1689 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1690 mutex_exit(&dd->dd_lock);
1691 return (would_change(dd->dd_parent, delta, ancestor));
1692 }
1693
1694 typedef struct dsl_dir_rename_arg {
1695 const char *ddra_oldname;
1696 const char *ddra_newname;
1697 cred_t *ddra_cred;
1698 } dsl_dir_rename_arg_t;
1699
1700 /* ARGSUSED */
1701 static int
dsl_valid_rename(dsl_pool_t * dp,dsl_dataset_t * ds,void * arg)1702 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1703 {
1704 int *deltap = arg;
1705 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1706
1707 dsl_dataset_name(ds, namebuf);
1708
1709 if (strlen(namebuf) + *deltap >= ZFS_MAX_DATASET_NAME_LEN)
1710 return (SET_ERROR(ENAMETOOLONG));
1711 return (0);
1712 }
1713
1714 static int
dsl_dir_rename_check(void * arg,dmu_tx_t * tx)1715 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1716 {
1717 dsl_dir_rename_arg_t *ddra = arg;
1718 dsl_pool_t *dp = dmu_tx_pool(tx);
1719 dsl_dir_t *dd, *newparent;
1720 const char *mynewname;
1721 int error;
1722 int delta = strlen(ddra->ddra_newname) - strlen(ddra->ddra_oldname);
1723
1724 /* target dir should exist */
1725 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1726 if (error != 0)
1727 return (error);
1728
1729 /* new parent should exist */
1730 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1731 &newparent, &mynewname);
1732 if (error != 0) {
1733 dsl_dir_rele(dd, FTAG);
1734 return (error);
1735 }
1736
1737 /* can't rename to different pool */
1738 if (dd->dd_pool != newparent->dd_pool) {
1739 dsl_dir_rele(newparent, FTAG);
1740 dsl_dir_rele(dd, FTAG);
1741 return (SET_ERROR(ENXIO));
1742 }
1743
1744 /* new name should not already exist */
1745 if (mynewname == NULL) {
1746 dsl_dir_rele(newparent, FTAG);
1747 dsl_dir_rele(dd, FTAG);
1748 return (SET_ERROR(EEXIST));
1749 }
1750
1751 /* if the name length is growing, validate child name lengths */
1752 if (delta > 0) {
1753 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
1754 &delta, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1755 if (error != 0) {
1756 dsl_dir_rele(newparent, FTAG);
1757 dsl_dir_rele(dd, FTAG);
1758 return (error);
1759 }
1760 }
1761
1762 if (dmu_tx_is_syncing(tx)) {
1763 if (spa_feature_is_active(dp->dp_spa,
1764 SPA_FEATURE_FS_SS_LIMIT)) {
1765 /*
1766 * Although this is the check function and we don't
1767 * normally make on-disk changes in check functions,
1768 * we need to do that here.
1769 *
1770 * Ensure this portion of the tree's counts have been
1771 * initialized in case the new parent has limits set.
1772 */
1773 dsl_dir_init_fs_ss_count(dd, tx);
1774 }
1775 }
1776
1777 if (newparent != dd->dd_parent) {
1778 /* is there enough space? */
1779 uint64_t myspace =
1780 MAX(dsl_dir_phys(dd)->dd_used_bytes,
1781 dsl_dir_phys(dd)->dd_reserved);
1782 objset_t *os = dd->dd_pool->dp_meta_objset;
1783 uint64_t fs_cnt = 0;
1784 uint64_t ss_cnt = 0;
1785
1786 if (dsl_dir_is_zapified(dd)) {
1787 int err;
1788
1789 err = zap_lookup(os, dd->dd_object,
1790 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1791 &fs_cnt);
1792 if (err != ENOENT && err != 0) {
1793 dsl_dir_rele(newparent, FTAG);
1794 dsl_dir_rele(dd, FTAG);
1795 return (err);
1796 }
1797
1798 /*
1799 * have to add 1 for the filesystem itself that we're
1800 * moving
1801 */
1802 fs_cnt++;
1803
1804 err = zap_lookup(os, dd->dd_object,
1805 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1806 &ss_cnt);
1807 if (err != ENOENT && err != 0) {
1808 dsl_dir_rele(newparent, FTAG);
1809 dsl_dir_rele(dd, FTAG);
1810 return (err);
1811 }
1812 }
1813
1814 /* no rename into our descendant */
1815 if (closest_common_ancestor(dd, newparent) == dd) {
1816 dsl_dir_rele(newparent, FTAG);
1817 dsl_dir_rele(dd, FTAG);
1818 return (SET_ERROR(EINVAL));
1819 }
1820
1821 error = dsl_dir_transfer_possible(dd->dd_parent,
1822 newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
1823 if (error != 0) {
1824 dsl_dir_rele(newparent, FTAG);
1825 dsl_dir_rele(dd, FTAG);
1826 return (error);
1827 }
1828 }
1829
1830 dsl_dir_rele(newparent, FTAG);
1831 dsl_dir_rele(dd, FTAG);
1832 return (0);
1833 }
1834
1835 static void
dsl_dir_rename_sync(void * arg,dmu_tx_t * tx)1836 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
1837 {
1838 dsl_dir_rename_arg_t *ddra = arg;
1839 dsl_pool_t *dp = dmu_tx_pool(tx);
1840 dsl_dir_t *dd, *newparent;
1841 const char *mynewname;
1842 int error;
1843 objset_t *mos = dp->dp_meta_objset;
1844
1845 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
1846 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
1847 &mynewname));
1848
1849 /* Log this before we change the name. */
1850 spa_history_log_internal_dd(dd, "rename", tx,
1851 "-> %s", ddra->ddra_newname);
1852
1853 if (newparent != dd->dd_parent) {
1854 objset_t *os = dd->dd_pool->dp_meta_objset;
1855 uint64_t fs_cnt = 0;
1856 uint64_t ss_cnt = 0;
1857
1858 /*
1859 * We already made sure the dd counts were initialized in the
1860 * check function.
1861 */
1862 if (spa_feature_is_active(dp->dp_spa,
1863 SPA_FEATURE_FS_SS_LIMIT)) {
1864 VERIFY0(zap_lookup(os, dd->dd_object,
1865 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
1866 &fs_cnt));
1867 /* add 1 for the filesystem itself that we're moving */
1868 fs_cnt++;
1869
1870 VERIFY0(zap_lookup(os, dd->dd_object,
1871 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
1872 &ss_cnt));
1873 }
1874
1875 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
1876 DD_FIELD_FILESYSTEM_COUNT, tx);
1877 dsl_fs_ss_count_adjust(newparent, fs_cnt,
1878 DD_FIELD_FILESYSTEM_COUNT, tx);
1879
1880 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
1881 DD_FIELD_SNAPSHOT_COUNT, tx);
1882 dsl_fs_ss_count_adjust(newparent, ss_cnt,
1883 DD_FIELD_SNAPSHOT_COUNT, tx);
1884
1885 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
1886 -dsl_dir_phys(dd)->dd_used_bytes,
1887 -dsl_dir_phys(dd)->dd_compressed_bytes,
1888 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1889 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
1890 dsl_dir_phys(dd)->dd_used_bytes,
1891 dsl_dir_phys(dd)->dd_compressed_bytes,
1892 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
1893
1894 if (dsl_dir_phys(dd)->dd_reserved >
1895 dsl_dir_phys(dd)->dd_used_bytes) {
1896 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
1897 dsl_dir_phys(dd)->dd_used_bytes;
1898
1899 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1900 -unused_rsrv, 0, 0, tx);
1901 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
1902 unused_rsrv, 0, 0, tx);
1903 }
1904 }
1905
1906 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1907
1908 /* remove from old parent zapobj */
1909 error = zap_remove(mos,
1910 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
1911 dd->dd_myname, tx);
1912 ASSERT0(error);
1913
1914 (void) strcpy(dd->dd_myname, mynewname);
1915 dsl_dir_rele(dd->dd_parent, dd);
1916 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
1917 VERIFY0(dsl_dir_hold_obj(dp,
1918 newparent->dd_object, NULL, dd, &dd->dd_parent));
1919
1920 /* add to new parent zapobj */
1921 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
1922 dd->dd_myname, 8, 1, &dd->dd_object, tx));
1923
1924 dsl_prop_notify_all(dd);
1925
1926 dsl_dir_rele(newparent, FTAG);
1927 dsl_dir_rele(dd, FTAG);
1928 }
1929
1930 int
dsl_dir_rename(const char * oldname,const char * newname)1931 dsl_dir_rename(const char *oldname, const char *newname)
1932 {
1933 dsl_dir_rename_arg_t ddra;
1934
1935 ddra.ddra_oldname = oldname;
1936 ddra.ddra_newname = newname;
1937 ddra.ddra_cred = CRED();
1938
1939 return (dsl_sync_task(oldname,
1940 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
1941 3, ZFS_SPACE_CHECK_RESERVED));
1942 }
1943
1944 int
dsl_dir_transfer_possible(dsl_dir_t * sdd,dsl_dir_t * tdd,uint64_t fs_cnt,uint64_t ss_cnt,uint64_t space,cred_t * cr)1945 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
1946 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space, cred_t *cr)
1947 {
1948 dsl_dir_t *ancestor;
1949 int64_t adelta;
1950 uint64_t avail;
1951 int err;
1952
1953 ancestor = closest_common_ancestor(sdd, tdd);
1954 adelta = would_change(sdd, -space, ancestor);
1955 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
1956 if (avail < space)
1957 return (SET_ERROR(ENOSPC));
1958
1959 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
1960 ancestor, cr);
1961 if (err != 0)
1962 return (err);
1963 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
1964 ancestor, cr);
1965 if (err != 0)
1966 return (err);
1967
1968 return (0);
1969 }
1970
1971 timestruc_t
dsl_dir_snap_cmtime(dsl_dir_t * dd)1972 dsl_dir_snap_cmtime(dsl_dir_t *dd)
1973 {
1974 timestruc_t t;
1975
1976 mutex_enter(&dd->dd_lock);
1977 t = dd->dd_snap_cmtime;
1978 mutex_exit(&dd->dd_lock);
1979
1980 return (t);
1981 }
1982
1983 void
dsl_dir_snap_cmtime_update(dsl_dir_t * dd)1984 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
1985 {
1986 timestruc_t t;
1987
1988 gethrestime(&t);
1989 mutex_enter(&dd->dd_lock);
1990 dd->dd_snap_cmtime = t;
1991 mutex_exit(&dd->dd_lock);
1992 }
1993
1994 void
dsl_dir_zapify(dsl_dir_t * dd,dmu_tx_t * tx)1995 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
1996 {
1997 objset_t *mos = dd->dd_pool->dp_meta_objset;
1998 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
1999 }
2000
2001 boolean_t
dsl_dir_is_zapified(dsl_dir_t * dd)2002 dsl_dir_is_zapified(dsl_dir_t *dd)
2003 {
2004 dmu_object_info_t doi;
2005
2006 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2007 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2008 }
2009