1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/i2c.h>
28 #include <linux/init.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/seq_file.h>
34 #include <linux/string_helpers.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_dp_mst_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_fixed.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vblank.h>
42 #include <drm/drm_panel.h>
43
44 #include "drm_dp_helper_internal.h"
45
46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
47 "DRM_UT_CORE",
48 "DRM_UT_DRIVER",
49 "DRM_UT_KMS",
50 "DRM_UT_PRIME",
51 "DRM_UT_ATOMIC",
52 "DRM_UT_VBL",
53 "DRM_UT_STATE",
54 "DRM_UT_LEASE",
55 "DRM_UT_DP",
56 "DRM_UT_DRMRES");
57
58 struct dp_aux_backlight {
59 struct backlight_device *base;
60 struct drm_dp_aux *aux;
61 struct drm_edp_backlight_info info;
62 bool enabled;
63 };
64
65 /**
66 * DOC: dp helpers
67 *
68 * These functions contain some common logic and helpers at various abstraction
69 * levels to deal with Display Port sink devices and related things like DP aux
70 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
71 * blocks, ...
72 */
73
74 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
76 {
77 return link_status[r - DP_LANE0_1_STATUS];
78 }
79
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
81 int lane)
82 {
83 int i = DP_LANE0_1_STATUS + (lane >> 1);
84 int s = (lane & 1) * 4;
85 u8 l = dp_link_status(link_status, i);
86
87 return (l >> s) & 0xf;
88 }
89
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 int lane_count)
92 {
93 u8 lane_align;
94 u8 lane_status;
95 int lane;
96
97 lane_align = dp_link_status(link_status,
98 DP_LANE_ALIGN_STATUS_UPDATED);
99 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
100 return false;
101 for (lane = 0; lane < lane_count; lane++) {
102 lane_status = dp_get_lane_status(link_status, lane);
103 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
104 return false;
105 }
106 return true;
107 }
108 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
109
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
111 int lane_count)
112 {
113 int lane;
114 u8 lane_status;
115
116 for (lane = 0; lane < lane_count; lane++) {
117 lane_status = dp_get_lane_status(link_status, lane);
118 if ((lane_status & DP_LANE_CR_DONE) == 0)
119 return false;
120 }
121 return true;
122 }
123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
124
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
126 int lane)
127 {
128 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
129 int s = ((lane & 1) ?
130 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
131 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
132 u8 l = dp_link_status(link_status, i);
133
134 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
135 }
136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
137
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
139 int lane)
140 {
141 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
142 int s = ((lane & 1) ?
143 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
144 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
145 u8 l = dp_link_status(link_status, i);
146
147 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
148 }
149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
150
151 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
153 int lane)
154 {
155 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
156 int s = ((lane & 1) ?
157 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
158 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
159 u8 l = dp_link_status(link_status, i);
160
161 return (l >> s) & 0xf;
162 }
163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
164
165 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
167 int lane_count)
168 {
169 u8 lane_align, lane_status;
170 int lane;
171
172 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
173 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
174 return false;
175
176 for (lane = 0; lane < lane_count; lane++) {
177 lane_status = dp_get_lane_status(link_status, lane);
178 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
179 return false;
180 }
181 return true;
182 }
183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
184
185 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
187 int lane_count)
188 {
189 u8 lane_status;
190 int lane;
191
192 for (lane = 0; lane < lane_count; lane++) {
193 lane_status = dp_get_lane_status(link_status, lane);
194 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
195 return false;
196 }
197 return true;
198 }
199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
200
201 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
203 {
204 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
205
206 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
207 }
208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
209
210 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
212 {
213 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
214
215 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
216 }
217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
218
219 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
221 {
222 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
223
224 return status & DP_128B132B_LT_FAILED;
225 }
226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
227
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
229 {
230 if (rd_interval > 4)
231 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
232 aux->name, rd_interval);
233
234 if (rd_interval == 0)
235 return 100;
236
237 return rd_interval * 4 * USEC_PER_MSEC;
238 }
239
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
241 {
242 if (rd_interval > 4)
243 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
244 aux->name, rd_interval);
245
246 if (rd_interval == 0)
247 return 400;
248
249 return rd_interval * 4 * USEC_PER_MSEC;
250 }
251
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
253 {
254 switch (rd_interval) {
255 default:
256 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
257 aux->name, rd_interval);
258 fallthrough;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
260 return 400;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
262 return 4000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
264 return 8000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
266 return 12000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
268 return 16000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
270 return 32000;
271 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
272 return 64000;
273 }
274 }
275
276 /*
277 * The link training delays are different for:
278 *
279 * - Clock recovery vs. channel equalization
280 * - DPRX vs. LTTPR
281 * - 128b/132b vs. 8b/10b
282 * - DPCD rev 1.3 vs. later
283 *
284 * Get the correct delay in us, reading DPCD if necessary.
285 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
287 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
288 {
289 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
290 unsigned int offset;
291 u8 rd_interval, mask;
292
293 if (dp_phy == DP_PHY_DPRX) {
294 if (uhbr) {
295 if (cr)
296 return 100;
297
298 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
299 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
300 parse = __128b132b_channel_eq_delay_us;
301 } else {
302 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
303 return 100;
304
305 offset = DP_TRAINING_AUX_RD_INTERVAL;
306 mask = DP_TRAINING_AUX_RD_MASK;
307 if (cr)
308 parse = __8b10b_clock_recovery_delay_us;
309 else
310 parse = __8b10b_channel_eq_delay_us;
311 }
312 } else {
313 if (uhbr) {
314 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
315 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
316 parse = __128b132b_channel_eq_delay_us;
317 } else {
318 if (cr)
319 return 100;
320
321 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
322 mask = DP_TRAINING_AUX_RD_MASK;
323 parse = __8b10b_channel_eq_delay_us;
324 }
325 }
326
327 if (offset < DP_RECEIVER_CAP_SIZE) {
328 rd_interval = dpcd[offset];
329 } else {
330 if (drm_dp_dpcd_read_byte(aux, offset, &rd_interval) < 0) {
331 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
332 aux->name);
333 /* arbitrary default delay */
334 return 400;
335 }
336 }
337
338 return parse(aux, rd_interval & mask);
339 }
340
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
342 enum drm_dp_phy dp_phy, bool uhbr)
343 {
344 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
345 }
346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
347
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
349 enum drm_dp_phy dp_phy, bool uhbr)
350 {
351 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
352 }
353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
354
355 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
357 {
358 int unit;
359 u8 val;
360
361 if (drm_dp_dpcd_read_byte(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) < 0) {
362 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
363 aux->name);
364 /* default to max */
365 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
366 }
367
368 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
369 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
370
371 return (val + 1) * unit * 1000;
372 }
373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
374
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
376 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
377 {
378 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
379 DP_TRAINING_AUX_RD_MASK;
380 int delay_us;
381
382 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
383 delay_us = 100;
384 else
385 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
386
387 usleep_range(delay_us, delay_us * 2);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
390
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
392 u8 rd_interval)
393 {
394 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
395
396 usleep_range(delay_us, delay_us * 2);
397 }
398
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
400 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
401 {
402 __drm_dp_link_train_channel_eq_delay(aux,
403 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
404 DP_TRAINING_AUX_RD_MASK);
405 }
406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
407
408 /**
409 * drm_dp_phy_name() - Get the name of the given DP PHY
410 * @dp_phy: The DP PHY identifier
411 *
412 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
413 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
414 * non-NULL and valid.
415 *
416 * Returns: Name of the DP PHY.
417 */
drm_dp_phy_name(enum drm_dp_phy dp_phy)418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
419 {
420 static const char * const phy_names[] = {
421 [DP_PHY_DPRX] = "DPRX",
422 [DP_PHY_LTTPR1] = "LTTPR 1",
423 [DP_PHY_LTTPR2] = "LTTPR 2",
424 [DP_PHY_LTTPR3] = "LTTPR 3",
425 [DP_PHY_LTTPR4] = "LTTPR 4",
426 [DP_PHY_LTTPR5] = "LTTPR 5",
427 [DP_PHY_LTTPR6] = "LTTPR 6",
428 [DP_PHY_LTTPR7] = "LTTPR 7",
429 [DP_PHY_LTTPR8] = "LTTPR 8",
430 };
431
432 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
433 WARN_ON(!phy_names[dp_phy]))
434 return "<INVALID DP PHY>";
435
436 return phy_names[dp_phy];
437 }
438 EXPORT_SYMBOL(drm_dp_phy_name);
439
drm_dp_lttpr_link_train_clock_recovery_delay(void)440 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
441 {
442 usleep_range(100, 200);
443 }
444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
445
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
447 {
448 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
449 }
450
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
452 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
453 {
454 u8 interval = dp_lttpr_phy_cap(phy_cap,
455 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
456 DP_TRAINING_AUX_RD_MASK;
457
458 __drm_dp_link_train_channel_eq_delay(aux, interval);
459 }
460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
461
462 /**
463 * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
464 * @aux: The DP AUX channel to use
465 * @transparent_mode: This is true if lttpr is in transparent mode
466 *
467 * This function checks if the sink needs any extended wake time, if it does
468 * it grants this request. Post this setup the source device can keep trying
469 * the Aux transaction till the granted wake timeout.
470 * If this function is not called all Aux transactions are expected to take
471 * a default of 1ms before they throw an error.
472 */
drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux * aux,bool transparent_mode)473 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
474 {
475 u8 val = 1;
476 int ret;
477
478 if (transparent_mode) {
479 static const u8 timeout_mapping[] = {
480 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
481 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
482 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
483 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
484 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
485 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
486 };
487
488 ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
489 if (ret != 1) {
490 drm_dbg_kms(aux->drm_dev,
491 "Failed to read Extended sleep wake timeout request\n");
492 return;
493 }
494
495 val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
496 timeout_mapping[val] : 1;
497
498 if (val > 1)
499 drm_dp_dpcd_writeb(aux,
500 DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
501 DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
502 } else {
503 ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
504 if (ret != 1) {
505 drm_dbg_kms(aux->drm_dev,
506 "Failed to read Extended sleep wake timeout request\n");
507 return;
508 }
509
510 val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
511 (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
512
513 if (val > 1)
514 drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
515 DP_EXTENDED_WAKE_TIMEOUT_GRANT);
516 }
517 }
518 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
519
drm_dp_link_rate_to_bw_code(int link_rate)520 u8 drm_dp_link_rate_to_bw_code(int link_rate)
521 {
522 switch (link_rate) {
523 case 1000000:
524 return DP_LINK_BW_10;
525 case 1350000:
526 return DP_LINK_BW_13_5;
527 case 2000000:
528 return DP_LINK_BW_20;
529 default:
530 /* Spec says link_bw = link_rate / 0.27Gbps */
531 return link_rate / 27000;
532 }
533 }
534 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
535
drm_dp_bw_code_to_link_rate(u8 link_bw)536 int drm_dp_bw_code_to_link_rate(u8 link_bw)
537 {
538 switch (link_bw) {
539 case DP_LINK_BW_10:
540 return 1000000;
541 case DP_LINK_BW_13_5:
542 return 1350000;
543 case DP_LINK_BW_20:
544 return 2000000;
545 default:
546 /* Spec says link_rate = link_bw * 0.27Gbps */
547 return link_bw * 27000;
548 }
549 }
550 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
551
552 #define AUX_RETRY_INTERVAL 500 /* us */
553
554 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)555 drm_dp_dump_access(const struct drm_dp_aux *aux,
556 u8 request, uint offset, void *buffer, int ret)
557 {
558 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
559
560 if (ret > 0)
561 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
562 aux->name, offset, arrow, ret, min(ret, 20), buffer);
563 else
564 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
565 aux->name, offset, arrow, ret);
566 }
567
568 /**
569 * DOC: dp helpers
570 *
571 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
572 * independent access to AUX functionality. Drivers can take advantage of
573 * this by filling in the fields of the drm_dp_aux structure.
574 *
575 * Transactions are described using a hardware-independent drm_dp_aux_msg
576 * structure, which is passed into a driver's .transfer() implementation.
577 * Both native and I2C-over-AUX transactions are supported.
578 */
579
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)580 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
581 unsigned int offset, void *buffer, size_t size)
582 {
583 struct drm_dp_aux_msg msg;
584 unsigned int retry, native_reply;
585 int err = 0, ret = 0;
586
587 memset(&msg, 0, sizeof(msg));
588 msg.address = offset;
589 msg.request = request;
590 msg.buffer = buffer;
591 msg.size = size;
592
593 mutex_lock(&aux->hw_mutex);
594
595 /*
596 * If the device attached to the aux bus is powered down then there's
597 * no reason to attempt a transfer. Error out immediately.
598 */
599 if (aux->powered_down) {
600 ret = -EBUSY;
601 goto unlock;
602 }
603
604 /*
605 * The specification doesn't give any recommendation on how often to
606 * retry native transactions. We used to retry 7 times like for
607 * aux i2c transactions but real world devices this wasn't
608 * sufficient, bump to 32 which makes Dell 4k monitors happier.
609 */
610 for (retry = 0; retry < 32; retry++) {
611 if (ret != 0 && ret != -ETIMEDOUT) {
612 usleep_range(AUX_RETRY_INTERVAL,
613 AUX_RETRY_INTERVAL + 100);
614 }
615
616 ret = aux->transfer(aux, &msg);
617 if (ret >= 0) {
618 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
619 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
620 if (ret == size)
621 goto unlock;
622
623 ret = -EPROTO;
624 } else
625 ret = -EIO;
626 }
627
628 /*
629 * We want the error we return to be the error we received on
630 * the first transaction, since we may get a different error the
631 * next time we retry
632 */
633 if (!err)
634 err = ret;
635 }
636
637 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
638 aux->name, err);
639 ret = err;
640
641 unlock:
642 mutex_unlock(&aux->hw_mutex);
643 return ret;
644 }
645
646 /**
647 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
648 * @aux: DisplayPort AUX channel (SST)
649 * @offset: address of the register to probe
650 *
651 * Probe the provided DPCD address by reading 1 byte from it. The function can
652 * be used to trigger some side-effect the read access has, like waking up the
653 * sink, without the need for the read-out value.
654 *
655 * Returns 0 if the read access suceeded, or a negative error code on failure.
656 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)657 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
658 {
659 u8 buffer;
660 int ret;
661
662 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
663 WARN_ON(ret == 0);
664
665 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
666
667 return ret < 0 ? ret : 0;
668 }
669 EXPORT_SYMBOL(drm_dp_dpcd_probe);
670
671 /**
672 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
673 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
674 * and the function will be a no-op.
675 * @powered: true if powered; false if not
676 *
677 * If the endpoint device on the DP AUX bus is known to be powered down
678 * then this function can be called to make future transfers fail immediately
679 * instead of needing to time out.
680 *
681 * If this function is never called then a device defaults to being powered.
682 */
drm_dp_dpcd_set_powered(struct drm_dp_aux * aux,bool powered)683 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
684 {
685 if (!aux)
686 return;
687
688 mutex_lock(&aux->hw_mutex);
689 aux->powered_down = !powered;
690 mutex_unlock(&aux->hw_mutex);
691 }
692 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
693
694 /**
695 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
696 * @aux: DisplayPort AUX channel (SST or MST)
697 * @offset: address of the (first) register to read
698 * @buffer: buffer to store the register values
699 * @size: number of bytes in @buffer
700 *
701 * Returns the number of bytes transferred on success, or a negative error
702 * code on failure. -EIO is returned if the request was NAKed by the sink or
703 * if the retry count was exceeded. If not all bytes were transferred, this
704 * function returns -EPROTO. Errors from the underlying AUX channel transfer
705 * function, with the exception of -EBUSY (which causes the transaction to
706 * be retried), are propagated to the caller.
707 *
708 * In most of the cases you want to use drm_dp_dpcd_read_data() instead.
709 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)710 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
711 void *buffer, size_t size)
712 {
713 int ret;
714
715 /*
716 * HP ZR24w corrupts the first DPCD access after entering power save
717 * mode. Eg. on a read, the entire buffer will be filled with the same
718 * byte. Do a throw away read to avoid corrupting anything we care
719 * about. Afterwards things will work correctly until the monitor
720 * gets woken up and subsequently re-enters power save mode.
721 *
722 * The user pressing any button on the monitor is enough to wake it
723 * up, so there is no particularly good place to do the workaround.
724 * We just have to do it before any DPCD access and hope that the
725 * monitor doesn't power down exactly after the throw away read.
726 */
727 if (!aux->is_remote) {
728 ret = drm_dp_dpcd_probe(aux, DP_LANE0_1_STATUS);
729 if (ret < 0)
730 return ret;
731 }
732
733 if (aux->is_remote)
734 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
735 else
736 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
737 buffer, size);
738
739 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
740 return ret;
741 }
742 EXPORT_SYMBOL(drm_dp_dpcd_read);
743
744 /**
745 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
746 * @aux: DisplayPort AUX channel (SST or MST)
747 * @offset: address of the (first) register to write
748 * @buffer: buffer containing the values to write
749 * @size: number of bytes in @buffer
750 *
751 * Returns the number of bytes transferred on success, or a negative error
752 * code on failure. -EIO is returned if the request was NAKed by the sink or
753 * if the retry count was exceeded. If not all bytes were transferred, this
754 * function returns -EPROTO. Errors from the underlying AUX channel transfer
755 * function, with the exception of -EBUSY (which causes the transaction to
756 * be retried), are propagated to the caller.
757 *
758 * In most of the cases you want to use drm_dp_dpcd_write_data() instead.
759 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)760 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
761 void *buffer, size_t size)
762 {
763 int ret;
764
765 if (aux->is_remote)
766 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
767 else
768 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
769 buffer, size);
770
771 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
772 return ret;
773 }
774 EXPORT_SYMBOL(drm_dp_dpcd_write);
775
776 /**
777 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
778 * @aux: DisplayPort AUX channel
779 * @status: buffer to store the link status in (must be at least 6 bytes)
780 *
781 * Returns a negative error code on failure or 0 on success.
782 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])783 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
784 u8 status[DP_LINK_STATUS_SIZE])
785 {
786 return drm_dp_dpcd_read_data(aux, DP_LANE0_1_STATUS, status,
787 DP_LINK_STATUS_SIZE);
788 }
789 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
790
791 /**
792 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
793 * @aux: DisplayPort AUX channel
794 * @dp_phy: the DP PHY to get the link status for
795 * @link_status: buffer to return the status in
796 *
797 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
798 * layout of the returned @link_status matches the DPCD register layout of the
799 * DPRX PHY link status.
800 *
801 * Returns 0 if the information was read successfully or a negative error code
802 * on failure.
803 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])804 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
805 enum drm_dp_phy dp_phy,
806 u8 link_status[DP_LINK_STATUS_SIZE])
807 {
808 int ret;
809
810 if (dp_phy == DP_PHY_DPRX)
811 return drm_dp_dpcd_read_data(aux,
812 DP_LANE0_1_STATUS,
813 link_status,
814 DP_LINK_STATUS_SIZE);
815
816 ret = drm_dp_dpcd_read_data(aux,
817 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
818 link_status,
819 DP_LINK_STATUS_SIZE - 1);
820
821 if (ret < 0)
822 return ret;
823
824 /* Convert the LTTPR to the sink PHY link status layout */
825 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
826 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
827 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
828 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
829
830 return 0;
831 }
832 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
833
834 /**
835 * drm_dp_link_power_up() - power up a DisplayPort link
836 * @aux: DisplayPort AUX channel
837 * @revision: DPCD revision supported on the link
838 *
839 * Returns 0 on success or a negative error code on failure.
840 */
drm_dp_link_power_up(struct drm_dp_aux * aux,unsigned char revision)841 int drm_dp_link_power_up(struct drm_dp_aux *aux, unsigned char revision)
842 {
843 u8 value;
844 int err;
845
846 /* DP_SET_POWER register is only available on DPCD v1.1 and later */
847 if (revision < DP_DPCD_REV_11)
848 return 0;
849
850 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
851 if (err < 0)
852 return err;
853
854 value &= ~DP_SET_POWER_MASK;
855 value |= DP_SET_POWER_D0;
856
857 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
858 if (err < 0)
859 return err;
860
861 /*
862 * According to the DP 1.1 specification, a "Sink Device must exit the
863 * power saving state within 1 ms" (Section 2.5.3.1, Table 5-52, "Sink
864 * Control Field" (register 0x600).
865 */
866 usleep_range(1000, 2000);
867
868 return 0;
869 }
870 EXPORT_SYMBOL(drm_dp_link_power_up);
871
872 /**
873 * drm_dp_link_power_down() - power down a DisplayPort link
874 * @aux: DisplayPort AUX channel
875 * @revision: DPCD revision supported on the link
876 *
877 * Returns 0 on success or a negative error code on failure.
878 */
drm_dp_link_power_down(struct drm_dp_aux * aux,unsigned char revision)879 int drm_dp_link_power_down(struct drm_dp_aux *aux, unsigned char revision)
880 {
881 u8 value;
882 int err;
883
884 /* DP_SET_POWER register is only available on DPCD v1.1 and later */
885 if (revision < DP_DPCD_REV_11)
886 return 0;
887
888 err = drm_dp_dpcd_readb(aux, DP_SET_POWER, &value);
889 if (err < 0)
890 return err;
891
892 value &= ~DP_SET_POWER_MASK;
893 value |= DP_SET_POWER_D3;
894
895 err = drm_dp_dpcd_writeb(aux, DP_SET_POWER, value);
896 if (err < 0)
897 return err;
898
899 return 0;
900 }
901 EXPORT_SYMBOL(drm_dp_link_power_down);
902
read_payload_update_status(struct drm_dp_aux * aux)903 static int read_payload_update_status(struct drm_dp_aux *aux)
904 {
905 int ret;
906 u8 status;
907
908 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
909 if (ret < 0)
910 return ret;
911
912 return status;
913 }
914
915 /**
916 * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
917 * @aux: DisplayPort AUX channel
918 * @vcpid: Virtual Channel Payload ID
919 * @start_time_slot: Starting time slot
920 * @time_slot_count: Time slot count
921 *
922 * Write the Virtual Channel payload allocation table, checking the payload
923 * update status and retrying as necessary.
924 *
925 * Returns:
926 * 0 on success, negative error otherwise
927 */
drm_dp_dpcd_write_payload(struct drm_dp_aux * aux,int vcpid,u8 start_time_slot,u8 time_slot_count)928 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
929 int vcpid, u8 start_time_slot, u8 time_slot_count)
930 {
931 u8 payload_alloc[3], status;
932 int ret;
933 int retries = 0;
934
935 drm_dp_dpcd_write_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
936 DP_PAYLOAD_TABLE_UPDATED);
937
938 payload_alloc[0] = vcpid;
939 payload_alloc[1] = start_time_slot;
940 payload_alloc[2] = time_slot_count;
941
942 ret = drm_dp_dpcd_write_data(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
943 if (ret < 0) {
944 drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
945 goto fail;
946 }
947
948 retry:
949 ret = drm_dp_dpcd_read_byte(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
950 if (ret < 0) {
951 drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
952 goto fail;
953 }
954
955 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
956 retries++;
957 if (retries < 20) {
958 usleep_range(10000, 20000);
959 goto retry;
960 }
961 drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
962 status);
963 ret = -EINVAL;
964 goto fail;
965 }
966 ret = 0;
967 fail:
968 return ret;
969 }
970 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
971
972 /**
973 * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
974 * @aux: DisplayPort AUX channel
975 *
976 * Clear the entire VC Payload ID table.
977 *
978 * Returns: 0 on success, negative error code on errors.
979 */
drm_dp_dpcd_clear_payload(struct drm_dp_aux * aux)980 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
981 {
982 return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
983 }
984 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
985
986 /**
987 * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
988 * @aux: DisplayPort AUX channel
989 * @timeout_ms: Timeout in ms
990 *
991 * Try waiting for the sink to finish updating its payload table by polling for
992 * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
993 * milliseconds, defaulting to 3000 ms if 0.
994 *
995 * Returns:
996 * 0 if the ACT was handled in time, negative error code on failure.
997 */
drm_dp_dpcd_poll_act_handled(struct drm_dp_aux * aux,int timeout_ms)998 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
999 {
1000 int ret, status;
1001
1002 /* default to 3 seconds, this is arbitrary */
1003 timeout_ms = timeout_ms ?: 3000;
1004
1005 ret = readx_poll_timeout(read_payload_update_status, aux, status,
1006 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
1007 200, timeout_ms * USEC_PER_MSEC);
1008 if (ret < 0 && status >= 0) {
1009 drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
1010 timeout_ms, status);
1011 return -EINVAL;
1012 } else if (status < 0) {
1013 /*
1014 * Failure here isn't unexpected - the hub may have
1015 * just been unplugged
1016 */
1017 drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
1018 return status;
1019 }
1020
1021 return 0;
1022 }
1023 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
1024
is_edid_digital_input_dp(const struct drm_edid * drm_edid)1025 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
1026 {
1027 /* FIXME: get rid of drm_edid_raw() */
1028 const struct edid *edid = drm_edid_raw(drm_edid);
1029
1030 return edid && edid->revision >= 4 &&
1031 edid->input & DRM_EDID_INPUT_DIGITAL &&
1032 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
1033 }
1034
1035 /**
1036 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
1037 * @dpcd: DisplayPort configuration data
1038 * @port_cap: port capabilities
1039 * @type: port type to be checked. Can be:
1040 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
1041 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
1042 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
1043 *
1044 * Caveat: Only works with DPCD 1.1+ port caps.
1045 *
1046 * Returns: whether the downstream facing port matches the type.
1047 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)1048 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1049 const u8 port_cap[4], u8 type)
1050 {
1051 return drm_dp_is_branch(dpcd) &&
1052 dpcd[DP_DPCD_REV] >= 0x11 &&
1053 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
1054 }
1055 EXPORT_SYMBOL(drm_dp_downstream_is_type);
1056
1057 /**
1058 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
1059 * @dpcd: DisplayPort configuration data
1060 * @port_cap: port capabilities
1061 * @drm_edid: EDID
1062 *
1063 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1064 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1065 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1066 const u8 port_cap[4],
1067 const struct drm_edid *drm_edid)
1068 {
1069 if (dpcd[DP_DPCD_REV] < 0x11) {
1070 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1071 case DP_DWN_STRM_PORT_TYPE_TMDS:
1072 return true;
1073 default:
1074 return false;
1075 }
1076 }
1077
1078 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1079 case DP_DS_PORT_TYPE_DP_DUALMODE:
1080 if (is_edid_digital_input_dp(drm_edid))
1081 return false;
1082 fallthrough;
1083 case DP_DS_PORT_TYPE_DVI:
1084 case DP_DS_PORT_TYPE_HDMI:
1085 return true;
1086 default:
1087 return false;
1088 }
1089 }
1090 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1091
1092 /**
1093 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
1094 * @aux: DisplayPort AUX channel
1095 * @real_edid_checksum: real edid checksum for the last block
1096 *
1097 * Returns:
1098 * True on success
1099 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)1100 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1101 u8 real_edid_checksum)
1102 {
1103 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1104
1105 if (drm_dp_dpcd_read_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1106 &auto_test_req) < 0) {
1107 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1108 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1109 return false;
1110 }
1111 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1112
1113 if (drm_dp_dpcd_read_byte(aux, DP_TEST_REQUEST, &link_edid_read) < 0) {
1114 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1115 aux->name, DP_TEST_REQUEST);
1116 return false;
1117 }
1118 link_edid_read &= DP_TEST_LINK_EDID_READ;
1119
1120 if (!auto_test_req || !link_edid_read) {
1121 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1122 aux->name);
1123 return false;
1124 }
1125
1126 if (drm_dp_dpcd_write_byte(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1127 auto_test_req) < 0) {
1128 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1129 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1130 return false;
1131 }
1132
1133 /* send back checksum for the last edid extension block data */
1134 if (drm_dp_dpcd_write_byte(aux, DP_TEST_EDID_CHECKSUM,
1135 real_edid_checksum) < 0) {
1136 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1137 aux->name, DP_TEST_EDID_CHECKSUM);
1138 return false;
1139 }
1140
1141 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1142 if (drm_dp_dpcd_write_byte(aux, DP_TEST_RESPONSE, test_resp) < 0) {
1143 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1144 aux->name, DP_TEST_RESPONSE);
1145 return false;
1146 }
1147
1148 return true;
1149 }
1150 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1151
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])1152 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1153 {
1154 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1155
1156 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1157 port_count = 4;
1158
1159 return port_count;
1160 }
1161
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1162 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1163 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1164 {
1165 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1166 int ret;
1167
1168 /*
1169 * Prior to DP1.3 the bit represented by
1170 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1171 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1172 * the true capability of the panel. The only way to check is to
1173 * then compare 0000h and 2200h.
1174 */
1175 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1176 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1177 return 0;
1178
1179 ret = drm_dp_dpcd_read_data(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1180 sizeof(dpcd_ext));
1181 if (ret < 0)
1182 return ret;
1183
1184 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1185 drm_dbg_kms(aux->drm_dev,
1186 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1187 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1188 return 0;
1189 }
1190
1191 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1192 return 0;
1193
1194 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1195
1196 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1197
1198 return 0;
1199 }
1200
1201 /**
1202 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1203 * available
1204 * @aux: DisplayPort AUX channel
1205 * @dpcd: Buffer to store the resulting DPCD in
1206 *
1207 * Attempts to read the base DPCD caps for @aux. Additionally, this function
1208 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1209 * present.
1210 *
1211 * Returns: %0 if the DPCD was read successfully, negative error code
1212 * otherwise.
1213 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1214 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1215 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1216 {
1217 int ret;
1218
1219 ret = drm_dp_dpcd_read_data(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1220 if (ret < 0)
1221 return ret;
1222 if (dpcd[DP_DPCD_REV] == 0)
1223 return -EIO;
1224
1225 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1226 if (ret < 0)
1227 return ret;
1228
1229 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1230
1231 return ret;
1232 }
1233 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1234
1235 /**
1236 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1237 * @aux: DisplayPort AUX channel
1238 * @dpcd: A cached copy of the port's DPCD
1239 * @downstream_ports: buffer to store the downstream port info in
1240 *
1241 * See also:
1242 * drm_dp_downstream_max_clock()
1243 * drm_dp_downstream_max_bpc()
1244 *
1245 * Returns: 0 if either the downstream port info was read successfully or
1246 * there was no downstream info to read, or a negative error code otherwise.
1247 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])1248 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1249 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1250 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1251 {
1252 int ret;
1253 u8 len;
1254
1255 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1256
1257 /* No downstream info to read */
1258 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1259 return 0;
1260
1261 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
1262 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1263 * some branches do it we need to handle it regardless.
1264 */
1265 len = drm_dp_downstream_port_count(dpcd);
1266 if (!len)
1267 return 0;
1268
1269 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1270 len *= 4;
1271
1272 ret = drm_dp_dpcd_read_data(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1273 if (ret < 0)
1274 return ret;
1275
1276 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1277
1278 return 0;
1279 }
1280 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1281
1282 /**
1283 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1284 * @dpcd: DisplayPort configuration data
1285 * @port_cap: port capabilities
1286 *
1287 * Returns: Downstream facing port max dot clock in kHz on success,
1288 * or 0 if max clock not defined
1289 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1290 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1291 const u8 port_cap[4])
1292 {
1293 if (!drm_dp_is_branch(dpcd))
1294 return 0;
1295
1296 if (dpcd[DP_DPCD_REV] < 0x11)
1297 return 0;
1298
1299 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1300 case DP_DS_PORT_TYPE_VGA:
1301 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1302 return 0;
1303 return port_cap[1] * 8000;
1304 default:
1305 return 0;
1306 }
1307 }
1308 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1309
1310 /**
1311 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1312 * @dpcd: DisplayPort configuration data
1313 * @port_cap: port capabilities
1314 * @drm_edid: EDID
1315 *
1316 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1317 * or 0 if max TMDS clock not defined
1318 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1319 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1320 const u8 port_cap[4],
1321 const struct drm_edid *drm_edid)
1322 {
1323 if (!drm_dp_is_branch(dpcd))
1324 return 0;
1325
1326 if (dpcd[DP_DPCD_REV] < 0x11) {
1327 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1328 case DP_DWN_STRM_PORT_TYPE_TMDS:
1329 return 165000;
1330 default:
1331 return 0;
1332 }
1333 }
1334
1335 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1336 case DP_DS_PORT_TYPE_DP_DUALMODE:
1337 if (is_edid_digital_input_dp(drm_edid))
1338 return 0;
1339 /*
1340 * It's left up to the driver to check the
1341 * DP dual mode adapter's max TMDS clock.
1342 *
1343 * Unfortunately it looks like branch devices
1344 * may not fordward that the DP dual mode i2c
1345 * access so we just usually get i2c nak :(
1346 */
1347 fallthrough;
1348 case DP_DS_PORT_TYPE_HDMI:
1349 /*
1350 * We should perhaps assume 165 MHz when detailed cap
1351 * info is not available. But looks like many typical
1352 * branch devices fall into that category and so we'd
1353 * probably end up with users complaining that they can't
1354 * get high resolution modes with their favorite dongle.
1355 *
1356 * So let's limit to 300 MHz instead since DPCD 1.4
1357 * HDMI 2.0 DFPs are required to have the detailed cap
1358 * info. So it's more likely we're dealing with a HDMI 1.4
1359 * compatible* device here.
1360 */
1361 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1362 return 300000;
1363 return port_cap[1] * 2500;
1364 case DP_DS_PORT_TYPE_DVI:
1365 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1366 return 165000;
1367 /* FIXME what to do about DVI dual link? */
1368 return port_cap[1] * 2500;
1369 default:
1370 return 0;
1371 }
1372 }
1373 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1374
1375 /**
1376 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1377 * @dpcd: DisplayPort configuration data
1378 * @port_cap: port capabilities
1379 * @drm_edid: EDID
1380 *
1381 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1382 * or 0 if max TMDS clock not defined
1383 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1384 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1385 const u8 port_cap[4],
1386 const struct drm_edid *drm_edid)
1387 {
1388 if (!drm_dp_is_branch(dpcd))
1389 return 0;
1390
1391 if (dpcd[DP_DPCD_REV] < 0x11) {
1392 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1393 case DP_DWN_STRM_PORT_TYPE_TMDS:
1394 return 25000;
1395 default:
1396 return 0;
1397 }
1398 }
1399
1400 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1401 case DP_DS_PORT_TYPE_DP_DUALMODE:
1402 if (is_edid_digital_input_dp(drm_edid))
1403 return 0;
1404 fallthrough;
1405 case DP_DS_PORT_TYPE_DVI:
1406 case DP_DS_PORT_TYPE_HDMI:
1407 /*
1408 * Unclear whether the protocol converter could
1409 * utilize pixel replication. Assume it won't.
1410 */
1411 return 25000;
1412 default:
1413 return 0;
1414 }
1415 }
1416 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1417
1418 /**
1419 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1420 * bits per component
1421 * @dpcd: DisplayPort configuration data
1422 * @port_cap: downstream facing port capabilities
1423 * @drm_edid: EDID
1424 *
1425 * Returns: Max bpc on success or 0 if max bpc not defined
1426 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1427 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1428 const u8 port_cap[4],
1429 const struct drm_edid *drm_edid)
1430 {
1431 if (!drm_dp_is_branch(dpcd))
1432 return 0;
1433
1434 if (dpcd[DP_DPCD_REV] < 0x11) {
1435 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1436 case DP_DWN_STRM_PORT_TYPE_DP:
1437 return 0;
1438 default:
1439 return 8;
1440 }
1441 }
1442
1443 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1444 case DP_DS_PORT_TYPE_DP:
1445 return 0;
1446 case DP_DS_PORT_TYPE_DP_DUALMODE:
1447 if (is_edid_digital_input_dp(drm_edid))
1448 return 0;
1449 fallthrough;
1450 case DP_DS_PORT_TYPE_HDMI:
1451 case DP_DS_PORT_TYPE_DVI:
1452 case DP_DS_PORT_TYPE_VGA:
1453 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1454 return 8;
1455
1456 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1457 case DP_DS_8BPC:
1458 return 8;
1459 case DP_DS_10BPC:
1460 return 10;
1461 case DP_DS_12BPC:
1462 return 12;
1463 case DP_DS_16BPC:
1464 return 16;
1465 default:
1466 return 8;
1467 }
1468 break;
1469 default:
1470 return 8;
1471 }
1472 }
1473 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1474
1475 /**
1476 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1477 * YCbCr 4:2:0 pass-through capability
1478 * @dpcd: DisplayPort configuration data
1479 * @port_cap: downstream facing port capabilities
1480 *
1481 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1482 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1483 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1484 const u8 port_cap[4])
1485 {
1486 if (!drm_dp_is_branch(dpcd))
1487 return false;
1488
1489 if (dpcd[DP_DPCD_REV] < 0x13)
1490 return false;
1491
1492 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1493 case DP_DS_PORT_TYPE_DP:
1494 return true;
1495 case DP_DS_PORT_TYPE_HDMI:
1496 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1497 return false;
1498
1499 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1500 default:
1501 return false;
1502 }
1503 }
1504 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1505
1506 /**
1507 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1508 * YCbCr 4:4:4->4:2:0 conversion capability
1509 * @dpcd: DisplayPort configuration data
1510 * @port_cap: downstream facing port capabilities
1511 *
1512 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1513 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1514 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1515 const u8 port_cap[4])
1516 {
1517 if (!drm_dp_is_branch(dpcd))
1518 return false;
1519
1520 if (dpcd[DP_DPCD_REV] < 0x13)
1521 return false;
1522
1523 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1524 case DP_DS_PORT_TYPE_HDMI:
1525 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1526 return false;
1527
1528 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1529 default:
1530 return false;
1531 }
1532 }
1533 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1534
1535 /**
1536 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1537 * RGB->YCbCr conversion capability
1538 * @dpcd: DisplayPort configuration data
1539 * @port_cap: downstream facing port capabilities
1540 * @color_spc: Colorspace for which conversion cap is sought
1541 *
1542 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1543 * colorspace.
1544 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1545 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1546 const u8 port_cap[4],
1547 u8 color_spc)
1548 {
1549 if (!drm_dp_is_branch(dpcd))
1550 return false;
1551
1552 if (dpcd[DP_DPCD_REV] < 0x13)
1553 return false;
1554
1555 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1556 case DP_DS_PORT_TYPE_HDMI:
1557 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1558 return false;
1559
1560 return port_cap[3] & color_spc;
1561 default:
1562 return false;
1563 }
1564 }
1565 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1566
1567 /**
1568 * drm_dp_downstream_mode() - return a mode for downstream facing port
1569 * @dev: DRM device
1570 * @dpcd: DisplayPort configuration data
1571 * @port_cap: port capabilities
1572 *
1573 * Provides a suitable mode for downstream facing ports without EDID.
1574 *
1575 * Returns: A new drm_display_mode on success or NULL on failure
1576 */
1577 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1578 drm_dp_downstream_mode(struct drm_device *dev,
1579 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1580 const u8 port_cap[4])
1581
1582 {
1583 u8 vic;
1584
1585 if (!drm_dp_is_branch(dpcd))
1586 return NULL;
1587
1588 if (dpcd[DP_DPCD_REV] < 0x11)
1589 return NULL;
1590
1591 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1592 case DP_DS_PORT_TYPE_NON_EDID:
1593 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1594 case DP_DS_NON_EDID_720x480i_60:
1595 vic = 6;
1596 break;
1597 case DP_DS_NON_EDID_720x480i_50:
1598 vic = 21;
1599 break;
1600 case DP_DS_NON_EDID_1920x1080i_60:
1601 vic = 5;
1602 break;
1603 case DP_DS_NON_EDID_1920x1080i_50:
1604 vic = 20;
1605 break;
1606 case DP_DS_NON_EDID_1280x720_60:
1607 vic = 4;
1608 break;
1609 case DP_DS_NON_EDID_1280x720_50:
1610 vic = 19;
1611 break;
1612 default:
1613 return NULL;
1614 }
1615 return drm_display_mode_from_cea_vic(dev, vic);
1616 default:
1617 return NULL;
1618 }
1619 }
1620 EXPORT_SYMBOL(drm_dp_downstream_mode);
1621
1622 /**
1623 * drm_dp_downstream_id() - identify branch device
1624 * @aux: DisplayPort AUX channel
1625 * @id: DisplayPort branch device id
1626 *
1627 * Returns branch device id on success or NULL on failure
1628 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1629 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1630 {
1631 return drm_dp_dpcd_read_data(aux, DP_BRANCH_ID, id, 6);
1632 }
1633 EXPORT_SYMBOL(drm_dp_downstream_id);
1634
1635 /**
1636 * drm_dp_downstream_debug() - debug DP branch devices
1637 * @m: pointer for debugfs file
1638 * @dpcd: DisplayPort configuration data
1639 * @port_cap: port capabilities
1640 * @drm_edid: EDID
1641 * @aux: DisplayPort AUX channel
1642 *
1643 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid,struct drm_dp_aux * aux)1644 void drm_dp_downstream_debug(struct seq_file *m,
1645 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1646 const u8 port_cap[4],
1647 const struct drm_edid *drm_edid,
1648 struct drm_dp_aux *aux)
1649 {
1650 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1651 DP_DETAILED_CAP_INFO_AVAILABLE;
1652 int clk;
1653 int bpc;
1654 char id[7];
1655 int len;
1656 uint8_t rev[2];
1657 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1658 bool branch_device = drm_dp_is_branch(dpcd);
1659
1660 seq_printf(m, "\tDP branch device present: %s\n",
1661 str_yes_no(branch_device));
1662
1663 if (!branch_device)
1664 return;
1665
1666 switch (type) {
1667 case DP_DS_PORT_TYPE_DP:
1668 seq_puts(m, "\t\tType: DisplayPort\n");
1669 break;
1670 case DP_DS_PORT_TYPE_VGA:
1671 seq_puts(m, "\t\tType: VGA\n");
1672 break;
1673 case DP_DS_PORT_TYPE_DVI:
1674 seq_puts(m, "\t\tType: DVI\n");
1675 break;
1676 case DP_DS_PORT_TYPE_HDMI:
1677 seq_puts(m, "\t\tType: HDMI\n");
1678 break;
1679 case DP_DS_PORT_TYPE_NON_EDID:
1680 seq_puts(m, "\t\tType: others without EDID support\n");
1681 break;
1682 case DP_DS_PORT_TYPE_DP_DUALMODE:
1683 seq_puts(m, "\t\tType: DP++\n");
1684 break;
1685 case DP_DS_PORT_TYPE_WIRELESS:
1686 seq_puts(m, "\t\tType: Wireless\n");
1687 break;
1688 default:
1689 seq_puts(m, "\t\tType: N/A\n");
1690 }
1691
1692 memset(id, 0, sizeof(id));
1693 drm_dp_downstream_id(aux, id);
1694 seq_printf(m, "\t\tID: %s\n", id);
1695
1696 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1697 if (!len)
1698 seq_printf(m, "\t\tHW: %d.%d\n",
1699 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1700
1701 len = drm_dp_dpcd_read_data(aux, DP_BRANCH_SW_REV, rev, 2);
1702 if (!len)
1703 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1704
1705 if (detailed_cap_info) {
1706 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1707 if (clk > 0)
1708 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1709
1710 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1711 if (clk > 0)
1712 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1713
1714 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1715 if (clk > 0)
1716 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1717
1718 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1719
1720 if (bpc > 0)
1721 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1722 }
1723 }
1724 EXPORT_SYMBOL(drm_dp_downstream_debug);
1725
1726 /**
1727 * drm_dp_subconnector_type() - get DP branch device type
1728 * @dpcd: DisplayPort configuration data
1729 * @port_cap: port capabilities
1730 */
1731 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1732 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1733 const u8 port_cap[4])
1734 {
1735 int type;
1736 if (!drm_dp_is_branch(dpcd))
1737 return DRM_MODE_SUBCONNECTOR_Native;
1738 /* DP 1.0 approach */
1739 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1740 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1741 DP_DWN_STRM_PORT_TYPE_MASK;
1742
1743 switch (type) {
1744 case DP_DWN_STRM_PORT_TYPE_TMDS:
1745 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1746 return DRM_MODE_SUBCONNECTOR_DVID;
1747 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1748 /* Can be VGA or DVI-A, VGA is more popular */
1749 return DRM_MODE_SUBCONNECTOR_VGA;
1750 case DP_DWN_STRM_PORT_TYPE_DP:
1751 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1752 case DP_DWN_STRM_PORT_TYPE_OTHER:
1753 default:
1754 return DRM_MODE_SUBCONNECTOR_Unknown;
1755 }
1756 }
1757 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1758
1759 switch (type) {
1760 case DP_DS_PORT_TYPE_DP:
1761 case DP_DS_PORT_TYPE_DP_DUALMODE:
1762 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1763 case DP_DS_PORT_TYPE_VGA:
1764 return DRM_MODE_SUBCONNECTOR_VGA;
1765 case DP_DS_PORT_TYPE_DVI:
1766 return DRM_MODE_SUBCONNECTOR_DVID;
1767 case DP_DS_PORT_TYPE_HDMI:
1768 return DRM_MODE_SUBCONNECTOR_HDMIA;
1769 case DP_DS_PORT_TYPE_WIRELESS:
1770 return DRM_MODE_SUBCONNECTOR_Wireless;
1771 case DP_DS_PORT_TYPE_NON_EDID:
1772 default:
1773 return DRM_MODE_SUBCONNECTOR_Unknown;
1774 }
1775 }
1776 EXPORT_SYMBOL(drm_dp_subconnector_type);
1777
1778 /**
1779 * drm_dp_set_subconnector_property - set subconnector for DP connector
1780 * @connector: connector to set property on
1781 * @status: connector status
1782 * @dpcd: DisplayPort configuration data
1783 * @port_cap: port capabilities
1784 *
1785 * Called by a driver on every detect event.
1786 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1787 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1788 enum drm_connector_status status,
1789 const u8 *dpcd,
1790 const u8 port_cap[4])
1791 {
1792 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1793
1794 if (status == connector_status_connected)
1795 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1796 drm_object_property_set_value(&connector->base,
1797 connector->dev->mode_config.dp_subconnector_property,
1798 subconnector);
1799 }
1800 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1801
1802 /**
1803 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1804 * count
1805 * @connector: The DRM connector to check
1806 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1807 * @desc: A cached copy of the connector's DP descriptor
1808 *
1809 * See also: drm_dp_read_sink_count()
1810 *
1811 * Returns: %True if the (e)DP connector has a valid sink count that should
1812 * be probed, %false otherwise.
1813 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1814 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1815 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1816 const struct drm_dp_desc *desc)
1817 {
1818 /* Some eDP panels don't set a valid value for the sink count */
1819 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1820 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1821 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1822 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1823 }
1824 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1825
1826 /**
1827 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1828 * @aux: The DP AUX channel to use
1829 *
1830 * See also: drm_dp_read_sink_count_cap()
1831 *
1832 * Returns: The current sink count reported by @aux, or a negative error code
1833 * otherwise.
1834 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1835 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1836 {
1837 u8 count;
1838 int ret;
1839
1840 ret = drm_dp_dpcd_read_byte(aux, DP_SINK_COUNT, &count);
1841 if (ret < 0)
1842 return ret;
1843
1844 return DP_GET_SINK_COUNT(count);
1845 }
1846 EXPORT_SYMBOL(drm_dp_read_sink_count);
1847
1848 /*
1849 * I2C-over-AUX implementation
1850 */
1851
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1852 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1853 {
1854 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1855 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1856 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1857 I2C_FUNC_10BIT_ADDR;
1858 }
1859
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1860 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1861 {
1862 /*
1863 * In case of i2c defer or short i2c ack reply to a write,
1864 * we need to switch to WRITE_STATUS_UPDATE to drain the
1865 * rest of the message
1866 */
1867 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1868 msg->request &= DP_AUX_I2C_MOT;
1869 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1870 }
1871 }
1872
1873 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1874 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1875 #define AUX_STOP_LEN 4
1876 #define AUX_CMD_LEN 4
1877 #define AUX_ADDRESS_LEN 20
1878 #define AUX_REPLY_PAD_LEN 4
1879 #define AUX_LENGTH_LEN 8
1880
1881 /*
1882 * Calculate the duration of the AUX request/reply in usec. Gives the
1883 * "best" case estimate, ie. successful while as short as possible.
1884 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1885 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1886 {
1887 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1888 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1889
1890 if ((msg->request & DP_AUX_I2C_READ) == 0)
1891 len += msg->size * 8;
1892
1893 return len;
1894 }
1895
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1896 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1897 {
1898 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1899 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1900
1901 /*
1902 * For read we expect what was asked. For writes there will
1903 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1904 */
1905 if (msg->request & DP_AUX_I2C_READ)
1906 len += msg->size * 8;
1907
1908 return len;
1909 }
1910
1911 #define I2C_START_LEN 1
1912 #define I2C_STOP_LEN 1
1913 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1914 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1915
1916 /*
1917 * Calculate the length of the i2c transfer in usec, assuming
1918 * the i2c bus speed is as specified. Gives the "worst"
1919 * case estimate, ie. successful while as long as possible.
1920 * Doesn't account the "MOT" bit, and instead assumes each
1921 * message includes a START, ADDRESS and STOP. Neither does it
1922 * account for additional random variables such as clock stretching.
1923 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1924 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1925 int i2c_speed_khz)
1926 {
1927 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1928 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1929 msg->size * I2C_DATA_LEN +
1930 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1931 }
1932
1933 /*
1934 * Determine how many retries should be attempted to successfully transfer
1935 * the specified message, based on the estimated durations of the
1936 * i2c and AUX transfers.
1937 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1938 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1939 int i2c_speed_khz)
1940 {
1941 int aux_time_us = drm_dp_aux_req_duration(msg) +
1942 drm_dp_aux_reply_duration(msg);
1943 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1944
1945 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1946 }
1947
1948 /*
1949 * FIXME currently assumes 10 kHz as some real world devices seem
1950 * to require it. We should query/set the speed via DPCD if supported.
1951 */
1952 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1953 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1954 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1955 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1956
1957 /*
1958 * Transfer a single I2C-over-AUX message and handle various error conditions,
1959 * retrying the transaction as appropriate. It is assumed that the
1960 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1961 * reply field.
1962 *
1963 * Returns bytes transferred on success, or a negative error code on failure.
1964 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1965 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1966 {
1967 unsigned int retry, defer_i2c;
1968 int ret;
1969 /*
1970 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1971 * is required to retry at least seven times upon receiving AUX_DEFER
1972 * before giving up the AUX transaction.
1973 *
1974 * We also try to account for the i2c bus speed.
1975 */
1976 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1977
1978 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1979 ret = aux->transfer(aux, msg);
1980 if (ret < 0) {
1981 if (ret == -EBUSY)
1982 continue;
1983
1984 /*
1985 * While timeouts can be errors, they're usually normal
1986 * behavior (for instance, when a driver tries to
1987 * communicate with a non-existent DisplayPort device).
1988 * Avoid spamming the kernel log with timeout errors.
1989 */
1990 if (ret == -ETIMEDOUT)
1991 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1992 aux->name);
1993 else
1994 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1995 aux->name, ret);
1996 return ret;
1997 }
1998
1999
2000 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
2001 case DP_AUX_NATIVE_REPLY_ACK:
2002 /*
2003 * For I2C-over-AUX transactions this isn't enough, we
2004 * need to check for the I2C ACK reply.
2005 */
2006 break;
2007
2008 case DP_AUX_NATIVE_REPLY_NACK:
2009 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
2010 aux->name, ret, msg->size);
2011 return -EREMOTEIO;
2012
2013 case DP_AUX_NATIVE_REPLY_DEFER:
2014 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
2015 /*
2016 * We could check for I2C bit rate capabilities and if
2017 * available adjust this interval. We could also be
2018 * more careful with DP-to-legacy adapters where a
2019 * long legacy cable may force very low I2C bit rates.
2020 *
2021 * For now just defer for long enough to hopefully be
2022 * safe for all use-cases.
2023 */
2024 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2025 continue;
2026
2027 default:
2028 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
2029 aux->name, msg->reply);
2030 return -EREMOTEIO;
2031 }
2032
2033 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
2034 case DP_AUX_I2C_REPLY_ACK:
2035 /*
2036 * Both native ACK and I2C ACK replies received. We
2037 * can assume the transfer was successful.
2038 */
2039 if (ret != msg->size)
2040 drm_dp_i2c_msg_write_status_update(msg);
2041 return ret;
2042
2043 case DP_AUX_I2C_REPLY_NACK:
2044 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
2045 aux->name, ret, msg->size);
2046 aux->i2c_nack_count++;
2047 return -EREMOTEIO;
2048
2049 case DP_AUX_I2C_REPLY_DEFER:
2050 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
2051 /* DP Compliance Test 4.2.2.5 Requirement:
2052 * Must have at least 7 retries for I2C defers on the
2053 * transaction to pass this test
2054 */
2055 aux->i2c_defer_count++;
2056 if (defer_i2c < 7)
2057 defer_i2c++;
2058 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2059 drm_dp_i2c_msg_write_status_update(msg);
2060
2061 continue;
2062
2063 default:
2064 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2065 aux->name, msg->reply);
2066 return -EREMOTEIO;
2067 }
2068 }
2069
2070 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2071 return -EREMOTEIO;
2072 }
2073
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)2074 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2075 const struct i2c_msg *i2c_msg)
2076 {
2077 msg->request = (i2c_msg->flags & I2C_M_RD) ?
2078 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2079 if (!(i2c_msg->flags & I2C_M_STOP))
2080 msg->request |= DP_AUX_I2C_MOT;
2081 }
2082
2083 /*
2084 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2085 *
2086 * Returns an error code on failure, or a recommended transfer size on success.
2087 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)2088 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2089 {
2090 int err, ret = orig_msg->size;
2091 struct drm_dp_aux_msg msg = *orig_msg;
2092
2093 while (msg.size > 0) {
2094 err = drm_dp_i2c_do_msg(aux, &msg);
2095 if (err <= 0)
2096 return err == 0 ? -EPROTO : err;
2097
2098 if (err < msg.size && err < ret) {
2099 drm_dbg_kms(aux->drm_dev,
2100 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2101 aux->name, msg.size, err);
2102 ret = err;
2103 }
2104
2105 msg.size -= err;
2106 msg.buffer += err;
2107 }
2108
2109 return ret;
2110 }
2111
2112 /*
2113 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2114 * packets to be as large as possible. If not, the I2C transactions never
2115 * succeed. Hence the default is maximum.
2116 */
2117 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2118 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2119 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2120 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2121
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)2122 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2123 int num)
2124 {
2125 struct drm_dp_aux *aux = adapter->algo_data;
2126 unsigned int i, j;
2127 unsigned transfer_size;
2128 struct drm_dp_aux_msg msg;
2129 int err = 0;
2130
2131 if (aux->powered_down)
2132 return -EBUSY;
2133
2134 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2135
2136 memset(&msg, 0, sizeof(msg));
2137
2138 for (i = 0; i < num; i++) {
2139 msg.address = msgs[i].addr;
2140
2141 if (!aux->no_zero_sized) {
2142 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2143 /* Send a bare address packet to start the transaction.
2144 * Zero sized messages specify an address only (bare
2145 * address) transaction.
2146 */
2147 msg.buffer = NULL;
2148 msg.size = 0;
2149 err = drm_dp_i2c_do_msg(aux, &msg);
2150 }
2151
2152 /*
2153 * Reset msg.request in case in case it got
2154 * changed into a WRITE_STATUS_UPDATE.
2155 */
2156 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2157
2158 if (err < 0)
2159 break;
2160 /* We want each transaction to be as large as possible, but
2161 * we'll go to smaller sizes if the hardware gives us a
2162 * short reply.
2163 */
2164 transfer_size = dp_aux_i2c_transfer_size;
2165 for (j = 0; j < msgs[i].len; j += msg.size) {
2166 msg.buffer = msgs[i].buf + j;
2167 msg.size = min(transfer_size, msgs[i].len - j);
2168
2169 if (j + msg.size == msgs[i].len && aux->no_zero_sized)
2170 msg.request &= ~DP_AUX_I2C_MOT;
2171 err = drm_dp_i2c_drain_msg(aux, &msg);
2172
2173 /*
2174 * Reset msg.request in case in case it got
2175 * changed into a WRITE_STATUS_UPDATE.
2176 */
2177 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2178
2179 if (err < 0)
2180 break;
2181 transfer_size = err;
2182 }
2183 if (err < 0)
2184 break;
2185 }
2186 if (err >= 0)
2187 err = num;
2188
2189 if (!aux->no_zero_sized) {
2190 /* Send a bare address packet to close out the transaction.
2191 * Zero sized messages specify an address only (bare
2192 * address) transaction.
2193 */
2194 msg.request &= ~DP_AUX_I2C_MOT;
2195 msg.buffer = NULL;
2196 msg.size = 0;
2197 (void)drm_dp_i2c_do_msg(aux, &msg);
2198 }
2199 return err;
2200 }
2201
2202 static const struct i2c_algorithm drm_dp_i2c_algo = {
2203 .functionality = drm_dp_i2c_functionality,
2204 .master_xfer = drm_dp_i2c_xfer,
2205 };
2206
i2c_to_aux(struct i2c_adapter * i2c)2207 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2208 {
2209 return container_of(i2c, struct drm_dp_aux, ddc);
2210 }
2211
lock_bus(struct i2c_adapter * i2c,unsigned int flags)2212 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2213 {
2214 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2215 }
2216
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)2217 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2218 {
2219 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2220 }
2221
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)2222 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2223 {
2224 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2225 }
2226
2227 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2228 .lock_bus = lock_bus,
2229 .trylock_bus = trylock_bus,
2230 .unlock_bus = unlock_bus,
2231 };
2232
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)2233 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2234 {
2235 u8 buf, count;
2236 int ret;
2237
2238 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2239 if (ret < 0)
2240 return ret;
2241
2242 WARN_ON(!(buf & DP_TEST_SINK_START));
2243
2244 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK_MISC, &buf);
2245 if (ret < 0)
2246 return ret;
2247
2248 count = buf & DP_TEST_COUNT_MASK;
2249 if (count == aux->crc_count)
2250 return -EAGAIN; /* No CRC yet */
2251
2252 aux->crc_count = count;
2253
2254 /*
2255 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2256 * per component (RGB or CrYCb).
2257 */
2258 return drm_dp_dpcd_read_data(aux, DP_TEST_CRC_R_CR, crc, 6);
2259 }
2260
drm_dp_aux_crc_work(struct work_struct * work)2261 static void drm_dp_aux_crc_work(struct work_struct *work)
2262 {
2263 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2264 crc_work);
2265 struct drm_crtc *crtc;
2266 u8 crc_bytes[6];
2267 uint32_t crcs[3];
2268 int ret;
2269
2270 if (WARN_ON(!aux->crtc))
2271 return;
2272
2273 crtc = aux->crtc;
2274 while (crtc->crc.opened) {
2275 drm_crtc_wait_one_vblank(crtc);
2276 if (!crtc->crc.opened)
2277 break;
2278
2279 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2280 if (ret == -EAGAIN) {
2281 usleep_range(1000, 2000);
2282 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2283 }
2284
2285 if (ret == -EAGAIN) {
2286 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2287 aux->name, ret);
2288 continue;
2289 } else if (ret) {
2290 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2291 continue;
2292 }
2293
2294 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2295 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2296 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2297 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2298 }
2299 }
2300
2301 /**
2302 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2303 * @aux: DisplayPort AUX channel
2304 *
2305 * Used for remote aux channel in general. Merely initialize the crc work
2306 * struct.
2307 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)2308 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2309 {
2310 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2311 }
2312 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2313
2314 /**
2315 * drm_dp_aux_init() - minimally initialise an aux channel
2316 * @aux: DisplayPort AUX channel
2317 *
2318 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2319 * the outside world, call drm_dp_aux_init() first. For drivers which are
2320 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2321 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2322 * has been registered to allow userspace access to the auxiliary DP channel.
2323 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2324 * early as possible so that the &drm_device that corresponds to the AUX adapter
2325 * may be mentioned in debugging output from the DRM DP helpers.
2326 *
2327 * For devices which use a separate platform device for their AUX adapters, this
2328 * may be called as early as required by the driver.
2329 *
2330 */
drm_dp_aux_init(struct drm_dp_aux * aux)2331 void drm_dp_aux_init(struct drm_dp_aux *aux)
2332 {
2333 mutex_init(&aux->hw_mutex);
2334 mutex_init(&aux->cec.lock);
2335 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2336
2337 aux->ddc.algo = &drm_dp_i2c_algo;
2338 aux->ddc.algo_data = aux;
2339 aux->ddc.retries = 3;
2340
2341 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2342 }
2343 EXPORT_SYMBOL(drm_dp_aux_init);
2344
2345 /**
2346 * drm_dp_aux_register() - initialise and register aux channel
2347 * @aux: DisplayPort AUX channel
2348 *
2349 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2350 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2351 * initialized. For devices which are grandparents of their AUX channels,
2352 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2353 * corresponds to @aux. For these devices, it's advised to call
2354 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2355 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2356 * Functions which don't follow this will likely Oops when
2357 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2358 *
2359 * For devices where the AUX channel is a device that exists independently of
2360 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2361 * recommended to call drm_dp_aux_register() after a &drm_device has been
2362 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2363 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2364 * with the AUX channel (e.g. on bridge detach).
2365 *
2366 * Drivers which need to use the aux channel before either of the two points
2367 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2368 * channel before registration.
2369 *
2370 * Returns 0 on success or a negative error code on failure.
2371 */
drm_dp_aux_register(struct drm_dp_aux * aux)2372 int drm_dp_aux_register(struct drm_dp_aux *aux)
2373 {
2374 int ret;
2375
2376 WARN_ON_ONCE(!aux->drm_dev);
2377
2378 if (!aux->ddc.algo)
2379 drm_dp_aux_init(aux);
2380
2381 aux->ddc.owner = THIS_MODULE;
2382 aux->ddc.dev.parent = aux->dev;
2383
2384 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2385 sizeof(aux->ddc.name));
2386
2387 ret = drm_dp_aux_register_devnode(aux);
2388 if (ret)
2389 return ret;
2390
2391 ret = i2c_add_adapter(&aux->ddc);
2392 if (ret) {
2393 drm_dp_aux_unregister_devnode(aux);
2394 return ret;
2395 }
2396
2397 return 0;
2398 }
2399 EXPORT_SYMBOL(drm_dp_aux_register);
2400
2401 /**
2402 * drm_dp_aux_unregister() - unregister an AUX adapter
2403 * @aux: DisplayPort AUX channel
2404 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2405 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2406 {
2407 drm_dp_aux_unregister_devnode(aux);
2408 i2c_del_adapter(&aux->ddc);
2409 }
2410 EXPORT_SYMBOL(drm_dp_aux_unregister);
2411
2412 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2413
2414 /**
2415 * drm_dp_psr_setup_time() - PSR setup in time usec
2416 * @psr_cap: PSR capabilities from DPCD
2417 *
2418 * Returns:
2419 * PSR setup time for the panel in microseconds, negative
2420 * error code on failure.
2421 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2422 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2423 {
2424 static const u16 psr_setup_time_us[] = {
2425 PSR_SETUP_TIME(330),
2426 PSR_SETUP_TIME(275),
2427 PSR_SETUP_TIME(220),
2428 PSR_SETUP_TIME(165),
2429 PSR_SETUP_TIME(110),
2430 PSR_SETUP_TIME(55),
2431 PSR_SETUP_TIME(0),
2432 };
2433 int i;
2434
2435 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2436 if (i >= ARRAY_SIZE(psr_setup_time_us))
2437 return -EINVAL;
2438
2439 return psr_setup_time_us[i];
2440 }
2441 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2442
2443 #undef PSR_SETUP_TIME
2444
2445 /**
2446 * drm_dp_start_crc() - start capture of frame CRCs
2447 * @aux: DisplayPort AUX channel
2448 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2449 *
2450 * Returns 0 on success or a negative error code on failure.
2451 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2452 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2453 {
2454 u8 buf;
2455 int ret;
2456
2457 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2458 if (ret < 0)
2459 return ret;
2460
2461 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2462 if (ret < 0)
2463 return ret;
2464
2465 aux->crc_count = 0;
2466 aux->crtc = crtc;
2467 schedule_work(&aux->crc_work);
2468
2469 return 0;
2470 }
2471 EXPORT_SYMBOL(drm_dp_start_crc);
2472
2473 /**
2474 * drm_dp_stop_crc() - stop capture of frame CRCs
2475 * @aux: DisplayPort AUX channel
2476 *
2477 * Returns 0 on success or a negative error code on failure.
2478 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2479 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2480 {
2481 u8 buf;
2482 int ret;
2483
2484 ret = drm_dp_dpcd_read_byte(aux, DP_TEST_SINK, &buf);
2485 if (ret < 0)
2486 return ret;
2487
2488 ret = drm_dp_dpcd_write_byte(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2489 if (ret < 0)
2490 return ret;
2491
2492 flush_work(&aux->crc_work);
2493 aux->crtc = NULL;
2494
2495 return 0;
2496 }
2497 EXPORT_SYMBOL(drm_dp_stop_crc);
2498
2499 struct dpcd_quirk {
2500 u8 oui[3];
2501 u8 device_id[6];
2502 bool is_branch;
2503 u32 quirks;
2504 };
2505
2506 #define OUI(first, second, third) { (first), (second), (third) }
2507 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2508 { (first), (second), (third), (fourth), (fifth), (sixth) }
2509
2510 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2511
2512 static const struct dpcd_quirk dpcd_quirk_list[] = {
2513 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2514 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2515 /* LG LP140WF6-SPM1 eDP panel */
2516 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2517 /* Apple panels need some additional handling to support PSR */
2518 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2519 /* CH7511 seems to leave SINK_COUNT zeroed */
2520 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2521 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2522 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2523 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2524 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2525 /* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2526 { OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2527 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2528 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2529 };
2530
2531 #undef OUI
2532
2533 /*
2534 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2535 * ident. The quirk data is shared but it's up to the drivers to act on the
2536 * data.
2537 *
2538 * For now, only the OUI (first three bytes) is used, but this may be extended
2539 * to device identification string and hardware/firmware revisions later.
2540 */
2541 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2542 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2543 {
2544 const struct dpcd_quirk *quirk;
2545 u32 quirks = 0;
2546 int i;
2547 u8 any_device[] = DEVICE_ID_ANY;
2548
2549 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2550 quirk = &dpcd_quirk_list[i];
2551
2552 if (quirk->is_branch != is_branch)
2553 continue;
2554
2555 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2556 continue;
2557
2558 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2559 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2560 continue;
2561
2562 quirks |= quirk->quirks;
2563 }
2564
2565 return quirks;
2566 }
2567
2568 #undef DEVICE_ID_ANY
2569 #undef DEVICE_ID
2570
drm_dp_read_ident(struct drm_dp_aux * aux,unsigned int offset,struct drm_dp_dpcd_ident * ident)2571 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2572 struct drm_dp_dpcd_ident *ident)
2573 {
2574 return drm_dp_dpcd_read_data(aux, offset, ident, sizeof(*ident));
2575 }
2576
drm_dp_dump_desc(struct drm_dp_aux * aux,const char * device_name,const struct drm_dp_desc * desc)2577 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2578 const char *device_name, const struct drm_dp_desc *desc)
2579 {
2580 const struct drm_dp_dpcd_ident *ident = &desc->ident;
2581
2582 drm_dbg_kms(aux->drm_dev,
2583 "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2584 aux->name, device_name,
2585 (int)sizeof(ident->oui), ident->oui,
2586 (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2587 ident->hw_rev >> 4, ident->hw_rev & 0xf,
2588 ident->sw_major_rev, ident->sw_minor_rev,
2589 desc->quirks);
2590 }
2591
2592 /**
2593 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2594 * @aux: DisplayPort AUX channel
2595 * @desc: Device descriptor to fill from DPCD
2596 * @is_branch: true for branch devices, false for sink devices
2597 *
2598 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2599 * identification.
2600 *
2601 * Returns 0 on success or a negative error code on failure.
2602 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2603 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2604 bool is_branch)
2605 {
2606 struct drm_dp_dpcd_ident *ident = &desc->ident;
2607 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2608 int ret;
2609
2610 ret = drm_dp_read_ident(aux, offset, ident);
2611 if (ret < 0)
2612 return ret;
2613
2614 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2615
2616 drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2617
2618 return 0;
2619 }
2620 EXPORT_SYMBOL(drm_dp_read_desc);
2621
2622 /**
2623 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2624 * @aux: DisplayPort AUX channel
2625 * @dp_phy: LTTPR PHY instance
2626 *
2627 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2628 * with its details to dmesg.
2629 *
2630 * Returns 0 on success or a negative error code on failure.
2631 */
drm_dp_dump_lttpr_desc(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy)2632 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2633 {
2634 struct drm_dp_desc desc = {};
2635 int ret;
2636
2637 if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2638 return -EINVAL;
2639
2640 ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2641 if (ret < 0)
2642 return ret;
2643
2644 drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2645
2646 return 0;
2647 }
2648 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2649
2650 /**
2651 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2652 * @dsc_dpcd: DSC capabilities from DPCD
2653 *
2654 * Returns the bpp precision supported by the DP sink.
2655 */
drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2656 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2657 {
2658 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2659
2660 switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2661 case DP_DSC_BITS_PER_PIXEL_1_16:
2662 return 16;
2663 case DP_DSC_BITS_PER_PIXEL_1_8:
2664 return 8;
2665 case DP_DSC_BITS_PER_PIXEL_1_4:
2666 return 4;
2667 case DP_DSC_BITS_PER_PIXEL_1_2:
2668 return 2;
2669 case DP_DSC_BITS_PER_PIXEL_1_1:
2670 return 1;
2671 }
2672
2673 return 0;
2674 }
2675 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2676
2677 /**
2678 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2679 * supported by the DSC sink.
2680 * @dsc_dpcd: DSC capabilities from DPCD
2681 * @is_edp: true if its eDP, false for DP
2682 *
2683 * Read the slice capabilities DPCD register from DSC sink to get
2684 * the maximum slice count supported. This is used to populate
2685 * the DSC parameters in the &struct drm_dsc_config by the driver.
2686 * Driver creates an infoframe using these parameters to populate
2687 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2688 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2689 *
2690 * Returns:
2691 * Maximum slice count supported by DSC sink or 0 its invalid
2692 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2693 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2694 bool is_edp)
2695 {
2696 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2697
2698 if (is_edp) {
2699 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2700 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2701 return 4;
2702 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2703 return 2;
2704 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2705 return 1;
2706 } else {
2707 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2708 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2709
2710 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2711 return 24;
2712 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2713 return 20;
2714 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2715 return 16;
2716 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2717 return 12;
2718 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2719 return 10;
2720 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2721 return 8;
2722 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2723 return 6;
2724 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2725 return 4;
2726 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2727 return 2;
2728 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2729 return 1;
2730 }
2731
2732 return 0;
2733 }
2734 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2735
2736 /**
2737 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2738 * @dsc_dpcd: DSC capabilities from DPCD
2739 *
2740 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2741 * number of bits of precision within the decoder line buffer supported by
2742 * the DSC sink. This is used to populate the DSC parameters in the
2743 * &struct drm_dsc_config by the driver.
2744 * Driver creates an infoframe using these parameters to populate
2745 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2746 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2747 *
2748 * Returns:
2749 * Line buffer depth supported by DSC panel or 0 its invalid
2750 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2751 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2752 {
2753 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2754
2755 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2756 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2757 return 9;
2758 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2759 return 10;
2760 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2761 return 11;
2762 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2763 return 12;
2764 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2765 return 13;
2766 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2767 return 14;
2768 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2769 return 15;
2770 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2771 return 16;
2772 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2773 return 8;
2774 }
2775
2776 return 0;
2777 }
2778 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2779
2780 /**
2781 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2782 * values supported by the DSC sink.
2783 * @dsc_dpcd: DSC capabilities from DPCD
2784 * @dsc_bpc: An array to be filled by this helper with supported
2785 * input bpcs.
2786 *
2787 * Read the DSC DPCD from the sink device to parse the supported bits per
2788 * component values. This is used to populate the DSC parameters
2789 * in the &struct drm_dsc_config by the driver.
2790 * Driver creates an infoframe using these parameters to populate
2791 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2792 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2793 *
2794 * Returns:
2795 * Number of input BPC values parsed from the DPCD
2796 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2797 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2798 u8 dsc_bpc[3])
2799 {
2800 int num_bpc = 0;
2801 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2802
2803 if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2804 return 0;
2805
2806 if (color_depth & DP_DSC_12_BPC)
2807 dsc_bpc[num_bpc++] = 12;
2808 if (color_depth & DP_DSC_10_BPC)
2809 dsc_bpc[num_bpc++] = 10;
2810
2811 /* A DP DSC Sink device shall support 8 bpc. */
2812 dsc_bpc[num_bpc++] = 8;
2813
2814 return num_bpc;
2815 }
2816 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2817
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2818 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2819 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2820 u8 *buf, int buf_size)
2821 {
2822 /*
2823 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2824 * corrupted values when reading from the 0xF0000- range with a block
2825 * size bigger than 1.
2826 */
2827 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2828 int offset;
2829 int ret;
2830
2831 for (offset = 0; offset < buf_size; offset += block_size) {
2832 ret = drm_dp_dpcd_read_data(aux,
2833 address + offset,
2834 &buf[offset], block_size);
2835 if (ret < 0)
2836 return ret;
2837 }
2838
2839 return 0;
2840 }
2841
2842 /**
2843 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2844 * @aux: DisplayPort AUX channel
2845 * @dpcd: DisplayPort configuration data
2846 * @caps: buffer to return the capability info in
2847 *
2848 * Read capabilities common to all LTTPRs.
2849 *
2850 * Returns 0 on success or a negative error code on failure.
2851 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2852 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2853 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2854 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2855 {
2856 return drm_dp_read_lttpr_regs(aux, dpcd,
2857 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2858 caps, DP_LTTPR_COMMON_CAP_SIZE);
2859 }
2860 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2861
2862 /**
2863 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2864 * @aux: DisplayPort AUX channel
2865 * @dpcd: DisplayPort configuration data
2866 * @dp_phy: LTTPR PHY to read the capabilities for
2867 * @caps: buffer to return the capability info in
2868 *
2869 * Read the capabilities for the given LTTPR PHY.
2870 *
2871 * Returns 0 on success or a negative error code on failure.
2872 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2873 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2874 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2875 enum drm_dp_phy dp_phy,
2876 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2877 {
2878 return drm_dp_read_lttpr_regs(aux, dpcd,
2879 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2880 caps, DP_LTTPR_PHY_CAP_SIZE);
2881 }
2882 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2883
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2884 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2885 {
2886 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2887 }
2888
2889 /**
2890 * drm_dp_lttpr_count - get the number of detected LTTPRs
2891 * @caps: LTTPR common capabilities
2892 *
2893 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2894 *
2895 * Returns:
2896 * -ERANGE if more than supported number (8) of LTTPRs are detected
2897 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2898 * otherwise the number of detected LTTPRs
2899 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2900 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2901 {
2902 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2903
2904 switch (hweight8(count)) {
2905 case 0:
2906 return 0;
2907 case 1:
2908 return 8 - ilog2(count);
2909 case 8:
2910 return -ERANGE;
2911 default:
2912 return -EINVAL;
2913 }
2914 }
2915 EXPORT_SYMBOL(drm_dp_lttpr_count);
2916
2917 /**
2918 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2919 * @caps: LTTPR common capabilities
2920 *
2921 * Returns the maximum link rate supported by all detected LTTPRs.
2922 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2923 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2924 {
2925 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2926
2927 return drm_dp_bw_code_to_link_rate(rate);
2928 }
2929 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2930
2931 /**
2932 * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2933 * @aux: DisplayPort AUX channel
2934 * @enable: Enable or disable transparent mode
2935 *
2936 * Returns: 0 on success or a negative error code on failure.
2937 */
drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux * aux,bool enable)2938 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2939 {
2940 u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2941 DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2942 int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2943
2944 if (ret < 0)
2945 return ret;
2946
2947 return (ret == 1) ? 0 : -EIO;
2948 }
2949 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2950
2951 /**
2952 * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2953 * @aux: DisplayPort AUX channel
2954 * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2955 * Negative error code for any non-valid number.
2956 * See drm_dp_lttpr_count().
2957 *
2958 * Returns: 0 on success or a negative error code on failure.
2959 */
drm_dp_lttpr_init(struct drm_dp_aux * aux,int lttpr_count)2960 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2961 {
2962 int ret;
2963
2964 if (!lttpr_count)
2965 return 0;
2966
2967 /*
2968 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2969 * non-transparent mode and the disable->enable non-transparent mode
2970 * sequence.
2971 */
2972 ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2973 if (ret)
2974 return ret;
2975
2976 if (lttpr_count < 0)
2977 return -ENODEV;
2978
2979 if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2980 /*
2981 * Roll-back to transparent mode if setting non-transparent
2982 * mode has failed
2983 */
2984 drm_dp_lttpr_set_transparent_mode(aux, true);
2985 return -EINVAL;
2986 }
2987
2988 return 0;
2989 }
2990 EXPORT_SYMBOL(drm_dp_lttpr_init);
2991
2992 /**
2993 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2994 * @caps: LTTPR common capabilities
2995 *
2996 * Returns the maximum lane count supported by all detected LTTPRs.
2997 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2998 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2999 {
3000 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
3001
3002 return max_lanes & DP_MAX_LANE_COUNT_MASK;
3003 }
3004 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
3005
3006 /**
3007 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
3008 * @caps: LTTPR PHY capabilities
3009 *
3010 * Returns true if the @caps for an LTTPR TX PHY indicate support for
3011 * voltage swing level 3.
3012 */
3013 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])3014 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3015 {
3016 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3017
3018 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
3019 }
3020 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
3021
3022 /**
3023 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
3024 * @caps: LTTPR PHY capabilities
3025 *
3026 * Returns true if the @caps for an LTTPR TX PHY indicate support for
3027 * pre-emphasis level 3.
3028 */
3029 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])3030 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
3031 {
3032 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
3033
3034 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
3035 }
3036 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
3037
3038 /**
3039 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
3040 * @aux: DisplayPort AUX channel
3041 * @data: DP phy compliance test parameters.
3042 *
3043 * Returns 0 on success or a negative error code on failure.
3044 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)3045 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
3046 struct drm_dp_phy_test_params *data)
3047 {
3048 int err;
3049 u8 rate, lanes;
3050
3051 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LINK_RATE, &rate);
3052 if (err < 0)
3053 return err;
3054 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3055
3056 err = drm_dp_dpcd_read_byte(aux, DP_TEST_LANE_COUNT, &lanes);
3057 if (err < 0)
3058 return err;
3059 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3060
3061 if (lanes & DP_ENHANCED_FRAME_CAP)
3062 data->enhanced_frame_cap = true;
3063
3064 err = drm_dp_dpcd_read_byte(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3065 if (err < 0)
3066 return err;
3067
3068 switch (data->phy_pattern) {
3069 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3070 err = drm_dp_dpcd_read_data(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3071 &data->custom80, sizeof(data->custom80));
3072 if (err < 0)
3073 return err;
3074
3075 break;
3076 case DP_PHY_TEST_PATTERN_CP2520:
3077 err = drm_dp_dpcd_read_data(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3078 &data->hbr2_reset,
3079 sizeof(data->hbr2_reset));
3080 if (err < 0)
3081 return err;
3082 }
3083
3084 return 0;
3085 }
3086 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3087
3088 /**
3089 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3090 * @aux: DisplayPort AUX channel
3091 * @data: DP phy compliance test parameters.
3092 * @dp_rev: DP revision to use for compliance testing
3093 *
3094 * Returns 0 on success or a negative error code on failure.
3095 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)3096 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3097 struct drm_dp_phy_test_params *data, u8 dp_rev)
3098 {
3099 int err, i;
3100 u8 test_pattern;
3101
3102 test_pattern = data->phy_pattern;
3103 if (dp_rev < 0x12) {
3104 test_pattern = (test_pattern << 2) &
3105 DP_LINK_QUAL_PATTERN_11_MASK;
3106 err = drm_dp_dpcd_write_byte(aux, DP_TRAINING_PATTERN_SET,
3107 test_pattern);
3108 if (err < 0)
3109 return err;
3110 } else {
3111 for (i = 0; i < data->num_lanes; i++) {
3112 err = drm_dp_dpcd_write_byte(aux,
3113 DP_LINK_QUAL_LANE0_SET + i,
3114 test_pattern);
3115 if (err < 0)
3116 return err;
3117 }
3118 }
3119
3120 return 0;
3121 }
3122 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3123
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)3124 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3125 {
3126 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3127 return "Invalid";
3128
3129 switch (pixelformat) {
3130 case DP_PIXELFORMAT_RGB:
3131 return "RGB";
3132 case DP_PIXELFORMAT_YUV444:
3133 return "YUV444";
3134 case DP_PIXELFORMAT_YUV422:
3135 return "YUV422";
3136 case DP_PIXELFORMAT_YUV420:
3137 return "YUV420";
3138 case DP_PIXELFORMAT_Y_ONLY:
3139 return "Y_ONLY";
3140 case DP_PIXELFORMAT_RAW:
3141 return "RAW";
3142 default:
3143 return "Reserved";
3144 }
3145 }
3146
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)3147 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3148 enum dp_colorimetry colorimetry)
3149 {
3150 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3151 return "Invalid";
3152
3153 switch (colorimetry) {
3154 case DP_COLORIMETRY_DEFAULT:
3155 switch (pixelformat) {
3156 case DP_PIXELFORMAT_RGB:
3157 return "sRGB";
3158 case DP_PIXELFORMAT_YUV444:
3159 case DP_PIXELFORMAT_YUV422:
3160 case DP_PIXELFORMAT_YUV420:
3161 return "BT.601";
3162 case DP_PIXELFORMAT_Y_ONLY:
3163 return "DICOM PS3.14";
3164 case DP_PIXELFORMAT_RAW:
3165 return "Custom Color Profile";
3166 default:
3167 return "Reserved";
3168 }
3169 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3170 switch (pixelformat) {
3171 case DP_PIXELFORMAT_RGB:
3172 return "Wide Fixed";
3173 case DP_PIXELFORMAT_YUV444:
3174 case DP_PIXELFORMAT_YUV422:
3175 case DP_PIXELFORMAT_YUV420:
3176 return "BT.709";
3177 default:
3178 return "Reserved";
3179 }
3180 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3181 switch (pixelformat) {
3182 case DP_PIXELFORMAT_RGB:
3183 return "Wide Float";
3184 case DP_PIXELFORMAT_YUV444:
3185 case DP_PIXELFORMAT_YUV422:
3186 case DP_PIXELFORMAT_YUV420:
3187 return "xvYCC 601";
3188 default:
3189 return "Reserved";
3190 }
3191 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3192 switch (pixelformat) {
3193 case DP_PIXELFORMAT_RGB:
3194 return "OpRGB";
3195 case DP_PIXELFORMAT_YUV444:
3196 case DP_PIXELFORMAT_YUV422:
3197 case DP_PIXELFORMAT_YUV420:
3198 return "xvYCC 709";
3199 default:
3200 return "Reserved";
3201 }
3202 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3203 switch (pixelformat) {
3204 case DP_PIXELFORMAT_RGB:
3205 return "DCI-P3";
3206 case DP_PIXELFORMAT_YUV444:
3207 case DP_PIXELFORMAT_YUV422:
3208 case DP_PIXELFORMAT_YUV420:
3209 return "sYCC 601";
3210 default:
3211 return "Reserved";
3212 }
3213 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3214 switch (pixelformat) {
3215 case DP_PIXELFORMAT_RGB:
3216 return "Custom Profile";
3217 case DP_PIXELFORMAT_YUV444:
3218 case DP_PIXELFORMAT_YUV422:
3219 case DP_PIXELFORMAT_YUV420:
3220 return "OpYCC 601";
3221 default:
3222 return "Reserved";
3223 }
3224 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3225 switch (pixelformat) {
3226 case DP_PIXELFORMAT_RGB:
3227 return "BT.2020 RGB";
3228 case DP_PIXELFORMAT_YUV444:
3229 case DP_PIXELFORMAT_YUV422:
3230 case DP_PIXELFORMAT_YUV420:
3231 return "BT.2020 CYCC";
3232 default:
3233 return "Reserved";
3234 }
3235 case DP_COLORIMETRY_BT2020_YCC:
3236 switch (pixelformat) {
3237 case DP_PIXELFORMAT_YUV444:
3238 case DP_PIXELFORMAT_YUV422:
3239 case DP_PIXELFORMAT_YUV420:
3240 return "BT.2020 YCC";
3241 default:
3242 return "Reserved";
3243 }
3244 default:
3245 return "Invalid";
3246 }
3247 }
3248
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)3249 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3250 {
3251 switch (dynamic_range) {
3252 case DP_DYNAMIC_RANGE_VESA:
3253 return "VESA range";
3254 case DP_DYNAMIC_RANGE_CTA:
3255 return "CTA range";
3256 default:
3257 return "Invalid";
3258 }
3259 }
3260
dp_content_type_get_name(enum dp_content_type content_type)3261 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3262 {
3263 switch (content_type) {
3264 case DP_CONTENT_TYPE_NOT_DEFINED:
3265 return "Not defined";
3266 case DP_CONTENT_TYPE_GRAPHICS:
3267 return "Graphics";
3268 case DP_CONTENT_TYPE_PHOTO:
3269 return "Photo";
3270 case DP_CONTENT_TYPE_VIDEO:
3271 return "Video";
3272 case DP_CONTENT_TYPE_GAME:
3273 return "Game";
3274 default:
3275 return "Reserved";
3276 }
3277 }
3278
drm_dp_vsc_sdp_log(struct drm_printer * p,const struct drm_dp_vsc_sdp * vsc)3279 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3280 {
3281 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3282 vsc->revision, vsc->length);
3283 drm_printf(p, " pixelformat: %s\n",
3284 dp_pixelformat_get_name(vsc->pixelformat));
3285 drm_printf(p, " colorimetry: %s\n",
3286 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3287 drm_printf(p, " bpc: %u\n", vsc->bpc);
3288 drm_printf(p, " dynamic range: %s\n",
3289 dp_dynamic_range_get_name(vsc->dynamic_range));
3290 drm_printf(p, " content type: %s\n",
3291 dp_content_type_get_name(vsc->content_type));
3292 }
3293 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3294
drm_dp_as_sdp_log(struct drm_printer * p,const struct drm_dp_as_sdp * as_sdp)3295 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3296 {
3297 drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3298 as_sdp->revision, as_sdp->length);
3299 drm_printf(p, " vtotal: %d\n", as_sdp->vtotal);
3300 drm_printf(p, " target_rr: %d\n", as_sdp->target_rr);
3301 drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3302 drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3303 drm_printf(p, " operation_mode: %d\n", as_sdp->mode);
3304 }
3305 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3306
3307 /**
3308 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3309 * @aux: DisplayPort AUX channel
3310 * @dpcd: DisplayPort configuration data
3311 *
3312 * Returns true if adaptive sync sdp is supported, else returns false
3313 */
drm_dp_as_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3314 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3315 {
3316 u8 rx_feature;
3317
3318 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3319 return false;
3320
3321 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3322 &rx_feature) < 0) {
3323 drm_dbg_dp(aux->drm_dev,
3324 "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3325 return false;
3326 }
3327
3328 return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3329 }
3330 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3331
3332 /**
3333 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3334 * @aux: DisplayPort AUX channel
3335 * @dpcd: DisplayPort configuration data
3336 *
3337 * Returns true if vsc sdp is supported, else returns false
3338 */
drm_dp_vsc_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3339 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3340 {
3341 u8 rx_feature;
3342
3343 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3344 return false;
3345
3346 if (drm_dp_dpcd_read_byte(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) < 0) {
3347 drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3348 return false;
3349 }
3350
3351 return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3352 }
3353 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3354
3355 /**
3356 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3357 * @vsc: vsc sdp initialized according to its purpose as defined in
3358 * table 2-118 - table 2-120 in DP 1.4a specification
3359 * @sdp: valid handle to the generic dp_sdp which will be packed
3360 *
3361 * Returns length of sdp on success and error code on failure
3362 */
drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp)3363 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3364 struct dp_sdp *sdp)
3365 {
3366 size_t length = sizeof(struct dp_sdp);
3367
3368 memset(sdp, 0, sizeof(struct dp_sdp));
3369
3370 /*
3371 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3372 * VSC SDP Header Bytes
3373 */
3374 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3375 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3376 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3377 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3378
3379 if (vsc->revision == 0x6) {
3380 sdp->db[0] = 1;
3381 sdp->db[3] = 1;
3382 }
3383
3384 /*
3385 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3386 * Format as per DP 1.4a spec and DP 2.0 respectively.
3387 */
3388 if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3389 goto out;
3390
3391 /* VSC SDP Payload for DB16 through DB18 */
3392 /* Pixel Encoding and Colorimetry Formats */
3393 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3394 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3395
3396 switch (vsc->bpc) {
3397 case 6:
3398 /* 6bpc: 0x0 */
3399 break;
3400 case 8:
3401 sdp->db[17] = 0x1; /* DB17[3:0] */
3402 break;
3403 case 10:
3404 sdp->db[17] = 0x2;
3405 break;
3406 case 12:
3407 sdp->db[17] = 0x3;
3408 break;
3409 case 16:
3410 sdp->db[17] = 0x4;
3411 break;
3412 default:
3413 WARN(1, "Missing case %d\n", vsc->bpc);
3414 return -EINVAL;
3415 }
3416
3417 /* Dynamic Range and Component Bit Depth */
3418 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3419 sdp->db[17] |= 0x80; /* DB17[7] */
3420
3421 /* Content Type */
3422 sdp->db[18] = vsc->content_type & 0x7;
3423
3424 out:
3425 return length;
3426 }
3427 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3428
3429 /**
3430 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3431 * @dpcd: DisplayPort configuration data
3432 * @port_cap: port capabilities
3433 *
3434 * Returns maximum frl bandwidth supported by PCON in GBPS,
3435 * returns 0 if not supported.
3436 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])3437 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3438 const u8 port_cap[4])
3439 {
3440 int bw;
3441 u8 buf;
3442
3443 buf = port_cap[2];
3444 bw = buf & DP_PCON_MAX_FRL_BW;
3445
3446 switch (bw) {
3447 case DP_PCON_MAX_9GBPS:
3448 return 9;
3449 case DP_PCON_MAX_18GBPS:
3450 return 18;
3451 case DP_PCON_MAX_24GBPS:
3452 return 24;
3453 case DP_PCON_MAX_32GBPS:
3454 return 32;
3455 case DP_PCON_MAX_40GBPS:
3456 return 40;
3457 case DP_PCON_MAX_48GBPS:
3458 return 48;
3459 case DP_PCON_MAX_0GBPS:
3460 default:
3461 return 0;
3462 }
3463
3464 return 0;
3465 }
3466 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3467
3468 /**
3469 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3470 * @aux: DisplayPort AUX channel
3471 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3472 *
3473 * Returns 0 if success, else returns negative error code.
3474 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)3475 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3476 {
3477 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3478 DP_PCON_ENABLE_LINK_FRL_MODE;
3479
3480 if (enable_frl_ready_hpd)
3481 buf |= DP_PCON_ENABLE_HPD_READY;
3482
3483 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3484 }
3485 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3486
3487 /**
3488 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3489 * @aux: DisplayPort AUX channel
3490 *
3491 * Returns true if success, else returns false.
3492 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)3493 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3494 {
3495 int ret;
3496 u8 buf;
3497
3498 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3499 if (ret < 0)
3500 return false;
3501
3502 if (buf & DP_PCON_FRL_READY)
3503 return true;
3504
3505 return false;
3506 }
3507 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3508
3509 /**
3510 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3511 * @aux: DisplayPort AUX channel
3512 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3513 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3514 * In Concurrent Mode, the FRL link bring up can be done along with
3515 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3516 * the DP Link training.
3517 *
3518 * Returns 0 if success, else returns negative error code.
3519 */
3520
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)3521 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3522 u8 frl_mode)
3523 {
3524 int ret;
3525 u8 buf;
3526
3527 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3528 if (ret < 0)
3529 return ret;
3530
3531 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3532 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3533 else
3534 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3535
3536 switch (max_frl_gbps) {
3537 case 9:
3538 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3539 break;
3540 case 18:
3541 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3542 break;
3543 case 24:
3544 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3545 break;
3546 case 32:
3547 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3548 break;
3549 case 40:
3550 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3551 break;
3552 case 48:
3553 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3554 break;
3555 case 0:
3556 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3557 break;
3558 default:
3559 return -EINVAL;
3560 }
3561
3562 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3563 }
3564 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3565
3566 /**
3567 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3568 * @aux: DisplayPort AUX channel
3569 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3570 * @frl_type : FRL training type, can be Extended, or Normal.
3571 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3572 * starting from min, and stops when link training is successful. In Extended
3573 * FRL training, all frl bw selected in the mask are trained by the PCON.
3574 *
3575 * Returns 0 if success, else returns negative error code.
3576 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3577 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3578 u8 frl_type)
3579 {
3580 int ret;
3581 u8 buf = max_frl_mask;
3582
3583 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3584 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3585 else
3586 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3587
3588 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3589 if (ret < 0)
3590 return ret;
3591
3592 return 0;
3593 }
3594 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3595
3596 /**
3597 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3598 * @aux: DisplayPort AUX channel
3599 *
3600 * Returns 0 if success, else returns negative error code.
3601 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3602 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3603 {
3604 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3605 }
3606 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3607
3608 /**
3609 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3610 * @aux: DisplayPort AUX channel
3611 *
3612 * Returns 0 if success, else returns negative error code.
3613 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3614 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3615 {
3616 int ret;
3617 u8 buf = 0;
3618
3619 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3620 if (ret < 0)
3621 return ret;
3622 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3623 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3624 aux->name);
3625 return -EINVAL;
3626 }
3627 buf |= DP_PCON_ENABLE_HDMI_LINK;
3628 return drm_dp_dpcd_write_byte(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3629 }
3630 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3631
3632 /**
3633 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3634 * @aux: DisplayPort AUX channel
3635 *
3636 * Returns true if link is active else returns false.
3637 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3638 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3639 {
3640 u8 buf;
3641 int ret;
3642
3643 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3644 if (ret < 0)
3645 return false;
3646
3647 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3648 }
3649 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3650
3651 /**
3652 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3653 * @aux: DisplayPort AUX channel
3654 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3655 * Valid only if the MODE returned is FRL. For Normal Link training mode
3656 * only 1 of the bits will be set, but in case of Extended mode, more than
3657 * one bits can be set.
3658 *
3659 * Returns the link mode : TMDS or FRL on success, else returns negative error
3660 * code.
3661 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3662 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3663 {
3664 u8 buf;
3665 int mode;
3666 int ret;
3667
3668 ret = drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3669 if (ret < 0)
3670 return ret;
3671
3672 mode = buf & DP_PCON_HDMI_LINK_MODE;
3673
3674 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3675 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3676
3677 return mode;
3678 }
3679 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3680
3681 /**
3682 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3683 * during link failure between PCON and HDMI sink
3684 * @aux: DisplayPort AUX channel
3685 * @connector: DRM connector
3686 * code.
3687 **/
3688
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3689 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3690 struct drm_connector *connector)
3691 {
3692 u8 buf, error_count;
3693 int i, num_error;
3694 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3695
3696 for (i = 0; i < hdmi->max_lanes; i++) {
3697 if (drm_dp_dpcd_read_byte(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3698 return;
3699
3700 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3701 switch (error_count) {
3702 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3703 num_error = 100;
3704 break;
3705 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3706 num_error = 10;
3707 break;
3708 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3709 num_error = 3;
3710 break;
3711 default:
3712 num_error = 0;
3713 }
3714
3715 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3716 aux->name, num_error, i);
3717 }
3718 }
3719 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3720
3721 /*
3722 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3723 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3724 *
3725 * Returns true is PCON encoder is DSC 1.2 else returns false.
3726 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3727 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3728 {
3729 u8 buf;
3730 u8 major_v, minor_v;
3731
3732 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3733 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3734 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3735
3736 if (major_v == 1 && minor_v == 2)
3737 return true;
3738
3739 return false;
3740 }
3741 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3742
3743 /*
3744 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3745 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3746 *
3747 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3748 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3749 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3750 {
3751 u8 slice_cap1, slice_cap2;
3752
3753 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3754 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3755
3756 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3757 return 24;
3758 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3759 return 20;
3760 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3761 return 16;
3762 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3763 return 12;
3764 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3765 return 10;
3766 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3767 return 8;
3768 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3769 return 6;
3770 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3771 return 4;
3772 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3773 return 2;
3774 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3775 return 1;
3776
3777 return 0;
3778 }
3779 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3780
3781 /*
3782 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3783 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3784 *
3785 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3786 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3787 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3788 {
3789 u8 buf;
3790
3791 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3792
3793 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3794 }
3795 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3796
3797 /*
3798 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3799 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3800 *
3801 * Returns the bpp precision supported by the PCON encoder.
3802 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3803 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3804 {
3805 u8 buf;
3806
3807 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3808
3809 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3810 case DP_PCON_DSC_ONE_16TH_BPP:
3811 return 16;
3812 case DP_PCON_DSC_ONE_8TH_BPP:
3813 return 8;
3814 case DP_PCON_DSC_ONE_4TH_BPP:
3815 return 4;
3816 case DP_PCON_DSC_ONE_HALF_BPP:
3817 return 2;
3818 case DP_PCON_DSC_ONE_BPP:
3819 return 1;
3820 }
3821
3822 return 0;
3823 }
3824 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3825
3826 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3827 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3828 {
3829 u8 buf;
3830 int ret;
3831
3832 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3833 if (ret < 0)
3834 return ret;
3835
3836 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3837
3838 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3839 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3840 buf |= pps_buf_config << 2;
3841 }
3842
3843 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3844 }
3845
3846 /**
3847 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3848 * for DSC1.2 between PCON & HDMI2.1 sink
3849 * @aux: DisplayPort AUX channel
3850 *
3851 * Returns 0 on success, else returns negative error code.
3852 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3853 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3854 {
3855 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3856 }
3857 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3858
3859 /**
3860 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3861 * HDMI sink
3862 * @aux: DisplayPort AUX channel
3863 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3864 *
3865 * Returns 0 on success, else returns negative error code.
3866 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3867 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3868 {
3869 int ret;
3870
3871 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3872 if (ret < 0)
3873 return ret;
3874
3875 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3876 }
3877 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3878
3879 /*
3880 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3881 * override registers
3882 * @aux: DisplayPort AUX channel
3883 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3884 * bits_per_pixel.
3885 *
3886 * Returns 0 on success, else returns negative error code.
3887 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3888 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3889 {
3890 int ret;
3891
3892 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3893 if (ret < 0)
3894 return ret;
3895 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3896 if (ret < 0)
3897 return ret;
3898 ret = drm_dp_dpcd_write_data(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3899 if (ret < 0)
3900 return ret;
3901
3902 return drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3903 }
3904 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3905
3906 /*
3907 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3908 * @aux: displayPort AUX channel
3909 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3910 *
3911 * Returns 0 on success, else returns negative error code.
3912 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3913 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3914 {
3915 int ret;
3916 u8 buf;
3917
3918 ret = drm_dp_dpcd_read_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3919 if (ret < 0)
3920 return ret;
3921
3922 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3923 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3924 else
3925 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3926
3927 return drm_dp_dpcd_write_byte(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3928 }
3929 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3930
3931 /**
3932 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3933 * @aux: The DP AUX channel to use
3934 * @bl: Backlight capability info from drm_edp_backlight_init()
3935 * @level: The brightness level to set
3936 *
3937 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3938 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3939 *
3940 * Returns: %0 on success, negative error code on failure
3941 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u16 level)3942 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3943 u16 level)
3944 {
3945 int ret;
3946 u8 buf[2] = { 0 };
3947
3948 /* The panel uses the PWM for controlling brightness levels */
3949 if (!bl->aux_set)
3950 return 0;
3951
3952 if (bl->lsb_reg_used) {
3953 buf[0] = (level & 0xff00) >> 8;
3954 buf[1] = (level & 0x00ff);
3955 } else {
3956 buf[0] = level;
3957 }
3958
3959 ret = drm_dp_dpcd_write_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3960 if (ret < 0) {
3961 drm_err(aux->drm_dev,
3962 "%s: Failed to write aux backlight level: %d\n",
3963 aux->name, ret);
3964 return ret;
3965 }
3966
3967 return 0;
3968 }
3969 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3970
3971 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3972 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3973 bool enable)
3974 {
3975 int ret;
3976 u8 buf;
3977
3978 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3979 if (!bl->aux_enable)
3980 return 0;
3981
3982 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3983 if (ret < 0) {
3984 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3985 aux->name, ret);
3986 return ret;
3987 }
3988 if (enable)
3989 buf |= DP_EDP_BACKLIGHT_ENABLE;
3990 else
3991 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3992
3993 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3994 if (ret < 0) {
3995 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3996 aux->name, ret);
3997 return ret;
3998 }
3999
4000 return 0;
4001 }
4002
4003 /**
4004 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
4005 * @aux: The DP AUX channel to use
4006 * @bl: Backlight capability info from drm_edp_backlight_init()
4007 * @level: The initial backlight level to set via AUX, if there is one
4008 *
4009 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
4010 * restoring any important backlight state such as the given backlight level, the brightness byte
4011 * count, backlight frequency, etc.
4012 *
4013 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4014 * that the driver handle enabling/disabling the panel through implementation-specific means using
4015 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4016 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
4017 * the EDP_BL_PWR GPIO.
4018 *
4019 * Returns: %0 on success, negative error code on failure.
4020 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u16 level)4021 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4022 const u16 level)
4023 {
4024 int ret;
4025 u8 dpcd_buf;
4026
4027 if (bl->aux_set)
4028 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4029 else
4030 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4031
4032 if (bl->pwmgen_bit_count) {
4033 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4034 if (ret < 0)
4035 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4036 aux->name, ret);
4037 }
4038
4039 if (bl->pwm_freq_pre_divider) {
4040 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_FREQ_SET,
4041 bl->pwm_freq_pre_divider);
4042 if (ret < 0)
4043 drm_dbg_kms(aux->drm_dev,
4044 "%s: Failed to write aux backlight frequency: %d\n",
4045 aux->name, ret);
4046 else
4047 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4048 }
4049
4050 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4051 if (ret < 0) {
4052 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4053 aux->name, ret);
4054 return ret < 0 ? ret : -EIO;
4055 }
4056
4057 ret = drm_edp_backlight_set_level(aux, bl, level);
4058 if (ret < 0)
4059 return ret;
4060 ret = drm_edp_backlight_set_enable(aux, bl, true);
4061 if (ret < 0)
4062 return ret;
4063
4064 return 0;
4065 }
4066 EXPORT_SYMBOL(drm_edp_backlight_enable);
4067
4068 /**
4069 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4070 * @aux: The DP AUX channel to use
4071 * @bl: Backlight capability info from drm_edp_backlight_init()
4072 *
4073 * This function handles disabling DPCD backlight controls on a panel over AUX.
4074 *
4075 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4076 * that the driver handle enabling/disabling the panel through implementation-specific means using
4077 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4078 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
4079 * the EDP_BL_PWR GPIO.
4080 *
4081 * Returns: %0 on success or no-op, negative error code on failure.
4082 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)4083 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4084 {
4085 int ret;
4086
4087 ret = drm_edp_backlight_set_enable(aux, bl, false);
4088 if (ret < 0)
4089 return ret;
4090
4091 return 0;
4092 }
4093 EXPORT_SYMBOL(drm_edp_backlight_disable);
4094
4095 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])4096 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4097 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4098 {
4099 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4100 int ret;
4101 u8 pn, pn_min, pn_max;
4102
4103 if (!bl->aux_set)
4104 return 0;
4105
4106 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4107 if (ret < 0) {
4108 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4109 aux->name, ret);
4110 return -ENODEV;
4111 }
4112
4113 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4114 bl->max = (1 << pn) - 1;
4115 if (!driver_pwm_freq_hz)
4116 return 0;
4117
4118 /*
4119 * Set PWM Frequency divider to match desired frequency provided by the driver.
4120 * The PWM Frequency is calculated as 27Mhz / (F x P).
4121 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4122 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4123 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4124 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4125 */
4126
4127 /* Find desired value of (F x P)
4128 * Note that, if F x P is out of supported range, the maximum value or minimum value will
4129 * applied automatically. So no need to check that.
4130 */
4131 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4132
4133 /* Use highest possible value of Pn for more granularity of brightness adjustment while
4134 * satisfying the conditions below.
4135 * - Pn is in the range of Pn_min and Pn_max
4136 * - F is in the range of 1 and 255
4137 * - FxP is within 25% of desired value.
4138 * Note: 25% is arbitrary value and may need some tweak.
4139 */
4140 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4141 if (ret < 0) {
4142 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4143 aux->name, ret);
4144 return 0;
4145 }
4146 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4147 if (ret < 0) {
4148 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4149 aux->name, ret);
4150 return 0;
4151 }
4152 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4153 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4154
4155 /* Ensure frequency is within 25% of desired value */
4156 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4157 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4158 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4159 drm_dbg_kms(aux->drm_dev,
4160 "%s: Driver defined backlight frequency (%d) out of range\n",
4161 aux->name, driver_pwm_freq_hz);
4162 return 0;
4163 }
4164
4165 for (pn = pn_max; pn >= pn_min; pn--) {
4166 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4167 fxp_actual = f << pn;
4168 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4169 break;
4170 }
4171
4172 ret = drm_dp_dpcd_write_byte(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4173 if (ret < 0) {
4174 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4175 aux->name, ret);
4176 return 0;
4177 }
4178 bl->pwmgen_bit_count = pn;
4179 bl->max = (1 << pn) - 1;
4180
4181 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4182 bl->pwm_freq_pre_divider = f;
4183 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4184 aux->name, driver_pwm_freq_hz);
4185 }
4186
4187 return 0;
4188 }
4189
4190 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)4191 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4192 u8 *current_mode)
4193 {
4194 int ret;
4195 u8 buf[2];
4196 u8 mode_reg;
4197
4198 ret = drm_dp_dpcd_read_byte(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4199 if (ret < 0) {
4200 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4201 aux->name, ret);
4202 return ret < 0 ? ret : -EIO;
4203 }
4204
4205 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4206 if (!bl->aux_set)
4207 return 0;
4208
4209 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4210 int size = 1 + bl->lsb_reg_used;
4211
4212 ret = drm_dp_dpcd_read_data(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
4213 if (ret < 0) {
4214 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
4215 aux->name, ret);
4216 return ret;
4217 }
4218
4219 if (bl->lsb_reg_used)
4220 return (buf[0] << 8) | buf[1];
4221 else
4222 return buf[0];
4223 }
4224
4225 /*
4226 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4227 * the driver should assume max brightness
4228 */
4229 return bl->max;
4230 }
4231
4232 /**
4233 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4234 * interface.
4235 * @aux: The DP aux device to use for probing
4236 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4237 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4238 * @edp_dpcd: A cached copy of the eDP DPCD
4239 * @current_level: Where to store the probed brightness level, if any
4240 * @current_mode: Where to store the currently set backlight control mode
4241 *
4242 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4243 * along with also probing the current and maximum supported brightness levels.
4244 *
4245 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4246 * default frequency from the panel is used.
4247 *
4248 * Returns: %0 on success, negative error code on failure.
4249 */
4250 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u16 * current_level,u8 * current_mode)4251 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4252 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4253 u16 *current_level, u8 *current_mode)
4254 {
4255 int ret;
4256
4257 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4258 bl->aux_enable = true;
4259 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4260 bl->aux_set = true;
4261 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4262 bl->lsb_reg_used = true;
4263
4264 /* Sanity check caps */
4265 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4266 drm_dbg_kms(aux->drm_dev,
4267 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4268 aux->name);
4269 return -EINVAL;
4270 }
4271
4272 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4273 if (ret < 0)
4274 return ret;
4275
4276 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4277 if (ret < 0)
4278 return ret;
4279 *current_level = ret;
4280
4281 drm_dbg_kms(aux->drm_dev,
4282 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4283 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4284 if (bl->aux_set) {
4285 drm_dbg_kms(aux->drm_dev,
4286 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4287 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4288 bl->lsb_reg_used);
4289 }
4290
4291 return 0;
4292 }
4293 EXPORT_SYMBOL(drm_edp_backlight_init);
4294
4295 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4296 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4297
dp_aux_backlight_update_status(struct backlight_device * bd)4298 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4299 {
4300 struct dp_aux_backlight *bl = bl_get_data(bd);
4301 u16 brightness = backlight_get_brightness(bd);
4302 int ret = 0;
4303
4304 if (!backlight_is_blank(bd)) {
4305 if (!bl->enabled) {
4306 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4307 bl->enabled = true;
4308 return 0;
4309 }
4310 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4311 } else {
4312 if (bl->enabled) {
4313 drm_edp_backlight_disable(bl->aux, &bl->info);
4314 bl->enabled = false;
4315 }
4316 }
4317
4318 return ret;
4319 }
4320
4321 static const struct backlight_ops dp_aux_bl_ops = {
4322 .update_status = dp_aux_backlight_update_status,
4323 };
4324
4325 /**
4326 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4327 * @panel: DRM panel
4328 * @aux: The DP AUX channel to use
4329 *
4330 * Use this function to create and handle backlight if your panel
4331 * supports backlight control over DP AUX channel using DPCD
4332 * registers as per VESA's standard backlight control interface.
4333 *
4334 * When the panel is enabled backlight will be enabled after a
4335 * successful call to &drm_panel_funcs.enable()
4336 *
4337 * When the panel is disabled backlight will be disabled before the
4338 * call to &drm_panel_funcs.disable().
4339 *
4340 * A typical implementation for a panel driver supporting backlight
4341 * control over DP AUX will call this function at probe time.
4342 * Backlight will then be handled transparently without requiring
4343 * any intervention from the driver.
4344 *
4345 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4346 *
4347 * Return: 0 on success or a negative error code on failure.
4348 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)4349 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4350 {
4351 struct dp_aux_backlight *bl;
4352 struct backlight_properties props = { 0 };
4353 u16 current_level;
4354 u8 current_mode;
4355 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4356 int ret;
4357
4358 if (!panel || !panel->dev || !aux)
4359 return -EINVAL;
4360
4361 ret = drm_dp_dpcd_read_data(aux, DP_EDP_DPCD_REV, edp_dpcd,
4362 EDP_DISPLAY_CTL_CAP_SIZE);
4363 if (ret < 0)
4364 return ret;
4365
4366 if (!drm_edp_backlight_supported(edp_dpcd)) {
4367 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4368 return 0;
4369 }
4370
4371 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4372 if (!bl)
4373 return -ENOMEM;
4374
4375 bl->aux = aux;
4376
4377 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4378 ¤t_level, ¤t_mode);
4379 if (ret < 0)
4380 return ret;
4381
4382 props.type = BACKLIGHT_RAW;
4383 props.brightness = current_level;
4384 props.max_brightness = bl->info.max;
4385
4386 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4387 panel->dev, bl,
4388 &dp_aux_bl_ops, &props);
4389 if (IS_ERR(bl->base))
4390 return PTR_ERR(bl->base);
4391
4392 backlight_disable(bl->base);
4393
4394 panel->backlight = bl->base;
4395
4396 return 0;
4397 }
4398 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4399
4400 #endif
4401
4402 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
drm_dp_link_data_symbol_cycles(int lane_count,int pixels,int bpp_x16,int symbol_size,bool is_mst)4403 static int drm_dp_link_data_symbol_cycles(int lane_count, int pixels,
4404 int bpp_x16, int symbol_size,
4405 bool is_mst)
4406 {
4407 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4408 int align = is_mst ? 4 / lane_count : 1;
4409
4410 return ALIGN(cycles, align);
4411 }
4412
4413 /**
4414 * drm_dp_link_symbol_cycles - calculate the link symbol count with/without dsc
4415 * @lane_count: DP link lane count
4416 * @pixels: number of pixels in a scanline
4417 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4418 * @bpp_x16: bits per pixel in .4 binary fixed format
4419 * @symbol_size: DP symbol size
4420 * @is_mst: %true for MST and %false for SST
4421 *
4422 * Calculate the link symbol cycles for both DSC (@dsc_slice_count !=0) and
4423 * non-DSC case (@dsc_slice_count == 0) and return the count.
4424 */
drm_dp_link_symbol_cycles(int lane_count,int pixels,int dsc_slice_count,int bpp_x16,int symbol_size,bool is_mst)4425 int drm_dp_link_symbol_cycles(int lane_count, int pixels, int dsc_slice_count,
4426 int bpp_x16, int symbol_size, bool is_mst)
4427 {
4428 int slice_count = dsc_slice_count ? : 1;
4429 int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4430 int slice_data_cycles = drm_dp_link_data_symbol_cycles(lane_count,
4431 slice_pixels,
4432 bpp_x16,
4433 symbol_size,
4434 is_mst);
4435 int slice_eoc_cycles = 0;
4436
4437 if (dsc_slice_count)
4438 slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4439
4440 return slice_count * (slice_data_cycles + slice_eoc_cycles);
4441 }
4442 EXPORT_SYMBOL(drm_dp_link_symbol_cycles);
4443
4444 /**
4445 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4446 * @lane_count: DP link lane count
4447 * @hactive: pixel count of the active period in one scanline of the stream
4448 * @dsc_slice_count: number of slices for DSC or '0' for non-DSC
4449 * @bpp_x16: bits per pixel in .4 binary fixed point
4450 * @flags: DRM_DP_OVERHEAD_x flags
4451 *
4452 * Calculate the BW allocation overhead of a DP link stream, depending
4453 * on the link's
4454 * - @lane_count
4455 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4456 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4457 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4458 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4459 * as well as the stream's
4460 * - @hactive timing
4461 * - @bpp_x16 color depth
4462 * - compression mode (@dsc_slice_count != 0)
4463 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4464 * channel coding efficiency, for that see
4465 * @drm_dp_link_bw_channel_coding_efficiency().
4466 *
4467 * Returns the overhead as 100% + overhead% in 1ppm units.
4468 */
drm_dp_bw_overhead(int lane_count,int hactive,int dsc_slice_count,int bpp_x16,unsigned long flags)4469 int drm_dp_bw_overhead(int lane_count, int hactive,
4470 int dsc_slice_count,
4471 int bpp_x16, unsigned long flags)
4472 {
4473 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4474 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4475 u32 overhead = 1000000;
4476 int symbol_cycles;
4477
4478 if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4479 DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4480 lane_count, hactive,
4481 FXP_Q4_ARGS(bpp_x16));
4482 return 0;
4483 }
4484
4485 /*
4486 * DP Standard v2.1 2.6.4.1
4487 * SSC downspread and ref clock variation margin:
4488 * 5300ppm + 300ppm ~ 0.6%
4489 */
4490 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4491 overhead += 6000;
4492
4493 /*
4494 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4495 * FEC symbol insertions for 8b/10b channel coding:
4496 * After each 250 data symbols on 2-4 lanes:
4497 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block)
4498 * After each 2 x 250 data symbols on 1 lane:
4499 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4500 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4501 * 256 * 256 bytes + 1 FEC_PM
4502 * or
4503 * 128 * 512 bytes + 1 FEC_PM
4504 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4505 */
4506 if (flags & DRM_DP_BW_OVERHEAD_FEC)
4507 overhead += 24016;
4508
4509 /*
4510 * DP Standard v2.1 2.7.9, 5.9.7
4511 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4512 * coding efficiency.
4513 */
4514 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4515 (flags & DRM_DP_BW_OVERHEAD_FEC));
4516
4517 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4518 dsc_slice_count,
4519 bpp_x16, symbol_size,
4520 is_mst);
4521
4522 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4523 overhead * 16),
4524 hactive * bpp_x16);
4525 }
4526 EXPORT_SYMBOL(drm_dp_bw_overhead);
4527
4528 /**
4529 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4530 * @is_uhbr: Whether the link has a 128b/132b channel coding
4531 *
4532 * Return the channel coding efficiency of the given DP link type, which is
4533 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4534 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4535 * and for 128b/132b any link or PHY level control symbol insertion overhead
4536 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4537 * corresponding FEC overhead is BW allocation specific, included in the value
4538 * returned by drm_dp_bw_overhead().
4539 *
4540 * Returns the efficiency in the 100%/coding-overhead% ratio in
4541 * 1ppm units.
4542 */
drm_dp_bw_channel_coding_efficiency(bool is_uhbr)4543 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4544 {
4545 if (is_uhbr)
4546 return 967100;
4547 else
4548 /*
4549 * Note that on 8b/10b MST the efficiency is only
4550 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4551 * not accounted for here.
4552 */
4553 return 800000;
4554 }
4555 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4556
4557 /**
4558 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4559 * @max_link_rate: max DPRX link rate in 10kbps units
4560 * @max_lanes: max DPRX lane count
4561 *
4562 * Given a link rate and lanes, get the data bandwidth.
4563 *
4564 * Data bandwidth is the actual payload rate, which depends on the data
4565 * bandwidth efficiency and the link rate.
4566 *
4567 * Note that protocol layers above the DPRX link level considered here can
4568 * further limit the maximum data rate. Such layers are the MST topology (with
4569 * limits on the link between the source and first branch device as well as on
4570 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4571 * which in turn can encapsulate an MST link with its own limit - with each
4572 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4573 *
4574 * Returns the maximum data rate in kBps units.
4575 */
drm_dp_max_dprx_data_rate(int max_link_rate,int max_lanes)4576 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4577 {
4578 int ch_coding_efficiency =
4579 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4580
4581 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4582 ch_coding_efficiency),
4583 1000000 * 8);
4584 }
4585 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4586