1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/proto_memory.h>
76 #include <net/inet_common.h>
77 #include <linux/ipsec.h>
78 #include <linux/unaligned.h>
79 #include <linux/errqueue.h>
80 #include <trace/events/tcp.h>
81 #include <linux/jump_label_ratelimit.h>
82 #include <net/busy_poll.h>
83 #include <net/mptcp.h>
84
85 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86
87 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
88 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
89 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
90 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
91 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
92 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
93 #define FLAG_ECE 0x40 /* ECE in this ACK */
94 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
95 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
96 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
97 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
98 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
99 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
100 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
101 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
102 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
103 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105
106 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
107 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
108 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
109 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110
111 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
112 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113
114 #define REXMIT_NONE 0 /* no loss recovery to do */
115 #define REXMIT_LOST 1 /* retransmit packets marked lost */
116 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
117
118 #if IS_ENABLED(CONFIG_TLS_DEVICE)
119 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))121 void clean_acked_data_enable(struct inet_connection_sock *icsk,
122 void (*cad)(struct sock *sk, u32 ack_seq))
123 {
124 icsk->icsk_clean_acked = cad;
125 static_branch_deferred_inc(&clean_acked_data_enabled);
126 }
127 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128
clean_acked_data_disable(struct inet_connection_sock * icsk)129 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 {
131 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
132 icsk->icsk_clean_acked = NULL;
133 }
134 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135
clean_acked_data_flush(void)136 void clean_acked_data_flush(void)
137 {
138 static_key_deferred_flush(&clean_acked_data_enabled);
139 }
140 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #endif
142
143 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)144 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 {
146 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
147 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
149 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
150 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
151 struct bpf_sock_ops_kern sock_ops;
152
153 if (likely(!unknown_opt && !parse_all_opt))
154 return;
155
156 /* The skb will be handled in the
157 * bpf_skops_established() or
158 * bpf_skops_write_hdr_opt().
159 */
160 switch (sk->sk_state) {
161 case TCP_SYN_RECV:
162 case TCP_SYN_SENT:
163 case TCP_LISTEN:
164 return;
165 }
166
167 sock_owned_by_me(sk);
168
169 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
170 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
171 sock_ops.is_fullsock = 1;
172 sock_ops.sk = sk;
173 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174
175 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 }
177
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)178 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 struct sk_buff *skb)
180 {
181 struct bpf_sock_ops_kern sock_ops;
182
183 sock_owned_by_me(sk);
184
185 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
186 sock_ops.op = bpf_op;
187 sock_ops.is_fullsock = 1;
188 sock_ops.sk = sk;
189 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 if (skb)
191 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192
193 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 }
195 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)196 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
197 {
198 }
199
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)200 static void bpf_skops_established(struct sock *sk, int bpf_op,
201 struct sk_buff *skb)
202 {
203 }
204 #endif
205
tcp_gro_dev_warn(const struct sock * sk,const struct sk_buff * skb,unsigned int len)206 static __cold void tcp_gro_dev_warn(const struct sock *sk, const struct sk_buff *skb,
207 unsigned int len)
208 {
209 struct net_device *dev;
210
211 rcu_read_lock();
212 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
213 if (!dev || len >= READ_ONCE(dev->mtu))
214 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
215 dev ? dev->name : "Unknown driver");
216 rcu_read_unlock();
217 }
218
219 /* Adapt the MSS value used to make delayed ack decision to the
220 * real world.
221 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)222 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
223 {
224 struct inet_connection_sock *icsk = inet_csk(sk);
225 const unsigned int lss = icsk->icsk_ack.last_seg_size;
226 unsigned int len;
227
228 icsk->icsk_ack.last_seg_size = 0;
229
230 /* skb->len may jitter because of SACKs, even if peer
231 * sends good full-sized frames.
232 */
233 len = skb_shinfo(skb)->gso_size ? : skb->len;
234 if (len >= icsk->icsk_ack.rcv_mss) {
235 /* Note: divides are still a bit expensive.
236 * For the moment, only adjust scaling_ratio
237 * when we update icsk_ack.rcv_mss.
238 */
239 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
240 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
241 u8 old_ratio = tcp_sk(sk)->scaling_ratio;
242
243 do_div(val, skb->truesize);
244 tcp_sk(sk)->scaling_ratio = val ? val : 1;
245
246 if (old_ratio != tcp_sk(sk)->scaling_ratio) {
247 struct tcp_sock *tp = tcp_sk(sk);
248
249 val = tcp_win_from_space(sk, sk->sk_rcvbuf);
250 tcp_set_window_clamp(sk, val);
251
252 if (tp->window_clamp < tp->rcvq_space.space)
253 tp->rcvq_space.space = tp->window_clamp;
254 }
255 }
256 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
257 tcp_sk(sk)->advmss);
258 /* Account for possibly-removed options */
259 DO_ONCE_LITE_IF(len > icsk->icsk_ack.rcv_mss + MAX_TCP_OPTION_SPACE,
260 tcp_gro_dev_warn, sk, skb, len);
261 /* If the skb has a len of exactly 1*MSS and has the PSH bit
262 * set then it is likely the end of an application write. So
263 * more data may not be arriving soon, and yet the data sender
264 * may be waiting for an ACK if cwnd-bound or using TX zero
265 * copy. So we set ICSK_ACK_PUSHED here so that
266 * tcp_cleanup_rbuf() will send an ACK immediately if the app
267 * reads all of the data and is not ping-pong. If len > MSS
268 * then this logic does not matter (and does not hurt) because
269 * tcp_cleanup_rbuf() will always ACK immediately if the app
270 * reads data and there is more than an MSS of unACKed data.
271 */
272 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
274 } else {
275 /* Otherwise, we make more careful check taking into account,
276 * that SACKs block is variable.
277 *
278 * "len" is invariant segment length, including TCP header.
279 */
280 len += skb->data - skb_transport_header(skb);
281 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
282 /* If PSH is not set, packet should be
283 * full sized, provided peer TCP is not badly broken.
284 * This observation (if it is correct 8)) allows
285 * to handle super-low mtu links fairly.
286 */
287 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
288 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
289 /* Subtract also invariant (if peer is RFC compliant),
290 * tcp header plus fixed timestamp option length.
291 * Resulting "len" is MSS free of SACK jitter.
292 */
293 len -= tcp_sk(sk)->tcp_header_len;
294 icsk->icsk_ack.last_seg_size = len;
295 if (len == lss) {
296 icsk->icsk_ack.rcv_mss = len;
297 return;
298 }
299 }
300 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
301 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
302 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
303 }
304 }
305
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)306 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
307 {
308 struct inet_connection_sock *icsk = inet_csk(sk);
309 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
310
311 if (quickacks == 0)
312 quickacks = 2;
313 quickacks = min(quickacks, max_quickacks);
314 if (quickacks > icsk->icsk_ack.quick)
315 icsk->icsk_ack.quick = quickacks;
316 }
317
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)318 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
319 {
320 struct inet_connection_sock *icsk = inet_csk(sk);
321
322 tcp_incr_quickack(sk, max_quickacks);
323 inet_csk_exit_pingpong_mode(sk);
324 icsk->icsk_ack.ato = TCP_ATO_MIN;
325 }
326
327 /* Send ACKs quickly, if "quick" count is not exhausted
328 * and the session is not interactive.
329 */
330
tcp_in_quickack_mode(struct sock * sk)331 static bool tcp_in_quickack_mode(struct sock *sk)
332 {
333 const struct inet_connection_sock *icsk = inet_csk(sk);
334 const struct dst_entry *dst = __sk_dst_get(sk);
335
336 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
337 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
338 }
339
tcp_ecn_queue_cwr(struct tcp_sock * tp)340 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
341 {
342 if (tp->ecn_flags & TCP_ECN_OK)
343 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
344 }
345
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)346 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
347 {
348 if (tcp_hdr(skb)->cwr) {
349 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
350
351 /* If the sender is telling us it has entered CWR, then its
352 * cwnd may be very low (even just 1 packet), so we should ACK
353 * immediately.
354 */
355 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
356 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
357 }
358 }
359
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)360 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
361 {
362 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
363 }
364
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)365 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
366 {
367 struct tcp_sock *tp = tcp_sk(sk);
368
369 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
370 case INET_ECN_NOT_ECT:
371 /* Funny extension: if ECT is not set on a segment,
372 * and we already seen ECT on a previous segment,
373 * it is probably a retransmit.
374 */
375 if (tp->ecn_flags & TCP_ECN_SEEN)
376 tcp_enter_quickack_mode(sk, 2);
377 break;
378 case INET_ECN_CE:
379 if (tcp_ca_needs_ecn(sk))
380 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
381
382 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
383 /* Better not delay acks, sender can have a very low cwnd */
384 tcp_enter_quickack_mode(sk, 2);
385 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
386 }
387 tp->ecn_flags |= TCP_ECN_SEEN;
388 break;
389 default:
390 if (tcp_ca_needs_ecn(sk))
391 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
392 tp->ecn_flags |= TCP_ECN_SEEN;
393 break;
394 }
395 }
396
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)397 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
398 {
399 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
400 __tcp_ecn_check_ce(sk, skb);
401 }
402
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)403 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
404 {
405 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
406 tp->ecn_flags &= ~TCP_ECN_OK;
407 }
408
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)409 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
410 {
411 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
412 tp->ecn_flags &= ~TCP_ECN_OK;
413 }
414
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)415 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
416 {
417 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
418 return true;
419 return false;
420 }
421
422 /* Buffer size and advertised window tuning.
423 *
424 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
425 */
426
tcp_sndbuf_expand(struct sock * sk)427 static void tcp_sndbuf_expand(struct sock *sk)
428 {
429 const struct tcp_sock *tp = tcp_sk(sk);
430 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
431 int sndmem, per_mss;
432 u32 nr_segs;
433
434 /* Worst case is non GSO/TSO : each frame consumes one skb
435 * and skb->head is kmalloced using power of two area of memory
436 */
437 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
438 MAX_TCP_HEADER +
439 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
440
441 per_mss = roundup_pow_of_two(per_mss) +
442 SKB_DATA_ALIGN(sizeof(struct sk_buff));
443
444 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
445 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
446
447 /* Fast Recovery (RFC 5681 3.2) :
448 * Cubic needs 1.7 factor, rounded to 2 to include
449 * extra cushion (application might react slowly to EPOLLOUT)
450 */
451 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
452 sndmem *= nr_segs * per_mss;
453
454 if (sk->sk_sndbuf < sndmem)
455 WRITE_ONCE(sk->sk_sndbuf,
456 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
457 }
458
459 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
460 *
461 * All tcp_full_space() is split to two parts: "network" buffer, allocated
462 * forward and advertised in receiver window (tp->rcv_wnd) and
463 * "application buffer", required to isolate scheduling/application
464 * latencies from network.
465 * window_clamp is maximal advertised window. It can be less than
466 * tcp_full_space(), in this case tcp_full_space() - window_clamp
467 * is reserved for "application" buffer. The less window_clamp is
468 * the smoother our behaviour from viewpoint of network, but the lower
469 * throughput and the higher sensitivity of the connection to losses. 8)
470 *
471 * rcv_ssthresh is more strict window_clamp used at "slow start"
472 * phase to predict further behaviour of this connection.
473 * It is used for two goals:
474 * - to enforce header prediction at sender, even when application
475 * requires some significant "application buffer". It is check #1.
476 * - to prevent pruning of receive queue because of misprediction
477 * of receiver window. Check #2.
478 *
479 * The scheme does not work when sender sends good segments opening
480 * window and then starts to feed us spaghetti. But it should work
481 * in common situations. Otherwise, we have to rely on queue collapsing.
482 */
483
484 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)485 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
486 unsigned int skbtruesize)
487 {
488 const struct tcp_sock *tp = tcp_sk(sk);
489 /* Optimize this! */
490 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
491 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
492
493 while (tp->rcv_ssthresh <= window) {
494 if (truesize <= skb->len)
495 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
496
497 truesize >>= 1;
498 window >>= 1;
499 }
500 return 0;
501 }
502
503 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
504 * can play nice with us, as sk_buff and skb->head might be either
505 * freed or shared with up to MAX_SKB_FRAGS segments.
506 * Only give a boost to drivers using page frag(s) to hold the frame(s),
507 * and if no payload was pulled in skb->head before reaching us.
508 */
truesize_adjust(bool adjust,const struct sk_buff * skb)509 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
510 {
511 u32 truesize = skb->truesize;
512
513 if (adjust && !skb_headlen(skb)) {
514 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
515 /* paranoid check, some drivers might be buggy */
516 if (unlikely((int)truesize < (int)skb->len))
517 truesize = skb->truesize;
518 }
519 return truesize;
520 }
521
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)522 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
523 bool adjust)
524 {
525 struct tcp_sock *tp = tcp_sk(sk);
526 int room;
527
528 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529
530 if (room <= 0)
531 return;
532
533 /* Check #1 */
534 if (!tcp_under_memory_pressure(sk)) {
535 unsigned int truesize = truesize_adjust(adjust, skb);
536 int incr;
537
538 /* Check #2. Increase window, if skb with such overhead
539 * will fit to rcvbuf in future.
540 */
541 if (tcp_win_from_space(sk, truesize) <= skb->len)
542 incr = 2 * tp->advmss;
543 else
544 incr = __tcp_grow_window(sk, skb, truesize);
545
546 if (incr) {
547 incr = max_t(int, incr, 2 * skb->len);
548 tp->rcv_ssthresh += min(room, incr);
549 inet_csk(sk)->icsk_ack.quick |= 1;
550 }
551 } else {
552 /* Under pressure:
553 * Adjust rcv_ssthresh according to reserved mem
554 */
555 tcp_adjust_rcv_ssthresh(sk);
556 }
557 }
558
559 /* 3. Try to fixup all. It is made immediately after connection enters
560 * established state.
561 */
tcp_init_buffer_space(struct sock * sk)562 static void tcp_init_buffer_space(struct sock *sk)
563 {
564 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
565 struct tcp_sock *tp = tcp_sk(sk);
566 int maxwin;
567
568 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
569 tcp_sndbuf_expand(sk);
570
571 tcp_mstamp_refresh(tp);
572 tp->rcvq_space.time = tp->tcp_mstamp;
573 tp->rcvq_space.seq = tp->copied_seq;
574
575 maxwin = tcp_full_space(sk);
576
577 if (tp->window_clamp >= maxwin) {
578 WRITE_ONCE(tp->window_clamp, maxwin);
579
580 if (tcp_app_win && maxwin > 4 * tp->advmss)
581 WRITE_ONCE(tp->window_clamp,
582 max(maxwin - (maxwin >> tcp_app_win),
583 4 * tp->advmss));
584 }
585
586 /* Force reservation of one segment. */
587 if (tcp_app_win &&
588 tp->window_clamp > 2 * tp->advmss &&
589 tp->window_clamp + tp->advmss > maxwin)
590 WRITE_ONCE(tp->window_clamp,
591 max(2 * tp->advmss, maxwin - tp->advmss));
592
593 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
594 tp->snd_cwnd_stamp = tcp_jiffies32;
595 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
596 (u32)TCP_INIT_CWND * tp->advmss);
597 }
598
599 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)600 static void tcp_clamp_window(struct sock *sk)
601 {
602 struct tcp_sock *tp = tcp_sk(sk);
603 struct inet_connection_sock *icsk = inet_csk(sk);
604 struct net *net = sock_net(sk);
605 int rmem2;
606
607 icsk->icsk_ack.quick = 0;
608 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
609
610 if (sk->sk_rcvbuf < rmem2 &&
611 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
612 !tcp_under_memory_pressure(sk) &&
613 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
614 WRITE_ONCE(sk->sk_rcvbuf,
615 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
616 }
617 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
618 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
619 }
620
621 /* Initialize RCV_MSS value.
622 * RCV_MSS is an our guess about MSS used by the peer.
623 * We haven't any direct information about the MSS.
624 * It's better to underestimate the RCV_MSS rather than overestimate.
625 * Overestimations make us ACKing less frequently than needed.
626 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
627 */
tcp_initialize_rcv_mss(struct sock * sk)628 void tcp_initialize_rcv_mss(struct sock *sk)
629 {
630 const struct tcp_sock *tp = tcp_sk(sk);
631 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
632
633 hint = min(hint, tp->rcv_wnd / 2);
634 hint = min(hint, TCP_MSS_DEFAULT);
635 hint = max(hint, TCP_MIN_MSS);
636
637 inet_csk(sk)->icsk_ack.rcv_mss = hint;
638 }
639 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
640
641 /* Receiver "autotuning" code.
642 *
643 * The algorithm for RTT estimation w/o timestamps is based on
644 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
645 * <https://public.lanl.gov/radiant/pubs.html#DRS>
646 *
647 * More detail on this code can be found at
648 * <http://staff.psc.edu/jheffner/>,
649 * though this reference is out of date. A new paper
650 * is pending.
651 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)652 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
653 {
654 u32 new_sample = tp->rcv_rtt_est.rtt_us;
655 long m = sample;
656
657 if (new_sample != 0) {
658 /* If we sample in larger samples in the non-timestamp
659 * case, we could grossly overestimate the RTT especially
660 * with chatty applications or bulk transfer apps which
661 * are stalled on filesystem I/O.
662 *
663 * Also, since we are only going for a minimum in the
664 * non-timestamp case, we do not smooth things out
665 * else with timestamps disabled convergence takes too
666 * long.
667 */
668 if (!win_dep) {
669 m -= (new_sample >> 3);
670 new_sample += m;
671 } else {
672 m <<= 3;
673 if (m < new_sample)
674 new_sample = m;
675 }
676 } else {
677 /* No previous measure. */
678 new_sample = m << 3;
679 }
680
681 tp->rcv_rtt_est.rtt_us = new_sample;
682 }
683
tcp_rcv_rtt_measure(struct tcp_sock * tp)684 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
685 {
686 u32 delta_us;
687
688 if (tp->rcv_rtt_est.time == 0)
689 goto new_measure;
690 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
691 return;
692 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
693 if (!delta_us)
694 delta_us = 1;
695 tcp_rcv_rtt_update(tp, delta_us, 1);
696
697 new_measure:
698 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
699 tp->rcv_rtt_est.time = tp->tcp_mstamp;
700 }
701
tcp_rtt_tsopt_us(const struct tcp_sock * tp)702 static s32 tcp_rtt_tsopt_us(const struct tcp_sock *tp)
703 {
704 u32 delta, delta_us;
705
706 delta = tcp_time_stamp_ts(tp) - tp->rx_opt.rcv_tsecr;
707 if (tp->tcp_usec_ts)
708 return delta;
709
710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711 if (!delta)
712 delta = 1;
713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 return delta_us;
715 }
716 return -1;
717 }
718
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)719 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
720 const struct sk_buff *skb)
721 {
722 struct tcp_sock *tp = tcp_sk(sk);
723
724 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
725 return;
726 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
727
728 if (TCP_SKB_CB(skb)->end_seq -
729 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
730 s32 delta = tcp_rtt_tsopt_us(tp);
731
732 if (delta >= 0)
733 tcp_rcv_rtt_update(tp, delta, 0);
734 }
735 }
736
737 /*
738 * This function should be called every time data is copied to user space.
739 * It calculates the appropriate TCP receive buffer space.
740 */
tcp_rcv_space_adjust(struct sock * sk)741 void tcp_rcv_space_adjust(struct sock *sk)
742 {
743 struct tcp_sock *tp = tcp_sk(sk);
744 u32 copied;
745 int time;
746
747 trace_tcp_rcv_space_adjust(sk);
748
749 tcp_mstamp_refresh(tp);
750 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
751 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
752 return;
753
754 /* Number of bytes copied to user in last RTT */
755 copied = tp->copied_seq - tp->rcvq_space.seq;
756 if (copied <= tp->rcvq_space.space)
757 goto new_measure;
758
759 /* A bit of theory :
760 * copied = bytes received in previous RTT, our base window
761 * To cope with packet losses, we need a 2x factor
762 * To cope with slow start, and sender growing its cwin by 100 %
763 * every RTT, we need a 4x factor, because the ACK we are sending
764 * now is for the next RTT, not the current one :
765 * <prev RTT . ><current RTT .. ><next RTT .... >
766 */
767
768 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
769 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
770 u64 rcvwin, grow;
771 int rcvbuf;
772
773 /* minimal window to cope with packet losses, assuming
774 * steady state. Add some cushion because of small variations.
775 */
776 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
777
778 /* Accommodate for sender rate increase (eg. slow start) */
779 grow = rcvwin * (copied - tp->rcvq_space.space);
780 do_div(grow, tp->rcvq_space.space);
781 rcvwin += (grow << 1);
782
783 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
784 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
785 if (rcvbuf > sk->sk_rcvbuf) {
786 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
787
788 /* Make the window clamp follow along. */
789 WRITE_ONCE(tp->window_clamp,
790 tcp_win_from_space(sk, rcvbuf));
791 }
792 }
793 tp->rcvq_space.space = copied;
794
795 new_measure:
796 tp->rcvq_space.seq = tp->copied_seq;
797 tp->rcvq_space.time = tp->tcp_mstamp;
798 }
799
tcp_save_lrcv_flowlabel(struct sock * sk,const struct sk_buff * skb)800 static void tcp_save_lrcv_flowlabel(struct sock *sk, const struct sk_buff *skb)
801 {
802 #if IS_ENABLED(CONFIG_IPV6)
803 struct inet_connection_sock *icsk = inet_csk(sk);
804
805 if (skb->protocol == htons(ETH_P_IPV6))
806 icsk->icsk_ack.lrcv_flowlabel = ntohl(ip6_flowlabel(ipv6_hdr(skb)));
807 #endif
808 }
809
810 /* There is something which you must keep in mind when you analyze the
811 * behavior of the tp->ato delayed ack timeout interval. When a
812 * connection starts up, we want to ack as quickly as possible. The
813 * problem is that "good" TCP's do slow start at the beginning of data
814 * transmission. The means that until we send the first few ACK's the
815 * sender will sit on his end and only queue most of his data, because
816 * he can only send snd_cwnd unacked packets at any given time. For
817 * each ACK we send, he increments snd_cwnd and transmits more of his
818 * queue. -DaveM
819 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)820 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
821 {
822 struct tcp_sock *tp = tcp_sk(sk);
823 struct inet_connection_sock *icsk = inet_csk(sk);
824 u32 now;
825
826 inet_csk_schedule_ack(sk);
827
828 tcp_measure_rcv_mss(sk, skb);
829
830 tcp_rcv_rtt_measure(tp);
831
832 now = tcp_jiffies32;
833
834 if (!icsk->icsk_ack.ato) {
835 /* The _first_ data packet received, initialize
836 * delayed ACK engine.
837 */
838 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
839 icsk->icsk_ack.ato = TCP_ATO_MIN;
840 } else {
841 int m = now - icsk->icsk_ack.lrcvtime;
842
843 if (m <= TCP_ATO_MIN / 2) {
844 /* The fastest case is the first. */
845 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
846 } else if (m < icsk->icsk_ack.ato) {
847 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
848 if (icsk->icsk_ack.ato > icsk->icsk_rto)
849 icsk->icsk_ack.ato = icsk->icsk_rto;
850 } else if (m > icsk->icsk_rto) {
851 /* Too long gap. Apparently sender failed to
852 * restart window, so that we send ACKs quickly.
853 */
854 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
855 }
856 }
857 icsk->icsk_ack.lrcvtime = now;
858 tcp_save_lrcv_flowlabel(sk, skb);
859
860 tcp_ecn_check_ce(sk, skb);
861
862 if (skb->len >= 128)
863 tcp_grow_window(sk, skb, true);
864 }
865
866 /* Called to compute a smoothed rtt estimate. The data fed to this
867 * routine either comes from timestamps, or from segments that were
868 * known _not_ to have been retransmitted [see Karn/Partridge
869 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
870 * piece by Van Jacobson.
871 * NOTE: the next three routines used to be one big routine.
872 * To save cycles in the RFC 1323 implementation it was better to break
873 * it up into three procedures. -- erics
874 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)875 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
876 {
877 struct tcp_sock *tp = tcp_sk(sk);
878 long m = mrtt_us; /* RTT */
879 u32 srtt = tp->srtt_us;
880
881 /* The following amusing code comes from Jacobson's
882 * article in SIGCOMM '88. Note that rtt and mdev
883 * are scaled versions of rtt and mean deviation.
884 * This is designed to be as fast as possible
885 * m stands for "measurement".
886 *
887 * On a 1990 paper the rto value is changed to:
888 * RTO = rtt + 4 * mdev
889 *
890 * Funny. This algorithm seems to be very broken.
891 * These formulae increase RTO, when it should be decreased, increase
892 * too slowly, when it should be increased quickly, decrease too quickly
893 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
894 * does not matter how to _calculate_ it. Seems, it was trap
895 * that VJ failed to avoid. 8)
896 */
897 if (srtt != 0) {
898 m -= (srtt >> 3); /* m is now error in rtt est */
899 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
900 if (m < 0) {
901 m = -m; /* m is now abs(error) */
902 m -= (tp->mdev_us >> 2); /* similar update on mdev */
903 /* This is similar to one of Eifel findings.
904 * Eifel blocks mdev updates when rtt decreases.
905 * This solution is a bit different: we use finer gain
906 * for mdev in this case (alpha*beta).
907 * Like Eifel it also prevents growth of rto,
908 * but also it limits too fast rto decreases,
909 * happening in pure Eifel.
910 */
911 if (m > 0)
912 m >>= 3;
913 } else {
914 m -= (tp->mdev_us >> 2); /* similar update on mdev */
915 }
916 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
917 if (tp->mdev_us > tp->mdev_max_us) {
918 tp->mdev_max_us = tp->mdev_us;
919 if (tp->mdev_max_us > tp->rttvar_us)
920 tp->rttvar_us = tp->mdev_max_us;
921 }
922 if (after(tp->snd_una, tp->rtt_seq)) {
923 if (tp->mdev_max_us < tp->rttvar_us)
924 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
925 tp->rtt_seq = tp->snd_nxt;
926 tp->mdev_max_us = tcp_rto_min_us(sk);
927
928 tcp_bpf_rtt(sk, mrtt_us, srtt);
929 }
930 } else {
931 /* no previous measure. */
932 srtt = m << 3; /* take the measured time to be rtt */
933 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
934 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
935 tp->mdev_max_us = tp->rttvar_us;
936 tp->rtt_seq = tp->snd_nxt;
937
938 tcp_bpf_rtt(sk, mrtt_us, srtt);
939 }
940 tp->srtt_us = max(1U, srtt);
941 }
942
tcp_update_pacing_rate(struct sock * sk)943 static void tcp_update_pacing_rate(struct sock *sk)
944 {
945 const struct tcp_sock *tp = tcp_sk(sk);
946 u64 rate;
947
948 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
949 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
950
951 /* current rate is (cwnd * mss) / srtt
952 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
953 * In Congestion Avoidance phase, set it to 120 % the current rate.
954 *
955 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
956 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
957 * end of slow start and should slow down.
958 */
959 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
960 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
961 else
962 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
963
964 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
965
966 if (likely(tp->srtt_us))
967 do_div(rate, tp->srtt_us);
968
969 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
970 * without any lock. We want to make sure compiler wont store
971 * intermediate values in this location.
972 */
973 WRITE_ONCE(sk->sk_pacing_rate,
974 min_t(u64, rate, READ_ONCE(sk->sk_max_pacing_rate)));
975 }
976
977 /* Calculate rto without backoff. This is the second half of Van Jacobson's
978 * routine referred to above.
979 */
tcp_set_rto(struct sock * sk)980 static void tcp_set_rto(struct sock *sk)
981 {
982 const struct tcp_sock *tp = tcp_sk(sk);
983 /* Old crap is replaced with new one. 8)
984 *
985 * More seriously:
986 * 1. If rtt variance happened to be less 50msec, it is hallucination.
987 * It cannot be less due to utterly erratic ACK generation made
988 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
989 * to do with delayed acks, because at cwnd>2 true delack timeout
990 * is invisible. Actually, Linux-2.4 also generates erratic
991 * ACKs in some circumstances.
992 */
993 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
994
995 /* 2. Fixups made earlier cannot be right.
996 * If we do not estimate RTO correctly without them,
997 * all the algo is pure shit and should be replaced
998 * with correct one. It is exactly, which we pretend to do.
999 */
1000
1001 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
1002 * guarantees that rto is higher.
1003 */
1004 tcp_bound_rto(sk);
1005 }
1006
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)1007 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
1008 {
1009 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
1010
1011 if (!cwnd)
1012 cwnd = TCP_INIT_CWND;
1013 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
1014 }
1015
1016 struct tcp_sacktag_state {
1017 /* Timestamps for earliest and latest never-retransmitted segment
1018 * that was SACKed. RTO needs the earliest RTT to stay conservative,
1019 * but congestion control should still get an accurate delay signal.
1020 */
1021 u64 first_sackt;
1022 u64 last_sackt;
1023 u32 reord;
1024 u32 sack_delivered;
1025 int flag;
1026 unsigned int mss_now;
1027 struct rate_sample *rate;
1028 };
1029
1030 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1031 * and spurious retransmission information if this DSACK is unlikely caused by
1032 * sender's action:
1033 * - DSACKed sequence range is larger than maximum receiver's window.
1034 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1035 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)1036 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1037 u32 end_seq, struct tcp_sacktag_state *state)
1038 {
1039 u32 seq_len, dup_segs = 1;
1040
1041 if (!before(start_seq, end_seq))
1042 return 0;
1043
1044 seq_len = end_seq - start_seq;
1045 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1046 if (seq_len > tp->max_window)
1047 return 0;
1048 if (seq_len > tp->mss_cache)
1049 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1050 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1051 state->flag |= FLAG_DSACK_TLP;
1052
1053 tp->dsack_dups += dup_segs;
1054 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1055 if (tp->dsack_dups > tp->total_retrans)
1056 return 0;
1057
1058 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1059 /* We increase the RACK ordering window in rounds where we receive
1060 * DSACKs that may have been due to reordering causing RACK to trigger
1061 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1062 * without having seen reordering, or that match TLP probes (TLP
1063 * is timer-driven, not triggered by RACK).
1064 */
1065 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1066 tp->rack.dsack_seen = 1;
1067
1068 state->flag |= FLAG_DSACKING_ACK;
1069 /* A spurious retransmission is delivered */
1070 state->sack_delivered += dup_segs;
1071
1072 return dup_segs;
1073 }
1074
1075 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1076 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1077 * distance is approximated in full-mss packet distance ("reordering").
1078 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1079 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1080 const int ts)
1081 {
1082 struct tcp_sock *tp = tcp_sk(sk);
1083 const u32 mss = tp->mss_cache;
1084 u32 fack, metric;
1085
1086 fack = tcp_highest_sack_seq(tp);
1087 if (!before(low_seq, fack))
1088 return;
1089
1090 metric = fack - low_seq;
1091 if ((metric > tp->reordering * mss) && mss) {
1092 #if FASTRETRANS_DEBUG > 1
1093 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1094 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1095 tp->reordering,
1096 0,
1097 tp->sacked_out,
1098 tp->undo_marker ? tp->undo_retrans : 0);
1099 #endif
1100 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1101 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1102 }
1103
1104 /* This exciting event is worth to be remembered. 8) */
1105 tp->reord_seen++;
1106 NET_INC_STATS(sock_net(sk),
1107 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1108 }
1109
1110 /* This must be called before lost_out or retrans_out are updated
1111 * on a new loss, because we want to know if all skbs previously
1112 * known to be lost have already been retransmitted, indicating
1113 * that this newly lost skb is our next skb to retransmit.
1114 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1115 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1116 {
1117 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1118 (tp->retransmit_skb_hint &&
1119 before(TCP_SKB_CB(skb)->seq,
1120 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1121 tp->retransmit_skb_hint = skb;
1122 }
1123
1124 /* Sum the number of packets on the wire we have marked as lost, and
1125 * notify the congestion control module that the given skb was marked lost.
1126 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1127 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1128 {
1129 tp->lost += tcp_skb_pcount(skb);
1130 }
1131
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1132 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1133 {
1134 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1135 struct tcp_sock *tp = tcp_sk(sk);
1136
1137 if (sacked & TCPCB_SACKED_ACKED)
1138 return;
1139
1140 tcp_verify_retransmit_hint(tp, skb);
1141 if (sacked & TCPCB_LOST) {
1142 if (sacked & TCPCB_SACKED_RETRANS) {
1143 /* Account for retransmits that are lost again */
1144 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1145 tp->retrans_out -= tcp_skb_pcount(skb);
1146 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1147 tcp_skb_pcount(skb));
1148 tcp_notify_skb_loss_event(tp, skb);
1149 }
1150 } else {
1151 tp->lost_out += tcp_skb_pcount(skb);
1152 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1153 tcp_notify_skb_loss_event(tp, skb);
1154 }
1155 }
1156
1157 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1158 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1159 bool ece_ack)
1160 {
1161 tp->delivered += delivered;
1162 if (ece_ack)
1163 tp->delivered_ce += delivered;
1164 }
1165
1166 /* This procedure tags the retransmission queue when SACKs arrive.
1167 *
1168 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1169 * Packets in queue with these bits set are counted in variables
1170 * sacked_out, retrans_out and lost_out, correspondingly.
1171 *
1172 * Valid combinations are:
1173 * Tag InFlight Description
1174 * 0 1 - orig segment is in flight.
1175 * S 0 - nothing flies, orig reached receiver.
1176 * L 0 - nothing flies, orig lost by net.
1177 * R 2 - both orig and retransmit are in flight.
1178 * L|R 1 - orig is lost, retransmit is in flight.
1179 * S|R 1 - orig reached receiver, retrans is still in flight.
1180 * (L|S|R is logically valid, it could occur when L|R is sacked,
1181 * but it is equivalent to plain S and code short-circuits it to S.
1182 * L|S is logically invalid, it would mean -1 packet in flight 8))
1183 *
1184 * These 6 states form finite state machine, controlled by the following events:
1185 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1186 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1187 * 3. Loss detection event of two flavors:
1188 * A. Scoreboard estimator decided the packet is lost.
1189 * A'. Reno "three dupacks" marks head of queue lost.
1190 * B. SACK arrives sacking SND.NXT at the moment, when the
1191 * segment was retransmitted.
1192 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1193 *
1194 * It is pleasant to note, that state diagram turns out to be commutative,
1195 * so that we are allowed not to be bothered by order of our actions,
1196 * when multiple events arrive simultaneously. (see the function below).
1197 *
1198 * Reordering detection.
1199 * --------------------
1200 * Reordering metric is maximal distance, which a packet can be displaced
1201 * in packet stream. With SACKs we can estimate it:
1202 *
1203 * 1. SACK fills old hole and the corresponding segment was not
1204 * ever retransmitted -> reordering. Alas, we cannot use it
1205 * when segment was retransmitted.
1206 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1207 * for retransmitted and already SACKed segment -> reordering..
1208 * Both of these heuristics are not used in Loss state, when we cannot
1209 * account for retransmits accurately.
1210 *
1211 * SACK block validation.
1212 * ----------------------
1213 *
1214 * SACK block range validation checks that the received SACK block fits to
1215 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1216 * Note that SND.UNA is not included to the range though being valid because
1217 * it means that the receiver is rather inconsistent with itself reporting
1218 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1219 * perfectly valid, however, in light of RFC2018 which explicitly states
1220 * that "SACK block MUST reflect the newest segment. Even if the newest
1221 * segment is going to be discarded ...", not that it looks very clever
1222 * in case of head skb. Due to potentional receiver driven attacks, we
1223 * choose to avoid immediate execution of a walk in write queue due to
1224 * reneging and defer head skb's loss recovery to standard loss recovery
1225 * procedure that will eventually trigger (nothing forbids us doing this).
1226 *
1227 * Implements also blockage to start_seq wrap-around. Problem lies in the
1228 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1229 * there's no guarantee that it will be before snd_nxt (n). The problem
1230 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1231 * wrap (s_w):
1232 *
1233 * <- outs wnd -> <- wrapzone ->
1234 * u e n u_w e_w s n_w
1235 * | | | | | | |
1236 * |<------------+------+----- TCP seqno space --------------+---------->|
1237 * ...-- <2^31 ->| |<--------...
1238 * ...---- >2^31 ------>| |<--------...
1239 *
1240 * Current code wouldn't be vulnerable but it's better still to discard such
1241 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1242 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1243 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1244 * equal to the ideal case (infinite seqno space without wrap caused issues).
1245 *
1246 * With D-SACK the lower bound is extended to cover sequence space below
1247 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1248 * again, D-SACK block must not to go across snd_una (for the same reason as
1249 * for the normal SACK blocks, explained above). But there all simplicity
1250 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1251 * fully below undo_marker they do not affect behavior in anyway and can
1252 * therefore be safely ignored. In rare cases (which are more or less
1253 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1254 * fragmentation and packet reordering past skb's retransmission. To consider
1255 * them correctly, the acceptable range must be extended even more though
1256 * the exact amount is rather hard to quantify. However, tp->max_window can
1257 * be used as an exaggerated estimate.
1258 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1259 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1260 u32 start_seq, u32 end_seq)
1261 {
1262 /* Too far in future, or reversed (interpretation is ambiguous) */
1263 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1264 return false;
1265
1266 /* Nasty start_seq wrap-around check (see comments above) */
1267 if (!before(start_seq, tp->snd_nxt))
1268 return false;
1269
1270 /* In outstanding window? ...This is valid exit for D-SACKs too.
1271 * start_seq == snd_una is non-sensical (see comments above)
1272 */
1273 if (after(start_seq, tp->snd_una))
1274 return true;
1275
1276 if (!is_dsack || !tp->undo_marker)
1277 return false;
1278
1279 /* ...Then it's D-SACK, and must reside below snd_una completely */
1280 if (after(end_seq, tp->snd_una))
1281 return false;
1282
1283 if (!before(start_seq, tp->undo_marker))
1284 return true;
1285
1286 /* Too old */
1287 if (!after(end_seq, tp->undo_marker))
1288 return false;
1289
1290 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1291 * start_seq < undo_marker and end_seq >= undo_marker.
1292 */
1293 return !before(start_seq, end_seq - tp->max_window);
1294 }
1295
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1296 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1297 struct tcp_sack_block_wire *sp, int num_sacks,
1298 u32 prior_snd_una, struct tcp_sacktag_state *state)
1299 {
1300 struct tcp_sock *tp = tcp_sk(sk);
1301 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1302 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1303 u32 dup_segs;
1304
1305 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1306 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1307 } else if (num_sacks > 1) {
1308 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1309 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1310
1311 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1312 return false;
1313 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1314 } else {
1315 return false;
1316 }
1317
1318 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1319 if (!dup_segs) { /* Skip dubious DSACK */
1320 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1321 return false;
1322 }
1323
1324 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1325
1326 /* D-SACK for already forgotten data... Do dumb counting. */
1327 if (tp->undo_marker && tp->undo_retrans > 0 &&
1328 !after(end_seq_0, prior_snd_una) &&
1329 after(end_seq_0, tp->undo_marker))
1330 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1331
1332 return true;
1333 }
1334
1335 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1336 * the incoming SACK may not exactly match but we can find smaller MSS
1337 * aligned portion of it that matches. Therefore we might need to fragment
1338 * which may fail and creates some hassle (caller must handle error case
1339 * returns).
1340 *
1341 * FIXME: this could be merged to shift decision code
1342 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1343 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1344 u32 start_seq, u32 end_seq)
1345 {
1346 int err;
1347 bool in_sack;
1348 unsigned int pkt_len;
1349 unsigned int mss;
1350
1351 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1352 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1353
1354 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1355 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1356 mss = tcp_skb_mss(skb);
1357 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1358
1359 if (!in_sack) {
1360 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1361 if (pkt_len < mss)
1362 pkt_len = mss;
1363 } else {
1364 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1365 if (pkt_len < mss)
1366 return -EINVAL;
1367 }
1368
1369 /* Round if necessary so that SACKs cover only full MSSes
1370 * and/or the remaining small portion (if present)
1371 */
1372 if (pkt_len > mss) {
1373 unsigned int new_len = (pkt_len / mss) * mss;
1374 if (!in_sack && new_len < pkt_len)
1375 new_len += mss;
1376 pkt_len = new_len;
1377 }
1378
1379 if (pkt_len >= skb->len && !in_sack)
1380 return 0;
1381
1382 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1383 pkt_len, mss, GFP_ATOMIC);
1384 if (err < 0)
1385 return err;
1386 }
1387
1388 return in_sack;
1389 }
1390
1391 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1392 static u8 tcp_sacktag_one(struct sock *sk,
1393 struct tcp_sacktag_state *state, u8 sacked,
1394 u32 start_seq, u32 end_seq,
1395 int dup_sack, int pcount,
1396 u64 xmit_time)
1397 {
1398 struct tcp_sock *tp = tcp_sk(sk);
1399
1400 /* Account D-SACK for retransmitted packet. */
1401 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1402 if (tp->undo_marker && tp->undo_retrans > 0 &&
1403 after(end_seq, tp->undo_marker))
1404 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1405 if ((sacked & TCPCB_SACKED_ACKED) &&
1406 before(start_seq, state->reord))
1407 state->reord = start_seq;
1408 }
1409
1410 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1411 if (!after(end_seq, tp->snd_una))
1412 return sacked;
1413
1414 if (!(sacked & TCPCB_SACKED_ACKED)) {
1415 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1416
1417 if (sacked & TCPCB_SACKED_RETRANS) {
1418 /* If the segment is not tagged as lost,
1419 * we do not clear RETRANS, believing
1420 * that retransmission is still in flight.
1421 */
1422 if (sacked & TCPCB_LOST) {
1423 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1424 tp->lost_out -= pcount;
1425 tp->retrans_out -= pcount;
1426 }
1427 } else {
1428 if (!(sacked & TCPCB_RETRANS)) {
1429 /* New sack for not retransmitted frame,
1430 * which was in hole. It is reordering.
1431 */
1432 if (before(start_seq,
1433 tcp_highest_sack_seq(tp)) &&
1434 before(start_seq, state->reord))
1435 state->reord = start_seq;
1436
1437 if (!after(end_seq, tp->high_seq))
1438 state->flag |= FLAG_ORIG_SACK_ACKED;
1439 if (state->first_sackt == 0)
1440 state->first_sackt = xmit_time;
1441 state->last_sackt = xmit_time;
1442 }
1443
1444 if (sacked & TCPCB_LOST) {
1445 sacked &= ~TCPCB_LOST;
1446 tp->lost_out -= pcount;
1447 }
1448 }
1449
1450 sacked |= TCPCB_SACKED_ACKED;
1451 state->flag |= FLAG_DATA_SACKED;
1452 tp->sacked_out += pcount;
1453 /* Out-of-order packets delivered */
1454 state->sack_delivered += pcount;
1455
1456 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1457 if (tp->lost_skb_hint &&
1458 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1459 tp->lost_cnt_hint += pcount;
1460 }
1461
1462 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1463 * frames and clear it. undo_retrans is decreased above, L|R frames
1464 * are accounted above as well.
1465 */
1466 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1467 sacked &= ~TCPCB_SACKED_RETRANS;
1468 tp->retrans_out -= pcount;
1469 }
1470
1471 return sacked;
1472 }
1473
1474 /* Shift newly-SACKed bytes from this skb to the immediately previous
1475 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1476 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1477 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1478 struct sk_buff *skb,
1479 struct tcp_sacktag_state *state,
1480 unsigned int pcount, int shifted, int mss,
1481 bool dup_sack)
1482 {
1483 struct tcp_sock *tp = tcp_sk(sk);
1484 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1485 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1486
1487 BUG_ON(!pcount);
1488
1489 /* Adjust counters and hints for the newly sacked sequence
1490 * range but discard the return value since prev is already
1491 * marked. We must tag the range first because the seq
1492 * advancement below implicitly advances
1493 * tcp_highest_sack_seq() when skb is highest_sack.
1494 */
1495 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1496 start_seq, end_seq, dup_sack, pcount,
1497 tcp_skb_timestamp_us(skb));
1498 tcp_rate_skb_delivered(sk, skb, state->rate);
1499
1500 if (skb == tp->lost_skb_hint)
1501 tp->lost_cnt_hint += pcount;
1502
1503 TCP_SKB_CB(prev)->end_seq += shifted;
1504 TCP_SKB_CB(skb)->seq += shifted;
1505
1506 tcp_skb_pcount_add(prev, pcount);
1507 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1508 tcp_skb_pcount_add(skb, -pcount);
1509
1510 /* When we're adding to gso_segs == 1, gso_size will be zero,
1511 * in theory this shouldn't be necessary but as long as DSACK
1512 * code can come after this skb later on it's better to keep
1513 * setting gso_size to something.
1514 */
1515 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1516 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1517
1518 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1519 if (tcp_skb_pcount(skb) <= 1)
1520 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1521
1522 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1523 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1524
1525 if (skb->len > 0) {
1526 BUG_ON(!tcp_skb_pcount(skb));
1527 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1528 return false;
1529 }
1530
1531 /* Whole SKB was eaten :-) */
1532
1533 if (skb == tp->retransmit_skb_hint)
1534 tp->retransmit_skb_hint = prev;
1535 if (skb == tp->lost_skb_hint) {
1536 tp->lost_skb_hint = prev;
1537 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1538 }
1539
1540 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1541 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1542 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1543 TCP_SKB_CB(prev)->end_seq++;
1544
1545 if (skb == tcp_highest_sack(sk))
1546 tcp_advance_highest_sack(sk, skb);
1547
1548 tcp_skb_collapse_tstamp(prev, skb);
1549 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1550 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1551
1552 tcp_rtx_queue_unlink_and_free(skb, sk);
1553
1554 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1555
1556 return true;
1557 }
1558
1559 /* I wish gso_size would have a bit more sane initialization than
1560 * something-or-zero which complicates things
1561 */
tcp_skb_seglen(const struct sk_buff * skb)1562 static int tcp_skb_seglen(const struct sk_buff *skb)
1563 {
1564 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1565 }
1566
1567 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1568 static int skb_can_shift(const struct sk_buff *skb)
1569 {
1570 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1571 }
1572
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1573 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1574 int pcount, int shiftlen)
1575 {
1576 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1577 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1578 * to make sure not storing more than 65535 * 8 bytes per skb,
1579 * even if current MSS is bigger.
1580 */
1581 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1582 return 0;
1583 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1584 return 0;
1585 return skb_shift(to, from, shiftlen);
1586 }
1587
1588 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1589 * skb.
1590 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1591 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1592 struct tcp_sacktag_state *state,
1593 u32 start_seq, u32 end_seq,
1594 bool dup_sack)
1595 {
1596 struct tcp_sock *tp = tcp_sk(sk);
1597 struct sk_buff *prev;
1598 int mss;
1599 int pcount = 0;
1600 int len;
1601 int in_sack;
1602
1603 /* Normally R but no L won't result in plain S */
1604 if (!dup_sack &&
1605 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1606 goto fallback;
1607 if (!skb_can_shift(skb))
1608 goto fallback;
1609 /* This frame is about to be dropped (was ACKed). */
1610 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1611 goto fallback;
1612
1613 /* Can only happen with delayed DSACK + discard craziness */
1614 prev = skb_rb_prev(skb);
1615 if (!prev)
1616 goto fallback;
1617
1618 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1619 goto fallback;
1620
1621 if (!tcp_skb_can_collapse(prev, skb))
1622 goto fallback;
1623
1624 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1625 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1626
1627 if (in_sack) {
1628 len = skb->len;
1629 pcount = tcp_skb_pcount(skb);
1630 mss = tcp_skb_seglen(skb);
1631
1632 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1633 * drop this restriction as unnecessary
1634 */
1635 if (mss != tcp_skb_seglen(prev))
1636 goto fallback;
1637 } else {
1638 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1639 goto noop;
1640 /* CHECKME: This is non-MSS split case only?, this will
1641 * cause skipped skbs due to advancing loop btw, original
1642 * has that feature too
1643 */
1644 if (tcp_skb_pcount(skb) <= 1)
1645 goto noop;
1646
1647 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1648 if (!in_sack) {
1649 /* TODO: head merge to next could be attempted here
1650 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1651 * though it might not be worth of the additional hassle
1652 *
1653 * ...we can probably just fallback to what was done
1654 * previously. We could try merging non-SACKed ones
1655 * as well but it probably isn't going to buy off
1656 * because later SACKs might again split them, and
1657 * it would make skb timestamp tracking considerably
1658 * harder problem.
1659 */
1660 goto fallback;
1661 }
1662
1663 len = end_seq - TCP_SKB_CB(skb)->seq;
1664 BUG_ON(len < 0);
1665 BUG_ON(len > skb->len);
1666
1667 /* MSS boundaries should be honoured or else pcount will
1668 * severely break even though it makes things bit trickier.
1669 * Optimize common case to avoid most of the divides
1670 */
1671 mss = tcp_skb_mss(skb);
1672
1673 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1674 * drop this restriction as unnecessary
1675 */
1676 if (mss != tcp_skb_seglen(prev))
1677 goto fallback;
1678
1679 if (len == mss) {
1680 pcount = 1;
1681 } else if (len < mss) {
1682 goto noop;
1683 } else {
1684 pcount = len / mss;
1685 len = pcount * mss;
1686 }
1687 }
1688
1689 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1690 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1691 goto fallback;
1692
1693 if (!tcp_skb_shift(prev, skb, pcount, len))
1694 goto fallback;
1695 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1696 goto out;
1697
1698 /* Hole filled allows collapsing with the next as well, this is very
1699 * useful when hole on every nth skb pattern happens
1700 */
1701 skb = skb_rb_next(prev);
1702 if (!skb)
1703 goto out;
1704
1705 if (!skb_can_shift(skb) ||
1706 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1707 (mss != tcp_skb_seglen(skb)))
1708 goto out;
1709
1710 if (!tcp_skb_can_collapse(prev, skb))
1711 goto out;
1712 len = skb->len;
1713 pcount = tcp_skb_pcount(skb);
1714 if (tcp_skb_shift(prev, skb, pcount, len))
1715 tcp_shifted_skb(sk, prev, skb, state, pcount,
1716 len, mss, 0);
1717
1718 out:
1719 return prev;
1720
1721 noop:
1722 return skb;
1723
1724 fallback:
1725 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1726 return NULL;
1727 }
1728
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1729 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1730 struct tcp_sack_block *next_dup,
1731 struct tcp_sacktag_state *state,
1732 u32 start_seq, u32 end_seq,
1733 bool dup_sack_in)
1734 {
1735 struct tcp_sock *tp = tcp_sk(sk);
1736 struct sk_buff *tmp;
1737
1738 skb_rbtree_walk_from(skb) {
1739 int in_sack = 0;
1740 bool dup_sack = dup_sack_in;
1741
1742 /* queue is in-order => we can short-circuit the walk early */
1743 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1744 break;
1745
1746 if (next_dup &&
1747 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1748 in_sack = tcp_match_skb_to_sack(sk, skb,
1749 next_dup->start_seq,
1750 next_dup->end_seq);
1751 if (in_sack > 0)
1752 dup_sack = true;
1753 }
1754
1755 /* skb reference here is a bit tricky to get right, since
1756 * shifting can eat and free both this skb and the next,
1757 * so not even _safe variant of the loop is enough.
1758 */
1759 if (in_sack <= 0) {
1760 tmp = tcp_shift_skb_data(sk, skb, state,
1761 start_seq, end_seq, dup_sack);
1762 if (tmp) {
1763 if (tmp != skb) {
1764 skb = tmp;
1765 continue;
1766 }
1767
1768 in_sack = 0;
1769 } else {
1770 in_sack = tcp_match_skb_to_sack(sk, skb,
1771 start_seq,
1772 end_seq);
1773 }
1774 }
1775
1776 if (unlikely(in_sack < 0))
1777 break;
1778
1779 if (in_sack) {
1780 TCP_SKB_CB(skb)->sacked =
1781 tcp_sacktag_one(sk,
1782 state,
1783 TCP_SKB_CB(skb)->sacked,
1784 TCP_SKB_CB(skb)->seq,
1785 TCP_SKB_CB(skb)->end_seq,
1786 dup_sack,
1787 tcp_skb_pcount(skb),
1788 tcp_skb_timestamp_us(skb));
1789 tcp_rate_skb_delivered(sk, skb, state->rate);
1790 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1791 list_del_init(&skb->tcp_tsorted_anchor);
1792
1793 if (!before(TCP_SKB_CB(skb)->seq,
1794 tcp_highest_sack_seq(tp)))
1795 tcp_advance_highest_sack(sk, skb);
1796 }
1797 }
1798 return skb;
1799 }
1800
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1801 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1802 {
1803 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1804 struct sk_buff *skb;
1805
1806 while (*p) {
1807 parent = *p;
1808 skb = rb_to_skb(parent);
1809 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1810 p = &parent->rb_left;
1811 continue;
1812 }
1813 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1814 p = &parent->rb_right;
1815 continue;
1816 }
1817 return skb;
1818 }
1819 return NULL;
1820 }
1821
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1822 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1823 u32 skip_to_seq)
1824 {
1825 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1826 return skb;
1827
1828 return tcp_sacktag_bsearch(sk, skip_to_seq);
1829 }
1830
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1831 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1832 struct sock *sk,
1833 struct tcp_sack_block *next_dup,
1834 struct tcp_sacktag_state *state,
1835 u32 skip_to_seq)
1836 {
1837 if (!next_dup)
1838 return skb;
1839
1840 if (before(next_dup->start_seq, skip_to_seq)) {
1841 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1842 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1843 next_dup->start_seq, next_dup->end_seq,
1844 1);
1845 }
1846
1847 return skb;
1848 }
1849
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1850 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1851 {
1852 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1853 }
1854
1855 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1856 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1857 u32 prior_snd_una, struct tcp_sacktag_state *state)
1858 {
1859 struct tcp_sock *tp = tcp_sk(sk);
1860 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1861 TCP_SKB_CB(ack_skb)->sacked);
1862 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1863 struct tcp_sack_block sp[TCP_NUM_SACKS];
1864 struct tcp_sack_block *cache;
1865 struct sk_buff *skb;
1866 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1867 int used_sacks;
1868 bool found_dup_sack = false;
1869 int i, j;
1870 int first_sack_index;
1871
1872 state->flag = 0;
1873 state->reord = tp->snd_nxt;
1874
1875 if (!tp->sacked_out)
1876 tcp_highest_sack_reset(sk);
1877
1878 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1879 num_sacks, prior_snd_una, state);
1880
1881 /* Eliminate too old ACKs, but take into
1882 * account more or less fresh ones, they can
1883 * contain valid SACK info.
1884 */
1885 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1886 return 0;
1887
1888 if (!tp->packets_out)
1889 goto out;
1890
1891 used_sacks = 0;
1892 first_sack_index = 0;
1893 for (i = 0; i < num_sacks; i++) {
1894 bool dup_sack = !i && found_dup_sack;
1895
1896 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1897 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1898
1899 if (!tcp_is_sackblock_valid(tp, dup_sack,
1900 sp[used_sacks].start_seq,
1901 sp[used_sacks].end_seq)) {
1902 int mib_idx;
1903
1904 if (dup_sack) {
1905 if (!tp->undo_marker)
1906 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1907 else
1908 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1909 } else {
1910 /* Don't count olds caused by ACK reordering */
1911 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1912 !after(sp[used_sacks].end_seq, tp->snd_una))
1913 continue;
1914 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1915 }
1916
1917 NET_INC_STATS(sock_net(sk), mib_idx);
1918 if (i == 0)
1919 first_sack_index = -1;
1920 continue;
1921 }
1922
1923 /* Ignore very old stuff early */
1924 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1925 if (i == 0)
1926 first_sack_index = -1;
1927 continue;
1928 }
1929
1930 used_sacks++;
1931 }
1932
1933 /* order SACK blocks to allow in order walk of the retrans queue */
1934 for (i = used_sacks - 1; i > 0; i--) {
1935 for (j = 0; j < i; j++) {
1936 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1937 swap(sp[j], sp[j + 1]);
1938
1939 /* Track where the first SACK block goes to */
1940 if (j == first_sack_index)
1941 first_sack_index = j + 1;
1942 }
1943 }
1944 }
1945
1946 state->mss_now = tcp_current_mss(sk);
1947 skb = NULL;
1948 i = 0;
1949
1950 if (!tp->sacked_out) {
1951 /* It's already past, so skip checking against it */
1952 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1953 } else {
1954 cache = tp->recv_sack_cache;
1955 /* Skip empty blocks in at head of the cache */
1956 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1957 !cache->end_seq)
1958 cache++;
1959 }
1960
1961 while (i < used_sacks) {
1962 u32 start_seq = sp[i].start_seq;
1963 u32 end_seq = sp[i].end_seq;
1964 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1965 struct tcp_sack_block *next_dup = NULL;
1966
1967 if (found_dup_sack && ((i + 1) == first_sack_index))
1968 next_dup = &sp[i + 1];
1969
1970 /* Skip too early cached blocks */
1971 while (tcp_sack_cache_ok(tp, cache) &&
1972 !before(start_seq, cache->end_seq))
1973 cache++;
1974
1975 /* Can skip some work by looking recv_sack_cache? */
1976 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1977 after(end_seq, cache->start_seq)) {
1978
1979 /* Head todo? */
1980 if (before(start_seq, cache->start_seq)) {
1981 skb = tcp_sacktag_skip(skb, sk, start_seq);
1982 skb = tcp_sacktag_walk(skb, sk, next_dup,
1983 state,
1984 start_seq,
1985 cache->start_seq,
1986 dup_sack);
1987 }
1988
1989 /* Rest of the block already fully processed? */
1990 if (!after(end_seq, cache->end_seq))
1991 goto advance_sp;
1992
1993 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1994 state,
1995 cache->end_seq);
1996
1997 /* ...tail remains todo... */
1998 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1999 /* ...but better entrypoint exists! */
2000 skb = tcp_highest_sack(sk);
2001 if (!skb)
2002 break;
2003 cache++;
2004 goto walk;
2005 }
2006
2007 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
2008 /* Check overlap against next cached too (past this one already) */
2009 cache++;
2010 continue;
2011 }
2012
2013 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
2014 skb = tcp_highest_sack(sk);
2015 if (!skb)
2016 break;
2017 }
2018 skb = tcp_sacktag_skip(skb, sk, start_seq);
2019
2020 walk:
2021 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
2022 start_seq, end_seq, dup_sack);
2023
2024 advance_sp:
2025 i++;
2026 }
2027
2028 /* Clear the head of the cache sack blocks so we can skip it next time */
2029 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2030 tp->recv_sack_cache[i].start_seq = 0;
2031 tp->recv_sack_cache[i].end_seq = 0;
2032 }
2033 for (j = 0; j < used_sacks; j++)
2034 tp->recv_sack_cache[i++] = sp[j];
2035
2036 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2037 tcp_check_sack_reordering(sk, state->reord, 0);
2038
2039 tcp_verify_left_out(tp);
2040 out:
2041
2042 #if FASTRETRANS_DEBUG > 0
2043 WARN_ON((int)tp->sacked_out < 0);
2044 WARN_ON((int)tp->lost_out < 0);
2045 WARN_ON((int)tp->retrans_out < 0);
2046 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2047 #endif
2048 return state->flag;
2049 }
2050
2051 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2052 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2053 */
tcp_limit_reno_sacked(struct tcp_sock * tp)2054 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2055 {
2056 u32 holes;
2057
2058 holes = max(tp->lost_out, 1U);
2059 holes = min(holes, tp->packets_out);
2060
2061 if ((tp->sacked_out + holes) > tp->packets_out) {
2062 tp->sacked_out = tp->packets_out - holes;
2063 return true;
2064 }
2065 return false;
2066 }
2067
2068 /* If we receive more dupacks than we expected counting segments
2069 * in assumption of absent reordering, interpret this as reordering.
2070 * The only another reason could be bug in receiver TCP.
2071 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2072 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2073 {
2074 struct tcp_sock *tp = tcp_sk(sk);
2075
2076 if (!tcp_limit_reno_sacked(tp))
2077 return;
2078
2079 tp->reordering = min_t(u32, tp->packets_out + addend,
2080 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2081 tp->reord_seen++;
2082 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2083 }
2084
2085 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2086
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2087 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2088 {
2089 if (num_dupack) {
2090 struct tcp_sock *tp = tcp_sk(sk);
2091 u32 prior_sacked = tp->sacked_out;
2092 s32 delivered;
2093
2094 tp->sacked_out += num_dupack;
2095 tcp_check_reno_reordering(sk, 0);
2096 delivered = tp->sacked_out - prior_sacked;
2097 if (delivered > 0)
2098 tcp_count_delivered(tp, delivered, ece_ack);
2099 tcp_verify_left_out(tp);
2100 }
2101 }
2102
2103 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2104
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2105 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2106 {
2107 struct tcp_sock *tp = tcp_sk(sk);
2108
2109 if (acked > 0) {
2110 /* One ACK acked hole. The rest eat duplicate ACKs. */
2111 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2112 ece_ack);
2113 if (acked - 1 >= tp->sacked_out)
2114 tp->sacked_out = 0;
2115 else
2116 tp->sacked_out -= acked - 1;
2117 }
2118 tcp_check_reno_reordering(sk, acked);
2119 tcp_verify_left_out(tp);
2120 }
2121
tcp_reset_reno_sack(struct tcp_sock * tp)2122 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2123 {
2124 tp->sacked_out = 0;
2125 }
2126
tcp_clear_retrans(struct tcp_sock * tp)2127 void tcp_clear_retrans(struct tcp_sock *tp)
2128 {
2129 tp->retrans_out = 0;
2130 tp->lost_out = 0;
2131 tp->undo_marker = 0;
2132 tp->undo_retrans = -1;
2133 tp->sacked_out = 0;
2134 tp->rto_stamp = 0;
2135 tp->total_rto = 0;
2136 tp->total_rto_recoveries = 0;
2137 tp->total_rto_time = 0;
2138 }
2139
tcp_init_undo(struct tcp_sock * tp)2140 static inline void tcp_init_undo(struct tcp_sock *tp)
2141 {
2142 tp->undo_marker = tp->snd_una;
2143
2144 /* Retransmission still in flight may cause DSACKs later. */
2145 /* First, account for regular retransmits in flight: */
2146 tp->undo_retrans = tp->retrans_out;
2147 /* Next, account for TLP retransmits in flight: */
2148 if (tp->tlp_high_seq && tp->tlp_retrans)
2149 tp->undo_retrans++;
2150 /* Finally, avoid 0, because undo_retrans==0 means "can undo now": */
2151 if (!tp->undo_retrans)
2152 tp->undo_retrans = -1;
2153 }
2154
tcp_is_rack(const struct sock * sk)2155 static bool tcp_is_rack(const struct sock *sk)
2156 {
2157 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2158 TCP_RACK_LOSS_DETECTION;
2159 }
2160
2161 /* If we detect SACK reneging, forget all SACK information
2162 * and reset tags completely, otherwise preserve SACKs. If receiver
2163 * dropped its ofo queue, we will know this due to reneging detection.
2164 */
tcp_timeout_mark_lost(struct sock * sk)2165 static void tcp_timeout_mark_lost(struct sock *sk)
2166 {
2167 struct tcp_sock *tp = tcp_sk(sk);
2168 struct sk_buff *skb, *head;
2169 bool is_reneg; /* is receiver reneging on SACKs? */
2170
2171 head = tcp_rtx_queue_head(sk);
2172 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2173 if (is_reneg) {
2174 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2175 tp->sacked_out = 0;
2176 /* Mark SACK reneging until we recover from this loss event. */
2177 tp->is_sack_reneg = 1;
2178 } else if (tcp_is_reno(tp)) {
2179 tcp_reset_reno_sack(tp);
2180 }
2181
2182 skb = head;
2183 skb_rbtree_walk_from(skb) {
2184 if (is_reneg)
2185 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2186 else if (tcp_is_rack(sk) && skb != head &&
2187 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2188 continue; /* Don't mark recently sent ones lost yet */
2189 tcp_mark_skb_lost(sk, skb);
2190 }
2191 tcp_verify_left_out(tp);
2192 tcp_clear_all_retrans_hints(tp);
2193 }
2194
2195 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2196 void tcp_enter_loss(struct sock *sk)
2197 {
2198 const struct inet_connection_sock *icsk = inet_csk(sk);
2199 struct tcp_sock *tp = tcp_sk(sk);
2200 struct net *net = sock_net(sk);
2201 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2202 u8 reordering;
2203
2204 tcp_timeout_mark_lost(sk);
2205
2206 /* Reduce ssthresh if it has not yet been made inside this window. */
2207 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2208 !after(tp->high_seq, tp->snd_una) ||
2209 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2210 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2211 tp->prior_cwnd = tcp_snd_cwnd(tp);
2212 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2213 tcp_ca_event(sk, CA_EVENT_LOSS);
2214 tcp_init_undo(tp);
2215 }
2216 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2217 tp->snd_cwnd_cnt = 0;
2218 tp->snd_cwnd_stamp = tcp_jiffies32;
2219
2220 /* Timeout in disordered state after receiving substantial DUPACKs
2221 * suggests that the degree of reordering is over-estimated.
2222 */
2223 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2224 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2225 tp->sacked_out >= reordering)
2226 tp->reordering = min_t(unsigned int, tp->reordering,
2227 reordering);
2228
2229 tcp_set_ca_state(sk, TCP_CA_Loss);
2230 tp->high_seq = tp->snd_nxt;
2231 tp->tlp_high_seq = 0;
2232 tcp_ecn_queue_cwr(tp);
2233
2234 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2235 * loss recovery is underway except recurring timeout(s) on
2236 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2237 */
2238 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2239 (new_recovery || icsk->icsk_retransmits) &&
2240 !inet_csk(sk)->icsk_mtup.probe_size;
2241 }
2242
2243 /* If ACK arrived pointing to a remembered SACK, it means that our
2244 * remembered SACKs do not reflect real state of receiver i.e.
2245 * receiver _host_ is heavily congested (or buggy).
2246 *
2247 * To avoid big spurious retransmission bursts due to transient SACK
2248 * scoreboard oddities that look like reneging, we give the receiver a
2249 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2250 * restore sanity to the SACK scoreboard. If the apparent reneging
2251 * persists until this RTO then we'll clear the SACK scoreboard.
2252 */
tcp_check_sack_reneging(struct sock * sk,int * ack_flag)2253 static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2254 {
2255 if (*ack_flag & FLAG_SACK_RENEGING &&
2256 *ack_flag & FLAG_SND_UNA_ADVANCED) {
2257 struct tcp_sock *tp = tcp_sk(sk);
2258 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2259 msecs_to_jiffies(10));
2260
2261 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2262 delay, TCP_RTO_MAX);
2263 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2264 return true;
2265 }
2266 return false;
2267 }
2268
2269 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2270 * counter when SACK is enabled (without SACK, sacked_out is used for
2271 * that purpose).
2272 *
2273 * With reordering, holes may still be in flight, so RFC3517 recovery
2274 * uses pure sacked_out (total number of SACKed segments) even though
2275 * it violates the RFC that uses duplicate ACKs, often these are equal
2276 * but when e.g. out-of-window ACKs or packet duplication occurs,
2277 * they differ. Since neither occurs due to loss, TCP should really
2278 * ignore them.
2279 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2280 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2281 {
2282 return tp->sacked_out + 1;
2283 }
2284
2285 /* Linux NewReno/SACK/ECN state machine.
2286 * --------------------------------------
2287 *
2288 * "Open" Normal state, no dubious events, fast path.
2289 * "Disorder" In all the respects it is "Open",
2290 * but requires a bit more attention. It is entered when
2291 * we see some SACKs or dupacks. It is split of "Open"
2292 * mainly to move some processing from fast path to slow one.
2293 * "CWR" CWND was reduced due to some Congestion Notification event.
2294 * It can be ECN, ICMP source quench, local device congestion.
2295 * "Recovery" CWND was reduced, we are fast-retransmitting.
2296 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2297 *
2298 * tcp_fastretrans_alert() is entered:
2299 * - each incoming ACK, if state is not "Open"
2300 * - when arrived ACK is unusual, namely:
2301 * * SACK
2302 * * Duplicate ACK.
2303 * * ECN ECE.
2304 *
2305 * Counting packets in flight is pretty simple.
2306 *
2307 * in_flight = packets_out - left_out + retrans_out
2308 *
2309 * packets_out is SND.NXT-SND.UNA counted in packets.
2310 *
2311 * retrans_out is number of retransmitted segments.
2312 *
2313 * left_out is number of segments left network, but not ACKed yet.
2314 *
2315 * left_out = sacked_out + lost_out
2316 *
2317 * sacked_out: Packets, which arrived to receiver out of order
2318 * and hence not ACKed. With SACKs this number is simply
2319 * amount of SACKed data. Even without SACKs
2320 * it is easy to give pretty reliable estimate of this number,
2321 * counting duplicate ACKs.
2322 *
2323 * lost_out: Packets lost by network. TCP has no explicit
2324 * "loss notification" feedback from network (for now).
2325 * It means that this number can be only _guessed_.
2326 * Actually, it is the heuristics to predict lossage that
2327 * distinguishes different algorithms.
2328 *
2329 * F.e. after RTO, when all the queue is considered as lost,
2330 * lost_out = packets_out and in_flight = retrans_out.
2331 *
2332 * Essentially, we have now a few algorithms detecting
2333 * lost packets.
2334 *
2335 * If the receiver supports SACK:
2336 *
2337 * RFC6675/3517: It is the conventional algorithm. A packet is
2338 * considered lost if the number of higher sequence packets
2339 * SACKed is greater than or equal the DUPACK thoreshold
2340 * (reordering). This is implemented in tcp_mark_head_lost and
2341 * tcp_update_scoreboard.
2342 *
2343 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2344 * (2017-) that checks timing instead of counting DUPACKs.
2345 * Essentially a packet is considered lost if it's not S/ACKed
2346 * after RTT + reordering_window, where both metrics are
2347 * dynamically measured and adjusted. This is implemented in
2348 * tcp_rack_mark_lost.
2349 *
2350 * If the receiver does not support SACK:
2351 *
2352 * NewReno (RFC6582): in Recovery we assume that one segment
2353 * is lost (classic Reno). While we are in Recovery and
2354 * a partial ACK arrives, we assume that one more packet
2355 * is lost (NewReno). This heuristics are the same in NewReno
2356 * and SACK.
2357 *
2358 * Really tricky (and requiring careful tuning) part of algorithm
2359 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2360 * The first determines the moment _when_ we should reduce CWND and,
2361 * hence, slow down forward transmission. In fact, it determines the moment
2362 * when we decide that hole is caused by loss, rather than by a reorder.
2363 *
2364 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2365 * holes, caused by lost packets.
2366 *
2367 * And the most logically complicated part of algorithm is undo
2368 * heuristics. We detect false retransmits due to both too early
2369 * fast retransmit (reordering) and underestimated RTO, analyzing
2370 * timestamps and D-SACKs. When we detect that some segments were
2371 * retransmitted by mistake and CWND reduction was wrong, we undo
2372 * window reduction and abort recovery phase. This logic is hidden
2373 * inside several functions named tcp_try_undo_<something>.
2374 */
2375
2376 /* This function decides, when we should leave Disordered state
2377 * and enter Recovery phase, reducing congestion window.
2378 *
2379 * Main question: may we further continue forward transmission
2380 * with the same cwnd?
2381 */
tcp_time_to_recover(struct sock * sk,int flag)2382 static bool tcp_time_to_recover(struct sock *sk, int flag)
2383 {
2384 struct tcp_sock *tp = tcp_sk(sk);
2385
2386 /* Trick#1: The loss is proven. */
2387 if (tp->lost_out)
2388 return true;
2389
2390 /* Not-A-Trick#2 : Classic rule... */
2391 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2392 return true;
2393
2394 return false;
2395 }
2396
2397 /* Detect loss in event "A" above by marking head of queue up as lost.
2398 * For RFC3517 SACK, a segment is considered lost if it
2399 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2400 * the maximum SACKed segments to pass before reaching this limit.
2401 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2402 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2403 {
2404 struct tcp_sock *tp = tcp_sk(sk);
2405 struct sk_buff *skb;
2406 int cnt;
2407 /* Use SACK to deduce losses of new sequences sent during recovery */
2408 const u32 loss_high = tp->snd_nxt;
2409
2410 WARN_ON(packets > tp->packets_out);
2411 skb = tp->lost_skb_hint;
2412 if (skb) {
2413 /* Head already handled? */
2414 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2415 return;
2416 cnt = tp->lost_cnt_hint;
2417 } else {
2418 skb = tcp_rtx_queue_head(sk);
2419 cnt = 0;
2420 }
2421
2422 skb_rbtree_walk_from(skb) {
2423 /* TODO: do this better */
2424 /* this is not the most efficient way to do this... */
2425 tp->lost_skb_hint = skb;
2426 tp->lost_cnt_hint = cnt;
2427
2428 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2429 break;
2430
2431 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2432 cnt += tcp_skb_pcount(skb);
2433
2434 if (cnt > packets)
2435 break;
2436
2437 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2438 tcp_mark_skb_lost(sk, skb);
2439
2440 if (mark_head)
2441 break;
2442 }
2443 tcp_verify_left_out(tp);
2444 }
2445
2446 /* Account newly detected lost packet(s) */
2447
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2448 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2449 {
2450 struct tcp_sock *tp = tcp_sk(sk);
2451
2452 if (tcp_is_sack(tp)) {
2453 int sacked_upto = tp->sacked_out - tp->reordering;
2454 if (sacked_upto >= 0)
2455 tcp_mark_head_lost(sk, sacked_upto, 0);
2456 else if (fast_rexmit)
2457 tcp_mark_head_lost(sk, 1, 1);
2458 }
2459 }
2460
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2461 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2462 {
2463 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2464 before(tp->rx_opt.rcv_tsecr, when);
2465 }
2466
2467 /* skb is spurious retransmitted if the returned timestamp echo
2468 * reply is prior to the skb transmission time
2469 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2470 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2471 const struct sk_buff *skb)
2472 {
2473 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2474 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb));
2475 }
2476
2477 /* Nothing was retransmitted or returned timestamp is less
2478 * than timestamp of the first retransmission.
2479 */
tcp_packet_delayed(const struct tcp_sock * tp)2480 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2481 {
2482 const struct sock *sk = (const struct sock *)tp;
2483
2484 if (tp->retrans_stamp &&
2485 tcp_tsopt_ecr_before(tp, tp->retrans_stamp))
2486 return true; /* got echoed TS before first retransmission */
2487
2488 /* Check if nothing was retransmitted (retrans_stamp==0), which may
2489 * happen in fast recovery due to TSQ. But we ignore zero retrans_stamp
2490 * in TCP_SYN_SENT, since when we set FLAG_SYN_ACKED we also clear
2491 * retrans_stamp even if we had retransmitted the SYN.
2492 */
2493 if (!tp->retrans_stamp && /* no record of a retransmit/SYN? */
2494 sk->sk_state != TCP_SYN_SENT) /* not the FLAG_SYN_ACKED case? */
2495 return true; /* nothing was retransmitted */
2496
2497 return false;
2498 }
2499
2500 /* Undo procedures. */
2501
2502 /* We can clear retrans_stamp when there are no retransmissions in the
2503 * window. It would seem that it is trivially available for us in
2504 * tp->retrans_out, however, that kind of assumptions doesn't consider
2505 * what will happen if errors occur when sending retransmission for the
2506 * second time. ...It could the that such segment has only
2507 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2508 * the head skb is enough except for some reneging corner cases that
2509 * are not worth the effort.
2510 *
2511 * Main reason for all this complexity is the fact that connection dying
2512 * time now depends on the validity of the retrans_stamp, in particular,
2513 * that successive retransmissions of a segment must not advance
2514 * retrans_stamp under any conditions.
2515 */
tcp_any_retrans_done(const struct sock * sk)2516 static bool tcp_any_retrans_done(const struct sock *sk)
2517 {
2518 const struct tcp_sock *tp = tcp_sk(sk);
2519 struct sk_buff *skb;
2520
2521 if (tp->retrans_out)
2522 return true;
2523
2524 skb = tcp_rtx_queue_head(sk);
2525 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2526 return true;
2527
2528 return false;
2529 }
2530
2531 /* If loss recovery is finished and there are no retransmits out in the
2532 * network, then we clear retrans_stamp so that upon the next loss recovery
2533 * retransmits_timed_out() and timestamp-undo are using the correct value.
2534 */
tcp_retrans_stamp_cleanup(struct sock * sk)2535 static void tcp_retrans_stamp_cleanup(struct sock *sk)
2536 {
2537 if (!tcp_any_retrans_done(sk))
2538 tcp_sk(sk)->retrans_stamp = 0;
2539 }
2540
DBGUNDO(struct sock * sk,const char * msg)2541 static void DBGUNDO(struct sock *sk, const char *msg)
2542 {
2543 #if FASTRETRANS_DEBUG > 1
2544 struct tcp_sock *tp = tcp_sk(sk);
2545 struct inet_sock *inet = inet_sk(sk);
2546
2547 if (sk->sk_family == AF_INET) {
2548 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2549 msg,
2550 &inet->inet_daddr, ntohs(inet->inet_dport),
2551 tcp_snd_cwnd(tp), tcp_left_out(tp),
2552 tp->snd_ssthresh, tp->prior_ssthresh,
2553 tp->packets_out);
2554 }
2555 #if IS_ENABLED(CONFIG_IPV6)
2556 else if (sk->sk_family == AF_INET6) {
2557 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2558 msg,
2559 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2560 tcp_snd_cwnd(tp), tcp_left_out(tp),
2561 tp->snd_ssthresh, tp->prior_ssthresh,
2562 tp->packets_out);
2563 }
2564 #endif
2565 #endif
2566 }
2567
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2568 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2569 {
2570 struct tcp_sock *tp = tcp_sk(sk);
2571
2572 if (unmark_loss) {
2573 struct sk_buff *skb;
2574
2575 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2576 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2577 }
2578 tp->lost_out = 0;
2579 tcp_clear_all_retrans_hints(tp);
2580 }
2581
2582 if (tp->prior_ssthresh) {
2583 const struct inet_connection_sock *icsk = inet_csk(sk);
2584
2585 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2586
2587 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2588 tp->snd_ssthresh = tp->prior_ssthresh;
2589 tcp_ecn_withdraw_cwr(tp);
2590 }
2591 }
2592 tp->snd_cwnd_stamp = tcp_jiffies32;
2593 tp->undo_marker = 0;
2594 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2595 }
2596
tcp_may_undo(const struct tcp_sock * tp)2597 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2598 {
2599 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2600 }
2601
tcp_is_non_sack_preventing_reopen(struct sock * sk)2602 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2603 {
2604 struct tcp_sock *tp = tcp_sk(sk);
2605
2606 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2607 /* Hold old state until something *above* high_seq
2608 * is ACKed. For Reno it is MUST to prevent false
2609 * fast retransmits (RFC2582). SACK TCP is safe. */
2610 if (!tcp_any_retrans_done(sk))
2611 tp->retrans_stamp = 0;
2612 return true;
2613 }
2614 return false;
2615 }
2616
2617 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2618 static bool tcp_try_undo_recovery(struct sock *sk)
2619 {
2620 struct tcp_sock *tp = tcp_sk(sk);
2621
2622 if (tcp_may_undo(tp)) {
2623 int mib_idx;
2624
2625 /* Happy end! We did not retransmit anything
2626 * or our original transmission succeeded.
2627 */
2628 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2629 tcp_undo_cwnd_reduction(sk, false);
2630 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2631 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2632 else
2633 mib_idx = LINUX_MIB_TCPFULLUNDO;
2634
2635 NET_INC_STATS(sock_net(sk), mib_idx);
2636 } else if (tp->rack.reo_wnd_persist) {
2637 tp->rack.reo_wnd_persist--;
2638 }
2639 if (tcp_is_non_sack_preventing_reopen(sk))
2640 return true;
2641 tcp_set_ca_state(sk, TCP_CA_Open);
2642 tp->is_sack_reneg = 0;
2643 return false;
2644 }
2645
2646 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2647 static bool tcp_try_undo_dsack(struct sock *sk)
2648 {
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 if (tp->undo_marker && !tp->undo_retrans) {
2652 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2653 tp->rack.reo_wnd_persist + 1);
2654 DBGUNDO(sk, "D-SACK");
2655 tcp_undo_cwnd_reduction(sk, false);
2656 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2657 return true;
2658 }
2659 return false;
2660 }
2661
2662 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2663 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2664 {
2665 struct tcp_sock *tp = tcp_sk(sk);
2666
2667 if (frto_undo || tcp_may_undo(tp)) {
2668 tcp_undo_cwnd_reduction(sk, true);
2669
2670 DBGUNDO(sk, "partial loss");
2671 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2672 if (frto_undo)
2673 NET_INC_STATS(sock_net(sk),
2674 LINUX_MIB_TCPSPURIOUSRTOS);
2675 inet_csk(sk)->icsk_retransmits = 0;
2676 if (tcp_is_non_sack_preventing_reopen(sk))
2677 return true;
2678 if (frto_undo || tcp_is_sack(tp)) {
2679 tcp_set_ca_state(sk, TCP_CA_Open);
2680 tp->is_sack_reneg = 0;
2681 }
2682 return true;
2683 }
2684 return false;
2685 }
2686
2687 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2688 * It computes the number of packets to send (sndcnt) based on packets newly
2689 * delivered:
2690 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2691 * cwnd reductions across a full RTT.
2692 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2693 * But when SND_UNA is acked without further losses,
2694 * slow starts cwnd up to ssthresh to speed up the recovery.
2695 */
tcp_init_cwnd_reduction(struct sock * sk)2696 static void tcp_init_cwnd_reduction(struct sock *sk)
2697 {
2698 struct tcp_sock *tp = tcp_sk(sk);
2699
2700 tp->high_seq = tp->snd_nxt;
2701 tp->tlp_high_seq = 0;
2702 tp->snd_cwnd_cnt = 0;
2703 tp->prior_cwnd = tcp_snd_cwnd(tp);
2704 tp->prr_delivered = 0;
2705 tp->prr_out = 0;
2706 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2707 tcp_ecn_queue_cwr(tp);
2708 }
2709
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int newly_lost,int flag)2710 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2711 {
2712 struct tcp_sock *tp = tcp_sk(sk);
2713 int sndcnt = 0;
2714 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2715
2716 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2717 return;
2718
2719 tp->prr_delivered += newly_acked_sacked;
2720 if (delta < 0) {
2721 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2722 tp->prior_cwnd - 1;
2723 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2724 } else {
2725 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2726 newly_acked_sacked);
2727 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2728 sndcnt++;
2729 sndcnt = min(delta, sndcnt);
2730 }
2731 /* Force a fast retransmit upon entering fast recovery */
2732 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2733 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2734 }
2735
tcp_end_cwnd_reduction(struct sock * sk)2736 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2737 {
2738 struct tcp_sock *tp = tcp_sk(sk);
2739
2740 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2741 return;
2742
2743 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2744 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2745 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2746 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2747 tp->snd_cwnd_stamp = tcp_jiffies32;
2748 }
2749 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2750 }
2751
2752 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2753 void tcp_enter_cwr(struct sock *sk)
2754 {
2755 struct tcp_sock *tp = tcp_sk(sk);
2756
2757 tp->prior_ssthresh = 0;
2758 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2759 tp->undo_marker = 0;
2760 tcp_init_cwnd_reduction(sk);
2761 tcp_set_ca_state(sk, TCP_CA_CWR);
2762 }
2763 }
2764 EXPORT_SYMBOL(tcp_enter_cwr);
2765
tcp_try_keep_open(struct sock * sk)2766 static void tcp_try_keep_open(struct sock *sk)
2767 {
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 int state = TCP_CA_Open;
2770
2771 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2772 state = TCP_CA_Disorder;
2773
2774 if (inet_csk(sk)->icsk_ca_state != state) {
2775 tcp_set_ca_state(sk, state);
2776 tp->high_seq = tp->snd_nxt;
2777 }
2778 }
2779
tcp_try_to_open(struct sock * sk,int flag)2780 static void tcp_try_to_open(struct sock *sk, int flag)
2781 {
2782 struct tcp_sock *tp = tcp_sk(sk);
2783
2784 tcp_verify_left_out(tp);
2785
2786 if (!tcp_any_retrans_done(sk))
2787 tp->retrans_stamp = 0;
2788
2789 if (flag & FLAG_ECE)
2790 tcp_enter_cwr(sk);
2791
2792 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2793 tcp_try_keep_open(sk);
2794 }
2795 }
2796
tcp_mtup_probe_failed(struct sock * sk)2797 static void tcp_mtup_probe_failed(struct sock *sk)
2798 {
2799 struct inet_connection_sock *icsk = inet_csk(sk);
2800
2801 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2802 icsk->icsk_mtup.probe_size = 0;
2803 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2804 }
2805
tcp_mtup_probe_success(struct sock * sk)2806 static void tcp_mtup_probe_success(struct sock *sk)
2807 {
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 struct inet_connection_sock *icsk = inet_csk(sk);
2810 u64 val;
2811
2812 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2813
2814 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2815 do_div(val, icsk->icsk_mtup.probe_size);
2816 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2817 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2818
2819 tp->snd_cwnd_cnt = 0;
2820 tp->snd_cwnd_stamp = tcp_jiffies32;
2821 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2822
2823 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2824 icsk->icsk_mtup.probe_size = 0;
2825 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2826 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2827 }
2828
2829 /* Sometimes we deduce that packets have been dropped due to reasons other than
2830 * congestion, like path MTU reductions or failed client TFO attempts. In these
2831 * cases we call this function to retransmit as many packets as cwnd allows,
2832 * without reducing cwnd. Given that retransmits will set retrans_stamp to a
2833 * non-zero value (and may do so in a later calling context due to TSQ), we
2834 * also enter CA_Loss so that we track when all retransmitted packets are ACKed
2835 * and clear retrans_stamp when that happens (to ensure later recurring RTOs
2836 * are using the correct retrans_stamp and don't declare ETIMEDOUT
2837 * prematurely).
2838 */
tcp_non_congestion_loss_retransmit(struct sock * sk)2839 static void tcp_non_congestion_loss_retransmit(struct sock *sk)
2840 {
2841 const struct inet_connection_sock *icsk = inet_csk(sk);
2842 struct tcp_sock *tp = tcp_sk(sk);
2843
2844 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2845 tp->high_seq = tp->snd_nxt;
2846 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2847 tp->prior_ssthresh = 0;
2848 tp->undo_marker = 0;
2849 tcp_set_ca_state(sk, TCP_CA_Loss);
2850 }
2851 tcp_xmit_retransmit_queue(sk);
2852 }
2853
2854 /* Do a simple retransmit without using the backoff mechanisms in
2855 * tcp_timer. This is used for path mtu discovery.
2856 * The socket is already locked here.
2857 */
tcp_simple_retransmit(struct sock * sk)2858 void tcp_simple_retransmit(struct sock *sk)
2859 {
2860 struct tcp_sock *tp = tcp_sk(sk);
2861 struct sk_buff *skb;
2862 int mss;
2863
2864 /* A fastopen SYN request is stored as two separate packets within
2865 * the retransmit queue, this is done by tcp_send_syn_data().
2866 * As a result simply checking the MSS of the frames in the queue
2867 * will not work for the SYN packet.
2868 *
2869 * Us being here is an indication of a path MTU issue so we can
2870 * assume that the fastopen SYN was lost and just mark all the
2871 * frames in the retransmit queue as lost. We will use an MSS of
2872 * -1 to mark all frames as lost, otherwise compute the current MSS.
2873 */
2874 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2875 mss = -1;
2876 else
2877 mss = tcp_current_mss(sk);
2878
2879 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2880 if (tcp_skb_seglen(skb) > mss)
2881 tcp_mark_skb_lost(sk, skb);
2882 }
2883
2884 tcp_clear_retrans_hints_partial(tp);
2885
2886 if (!tp->lost_out)
2887 return;
2888
2889 if (tcp_is_reno(tp))
2890 tcp_limit_reno_sacked(tp);
2891
2892 tcp_verify_left_out(tp);
2893
2894 /* Don't muck with the congestion window here.
2895 * Reason is that we do not increase amount of _data_
2896 * in network, but units changed and effective
2897 * cwnd/ssthresh really reduced now.
2898 */
2899 tcp_non_congestion_loss_retransmit(sk);
2900 }
2901 EXPORT_SYMBOL(tcp_simple_retransmit);
2902
tcp_enter_recovery(struct sock * sk,bool ece_ack)2903 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2904 {
2905 struct tcp_sock *tp = tcp_sk(sk);
2906 int mib_idx;
2907
2908 /* Start the clock with our fast retransmit, for undo and ETIMEDOUT. */
2909 tcp_retrans_stamp_cleanup(sk);
2910
2911 if (tcp_is_reno(tp))
2912 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2913 else
2914 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2915
2916 NET_INC_STATS(sock_net(sk), mib_idx);
2917
2918 tp->prior_ssthresh = 0;
2919 tcp_init_undo(tp);
2920
2921 if (!tcp_in_cwnd_reduction(sk)) {
2922 if (!ece_ack)
2923 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2924 tcp_init_cwnd_reduction(sk);
2925 }
2926 tcp_set_ca_state(sk, TCP_CA_Recovery);
2927 }
2928
tcp_update_rto_time(struct tcp_sock * tp)2929 static void tcp_update_rto_time(struct tcp_sock *tp)
2930 {
2931 if (tp->rto_stamp) {
2932 tp->total_rto_time += tcp_time_stamp_ms(tp) - tp->rto_stamp;
2933 tp->rto_stamp = 0;
2934 }
2935 }
2936
2937 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2938 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2939 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2940 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2941 int *rexmit)
2942 {
2943 struct tcp_sock *tp = tcp_sk(sk);
2944 bool recovered = !before(tp->snd_una, tp->high_seq);
2945
2946 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2947 tcp_try_undo_loss(sk, false))
2948 return;
2949
2950 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2951 /* Step 3.b. A timeout is spurious if not all data are
2952 * lost, i.e., never-retransmitted data are (s)acked.
2953 */
2954 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2955 tcp_try_undo_loss(sk, true))
2956 return;
2957
2958 if (after(tp->snd_nxt, tp->high_seq)) {
2959 if (flag & FLAG_DATA_SACKED || num_dupack)
2960 tp->frto = 0; /* Step 3.a. loss was real */
2961 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2962 tp->high_seq = tp->snd_nxt;
2963 /* Step 2.b. Try send new data (but deferred until cwnd
2964 * is updated in tcp_ack()). Otherwise fall back to
2965 * the conventional recovery.
2966 */
2967 if (!tcp_write_queue_empty(sk) &&
2968 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2969 *rexmit = REXMIT_NEW;
2970 return;
2971 }
2972 tp->frto = 0;
2973 }
2974 }
2975
2976 if (recovered) {
2977 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2978 tcp_try_undo_recovery(sk);
2979 return;
2980 }
2981 if (tcp_is_reno(tp)) {
2982 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2983 * delivered. Lower inflight to clock out (re)transmissions.
2984 */
2985 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2986 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2987 else if (flag & FLAG_SND_UNA_ADVANCED)
2988 tcp_reset_reno_sack(tp);
2989 }
2990 *rexmit = REXMIT_LOST;
2991 }
2992
tcp_force_fast_retransmit(struct sock * sk)2993 static bool tcp_force_fast_retransmit(struct sock *sk)
2994 {
2995 struct tcp_sock *tp = tcp_sk(sk);
2996
2997 return after(tcp_highest_sack_seq(tp),
2998 tp->snd_una + tp->reordering * tp->mss_cache);
2999 }
3000
3001 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)3002 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
3003 bool *do_lost)
3004 {
3005 struct tcp_sock *tp = tcp_sk(sk);
3006
3007 if (tp->undo_marker && tcp_packet_delayed(tp)) {
3008 /* Plain luck! Hole if filled with delayed
3009 * packet, rather than with a retransmit. Check reordering.
3010 */
3011 tcp_check_sack_reordering(sk, prior_snd_una, 1);
3012
3013 /* We are getting evidence that the reordering degree is higher
3014 * than we realized. If there are no retransmits out then we
3015 * can undo. Otherwise we clock out new packets but do not
3016 * mark more packets lost or retransmit more.
3017 */
3018 if (tp->retrans_out)
3019 return true;
3020
3021 if (!tcp_any_retrans_done(sk))
3022 tp->retrans_stamp = 0;
3023
3024 DBGUNDO(sk, "partial recovery");
3025 tcp_undo_cwnd_reduction(sk, true);
3026 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
3027 tcp_try_keep_open(sk);
3028 } else {
3029 /* Partial ACK arrived. Force fast retransmit. */
3030 *do_lost = tcp_force_fast_retransmit(sk);
3031 }
3032 return false;
3033 }
3034
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)3035 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
3036 {
3037 struct tcp_sock *tp = tcp_sk(sk);
3038
3039 if (tcp_rtx_queue_empty(sk))
3040 return;
3041
3042 if (unlikely(tcp_is_reno(tp))) {
3043 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
3044 } else if (tcp_is_rack(sk)) {
3045 u32 prior_retrans = tp->retrans_out;
3046
3047 if (tcp_rack_mark_lost(sk))
3048 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
3049 if (prior_retrans > tp->retrans_out)
3050 *ack_flag |= FLAG_LOST_RETRANS;
3051 }
3052 }
3053
3054 /* Process an event, which can update packets-in-flight not trivially.
3055 * Main goal of this function is to calculate new estimate for left_out,
3056 * taking into account both packets sitting in receiver's buffer and
3057 * packets lost by network.
3058 *
3059 * Besides that it updates the congestion state when packet loss or ECN
3060 * is detected. But it does not reduce the cwnd, it is done by the
3061 * congestion control later.
3062 *
3063 * It does _not_ decide what to send, it is made in function
3064 * tcp_xmit_retransmit_queue().
3065 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)3066 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
3067 int num_dupack, int *ack_flag, int *rexmit)
3068 {
3069 struct inet_connection_sock *icsk = inet_csk(sk);
3070 struct tcp_sock *tp = tcp_sk(sk);
3071 int fast_rexmit = 0, flag = *ack_flag;
3072 bool ece_ack = flag & FLAG_ECE;
3073 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
3074 tcp_force_fast_retransmit(sk));
3075
3076 if (!tp->packets_out && tp->sacked_out)
3077 tp->sacked_out = 0;
3078
3079 /* Now state machine starts.
3080 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
3081 if (ece_ack)
3082 tp->prior_ssthresh = 0;
3083
3084 /* B. In all the states check for reneging SACKs. */
3085 if (tcp_check_sack_reneging(sk, ack_flag))
3086 return;
3087
3088 /* C. Check consistency of the current state. */
3089 tcp_verify_left_out(tp);
3090
3091 /* D. Check state exit conditions. State can be terminated
3092 * when high_seq is ACKed. */
3093 if (icsk->icsk_ca_state == TCP_CA_Open) {
3094 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3095 tp->retrans_stamp = 0;
3096 } else if (!before(tp->snd_una, tp->high_seq)) {
3097 switch (icsk->icsk_ca_state) {
3098 case TCP_CA_CWR:
3099 /* CWR is to be held something *above* high_seq
3100 * is ACKed for CWR bit to reach receiver. */
3101 if (tp->snd_una != tp->high_seq) {
3102 tcp_end_cwnd_reduction(sk);
3103 tcp_set_ca_state(sk, TCP_CA_Open);
3104 }
3105 break;
3106
3107 case TCP_CA_Recovery:
3108 if (tcp_is_reno(tp))
3109 tcp_reset_reno_sack(tp);
3110 if (tcp_try_undo_recovery(sk))
3111 return;
3112 tcp_end_cwnd_reduction(sk);
3113 break;
3114 }
3115 }
3116
3117 /* E. Process state. */
3118 switch (icsk->icsk_ca_state) {
3119 case TCP_CA_Recovery:
3120 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3121 if (tcp_is_reno(tp))
3122 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3123 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3124 return;
3125
3126 if (tcp_try_undo_dsack(sk))
3127 tcp_try_to_open(sk, flag);
3128
3129 tcp_identify_packet_loss(sk, ack_flag);
3130 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3131 if (!tcp_time_to_recover(sk, flag))
3132 return;
3133 /* Undo reverts the recovery state. If loss is evident,
3134 * starts a new recovery (e.g. reordering then loss);
3135 */
3136 tcp_enter_recovery(sk, ece_ack);
3137 }
3138 break;
3139 case TCP_CA_Loss:
3140 tcp_process_loss(sk, flag, num_dupack, rexmit);
3141 if (icsk->icsk_ca_state != TCP_CA_Loss)
3142 tcp_update_rto_time(tp);
3143 tcp_identify_packet_loss(sk, ack_flag);
3144 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3145 (*ack_flag & FLAG_LOST_RETRANS)))
3146 return;
3147 /* Change state if cwnd is undone or retransmits are lost */
3148 fallthrough;
3149 default:
3150 if (tcp_is_reno(tp)) {
3151 if (flag & FLAG_SND_UNA_ADVANCED)
3152 tcp_reset_reno_sack(tp);
3153 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3154 }
3155
3156 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3157 tcp_try_undo_dsack(sk);
3158
3159 tcp_identify_packet_loss(sk, ack_flag);
3160 if (!tcp_time_to_recover(sk, flag)) {
3161 tcp_try_to_open(sk, flag);
3162 return;
3163 }
3164
3165 /* MTU probe failure: don't reduce cwnd */
3166 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3167 icsk->icsk_mtup.probe_size &&
3168 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3169 tcp_mtup_probe_failed(sk);
3170 /* Restores the reduction we did in tcp_mtup_probe() */
3171 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3172 tcp_simple_retransmit(sk);
3173 return;
3174 }
3175
3176 /* Otherwise enter Recovery state */
3177 tcp_enter_recovery(sk, ece_ack);
3178 fast_rexmit = 1;
3179 }
3180
3181 if (!tcp_is_rack(sk) && do_lost)
3182 tcp_update_scoreboard(sk, fast_rexmit);
3183 *rexmit = REXMIT_LOST;
3184 }
3185
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3186 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3187 {
3188 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3189 struct tcp_sock *tp = tcp_sk(sk);
3190
3191 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3192 /* If the remote keeps returning delayed ACKs, eventually
3193 * the min filter would pick it up and overestimate the
3194 * prop. delay when it expires. Skip suspected delayed ACKs.
3195 */
3196 return;
3197 }
3198 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3199 rtt_us ? : jiffies_to_usecs(1));
3200 }
3201
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3202 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3203 long seq_rtt_us, long sack_rtt_us,
3204 long ca_rtt_us, struct rate_sample *rs)
3205 {
3206 const struct tcp_sock *tp = tcp_sk(sk);
3207
3208 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3209 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3210 * Karn's algorithm forbids taking RTT if some retransmitted data
3211 * is acked (RFC6298).
3212 */
3213 if (seq_rtt_us < 0)
3214 seq_rtt_us = sack_rtt_us;
3215
3216 /* RTTM Rule: A TSecr value received in a segment is used to
3217 * update the averaged RTT measurement only if the segment
3218 * acknowledges some new data, i.e., only if it advances the
3219 * left edge of the send window.
3220 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3221 */
3222 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp &&
3223 tp->rx_opt.rcv_tsecr && flag & FLAG_ACKED)
3224 seq_rtt_us = ca_rtt_us = tcp_rtt_tsopt_us(tp);
3225
3226 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3227 if (seq_rtt_us < 0)
3228 return false;
3229
3230 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3231 * always taken together with ACK, SACK, or TS-opts. Any negative
3232 * values will be skipped with the seq_rtt_us < 0 check above.
3233 */
3234 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3235 tcp_rtt_estimator(sk, seq_rtt_us);
3236 tcp_set_rto(sk);
3237
3238 /* RFC6298: only reset backoff on valid RTT measurement. */
3239 inet_csk(sk)->icsk_backoff = 0;
3240 return true;
3241 }
3242
3243 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3244 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3245 {
3246 struct rate_sample rs;
3247 long rtt_us = -1L;
3248
3249 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3250 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3251
3252 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3253 }
3254
3255
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3256 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3257 {
3258 const struct inet_connection_sock *icsk = inet_csk(sk);
3259
3260 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3261 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3262 }
3263
3264 /* Restart timer after forward progress on connection.
3265 * RFC2988 recommends to restart timer to now+rto.
3266 */
tcp_rearm_rto(struct sock * sk)3267 void tcp_rearm_rto(struct sock *sk)
3268 {
3269 const struct inet_connection_sock *icsk = inet_csk(sk);
3270 struct tcp_sock *tp = tcp_sk(sk);
3271
3272 /* If the retrans timer is currently being used by Fast Open
3273 * for SYN-ACK retrans purpose, stay put.
3274 */
3275 if (rcu_access_pointer(tp->fastopen_rsk))
3276 return;
3277
3278 if (!tp->packets_out) {
3279 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3280 } else {
3281 u32 rto = inet_csk(sk)->icsk_rto;
3282 /* Offset the time elapsed after installing regular RTO */
3283 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3284 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3285 s64 delta_us = tcp_rto_delta_us(sk);
3286 /* delta_us may not be positive if the socket is locked
3287 * when the retrans timer fires and is rescheduled.
3288 */
3289 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3290 }
3291 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3292 TCP_RTO_MAX);
3293 }
3294 }
3295
3296 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3297 static void tcp_set_xmit_timer(struct sock *sk)
3298 {
3299 if (!tcp_schedule_loss_probe(sk, true))
3300 tcp_rearm_rto(sk);
3301 }
3302
3303 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3304 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3305 {
3306 struct tcp_sock *tp = tcp_sk(sk);
3307 u32 packets_acked;
3308
3309 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3310
3311 packets_acked = tcp_skb_pcount(skb);
3312 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3313 return 0;
3314 packets_acked -= tcp_skb_pcount(skb);
3315
3316 if (packets_acked) {
3317 BUG_ON(tcp_skb_pcount(skb) == 0);
3318 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3319 }
3320
3321 return packets_acked;
3322 }
3323
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,const struct sk_buff * ack_skb,u32 prior_snd_una)3324 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3325 const struct sk_buff *ack_skb, u32 prior_snd_una)
3326 {
3327 const struct skb_shared_info *shinfo;
3328
3329 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3330 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3331 return;
3332
3333 shinfo = skb_shinfo(skb);
3334 if (!before(shinfo->tskey, prior_snd_una) &&
3335 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3336 tcp_skb_tsorted_save(skb) {
3337 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3338 } tcp_skb_tsorted_restore(skb);
3339 }
3340 }
3341
3342 /* Remove acknowledged frames from the retransmission queue. If our packet
3343 * is before the ack sequence we can discard it as it's confirmed to have
3344 * arrived at the other end.
3345 */
tcp_clean_rtx_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3346 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3347 u32 prior_fack, u32 prior_snd_una,
3348 struct tcp_sacktag_state *sack, bool ece_ack)
3349 {
3350 const struct inet_connection_sock *icsk = inet_csk(sk);
3351 u64 first_ackt, last_ackt;
3352 struct tcp_sock *tp = tcp_sk(sk);
3353 u32 prior_sacked = tp->sacked_out;
3354 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3355 struct sk_buff *skb, *next;
3356 bool fully_acked = true;
3357 long sack_rtt_us = -1L;
3358 long seq_rtt_us = -1L;
3359 long ca_rtt_us = -1L;
3360 u32 pkts_acked = 0;
3361 bool rtt_update;
3362 int flag = 0;
3363
3364 first_ackt = 0;
3365
3366 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3367 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3368 const u32 start_seq = scb->seq;
3369 u8 sacked = scb->sacked;
3370 u32 acked_pcount;
3371
3372 /* Determine how many packets and what bytes were acked, tso and else */
3373 if (after(scb->end_seq, tp->snd_una)) {
3374 if (tcp_skb_pcount(skb) == 1 ||
3375 !after(tp->snd_una, scb->seq))
3376 break;
3377
3378 acked_pcount = tcp_tso_acked(sk, skb);
3379 if (!acked_pcount)
3380 break;
3381 fully_acked = false;
3382 } else {
3383 acked_pcount = tcp_skb_pcount(skb);
3384 }
3385
3386 if (unlikely(sacked & TCPCB_RETRANS)) {
3387 if (sacked & TCPCB_SACKED_RETRANS)
3388 tp->retrans_out -= acked_pcount;
3389 flag |= FLAG_RETRANS_DATA_ACKED;
3390 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3391 last_ackt = tcp_skb_timestamp_us(skb);
3392 WARN_ON_ONCE(last_ackt == 0);
3393 if (!first_ackt)
3394 first_ackt = last_ackt;
3395
3396 if (before(start_seq, reord))
3397 reord = start_seq;
3398 if (!after(scb->end_seq, tp->high_seq))
3399 flag |= FLAG_ORIG_SACK_ACKED;
3400 }
3401
3402 if (sacked & TCPCB_SACKED_ACKED) {
3403 tp->sacked_out -= acked_pcount;
3404 } else if (tcp_is_sack(tp)) {
3405 tcp_count_delivered(tp, acked_pcount, ece_ack);
3406 if (!tcp_skb_spurious_retrans(tp, skb))
3407 tcp_rack_advance(tp, sacked, scb->end_seq,
3408 tcp_skb_timestamp_us(skb));
3409 }
3410 if (sacked & TCPCB_LOST)
3411 tp->lost_out -= acked_pcount;
3412
3413 tp->packets_out -= acked_pcount;
3414 pkts_acked += acked_pcount;
3415 tcp_rate_skb_delivered(sk, skb, sack->rate);
3416
3417 /* Initial outgoing SYN's get put onto the write_queue
3418 * just like anything else we transmit. It is not
3419 * true data, and if we misinform our callers that
3420 * this ACK acks real data, we will erroneously exit
3421 * connection startup slow start one packet too
3422 * quickly. This is severely frowned upon behavior.
3423 */
3424 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3425 flag |= FLAG_DATA_ACKED;
3426 } else {
3427 flag |= FLAG_SYN_ACKED;
3428 tp->retrans_stamp = 0;
3429 }
3430
3431 if (!fully_acked)
3432 break;
3433
3434 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3435
3436 next = skb_rb_next(skb);
3437 if (unlikely(skb == tp->retransmit_skb_hint))
3438 tp->retransmit_skb_hint = NULL;
3439 if (unlikely(skb == tp->lost_skb_hint))
3440 tp->lost_skb_hint = NULL;
3441 tcp_highest_sack_replace(sk, skb, next);
3442 tcp_rtx_queue_unlink_and_free(skb, sk);
3443 }
3444
3445 if (!skb)
3446 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3447
3448 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3449 tp->snd_up = tp->snd_una;
3450
3451 if (skb) {
3452 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3453 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3454 flag |= FLAG_SACK_RENEGING;
3455 }
3456
3457 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3458 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3459 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3460
3461 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3462 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3463 sack->rate->prior_delivered + 1 == tp->delivered &&
3464 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3465 /* Conservatively mark a delayed ACK. It's typically
3466 * from a lone runt packet over the round trip to
3467 * a receiver w/o out-of-order or CE events.
3468 */
3469 flag |= FLAG_ACK_MAYBE_DELAYED;
3470 }
3471 }
3472 if (sack->first_sackt) {
3473 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3474 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3475 }
3476 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3477 ca_rtt_us, sack->rate);
3478
3479 if (flag & FLAG_ACKED) {
3480 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3481 if (unlikely(icsk->icsk_mtup.probe_size &&
3482 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3483 tcp_mtup_probe_success(sk);
3484 }
3485
3486 if (tcp_is_reno(tp)) {
3487 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3488
3489 /* If any of the cumulatively ACKed segments was
3490 * retransmitted, non-SACK case cannot confirm that
3491 * progress was due to original transmission due to
3492 * lack of TCPCB_SACKED_ACKED bits even if some of
3493 * the packets may have been never retransmitted.
3494 */
3495 if (flag & FLAG_RETRANS_DATA_ACKED)
3496 flag &= ~FLAG_ORIG_SACK_ACKED;
3497 } else {
3498 int delta;
3499
3500 /* Non-retransmitted hole got filled? That's reordering */
3501 if (before(reord, prior_fack))
3502 tcp_check_sack_reordering(sk, reord, 0);
3503
3504 delta = prior_sacked - tp->sacked_out;
3505 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3506 }
3507 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3508 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3509 tcp_skb_timestamp_us(skb))) {
3510 /* Do not re-arm RTO if the sack RTT is measured from data sent
3511 * after when the head was last (re)transmitted. Otherwise the
3512 * timeout may continue to extend in loss recovery.
3513 */
3514 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3515 }
3516
3517 if (icsk->icsk_ca_ops->pkts_acked) {
3518 struct ack_sample sample = { .pkts_acked = pkts_acked,
3519 .rtt_us = sack->rate->rtt_us };
3520
3521 sample.in_flight = tp->mss_cache *
3522 (tp->delivered - sack->rate->prior_delivered);
3523 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3524 }
3525
3526 #if FASTRETRANS_DEBUG > 0
3527 WARN_ON((int)tp->sacked_out < 0);
3528 WARN_ON((int)tp->lost_out < 0);
3529 WARN_ON((int)tp->retrans_out < 0);
3530 if (!tp->packets_out && tcp_is_sack(tp)) {
3531 icsk = inet_csk(sk);
3532 if (tp->lost_out) {
3533 pr_debug("Leak l=%u %d\n",
3534 tp->lost_out, icsk->icsk_ca_state);
3535 tp->lost_out = 0;
3536 }
3537 if (tp->sacked_out) {
3538 pr_debug("Leak s=%u %d\n",
3539 tp->sacked_out, icsk->icsk_ca_state);
3540 tp->sacked_out = 0;
3541 }
3542 if (tp->retrans_out) {
3543 pr_debug("Leak r=%u %d\n",
3544 tp->retrans_out, icsk->icsk_ca_state);
3545 tp->retrans_out = 0;
3546 }
3547 }
3548 #endif
3549 return flag;
3550 }
3551
tcp_ack_probe(struct sock * sk)3552 static void tcp_ack_probe(struct sock *sk)
3553 {
3554 struct inet_connection_sock *icsk = inet_csk(sk);
3555 struct sk_buff *head = tcp_send_head(sk);
3556 const struct tcp_sock *tp = tcp_sk(sk);
3557
3558 /* Was it a usable window open? */
3559 if (!head)
3560 return;
3561 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3562 icsk->icsk_backoff = 0;
3563 icsk->icsk_probes_tstamp = 0;
3564 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3565 /* Socket must be waked up by subsequent tcp_data_snd_check().
3566 * This function is not for random using!
3567 */
3568 } else {
3569 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3570
3571 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3572 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3573 }
3574 }
3575
tcp_ack_is_dubious(const struct sock * sk,const int flag)3576 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3577 {
3578 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3579 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3580 }
3581
3582 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3583 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3584 {
3585 /* If reordering is high then always grow cwnd whenever data is
3586 * delivered regardless of its ordering. Otherwise stay conservative
3587 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3588 * new SACK or ECE mark may first advance cwnd here and later reduce
3589 * cwnd in tcp_fastretrans_alert() based on more states.
3590 */
3591 if (tcp_sk(sk)->reordering >
3592 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3593 return flag & FLAG_FORWARD_PROGRESS;
3594
3595 return flag & FLAG_DATA_ACKED;
3596 }
3597
3598 /* The "ultimate" congestion control function that aims to replace the rigid
3599 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3600 * It's called toward the end of processing an ACK with precise rate
3601 * information. All transmission or retransmission are delayed afterwards.
3602 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3603 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3604 int flag, const struct rate_sample *rs)
3605 {
3606 const struct inet_connection_sock *icsk = inet_csk(sk);
3607
3608 if (icsk->icsk_ca_ops->cong_control) {
3609 icsk->icsk_ca_ops->cong_control(sk, ack, flag, rs);
3610 return;
3611 }
3612
3613 if (tcp_in_cwnd_reduction(sk)) {
3614 /* Reduce cwnd if state mandates */
3615 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3616 } else if (tcp_may_raise_cwnd(sk, flag)) {
3617 /* Advance cwnd if state allows */
3618 tcp_cong_avoid(sk, ack, acked_sacked);
3619 }
3620 tcp_update_pacing_rate(sk);
3621 }
3622
3623 /* Check that window update is acceptable.
3624 * The function assumes that snd_una<=ack<=snd_next.
3625 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3626 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3627 const u32 ack, const u32 ack_seq,
3628 const u32 nwin)
3629 {
3630 return after(ack, tp->snd_una) ||
3631 after(ack_seq, tp->snd_wl1) ||
3632 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3633 }
3634
tcp_snd_sne_update(struct tcp_sock * tp,u32 ack)3635 static void tcp_snd_sne_update(struct tcp_sock *tp, u32 ack)
3636 {
3637 #ifdef CONFIG_TCP_AO
3638 struct tcp_ao_info *ao;
3639
3640 if (!static_branch_unlikely(&tcp_ao_needed.key))
3641 return;
3642
3643 ao = rcu_dereference_protected(tp->ao_info,
3644 lockdep_sock_is_held((struct sock *)tp));
3645 if (ao && ack < tp->snd_una) {
3646 ao->snd_sne++;
3647 trace_tcp_ao_snd_sne_update((struct sock *)tp, ao->snd_sne);
3648 }
3649 #endif
3650 }
3651
3652 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3653 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3654 {
3655 u32 delta = ack - tp->snd_una;
3656
3657 sock_owned_by_me((struct sock *)tp);
3658 tp->bytes_acked += delta;
3659 tcp_snd_sne_update(tp, ack);
3660 tp->snd_una = ack;
3661 }
3662
tcp_rcv_sne_update(struct tcp_sock * tp,u32 seq)3663 static void tcp_rcv_sne_update(struct tcp_sock *tp, u32 seq)
3664 {
3665 #ifdef CONFIG_TCP_AO
3666 struct tcp_ao_info *ao;
3667
3668 if (!static_branch_unlikely(&tcp_ao_needed.key))
3669 return;
3670
3671 ao = rcu_dereference_protected(tp->ao_info,
3672 lockdep_sock_is_held((struct sock *)tp));
3673 if (ao && seq < tp->rcv_nxt) {
3674 ao->rcv_sne++;
3675 trace_tcp_ao_rcv_sne_update((struct sock *)tp, ao->rcv_sne);
3676 }
3677 #endif
3678 }
3679
3680 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3681 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3682 {
3683 u32 delta = seq - tp->rcv_nxt;
3684
3685 sock_owned_by_me((struct sock *)tp);
3686 tp->bytes_received += delta;
3687 tcp_rcv_sne_update(tp, seq);
3688 WRITE_ONCE(tp->rcv_nxt, seq);
3689 }
3690
3691 /* Update our send window.
3692 *
3693 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3694 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3695 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3696 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3697 u32 ack_seq)
3698 {
3699 struct tcp_sock *tp = tcp_sk(sk);
3700 int flag = 0;
3701 u32 nwin = ntohs(tcp_hdr(skb)->window);
3702
3703 if (likely(!tcp_hdr(skb)->syn))
3704 nwin <<= tp->rx_opt.snd_wscale;
3705
3706 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3707 flag |= FLAG_WIN_UPDATE;
3708 tcp_update_wl(tp, ack_seq);
3709
3710 if (tp->snd_wnd != nwin) {
3711 tp->snd_wnd = nwin;
3712
3713 /* Note, it is the only place, where
3714 * fast path is recovered for sending TCP.
3715 */
3716 tp->pred_flags = 0;
3717 tcp_fast_path_check(sk);
3718
3719 if (!tcp_write_queue_empty(sk))
3720 tcp_slow_start_after_idle_check(sk);
3721
3722 if (nwin > tp->max_window) {
3723 tp->max_window = nwin;
3724 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3725 }
3726 }
3727 }
3728
3729 tcp_snd_una_update(tp, ack);
3730
3731 return flag;
3732 }
3733
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3734 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3735 u32 *last_oow_ack_time)
3736 {
3737 /* Paired with the WRITE_ONCE() in this function. */
3738 u32 val = READ_ONCE(*last_oow_ack_time);
3739
3740 if (val) {
3741 s32 elapsed = (s32)(tcp_jiffies32 - val);
3742
3743 if (0 <= elapsed &&
3744 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3745 NET_INC_STATS(net, mib_idx);
3746 return true; /* rate-limited: don't send yet! */
3747 }
3748 }
3749
3750 /* Paired with the prior READ_ONCE() and with itself,
3751 * as we might be lockless.
3752 */
3753 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3754
3755 return false; /* not rate-limited: go ahead, send dupack now! */
3756 }
3757
3758 /* Return true if we're currently rate-limiting out-of-window ACKs and
3759 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3760 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3761 * attacks that send repeated SYNs or ACKs for the same connection. To
3762 * do this, we do not send a duplicate SYNACK or ACK if the remote
3763 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3764 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3765 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3766 int mib_idx, u32 *last_oow_ack_time)
3767 {
3768 /* Data packets without SYNs are not likely part of an ACK loop. */
3769 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3770 !tcp_hdr(skb)->syn)
3771 return false;
3772
3773 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3774 }
3775
3776 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk)3777 static void tcp_send_challenge_ack(struct sock *sk)
3778 {
3779 struct tcp_sock *tp = tcp_sk(sk);
3780 struct net *net = sock_net(sk);
3781 u32 count, now, ack_limit;
3782
3783 /* First check our per-socket dupack rate limit. */
3784 if (__tcp_oow_rate_limited(net,
3785 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3786 &tp->last_oow_ack_time))
3787 return;
3788
3789 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3790 if (ack_limit == INT_MAX)
3791 goto send_ack;
3792
3793 /* Then check host-wide RFC 5961 rate limit. */
3794 now = jiffies / HZ;
3795 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3796 u32 half = (ack_limit + 1) >> 1;
3797
3798 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3799 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3800 get_random_u32_inclusive(half, ack_limit + half - 1));
3801 }
3802 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3803 if (count > 0) {
3804 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3805 send_ack:
3806 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3807 tcp_send_ack(sk);
3808 }
3809 }
3810
tcp_store_ts_recent(struct tcp_sock * tp)3811 static void tcp_store_ts_recent(struct tcp_sock *tp)
3812 {
3813 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3814 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3815 }
3816
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3817 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3818 {
3819 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3820 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3821 * extra check below makes sure this can only happen
3822 * for pure ACK frames. -DaveM
3823 *
3824 * Not only, also it occurs for expired timestamps.
3825 */
3826
3827 if (tcp_paws_check(&tp->rx_opt, 0))
3828 tcp_store_ts_recent(tp);
3829 }
3830 }
3831
3832 /* This routine deals with acks during a TLP episode and ends an episode by
3833 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3834 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3835 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3836 {
3837 struct tcp_sock *tp = tcp_sk(sk);
3838
3839 if (before(ack, tp->tlp_high_seq))
3840 return;
3841
3842 if (!tp->tlp_retrans) {
3843 /* TLP of new data has been acknowledged */
3844 tp->tlp_high_seq = 0;
3845 } else if (flag & FLAG_DSACK_TLP) {
3846 /* This DSACK means original and TLP probe arrived; no loss */
3847 tp->tlp_high_seq = 0;
3848 } else if (after(ack, tp->tlp_high_seq)) {
3849 /* ACK advances: there was a loss, so reduce cwnd. Reset
3850 * tlp_high_seq in tcp_init_cwnd_reduction()
3851 */
3852 tcp_init_cwnd_reduction(sk);
3853 tcp_set_ca_state(sk, TCP_CA_CWR);
3854 tcp_end_cwnd_reduction(sk);
3855 tcp_try_keep_open(sk);
3856 NET_INC_STATS(sock_net(sk),
3857 LINUX_MIB_TCPLOSSPROBERECOVERY);
3858 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3859 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3860 /* Pure dupack: original and TLP probe arrived; no loss */
3861 tp->tlp_high_seq = 0;
3862 }
3863 }
3864
tcp_in_ack_event(struct sock * sk,u32 flags)3865 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3866 {
3867 const struct inet_connection_sock *icsk = inet_csk(sk);
3868
3869 if (icsk->icsk_ca_ops->in_ack_event)
3870 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3871 }
3872
3873 /* Congestion control has updated the cwnd already. So if we're in
3874 * loss recovery then now we do any new sends (for FRTO) or
3875 * retransmits (for CA_Loss or CA_recovery) that make sense.
3876 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3877 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3878 {
3879 struct tcp_sock *tp = tcp_sk(sk);
3880
3881 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3882 return;
3883
3884 if (unlikely(rexmit == REXMIT_NEW)) {
3885 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3886 TCP_NAGLE_OFF);
3887 if (after(tp->snd_nxt, tp->high_seq))
3888 return;
3889 tp->frto = 0;
3890 }
3891 tcp_xmit_retransmit_queue(sk);
3892 }
3893
3894 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3895 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3896 {
3897 const struct net *net = sock_net(sk);
3898 struct tcp_sock *tp = tcp_sk(sk);
3899 u32 delivered;
3900
3901 delivered = tp->delivered - prior_delivered;
3902 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3903 if (flag & FLAG_ECE)
3904 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3905
3906 return delivered;
3907 }
3908
3909 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3910 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3911 {
3912 struct inet_connection_sock *icsk = inet_csk(sk);
3913 struct tcp_sock *tp = tcp_sk(sk);
3914 struct tcp_sacktag_state sack_state;
3915 struct rate_sample rs = { .prior_delivered = 0 };
3916 u32 prior_snd_una = tp->snd_una;
3917 bool is_sack_reneg = tp->is_sack_reneg;
3918 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3919 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3920 int num_dupack = 0;
3921 int prior_packets = tp->packets_out;
3922 u32 delivered = tp->delivered;
3923 u32 lost = tp->lost;
3924 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3925 u32 prior_fack;
3926
3927 sack_state.first_sackt = 0;
3928 sack_state.rate = &rs;
3929 sack_state.sack_delivered = 0;
3930
3931 /* We very likely will need to access rtx queue. */
3932 prefetch(sk->tcp_rtx_queue.rb_node);
3933
3934 /* If the ack is older than previous acks
3935 * then we can probably ignore it.
3936 */
3937 if (before(ack, prior_snd_una)) {
3938 u32 max_window;
3939
3940 /* do not accept ACK for bytes we never sent. */
3941 max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3942 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3943 if (before(ack, prior_snd_una - max_window)) {
3944 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3945 tcp_send_challenge_ack(sk);
3946 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3947 }
3948 goto old_ack;
3949 }
3950
3951 /* If the ack includes data we haven't sent yet, discard
3952 * this segment (RFC793 Section 3.9).
3953 */
3954 if (after(ack, tp->snd_nxt))
3955 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3956
3957 if (after(ack, prior_snd_una)) {
3958 flag |= FLAG_SND_UNA_ADVANCED;
3959 icsk->icsk_retransmits = 0;
3960
3961 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3962 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3963 if (icsk->icsk_clean_acked)
3964 icsk->icsk_clean_acked(sk, ack);
3965 #endif
3966 }
3967
3968 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3969 rs.prior_in_flight = tcp_packets_in_flight(tp);
3970
3971 /* ts_recent update must be made after we are sure that the packet
3972 * is in window.
3973 */
3974 if (flag & FLAG_UPDATE_TS_RECENT)
3975 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3976
3977 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3978 FLAG_SND_UNA_ADVANCED) {
3979 /* Window is constant, pure forward advance.
3980 * No more checks are required.
3981 * Note, we use the fact that SND.UNA>=SND.WL2.
3982 */
3983 tcp_update_wl(tp, ack_seq);
3984 tcp_snd_una_update(tp, ack);
3985 flag |= FLAG_WIN_UPDATE;
3986
3987 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3988
3989 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3990 } else {
3991 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3992
3993 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3994 flag |= FLAG_DATA;
3995 else
3996 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3997
3998 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3999
4000 if (TCP_SKB_CB(skb)->sacked)
4001 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4002 &sack_state);
4003
4004 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
4005 flag |= FLAG_ECE;
4006 ack_ev_flags |= CA_ACK_ECE;
4007 }
4008
4009 if (sack_state.sack_delivered)
4010 tcp_count_delivered(tp, sack_state.sack_delivered,
4011 flag & FLAG_ECE);
4012
4013 if (flag & FLAG_WIN_UPDATE)
4014 ack_ev_flags |= CA_ACK_WIN_UPDATE;
4015
4016 tcp_in_ack_event(sk, ack_ev_flags);
4017 }
4018
4019 /* This is a deviation from RFC3168 since it states that:
4020 * "When the TCP data sender is ready to set the CWR bit after reducing
4021 * the congestion window, it SHOULD set the CWR bit only on the first
4022 * new data packet that it transmits."
4023 * We accept CWR on pure ACKs to be more robust
4024 * with widely-deployed TCP implementations that do this.
4025 */
4026 tcp_ecn_accept_cwr(sk, skb);
4027
4028 /* We passed data and got it acked, remove any soft error
4029 * log. Something worked...
4030 */
4031 WRITE_ONCE(sk->sk_err_soft, 0);
4032 icsk->icsk_probes_out = 0;
4033 tp->rcv_tstamp = tcp_jiffies32;
4034 if (!prior_packets)
4035 goto no_queue;
4036
4037 /* See if we can take anything off of the retransmit queue. */
4038 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
4039 &sack_state, flag & FLAG_ECE);
4040
4041 tcp_rack_update_reo_wnd(sk, &rs);
4042
4043 if (tp->tlp_high_seq)
4044 tcp_process_tlp_ack(sk, ack, flag);
4045
4046 if (tcp_ack_is_dubious(sk, flag)) {
4047 if (!(flag & (FLAG_SND_UNA_ADVANCED |
4048 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
4049 num_dupack = 1;
4050 /* Consider if pure acks were aggregated in tcp_add_backlog() */
4051 if (!(flag & FLAG_DATA))
4052 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4053 }
4054 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4055 &rexmit);
4056 }
4057
4058 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
4059 if (flag & FLAG_SET_XMIT_TIMER)
4060 tcp_set_xmit_timer(sk);
4061
4062 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
4063 sk_dst_confirm(sk);
4064
4065 delivered = tcp_newly_delivered(sk, delivered, flag);
4066 lost = tp->lost - lost; /* freshly marked lost */
4067 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
4068 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
4069 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
4070 tcp_xmit_recovery(sk, rexmit);
4071 return 1;
4072
4073 no_queue:
4074 /* If data was DSACKed, see if we can undo a cwnd reduction. */
4075 if (flag & FLAG_DSACKING_ACK) {
4076 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4077 &rexmit);
4078 tcp_newly_delivered(sk, delivered, flag);
4079 }
4080 /* If this ack opens up a zero window, clear backoff. It was
4081 * being used to time the probes, and is probably far higher than
4082 * it needs to be for normal retransmission.
4083 */
4084 tcp_ack_probe(sk);
4085
4086 if (tp->tlp_high_seq)
4087 tcp_process_tlp_ack(sk, ack, flag);
4088 return 1;
4089
4090 old_ack:
4091 /* If data was SACKed, tag it and see if we should send more data.
4092 * If data was DSACKed, see if we can undo a cwnd reduction.
4093 */
4094 if (TCP_SKB_CB(skb)->sacked) {
4095 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
4096 &sack_state);
4097 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
4098 &rexmit);
4099 tcp_newly_delivered(sk, delivered, flag);
4100 tcp_xmit_recovery(sk, rexmit);
4101 }
4102
4103 return 0;
4104 }
4105
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)4106 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
4107 bool syn, struct tcp_fastopen_cookie *foc,
4108 bool exp_opt)
4109 {
4110 /* Valid only in SYN or SYN-ACK with an even length. */
4111 if (!foc || !syn || len < 0 || (len & 1))
4112 return;
4113
4114 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
4115 len <= TCP_FASTOPEN_COOKIE_MAX)
4116 memcpy(foc->val, cookie, len);
4117 else if (len != 0)
4118 len = -1;
4119 foc->len = len;
4120 foc->exp = exp_opt;
4121 }
4122
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)4123 static bool smc_parse_options(const struct tcphdr *th,
4124 struct tcp_options_received *opt_rx,
4125 const unsigned char *ptr,
4126 int opsize)
4127 {
4128 #if IS_ENABLED(CONFIG_SMC)
4129 if (static_branch_unlikely(&tcp_have_smc)) {
4130 if (th->syn && !(opsize & 1) &&
4131 opsize >= TCPOLEN_EXP_SMC_BASE &&
4132 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4133 opt_rx->smc_ok = 1;
4134 return true;
4135 }
4136 }
4137 #endif
4138 return false;
4139 }
4140
4141 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4142 * value on success.
4143 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)4144 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4145 {
4146 const unsigned char *ptr = (const unsigned char *)(th + 1);
4147 int length = (th->doff * 4) - sizeof(struct tcphdr);
4148 u16 mss = 0;
4149
4150 while (length > 0) {
4151 int opcode = *ptr++;
4152 int opsize;
4153
4154 switch (opcode) {
4155 case TCPOPT_EOL:
4156 return mss;
4157 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4158 length--;
4159 continue;
4160 default:
4161 if (length < 2)
4162 return mss;
4163 opsize = *ptr++;
4164 if (opsize < 2) /* "silly options" */
4165 return mss;
4166 if (opsize > length)
4167 return mss; /* fail on partial options */
4168 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4169 u16 in_mss = get_unaligned_be16(ptr);
4170
4171 if (in_mss) {
4172 if (user_mss && user_mss < in_mss)
4173 in_mss = user_mss;
4174 mss = in_mss;
4175 }
4176 }
4177 ptr += opsize - 2;
4178 length -= opsize;
4179 }
4180 }
4181 return mss;
4182 }
4183 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4184
4185 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4186 * But, this can also be called on packets in the established flow when
4187 * the fast version below fails.
4188 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4189 void tcp_parse_options(const struct net *net,
4190 const struct sk_buff *skb,
4191 struct tcp_options_received *opt_rx, int estab,
4192 struct tcp_fastopen_cookie *foc)
4193 {
4194 const unsigned char *ptr;
4195 const struct tcphdr *th = tcp_hdr(skb);
4196 int length = (th->doff * 4) - sizeof(struct tcphdr);
4197
4198 ptr = (const unsigned char *)(th + 1);
4199 opt_rx->saw_tstamp = 0;
4200 opt_rx->saw_unknown = 0;
4201
4202 while (length > 0) {
4203 int opcode = *ptr++;
4204 int opsize;
4205
4206 switch (opcode) {
4207 case TCPOPT_EOL:
4208 return;
4209 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4210 length--;
4211 continue;
4212 default:
4213 if (length < 2)
4214 return;
4215 opsize = *ptr++;
4216 if (opsize < 2) /* "silly options" */
4217 return;
4218 if (opsize > length)
4219 return; /* don't parse partial options */
4220 switch (opcode) {
4221 case TCPOPT_MSS:
4222 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4223 u16 in_mss = get_unaligned_be16(ptr);
4224 if (in_mss) {
4225 if (opt_rx->user_mss &&
4226 opt_rx->user_mss < in_mss)
4227 in_mss = opt_rx->user_mss;
4228 opt_rx->mss_clamp = in_mss;
4229 }
4230 }
4231 break;
4232 case TCPOPT_WINDOW:
4233 if (opsize == TCPOLEN_WINDOW && th->syn &&
4234 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4235 __u8 snd_wscale = *(__u8 *)ptr;
4236 opt_rx->wscale_ok = 1;
4237 if (snd_wscale > TCP_MAX_WSCALE) {
4238 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4239 __func__,
4240 snd_wscale,
4241 TCP_MAX_WSCALE);
4242 snd_wscale = TCP_MAX_WSCALE;
4243 }
4244 opt_rx->snd_wscale = snd_wscale;
4245 }
4246 break;
4247 case TCPOPT_TIMESTAMP:
4248 if ((opsize == TCPOLEN_TIMESTAMP) &&
4249 ((estab && opt_rx->tstamp_ok) ||
4250 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4251 opt_rx->saw_tstamp = 1;
4252 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4253 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4254 }
4255 break;
4256 case TCPOPT_SACK_PERM:
4257 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4258 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4259 opt_rx->sack_ok = TCP_SACK_SEEN;
4260 tcp_sack_reset(opt_rx);
4261 }
4262 break;
4263
4264 case TCPOPT_SACK:
4265 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4266 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4267 opt_rx->sack_ok) {
4268 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4269 }
4270 break;
4271 #ifdef CONFIG_TCP_MD5SIG
4272 case TCPOPT_MD5SIG:
4273 /* The MD5 Hash has already been
4274 * checked (see tcp_v{4,6}_rcv()).
4275 */
4276 break;
4277 #endif
4278 #ifdef CONFIG_TCP_AO
4279 case TCPOPT_AO:
4280 /* TCP AO has already been checked
4281 * (see tcp_inbound_ao_hash()).
4282 */
4283 break;
4284 #endif
4285 case TCPOPT_FASTOPEN:
4286 tcp_parse_fastopen_option(
4287 opsize - TCPOLEN_FASTOPEN_BASE,
4288 ptr, th->syn, foc, false);
4289 break;
4290
4291 case TCPOPT_EXP:
4292 /* Fast Open option shares code 254 using a
4293 * 16 bits magic number.
4294 */
4295 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4296 get_unaligned_be16(ptr) ==
4297 TCPOPT_FASTOPEN_MAGIC) {
4298 tcp_parse_fastopen_option(opsize -
4299 TCPOLEN_EXP_FASTOPEN_BASE,
4300 ptr + 2, th->syn, foc, true);
4301 break;
4302 }
4303
4304 if (smc_parse_options(th, opt_rx, ptr, opsize))
4305 break;
4306
4307 opt_rx->saw_unknown = 1;
4308 break;
4309
4310 default:
4311 opt_rx->saw_unknown = 1;
4312 }
4313 ptr += opsize-2;
4314 length -= opsize;
4315 }
4316 }
4317 }
4318 EXPORT_SYMBOL(tcp_parse_options);
4319
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4320 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4321 {
4322 const __be32 *ptr = (const __be32 *)(th + 1);
4323
4324 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4325 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4326 tp->rx_opt.saw_tstamp = 1;
4327 ++ptr;
4328 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4329 ++ptr;
4330 if (*ptr)
4331 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4332 else
4333 tp->rx_opt.rcv_tsecr = 0;
4334 return true;
4335 }
4336 return false;
4337 }
4338
4339 /* Fast parse options. This hopes to only see timestamps.
4340 * If it is wrong it falls back on tcp_parse_options().
4341 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4342 static bool tcp_fast_parse_options(const struct net *net,
4343 const struct sk_buff *skb,
4344 const struct tcphdr *th, struct tcp_sock *tp)
4345 {
4346 /* In the spirit of fast parsing, compare doff directly to constant
4347 * values. Because equality is used, short doff can be ignored here.
4348 */
4349 if (th->doff == (sizeof(*th) / 4)) {
4350 tp->rx_opt.saw_tstamp = 0;
4351 return false;
4352 } else if (tp->rx_opt.tstamp_ok &&
4353 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4354 if (tcp_parse_aligned_timestamp(tp, th))
4355 return true;
4356 }
4357
4358 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4359 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4360 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4361
4362 return true;
4363 }
4364
4365 #if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
4366 /*
4367 * Parse Signature options
4368 */
tcp_do_parse_auth_options(const struct tcphdr * th,const u8 ** md5_hash,const u8 ** ao_hash)4369 int tcp_do_parse_auth_options(const struct tcphdr *th,
4370 const u8 **md5_hash, const u8 **ao_hash)
4371 {
4372 int length = (th->doff << 2) - sizeof(*th);
4373 const u8 *ptr = (const u8 *)(th + 1);
4374 unsigned int minlen = TCPOLEN_MD5SIG;
4375
4376 if (IS_ENABLED(CONFIG_TCP_AO))
4377 minlen = sizeof(struct tcp_ao_hdr) + 1;
4378
4379 *md5_hash = NULL;
4380 *ao_hash = NULL;
4381
4382 /* If not enough data remaining, we can short cut */
4383 while (length >= minlen) {
4384 int opcode = *ptr++;
4385 int opsize;
4386
4387 switch (opcode) {
4388 case TCPOPT_EOL:
4389 return 0;
4390 case TCPOPT_NOP:
4391 length--;
4392 continue;
4393 default:
4394 opsize = *ptr++;
4395 if (opsize < 2 || opsize > length)
4396 return -EINVAL;
4397 if (opcode == TCPOPT_MD5SIG) {
4398 if (opsize != TCPOLEN_MD5SIG)
4399 return -EINVAL;
4400 if (unlikely(*md5_hash || *ao_hash))
4401 return -EEXIST;
4402 *md5_hash = ptr;
4403 } else if (opcode == TCPOPT_AO) {
4404 if (opsize <= sizeof(struct tcp_ao_hdr))
4405 return -EINVAL;
4406 if (unlikely(*md5_hash || *ao_hash))
4407 return -EEXIST;
4408 *ao_hash = ptr;
4409 }
4410 }
4411 ptr += opsize - 2;
4412 length -= opsize;
4413 }
4414 return 0;
4415 }
4416 EXPORT_SYMBOL(tcp_do_parse_auth_options);
4417 #endif
4418
4419 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4420 *
4421 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4422 * it can pass through stack. So, the following predicate verifies that
4423 * this segment is not used for anything but congestion avoidance or
4424 * fast retransmit. Moreover, we even are able to eliminate most of such
4425 * second order effects, if we apply some small "replay" window (~RTO)
4426 * to timestamp space.
4427 *
4428 * All these measures still do not guarantee that we reject wrapped ACKs
4429 * on networks with high bandwidth, when sequence space is recycled fastly,
4430 * but it guarantees that such events will be very rare and do not affect
4431 * connection seriously. This doesn't look nice, but alas, PAWS is really
4432 * buggy extension.
4433 *
4434 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4435 * states that events when retransmit arrives after original data are rare.
4436 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4437 * the biggest problem on large power networks even with minor reordering.
4438 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4439 * up to bandwidth of 18Gigabit/sec. 8) ]
4440 */
4441
4442 /* Estimates max number of increments of remote peer TSval in
4443 * a replay window (based on our current RTO estimation).
4444 */
tcp_tsval_replay(const struct sock * sk)4445 static u32 tcp_tsval_replay(const struct sock *sk)
4446 {
4447 /* If we use usec TS resolution,
4448 * then expect the remote peer to use the same resolution.
4449 */
4450 if (tcp_sk(sk)->tcp_usec_ts)
4451 return inet_csk(sk)->icsk_rto * (USEC_PER_SEC / HZ);
4452
4453 /* RFC 7323 recommends a TSval clock between 1ms and 1sec.
4454 * We know that some OS (including old linux) can use 1200 Hz.
4455 */
4456 return inet_csk(sk)->icsk_rto * 1200 / HZ;
4457 }
4458
tcp_disordered_ack_check(const struct sock * sk,const struct sk_buff * skb)4459 static enum skb_drop_reason tcp_disordered_ack_check(const struct sock *sk,
4460 const struct sk_buff *skb)
4461 {
4462 const struct tcp_sock *tp = tcp_sk(sk);
4463 const struct tcphdr *th = tcp_hdr(skb);
4464 SKB_DR_INIT(reason, TCP_RFC7323_PAWS);
4465 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4466 u32 seq = TCP_SKB_CB(skb)->seq;
4467
4468 /* 1. Is this not a pure ACK ? */
4469 if (!th->ack || seq != TCP_SKB_CB(skb)->end_seq)
4470 return reason;
4471
4472 /* 2. Is its sequence not the expected one ? */
4473 if (seq != tp->rcv_nxt)
4474 return before(seq, tp->rcv_nxt) ?
4475 SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK :
4476 reason;
4477
4478 /* 3. Is this not a duplicate ACK ? */
4479 if (ack != tp->snd_una)
4480 return reason;
4481
4482 /* 4. Is this updating the window ? */
4483 if (tcp_may_update_window(tp, ack, seq, ntohs(th->window) <<
4484 tp->rx_opt.snd_wscale))
4485 return reason;
4486
4487 /* 5. Is this not in the replay window ? */
4488 if ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) >
4489 tcp_tsval_replay(sk))
4490 return reason;
4491
4492 return 0;
4493 }
4494
4495 /* Check segment sequence number for validity.
4496 *
4497 * Segment controls are considered valid, if the segment
4498 * fits to the window after truncation to the window. Acceptability
4499 * of data (and SYN, FIN, of course) is checked separately.
4500 * See tcp_data_queue(), for example.
4501 *
4502 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4503 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4504 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4505 * (borrowed from freebsd)
4506 */
4507
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4508 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4509 u32 seq, u32 end_seq)
4510 {
4511 if (before(end_seq, tp->rcv_wup))
4512 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4513
4514 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4515 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4516
4517 return SKB_NOT_DROPPED_YET;
4518 }
4519
4520
tcp_done_with_error(struct sock * sk,int err)4521 void tcp_done_with_error(struct sock *sk, int err)
4522 {
4523 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4524 WRITE_ONCE(sk->sk_err, err);
4525 smp_wmb();
4526
4527 tcp_write_queue_purge(sk);
4528 tcp_done(sk);
4529
4530 if (!sock_flag(sk, SOCK_DEAD))
4531 sk_error_report(sk);
4532 }
4533 EXPORT_SYMBOL(tcp_done_with_error);
4534
4535 /* When we get a reset we do this. */
tcp_reset(struct sock * sk,struct sk_buff * skb)4536 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4537 {
4538 int err;
4539
4540 trace_tcp_receive_reset(sk);
4541
4542 /* mptcp can't tell us to ignore reset pkts,
4543 * so just ignore the return value of mptcp_incoming_options().
4544 */
4545 if (sk_is_mptcp(sk))
4546 mptcp_incoming_options(sk, skb);
4547
4548 /* We want the right error as BSD sees it (and indeed as we do). */
4549 switch (sk->sk_state) {
4550 case TCP_SYN_SENT:
4551 err = ECONNREFUSED;
4552 break;
4553 case TCP_CLOSE_WAIT:
4554 err = EPIPE;
4555 break;
4556 case TCP_CLOSE:
4557 return;
4558 default:
4559 err = ECONNRESET;
4560 }
4561 tcp_done_with_error(sk, err);
4562 }
4563
4564 /*
4565 * Process the FIN bit. This now behaves as it is supposed to work
4566 * and the FIN takes effect when it is validly part of sequence
4567 * space. Not before when we get holes.
4568 *
4569 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4570 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4571 * TIME-WAIT)
4572 *
4573 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4574 * close and we go into CLOSING (and later onto TIME-WAIT)
4575 *
4576 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4577 */
tcp_fin(struct sock * sk)4578 void tcp_fin(struct sock *sk)
4579 {
4580 struct tcp_sock *tp = tcp_sk(sk);
4581
4582 inet_csk_schedule_ack(sk);
4583
4584 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4585 sock_set_flag(sk, SOCK_DONE);
4586
4587 switch (sk->sk_state) {
4588 case TCP_SYN_RECV:
4589 case TCP_ESTABLISHED:
4590 /* Move to CLOSE_WAIT */
4591 tcp_set_state(sk, TCP_CLOSE_WAIT);
4592 inet_csk_enter_pingpong_mode(sk);
4593 break;
4594
4595 case TCP_CLOSE_WAIT:
4596 case TCP_CLOSING:
4597 /* Received a retransmission of the FIN, do
4598 * nothing.
4599 */
4600 break;
4601 case TCP_LAST_ACK:
4602 /* RFC793: Remain in the LAST-ACK state. */
4603 break;
4604
4605 case TCP_FIN_WAIT1:
4606 /* This case occurs when a simultaneous close
4607 * happens, we must ack the received FIN and
4608 * enter the CLOSING state.
4609 */
4610 tcp_send_ack(sk);
4611 tcp_set_state(sk, TCP_CLOSING);
4612 break;
4613 case TCP_FIN_WAIT2:
4614 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4615 tcp_send_ack(sk);
4616 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4617 break;
4618 default:
4619 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4620 * cases we should never reach this piece of code.
4621 */
4622 pr_err("%s: Impossible, sk->sk_state=%d\n",
4623 __func__, sk->sk_state);
4624 break;
4625 }
4626
4627 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4628 * Probably, we should reset in this case. For now drop them.
4629 */
4630 skb_rbtree_purge(&tp->out_of_order_queue);
4631 if (tcp_is_sack(tp))
4632 tcp_sack_reset(&tp->rx_opt);
4633
4634 if (!sock_flag(sk, SOCK_DEAD)) {
4635 sk->sk_state_change(sk);
4636
4637 /* Do not send POLL_HUP for half duplex close. */
4638 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4639 sk->sk_state == TCP_CLOSE)
4640 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4641 else
4642 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4643 }
4644 }
4645
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4646 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4647 u32 end_seq)
4648 {
4649 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4650 if (before(seq, sp->start_seq))
4651 sp->start_seq = seq;
4652 if (after(end_seq, sp->end_seq))
4653 sp->end_seq = end_seq;
4654 return true;
4655 }
4656 return false;
4657 }
4658
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4659 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4660 {
4661 struct tcp_sock *tp = tcp_sk(sk);
4662
4663 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4664 int mib_idx;
4665
4666 if (before(seq, tp->rcv_nxt))
4667 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4668 else
4669 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4670
4671 NET_INC_STATS(sock_net(sk), mib_idx);
4672
4673 tp->rx_opt.dsack = 1;
4674 tp->duplicate_sack[0].start_seq = seq;
4675 tp->duplicate_sack[0].end_seq = end_seq;
4676 }
4677 }
4678
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4679 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4680 {
4681 struct tcp_sock *tp = tcp_sk(sk);
4682
4683 if (!tp->rx_opt.dsack)
4684 tcp_dsack_set(sk, seq, end_seq);
4685 else
4686 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4687 }
4688
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4689 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4690 {
4691 /* When the ACK path fails or drops most ACKs, the sender would
4692 * timeout and spuriously retransmit the same segment repeatedly.
4693 * If it seems our ACKs are not reaching the other side,
4694 * based on receiving a duplicate data segment with new flowlabel
4695 * (suggesting the sender suffered an RTO), and we are not already
4696 * repathing due to our own RTO, then rehash the socket to repath our
4697 * packets.
4698 */
4699 #if IS_ENABLED(CONFIG_IPV6)
4700 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss &&
4701 skb->protocol == htons(ETH_P_IPV6) &&
4702 (tcp_sk(sk)->inet_conn.icsk_ack.lrcv_flowlabel !=
4703 ntohl(ip6_flowlabel(ipv6_hdr(skb)))) &&
4704 sk_rethink_txhash(sk))
4705 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4706
4707 /* Save last flowlabel after a spurious retrans. */
4708 tcp_save_lrcv_flowlabel(sk, skb);
4709 #endif
4710 }
4711
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4712 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4713 {
4714 struct tcp_sock *tp = tcp_sk(sk);
4715
4716 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4717 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4718 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4719 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4720
4721 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4722 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4723
4724 tcp_rcv_spurious_retrans(sk, skb);
4725 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4726 end_seq = tp->rcv_nxt;
4727 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4728 }
4729 }
4730
4731 tcp_send_ack(sk);
4732 }
4733
4734 /* These routines update the SACK block as out-of-order packets arrive or
4735 * in-order packets close up the sequence space.
4736 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4737 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4738 {
4739 int this_sack;
4740 struct tcp_sack_block *sp = &tp->selective_acks[0];
4741 struct tcp_sack_block *swalk = sp + 1;
4742
4743 /* See if the recent change to the first SACK eats into
4744 * or hits the sequence space of other SACK blocks, if so coalesce.
4745 */
4746 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4747 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4748 int i;
4749
4750 /* Zap SWALK, by moving every further SACK up by one slot.
4751 * Decrease num_sacks.
4752 */
4753 tp->rx_opt.num_sacks--;
4754 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4755 sp[i] = sp[i + 1];
4756 continue;
4757 }
4758 this_sack++;
4759 swalk++;
4760 }
4761 }
4762
tcp_sack_compress_send_ack(struct sock * sk)4763 void tcp_sack_compress_send_ack(struct sock *sk)
4764 {
4765 struct tcp_sock *tp = tcp_sk(sk);
4766
4767 if (!tp->compressed_ack)
4768 return;
4769
4770 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4771 __sock_put(sk);
4772
4773 /* Since we have to send one ack finally,
4774 * substract one from tp->compressed_ack to keep
4775 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4776 */
4777 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4778 tp->compressed_ack - 1);
4779
4780 tp->compressed_ack = 0;
4781 tcp_send_ack(sk);
4782 }
4783
4784 /* Reasonable amount of sack blocks included in TCP SACK option
4785 * The max is 4, but this becomes 3 if TCP timestamps are there.
4786 * Given that SACK packets might be lost, be conservative and use 2.
4787 */
4788 #define TCP_SACK_BLOCKS_EXPECTED 2
4789
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4790 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4791 {
4792 struct tcp_sock *tp = tcp_sk(sk);
4793 struct tcp_sack_block *sp = &tp->selective_acks[0];
4794 int cur_sacks = tp->rx_opt.num_sacks;
4795 int this_sack;
4796
4797 if (!cur_sacks)
4798 goto new_sack;
4799
4800 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4801 if (tcp_sack_extend(sp, seq, end_seq)) {
4802 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4803 tcp_sack_compress_send_ack(sk);
4804 /* Rotate this_sack to the first one. */
4805 for (; this_sack > 0; this_sack--, sp--)
4806 swap(*sp, *(sp - 1));
4807 if (cur_sacks > 1)
4808 tcp_sack_maybe_coalesce(tp);
4809 return;
4810 }
4811 }
4812
4813 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4814 tcp_sack_compress_send_ack(sk);
4815
4816 /* Could not find an adjacent existing SACK, build a new one,
4817 * put it at the front, and shift everyone else down. We
4818 * always know there is at least one SACK present already here.
4819 *
4820 * If the sack array is full, forget about the last one.
4821 */
4822 if (this_sack >= TCP_NUM_SACKS) {
4823 this_sack--;
4824 tp->rx_opt.num_sacks--;
4825 sp--;
4826 }
4827 for (; this_sack > 0; this_sack--, sp--)
4828 *sp = *(sp - 1);
4829
4830 new_sack:
4831 /* Build the new head SACK, and we're done. */
4832 sp->start_seq = seq;
4833 sp->end_seq = end_seq;
4834 tp->rx_opt.num_sacks++;
4835 }
4836
4837 /* RCV.NXT advances, some SACKs should be eaten. */
4838
tcp_sack_remove(struct tcp_sock * tp)4839 static void tcp_sack_remove(struct tcp_sock *tp)
4840 {
4841 struct tcp_sack_block *sp = &tp->selective_acks[0];
4842 int num_sacks = tp->rx_opt.num_sacks;
4843 int this_sack;
4844
4845 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4846 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4847 tp->rx_opt.num_sacks = 0;
4848 return;
4849 }
4850
4851 for (this_sack = 0; this_sack < num_sacks;) {
4852 /* Check if the start of the sack is covered by RCV.NXT. */
4853 if (!before(tp->rcv_nxt, sp->start_seq)) {
4854 int i;
4855
4856 /* RCV.NXT must cover all the block! */
4857 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4858
4859 /* Zap this SACK, by moving forward any other SACKS. */
4860 for (i = this_sack+1; i < num_sacks; i++)
4861 tp->selective_acks[i-1] = tp->selective_acks[i];
4862 num_sacks--;
4863 continue;
4864 }
4865 this_sack++;
4866 sp++;
4867 }
4868 tp->rx_opt.num_sacks = num_sacks;
4869 }
4870
4871 /**
4872 * tcp_try_coalesce - try to merge skb to prior one
4873 * @sk: socket
4874 * @to: prior buffer
4875 * @from: buffer to add in queue
4876 * @fragstolen: pointer to boolean
4877 *
4878 * Before queueing skb @from after @to, try to merge them
4879 * to reduce overall memory use and queue lengths, if cost is small.
4880 * Packets in ofo or receive queues can stay a long time.
4881 * Better try to coalesce them right now to avoid future collapses.
4882 * Returns true if caller should free @from instead of queueing it
4883 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4884 static bool tcp_try_coalesce(struct sock *sk,
4885 struct sk_buff *to,
4886 struct sk_buff *from,
4887 bool *fragstolen)
4888 {
4889 int delta;
4890
4891 *fragstolen = false;
4892
4893 /* Its possible this segment overlaps with prior segment in queue */
4894 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4895 return false;
4896
4897 if (!tcp_skb_can_collapse_rx(to, from))
4898 return false;
4899
4900 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4901 return false;
4902
4903 atomic_add(delta, &sk->sk_rmem_alloc);
4904 sk_mem_charge(sk, delta);
4905 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4906 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4907 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4908 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4909
4910 if (TCP_SKB_CB(from)->has_rxtstamp) {
4911 TCP_SKB_CB(to)->has_rxtstamp = true;
4912 to->tstamp = from->tstamp;
4913 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4914 }
4915
4916 return true;
4917 }
4918
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4919 static bool tcp_ooo_try_coalesce(struct sock *sk,
4920 struct sk_buff *to,
4921 struct sk_buff *from,
4922 bool *fragstolen)
4923 {
4924 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4925
4926 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4927 if (res) {
4928 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4929 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4930
4931 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4932 }
4933 return res;
4934 }
4935
4936 noinline_for_tracing static void
tcp_drop_reason(struct sock * sk,struct sk_buff * skb,enum skb_drop_reason reason)4937 tcp_drop_reason(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason)
4938 {
4939 sk_drops_add(sk, skb);
4940 sk_skb_reason_drop(sk, skb, reason);
4941 }
4942
4943 /* This one checks to see if we can put data from the
4944 * out_of_order queue into the receive_queue.
4945 */
tcp_ofo_queue(struct sock * sk)4946 static void tcp_ofo_queue(struct sock *sk)
4947 {
4948 struct tcp_sock *tp = tcp_sk(sk);
4949 __u32 dsack_high = tp->rcv_nxt;
4950 bool fin, fragstolen, eaten;
4951 struct sk_buff *skb, *tail;
4952 struct rb_node *p;
4953
4954 p = rb_first(&tp->out_of_order_queue);
4955 while (p) {
4956 skb = rb_to_skb(p);
4957 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4958 break;
4959
4960 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4961 __u32 dsack = dsack_high;
4962 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4963 dsack_high = TCP_SKB_CB(skb)->end_seq;
4964 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4965 }
4966 p = rb_next(p);
4967 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4968
4969 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4970 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4971 continue;
4972 }
4973
4974 tail = skb_peek_tail(&sk->sk_receive_queue);
4975 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4976 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4977 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4978 if (!eaten)
4979 tcp_add_receive_queue(sk, skb);
4980 else
4981 kfree_skb_partial(skb, fragstolen);
4982
4983 if (unlikely(fin)) {
4984 tcp_fin(sk);
4985 /* tcp_fin() purges tp->out_of_order_queue,
4986 * so we must end this loop right now.
4987 */
4988 break;
4989 }
4990 }
4991 }
4992
4993 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4994 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4995
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4996 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4997 unsigned int size)
4998 {
4999 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
5000 !sk_rmem_schedule(sk, skb, size)) {
5001
5002 if (tcp_prune_queue(sk, skb) < 0)
5003 return -1;
5004
5005 while (!sk_rmem_schedule(sk, skb, size)) {
5006 if (!tcp_prune_ofo_queue(sk, skb))
5007 return -1;
5008 }
5009 }
5010 return 0;
5011 }
5012
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)5013 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
5014 {
5015 struct tcp_sock *tp = tcp_sk(sk);
5016 struct rb_node **p, *parent;
5017 struct sk_buff *skb1;
5018 u32 seq, end_seq;
5019 bool fragstolen;
5020
5021 tcp_save_lrcv_flowlabel(sk, skb);
5022 tcp_ecn_check_ce(sk, skb);
5023
5024 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
5025 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
5026 sk->sk_data_ready(sk);
5027 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
5028 return;
5029 }
5030
5031 /* Disable header prediction. */
5032 tp->pred_flags = 0;
5033 inet_csk_schedule_ack(sk);
5034
5035 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
5036 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
5037 seq = TCP_SKB_CB(skb)->seq;
5038 end_seq = TCP_SKB_CB(skb)->end_seq;
5039
5040 p = &tp->out_of_order_queue.rb_node;
5041 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5042 /* Initial out of order segment, build 1 SACK. */
5043 if (tcp_is_sack(tp)) {
5044 tp->rx_opt.num_sacks = 1;
5045 tp->selective_acks[0].start_seq = seq;
5046 tp->selective_acks[0].end_seq = end_seq;
5047 }
5048 rb_link_node(&skb->rbnode, NULL, p);
5049 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5050 tp->ooo_last_skb = skb;
5051 goto end;
5052 }
5053
5054 /* In the typical case, we are adding an skb to the end of the list.
5055 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
5056 */
5057 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
5058 skb, &fragstolen)) {
5059 coalesce_done:
5060 /* For non sack flows, do not grow window to force DUPACK
5061 * and trigger fast retransmit.
5062 */
5063 if (tcp_is_sack(tp))
5064 tcp_grow_window(sk, skb, true);
5065 kfree_skb_partial(skb, fragstolen);
5066 skb = NULL;
5067 goto add_sack;
5068 }
5069 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
5070 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
5071 parent = &tp->ooo_last_skb->rbnode;
5072 p = &parent->rb_right;
5073 goto insert;
5074 }
5075
5076 /* Find place to insert this segment. Handle overlaps on the way. */
5077 parent = NULL;
5078 while (*p) {
5079 parent = *p;
5080 skb1 = rb_to_skb(parent);
5081 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
5082 p = &parent->rb_left;
5083 continue;
5084 }
5085 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
5086 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5087 /* All the bits are present. Drop. */
5088 NET_INC_STATS(sock_net(sk),
5089 LINUX_MIB_TCPOFOMERGE);
5090 tcp_drop_reason(sk, skb,
5091 SKB_DROP_REASON_TCP_OFOMERGE);
5092 skb = NULL;
5093 tcp_dsack_set(sk, seq, end_seq);
5094 goto add_sack;
5095 }
5096 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
5097 /* Partial overlap. */
5098 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
5099 } else {
5100 /* skb's seq == skb1's seq and skb covers skb1.
5101 * Replace skb1 with skb.
5102 */
5103 rb_replace_node(&skb1->rbnode, &skb->rbnode,
5104 &tp->out_of_order_queue);
5105 tcp_dsack_extend(sk,
5106 TCP_SKB_CB(skb1)->seq,
5107 TCP_SKB_CB(skb1)->end_seq);
5108 NET_INC_STATS(sock_net(sk),
5109 LINUX_MIB_TCPOFOMERGE);
5110 tcp_drop_reason(sk, skb1,
5111 SKB_DROP_REASON_TCP_OFOMERGE);
5112 goto merge_right;
5113 }
5114 } else if (tcp_ooo_try_coalesce(sk, skb1,
5115 skb, &fragstolen)) {
5116 goto coalesce_done;
5117 }
5118 p = &parent->rb_right;
5119 }
5120 insert:
5121 /* Insert segment into RB tree. */
5122 rb_link_node(&skb->rbnode, parent, p);
5123 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
5124
5125 merge_right:
5126 /* Remove other segments covered by skb. */
5127 while ((skb1 = skb_rb_next(skb)) != NULL) {
5128 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
5129 break;
5130 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
5131 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5132 end_seq);
5133 break;
5134 }
5135 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
5136 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
5137 TCP_SKB_CB(skb1)->end_seq);
5138 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
5139 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
5140 }
5141 /* If there is no skb after us, we are the last_skb ! */
5142 if (!skb1)
5143 tp->ooo_last_skb = skb;
5144
5145 add_sack:
5146 if (tcp_is_sack(tp))
5147 tcp_sack_new_ofo_skb(sk, seq, end_seq);
5148 end:
5149 if (skb) {
5150 /* For non sack flows, do not grow window to force DUPACK
5151 * and trigger fast retransmit.
5152 */
5153 if (tcp_is_sack(tp))
5154 tcp_grow_window(sk, skb, false);
5155 skb_condense(skb);
5156 skb_set_owner_r(skb, sk);
5157 }
5158 }
5159
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)5160 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
5161 bool *fragstolen)
5162 {
5163 int eaten;
5164 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
5165
5166 eaten = (tail &&
5167 tcp_try_coalesce(sk, tail,
5168 skb, fragstolen)) ? 1 : 0;
5169 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
5170 if (!eaten) {
5171 tcp_add_receive_queue(sk, skb);
5172 skb_set_owner_r(skb, sk);
5173 }
5174 return eaten;
5175 }
5176
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)5177 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
5178 {
5179 struct sk_buff *skb;
5180 int err = -ENOMEM;
5181 int data_len = 0;
5182 bool fragstolen;
5183
5184 if (size == 0)
5185 return 0;
5186
5187 if (size > PAGE_SIZE) {
5188 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
5189
5190 data_len = npages << PAGE_SHIFT;
5191 size = data_len + (size & ~PAGE_MASK);
5192 }
5193 skb = alloc_skb_with_frags(size - data_len, data_len,
5194 PAGE_ALLOC_COSTLY_ORDER,
5195 &err, sk->sk_allocation);
5196 if (!skb)
5197 goto err;
5198
5199 skb_put(skb, size - data_len);
5200 skb->data_len = data_len;
5201 skb->len = size;
5202
5203 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5204 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5205 goto err_free;
5206 }
5207
5208 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5209 if (err)
5210 goto err_free;
5211
5212 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5213 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5214 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5215
5216 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5217 WARN_ON_ONCE(fragstolen); /* should not happen */
5218 __kfree_skb(skb);
5219 }
5220 return size;
5221
5222 err_free:
5223 kfree_skb(skb);
5224 err:
5225 return err;
5226
5227 }
5228
tcp_data_ready(struct sock * sk)5229 void tcp_data_ready(struct sock *sk)
5230 {
5231 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5232 sk->sk_data_ready(sk);
5233 }
5234
tcp_data_queue(struct sock * sk,struct sk_buff * skb)5235 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5236 {
5237 struct tcp_sock *tp = tcp_sk(sk);
5238 enum skb_drop_reason reason;
5239 bool fragstolen;
5240 int eaten;
5241
5242 /* If a subflow has been reset, the packet should not continue
5243 * to be processed, drop the packet.
5244 */
5245 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5246 __kfree_skb(skb);
5247 return;
5248 }
5249
5250 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5251 __kfree_skb(skb);
5252 return;
5253 }
5254 tcp_cleanup_skb(skb);
5255 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5256
5257 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5258 tp->rx_opt.dsack = 0;
5259
5260 /* Queue data for delivery to the user.
5261 * Packets in sequence go to the receive queue.
5262 * Out of sequence packets to the out_of_order_queue.
5263 */
5264 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5265 if (tcp_receive_window(tp) == 0) {
5266 /* Some stacks are known to send bare FIN packets
5267 * in a loop even if we send RWIN 0 in our ACK.
5268 * Accepting this FIN does not hurt memory pressure
5269 * because the FIN flag will simply be merged to the
5270 * receive queue tail skb in most cases.
5271 */
5272 if (!skb->len &&
5273 (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
5274 goto queue_and_out;
5275
5276 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5277 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5278 goto out_of_window;
5279 }
5280
5281 /* Ok. In sequence. In window. */
5282 queue_and_out:
5283 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5284 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5285 inet_csk(sk)->icsk_ack.pending |=
5286 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5287 inet_csk_schedule_ack(sk);
5288 sk->sk_data_ready(sk);
5289
5290 if (skb_queue_len(&sk->sk_receive_queue) && skb->len) {
5291 reason = SKB_DROP_REASON_PROTO_MEM;
5292 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5293 goto drop;
5294 }
5295 sk_forced_mem_schedule(sk, skb->truesize);
5296 }
5297
5298 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5299 if (skb->len)
5300 tcp_event_data_recv(sk, skb);
5301 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5302 tcp_fin(sk);
5303
5304 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5305 tcp_ofo_queue(sk);
5306
5307 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5308 * gap in queue is filled.
5309 */
5310 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5311 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5312 }
5313
5314 if (tp->rx_opt.num_sacks)
5315 tcp_sack_remove(tp);
5316
5317 tcp_fast_path_check(sk);
5318
5319 if (eaten > 0)
5320 kfree_skb_partial(skb, fragstolen);
5321 if (!sock_flag(sk, SOCK_DEAD))
5322 tcp_data_ready(sk);
5323 return;
5324 }
5325
5326 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5327 tcp_rcv_spurious_retrans(sk, skb);
5328 /* A retransmit, 2nd most common case. Force an immediate ack. */
5329 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5330 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5331 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5332
5333 out_of_window:
5334 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5335 inet_csk_schedule_ack(sk);
5336 drop:
5337 tcp_drop_reason(sk, skb, reason);
5338 return;
5339 }
5340
5341 /* Out of window. F.e. zero window probe. */
5342 if (!before(TCP_SKB_CB(skb)->seq,
5343 tp->rcv_nxt + tcp_receive_window(tp))) {
5344 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5345 goto out_of_window;
5346 }
5347
5348 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5349 /* Partial packet, seq < rcv_next < end_seq */
5350 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5351
5352 /* If window is closed, drop tail of packet. But after
5353 * remembering D-SACK for its head made in previous line.
5354 */
5355 if (!tcp_receive_window(tp)) {
5356 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5357 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5358 goto out_of_window;
5359 }
5360 goto queue_and_out;
5361 }
5362
5363 tcp_data_queue_ofo(sk, skb);
5364 }
5365
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5366 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5367 {
5368 if (list)
5369 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5370
5371 return skb_rb_next(skb);
5372 }
5373
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5374 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5375 struct sk_buff_head *list,
5376 struct rb_root *root)
5377 {
5378 struct sk_buff *next = tcp_skb_next(skb, list);
5379
5380 if (list)
5381 __skb_unlink(skb, list);
5382 else
5383 rb_erase(&skb->rbnode, root);
5384
5385 __kfree_skb(skb);
5386 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5387
5388 return next;
5389 }
5390
5391 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5392 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5393 {
5394 struct rb_node **p = &root->rb_node;
5395 struct rb_node *parent = NULL;
5396 struct sk_buff *skb1;
5397
5398 while (*p) {
5399 parent = *p;
5400 skb1 = rb_to_skb(parent);
5401 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5402 p = &parent->rb_left;
5403 else
5404 p = &parent->rb_right;
5405 }
5406 rb_link_node(&skb->rbnode, parent, p);
5407 rb_insert_color(&skb->rbnode, root);
5408 }
5409
5410 /* Collapse contiguous sequence of skbs head..tail with
5411 * sequence numbers start..end.
5412 *
5413 * If tail is NULL, this means until the end of the queue.
5414 *
5415 * Segments with FIN/SYN are not collapsed (only because this
5416 * simplifies code)
5417 */
5418 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5419 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5420 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5421 {
5422 struct sk_buff *skb = head, *n;
5423 struct sk_buff_head tmp;
5424 bool end_of_skbs;
5425
5426 /* First, check that queue is collapsible and find
5427 * the point where collapsing can be useful.
5428 */
5429 restart:
5430 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5431 n = tcp_skb_next(skb, list);
5432
5433 if (!skb_frags_readable(skb))
5434 goto skip_this;
5435
5436 /* No new bits? It is possible on ofo queue. */
5437 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5438 skb = tcp_collapse_one(sk, skb, list, root);
5439 if (!skb)
5440 break;
5441 goto restart;
5442 }
5443
5444 /* The first skb to collapse is:
5445 * - not SYN/FIN and
5446 * - bloated or contains data before "start" or
5447 * overlaps to the next one and mptcp allow collapsing.
5448 */
5449 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5450 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5451 before(TCP_SKB_CB(skb)->seq, start))) {
5452 end_of_skbs = false;
5453 break;
5454 }
5455
5456 if (n && n != tail && skb_frags_readable(n) &&
5457 tcp_skb_can_collapse_rx(skb, n) &&
5458 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5459 end_of_skbs = false;
5460 break;
5461 }
5462
5463 skip_this:
5464 /* Decided to skip this, advance start seq. */
5465 start = TCP_SKB_CB(skb)->end_seq;
5466 }
5467 if (end_of_skbs ||
5468 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5469 !skb_frags_readable(skb))
5470 return;
5471
5472 __skb_queue_head_init(&tmp);
5473
5474 while (before(start, end)) {
5475 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5476 struct sk_buff *nskb;
5477
5478 nskb = alloc_skb(copy, GFP_ATOMIC);
5479 if (!nskb)
5480 break;
5481
5482 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5483 skb_copy_decrypted(nskb, skb);
5484 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5485 if (list)
5486 __skb_queue_before(list, skb, nskb);
5487 else
5488 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5489 skb_set_owner_r(nskb, sk);
5490 mptcp_skb_ext_move(nskb, skb);
5491
5492 /* Copy data, releasing collapsed skbs. */
5493 while (copy > 0) {
5494 int offset = start - TCP_SKB_CB(skb)->seq;
5495 int size = TCP_SKB_CB(skb)->end_seq - start;
5496
5497 BUG_ON(offset < 0);
5498 if (size > 0) {
5499 size = min(copy, size);
5500 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5501 BUG();
5502 TCP_SKB_CB(nskb)->end_seq += size;
5503 copy -= size;
5504 start += size;
5505 }
5506 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5507 skb = tcp_collapse_one(sk, skb, list, root);
5508 if (!skb ||
5509 skb == tail ||
5510 !tcp_skb_can_collapse_rx(nskb, skb) ||
5511 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) ||
5512 !skb_frags_readable(skb))
5513 goto end;
5514 }
5515 }
5516 }
5517 end:
5518 skb_queue_walk_safe(&tmp, skb, n)
5519 tcp_rbtree_insert(root, skb);
5520 }
5521
5522 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5523 * and tcp_collapse() them until all the queue is collapsed.
5524 */
tcp_collapse_ofo_queue(struct sock * sk)5525 static void tcp_collapse_ofo_queue(struct sock *sk)
5526 {
5527 struct tcp_sock *tp = tcp_sk(sk);
5528 u32 range_truesize, sum_tiny = 0;
5529 struct sk_buff *skb, *head;
5530 u32 start, end;
5531
5532 skb = skb_rb_first(&tp->out_of_order_queue);
5533 new_range:
5534 if (!skb) {
5535 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5536 return;
5537 }
5538 start = TCP_SKB_CB(skb)->seq;
5539 end = TCP_SKB_CB(skb)->end_seq;
5540 range_truesize = skb->truesize;
5541
5542 for (head = skb;;) {
5543 skb = skb_rb_next(skb);
5544
5545 /* Range is terminated when we see a gap or when
5546 * we are at the queue end.
5547 */
5548 if (!skb ||
5549 after(TCP_SKB_CB(skb)->seq, end) ||
5550 before(TCP_SKB_CB(skb)->end_seq, start)) {
5551 /* Do not attempt collapsing tiny skbs */
5552 if (range_truesize != head->truesize ||
5553 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5554 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5555 head, skb, start, end);
5556 } else {
5557 sum_tiny += range_truesize;
5558 if (sum_tiny > sk->sk_rcvbuf >> 3)
5559 return;
5560 }
5561 goto new_range;
5562 }
5563
5564 range_truesize += skb->truesize;
5565 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5566 start = TCP_SKB_CB(skb)->seq;
5567 if (after(TCP_SKB_CB(skb)->end_seq, end))
5568 end = TCP_SKB_CB(skb)->end_seq;
5569 }
5570 }
5571
5572 /*
5573 * Clean the out-of-order queue to make room.
5574 * We drop high sequences packets to :
5575 * 1) Let a chance for holes to be filled.
5576 * This means we do not drop packets from ooo queue if their sequence
5577 * is before incoming packet sequence.
5578 * 2) not add too big latencies if thousands of packets sit there.
5579 * (But if application shrinks SO_RCVBUF, we could still end up
5580 * freeing whole queue here)
5581 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5582 *
5583 * Return true if queue has shrunk.
5584 */
tcp_prune_ofo_queue(struct sock * sk,const struct sk_buff * in_skb)5585 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5586 {
5587 struct tcp_sock *tp = tcp_sk(sk);
5588 struct rb_node *node, *prev;
5589 bool pruned = false;
5590 int goal;
5591
5592 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5593 return false;
5594
5595 goal = sk->sk_rcvbuf >> 3;
5596 node = &tp->ooo_last_skb->rbnode;
5597
5598 do {
5599 struct sk_buff *skb = rb_to_skb(node);
5600
5601 /* If incoming skb would land last in ofo queue, stop pruning. */
5602 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5603 break;
5604 pruned = true;
5605 prev = rb_prev(node);
5606 rb_erase(node, &tp->out_of_order_queue);
5607 goal -= skb->truesize;
5608 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5609 tp->ooo_last_skb = rb_to_skb(prev);
5610 if (!prev || goal <= 0) {
5611 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5612 !tcp_under_memory_pressure(sk))
5613 break;
5614 goal = sk->sk_rcvbuf >> 3;
5615 }
5616 node = prev;
5617 } while (node);
5618
5619 if (pruned) {
5620 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5621 /* Reset SACK state. A conforming SACK implementation will
5622 * do the same at a timeout based retransmit. When a connection
5623 * is in a sad state like this, we care only about integrity
5624 * of the connection not performance.
5625 */
5626 if (tp->rx_opt.sack_ok)
5627 tcp_sack_reset(&tp->rx_opt);
5628 }
5629 return pruned;
5630 }
5631
5632 /* Reduce allocated memory if we can, trying to get
5633 * the socket within its memory limits again.
5634 *
5635 * Return less than zero if we should start dropping frames
5636 * until the socket owning process reads some of the data
5637 * to stabilize the situation.
5638 */
tcp_prune_queue(struct sock * sk,const struct sk_buff * in_skb)5639 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5640 {
5641 struct tcp_sock *tp = tcp_sk(sk);
5642
5643 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5644
5645 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5646 tcp_clamp_window(sk);
5647 else if (tcp_under_memory_pressure(sk))
5648 tcp_adjust_rcv_ssthresh(sk);
5649
5650 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5651 return 0;
5652
5653 tcp_collapse_ofo_queue(sk);
5654 if (!skb_queue_empty(&sk->sk_receive_queue))
5655 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5656 skb_peek(&sk->sk_receive_queue),
5657 NULL,
5658 tp->copied_seq, tp->rcv_nxt);
5659
5660 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5661 return 0;
5662
5663 /* Collapsing did not help, destructive actions follow.
5664 * This must not ever occur. */
5665
5666 tcp_prune_ofo_queue(sk, in_skb);
5667
5668 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5669 return 0;
5670
5671 /* If we are really being abused, tell the caller to silently
5672 * drop receive data on the floor. It will get retransmitted
5673 * and hopefully then we'll have sufficient space.
5674 */
5675 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5676
5677 /* Massive buffer overcommit. */
5678 tp->pred_flags = 0;
5679 return -1;
5680 }
5681
tcp_should_expand_sndbuf(struct sock * sk)5682 static bool tcp_should_expand_sndbuf(struct sock *sk)
5683 {
5684 const struct tcp_sock *tp = tcp_sk(sk);
5685
5686 /* If the user specified a specific send buffer setting, do
5687 * not modify it.
5688 */
5689 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5690 return false;
5691
5692 /* If we are under global TCP memory pressure, do not expand. */
5693 if (tcp_under_memory_pressure(sk)) {
5694 int unused_mem = sk_unused_reserved_mem(sk);
5695
5696 /* Adjust sndbuf according to reserved mem. But make sure
5697 * it never goes below SOCK_MIN_SNDBUF.
5698 * See sk_stream_moderate_sndbuf() for more details.
5699 */
5700 if (unused_mem > SOCK_MIN_SNDBUF)
5701 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5702
5703 return false;
5704 }
5705
5706 /* If we are under soft global TCP memory pressure, do not expand. */
5707 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5708 return false;
5709
5710 /* If we filled the congestion window, do not expand. */
5711 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5712 return false;
5713
5714 return true;
5715 }
5716
tcp_new_space(struct sock * sk)5717 static void tcp_new_space(struct sock *sk)
5718 {
5719 struct tcp_sock *tp = tcp_sk(sk);
5720
5721 if (tcp_should_expand_sndbuf(sk)) {
5722 tcp_sndbuf_expand(sk);
5723 tp->snd_cwnd_stamp = tcp_jiffies32;
5724 }
5725
5726 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5727 }
5728
5729 /* Caller made space either from:
5730 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5731 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5732 *
5733 * We might be able to generate EPOLLOUT to the application if:
5734 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5735 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5736 * small enough that tcp_stream_memory_free() decides it
5737 * is time to generate EPOLLOUT.
5738 */
tcp_check_space(struct sock * sk)5739 void tcp_check_space(struct sock *sk)
5740 {
5741 /* pairs with tcp_poll() */
5742 smp_mb();
5743 if (sk->sk_socket &&
5744 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5745 tcp_new_space(sk);
5746 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5747 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5748 }
5749 }
5750
tcp_data_snd_check(struct sock * sk)5751 static inline void tcp_data_snd_check(struct sock *sk)
5752 {
5753 tcp_push_pending_frames(sk);
5754 tcp_check_space(sk);
5755 }
5756
5757 /*
5758 * Check if sending an ack is needed.
5759 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5760 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5761 {
5762 struct tcp_sock *tp = tcp_sk(sk);
5763 unsigned long rtt, delay;
5764
5765 /* More than one full frame received... */
5766 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5767 /* ... and right edge of window advances far enough.
5768 * (tcp_recvmsg() will send ACK otherwise).
5769 * If application uses SO_RCVLOWAT, we want send ack now if
5770 * we have not received enough bytes to satisfy the condition.
5771 */
5772 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5773 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5774 /* We ACK each frame or... */
5775 tcp_in_quickack_mode(sk) ||
5776 /* Protocol state mandates a one-time immediate ACK */
5777 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5778 /* If we are running from __release_sock() in user context,
5779 * Defer the ack until tcp_release_cb().
5780 */
5781 if (sock_owned_by_user_nocheck(sk) &&
5782 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_backlog_ack_defer)) {
5783 set_bit(TCP_ACK_DEFERRED, &sk->sk_tsq_flags);
5784 return;
5785 }
5786 send_now:
5787 tcp_send_ack(sk);
5788 return;
5789 }
5790
5791 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5792 tcp_send_delayed_ack(sk);
5793 return;
5794 }
5795
5796 if (!tcp_is_sack(tp) ||
5797 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5798 goto send_now;
5799
5800 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5801 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5802 tp->dup_ack_counter = 0;
5803 }
5804 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5805 tp->dup_ack_counter++;
5806 goto send_now;
5807 }
5808 tp->compressed_ack++;
5809 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5810 return;
5811
5812 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5813
5814 rtt = tp->rcv_rtt_est.rtt_us;
5815 if (tp->srtt_us && tp->srtt_us < rtt)
5816 rtt = tp->srtt_us;
5817
5818 delay = min_t(unsigned long,
5819 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5820 rtt * (NSEC_PER_USEC >> 3)/20);
5821 sock_hold(sk);
5822 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5823 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5824 HRTIMER_MODE_REL_PINNED_SOFT);
5825 }
5826
tcp_ack_snd_check(struct sock * sk)5827 static inline void tcp_ack_snd_check(struct sock *sk)
5828 {
5829 if (!inet_csk_ack_scheduled(sk)) {
5830 /* We sent a data segment already. */
5831 return;
5832 }
5833 __tcp_ack_snd_check(sk, 1);
5834 }
5835
5836 /*
5837 * This routine is only called when we have urgent data
5838 * signaled. Its the 'slow' part of tcp_urg. It could be
5839 * moved inline now as tcp_urg is only called from one
5840 * place. We handle URGent data wrong. We have to - as
5841 * BSD still doesn't use the correction from RFC961.
5842 * For 1003.1g we should support a new option TCP_STDURG to permit
5843 * either form (or just set the sysctl tcp_stdurg).
5844 */
5845
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5846 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5847 {
5848 struct tcp_sock *tp = tcp_sk(sk);
5849 u32 ptr = ntohs(th->urg_ptr);
5850
5851 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5852 ptr--;
5853 ptr += ntohl(th->seq);
5854
5855 /* Ignore urgent data that we've already seen and read. */
5856 if (after(tp->copied_seq, ptr))
5857 return;
5858
5859 /* Do not replay urg ptr.
5860 *
5861 * NOTE: interesting situation not covered by specs.
5862 * Misbehaving sender may send urg ptr, pointing to segment,
5863 * which we already have in ofo queue. We are not able to fetch
5864 * such data and will stay in TCP_URG_NOTYET until will be eaten
5865 * by recvmsg(). Seems, we are not obliged to handle such wicked
5866 * situations. But it is worth to think about possibility of some
5867 * DoSes using some hypothetical application level deadlock.
5868 */
5869 if (before(ptr, tp->rcv_nxt))
5870 return;
5871
5872 /* Do we already have a newer (or duplicate) urgent pointer? */
5873 if (tp->urg_data && !after(ptr, tp->urg_seq))
5874 return;
5875
5876 /* Tell the world about our new urgent pointer. */
5877 sk_send_sigurg(sk);
5878
5879 /* We may be adding urgent data when the last byte read was
5880 * urgent. To do this requires some care. We cannot just ignore
5881 * tp->copied_seq since we would read the last urgent byte again
5882 * as data, nor can we alter copied_seq until this data arrives
5883 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5884 *
5885 * NOTE. Double Dutch. Rendering to plain English: author of comment
5886 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5887 * and expect that both A and B disappear from stream. This is _wrong_.
5888 * Though this happens in BSD with high probability, this is occasional.
5889 * Any application relying on this is buggy. Note also, that fix "works"
5890 * only in this artificial test. Insert some normal data between A and B and we will
5891 * decline of BSD again. Verdict: it is better to remove to trap
5892 * buggy users.
5893 */
5894 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5895 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5896 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5897 tp->copied_seq++;
5898 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5899 __skb_unlink(skb, &sk->sk_receive_queue);
5900 __kfree_skb(skb);
5901 }
5902 }
5903
5904 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5905 WRITE_ONCE(tp->urg_seq, ptr);
5906
5907 /* Disable header prediction. */
5908 tp->pred_flags = 0;
5909 }
5910
5911 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5912 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5913 {
5914 struct tcp_sock *tp = tcp_sk(sk);
5915
5916 /* Check if we get a new urgent pointer - normally not. */
5917 if (unlikely(th->urg))
5918 tcp_check_urg(sk, th);
5919
5920 /* Do we wait for any urgent data? - normally not... */
5921 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5922 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5923 th->syn;
5924
5925 /* Is the urgent pointer pointing into this packet? */
5926 if (ptr < skb->len) {
5927 u8 tmp;
5928 if (skb_copy_bits(skb, ptr, &tmp, 1))
5929 BUG();
5930 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5931 if (!sock_flag(sk, SOCK_DEAD))
5932 sk->sk_data_ready(sk);
5933 }
5934 }
5935 }
5936
5937 /* Accept RST for rcv_nxt - 1 after a FIN.
5938 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5939 * FIN is sent followed by a RST packet. The RST is sent with the same
5940 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5941 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5942 * ACKs on the closed socket. In addition middleboxes can drop either the
5943 * challenge ACK or a subsequent RST.
5944 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5945 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5946 {
5947 const struct tcp_sock *tp = tcp_sk(sk);
5948
5949 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5950 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5951 TCPF_CLOSING));
5952 }
5953
5954 /* Does PAWS and seqno based validation of an incoming segment, flags will
5955 * play significant role here.
5956 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5957 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5958 const struct tcphdr *th, int syn_inerr)
5959 {
5960 struct tcp_sock *tp = tcp_sk(sk);
5961 SKB_DR(reason);
5962
5963 /* RFC1323: H1. Apply PAWS check first. */
5964 if (!tcp_fast_parse_options(sock_net(sk), skb, th, tp) ||
5965 !tp->rx_opt.saw_tstamp ||
5966 tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW))
5967 goto step1;
5968
5969 reason = tcp_disordered_ack_check(sk, skb);
5970 if (!reason)
5971 goto step1;
5972 /* Reset is accepted even if it did not pass PAWS. */
5973 if (th->rst)
5974 goto step1;
5975 if (unlikely(th->syn))
5976 goto syn_challenge;
5977
5978 /* Old ACK are common, increment PAWS_OLD_ACK
5979 * and do not send a dupack.
5980 */
5981 if (reason == SKB_DROP_REASON_TCP_RFC7323_PAWS_ACK) {
5982 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWS_OLD_ACK);
5983 goto discard;
5984 }
5985 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5986 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5987 LINUX_MIB_TCPACKSKIPPEDPAWS,
5988 &tp->last_oow_ack_time))
5989 tcp_send_dupack(sk, skb);
5990 goto discard;
5991
5992 step1:
5993 /* Step 1: check sequence number */
5994 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5995 if (reason) {
5996 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5997 * (RST) segments are validated by checking their SEQ-fields."
5998 * And page 69: "If an incoming segment is not acceptable,
5999 * an acknowledgment should be sent in reply (unless the RST
6000 * bit is set, if so drop the segment and return)".
6001 */
6002 if (!th->rst) {
6003 if (th->syn)
6004 goto syn_challenge;
6005 if (!tcp_oow_rate_limited(sock_net(sk), skb,
6006 LINUX_MIB_TCPACKSKIPPEDSEQ,
6007 &tp->last_oow_ack_time))
6008 tcp_send_dupack(sk, skb);
6009 } else if (tcp_reset_check(sk, skb)) {
6010 goto reset;
6011 }
6012 goto discard;
6013 }
6014
6015 /* Step 2: check RST bit */
6016 if (th->rst) {
6017 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
6018 * FIN and SACK too if available):
6019 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
6020 * the right-most SACK block,
6021 * then
6022 * RESET the connection
6023 * else
6024 * Send a challenge ACK
6025 */
6026 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
6027 tcp_reset_check(sk, skb))
6028 goto reset;
6029
6030 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
6031 struct tcp_sack_block *sp = &tp->selective_acks[0];
6032 int max_sack = sp[0].end_seq;
6033 int this_sack;
6034
6035 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
6036 ++this_sack) {
6037 max_sack = after(sp[this_sack].end_seq,
6038 max_sack) ?
6039 sp[this_sack].end_seq : max_sack;
6040 }
6041
6042 if (TCP_SKB_CB(skb)->seq == max_sack)
6043 goto reset;
6044 }
6045
6046 /* Disable TFO if RST is out-of-order
6047 * and no data has been received
6048 * for current active TFO socket
6049 */
6050 if (tp->syn_fastopen && !tp->data_segs_in &&
6051 sk->sk_state == TCP_ESTABLISHED)
6052 tcp_fastopen_active_disable(sk);
6053 tcp_send_challenge_ack(sk);
6054 SKB_DR_SET(reason, TCP_RESET);
6055 goto discard;
6056 }
6057
6058 /* step 3: check security and precedence [ignored] */
6059
6060 /* step 4: Check for a SYN
6061 * RFC 5961 4.2 : Send a challenge ack
6062 */
6063 if (th->syn) {
6064 if (sk->sk_state == TCP_SYN_RECV && sk->sk_socket && th->ack &&
6065 TCP_SKB_CB(skb)->seq + 1 == TCP_SKB_CB(skb)->end_seq &&
6066 TCP_SKB_CB(skb)->seq + 1 == tp->rcv_nxt &&
6067 TCP_SKB_CB(skb)->ack_seq == tp->snd_nxt)
6068 goto pass;
6069 syn_challenge:
6070 if (syn_inerr)
6071 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6072 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
6073 tcp_send_challenge_ack(sk);
6074 SKB_DR_SET(reason, TCP_INVALID_SYN);
6075 goto discard;
6076 }
6077
6078 pass:
6079 bpf_skops_parse_hdr(sk, skb);
6080
6081 return true;
6082
6083 discard:
6084 tcp_drop_reason(sk, skb, reason);
6085 return false;
6086
6087 reset:
6088 tcp_reset(sk, skb);
6089 __kfree_skb(skb);
6090 return false;
6091 }
6092
6093 /*
6094 * TCP receive function for the ESTABLISHED state.
6095 *
6096 * It is split into a fast path and a slow path. The fast path is
6097 * disabled when:
6098 * - A zero window was announced from us - zero window probing
6099 * is only handled properly in the slow path.
6100 * - Out of order segments arrived.
6101 * - Urgent data is expected.
6102 * - There is no buffer space left
6103 * - Unexpected TCP flags/window values/header lengths are received
6104 * (detected by checking the TCP header against pred_flags)
6105 * - Data is sent in both directions. Fast path only supports pure senders
6106 * or pure receivers (this means either the sequence number or the ack
6107 * value must stay constant)
6108 * - Unexpected TCP option.
6109 *
6110 * When these conditions are not satisfied it drops into a standard
6111 * receive procedure patterned after RFC793 to handle all cases.
6112 * The first three cases are guaranteed by proper pred_flags setting,
6113 * the rest is checked inline. Fast processing is turned on in
6114 * tcp_data_queue when everything is OK.
6115 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)6116 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
6117 {
6118 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
6119 const struct tcphdr *th = (const struct tcphdr *)skb->data;
6120 struct tcp_sock *tp = tcp_sk(sk);
6121 unsigned int len = skb->len;
6122
6123 /* TCP congestion window tracking */
6124 trace_tcp_probe(sk, skb);
6125
6126 tcp_mstamp_refresh(tp);
6127 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
6128 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
6129 /*
6130 * Header prediction.
6131 * The code loosely follows the one in the famous
6132 * "30 instruction TCP receive" Van Jacobson mail.
6133 *
6134 * Van's trick is to deposit buffers into socket queue
6135 * on a device interrupt, to call tcp_recv function
6136 * on the receive process context and checksum and copy
6137 * the buffer to user space. smart...
6138 *
6139 * Our current scheme is not silly either but we take the
6140 * extra cost of the net_bh soft interrupt processing...
6141 * We do checksum and copy also but from device to kernel.
6142 */
6143
6144 tp->rx_opt.saw_tstamp = 0;
6145
6146 /* pred_flags is 0xS?10 << 16 + snd_wnd
6147 * if header_prediction is to be made
6148 * 'S' will always be tp->tcp_header_len >> 2
6149 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
6150 * turn it off (when there are holes in the receive
6151 * space for instance)
6152 * PSH flag is ignored.
6153 */
6154
6155 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
6156 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
6157 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6158 int tcp_header_len = tp->tcp_header_len;
6159
6160 /* Timestamp header prediction: tcp_header_len
6161 * is automatically equal to th->doff*4 due to pred_flags
6162 * match.
6163 */
6164
6165 /* Check timestamp */
6166 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
6167 /* No? Slow path! */
6168 if (!tcp_parse_aligned_timestamp(tp, th))
6169 goto slow_path;
6170
6171 /* If PAWS failed, check it more carefully in slow path */
6172 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
6173 goto slow_path;
6174
6175 /* DO NOT update ts_recent here, if checksum fails
6176 * and timestamp was corrupted part, it will result
6177 * in a hung connection since we will drop all
6178 * future packets due to the PAWS test.
6179 */
6180 }
6181
6182 if (len <= tcp_header_len) {
6183 /* Bulk data transfer: sender */
6184 if (len == tcp_header_len) {
6185 /* Predicted packet is in window by definition.
6186 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6187 * Hence, check seq<=rcv_wup reduces to:
6188 */
6189 if (tcp_header_len ==
6190 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6191 tp->rcv_nxt == tp->rcv_wup)
6192 tcp_store_ts_recent(tp);
6193
6194 /* We know that such packets are checksummed
6195 * on entry.
6196 */
6197 tcp_ack(sk, skb, 0);
6198 __kfree_skb(skb);
6199 tcp_data_snd_check(sk);
6200 /* When receiving pure ack in fast path, update
6201 * last ts ecr directly instead of calling
6202 * tcp_rcv_rtt_measure_ts()
6203 */
6204 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
6205 return;
6206 } else { /* Header too small */
6207 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
6208 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6209 goto discard;
6210 }
6211 } else {
6212 int eaten = 0;
6213 bool fragstolen = false;
6214
6215 if (tcp_checksum_complete(skb))
6216 goto csum_error;
6217
6218 if ((int)skb->truesize > sk->sk_forward_alloc)
6219 goto step5;
6220
6221 /* Predicted packet is in window by definition.
6222 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
6223 * Hence, check seq<=rcv_wup reduces to:
6224 */
6225 if (tcp_header_len ==
6226 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
6227 tp->rcv_nxt == tp->rcv_wup)
6228 tcp_store_ts_recent(tp);
6229
6230 tcp_rcv_rtt_measure_ts(sk, skb);
6231
6232 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6233
6234 /* Bulk data transfer: receiver */
6235 tcp_cleanup_skb(skb);
6236 __skb_pull(skb, tcp_header_len);
6237 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6238
6239 tcp_event_data_recv(sk, skb);
6240
6241 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6242 /* Well, only one small jumplet in fast path... */
6243 tcp_ack(sk, skb, FLAG_DATA);
6244 tcp_data_snd_check(sk);
6245 if (!inet_csk_ack_scheduled(sk))
6246 goto no_ack;
6247 } else {
6248 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6249 }
6250
6251 __tcp_ack_snd_check(sk, 0);
6252 no_ack:
6253 if (eaten)
6254 kfree_skb_partial(skb, fragstolen);
6255 tcp_data_ready(sk);
6256 return;
6257 }
6258 }
6259
6260 slow_path:
6261 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6262 goto csum_error;
6263
6264 if (!th->ack && !th->rst && !th->syn) {
6265 reason = SKB_DROP_REASON_TCP_FLAGS;
6266 goto discard;
6267 }
6268
6269 /*
6270 * Standard slow path.
6271 */
6272
6273 if (!tcp_validate_incoming(sk, skb, th, 1))
6274 return;
6275
6276 step5:
6277 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6278 if ((int)reason < 0) {
6279 reason = -reason;
6280 goto discard;
6281 }
6282 tcp_rcv_rtt_measure_ts(sk, skb);
6283
6284 /* Process urgent data. */
6285 tcp_urg(sk, skb, th);
6286
6287 /* step 7: process the segment text */
6288 tcp_data_queue(sk, skb);
6289
6290 tcp_data_snd_check(sk);
6291 tcp_ack_snd_check(sk);
6292 return;
6293
6294 csum_error:
6295 reason = SKB_DROP_REASON_TCP_CSUM;
6296 trace_tcp_bad_csum(skb);
6297 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6298 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6299
6300 discard:
6301 tcp_drop_reason(sk, skb, reason);
6302 }
6303 EXPORT_SYMBOL(tcp_rcv_established);
6304
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)6305 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6306 {
6307 struct inet_connection_sock *icsk = inet_csk(sk);
6308 struct tcp_sock *tp = tcp_sk(sk);
6309
6310 tcp_mtup_init(sk);
6311 icsk->icsk_af_ops->rebuild_header(sk);
6312 tcp_init_metrics(sk);
6313
6314 /* Initialize the congestion window to start the transfer.
6315 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6316 * retransmitted. In light of RFC6298 more aggressive 1sec
6317 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6318 * retransmission has occurred.
6319 */
6320 if (tp->total_retrans > 1 && tp->undo_marker)
6321 tcp_snd_cwnd_set(tp, 1);
6322 else
6323 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6324 tp->snd_cwnd_stamp = tcp_jiffies32;
6325
6326 bpf_skops_established(sk, bpf_op, skb);
6327 /* Initialize congestion control unless BPF initialized it already: */
6328 if (!icsk->icsk_ca_initialized)
6329 tcp_init_congestion_control(sk);
6330 tcp_init_buffer_space(sk);
6331 }
6332
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)6333 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6334 {
6335 struct tcp_sock *tp = tcp_sk(sk);
6336 struct inet_connection_sock *icsk = inet_csk(sk);
6337
6338 tcp_ao_finish_connect(sk, skb);
6339 tcp_set_state(sk, TCP_ESTABLISHED);
6340 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6341
6342 if (skb) {
6343 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6344 security_inet_conn_established(sk, skb);
6345 sk_mark_napi_id(sk, skb);
6346 }
6347
6348 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6349
6350 /* Prevent spurious tcp_cwnd_restart() on first data
6351 * packet.
6352 */
6353 tp->lsndtime = tcp_jiffies32;
6354
6355 if (sock_flag(sk, SOCK_KEEPOPEN))
6356 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6357
6358 if (!tp->rx_opt.snd_wscale)
6359 __tcp_fast_path_on(tp, tp->snd_wnd);
6360 else
6361 tp->pred_flags = 0;
6362 }
6363
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6364 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6365 struct tcp_fastopen_cookie *cookie)
6366 {
6367 struct tcp_sock *tp = tcp_sk(sk);
6368 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6369 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6370 bool syn_drop = false;
6371
6372 if (mss == tp->rx_opt.user_mss) {
6373 struct tcp_options_received opt;
6374
6375 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6376 tcp_clear_options(&opt);
6377 opt.user_mss = opt.mss_clamp = 0;
6378 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6379 mss = opt.mss_clamp;
6380 }
6381
6382 if (!tp->syn_fastopen) {
6383 /* Ignore an unsolicited cookie */
6384 cookie->len = -1;
6385 } else if (tp->total_retrans) {
6386 /* SYN timed out and the SYN-ACK neither has a cookie nor
6387 * acknowledges data. Presumably the remote received only
6388 * the retransmitted (regular) SYNs: either the original
6389 * SYN-data or the corresponding SYN-ACK was dropped.
6390 */
6391 syn_drop = (cookie->len < 0 && data);
6392 } else if (cookie->len < 0 && !tp->syn_data) {
6393 /* We requested a cookie but didn't get it. If we did not use
6394 * the (old) exp opt format then try so next time (try_exp=1).
6395 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6396 */
6397 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6398 }
6399
6400 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6401
6402 if (data) { /* Retransmit unacked data in SYN */
6403 if (tp->total_retrans)
6404 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6405 else
6406 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6407 skb_rbtree_walk_from(data)
6408 tcp_mark_skb_lost(sk, data);
6409 tcp_non_congestion_loss_retransmit(sk);
6410 NET_INC_STATS(sock_net(sk),
6411 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6412 return true;
6413 }
6414 tp->syn_data_acked = tp->syn_data;
6415 if (tp->syn_data_acked) {
6416 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6417 /* SYN-data is counted as two separate packets in tcp_ack() */
6418 if (tp->delivered > 1)
6419 --tp->delivered;
6420 }
6421
6422 tcp_fastopen_add_skb(sk, synack);
6423
6424 return false;
6425 }
6426
smc_check_reset_syn(struct tcp_sock * tp)6427 static void smc_check_reset_syn(struct tcp_sock *tp)
6428 {
6429 #if IS_ENABLED(CONFIG_SMC)
6430 if (static_branch_unlikely(&tcp_have_smc)) {
6431 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6432 tp->syn_smc = 0;
6433 }
6434 #endif
6435 }
6436
tcp_try_undo_spurious_syn(struct sock * sk)6437 static void tcp_try_undo_spurious_syn(struct sock *sk)
6438 {
6439 struct tcp_sock *tp = tcp_sk(sk);
6440 u32 syn_stamp;
6441
6442 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6443 * spurious if the ACK's timestamp option echo value matches the
6444 * original SYN timestamp.
6445 */
6446 syn_stamp = tp->retrans_stamp;
6447 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6448 syn_stamp == tp->rx_opt.rcv_tsecr)
6449 tp->undo_marker = 0;
6450 }
6451
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6452 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6453 const struct tcphdr *th)
6454 {
6455 struct inet_connection_sock *icsk = inet_csk(sk);
6456 struct tcp_sock *tp = tcp_sk(sk);
6457 struct tcp_fastopen_cookie foc = { .len = -1 };
6458 int saved_clamp = tp->rx_opt.mss_clamp;
6459 bool fastopen_fail;
6460 SKB_DR(reason);
6461
6462 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6463 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6464 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6465
6466 if (th->ack) {
6467 /* rfc793:
6468 * "If the state is SYN-SENT then
6469 * first check the ACK bit
6470 * If the ACK bit is set
6471 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6472 * a reset (unless the RST bit is set, if so drop
6473 * the segment and return)"
6474 */
6475 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6476 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6477 /* Previous FIN/ACK or RST/ACK might be ignored. */
6478 if (icsk->icsk_retransmits == 0)
6479 inet_csk_reset_xmit_timer(sk,
6480 ICSK_TIME_RETRANS,
6481 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6482 SKB_DR_SET(reason, TCP_INVALID_ACK_SEQUENCE);
6483 goto reset_and_undo;
6484 }
6485
6486 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6487 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6488 tcp_time_stamp_ts(tp))) {
6489 NET_INC_STATS(sock_net(sk),
6490 LINUX_MIB_PAWSACTIVEREJECTED);
6491 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6492 goto reset_and_undo;
6493 }
6494
6495 /* Now ACK is acceptable.
6496 *
6497 * "If the RST bit is set
6498 * If the ACK was acceptable then signal the user "error:
6499 * connection reset", drop the segment, enter CLOSED state,
6500 * delete TCB, and return."
6501 */
6502
6503 if (th->rst) {
6504 tcp_reset(sk, skb);
6505 consume:
6506 __kfree_skb(skb);
6507 return 0;
6508 }
6509
6510 /* rfc793:
6511 * "fifth, if neither of the SYN or RST bits is set then
6512 * drop the segment and return."
6513 *
6514 * See note below!
6515 * --ANK(990513)
6516 */
6517 if (!th->syn) {
6518 SKB_DR_SET(reason, TCP_FLAGS);
6519 goto discard_and_undo;
6520 }
6521 /* rfc793:
6522 * "If the SYN bit is on ...
6523 * are acceptable then ...
6524 * (our SYN has been ACKed), change the connection
6525 * state to ESTABLISHED..."
6526 */
6527
6528 tcp_ecn_rcv_synack(tp, th);
6529
6530 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6531 tcp_try_undo_spurious_syn(sk);
6532 tcp_ack(sk, skb, FLAG_SLOWPATH);
6533
6534 /* Ok.. it's good. Set up sequence numbers and
6535 * move to established.
6536 */
6537 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6538 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6539
6540 /* RFC1323: The window in SYN & SYN/ACK segments is
6541 * never scaled.
6542 */
6543 tp->snd_wnd = ntohs(th->window);
6544
6545 if (!tp->rx_opt.wscale_ok) {
6546 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6547 WRITE_ONCE(tp->window_clamp,
6548 min(tp->window_clamp, 65535U));
6549 }
6550
6551 if (tp->rx_opt.saw_tstamp) {
6552 tp->rx_opt.tstamp_ok = 1;
6553 tp->tcp_header_len =
6554 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6555 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6556 tcp_store_ts_recent(tp);
6557 } else {
6558 tp->tcp_header_len = sizeof(struct tcphdr);
6559 }
6560
6561 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6562 tcp_initialize_rcv_mss(sk);
6563
6564 /* Remember, tcp_poll() does not lock socket!
6565 * Change state from SYN-SENT only after copied_seq
6566 * is initialized. */
6567 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6568
6569 smc_check_reset_syn(tp);
6570
6571 smp_mb();
6572
6573 tcp_finish_connect(sk, skb);
6574
6575 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6576 tcp_rcv_fastopen_synack(sk, skb, &foc);
6577
6578 if (!sock_flag(sk, SOCK_DEAD)) {
6579 sk->sk_state_change(sk);
6580 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6581 }
6582 if (fastopen_fail)
6583 return -1;
6584 if (sk->sk_write_pending ||
6585 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6586 inet_csk_in_pingpong_mode(sk)) {
6587 /* Save one ACK. Data will be ready after
6588 * several ticks, if write_pending is set.
6589 *
6590 * It may be deleted, but with this feature tcpdumps
6591 * look so _wonderfully_ clever, that I was not able
6592 * to stand against the temptation 8) --ANK
6593 */
6594 inet_csk_schedule_ack(sk);
6595 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6596 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6597 TCP_DELACK_MAX, TCP_RTO_MAX);
6598 goto consume;
6599 }
6600 tcp_send_ack(sk);
6601 return -1;
6602 }
6603
6604 /* No ACK in the segment */
6605
6606 if (th->rst) {
6607 /* rfc793:
6608 * "If the RST bit is set
6609 *
6610 * Otherwise (no ACK) drop the segment and return."
6611 */
6612 SKB_DR_SET(reason, TCP_RESET);
6613 goto discard_and_undo;
6614 }
6615
6616 /* PAWS check. */
6617 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6618 tcp_paws_reject(&tp->rx_opt, 0)) {
6619 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6620 goto discard_and_undo;
6621 }
6622 if (th->syn) {
6623 /* We see SYN without ACK. It is attempt of
6624 * simultaneous connect with crossed SYNs.
6625 * Particularly, it can be connect to self.
6626 */
6627 #ifdef CONFIG_TCP_AO
6628 struct tcp_ao_info *ao;
6629
6630 ao = rcu_dereference_protected(tp->ao_info,
6631 lockdep_sock_is_held(sk));
6632 if (ao) {
6633 WRITE_ONCE(ao->risn, th->seq);
6634 ao->rcv_sne = 0;
6635 }
6636 #endif
6637 tcp_set_state(sk, TCP_SYN_RECV);
6638
6639 if (tp->rx_opt.saw_tstamp) {
6640 tp->rx_opt.tstamp_ok = 1;
6641 tcp_store_ts_recent(tp);
6642 tp->tcp_header_len =
6643 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6644 } else {
6645 tp->tcp_header_len = sizeof(struct tcphdr);
6646 }
6647
6648 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6649 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6650 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6651
6652 /* RFC1323: The window in SYN & SYN/ACK segments is
6653 * never scaled.
6654 */
6655 tp->snd_wnd = ntohs(th->window);
6656 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6657 tp->max_window = tp->snd_wnd;
6658
6659 tcp_ecn_rcv_syn(tp, th);
6660
6661 tcp_mtup_init(sk);
6662 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6663 tcp_initialize_rcv_mss(sk);
6664
6665 tcp_send_synack(sk);
6666 #if 0
6667 /* Note, we could accept data and URG from this segment.
6668 * There are no obstacles to make this (except that we must
6669 * either change tcp_recvmsg() to prevent it from returning data
6670 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6671 *
6672 * However, if we ignore data in ACKless segments sometimes,
6673 * we have no reasons to accept it sometimes.
6674 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6675 * is not flawless. So, discard packet for sanity.
6676 * Uncomment this return to process the data.
6677 */
6678 return -1;
6679 #else
6680 goto consume;
6681 #endif
6682 }
6683 /* "fifth, if neither of the SYN or RST bits is set then
6684 * drop the segment and return."
6685 */
6686
6687 discard_and_undo:
6688 tcp_clear_options(&tp->rx_opt);
6689 tp->rx_opt.mss_clamp = saved_clamp;
6690 tcp_drop_reason(sk, skb, reason);
6691 return 0;
6692
6693 reset_and_undo:
6694 tcp_clear_options(&tp->rx_opt);
6695 tp->rx_opt.mss_clamp = saved_clamp;
6696 /* we can reuse/return @reason to its caller to handle the exception */
6697 return reason;
6698 }
6699
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6700 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6701 {
6702 struct tcp_sock *tp = tcp_sk(sk);
6703 struct request_sock *req;
6704
6705 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6706 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6707 */
6708 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6709 tcp_try_undo_recovery(sk);
6710
6711 tcp_update_rto_time(tp);
6712 inet_csk(sk)->icsk_retransmits = 0;
6713 /* In tcp_fastopen_synack_timer() on the first SYNACK RTO we set
6714 * retrans_stamp but don't enter CA_Loss, so in case that happened we
6715 * need to zero retrans_stamp here to prevent spurious
6716 * retransmits_timed_out(). However, if the ACK of our SYNACK caused us
6717 * to enter CA_Recovery then we need to leave retrans_stamp as it was
6718 * set entering CA_Recovery, for correct retransmits_timed_out() and
6719 * undo behavior.
6720 */
6721 tcp_retrans_stamp_cleanup(sk);
6722
6723 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6724 * we no longer need req so release it.
6725 */
6726 req = rcu_dereference_protected(tp->fastopen_rsk,
6727 lockdep_sock_is_held(sk));
6728 reqsk_fastopen_remove(sk, req, false);
6729
6730 /* Re-arm the timer because data may have been sent out.
6731 * This is similar to the regular data transmission case
6732 * when new data has just been ack'ed.
6733 *
6734 * (TFO) - we could try to be more aggressive and
6735 * retransmitting any data sooner based on when they
6736 * are sent out.
6737 */
6738 tcp_rearm_rto(sk);
6739 }
6740
6741 /*
6742 * This function implements the receiving procedure of RFC 793 for
6743 * all states except ESTABLISHED and TIME_WAIT.
6744 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6745 * address independent.
6746 */
6747
6748 enum skb_drop_reason
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6749 tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6750 {
6751 struct tcp_sock *tp = tcp_sk(sk);
6752 struct inet_connection_sock *icsk = inet_csk(sk);
6753 const struct tcphdr *th = tcp_hdr(skb);
6754 struct request_sock *req;
6755 int queued = 0;
6756 SKB_DR(reason);
6757
6758 switch (sk->sk_state) {
6759 case TCP_CLOSE:
6760 SKB_DR_SET(reason, TCP_CLOSE);
6761 goto discard;
6762
6763 case TCP_LISTEN:
6764 if (th->ack)
6765 return SKB_DROP_REASON_TCP_FLAGS;
6766
6767 if (th->rst) {
6768 SKB_DR_SET(reason, TCP_RESET);
6769 goto discard;
6770 }
6771 if (th->syn) {
6772 if (th->fin) {
6773 SKB_DR_SET(reason, TCP_FLAGS);
6774 goto discard;
6775 }
6776 /* It is possible that we process SYN packets from backlog,
6777 * so we need to make sure to disable BH and RCU right there.
6778 */
6779 rcu_read_lock();
6780 local_bh_disable();
6781 icsk->icsk_af_ops->conn_request(sk, skb);
6782 local_bh_enable();
6783 rcu_read_unlock();
6784
6785 consume_skb(skb);
6786 return 0;
6787 }
6788 SKB_DR_SET(reason, TCP_FLAGS);
6789 goto discard;
6790
6791 case TCP_SYN_SENT:
6792 tp->rx_opt.saw_tstamp = 0;
6793 tcp_mstamp_refresh(tp);
6794 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6795 if (queued >= 0)
6796 return queued;
6797
6798 /* Do step6 onward by hand. */
6799 tcp_urg(sk, skb, th);
6800 __kfree_skb(skb);
6801 tcp_data_snd_check(sk);
6802 return 0;
6803 }
6804
6805 tcp_mstamp_refresh(tp);
6806 tp->rx_opt.saw_tstamp = 0;
6807 req = rcu_dereference_protected(tp->fastopen_rsk,
6808 lockdep_sock_is_held(sk));
6809 if (req) {
6810 bool req_stolen;
6811
6812 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6813 sk->sk_state != TCP_FIN_WAIT1);
6814
6815 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6816 SKB_DR_SET(reason, TCP_FASTOPEN);
6817 goto discard;
6818 }
6819 }
6820
6821 if (!th->ack && !th->rst && !th->syn) {
6822 SKB_DR_SET(reason, TCP_FLAGS);
6823 goto discard;
6824 }
6825 if (!tcp_validate_incoming(sk, skb, th, 0))
6826 return 0;
6827
6828 /* step 5: check the ACK field */
6829 reason = tcp_ack(sk, skb, FLAG_SLOWPATH |
6830 FLAG_UPDATE_TS_RECENT |
6831 FLAG_NO_CHALLENGE_ACK);
6832
6833 if ((int)reason <= 0) {
6834 if (sk->sk_state == TCP_SYN_RECV) {
6835 /* send one RST */
6836 if (!reason)
6837 return SKB_DROP_REASON_TCP_OLD_ACK;
6838 return -reason;
6839 }
6840 /* accept old ack during closing */
6841 if ((int)reason < 0) {
6842 tcp_send_challenge_ack(sk);
6843 reason = -reason;
6844 goto discard;
6845 }
6846 }
6847 SKB_DR_SET(reason, NOT_SPECIFIED);
6848 switch (sk->sk_state) {
6849 case TCP_SYN_RECV:
6850 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6851 if (!tp->srtt_us)
6852 tcp_synack_rtt_meas(sk, req);
6853
6854 if (req) {
6855 tcp_rcv_synrecv_state_fastopen(sk);
6856 } else {
6857 tcp_try_undo_spurious_syn(sk);
6858 tp->retrans_stamp = 0;
6859 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6860 skb);
6861 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6862 }
6863 tcp_ao_established(sk);
6864 smp_mb();
6865 tcp_set_state(sk, TCP_ESTABLISHED);
6866 sk->sk_state_change(sk);
6867
6868 /* Note, that this wakeup is only for marginal crossed SYN case.
6869 * Passively open sockets are not waked up, because
6870 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6871 */
6872 if (sk->sk_socket)
6873 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6874
6875 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6876 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6877 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6878
6879 if (tp->rx_opt.tstamp_ok)
6880 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6881
6882 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6883 tcp_update_pacing_rate(sk);
6884
6885 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6886 tp->lsndtime = tcp_jiffies32;
6887
6888 tcp_initialize_rcv_mss(sk);
6889 tcp_fast_path_on(tp);
6890 if (sk->sk_shutdown & SEND_SHUTDOWN)
6891 tcp_shutdown(sk, SEND_SHUTDOWN);
6892 break;
6893
6894 case TCP_FIN_WAIT1: {
6895 int tmo;
6896
6897 if (req)
6898 tcp_rcv_synrecv_state_fastopen(sk);
6899
6900 if (tp->snd_una != tp->write_seq)
6901 break;
6902
6903 tcp_set_state(sk, TCP_FIN_WAIT2);
6904 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6905
6906 sk_dst_confirm(sk);
6907
6908 if (!sock_flag(sk, SOCK_DEAD)) {
6909 /* Wake up lingering close() */
6910 sk->sk_state_change(sk);
6911 break;
6912 }
6913
6914 if (READ_ONCE(tp->linger2) < 0) {
6915 tcp_done(sk);
6916 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6917 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6918 }
6919 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6920 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6921 /* Receive out of order FIN after close() */
6922 if (tp->syn_fastopen && th->fin)
6923 tcp_fastopen_active_disable(sk);
6924 tcp_done(sk);
6925 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6926 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6927 }
6928
6929 tmo = tcp_fin_time(sk);
6930 if (tmo > TCP_TIMEWAIT_LEN) {
6931 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6932 } else if (th->fin || sock_owned_by_user(sk)) {
6933 /* Bad case. We could lose such FIN otherwise.
6934 * It is not a big problem, but it looks confusing
6935 * and not so rare event. We still can lose it now,
6936 * if it spins in bh_lock_sock(), but it is really
6937 * marginal case.
6938 */
6939 inet_csk_reset_keepalive_timer(sk, tmo);
6940 } else {
6941 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6942 goto consume;
6943 }
6944 break;
6945 }
6946
6947 case TCP_CLOSING:
6948 if (tp->snd_una == tp->write_seq) {
6949 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6950 goto consume;
6951 }
6952 break;
6953
6954 case TCP_LAST_ACK:
6955 if (tp->snd_una == tp->write_seq) {
6956 tcp_update_metrics(sk);
6957 tcp_done(sk);
6958 goto consume;
6959 }
6960 break;
6961 }
6962
6963 /* step 6: check the URG bit */
6964 tcp_urg(sk, skb, th);
6965
6966 /* step 7: process the segment text */
6967 switch (sk->sk_state) {
6968 case TCP_CLOSE_WAIT:
6969 case TCP_CLOSING:
6970 case TCP_LAST_ACK:
6971 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6972 /* If a subflow has been reset, the packet should not
6973 * continue to be processed, drop the packet.
6974 */
6975 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6976 goto discard;
6977 break;
6978 }
6979 fallthrough;
6980 case TCP_FIN_WAIT1:
6981 case TCP_FIN_WAIT2:
6982 /* RFC 793 says to queue data in these states,
6983 * RFC 1122 says we MUST send a reset.
6984 * BSD 4.4 also does reset.
6985 */
6986 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6987 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6988 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6989 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6990 tcp_reset(sk, skb);
6991 return SKB_DROP_REASON_TCP_ABORT_ON_DATA;
6992 }
6993 }
6994 fallthrough;
6995 case TCP_ESTABLISHED:
6996 tcp_data_queue(sk, skb);
6997 queued = 1;
6998 break;
6999 }
7000
7001 /* tcp_data could move socket to TIME-WAIT */
7002 if (sk->sk_state != TCP_CLOSE) {
7003 tcp_data_snd_check(sk);
7004 tcp_ack_snd_check(sk);
7005 }
7006
7007 if (!queued) {
7008 discard:
7009 tcp_drop_reason(sk, skb, reason);
7010 }
7011 return 0;
7012
7013 consume:
7014 __kfree_skb(skb);
7015 return 0;
7016 }
7017 EXPORT_SYMBOL(tcp_rcv_state_process);
7018
pr_drop_req(struct request_sock * req,__u16 port,int family)7019 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
7020 {
7021 struct inet_request_sock *ireq = inet_rsk(req);
7022
7023 if (family == AF_INET)
7024 net_dbg_ratelimited("drop open request from %pI4/%u\n",
7025 &ireq->ir_rmt_addr, port);
7026 #if IS_ENABLED(CONFIG_IPV6)
7027 else if (family == AF_INET6)
7028 net_dbg_ratelimited("drop open request from %pI6/%u\n",
7029 &ireq->ir_v6_rmt_addr, port);
7030 #endif
7031 }
7032
7033 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
7034 *
7035 * If we receive a SYN packet with these bits set, it means a
7036 * network is playing bad games with TOS bits. In order to
7037 * avoid possible false congestion notifications, we disable
7038 * TCP ECN negotiation.
7039 *
7040 * Exception: tcp_ca wants ECN. This is required for DCTCP
7041 * congestion control: Linux DCTCP asserts ECT on all packets,
7042 * including SYN, which is most optimal solution; however,
7043 * others, such as FreeBSD do not.
7044 *
7045 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
7046 * set, indicating the use of a future TCP extension (such as AccECN). See
7047 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
7048 * extensions.
7049 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)7050 static void tcp_ecn_create_request(struct request_sock *req,
7051 const struct sk_buff *skb,
7052 const struct sock *listen_sk,
7053 const struct dst_entry *dst)
7054 {
7055 const struct tcphdr *th = tcp_hdr(skb);
7056 const struct net *net = sock_net(listen_sk);
7057 bool th_ecn = th->ece && th->cwr;
7058 bool ect, ecn_ok;
7059 u32 ecn_ok_dst;
7060
7061 if (!th_ecn)
7062 return;
7063
7064 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
7065 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
7066 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
7067
7068 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
7069 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
7070 tcp_bpf_ca_needs_ecn((struct sock *)req))
7071 inet_rsk(req)->ecn_ok = 1;
7072 }
7073
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)7074 static void tcp_openreq_init(struct request_sock *req,
7075 const struct tcp_options_received *rx_opt,
7076 struct sk_buff *skb, const struct sock *sk)
7077 {
7078 struct inet_request_sock *ireq = inet_rsk(req);
7079
7080 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
7081 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
7082 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
7083 tcp_rsk(req)->snt_synack = 0;
7084 tcp_rsk(req)->last_oow_ack_time = 0;
7085 req->mss = rx_opt->mss_clamp;
7086 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
7087 ireq->tstamp_ok = rx_opt->tstamp_ok;
7088 ireq->sack_ok = rx_opt->sack_ok;
7089 ireq->snd_wscale = rx_opt->snd_wscale;
7090 ireq->wscale_ok = rx_opt->wscale_ok;
7091 ireq->acked = 0;
7092 ireq->ecn_ok = 0;
7093 ireq->ir_rmt_port = tcp_hdr(skb)->source;
7094 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
7095 ireq->ir_mark = inet_request_mark(sk, skb);
7096 #if IS_ENABLED(CONFIG_SMC)
7097 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
7098 tcp_sk(sk)->smc_hs_congested(sk));
7099 #endif
7100 }
7101
7102 /*
7103 * Return true if a syncookie should be sent
7104 */
tcp_syn_flood_action(struct sock * sk,const char * proto)7105 static bool tcp_syn_flood_action(struct sock *sk, const char *proto)
7106 {
7107 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
7108 const char *msg = "Dropping request";
7109 struct net *net = sock_net(sk);
7110 bool want_cookie = false;
7111 u8 syncookies;
7112
7113 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7114
7115 #ifdef CONFIG_SYN_COOKIES
7116 if (syncookies) {
7117 msg = "Sending cookies";
7118 want_cookie = true;
7119 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
7120 } else
7121 #endif
7122 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
7123
7124 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
7125 xchg(&queue->synflood_warned, 1) == 0) {
7126 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
7127 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
7128 proto, inet6_rcv_saddr(sk),
7129 sk->sk_num, msg);
7130 } else {
7131 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
7132 proto, &sk->sk_rcv_saddr,
7133 sk->sk_num, msg);
7134 }
7135 }
7136
7137 return want_cookie;
7138 }
7139
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)7140 static void tcp_reqsk_record_syn(const struct sock *sk,
7141 struct request_sock *req,
7142 const struct sk_buff *skb)
7143 {
7144 if (tcp_sk(sk)->save_syn) {
7145 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
7146 struct saved_syn *saved_syn;
7147 u32 mac_hdrlen;
7148 void *base;
7149
7150 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
7151 base = skb_mac_header(skb);
7152 mac_hdrlen = skb_mac_header_len(skb);
7153 len += mac_hdrlen;
7154 } else {
7155 base = skb_network_header(skb);
7156 mac_hdrlen = 0;
7157 }
7158
7159 saved_syn = kmalloc(struct_size(saved_syn, data, len),
7160 GFP_ATOMIC);
7161 if (saved_syn) {
7162 saved_syn->mac_hdrlen = mac_hdrlen;
7163 saved_syn->network_hdrlen = skb_network_header_len(skb);
7164 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
7165 memcpy(saved_syn->data, base, len);
7166 req->saved_syn = saved_syn;
7167 }
7168 }
7169 }
7170
7171 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
7172 * used for SYN cookie generation.
7173 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)7174 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
7175 const struct tcp_request_sock_ops *af_ops,
7176 struct sock *sk, struct tcphdr *th)
7177 {
7178 struct tcp_sock *tp = tcp_sk(sk);
7179 u16 mss;
7180
7181 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
7182 !inet_csk_reqsk_queue_is_full(sk))
7183 return 0;
7184
7185 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
7186 return 0;
7187
7188 if (sk_acceptq_is_full(sk)) {
7189 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7190 return 0;
7191 }
7192
7193 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
7194 if (!mss)
7195 mss = af_ops->mss_clamp;
7196
7197 return mss;
7198 }
7199 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
7200
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)7201 int tcp_conn_request(struct request_sock_ops *rsk_ops,
7202 const struct tcp_request_sock_ops *af_ops,
7203 struct sock *sk, struct sk_buff *skb)
7204 {
7205 struct tcp_fastopen_cookie foc = { .len = -1 };
7206 struct tcp_options_received tmp_opt;
7207 struct tcp_sock *tp = tcp_sk(sk);
7208 struct net *net = sock_net(sk);
7209 struct sock *fastopen_sk = NULL;
7210 struct request_sock *req;
7211 bool want_cookie = false;
7212 struct dst_entry *dst;
7213 struct flowi fl;
7214 u8 syncookies;
7215 u32 isn;
7216
7217 #ifdef CONFIG_TCP_AO
7218 const struct tcp_ao_hdr *aoh;
7219 #endif
7220
7221 isn = __this_cpu_read(tcp_tw_isn);
7222 if (isn) {
7223 /* TW buckets are converted to open requests without
7224 * limitations, they conserve resources and peer is
7225 * evidently real one.
7226 */
7227 __this_cpu_write(tcp_tw_isn, 0);
7228 } else {
7229 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
7230
7231 if (syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) {
7232 want_cookie = tcp_syn_flood_action(sk,
7233 rsk_ops->slab_name);
7234 if (!want_cookie)
7235 goto drop;
7236 }
7237 }
7238
7239 if (sk_acceptq_is_full(sk)) {
7240 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
7241 goto drop;
7242 }
7243
7244 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
7245 if (!req)
7246 goto drop;
7247
7248 req->syncookie = want_cookie;
7249 tcp_rsk(req)->af_specific = af_ops;
7250 tcp_rsk(req)->ts_off = 0;
7251 tcp_rsk(req)->req_usec_ts = false;
7252 #if IS_ENABLED(CONFIG_MPTCP)
7253 tcp_rsk(req)->is_mptcp = 0;
7254 #endif
7255
7256 tcp_clear_options(&tmp_opt);
7257 tmp_opt.mss_clamp = af_ops->mss_clamp;
7258 tmp_opt.user_mss = tp->rx_opt.user_mss;
7259 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7260 want_cookie ? NULL : &foc);
7261
7262 if (want_cookie && !tmp_opt.saw_tstamp)
7263 tcp_clear_options(&tmp_opt);
7264
7265 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7266 tmp_opt.smc_ok = 0;
7267
7268 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7269 tcp_openreq_init(req, &tmp_opt, skb, sk);
7270 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7271
7272 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7273 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7274
7275 dst = af_ops->route_req(sk, skb, &fl, req, isn);
7276 if (!dst)
7277 goto drop_and_free;
7278
7279 if (tmp_opt.tstamp_ok) {
7280 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
7281 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7282 }
7283 if (!want_cookie && !isn) {
7284 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7285
7286 /* Kill the following clause, if you dislike this way. */
7287 if (!syncookies &&
7288 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7289 (max_syn_backlog >> 2)) &&
7290 !tcp_peer_is_proven(req, dst)) {
7291 /* Without syncookies last quarter of
7292 * backlog is filled with destinations,
7293 * proven to be alive.
7294 * It means that we continue to communicate
7295 * to destinations, already remembered
7296 * to the moment of synflood.
7297 */
7298 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7299 rsk_ops->family);
7300 goto drop_and_release;
7301 }
7302
7303 isn = af_ops->init_seq(skb);
7304 }
7305
7306 tcp_ecn_create_request(req, skb, sk, dst);
7307
7308 if (want_cookie) {
7309 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7310 if (!tmp_opt.tstamp_ok)
7311 inet_rsk(req)->ecn_ok = 0;
7312 }
7313
7314 #ifdef CONFIG_TCP_AO
7315 if (tcp_parse_auth_options(tcp_hdr(skb), NULL, &aoh))
7316 goto drop_and_release; /* Invalid TCP options */
7317 if (aoh) {
7318 tcp_rsk(req)->used_tcp_ao = true;
7319 tcp_rsk(req)->ao_rcv_next = aoh->keyid;
7320 tcp_rsk(req)->ao_keyid = aoh->rnext_keyid;
7321
7322 } else {
7323 tcp_rsk(req)->used_tcp_ao = false;
7324 }
7325 #endif
7326 tcp_rsk(req)->snt_isn = isn;
7327 tcp_rsk(req)->txhash = net_tx_rndhash();
7328 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7329 tcp_openreq_init_rwin(req, sk, dst);
7330 sk_rx_queue_set(req_to_sk(req), skb);
7331 if (!want_cookie) {
7332 tcp_reqsk_record_syn(sk, req, skb);
7333 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7334 }
7335 if (fastopen_sk) {
7336 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7337 &foc, TCP_SYNACK_FASTOPEN, skb);
7338 /* Add the child socket directly into the accept queue */
7339 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7340 reqsk_fastopen_remove(fastopen_sk, req, false);
7341 bh_unlock_sock(fastopen_sk);
7342 sock_put(fastopen_sk);
7343 goto drop_and_free;
7344 }
7345 sk->sk_data_ready(sk);
7346 bh_unlock_sock(fastopen_sk);
7347 sock_put(fastopen_sk);
7348 } else {
7349 tcp_rsk(req)->tfo_listener = false;
7350 if (!want_cookie) {
7351 req->timeout = tcp_timeout_init((struct sock *)req);
7352 if (unlikely(!inet_csk_reqsk_queue_hash_add(sk, req,
7353 req->timeout))) {
7354 reqsk_free(req);
7355 dst_release(dst);
7356 return 0;
7357 }
7358
7359 }
7360 af_ops->send_synack(sk, dst, &fl, req, &foc,
7361 !want_cookie ? TCP_SYNACK_NORMAL :
7362 TCP_SYNACK_COOKIE,
7363 skb);
7364 if (want_cookie) {
7365 reqsk_free(req);
7366 return 0;
7367 }
7368 }
7369 reqsk_put(req);
7370 return 0;
7371
7372 drop_and_release:
7373 dst_release(dst);
7374 drop_and_free:
7375 __reqsk_free(req);
7376 drop:
7377 tcp_listendrop(sk);
7378 return 0;
7379 }
7380 EXPORT_SYMBOL(tcp_conn_request);
7381