1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
32
33 /*
34 * Deadlist concurrency:
35 *
36 * Deadlists can only be modified from the syncing thread.
37 *
38 * Except for dsl_deadlist_insert(), it can only be modified with the
39 * dp_config_rwlock held with RW_WRITER.
40 *
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, from open context, with the dl_config_rwlock held
43 * with RW_READER.
44 *
45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 * dl_phys->dl_used,comp,uncomp
48 * and protecting the dl_tree from being loaded.
49 * The locking is provided by dl_lock. Note that locking on the bpobj_t
50 * provides its own locking, and dl_oldfmt is immutable.
51 */
52
53 /*
54 * Livelist Overview
55 * ================
56 *
57 * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58 * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59 * to clones and track the blkptrs that are clone-specific (were born after
60 * the clone's creation). The exception is embedded block pointers which are
61 * not included in livelists because they do not need to be freed.
62 *
63 * When it comes time to delete the clone, the livelist provides a quick
64 * reference as to what needs to be freed. For this reason, livelists also track
65 * when clone-specific blkptrs are freed before deletion to prevent double
66 * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67 * deletion algorithm iterates backwards over the livelist, matching
68 * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69 * are also updated in the case when blkptrs are remapped: the old version
70 * of the blkptr is cancelled out with a FREE and the new version is tracked
71 * with an ALLOC.
72 *
73 * To bound the amount of memory required for deletion, livelists over a
74 * certain size are spread over multiple entries. Entries are grouped by
75 * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76 * be in the same entry. This allows us to delete livelists incrementally
77 * over multiple syncs, one entry at a time.
78 *
79 * During the lifetime of the clone, livelists can get extremely large.
80 * Their size is managed by periodic condensing (preemptively cancelling out
81 * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82 * the shared space between the clone and its origin is so small that it
83 * doesn't make sense to use livelists anymore.
84 */
85
86 /*
87 * The threshold sublist size at which we create a new sub-livelist for the
88 * next txg. However, since blkptrs of the same transaction group must be in
89 * the same sub-list, the actual sublist size may exceed this. When picking the
90 * size we had to balance the fact that larger sublists mean fewer sublists
91 * (decreasing the cost of insertion) against the consideration that sublists
92 * will be loaded into memory and shouldn't take up an inordinate amount of
93 * space. We settled on ~500000 entries, corresponding to roughly 128M.
94 */
95 uint64_t zfs_livelist_max_entries = 500000;
96
97 /*
98 * We can approximate how much of a performance gain a livelist will give us
99 * based on the percentage of blocks shared between the clone and its origin.
100 * 0 percent shared means that the clone has completely diverged and that the
101 * old method is maximally effective: every read from the block tree will
102 * result in lots of frees. Livelists give us gains when they track blocks
103 * scattered across the tree, when one read in the old method might only
104 * result in a few frees. Once the clone has been overwritten enough,
105 * writes are no longer sparse and we'll no longer get much of a benefit from
106 * tracking them with a livelist. We chose a lower limit of 75 percent shared
107 * (25 percent overwritten). This means that 1/4 of all block pointers will be
108 * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109 * to make deletion 4x faster. Once the amount of shared space drops below this
110 * threshold, the clone will revert to the old deletion method.
111 */
112 int zfs_livelist_min_percent_shared = 75;
113
114 static int
dsl_deadlist_compare(const void * arg1,const void * arg2)115 dsl_deadlist_compare(const void *arg1, const void *arg2)
116 {
117 const dsl_deadlist_entry_t *dle1 = arg1;
118 const dsl_deadlist_entry_t *dle2 = arg2;
119
120 return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
121 }
122
123 static int
dsl_deadlist_cache_compare(const void * arg1,const void * arg2)124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
125 {
126 const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 const dsl_deadlist_cache_entry_t *dlce2 = arg2;
128
129 return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
130 }
131
132 static void
dsl_deadlist_load_tree(dsl_deadlist_t * dl)133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
134 {
135 zap_cursor_t zc;
136 zap_attribute_t *za;
137 int error;
138
139 ASSERT(MUTEX_HELD(&dl->dl_lock));
140
141 ASSERT(!dl->dl_oldfmt);
142 if (dl->dl_havecache) {
143 /*
144 * After loading the tree, the caller may modify the tree,
145 * e.g. to add or remove nodes, or to make a node no longer
146 * refer to the empty_bpobj. These changes would make the
147 * dl_cache incorrect. Therefore we discard the cache here,
148 * so that it can't become incorrect.
149 */
150 dsl_deadlist_cache_entry_t *dlce;
151 void *cookie = NULL;
152 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 != NULL) {
154 kmem_free(dlce, sizeof (*dlce));
155 }
156 avl_destroy(&dl->dl_cache);
157 dl->dl_havecache = B_FALSE;
158 }
159 if (dl->dl_havetree)
160 return;
161
162 za = zap_attribute_alloc();
163 avl_create(&dl->dl_tree, dsl_deadlist_compare,
164 sizeof (dsl_deadlist_entry_t),
165 offsetof(dsl_deadlist_entry_t, dle_node));
166 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
167 (error = zap_cursor_retrieve(&zc, za)) == 0;
168 zap_cursor_advance(&zc)) {
169 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
170 dle->dle_mintxg = zfs_strtonum(za->za_name, NULL);
171
172 /*
173 * Prefetch all the bpobj's so that we do that i/o
174 * in parallel. Then open them all in a second pass.
175 */
176 dle->dle_bpobj.bpo_object = za->za_first_integer;
177 dmu_prefetch_dnode(dl->dl_os, dle->dle_bpobj.bpo_object,
178 ZIO_PRIORITY_SYNC_READ);
179
180 avl_add(&dl->dl_tree, dle);
181 }
182 VERIFY3U(error, ==, ENOENT);
183 zap_cursor_fini(&zc);
184 zap_attribute_free(za);
185
186 for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
187 dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
188 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
189 dle->dle_bpobj.bpo_object));
190 }
191 dl->dl_havetree = B_TRUE;
192 }
193
194 /*
195 * Load only the non-empty bpobj's into the dl_cache. The cache is an analog
196 * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
197 * is used only for gathering space statistics. The dl_cache has two
198 * advantages over the dl_tree:
199 *
200 * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
201 * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
202 * many times and to inquire about its (zero) space stats many times.
203 *
204 * 2. The dl_cache uses less memory than the dl_tree. We only need to load
205 * the dl_tree of snapshots when deleting a snapshot, after which we free the
206 * dl_tree with dsl_deadlist_discard_tree
207 */
208 static void
dsl_deadlist_load_cache(dsl_deadlist_t * dl)209 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
210 {
211 zap_cursor_t zc;
212 zap_attribute_t *za;
213 int error;
214
215 ASSERT(MUTEX_HELD(&dl->dl_lock));
216
217 ASSERT(!dl->dl_oldfmt);
218 if (dl->dl_havecache)
219 return;
220
221 uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
222
223 avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
224 sizeof (dsl_deadlist_cache_entry_t),
225 offsetof(dsl_deadlist_cache_entry_t, dlce_node));
226 za = zap_attribute_alloc();
227 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
228 (error = zap_cursor_retrieve(&zc, za)) == 0;
229 zap_cursor_advance(&zc)) {
230 if (za->za_first_integer == empty_bpobj)
231 continue;
232 dsl_deadlist_cache_entry_t *dlce =
233 kmem_zalloc(sizeof (*dlce), KM_SLEEP);
234 dlce->dlce_mintxg = zfs_strtonum(za->za_name, NULL);
235
236 /*
237 * Prefetch all the bpobj's so that we do that i/o
238 * in parallel. Then open them all in a second pass.
239 */
240 dlce->dlce_bpobj = za->za_first_integer;
241 dmu_prefetch_dnode(dl->dl_os, dlce->dlce_bpobj,
242 ZIO_PRIORITY_SYNC_READ);
243 avl_add(&dl->dl_cache, dlce);
244 }
245 VERIFY3U(error, ==, ENOENT);
246 zap_cursor_fini(&zc);
247 zap_attribute_free(za);
248
249 for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
250 dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
251 bpobj_t bpo;
252 VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
253
254 VERIFY0(bpobj_space(&bpo,
255 &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
256 bpobj_close(&bpo);
257 }
258 dl->dl_havecache = B_TRUE;
259 }
260
261 /*
262 * Discard the tree to save memory.
263 */
264 void
dsl_deadlist_discard_tree(dsl_deadlist_t * dl)265 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
266 {
267 mutex_enter(&dl->dl_lock);
268
269 if (!dl->dl_havetree) {
270 mutex_exit(&dl->dl_lock);
271 return;
272 }
273 dsl_deadlist_entry_t *dle;
274 void *cookie = NULL;
275 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
276 bpobj_close(&dle->dle_bpobj);
277 kmem_free(dle, sizeof (*dle));
278 }
279 avl_destroy(&dl->dl_tree);
280
281 dl->dl_havetree = B_FALSE;
282 mutex_exit(&dl->dl_lock);
283 }
284
285 void
dsl_deadlist_iterate(dsl_deadlist_t * dl,deadlist_iter_t func,void * args)286 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
287 {
288 dsl_deadlist_entry_t *dle;
289
290 ASSERT(dsl_deadlist_is_open(dl));
291
292 mutex_enter(&dl->dl_lock);
293 dsl_deadlist_load_tree(dl);
294 mutex_exit(&dl->dl_lock);
295 for (dle = avl_first(&dl->dl_tree); dle != NULL;
296 dle = AVL_NEXT(&dl->dl_tree, dle)) {
297 if (func(args, dle) != 0)
298 break;
299 }
300 }
301
302 void
dsl_deadlist_open(dsl_deadlist_t * dl,objset_t * os,uint64_t object)303 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
304 {
305 dmu_object_info_t doi;
306
307 ASSERT(!dsl_deadlist_is_open(dl));
308
309 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
310 dl->dl_os = os;
311 dl->dl_object = object;
312 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
313 dmu_object_info_from_db(dl->dl_dbuf, &doi);
314 if (doi.doi_type == DMU_OT_BPOBJ) {
315 dmu_buf_rele(dl->dl_dbuf, dl);
316 dl->dl_dbuf = NULL;
317 dl->dl_oldfmt = B_TRUE;
318 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
319 return;
320 }
321
322 dl->dl_oldfmt = B_FALSE;
323 dl->dl_phys = dl->dl_dbuf->db_data;
324 dl->dl_havetree = B_FALSE;
325 dl->dl_havecache = B_FALSE;
326 }
327
328 boolean_t
dsl_deadlist_is_open(dsl_deadlist_t * dl)329 dsl_deadlist_is_open(dsl_deadlist_t *dl)
330 {
331 return (dl->dl_os != NULL);
332 }
333
334 void
dsl_deadlist_close(dsl_deadlist_t * dl)335 dsl_deadlist_close(dsl_deadlist_t *dl)
336 {
337 ASSERT(dsl_deadlist_is_open(dl));
338 mutex_destroy(&dl->dl_lock);
339
340 if (dl->dl_oldfmt) {
341 dl->dl_oldfmt = B_FALSE;
342 bpobj_close(&dl->dl_bpobj);
343 dl->dl_os = NULL;
344 dl->dl_object = 0;
345 return;
346 }
347
348 if (dl->dl_havetree) {
349 dsl_deadlist_entry_t *dle;
350 void *cookie = NULL;
351 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
352 != NULL) {
353 bpobj_close(&dle->dle_bpobj);
354 kmem_free(dle, sizeof (*dle));
355 }
356 avl_destroy(&dl->dl_tree);
357 }
358 if (dl->dl_havecache) {
359 dsl_deadlist_cache_entry_t *dlce;
360 void *cookie = NULL;
361 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
362 != NULL) {
363 kmem_free(dlce, sizeof (*dlce));
364 }
365 avl_destroy(&dl->dl_cache);
366 }
367 dmu_buf_rele(dl->dl_dbuf, dl);
368 dl->dl_dbuf = NULL;
369 dl->dl_phys = NULL;
370 dl->dl_os = NULL;
371 dl->dl_object = 0;
372 }
373
374 uint64_t
dsl_deadlist_alloc(objset_t * os,dmu_tx_t * tx)375 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
376 {
377 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
378 return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
379 return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
380 sizeof (dsl_deadlist_phys_t), tx));
381 }
382
383 void
dsl_deadlist_free(objset_t * os,uint64_t dlobj,dmu_tx_t * tx)384 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
385 {
386 dmu_object_info_t doi;
387 zap_cursor_t zc;
388 zap_attribute_t *za;
389 int error;
390
391 VERIFY0(dmu_object_info(os, dlobj, &doi));
392 if (doi.doi_type == DMU_OT_BPOBJ) {
393 bpobj_free(os, dlobj, tx);
394 return;
395 }
396
397 za = zap_attribute_alloc();
398 for (zap_cursor_init(&zc, os, dlobj);
399 (error = zap_cursor_retrieve(&zc, za)) == 0;
400 zap_cursor_advance(&zc)) {
401 uint64_t obj = za->za_first_integer;
402 if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
403 bpobj_decr_empty(os, tx);
404 else
405 bpobj_free(os, obj, tx);
406 }
407 VERIFY3U(error, ==, ENOENT);
408 zap_cursor_fini(&zc);
409 zap_attribute_free(za);
410 VERIFY0(dmu_object_free(os, dlobj, tx));
411 }
412
413 static void
dle_enqueue(dsl_deadlist_t * dl,dsl_deadlist_entry_t * dle,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)414 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
415 const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
416 {
417 ASSERT(MUTEX_HELD(&dl->dl_lock));
418 if (dle->dle_bpobj.bpo_object ==
419 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
420 uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
421 bpobj_close(&dle->dle_bpobj);
422 bpobj_decr_empty(dl->dl_os, tx);
423 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
424 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
425 dle->dle_mintxg, obj, tx));
426 }
427 bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
428 }
429
430 static void
dle_enqueue_subobj(dsl_deadlist_t * dl,dsl_deadlist_entry_t * dle,uint64_t obj,dmu_tx_t * tx)431 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
432 uint64_t obj, dmu_tx_t *tx)
433 {
434 ASSERT(MUTEX_HELD(&dl->dl_lock));
435 if (dle->dle_bpobj.bpo_object !=
436 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
437 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
438 } else {
439 bpobj_close(&dle->dle_bpobj);
440 bpobj_decr_empty(dl->dl_os, tx);
441 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
442 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
443 dle->dle_mintxg, obj, tx));
444 }
445 }
446
447 /*
448 * Prefetch metadata required for dle_enqueue_subobj().
449 */
450 static void
dle_prefetch_subobj(dsl_deadlist_t * dl,dsl_deadlist_entry_t * dle,uint64_t obj)451 dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
452 uint64_t obj)
453 {
454 if (dle->dle_bpobj.bpo_object !=
455 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
456 bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
457 }
458
459 void
dsl_deadlist_insert(dsl_deadlist_t * dl,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)460 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
461 dmu_tx_t *tx)
462 {
463 dsl_deadlist_entry_t dle_tofind;
464 dsl_deadlist_entry_t *dle;
465 avl_index_t where;
466
467 if (dl->dl_oldfmt) {
468 bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
469 return;
470 }
471
472 mutex_enter(&dl->dl_lock);
473 dsl_deadlist_load_tree(dl);
474
475 dmu_buf_will_dirty(dl->dl_dbuf, tx);
476
477 int sign = bp_freed ? -1 : +1;
478 dl->dl_phys->dl_used +=
479 sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
480 dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
481 dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
482
483 dle_tofind.dle_mintxg = BP_GET_LOGICAL_BIRTH(bp);
484 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
485 if (dle == NULL)
486 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
487 else
488 dle = AVL_PREV(&dl->dl_tree, dle);
489
490 if (dle == NULL) {
491 zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
492 bp, (longlong_t)BP_GET_LOGICAL_BIRTH(bp));
493 dle = avl_first(&dl->dl_tree);
494 }
495
496 ASSERT3P(dle, !=, NULL);
497 dle_enqueue(dl, dle, bp, bp_freed, tx);
498 mutex_exit(&dl->dl_lock);
499 }
500
501 int
dsl_deadlist_insert_alloc_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)502 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
503 {
504 dsl_deadlist_t *dl = arg;
505 dsl_deadlist_insert(dl, bp, B_FALSE, tx);
506 return (0);
507 }
508
509 int
dsl_deadlist_insert_free_cb(void * arg,const blkptr_t * bp,dmu_tx_t * tx)510 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
511 {
512 dsl_deadlist_t *dl = arg;
513 dsl_deadlist_insert(dl, bp, B_TRUE, tx);
514 return (0);
515 }
516
517 /*
518 * Insert new key in deadlist, which must be > all current entries.
519 * mintxg is not inclusive.
520 */
521 void
dsl_deadlist_add_key(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)522 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
523 {
524 uint64_t obj;
525 dsl_deadlist_entry_t *dle;
526
527 if (dl->dl_oldfmt)
528 return;
529
530 dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
531 dle->dle_mintxg = mintxg;
532
533 mutex_enter(&dl->dl_lock);
534 dsl_deadlist_load_tree(dl);
535
536 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
537 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
538 avl_add(&dl->dl_tree, dle);
539
540 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
541 mintxg, obj, tx));
542 mutex_exit(&dl->dl_lock);
543 }
544
545 /*
546 * Remove this key, merging its entries into the previous key.
547 */
548 void
dsl_deadlist_remove_key(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)549 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
550 {
551 dsl_deadlist_entry_t dle_tofind;
552 dsl_deadlist_entry_t *dle, *dle_prev;
553
554 if (dl->dl_oldfmt)
555 return;
556 mutex_enter(&dl->dl_lock);
557 dsl_deadlist_load_tree(dl);
558
559 dle_tofind.dle_mintxg = mintxg;
560 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
561 ASSERT3P(dle, !=, NULL);
562 dle_prev = AVL_PREV(&dl->dl_tree, dle);
563 ASSERT3P(dle_prev, !=, NULL);
564
565 dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
566
567 avl_remove(&dl->dl_tree, dle);
568 bpobj_close(&dle->dle_bpobj);
569 kmem_free(dle, sizeof (*dle));
570
571 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
572 mutex_exit(&dl->dl_lock);
573 }
574
575 /*
576 * Remove a deadlist entry and all of its contents by removing the entry from
577 * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
578 * deadlist's space accounting accordingly.
579 */
580 void
dsl_deadlist_remove_entry(dsl_deadlist_t * dl,uint64_t mintxg,dmu_tx_t * tx)581 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
582 {
583 uint64_t used, comp, uncomp;
584 dsl_deadlist_entry_t dle_tofind;
585 dsl_deadlist_entry_t *dle;
586 objset_t *os = dl->dl_os;
587
588 if (dl->dl_oldfmt)
589 return;
590
591 mutex_enter(&dl->dl_lock);
592 dsl_deadlist_load_tree(dl);
593
594 dle_tofind.dle_mintxg = mintxg;
595 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
596 VERIFY3P(dle, !=, NULL);
597
598 avl_remove(&dl->dl_tree, dle);
599 VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
600 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
601 dmu_buf_will_dirty(dl->dl_dbuf, tx);
602 dl->dl_phys->dl_used -= used;
603 dl->dl_phys->dl_comp -= comp;
604 dl->dl_phys->dl_uncomp -= uncomp;
605 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
606 bpobj_decr_empty(os, tx);
607 } else {
608 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
609 }
610 bpobj_close(&dle->dle_bpobj);
611 kmem_free(dle, sizeof (*dle));
612 mutex_exit(&dl->dl_lock);
613 }
614
615 /*
616 * Clear out the contents of a deadlist_entry by freeing its bpobj,
617 * replacing it with an empty bpobj and adjusting the deadlist's
618 * space accounting
619 */
620 void
dsl_deadlist_clear_entry(dsl_deadlist_entry_t * dle,dsl_deadlist_t * dl,dmu_tx_t * tx)621 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
622 dmu_tx_t *tx)
623 {
624 uint64_t new_obj, used, comp, uncomp;
625 objset_t *os = dl->dl_os;
626
627 mutex_enter(&dl->dl_lock);
628 VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
629 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
630 dmu_buf_will_dirty(dl->dl_dbuf, tx);
631 dl->dl_phys->dl_used -= used;
632 dl->dl_phys->dl_comp -= comp;
633 dl->dl_phys->dl_uncomp -= uncomp;
634 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
635 bpobj_decr_empty(os, tx);
636 else
637 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
638 bpobj_close(&dle->dle_bpobj);
639 new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
640 VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
641 VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
642 new_obj, tx));
643 ASSERT(bpobj_is_empty(&dle->dle_bpobj));
644 mutex_exit(&dl->dl_lock);
645 }
646
647 /*
648 * Return the first entry in deadlist's avl tree
649 */
650 dsl_deadlist_entry_t *
dsl_deadlist_first(dsl_deadlist_t * dl)651 dsl_deadlist_first(dsl_deadlist_t *dl)
652 {
653 dsl_deadlist_entry_t *dle;
654
655 mutex_enter(&dl->dl_lock);
656 dsl_deadlist_load_tree(dl);
657 dle = avl_first(&dl->dl_tree);
658 mutex_exit(&dl->dl_lock);
659
660 return (dle);
661 }
662
663 /*
664 * Return the last entry in deadlist's avl tree
665 */
666 dsl_deadlist_entry_t *
dsl_deadlist_last(dsl_deadlist_t * dl)667 dsl_deadlist_last(dsl_deadlist_t *dl)
668 {
669 dsl_deadlist_entry_t *dle;
670
671 mutex_enter(&dl->dl_lock);
672 dsl_deadlist_load_tree(dl);
673 dle = avl_last(&dl->dl_tree);
674 mutex_exit(&dl->dl_lock);
675
676 return (dle);
677 }
678
679 /*
680 * Walk ds's snapshots to regenerate generate ZAP & AVL.
681 */
682 static void
dsl_deadlist_regenerate(objset_t * os,uint64_t dlobj,uint64_t mrs_obj,dmu_tx_t * tx)683 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
684 uint64_t mrs_obj, dmu_tx_t *tx)
685 {
686 dsl_deadlist_t dl = { 0 };
687 dsl_pool_t *dp = dmu_objset_pool(os);
688
689 dsl_deadlist_open(&dl, os, dlobj);
690 if (dl.dl_oldfmt) {
691 dsl_deadlist_close(&dl);
692 return;
693 }
694
695 while (mrs_obj != 0) {
696 dsl_dataset_t *ds;
697 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
698 dsl_deadlist_add_key(&dl,
699 dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
700 mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
701 dsl_dataset_rele(ds, FTAG);
702 }
703 dsl_deadlist_close(&dl);
704 }
705
706 uint64_t
dsl_deadlist_clone(dsl_deadlist_t * dl,uint64_t maxtxg,uint64_t mrs_obj,dmu_tx_t * tx)707 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
708 uint64_t mrs_obj, dmu_tx_t *tx)
709 {
710 dsl_deadlist_entry_t *dle;
711 uint64_t newobj;
712
713 newobj = dsl_deadlist_alloc(dl->dl_os, tx);
714
715 if (dl->dl_oldfmt) {
716 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
717 return (newobj);
718 }
719
720 mutex_enter(&dl->dl_lock);
721 dsl_deadlist_load_tree(dl);
722
723 for (dle = avl_first(&dl->dl_tree); dle;
724 dle = AVL_NEXT(&dl->dl_tree, dle)) {
725 uint64_t obj;
726
727 if (dle->dle_mintxg >= maxtxg)
728 break;
729
730 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
731 VERIFY0(zap_add_int_key(dl->dl_os, newobj,
732 dle->dle_mintxg, obj, tx));
733 }
734 mutex_exit(&dl->dl_lock);
735 return (newobj);
736 }
737
738 void
dsl_deadlist_space(dsl_deadlist_t * dl,uint64_t * usedp,uint64_t * compp,uint64_t * uncompp)739 dsl_deadlist_space(dsl_deadlist_t *dl,
740 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
741 {
742 ASSERT(dsl_deadlist_is_open(dl));
743 if (dl->dl_oldfmt) {
744 VERIFY0(bpobj_space(&dl->dl_bpobj,
745 usedp, compp, uncompp));
746 return;
747 }
748
749 mutex_enter(&dl->dl_lock);
750 *usedp = dl->dl_phys->dl_used;
751 *compp = dl->dl_phys->dl_comp;
752 *uncompp = dl->dl_phys->dl_uncomp;
753 mutex_exit(&dl->dl_lock);
754 }
755
756 /*
757 * return space used in the range (mintxg, maxtxg].
758 * Includes maxtxg, does not include mintxg.
759 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
760 * UINT64_MAX).
761 */
762 void
dsl_deadlist_space_range(dsl_deadlist_t * dl,uint64_t mintxg,uint64_t maxtxg,uint64_t * usedp,uint64_t * compp,uint64_t * uncompp)763 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
764 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
765 {
766 dsl_deadlist_cache_entry_t *dlce;
767 dsl_deadlist_cache_entry_t dlce_tofind;
768 avl_index_t where;
769
770 if (dl->dl_oldfmt) {
771 VERIFY0(bpobj_space_range(&dl->dl_bpobj,
772 mintxg, maxtxg, usedp, compp, uncompp));
773 return;
774 }
775
776 *usedp = *compp = *uncompp = 0;
777
778 mutex_enter(&dl->dl_lock);
779 dsl_deadlist_load_cache(dl);
780 dlce_tofind.dlce_mintxg = mintxg;
781 dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
782
783 /*
784 * If this mintxg doesn't exist, it may be an empty_bpobj which
785 * is omitted from the sparse tree. Start at the next non-empty
786 * entry.
787 */
788 if (dlce == NULL)
789 dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
790
791 for (; dlce && dlce->dlce_mintxg < maxtxg;
792 dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
793 *usedp += dlce->dlce_bytes;
794 *compp += dlce->dlce_comp;
795 *uncompp += dlce->dlce_uncomp;
796 }
797
798 mutex_exit(&dl->dl_lock);
799 }
800
801 static void
dsl_deadlist_insert_bpobj(dsl_deadlist_t * dl,uint64_t obj,uint64_t birth,dmu_tx_t * tx)802 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
803 dmu_tx_t *tx)
804 {
805 dsl_deadlist_entry_t dle_tofind;
806 dsl_deadlist_entry_t *dle;
807 avl_index_t where;
808 uint64_t used, comp, uncomp;
809 bpobj_t bpo;
810
811 ASSERT(MUTEX_HELD(&dl->dl_lock));
812
813 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
814 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
815 bpobj_close(&bpo);
816
817 dsl_deadlist_load_tree(dl);
818
819 dmu_buf_will_dirty(dl->dl_dbuf, tx);
820 dl->dl_phys->dl_used += used;
821 dl->dl_phys->dl_comp += comp;
822 dl->dl_phys->dl_uncomp += uncomp;
823
824 dle_tofind.dle_mintxg = birth;
825 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
826 if (dle == NULL)
827 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
828 dle_enqueue_subobj(dl, dle, obj, tx);
829 }
830
831 /*
832 * Prefetch metadata required for dsl_deadlist_insert_bpobj().
833 */
834 static void
dsl_deadlist_prefetch_bpobj(dsl_deadlist_t * dl,uint64_t obj,uint64_t birth)835 dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
836 {
837 dsl_deadlist_entry_t dle_tofind;
838 dsl_deadlist_entry_t *dle;
839 avl_index_t where;
840
841 ASSERT(MUTEX_HELD(&dl->dl_lock));
842
843 dsl_deadlist_load_tree(dl);
844
845 dle_tofind.dle_mintxg = birth;
846 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
847 if (dle == NULL)
848 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
849 dle_prefetch_subobj(dl, dle, obj);
850 }
851
852 static int
dsl_deadlist_insert_cb(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)853 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
854 dmu_tx_t *tx)
855 {
856 dsl_deadlist_t *dl = arg;
857 dsl_deadlist_insert(dl, bp, bp_freed, tx);
858 return (0);
859 }
860
861 /*
862 * Merge the deadlist pointed to by 'obj' into dl. obj will be left as
863 * an empty deadlist.
864 */
865 void
dsl_deadlist_merge(dsl_deadlist_t * dl,uint64_t obj,dmu_tx_t * tx)866 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
867 {
868 zap_cursor_t zc, pzc;
869 zap_attribute_t *za, *pza;
870 dmu_buf_t *bonus;
871 dsl_deadlist_phys_t *dlp;
872 dmu_object_info_t doi;
873 int error, perror, i;
874
875 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
876 if (doi.doi_type == DMU_OT_BPOBJ) {
877 bpobj_t bpo;
878 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
879 VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
880 bpobj_close(&bpo);
881 return;
882 }
883
884 za = zap_attribute_alloc();
885 pza = zap_attribute_alloc();
886
887 mutex_enter(&dl->dl_lock);
888 /*
889 * Prefetch up to 128 deadlists first and then more as we progress.
890 * The limit is a balance between ARC use and diminishing returns.
891 */
892 for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
893 (perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
894 zap_cursor_advance(&pzc), i++) {
895 dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
896 zfs_strtonum(pza->za_name, NULL));
897 }
898 for (zap_cursor_init(&zc, dl->dl_os, obj);
899 (error = zap_cursor_retrieve(&zc, za)) == 0;
900 zap_cursor_advance(&zc)) {
901 dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
902 zfs_strtonum(za->za_name, NULL), tx);
903 VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
904 if (perror == 0) {
905 dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
906 zfs_strtonum(pza->za_name, NULL));
907 zap_cursor_advance(&pzc);
908 perror = zap_cursor_retrieve(&pzc, pza);
909 }
910 }
911 VERIFY3U(error, ==, ENOENT);
912 zap_cursor_fini(&zc);
913 zap_cursor_fini(&pzc);
914
915 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
916 dlp = bonus->db_data;
917 dmu_buf_will_dirty(bonus, tx);
918 memset(dlp, 0, sizeof (*dlp));
919 dmu_buf_rele(bonus, FTAG);
920 mutex_exit(&dl->dl_lock);
921
922 zap_attribute_free(za);
923 zap_attribute_free(pza);
924 }
925
926 /*
927 * Remove entries on dl that are born > mintxg, and put them on the bpobj.
928 */
929 void
dsl_deadlist_move_bpobj(dsl_deadlist_t * dl,bpobj_t * bpo,uint64_t mintxg,dmu_tx_t * tx)930 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
931 dmu_tx_t *tx)
932 {
933 dsl_deadlist_entry_t dle_tofind;
934 dsl_deadlist_entry_t *dle, *pdle;
935 avl_index_t where;
936 int i;
937
938 ASSERT(!dl->dl_oldfmt);
939
940 mutex_enter(&dl->dl_lock);
941 dmu_buf_will_dirty(dl->dl_dbuf, tx);
942 dsl_deadlist_load_tree(dl);
943
944 dle_tofind.dle_mintxg = mintxg;
945 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
946 if (dle == NULL)
947 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
948 /*
949 * Prefetch up to 128 deadlists first and then more as we progress.
950 * The limit is a balance between ARC use and diminishing returns.
951 */
952 for (pdle = dle, i = 0; pdle && i < 128; i++) {
953 bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
954 pdle = AVL_NEXT(&dl->dl_tree, pdle);
955 }
956 while (dle) {
957 uint64_t used, comp, uncomp;
958 dsl_deadlist_entry_t *dle_next;
959
960 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
961 if (pdle) {
962 bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
963 pdle = AVL_NEXT(&dl->dl_tree, pdle);
964 }
965
966 VERIFY0(bpobj_space(&dle->dle_bpobj,
967 &used, &comp, &uncomp));
968 ASSERT3U(dl->dl_phys->dl_used, >=, used);
969 ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
970 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
971 dl->dl_phys->dl_used -= used;
972 dl->dl_phys->dl_comp -= comp;
973 dl->dl_phys->dl_uncomp -= uncomp;
974
975 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
976 dle->dle_mintxg, tx));
977
978 dle_next = AVL_NEXT(&dl->dl_tree, dle);
979 avl_remove(&dl->dl_tree, dle);
980 bpobj_close(&dle->dle_bpobj);
981 kmem_free(dle, sizeof (*dle));
982 dle = dle_next;
983 }
984 mutex_exit(&dl->dl_lock);
985 }
986
987 typedef struct livelist_entry {
988 blkptr_t le_bp;
989 uint32_t le_refcnt;
990 avl_node_t le_node;
991 } livelist_entry_t;
992
993 static int
livelist_compare(const void * larg,const void * rarg)994 livelist_compare(const void *larg, const void *rarg)
995 {
996 const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
997 const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
998
999 /* Sort them according to dva[0] */
1000 uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
1001 uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
1002
1003 if (l_dva0_vdev != r_dva0_vdev)
1004 return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
1005
1006 /* if vdevs are equal, sort by offsets. */
1007 uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
1008 uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
1009 return (TREE_CMP(l_dva0_offset, r_dva0_offset));
1010 }
1011
1012 struct livelist_iter_arg {
1013 avl_tree_t *avl;
1014 bplist_t *to_free;
1015 zthr_t *t;
1016 };
1017
1018 /*
1019 * Expects an AVL tree which is incrementally filled will FREE blkptrs
1020 * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
1021 * corresponding FREE are stored in the supplied bplist.
1022 *
1023 * Note that multiple FREE and ALLOC entries for the same blkptr may be
1024 * encountered when dedup or block cloning is involved. For this reason we
1025 * keep a refcount for all the FREE entries of each blkptr and ensure that
1026 * each of those FREE entries has a corresponding ALLOC preceding it.
1027 */
1028 static int
dsl_livelist_iterate(void * arg,const blkptr_t * bp,boolean_t bp_freed,dmu_tx_t * tx)1029 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
1030 dmu_tx_t *tx)
1031 {
1032 struct livelist_iter_arg *lia = arg;
1033 avl_tree_t *avl = lia->avl;
1034 bplist_t *to_free = lia->to_free;
1035 zthr_t *t = lia->t;
1036 ASSERT(tx == NULL);
1037
1038 if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
1039 return (SET_ERROR(EINTR));
1040
1041 livelist_entry_t node;
1042 node.le_bp = *bp;
1043 livelist_entry_t *found = avl_find(avl, &node, NULL);
1044 if (found) {
1045 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(&found->le_bp));
1046 ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1047 BP_GET_CHECKSUM(&found->le_bp));
1048 ASSERT3U(BP_GET_BIRTH(bp), ==, BP_GET_BIRTH(&found->le_bp));
1049 }
1050 if (bp_freed) {
1051 if (found == NULL) {
1052 /* first free entry for this blkptr */
1053 livelist_entry_t *e =
1054 kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
1055 e->le_bp = *bp;
1056 e->le_refcnt = 1;
1057 avl_add(avl, e);
1058 } else {
1059 /*
1060 * Deduped or cloned block free. We could assert D bit
1061 * for dedup, but there is no such one for cloning.
1062 */
1063 ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
1064 found->le_refcnt++;
1065 }
1066 } else {
1067 if (found == NULL) {
1068 /* block is currently marked as allocated */
1069 bplist_append(to_free, bp);
1070 } else {
1071 /* alloc matches a free entry */
1072 ASSERT3U(found->le_refcnt, !=, 0);
1073 found->le_refcnt--;
1074 if (found->le_refcnt == 0) {
1075 /* all tracked free pairs have been matched */
1076 avl_remove(avl, found);
1077 kmem_free(found, sizeof (livelist_entry_t));
1078 }
1079 }
1080 }
1081 return (0);
1082 }
1083
1084 /*
1085 * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1086 * which have an ALLOC entry but no matching FREE
1087 */
1088 int
dsl_process_sub_livelist(bpobj_t * bpobj,bplist_t * to_free,zthr_t * t,uint64_t * size)1089 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1090 uint64_t *size)
1091 {
1092 avl_tree_t avl;
1093 avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1094 offsetof(livelist_entry_t, le_node));
1095
1096 /* process the sublist */
1097 struct livelist_iter_arg arg = {
1098 .avl = &avl,
1099 .to_free = to_free,
1100 .t = t
1101 };
1102 int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1103 VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1104
1105 void *cookie = NULL;
1106 livelist_entry_t *le = NULL;
1107 while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1108 kmem_free(le, sizeof (livelist_entry_t));
1109 }
1110 avl_destroy(&avl);
1111 return (err);
1112 }
1113
1114 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1115 "Size to start the next sub-livelist in a livelist");
1116
1117 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1118 "Threshold at which livelist is disabled");
1119