1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/dynamic_debug.h>
26 #include <linux/errno.h>
27 #include <linux/i2c.h>
28 #include <linux/init.h>
29 #include <linux/iopoll.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/seq_file.h>
34 #include <linux/string_helpers.h>
35
36 #include <drm/display/drm_dp_helper.h>
37 #include <drm/display/drm_dp_mst_helper.h>
38 #include <drm/drm_edid.h>
39 #include <drm/drm_fixed.h>
40 #include <drm/drm_print.h>
41 #include <drm/drm_vblank.h>
42 #include <drm/drm_panel.h>
43
44 #include "drm_dp_helper_internal.h"
45
46 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
47 "DRM_UT_CORE",
48 "DRM_UT_DRIVER",
49 "DRM_UT_KMS",
50 "DRM_UT_PRIME",
51 "DRM_UT_ATOMIC",
52 "DRM_UT_VBL",
53 "DRM_UT_STATE",
54 "DRM_UT_LEASE",
55 "DRM_UT_DP",
56 "DRM_UT_DRMRES");
57
58 struct dp_aux_backlight {
59 struct backlight_device *base;
60 struct drm_dp_aux *aux;
61 struct drm_edp_backlight_info info;
62 bool enabled;
63 };
64
65 /**
66 * DOC: dp helpers
67 *
68 * These functions contain some common logic and helpers at various abstraction
69 * levels to deal with Display Port sink devices and related things like DP aux
70 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
71 * blocks, ...
72 */
73
74 /* Helpers for DP link training */
dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE],int r)75 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
76 {
77 return link_status[r - DP_LANE0_1_STATUS];
78 }
79
dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)80 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
81 int lane)
82 {
83 int i = DP_LANE0_1_STATUS + (lane >> 1);
84 int s = (lane & 1) * 4;
85 u8 l = dp_link_status(link_status, i);
86
87 return (l >> s) & 0xf;
88 }
89
drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)90 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
91 int lane_count)
92 {
93 u8 lane_align;
94 u8 lane_status;
95 int lane;
96
97 lane_align = dp_link_status(link_status,
98 DP_LANE_ALIGN_STATUS_UPDATED);
99 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
100 return false;
101 for (lane = 0; lane < lane_count; lane++) {
102 lane_status = dp_get_lane_status(link_status, lane);
103 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
104 return false;
105 }
106 return true;
107 }
108 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
109
drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)110 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
111 int lane_count)
112 {
113 int lane;
114 u8 lane_status;
115
116 for (lane = 0; lane < lane_count; lane++) {
117 lane_status = dp_get_lane_status(link_status, lane);
118 if ((lane_status & DP_LANE_CR_DONE) == 0)
119 return false;
120 }
121 return true;
122 }
123 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
124
drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)125 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
126 int lane)
127 {
128 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
129 int s = ((lane & 1) ?
130 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
131 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
132 u8 l = dp_link_status(link_status, i);
133
134 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
135 }
136 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
137
drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)138 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
139 int lane)
140 {
141 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
142 int s = ((lane & 1) ?
143 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
144 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
145 u8 l = dp_link_status(link_status, i);
146
147 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
148 }
149 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
150
151 /* DP 2.0 128b/132b */
drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],int lane)152 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
153 int lane)
154 {
155 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
156 int s = ((lane & 1) ?
157 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
158 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
159 u8 l = dp_link_status(link_status, i);
160
161 return (l >> s) & 0xf;
162 }
163 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
164
165 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)166 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
167 int lane_count)
168 {
169 u8 lane_align, lane_status;
170 int lane;
171
172 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
173 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
174 return false;
175
176 for (lane = 0; lane < lane_count; lane++) {
177 lane_status = dp_get_lane_status(link_status, lane);
178 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
179 return false;
180 }
181 return true;
182 }
183 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
184
185 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],int lane_count)186 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
187 int lane_count)
188 {
189 u8 lane_status;
190 int lane;
191
192 for (lane = 0; lane < lane_count; lane++) {
193 lane_status = dp_get_lane_status(link_status, lane);
194 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
195 return false;
196 }
197 return true;
198 }
199 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
200
201 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])202 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
203 {
204 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
205
206 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
207 }
208 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
209
210 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])211 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
212 {
213 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
214
215 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
216 }
217 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
218
219 /* DP 2.0 errata for 128b/132b */
drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])220 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
221 {
222 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
223
224 return status & DP_128B132B_LT_FAILED;
225 }
226 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
227
__8b10b_clock_recovery_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)228 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
229 {
230 if (rd_interval > 4)
231 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
232 aux->name, rd_interval);
233
234 if (rd_interval == 0)
235 return 100;
236
237 return rd_interval * 4 * USEC_PER_MSEC;
238 }
239
__8b10b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)240 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
241 {
242 if (rd_interval > 4)
243 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
244 aux->name, rd_interval);
245
246 if (rd_interval == 0)
247 return 400;
248
249 return rd_interval * 4 * USEC_PER_MSEC;
250 }
251
__128b132b_channel_eq_delay_us(const struct drm_dp_aux * aux,u8 rd_interval)252 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
253 {
254 switch (rd_interval) {
255 default:
256 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
257 aux->name, rd_interval);
258 fallthrough;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
260 return 400;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
262 return 4000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
264 return 8000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
266 return 12000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
268 return 16000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
270 return 32000;
271 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
272 return 64000;
273 }
274 }
275
276 /*
277 * The link training delays are different for:
278 *
279 * - Clock recovery vs. channel equalization
280 * - DPRX vs. LTTPR
281 * - 128b/132b vs. 8b/10b
282 * - DPCD rev 1.3 vs. later
283 *
284 * Get the correct delay in us, reading DPCD if necessary.
285 */
__read_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr,bool cr)286 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
287 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
288 {
289 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
290 unsigned int offset;
291 u8 rd_interval, mask;
292
293 if (dp_phy == DP_PHY_DPRX) {
294 if (uhbr) {
295 if (cr)
296 return 100;
297
298 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
299 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
300 parse = __128b132b_channel_eq_delay_us;
301 } else {
302 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
303 return 100;
304
305 offset = DP_TRAINING_AUX_RD_INTERVAL;
306 mask = DP_TRAINING_AUX_RD_MASK;
307 if (cr)
308 parse = __8b10b_clock_recovery_delay_us;
309 else
310 parse = __8b10b_channel_eq_delay_us;
311 }
312 } else {
313 if (uhbr) {
314 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
315 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
316 parse = __128b132b_channel_eq_delay_us;
317 } else {
318 if (cr)
319 return 100;
320
321 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
322 mask = DP_TRAINING_AUX_RD_MASK;
323 parse = __8b10b_channel_eq_delay_us;
324 }
325 }
326
327 if (offset < DP_RECEIVER_CAP_SIZE) {
328 rd_interval = dpcd[offset];
329 } else {
330 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
331 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
332 aux->name);
333 /* arbitrary default delay */
334 return 400;
335 }
336 }
337
338 return parse(aux, rd_interval & mask);
339 }
340
drm_dp_read_clock_recovery_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)341 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
342 enum drm_dp_phy dp_phy, bool uhbr)
343 {
344 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
345 }
346 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
347
drm_dp_read_channel_eq_delay(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,bool uhbr)348 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
349 enum drm_dp_phy dp_phy, bool uhbr)
350 {
351 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
352 }
353 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
354
355 /* Per DP 2.0 Errata */
drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux * aux)356 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
357 {
358 int unit;
359 u8 val;
360
361 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
362 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
363 aux->name);
364 /* default to max */
365 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
366 }
367
368 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
369 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
370
371 return (val + 1) * unit * 1000;
372 }
373 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
374
drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])375 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
376 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
377 {
378 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
379 DP_TRAINING_AUX_RD_MASK;
380 int delay_us;
381
382 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
383 delay_us = 100;
384 else
385 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
386
387 usleep_range(delay_us, delay_us * 2);
388 }
389 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
390
__drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,u8 rd_interval)391 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
392 u8 rd_interval)
393 {
394 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
395
396 usleep_range(delay_us, delay_us * 2);
397 }
398
drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])399 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
400 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
401 {
402 __drm_dp_link_train_channel_eq_delay(aux,
403 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
404 DP_TRAINING_AUX_RD_MASK);
405 }
406 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
407
408 /**
409 * drm_dp_phy_name() - Get the name of the given DP PHY
410 * @dp_phy: The DP PHY identifier
411 *
412 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
413 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
414 * non-NULL and valid.
415 *
416 * Returns: Name of the DP PHY.
417 */
drm_dp_phy_name(enum drm_dp_phy dp_phy)418 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
419 {
420 static const char * const phy_names[] = {
421 [DP_PHY_DPRX] = "DPRX",
422 [DP_PHY_LTTPR1] = "LTTPR 1",
423 [DP_PHY_LTTPR2] = "LTTPR 2",
424 [DP_PHY_LTTPR3] = "LTTPR 3",
425 [DP_PHY_LTTPR4] = "LTTPR 4",
426 [DP_PHY_LTTPR5] = "LTTPR 5",
427 [DP_PHY_LTTPR6] = "LTTPR 6",
428 [DP_PHY_LTTPR7] = "LTTPR 7",
429 [DP_PHY_LTTPR8] = "LTTPR 8",
430 };
431
432 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
433 WARN_ON(!phy_names[dp_phy]))
434 return "<INVALID DP PHY>";
435
436 return phy_names[dp_phy];
437 }
438 EXPORT_SYMBOL(drm_dp_phy_name);
439
drm_dp_lttpr_link_train_clock_recovery_delay(void)440 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
441 {
442 usleep_range(100, 200);
443 }
444 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
445
dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE],int r)446 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
447 {
448 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
449 }
450
drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux * aux,const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])451 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
452 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
453 {
454 u8 interval = dp_lttpr_phy_cap(phy_cap,
455 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
456 DP_TRAINING_AUX_RD_MASK;
457
458 __drm_dp_link_train_channel_eq_delay(aux, interval);
459 }
460 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
461
462 /**
463 * drm_dp_lttpr_wake_timeout_setup() - Grant extended time for sink to wake up
464 * @aux: The DP AUX channel to use
465 * @transparent_mode: This is true if lttpr is in transparent mode
466 *
467 * This function checks if the sink needs any extended wake time, if it does
468 * it grants this request. Post this setup the source device can keep trying
469 * the Aux transaction till the granted wake timeout.
470 * If this function is not called all Aux transactions are expected to take
471 * a default of 1ms before they throw an error.
472 */
drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux * aux,bool transparent_mode)473 void drm_dp_lttpr_wake_timeout_setup(struct drm_dp_aux *aux, bool transparent_mode)
474 {
475 u8 val = 1;
476 int ret;
477
478 if (transparent_mode) {
479 static const u8 timeout_mapping[] = {
480 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_1_MS] = 1,
481 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_20_MS] = 20,
482 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_40_MS] = 40,
483 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_60_MS] = 60,
484 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_80_MS] = 80,
485 [DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_100_MS] = 100,
486 };
487
488 ret = drm_dp_dpcd_readb(aux, DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_REQUEST, &val);
489 if (ret != 1) {
490 drm_dbg_kms(aux->drm_dev,
491 "Failed to read Extended sleep wake timeout request\n");
492 return;
493 }
494
495 val = (val < sizeof(timeout_mapping) && timeout_mapping[val]) ?
496 timeout_mapping[val] : 1;
497
498 if (val > 1)
499 drm_dp_dpcd_writeb(aux,
500 DP_EXTENDED_DPRX_SLEEP_WAKE_TIMEOUT_GRANT,
501 DP_DPRX_SLEEP_WAKE_TIMEOUT_PERIOD_GRANTED);
502 } else {
503 ret = drm_dp_dpcd_readb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT, &val);
504 if (ret != 1) {
505 drm_dbg_kms(aux->drm_dev,
506 "Failed to read Extended sleep wake timeout request\n");
507 return;
508 }
509
510 val = (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) ?
511 (val & DP_EXTENDED_WAKE_TIMEOUT_REQUEST_MASK) * 10 : 1;
512
513 if (val > 1)
514 drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_EXTENDED_WAIT_TIMEOUT,
515 DP_EXTENDED_WAKE_TIMEOUT_GRANT);
516 }
517 }
518 EXPORT_SYMBOL(drm_dp_lttpr_wake_timeout_setup);
519
drm_dp_link_rate_to_bw_code(int link_rate)520 u8 drm_dp_link_rate_to_bw_code(int link_rate)
521 {
522 switch (link_rate) {
523 case 1000000:
524 return DP_LINK_BW_10;
525 case 1350000:
526 return DP_LINK_BW_13_5;
527 case 2000000:
528 return DP_LINK_BW_20;
529 default:
530 /* Spec says link_bw = link_rate / 0.27Gbps */
531 return link_rate / 27000;
532 }
533 }
534 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
535
drm_dp_bw_code_to_link_rate(u8 link_bw)536 int drm_dp_bw_code_to_link_rate(u8 link_bw)
537 {
538 switch (link_bw) {
539 case DP_LINK_BW_10:
540 return 1000000;
541 case DP_LINK_BW_13_5:
542 return 1350000;
543 case DP_LINK_BW_20:
544 return 2000000;
545 default:
546 /* Spec says link_rate = link_bw * 0.27Gbps */
547 return link_bw * 27000;
548 }
549 }
550 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
551
552 #define AUX_RETRY_INTERVAL 500 /* us */
553
554 static inline void
drm_dp_dump_access(const struct drm_dp_aux * aux,u8 request,uint offset,void * buffer,int ret)555 drm_dp_dump_access(const struct drm_dp_aux *aux,
556 u8 request, uint offset, void *buffer, int ret)
557 {
558 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
559
560 if (ret > 0)
561 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
562 aux->name, offset, arrow, ret, min(ret, 20), buffer);
563 else
564 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
565 aux->name, offset, arrow, ret);
566 }
567
568 /**
569 * DOC: dp helpers
570 *
571 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
572 * independent access to AUX functionality. Drivers can take advantage of
573 * this by filling in the fields of the drm_dp_aux structure.
574 *
575 * Transactions are described using a hardware-independent drm_dp_aux_msg
576 * structure, which is passed into a driver's .transfer() implementation.
577 * Both native and I2C-over-AUX transactions are supported.
578 */
579
drm_dp_dpcd_access(struct drm_dp_aux * aux,u8 request,unsigned int offset,void * buffer,size_t size)580 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
581 unsigned int offset, void *buffer, size_t size)
582 {
583 struct drm_dp_aux_msg msg;
584 unsigned int retry, native_reply;
585 int err = 0, ret = 0;
586
587 memset(&msg, 0, sizeof(msg));
588 msg.address = offset;
589 msg.request = request;
590 msg.buffer = buffer;
591 msg.size = size;
592
593 mutex_lock(&aux->hw_mutex);
594
595 /*
596 * If the device attached to the aux bus is powered down then there's
597 * no reason to attempt a transfer. Error out immediately.
598 */
599 if (aux->powered_down) {
600 ret = -EBUSY;
601 goto unlock;
602 }
603
604 /*
605 * The specification doesn't give any recommendation on how often to
606 * retry native transactions. We used to retry 7 times like for
607 * aux i2c transactions but real world devices this wasn't
608 * sufficient, bump to 32 which makes Dell 4k monitors happier.
609 */
610 for (retry = 0; retry < 32; retry++) {
611 if (ret != 0 && ret != -ETIMEDOUT) {
612 usleep_range(AUX_RETRY_INTERVAL,
613 AUX_RETRY_INTERVAL + 100);
614 }
615
616 ret = aux->transfer(aux, &msg);
617 if (ret >= 0) {
618 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
619 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
620 if (ret == size)
621 goto unlock;
622
623 ret = -EPROTO;
624 } else
625 ret = -EIO;
626 }
627
628 /*
629 * We want the error we return to be the error we received on
630 * the first transaction, since we may get a different error the
631 * next time we retry
632 */
633 if (!err)
634 err = ret;
635 }
636
637 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
638 aux->name, err);
639 ret = err;
640
641 unlock:
642 mutex_unlock(&aux->hw_mutex);
643 return ret;
644 }
645
646 /**
647 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
648 * @aux: DisplayPort AUX channel (SST)
649 * @offset: address of the register to probe
650 *
651 * Probe the provided DPCD address by reading 1 byte from it. The function can
652 * be used to trigger some side-effect the read access has, like waking up the
653 * sink, without the need for the read-out value.
654 *
655 * Returns 0 if the read access suceeded, or a negative error code on failure.
656 */
drm_dp_dpcd_probe(struct drm_dp_aux * aux,unsigned int offset)657 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
658 {
659 u8 buffer;
660 int ret;
661
662 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
663 WARN_ON(ret == 0);
664
665 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
666
667 return ret < 0 ? ret : 0;
668 }
669 EXPORT_SYMBOL(drm_dp_dpcd_probe);
670
671 /**
672 * drm_dp_dpcd_set_powered() - Set whether the DP device is powered
673 * @aux: DisplayPort AUX channel; for convenience it's OK to pass NULL here
674 * and the function will be a no-op.
675 * @powered: true if powered; false if not
676 *
677 * If the endpoint device on the DP AUX bus is known to be powered down
678 * then this function can be called to make future transfers fail immediately
679 * instead of needing to time out.
680 *
681 * If this function is never called then a device defaults to being powered.
682 */
drm_dp_dpcd_set_powered(struct drm_dp_aux * aux,bool powered)683 void drm_dp_dpcd_set_powered(struct drm_dp_aux *aux, bool powered)
684 {
685 if (!aux)
686 return;
687
688 mutex_lock(&aux->hw_mutex);
689 aux->powered_down = !powered;
690 mutex_unlock(&aux->hw_mutex);
691 }
692 EXPORT_SYMBOL(drm_dp_dpcd_set_powered);
693
694 /**
695 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
696 * @aux: DisplayPort AUX channel (SST or MST)
697 * @offset: address of the (first) register to read
698 * @buffer: buffer to store the register values
699 * @size: number of bytes in @buffer
700 *
701 * Returns the number of bytes transferred on success, or a negative error
702 * code on failure. -EIO is returned if the request was NAKed by the sink or
703 * if the retry count was exceeded. If not all bytes were transferred, this
704 * function returns -EPROTO. Errors from the underlying AUX channel transfer
705 * function, with the exception of -EBUSY (which causes the transaction to
706 * be retried), are propagated to the caller.
707 */
drm_dp_dpcd_read(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)708 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
709 void *buffer, size_t size)
710 {
711 int ret;
712
713 /*
714 * HP ZR24w corrupts the first DPCD access after entering power save
715 * mode. Eg. on a read, the entire buffer will be filled with the same
716 * byte. Do a throw away read to avoid corrupting anything we care
717 * about. Afterwards things will work correctly until the monitor
718 * gets woken up and subsequently re-enters power save mode.
719 *
720 * The user pressing any button on the monitor is enough to wake it
721 * up, so there is no particularly good place to do the workaround.
722 * We just have to do it before any DPCD access and hope that the
723 * monitor doesn't power down exactly after the throw away read.
724 */
725 if (!aux->is_remote) {
726 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
727 if (ret < 0)
728 return ret;
729 }
730
731 if (aux->is_remote)
732 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
733 else
734 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
735 buffer, size);
736
737 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
738 return ret;
739 }
740 EXPORT_SYMBOL(drm_dp_dpcd_read);
741
742 /**
743 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
744 * @aux: DisplayPort AUX channel (SST or MST)
745 * @offset: address of the (first) register to write
746 * @buffer: buffer containing the values to write
747 * @size: number of bytes in @buffer
748 *
749 * Returns the number of bytes transferred on success, or a negative error
750 * code on failure. -EIO is returned if the request was NAKed by the sink or
751 * if the retry count was exceeded. If not all bytes were transferred, this
752 * function returns -EPROTO. Errors from the underlying AUX channel transfer
753 * function, with the exception of -EBUSY (which causes the transaction to
754 * be retried), are propagated to the caller.
755 */
drm_dp_dpcd_write(struct drm_dp_aux * aux,unsigned int offset,void * buffer,size_t size)756 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
757 void *buffer, size_t size)
758 {
759 int ret;
760
761 if (aux->is_remote)
762 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
763 else
764 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
765 buffer, size);
766
767 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
768 return ret;
769 }
770 EXPORT_SYMBOL(drm_dp_dpcd_write);
771
772 /**
773 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
774 * @aux: DisplayPort AUX channel
775 * @status: buffer to store the link status in (must be at least 6 bytes)
776 *
777 * Returns the number of bytes transferred on success or a negative error
778 * code on failure.
779 */
drm_dp_dpcd_read_link_status(struct drm_dp_aux * aux,u8 status[DP_LINK_STATUS_SIZE])780 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
781 u8 status[DP_LINK_STATUS_SIZE])
782 {
783 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
784 DP_LINK_STATUS_SIZE);
785 }
786 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
787
788 /**
789 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
790 * @aux: DisplayPort AUX channel
791 * @dp_phy: the DP PHY to get the link status for
792 * @link_status: buffer to return the status in
793 *
794 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
795 * layout of the returned @link_status matches the DPCD register layout of the
796 * DPRX PHY link status.
797 *
798 * Returns 0 if the information was read successfully or a negative error code
799 * on failure.
800 */
drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy,u8 link_status[DP_LINK_STATUS_SIZE])801 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
802 enum drm_dp_phy dp_phy,
803 u8 link_status[DP_LINK_STATUS_SIZE])
804 {
805 int ret;
806
807 if (dp_phy == DP_PHY_DPRX) {
808 ret = drm_dp_dpcd_read(aux,
809 DP_LANE0_1_STATUS,
810 link_status,
811 DP_LINK_STATUS_SIZE);
812
813 if (ret < 0)
814 return ret;
815
816 WARN_ON(ret != DP_LINK_STATUS_SIZE);
817
818 return 0;
819 }
820
821 ret = drm_dp_dpcd_read(aux,
822 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
823 link_status,
824 DP_LINK_STATUS_SIZE - 1);
825
826 if (ret < 0)
827 return ret;
828
829 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
830
831 /* Convert the LTTPR to the sink PHY link status layout */
832 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
833 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
834 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
835 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
836
837 return 0;
838 }
839 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
840
read_payload_update_status(struct drm_dp_aux * aux)841 static int read_payload_update_status(struct drm_dp_aux *aux)
842 {
843 int ret;
844 u8 status;
845
846 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
847 if (ret < 0)
848 return ret;
849
850 return status;
851 }
852
853 /**
854 * drm_dp_dpcd_write_payload() - Write Virtual Channel information to payload table
855 * @aux: DisplayPort AUX channel
856 * @vcpid: Virtual Channel Payload ID
857 * @start_time_slot: Starting time slot
858 * @time_slot_count: Time slot count
859 *
860 * Write the Virtual Channel payload allocation table, checking the payload
861 * update status and retrying as necessary.
862 *
863 * Returns:
864 * 0 on success, negative error otherwise
865 */
drm_dp_dpcd_write_payload(struct drm_dp_aux * aux,int vcpid,u8 start_time_slot,u8 time_slot_count)866 int drm_dp_dpcd_write_payload(struct drm_dp_aux *aux,
867 int vcpid, u8 start_time_slot, u8 time_slot_count)
868 {
869 u8 payload_alloc[3], status;
870 int ret;
871 int retries = 0;
872
873 drm_dp_dpcd_writeb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS,
874 DP_PAYLOAD_TABLE_UPDATED);
875
876 payload_alloc[0] = vcpid;
877 payload_alloc[1] = start_time_slot;
878 payload_alloc[2] = time_slot_count;
879
880 ret = drm_dp_dpcd_write(aux, DP_PAYLOAD_ALLOCATE_SET, payload_alloc, 3);
881 if (ret != 3) {
882 drm_dbg_kms(aux->drm_dev, "failed to write payload allocation %d\n", ret);
883 goto fail;
884 }
885
886 retry:
887 ret = drm_dp_dpcd_readb(aux, DP_PAYLOAD_TABLE_UPDATE_STATUS, &status);
888 if (ret < 0) {
889 drm_dbg_kms(aux->drm_dev, "failed to read payload table status %d\n", ret);
890 goto fail;
891 }
892
893 if (!(status & DP_PAYLOAD_TABLE_UPDATED)) {
894 retries++;
895 if (retries < 20) {
896 usleep_range(10000, 20000);
897 goto retry;
898 }
899 drm_dbg_kms(aux->drm_dev, "status not set after read payload table status %d\n",
900 status);
901 ret = -EINVAL;
902 goto fail;
903 }
904 ret = 0;
905 fail:
906 return ret;
907 }
908 EXPORT_SYMBOL(drm_dp_dpcd_write_payload);
909
910 /**
911 * drm_dp_dpcd_clear_payload() - Clear the entire VC Payload ID table
912 * @aux: DisplayPort AUX channel
913 *
914 * Clear the entire VC Payload ID table.
915 *
916 * Returns: 0 on success, negative error code on errors.
917 */
drm_dp_dpcd_clear_payload(struct drm_dp_aux * aux)918 int drm_dp_dpcd_clear_payload(struct drm_dp_aux *aux)
919 {
920 return drm_dp_dpcd_write_payload(aux, 0, 0, 0x3f);
921 }
922 EXPORT_SYMBOL(drm_dp_dpcd_clear_payload);
923
924 /**
925 * drm_dp_dpcd_poll_act_handled() - Poll for ACT handled status
926 * @aux: DisplayPort AUX channel
927 * @timeout_ms: Timeout in ms
928 *
929 * Try waiting for the sink to finish updating its payload table by polling for
930 * the ACT handled bit of DP_PAYLOAD_TABLE_UPDATE_STATUS for up to @timeout_ms
931 * milliseconds, defaulting to 3000 ms if 0.
932 *
933 * Returns:
934 * 0 if the ACT was handled in time, negative error code on failure.
935 */
drm_dp_dpcd_poll_act_handled(struct drm_dp_aux * aux,int timeout_ms)936 int drm_dp_dpcd_poll_act_handled(struct drm_dp_aux *aux, int timeout_ms)
937 {
938 int ret, status;
939
940 /* default to 3 seconds, this is arbitrary */
941 timeout_ms = timeout_ms ?: 3000;
942
943 ret = readx_poll_timeout(read_payload_update_status, aux, status,
944 status & DP_PAYLOAD_ACT_HANDLED || status < 0,
945 200, timeout_ms * USEC_PER_MSEC);
946 if (ret < 0 && status >= 0) {
947 drm_err(aux->drm_dev, "Failed to get ACT after %d ms, last status: %02x\n",
948 timeout_ms, status);
949 return -EINVAL;
950 } else if (status < 0) {
951 /*
952 * Failure here isn't unexpected - the hub may have
953 * just been unplugged
954 */
955 drm_dbg_kms(aux->drm_dev, "Failed to read payload table status: %d\n", status);
956 return status;
957 }
958
959 return 0;
960 }
961 EXPORT_SYMBOL(drm_dp_dpcd_poll_act_handled);
962
is_edid_digital_input_dp(const struct drm_edid * drm_edid)963 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
964 {
965 /* FIXME: get rid of drm_edid_raw() */
966 const struct edid *edid = drm_edid_raw(drm_edid);
967
968 return edid && edid->revision >= 4 &&
969 edid->input & DRM_EDID_INPUT_DIGITAL &&
970 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
971 }
972
973 /**
974 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
975 * @dpcd: DisplayPort configuration data
976 * @port_cap: port capabilities
977 * @type: port type to be checked. Can be:
978 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
979 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
980 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
981 *
982 * Caveat: Only works with DPCD 1.1+ port caps.
983 *
984 * Returns: whether the downstream facing port matches the type.
985 */
drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 type)986 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
987 const u8 port_cap[4], u8 type)
988 {
989 return drm_dp_is_branch(dpcd) &&
990 dpcd[DP_DPCD_REV] >= 0x11 &&
991 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
992 }
993 EXPORT_SYMBOL(drm_dp_downstream_is_type);
994
995 /**
996 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
997 * @dpcd: DisplayPort configuration data
998 * @port_cap: port capabilities
999 * @drm_edid: EDID
1000 *
1001 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
1002 */
drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1003 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1004 const u8 port_cap[4],
1005 const struct drm_edid *drm_edid)
1006 {
1007 if (dpcd[DP_DPCD_REV] < 0x11) {
1008 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1009 case DP_DWN_STRM_PORT_TYPE_TMDS:
1010 return true;
1011 default:
1012 return false;
1013 }
1014 }
1015
1016 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1017 case DP_DS_PORT_TYPE_DP_DUALMODE:
1018 if (is_edid_digital_input_dp(drm_edid))
1019 return false;
1020 fallthrough;
1021 case DP_DS_PORT_TYPE_DVI:
1022 case DP_DS_PORT_TYPE_HDMI:
1023 return true;
1024 default:
1025 return false;
1026 }
1027 }
1028 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
1029
1030 /**
1031 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
1032 * @aux: DisplayPort AUX channel
1033 * @real_edid_checksum: real edid checksum for the last block
1034 *
1035 * Returns:
1036 * True on success
1037 */
drm_dp_send_real_edid_checksum(struct drm_dp_aux * aux,u8 real_edid_checksum)1038 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
1039 u8 real_edid_checksum)
1040 {
1041 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
1042
1043 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1044 &auto_test_req, 1) < 1) {
1045 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1046 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1047 return false;
1048 }
1049 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
1050
1051 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
1052 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
1053 aux->name, DP_TEST_REQUEST);
1054 return false;
1055 }
1056 link_edid_read &= DP_TEST_LINK_EDID_READ;
1057
1058 if (!auto_test_req || !link_edid_read) {
1059 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
1060 aux->name);
1061 return false;
1062 }
1063
1064 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
1065 &auto_test_req, 1) < 1) {
1066 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1067 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
1068 return false;
1069 }
1070
1071 /* send back checksum for the last edid extension block data */
1072 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
1073 &real_edid_checksum, 1) < 1) {
1074 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1075 aux->name, DP_TEST_EDID_CHECKSUM);
1076 return false;
1077 }
1078
1079 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
1080 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
1081 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
1082 aux->name, DP_TEST_RESPONSE);
1083 return false;
1084 }
1085
1086 return true;
1087 }
1088 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
1089
drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])1090 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
1091 {
1092 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
1093
1094 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
1095 port_count = 4;
1096
1097 return port_count;
1098 }
1099
drm_dp_read_extended_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1100 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
1101 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1102 {
1103 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
1104 int ret;
1105
1106 /*
1107 * Prior to DP1.3 the bit represented by
1108 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
1109 * If it is set DP_DPCD_REV at 0000h could be at a value less than
1110 * the true capability of the panel. The only way to check is to
1111 * then compare 0000h and 2200h.
1112 */
1113 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
1114 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
1115 return 0;
1116
1117 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
1118 sizeof(dpcd_ext));
1119 if (ret < 0)
1120 return ret;
1121 if (ret != sizeof(dpcd_ext))
1122 return -EIO;
1123
1124 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
1125 drm_dbg_kms(aux->drm_dev,
1126 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
1127 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
1128 return 0;
1129 }
1130
1131 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
1132 return 0;
1133
1134 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1135
1136 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
1143 * available
1144 * @aux: DisplayPort AUX channel
1145 * @dpcd: Buffer to store the resulting DPCD in
1146 *
1147 * Attempts to read the base DPCD caps for @aux. Additionally, this function
1148 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
1149 * present.
1150 *
1151 * Returns: %0 if the DPCD was read successfully, negative error code
1152 * otherwise.
1153 */
drm_dp_read_dpcd_caps(struct drm_dp_aux * aux,u8 dpcd[DP_RECEIVER_CAP_SIZE])1154 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
1155 u8 dpcd[DP_RECEIVER_CAP_SIZE])
1156 {
1157 int ret;
1158
1159 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
1160 if (ret < 0)
1161 return ret;
1162 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
1163 return -EIO;
1164
1165 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
1166 if (ret < 0)
1167 return ret;
1168
1169 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
1170
1171 return ret;
1172 }
1173 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
1174
1175 /**
1176 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
1177 * @aux: DisplayPort AUX channel
1178 * @dpcd: A cached copy of the port's DPCD
1179 * @downstream_ports: buffer to store the downstream port info in
1180 *
1181 * See also:
1182 * drm_dp_downstream_max_clock()
1183 * drm_dp_downstream_max_bpc()
1184 *
1185 * Returns: 0 if either the downstream port info was read successfully or
1186 * there was no downstream info to read, or a negative error code otherwise.
1187 */
drm_dp_read_downstream_info(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])1188 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
1189 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1190 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
1191 {
1192 int ret;
1193 u8 len;
1194
1195 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
1196
1197 /* No downstream info to read */
1198 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
1199 return 0;
1200
1201 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
1202 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
1203 * some branches do it we need to handle it regardless.
1204 */
1205 len = drm_dp_downstream_port_count(dpcd);
1206 if (!len)
1207 return 0;
1208
1209 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
1210 len *= 4;
1211
1212 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
1213 if (ret < 0)
1214 return ret;
1215 if (ret != len)
1216 return -EIO;
1217
1218 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1219
1220 return 0;
1221 }
1222 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1223
1224 /**
1225 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1226 * @dpcd: DisplayPort configuration data
1227 * @port_cap: port capabilities
1228 *
1229 * Returns: Downstream facing port max dot clock in kHz on success,
1230 * or 0 if max clock not defined
1231 */
drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1232 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1233 const u8 port_cap[4])
1234 {
1235 if (!drm_dp_is_branch(dpcd))
1236 return 0;
1237
1238 if (dpcd[DP_DPCD_REV] < 0x11)
1239 return 0;
1240
1241 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1242 case DP_DS_PORT_TYPE_VGA:
1243 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1244 return 0;
1245 return port_cap[1] * 8000;
1246 default:
1247 return 0;
1248 }
1249 }
1250 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1251
1252 /**
1253 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1254 * @dpcd: DisplayPort configuration data
1255 * @port_cap: port capabilities
1256 * @drm_edid: EDID
1257 *
1258 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1259 * or 0 if max TMDS clock not defined
1260 */
drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1261 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1262 const u8 port_cap[4],
1263 const struct drm_edid *drm_edid)
1264 {
1265 if (!drm_dp_is_branch(dpcd))
1266 return 0;
1267
1268 if (dpcd[DP_DPCD_REV] < 0x11) {
1269 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1270 case DP_DWN_STRM_PORT_TYPE_TMDS:
1271 return 165000;
1272 default:
1273 return 0;
1274 }
1275 }
1276
1277 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1278 case DP_DS_PORT_TYPE_DP_DUALMODE:
1279 if (is_edid_digital_input_dp(drm_edid))
1280 return 0;
1281 /*
1282 * It's left up to the driver to check the
1283 * DP dual mode adapter's max TMDS clock.
1284 *
1285 * Unfortunately it looks like branch devices
1286 * may not fordward that the DP dual mode i2c
1287 * access so we just usually get i2c nak :(
1288 */
1289 fallthrough;
1290 case DP_DS_PORT_TYPE_HDMI:
1291 /*
1292 * We should perhaps assume 165 MHz when detailed cap
1293 * info is not available. But looks like many typical
1294 * branch devices fall into that category and so we'd
1295 * probably end up with users complaining that they can't
1296 * get high resolution modes with their favorite dongle.
1297 *
1298 * So let's limit to 300 MHz instead since DPCD 1.4
1299 * HDMI 2.0 DFPs are required to have the detailed cap
1300 * info. So it's more likely we're dealing with a HDMI 1.4
1301 * compatible* device here.
1302 */
1303 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1304 return 300000;
1305 return port_cap[1] * 2500;
1306 case DP_DS_PORT_TYPE_DVI:
1307 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1308 return 165000;
1309 /* FIXME what to do about DVI dual link? */
1310 return port_cap[1] * 2500;
1311 default:
1312 return 0;
1313 }
1314 }
1315 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1316
1317 /**
1318 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1319 * @dpcd: DisplayPort configuration data
1320 * @port_cap: port capabilities
1321 * @drm_edid: EDID
1322 *
1323 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1324 * or 0 if max TMDS clock not defined
1325 */
drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1326 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1327 const u8 port_cap[4],
1328 const struct drm_edid *drm_edid)
1329 {
1330 if (!drm_dp_is_branch(dpcd))
1331 return 0;
1332
1333 if (dpcd[DP_DPCD_REV] < 0x11) {
1334 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1335 case DP_DWN_STRM_PORT_TYPE_TMDS:
1336 return 25000;
1337 default:
1338 return 0;
1339 }
1340 }
1341
1342 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1343 case DP_DS_PORT_TYPE_DP_DUALMODE:
1344 if (is_edid_digital_input_dp(drm_edid))
1345 return 0;
1346 fallthrough;
1347 case DP_DS_PORT_TYPE_DVI:
1348 case DP_DS_PORT_TYPE_HDMI:
1349 /*
1350 * Unclear whether the protocol converter could
1351 * utilize pixel replication. Assume it won't.
1352 */
1353 return 25000;
1354 default:
1355 return 0;
1356 }
1357 }
1358 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1359
1360 /**
1361 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1362 * bits per component
1363 * @dpcd: DisplayPort configuration data
1364 * @port_cap: downstream facing port capabilities
1365 * @drm_edid: EDID
1366 *
1367 * Returns: Max bpc on success or 0 if max bpc not defined
1368 */
drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid)1369 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1370 const u8 port_cap[4],
1371 const struct drm_edid *drm_edid)
1372 {
1373 if (!drm_dp_is_branch(dpcd))
1374 return 0;
1375
1376 if (dpcd[DP_DPCD_REV] < 0x11) {
1377 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1378 case DP_DWN_STRM_PORT_TYPE_DP:
1379 return 0;
1380 default:
1381 return 8;
1382 }
1383 }
1384
1385 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1386 case DP_DS_PORT_TYPE_DP:
1387 return 0;
1388 case DP_DS_PORT_TYPE_DP_DUALMODE:
1389 if (is_edid_digital_input_dp(drm_edid))
1390 return 0;
1391 fallthrough;
1392 case DP_DS_PORT_TYPE_HDMI:
1393 case DP_DS_PORT_TYPE_DVI:
1394 case DP_DS_PORT_TYPE_VGA:
1395 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1396 return 8;
1397
1398 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1399 case DP_DS_8BPC:
1400 return 8;
1401 case DP_DS_10BPC:
1402 return 10;
1403 case DP_DS_12BPC:
1404 return 12;
1405 case DP_DS_16BPC:
1406 return 16;
1407 default:
1408 return 8;
1409 }
1410 break;
1411 default:
1412 return 8;
1413 }
1414 }
1415 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1416
1417 /**
1418 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1419 * YCbCr 4:2:0 pass-through capability
1420 * @dpcd: DisplayPort configuration data
1421 * @port_cap: downstream facing port capabilities
1422 *
1423 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1424 */
drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1425 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1426 const u8 port_cap[4])
1427 {
1428 if (!drm_dp_is_branch(dpcd))
1429 return false;
1430
1431 if (dpcd[DP_DPCD_REV] < 0x13)
1432 return false;
1433
1434 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1435 case DP_DS_PORT_TYPE_DP:
1436 return true;
1437 case DP_DS_PORT_TYPE_HDMI:
1438 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1439 return false;
1440
1441 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1442 default:
1443 return false;
1444 }
1445 }
1446 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1447
1448 /**
1449 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1450 * YCbCr 4:4:4->4:2:0 conversion capability
1451 * @dpcd: DisplayPort configuration data
1452 * @port_cap: downstream facing port capabilities
1453 *
1454 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1455 */
drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1456 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1457 const u8 port_cap[4])
1458 {
1459 if (!drm_dp_is_branch(dpcd))
1460 return false;
1461
1462 if (dpcd[DP_DPCD_REV] < 0x13)
1463 return false;
1464
1465 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1466 case DP_DS_PORT_TYPE_HDMI:
1467 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1468 return false;
1469
1470 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1471 default:
1472 return false;
1473 }
1474 }
1475 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1476
1477 /**
1478 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1479 * RGB->YCbCr conversion capability
1480 * @dpcd: DisplayPort configuration data
1481 * @port_cap: downstream facing port capabilities
1482 * @color_spc: Colorspace for which conversion cap is sought
1483 *
1484 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1485 * colorspace.
1486 */
drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],u8 color_spc)1487 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1488 const u8 port_cap[4],
1489 u8 color_spc)
1490 {
1491 if (!drm_dp_is_branch(dpcd))
1492 return false;
1493
1494 if (dpcd[DP_DPCD_REV] < 0x13)
1495 return false;
1496
1497 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1498 case DP_DS_PORT_TYPE_HDMI:
1499 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1500 return false;
1501
1502 return port_cap[3] & color_spc;
1503 default:
1504 return false;
1505 }
1506 }
1507 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1508
1509 /**
1510 * drm_dp_downstream_mode() - return a mode for downstream facing port
1511 * @dev: DRM device
1512 * @dpcd: DisplayPort configuration data
1513 * @port_cap: port capabilities
1514 *
1515 * Provides a suitable mode for downstream facing ports without EDID.
1516 *
1517 * Returns: A new drm_display_mode on success or NULL on failure
1518 */
1519 struct drm_display_mode *
drm_dp_downstream_mode(struct drm_device * dev,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1520 drm_dp_downstream_mode(struct drm_device *dev,
1521 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1522 const u8 port_cap[4])
1523
1524 {
1525 u8 vic;
1526
1527 if (!drm_dp_is_branch(dpcd))
1528 return NULL;
1529
1530 if (dpcd[DP_DPCD_REV] < 0x11)
1531 return NULL;
1532
1533 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1534 case DP_DS_PORT_TYPE_NON_EDID:
1535 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1536 case DP_DS_NON_EDID_720x480i_60:
1537 vic = 6;
1538 break;
1539 case DP_DS_NON_EDID_720x480i_50:
1540 vic = 21;
1541 break;
1542 case DP_DS_NON_EDID_1920x1080i_60:
1543 vic = 5;
1544 break;
1545 case DP_DS_NON_EDID_1920x1080i_50:
1546 vic = 20;
1547 break;
1548 case DP_DS_NON_EDID_1280x720_60:
1549 vic = 4;
1550 break;
1551 case DP_DS_NON_EDID_1280x720_50:
1552 vic = 19;
1553 break;
1554 default:
1555 return NULL;
1556 }
1557 return drm_display_mode_from_cea_vic(dev, vic);
1558 default:
1559 return NULL;
1560 }
1561 }
1562 EXPORT_SYMBOL(drm_dp_downstream_mode);
1563
1564 /**
1565 * drm_dp_downstream_id() - identify branch device
1566 * @aux: DisplayPort AUX channel
1567 * @id: DisplayPort branch device id
1568 *
1569 * Returns branch device id on success or NULL on failure
1570 */
drm_dp_downstream_id(struct drm_dp_aux * aux,char id[6])1571 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1572 {
1573 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1574 }
1575 EXPORT_SYMBOL(drm_dp_downstream_id);
1576
1577 /**
1578 * drm_dp_downstream_debug() - debug DP branch devices
1579 * @m: pointer for debugfs file
1580 * @dpcd: DisplayPort configuration data
1581 * @port_cap: port capabilities
1582 * @drm_edid: EDID
1583 * @aux: DisplayPort AUX channel
1584 *
1585 */
drm_dp_downstream_debug(struct seq_file * m,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4],const struct drm_edid * drm_edid,struct drm_dp_aux * aux)1586 void drm_dp_downstream_debug(struct seq_file *m,
1587 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1588 const u8 port_cap[4],
1589 const struct drm_edid *drm_edid,
1590 struct drm_dp_aux *aux)
1591 {
1592 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1593 DP_DETAILED_CAP_INFO_AVAILABLE;
1594 int clk;
1595 int bpc;
1596 char id[7];
1597 int len;
1598 uint8_t rev[2];
1599 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1600 bool branch_device = drm_dp_is_branch(dpcd);
1601
1602 seq_printf(m, "\tDP branch device present: %s\n",
1603 str_yes_no(branch_device));
1604
1605 if (!branch_device)
1606 return;
1607
1608 switch (type) {
1609 case DP_DS_PORT_TYPE_DP:
1610 seq_puts(m, "\t\tType: DisplayPort\n");
1611 break;
1612 case DP_DS_PORT_TYPE_VGA:
1613 seq_puts(m, "\t\tType: VGA\n");
1614 break;
1615 case DP_DS_PORT_TYPE_DVI:
1616 seq_puts(m, "\t\tType: DVI\n");
1617 break;
1618 case DP_DS_PORT_TYPE_HDMI:
1619 seq_puts(m, "\t\tType: HDMI\n");
1620 break;
1621 case DP_DS_PORT_TYPE_NON_EDID:
1622 seq_puts(m, "\t\tType: others without EDID support\n");
1623 break;
1624 case DP_DS_PORT_TYPE_DP_DUALMODE:
1625 seq_puts(m, "\t\tType: DP++\n");
1626 break;
1627 case DP_DS_PORT_TYPE_WIRELESS:
1628 seq_puts(m, "\t\tType: Wireless\n");
1629 break;
1630 default:
1631 seq_puts(m, "\t\tType: N/A\n");
1632 }
1633
1634 memset(id, 0, sizeof(id));
1635 drm_dp_downstream_id(aux, id);
1636 seq_printf(m, "\t\tID: %s\n", id);
1637
1638 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1639 if (len > 0)
1640 seq_printf(m, "\t\tHW: %d.%d\n",
1641 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1642
1643 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1644 if (len > 0)
1645 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1646
1647 if (detailed_cap_info) {
1648 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1649 if (clk > 0)
1650 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1651
1652 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1653 if (clk > 0)
1654 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1655
1656 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1657 if (clk > 0)
1658 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1659
1660 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1661
1662 if (bpc > 0)
1663 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1664 }
1665 }
1666 EXPORT_SYMBOL(drm_dp_downstream_debug);
1667
1668 /**
1669 * drm_dp_subconnector_type() - get DP branch device type
1670 * @dpcd: DisplayPort configuration data
1671 * @port_cap: port capabilities
1672 */
1673 enum drm_mode_subconnector
drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])1674 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1675 const u8 port_cap[4])
1676 {
1677 int type;
1678 if (!drm_dp_is_branch(dpcd))
1679 return DRM_MODE_SUBCONNECTOR_Native;
1680 /* DP 1.0 approach */
1681 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1682 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1683 DP_DWN_STRM_PORT_TYPE_MASK;
1684
1685 switch (type) {
1686 case DP_DWN_STRM_PORT_TYPE_TMDS:
1687 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1688 return DRM_MODE_SUBCONNECTOR_DVID;
1689 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1690 /* Can be VGA or DVI-A, VGA is more popular */
1691 return DRM_MODE_SUBCONNECTOR_VGA;
1692 case DP_DWN_STRM_PORT_TYPE_DP:
1693 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1694 case DP_DWN_STRM_PORT_TYPE_OTHER:
1695 default:
1696 return DRM_MODE_SUBCONNECTOR_Unknown;
1697 }
1698 }
1699 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1700
1701 switch (type) {
1702 case DP_DS_PORT_TYPE_DP:
1703 case DP_DS_PORT_TYPE_DP_DUALMODE:
1704 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1705 case DP_DS_PORT_TYPE_VGA:
1706 return DRM_MODE_SUBCONNECTOR_VGA;
1707 case DP_DS_PORT_TYPE_DVI:
1708 return DRM_MODE_SUBCONNECTOR_DVID;
1709 case DP_DS_PORT_TYPE_HDMI:
1710 return DRM_MODE_SUBCONNECTOR_HDMIA;
1711 case DP_DS_PORT_TYPE_WIRELESS:
1712 return DRM_MODE_SUBCONNECTOR_Wireless;
1713 case DP_DS_PORT_TYPE_NON_EDID:
1714 default:
1715 return DRM_MODE_SUBCONNECTOR_Unknown;
1716 }
1717 }
1718 EXPORT_SYMBOL(drm_dp_subconnector_type);
1719
1720 /**
1721 * drm_dp_set_subconnector_property - set subconnector for DP connector
1722 * @connector: connector to set property on
1723 * @status: connector status
1724 * @dpcd: DisplayPort configuration data
1725 * @port_cap: port capabilities
1726 *
1727 * Called by a driver on every detect event.
1728 */
drm_dp_set_subconnector_property(struct drm_connector * connector,enum drm_connector_status status,const u8 * dpcd,const u8 port_cap[4])1729 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1730 enum drm_connector_status status,
1731 const u8 *dpcd,
1732 const u8 port_cap[4])
1733 {
1734 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1735
1736 if (status == connector_status_connected)
1737 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1738 drm_object_property_set_value(&connector->base,
1739 connector->dev->mode_config.dp_subconnector_property,
1740 subconnector);
1741 }
1742 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1743
1744 /**
1745 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1746 * count
1747 * @connector: The DRM connector to check
1748 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1749 * @desc: A cached copy of the connector's DP descriptor
1750 *
1751 * See also: drm_dp_read_sink_count()
1752 *
1753 * Returns: %True if the (e)DP connector has a valid sink count that should
1754 * be probed, %false otherwise.
1755 */
drm_dp_read_sink_count_cap(struct drm_connector * connector,const u8 dpcd[DP_RECEIVER_CAP_SIZE],const struct drm_dp_desc * desc)1756 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1757 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1758 const struct drm_dp_desc *desc)
1759 {
1760 /* Some eDP panels don't set a valid value for the sink count */
1761 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1762 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1763 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1764 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1765 }
1766 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1767
1768 /**
1769 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1770 * @aux: The DP AUX channel to use
1771 *
1772 * See also: drm_dp_read_sink_count_cap()
1773 *
1774 * Returns: The current sink count reported by @aux, or a negative error code
1775 * otherwise.
1776 */
drm_dp_read_sink_count(struct drm_dp_aux * aux)1777 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1778 {
1779 u8 count;
1780 int ret;
1781
1782 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1783 if (ret < 0)
1784 return ret;
1785 if (ret != 1)
1786 return -EIO;
1787
1788 return DP_GET_SINK_COUNT(count);
1789 }
1790 EXPORT_SYMBOL(drm_dp_read_sink_count);
1791
1792 /*
1793 * I2C-over-AUX implementation
1794 */
1795
drm_dp_i2c_functionality(struct i2c_adapter * adapter)1796 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1797 {
1798 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1799 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1800 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1801 I2C_FUNC_10BIT_ADDR;
1802 }
1803
drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg * msg)1804 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1805 {
1806 /*
1807 * In case of i2c defer or short i2c ack reply to a write,
1808 * we need to switch to WRITE_STATUS_UPDATE to drain the
1809 * rest of the message
1810 */
1811 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1812 msg->request &= DP_AUX_I2C_MOT;
1813 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1814 }
1815 }
1816
1817 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1818 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1819 #define AUX_STOP_LEN 4
1820 #define AUX_CMD_LEN 4
1821 #define AUX_ADDRESS_LEN 20
1822 #define AUX_REPLY_PAD_LEN 4
1823 #define AUX_LENGTH_LEN 8
1824
1825 /*
1826 * Calculate the duration of the AUX request/reply in usec. Gives the
1827 * "best" case estimate, ie. successful while as short as possible.
1828 */
drm_dp_aux_req_duration(const struct drm_dp_aux_msg * msg)1829 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1830 {
1831 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1832 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1833
1834 if ((msg->request & DP_AUX_I2C_READ) == 0)
1835 len += msg->size * 8;
1836
1837 return len;
1838 }
1839
drm_dp_aux_reply_duration(const struct drm_dp_aux_msg * msg)1840 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1841 {
1842 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1843 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1844
1845 /*
1846 * For read we expect what was asked. For writes there will
1847 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1848 */
1849 if (msg->request & DP_AUX_I2C_READ)
1850 len += msg->size * 8;
1851
1852 return len;
1853 }
1854
1855 #define I2C_START_LEN 1
1856 #define I2C_STOP_LEN 1
1857 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1858 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1859
1860 /*
1861 * Calculate the length of the i2c transfer in usec, assuming
1862 * the i2c bus speed is as specified. Gives the "worst"
1863 * case estimate, ie. successful while as long as possible.
1864 * Doesn't account the "MOT" bit, and instead assumes each
1865 * message includes a START, ADDRESS and STOP. Neither does it
1866 * account for additional random variables such as clock stretching.
1867 */
drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1868 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1869 int i2c_speed_khz)
1870 {
1871 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1872 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1873 msg->size * I2C_DATA_LEN +
1874 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1875 }
1876
1877 /*
1878 * Determine how many retries should be attempted to successfully transfer
1879 * the specified message, based on the estimated durations of the
1880 * i2c and AUX transfers.
1881 */
drm_dp_i2c_retry_count(const struct drm_dp_aux_msg * msg,int i2c_speed_khz)1882 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1883 int i2c_speed_khz)
1884 {
1885 int aux_time_us = drm_dp_aux_req_duration(msg) +
1886 drm_dp_aux_reply_duration(msg);
1887 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1888
1889 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1890 }
1891
1892 /*
1893 * FIXME currently assumes 10 kHz as some real world devices seem
1894 * to require it. We should query/set the speed via DPCD if supported.
1895 */
1896 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1897 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1898 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1899 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1900
1901 /*
1902 * Transfer a single I2C-over-AUX message and handle various error conditions,
1903 * retrying the transaction as appropriate. It is assumed that the
1904 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1905 * reply field.
1906 *
1907 * Returns bytes transferred on success, or a negative error code on failure.
1908 */
drm_dp_i2c_do_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * msg)1909 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1910 {
1911 unsigned int retry, defer_i2c;
1912 int ret;
1913 /*
1914 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1915 * is required to retry at least seven times upon receiving AUX_DEFER
1916 * before giving up the AUX transaction.
1917 *
1918 * We also try to account for the i2c bus speed.
1919 */
1920 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1921
1922 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1923 ret = aux->transfer(aux, msg);
1924 if (ret < 0) {
1925 if (ret == -EBUSY)
1926 continue;
1927
1928 /*
1929 * While timeouts can be errors, they're usually normal
1930 * behavior (for instance, when a driver tries to
1931 * communicate with a non-existent DisplayPort device).
1932 * Avoid spamming the kernel log with timeout errors.
1933 */
1934 if (ret == -ETIMEDOUT)
1935 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1936 aux->name);
1937 else
1938 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1939 aux->name, ret);
1940 return ret;
1941 }
1942
1943
1944 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1945 case DP_AUX_NATIVE_REPLY_ACK:
1946 /*
1947 * For I2C-over-AUX transactions this isn't enough, we
1948 * need to check for the I2C ACK reply.
1949 */
1950 break;
1951
1952 case DP_AUX_NATIVE_REPLY_NACK:
1953 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1954 aux->name, ret, msg->size);
1955 return -EREMOTEIO;
1956
1957 case DP_AUX_NATIVE_REPLY_DEFER:
1958 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1959 /*
1960 * We could check for I2C bit rate capabilities and if
1961 * available adjust this interval. We could also be
1962 * more careful with DP-to-legacy adapters where a
1963 * long legacy cable may force very low I2C bit rates.
1964 *
1965 * For now just defer for long enough to hopefully be
1966 * safe for all use-cases.
1967 */
1968 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1969 continue;
1970
1971 default:
1972 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1973 aux->name, msg->reply);
1974 return -EREMOTEIO;
1975 }
1976
1977 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1978 case DP_AUX_I2C_REPLY_ACK:
1979 /*
1980 * Both native ACK and I2C ACK replies received. We
1981 * can assume the transfer was successful.
1982 */
1983 if (ret != msg->size)
1984 drm_dp_i2c_msg_write_status_update(msg);
1985 return ret;
1986
1987 case DP_AUX_I2C_REPLY_NACK:
1988 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1989 aux->name, ret, msg->size);
1990 aux->i2c_nack_count++;
1991 return -EREMOTEIO;
1992
1993 case DP_AUX_I2C_REPLY_DEFER:
1994 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1995 /* DP Compliance Test 4.2.2.5 Requirement:
1996 * Must have at least 7 retries for I2C defers on the
1997 * transaction to pass this test
1998 */
1999 aux->i2c_defer_count++;
2000 if (defer_i2c < 7)
2001 defer_i2c++;
2002 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
2003 drm_dp_i2c_msg_write_status_update(msg);
2004
2005 continue;
2006
2007 default:
2008 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
2009 aux->name, msg->reply);
2010 return -EREMOTEIO;
2011 }
2012 }
2013
2014 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
2015 return -EREMOTEIO;
2016 }
2017
drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg * msg,const struct i2c_msg * i2c_msg)2018 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
2019 const struct i2c_msg *i2c_msg)
2020 {
2021 msg->request = (i2c_msg->flags & I2C_M_RD) ?
2022 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
2023 if (!(i2c_msg->flags & I2C_M_STOP))
2024 msg->request |= DP_AUX_I2C_MOT;
2025 }
2026
2027 /*
2028 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
2029 *
2030 * Returns an error code on failure, or a recommended transfer size on success.
2031 */
drm_dp_i2c_drain_msg(struct drm_dp_aux * aux,struct drm_dp_aux_msg * orig_msg)2032 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
2033 {
2034 int err, ret = orig_msg->size;
2035 struct drm_dp_aux_msg msg = *orig_msg;
2036
2037 while (msg.size > 0) {
2038 err = drm_dp_i2c_do_msg(aux, &msg);
2039 if (err <= 0)
2040 return err == 0 ? -EPROTO : err;
2041
2042 if (err < msg.size && err < ret) {
2043 drm_dbg_kms(aux->drm_dev,
2044 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
2045 aux->name, msg.size, err);
2046 ret = err;
2047 }
2048
2049 msg.size -= err;
2050 msg.buffer += err;
2051 }
2052
2053 return ret;
2054 }
2055
2056 /*
2057 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
2058 * packets to be as large as possible. If not, the I2C transactions never
2059 * succeed. Hence the default is maximum.
2060 */
2061 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
2062 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
2063 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
2064 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
2065
drm_dp_i2c_xfer(struct i2c_adapter * adapter,struct i2c_msg * msgs,int num)2066 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
2067 int num)
2068 {
2069 struct drm_dp_aux *aux = adapter->algo_data;
2070 unsigned int i, j;
2071 unsigned transfer_size;
2072 struct drm_dp_aux_msg msg;
2073 int err = 0;
2074
2075 if (aux->powered_down)
2076 return -EBUSY;
2077
2078 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
2079
2080 memset(&msg, 0, sizeof(msg));
2081
2082 for (i = 0; i < num; i++) {
2083 msg.address = msgs[i].addr;
2084 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2085 /* Send a bare address packet to start the transaction.
2086 * Zero sized messages specify an address only (bare
2087 * address) transaction.
2088 */
2089 msg.buffer = NULL;
2090 msg.size = 0;
2091 err = drm_dp_i2c_do_msg(aux, &msg);
2092
2093 /*
2094 * Reset msg.request in case in case it got
2095 * changed into a WRITE_STATUS_UPDATE.
2096 */
2097 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2098
2099 if (err < 0)
2100 break;
2101 /* We want each transaction to be as large as possible, but
2102 * we'll go to smaller sizes if the hardware gives us a
2103 * short reply.
2104 */
2105 transfer_size = dp_aux_i2c_transfer_size;
2106 for (j = 0; j < msgs[i].len; j += msg.size) {
2107 msg.buffer = msgs[i].buf + j;
2108 msg.size = min(transfer_size, msgs[i].len - j);
2109
2110 err = drm_dp_i2c_drain_msg(aux, &msg);
2111
2112 /*
2113 * Reset msg.request in case in case it got
2114 * changed into a WRITE_STATUS_UPDATE.
2115 */
2116 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
2117
2118 if (err < 0)
2119 break;
2120 transfer_size = err;
2121 }
2122 if (err < 0)
2123 break;
2124 }
2125 if (err >= 0)
2126 err = num;
2127 /* Send a bare address packet to close out the transaction.
2128 * Zero sized messages specify an address only (bare
2129 * address) transaction.
2130 */
2131 msg.request &= ~DP_AUX_I2C_MOT;
2132 msg.buffer = NULL;
2133 msg.size = 0;
2134 (void)drm_dp_i2c_do_msg(aux, &msg);
2135
2136 return err;
2137 }
2138
2139 static const struct i2c_algorithm drm_dp_i2c_algo = {
2140 .functionality = drm_dp_i2c_functionality,
2141 .master_xfer = drm_dp_i2c_xfer,
2142 };
2143
i2c_to_aux(struct i2c_adapter * i2c)2144 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
2145 {
2146 return container_of(i2c, struct drm_dp_aux, ddc);
2147 }
2148
lock_bus(struct i2c_adapter * i2c,unsigned int flags)2149 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
2150 {
2151 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
2152 }
2153
trylock_bus(struct i2c_adapter * i2c,unsigned int flags)2154 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
2155 {
2156 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
2157 }
2158
unlock_bus(struct i2c_adapter * i2c,unsigned int flags)2159 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
2160 {
2161 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
2162 }
2163
2164 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
2165 .lock_bus = lock_bus,
2166 .trylock_bus = trylock_bus,
2167 .unlock_bus = unlock_bus,
2168 };
2169
drm_dp_aux_get_crc(struct drm_dp_aux * aux,u8 * crc)2170 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
2171 {
2172 u8 buf, count;
2173 int ret;
2174
2175 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2176 if (ret < 0)
2177 return ret;
2178
2179 WARN_ON(!(buf & DP_TEST_SINK_START));
2180
2181 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
2182 if (ret < 0)
2183 return ret;
2184
2185 count = buf & DP_TEST_COUNT_MASK;
2186 if (count == aux->crc_count)
2187 return -EAGAIN; /* No CRC yet */
2188
2189 aux->crc_count = count;
2190
2191 /*
2192 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
2193 * per component (RGB or CrYCb).
2194 */
2195 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
2196 if (ret < 0)
2197 return ret;
2198
2199 return 0;
2200 }
2201
drm_dp_aux_crc_work(struct work_struct * work)2202 static void drm_dp_aux_crc_work(struct work_struct *work)
2203 {
2204 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
2205 crc_work);
2206 struct drm_crtc *crtc;
2207 u8 crc_bytes[6];
2208 uint32_t crcs[3];
2209 int ret;
2210
2211 if (WARN_ON(!aux->crtc))
2212 return;
2213
2214 crtc = aux->crtc;
2215 while (crtc->crc.opened) {
2216 drm_crtc_wait_one_vblank(crtc);
2217 if (!crtc->crc.opened)
2218 break;
2219
2220 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2221 if (ret == -EAGAIN) {
2222 usleep_range(1000, 2000);
2223 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2224 }
2225
2226 if (ret == -EAGAIN) {
2227 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2228 aux->name, ret);
2229 continue;
2230 } else if (ret) {
2231 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2232 continue;
2233 }
2234
2235 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2236 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2237 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2238 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2239 }
2240 }
2241
2242 /**
2243 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2244 * @aux: DisplayPort AUX channel
2245 *
2246 * Used for remote aux channel in general. Merely initialize the crc work
2247 * struct.
2248 */
drm_dp_remote_aux_init(struct drm_dp_aux * aux)2249 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2250 {
2251 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2252 }
2253 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2254
2255 /**
2256 * drm_dp_aux_init() - minimally initialise an aux channel
2257 * @aux: DisplayPort AUX channel
2258 *
2259 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2260 * the outside world, call drm_dp_aux_init() first. For drivers which are
2261 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2262 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2263 * has been registered to allow userspace access to the auxiliary DP channel.
2264 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2265 * early as possible so that the &drm_device that corresponds to the AUX adapter
2266 * may be mentioned in debugging output from the DRM DP helpers.
2267 *
2268 * For devices which use a separate platform device for their AUX adapters, this
2269 * may be called as early as required by the driver.
2270 *
2271 */
drm_dp_aux_init(struct drm_dp_aux * aux)2272 void drm_dp_aux_init(struct drm_dp_aux *aux)
2273 {
2274 mutex_init(&aux->hw_mutex);
2275 mutex_init(&aux->cec.lock);
2276 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2277
2278 aux->ddc.algo = &drm_dp_i2c_algo;
2279 aux->ddc.algo_data = aux;
2280 aux->ddc.retries = 3;
2281
2282 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2283 }
2284 EXPORT_SYMBOL(drm_dp_aux_init);
2285
2286 /**
2287 * drm_dp_aux_register() - initialise and register aux channel
2288 * @aux: DisplayPort AUX channel
2289 *
2290 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2291 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2292 * initialized. For devices which are grandparents of their AUX channels,
2293 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2294 * corresponds to @aux. For these devices, it's advised to call
2295 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2296 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2297 * Functions which don't follow this will likely Oops when
2298 * %CONFIG_DRM_DISPLAY_DP_AUX_CHARDEV is enabled.
2299 *
2300 * For devices where the AUX channel is a device that exists independently of
2301 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2302 * recommended to call drm_dp_aux_register() after a &drm_device has been
2303 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2304 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2305 * with the AUX channel (e.g. on bridge detach).
2306 *
2307 * Drivers which need to use the aux channel before either of the two points
2308 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2309 * channel before registration.
2310 *
2311 * Returns 0 on success or a negative error code on failure.
2312 */
drm_dp_aux_register(struct drm_dp_aux * aux)2313 int drm_dp_aux_register(struct drm_dp_aux *aux)
2314 {
2315 int ret;
2316
2317 WARN_ON_ONCE(!aux->drm_dev);
2318
2319 if (!aux->ddc.algo)
2320 drm_dp_aux_init(aux);
2321
2322 aux->ddc.owner = THIS_MODULE;
2323 aux->ddc.dev.parent = aux->dev;
2324
2325 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2326 sizeof(aux->ddc.name));
2327
2328 ret = drm_dp_aux_register_devnode(aux);
2329 if (ret)
2330 return ret;
2331
2332 ret = i2c_add_adapter(&aux->ddc);
2333 if (ret) {
2334 drm_dp_aux_unregister_devnode(aux);
2335 return ret;
2336 }
2337
2338 return 0;
2339 }
2340 EXPORT_SYMBOL(drm_dp_aux_register);
2341
2342 /**
2343 * drm_dp_aux_unregister() - unregister an AUX adapter
2344 * @aux: DisplayPort AUX channel
2345 */
drm_dp_aux_unregister(struct drm_dp_aux * aux)2346 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2347 {
2348 drm_dp_aux_unregister_devnode(aux);
2349 i2c_del_adapter(&aux->ddc);
2350 }
2351 EXPORT_SYMBOL(drm_dp_aux_unregister);
2352
2353 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2354
2355 /**
2356 * drm_dp_psr_setup_time() - PSR setup in time usec
2357 * @psr_cap: PSR capabilities from DPCD
2358 *
2359 * Returns:
2360 * PSR setup time for the panel in microseconds, negative
2361 * error code on failure.
2362 */
drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])2363 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2364 {
2365 static const u16 psr_setup_time_us[] = {
2366 PSR_SETUP_TIME(330),
2367 PSR_SETUP_TIME(275),
2368 PSR_SETUP_TIME(220),
2369 PSR_SETUP_TIME(165),
2370 PSR_SETUP_TIME(110),
2371 PSR_SETUP_TIME(55),
2372 PSR_SETUP_TIME(0),
2373 };
2374 int i;
2375
2376 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2377 if (i >= ARRAY_SIZE(psr_setup_time_us))
2378 return -EINVAL;
2379
2380 return psr_setup_time_us[i];
2381 }
2382 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2383
2384 #undef PSR_SETUP_TIME
2385
2386 /**
2387 * drm_dp_start_crc() - start capture of frame CRCs
2388 * @aux: DisplayPort AUX channel
2389 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2390 *
2391 * Returns 0 on success or a negative error code on failure.
2392 */
drm_dp_start_crc(struct drm_dp_aux * aux,struct drm_crtc * crtc)2393 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2394 {
2395 u8 buf;
2396 int ret;
2397
2398 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2399 if (ret < 0)
2400 return ret;
2401
2402 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2403 if (ret < 0)
2404 return ret;
2405
2406 aux->crc_count = 0;
2407 aux->crtc = crtc;
2408 schedule_work(&aux->crc_work);
2409
2410 return 0;
2411 }
2412 EXPORT_SYMBOL(drm_dp_start_crc);
2413
2414 /**
2415 * drm_dp_stop_crc() - stop capture of frame CRCs
2416 * @aux: DisplayPort AUX channel
2417 *
2418 * Returns 0 on success or a negative error code on failure.
2419 */
drm_dp_stop_crc(struct drm_dp_aux * aux)2420 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2421 {
2422 u8 buf;
2423 int ret;
2424
2425 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2426 if (ret < 0)
2427 return ret;
2428
2429 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2430 if (ret < 0)
2431 return ret;
2432
2433 flush_work(&aux->crc_work);
2434 aux->crtc = NULL;
2435
2436 return 0;
2437 }
2438 EXPORT_SYMBOL(drm_dp_stop_crc);
2439
2440 struct dpcd_quirk {
2441 u8 oui[3];
2442 u8 device_id[6];
2443 bool is_branch;
2444 u32 quirks;
2445 };
2446
2447 #define OUI(first, second, third) { (first), (second), (third) }
2448 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2449 { (first), (second), (third), (fourth), (fifth), (sixth) }
2450
2451 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2452
2453 static const struct dpcd_quirk dpcd_quirk_list[] = {
2454 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2455 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2456 /* LG LP140WF6-SPM1 eDP panel */
2457 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2458 /* Apple panels need some additional handling to support PSR */
2459 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2460 /* CH7511 seems to leave SINK_COUNT zeroed */
2461 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2462 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2463 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2464 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2465 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2466 /* MediaTek panels (at least in U3224KBA) require DSC for modes with a short HBLANK on UHBR links. */
2467 { OUI(0x00, 0x0C, 0xE7), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2468 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2469 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2470 };
2471
2472 #undef OUI
2473
2474 /*
2475 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2476 * ident. The quirk data is shared but it's up to the drivers to act on the
2477 * data.
2478 *
2479 * For now, only the OUI (first three bytes) is used, but this may be extended
2480 * to device identification string and hardware/firmware revisions later.
2481 */
2482 static u32
drm_dp_get_quirks(const struct drm_dp_dpcd_ident * ident,bool is_branch)2483 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2484 {
2485 const struct dpcd_quirk *quirk;
2486 u32 quirks = 0;
2487 int i;
2488 u8 any_device[] = DEVICE_ID_ANY;
2489
2490 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2491 quirk = &dpcd_quirk_list[i];
2492
2493 if (quirk->is_branch != is_branch)
2494 continue;
2495
2496 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2497 continue;
2498
2499 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2500 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2501 continue;
2502
2503 quirks |= quirk->quirks;
2504 }
2505
2506 return quirks;
2507 }
2508
2509 #undef DEVICE_ID_ANY
2510 #undef DEVICE_ID
2511
drm_dp_read_ident(struct drm_dp_aux * aux,unsigned int offset,struct drm_dp_dpcd_ident * ident)2512 static int drm_dp_read_ident(struct drm_dp_aux *aux, unsigned int offset,
2513 struct drm_dp_dpcd_ident *ident)
2514 {
2515 int ret;
2516
2517 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2518
2519 return ret < 0 ? ret : 0;
2520 }
2521
drm_dp_dump_desc(struct drm_dp_aux * aux,const char * device_name,const struct drm_dp_desc * desc)2522 static void drm_dp_dump_desc(struct drm_dp_aux *aux,
2523 const char *device_name, const struct drm_dp_desc *desc)
2524 {
2525 const struct drm_dp_dpcd_ident *ident = &desc->ident;
2526
2527 drm_dbg_kms(aux->drm_dev,
2528 "%s: %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2529 aux->name, device_name,
2530 (int)sizeof(ident->oui), ident->oui,
2531 (int)strnlen(ident->device_id, sizeof(ident->device_id)), ident->device_id,
2532 ident->hw_rev >> 4, ident->hw_rev & 0xf,
2533 ident->sw_major_rev, ident->sw_minor_rev,
2534 desc->quirks);
2535 }
2536
2537 /**
2538 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2539 * @aux: DisplayPort AUX channel
2540 * @desc: Device descriptor to fill from DPCD
2541 * @is_branch: true for branch devices, false for sink devices
2542 *
2543 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2544 * identification.
2545 *
2546 * Returns 0 on success or a negative error code on failure.
2547 */
drm_dp_read_desc(struct drm_dp_aux * aux,struct drm_dp_desc * desc,bool is_branch)2548 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2549 bool is_branch)
2550 {
2551 struct drm_dp_dpcd_ident *ident = &desc->ident;
2552 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2553 int ret;
2554
2555 ret = drm_dp_read_ident(aux, offset, ident);
2556 if (ret < 0)
2557 return ret;
2558
2559 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2560
2561 drm_dp_dump_desc(aux, is_branch ? "DP branch" : "DP sink", desc);
2562
2563 return 0;
2564 }
2565 EXPORT_SYMBOL(drm_dp_read_desc);
2566
2567 /**
2568 * drm_dp_dump_lttpr_desc - read and dump the DPCD descriptor for an LTTPR PHY
2569 * @aux: DisplayPort AUX channel
2570 * @dp_phy: LTTPR PHY instance
2571 *
2572 * Read the DPCD LTTPR PHY descriptor for @dp_phy and print a debug message
2573 * with its details to dmesg.
2574 *
2575 * Returns 0 on success or a negative error code on failure.
2576 */
drm_dp_dump_lttpr_desc(struct drm_dp_aux * aux,enum drm_dp_phy dp_phy)2577 int drm_dp_dump_lttpr_desc(struct drm_dp_aux *aux, enum drm_dp_phy dp_phy)
2578 {
2579 struct drm_dp_desc desc = {};
2580 int ret;
2581
2582 if (drm_WARN_ON(aux->drm_dev, dp_phy < DP_PHY_LTTPR1 || dp_phy > DP_MAX_LTTPR_COUNT))
2583 return -EINVAL;
2584
2585 ret = drm_dp_read_ident(aux, DP_OUI_PHY_REPEATER(dp_phy), &desc.ident);
2586 if (ret < 0)
2587 return ret;
2588
2589 drm_dp_dump_desc(aux, drm_dp_phy_name(dp_phy), &desc);
2590
2591 return 0;
2592 }
2593 EXPORT_SYMBOL(drm_dp_dump_lttpr_desc);
2594
2595 /**
2596 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2597 * @dsc_dpcd: DSC capabilities from DPCD
2598 *
2599 * Returns the bpp precision supported by the DP sink.
2600 */
drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2601 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2602 {
2603 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2604
2605 switch (bpp_increment_dpcd & DP_DSC_BITS_PER_PIXEL_MASK) {
2606 case DP_DSC_BITS_PER_PIXEL_1_16:
2607 return 16;
2608 case DP_DSC_BITS_PER_PIXEL_1_8:
2609 return 8;
2610 case DP_DSC_BITS_PER_PIXEL_1_4:
2611 return 4;
2612 case DP_DSC_BITS_PER_PIXEL_1_2:
2613 return 2;
2614 case DP_DSC_BITS_PER_PIXEL_1_1:
2615 return 1;
2616 }
2617
2618 return 0;
2619 }
2620 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2621
2622 /**
2623 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2624 * supported by the DSC sink.
2625 * @dsc_dpcd: DSC capabilities from DPCD
2626 * @is_edp: true if its eDP, false for DP
2627 *
2628 * Read the slice capabilities DPCD register from DSC sink to get
2629 * the maximum slice count supported. This is used to populate
2630 * the DSC parameters in the &struct drm_dsc_config by the driver.
2631 * Driver creates an infoframe using these parameters to populate
2632 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2633 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2634 *
2635 * Returns:
2636 * Maximum slice count supported by DSC sink or 0 its invalid
2637 */
drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],bool is_edp)2638 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2639 bool is_edp)
2640 {
2641 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2642
2643 if (is_edp) {
2644 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2645 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2646 return 4;
2647 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2648 return 2;
2649 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2650 return 1;
2651 } else {
2652 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2653 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2654
2655 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2656 return 24;
2657 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2658 return 20;
2659 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2660 return 16;
2661 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2662 return 12;
2663 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2664 return 10;
2665 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2666 return 8;
2667 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2668 return 6;
2669 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2670 return 4;
2671 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2672 return 2;
2673 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2674 return 1;
2675 }
2676
2677 return 0;
2678 }
2679 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2680
2681 /**
2682 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2683 * @dsc_dpcd: DSC capabilities from DPCD
2684 *
2685 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2686 * number of bits of precision within the decoder line buffer supported by
2687 * the DSC sink. This is used to populate the DSC parameters in the
2688 * &struct drm_dsc_config by the driver.
2689 * Driver creates an infoframe using these parameters to populate
2690 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2691 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2692 *
2693 * Returns:
2694 * Line buffer depth supported by DSC panel or 0 its invalid
2695 */
drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])2696 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2697 {
2698 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2699
2700 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2701 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2702 return 9;
2703 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2704 return 10;
2705 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2706 return 11;
2707 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2708 return 12;
2709 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2710 return 13;
2711 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2712 return 14;
2713 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2714 return 15;
2715 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2716 return 16;
2717 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2718 return 8;
2719 }
2720
2721 return 0;
2722 }
2723 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2724
2725 /**
2726 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2727 * values supported by the DSC sink.
2728 * @dsc_dpcd: DSC capabilities from DPCD
2729 * @dsc_bpc: An array to be filled by this helper with supported
2730 * input bpcs.
2731 *
2732 * Read the DSC DPCD from the sink device to parse the supported bits per
2733 * component values. This is used to populate the DSC parameters
2734 * in the &struct drm_dsc_config by the driver.
2735 * Driver creates an infoframe using these parameters to populate
2736 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2737 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2738 *
2739 * Returns:
2740 * Number of input BPC values parsed from the DPCD
2741 */
drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],u8 dsc_bpc[3])2742 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2743 u8 dsc_bpc[3])
2744 {
2745 int num_bpc = 0;
2746 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2747
2748 if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2749 return 0;
2750
2751 if (color_depth & DP_DSC_12_BPC)
2752 dsc_bpc[num_bpc++] = 12;
2753 if (color_depth & DP_DSC_10_BPC)
2754 dsc_bpc[num_bpc++] = 10;
2755
2756 /* A DP DSC Sink device shall support 8 bpc. */
2757 dsc_bpc[num_bpc++] = 8;
2758
2759 return num_bpc;
2760 }
2761 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2762
drm_dp_read_lttpr_regs(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],int address,u8 * buf,int buf_size)2763 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2764 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2765 u8 *buf, int buf_size)
2766 {
2767 /*
2768 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2769 * corrupted values when reading from the 0xF0000- range with a block
2770 * size bigger than 1.
2771 */
2772 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2773 int offset;
2774 int ret;
2775
2776 for (offset = 0; offset < buf_size; offset += block_size) {
2777 ret = drm_dp_dpcd_read(aux,
2778 address + offset,
2779 &buf[offset], block_size);
2780 if (ret < 0)
2781 return ret;
2782
2783 WARN_ON(ret != block_size);
2784 }
2785
2786 return 0;
2787 }
2788
2789 /**
2790 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2791 * @aux: DisplayPort AUX channel
2792 * @dpcd: DisplayPort configuration data
2793 * @caps: buffer to return the capability info in
2794 *
2795 * Read capabilities common to all LTTPRs.
2796 *
2797 * Returns 0 on success or a negative error code on failure.
2798 */
drm_dp_read_lttpr_common_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2799 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2800 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2801 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2802 {
2803 return drm_dp_read_lttpr_regs(aux, dpcd,
2804 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2805 caps, DP_LTTPR_COMMON_CAP_SIZE);
2806 }
2807 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2808
2809 /**
2810 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2811 * @aux: DisplayPort AUX channel
2812 * @dpcd: DisplayPort configuration data
2813 * @dp_phy: LTTPR PHY to read the capabilities for
2814 * @caps: buffer to return the capability info in
2815 *
2816 * Read the capabilities for the given LTTPR PHY.
2817 *
2818 * Returns 0 on success or a negative error code on failure.
2819 */
drm_dp_read_lttpr_phy_caps(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE],enum drm_dp_phy dp_phy,u8 caps[DP_LTTPR_PHY_CAP_SIZE])2820 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2821 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2822 enum drm_dp_phy dp_phy,
2823 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2824 {
2825 return drm_dp_read_lttpr_regs(aux, dpcd,
2826 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2827 caps, DP_LTTPR_PHY_CAP_SIZE);
2828 }
2829 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2830
dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE],int r)2831 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2832 {
2833 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2834 }
2835
2836 /**
2837 * drm_dp_lttpr_count - get the number of detected LTTPRs
2838 * @caps: LTTPR common capabilities
2839 *
2840 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2841 *
2842 * Returns:
2843 * -ERANGE if more than supported number (8) of LTTPRs are detected
2844 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2845 * otherwise the number of detected LTTPRs
2846 */
drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2847 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2848 {
2849 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2850
2851 switch (hweight8(count)) {
2852 case 0:
2853 return 0;
2854 case 1:
2855 return 8 - ilog2(count);
2856 case 8:
2857 return -ERANGE;
2858 default:
2859 return -EINVAL;
2860 }
2861 }
2862 EXPORT_SYMBOL(drm_dp_lttpr_count);
2863
2864 /**
2865 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2866 * @caps: LTTPR common capabilities
2867 *
2868 * Returns the maximum link rate supported by all detected LTTPRs.
2869 */
drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2870 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2871 {
2872 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2873
2874 return drm_dp_bw_code_to_link_rate(rate);
2875 }
2876 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2877
2878 /**
2879 * drm_dp_lttpr_set_transparent_mode() - set the LTTPR in transparent mode
2880 * @aux: DisplayPort AUX channel
2881 * @enable: Enable or disable transparent mode
2882 *
2883 * Returns: 0 on success or a negative error code on failure.
2884 */
drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux * aux,bool enable)2885 int drm_dp_lttpr_set_transparent_mode(struct drm_dp_aux *aux, bool enable)
2886 {
2887 u8 val = enable ? DP_PHY_REPEATER_MODE_TRANSPARENT :
2888 DP_PHY_REPEATER_MODE_NON_TRANSPARENT;
2889 int ret = drm_dp_dpcd_writeb(aux, DP_PHY_REPEATER_MODE, val);
2890
2891 if (ret < 0)
2892 return ret;
2893
2894 return (ret == 1) ? 0 : -EIO;
2895 }
2896 EXPORT_SYMBOL(drm_dp_lttpr_set_transparent_mode);
2897
2898 /**
2899 * drm_dp_lttpr_init() - init LTTPR transparency mode according to DP standard
2900 * @aux: DisplayPort AUX channel
2901 * @lttpr_count: Number of LTTPRs. Between 0 and 8, according to DP standard.
2902 * Negative error code for any non-valid number.
2903 * See drm_dp_lttpr_count().
2904 *
2905 * Returns: 0 on success or a negative error code on failure.
2906 */
drm_dp_lttpr_init(struct drm_dp_aux * aux,int lttpr_count)2907 int drm_dp_lttpr_init(struct drm_dp_aux *aux, int lttpr_count)
2908 {
2909 int ret;
2910
2911 if (!lttpr_count)
2912 return 0;
2913
2914 /*
2915 * See DP Standard v2.0 3.6.6.1 about the explicit disabling of
2916 * non-transparent mode and the disable->enable non-transparent mode
2917 * sequence.
2918 */
2919 ret = drm_dp_lttpr_set_transparent_mode(aux, true);
2920 if (ret)
2921 return ret;
2922
2923 if (lttpr_count < 0)
2924 return -ENODEV;
2925
2926 if (drm_dp_lttpr_set_transparent_mode(aux, false)) {
2927 /*
2928 * Roll-back to transparent mode if setting non-transparent
2929 * mode has failed
2930 */
2931 drm_dp_lttpr_set_transparent_mode(aux, true);
2932 return -EINVAL;
2933 }
2934
2935 return 0;
2936 }
2937 EXPORT_SYMBOL(drm_dp_lttpr_init);
2938
2939 /**
2940 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2941 * @caps: LTTPR common capabilities
2942 *
2943 * Returns the maximum lane count supported by all detected LTTPRs.
2944 */
drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])2945 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2946 {
2947 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2948
2949 return max_lanes & DP_MAX_LANE_COUNT_MASK;
2950 }
2951 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2952
2953 /**
2954 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2955 * @caps: LTTPR PHY capabilities
2956 *
2957 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2958 * voltage swing level 3.
2959 */
2960 bool
drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2961 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2962 {
2963 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2964
2965 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2966 }
2967 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2968
2969 /**
2970 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2971 * @caps: LTTPR PHY capabilities
2972 *
2973 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2974 * pre-emphasis level 3.
2975 */
2976 bool
drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])2977 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2978 {
2979 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2980
2981 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2982 }
2983 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2984
2985 /**
2986 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2987 * @aux: DisplayPort AUX channel
2988 * @data: DP phy compliance test parameters.
2989 *
2990 * Returns 0 on success or a negative error code on failure.
2991 */
drm_dp_get_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data)2992 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2993 struct drm_dp_phy_test_params *data)
2994 {
2995 int err;
2996 u8 rate, lanes;
2997
2998 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2999 if (err < 0)
3000 return err;
3001 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
3002
3003 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
3004 if (err < 0)
3005 return err;
3006 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
3007
3008 if (lanes & DP_ENHANCED_FRAME_CAP)
3009 data->enhanced_frame_cap = true;
3010
3011 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
3012 if (err < 0)
3013 return err;
3014
3015 switch (data->phy_pattern) {
3016 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
3017 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
3018 &data->custom80, sizeof(data->custom80));
3019 if (err < 0)
3020 return err;
3021
3022 break;
3023 case DP_PHY_TEST_PATTERN_CP2520:
3024 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
3025 &data->hbr2_reset,
3026 sizeof(data->hbr2_reset));
3027 if (err < 0)
3028 return err;
3029 }
3030
3031 return 0;
3032 }
3033 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
3034
3035 /**
3036 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
3037 * @aux: DisplayPort AUX channel
3038 * @data: DP phy compliance test parameters.
3039 * @dp_rev: DP revision to use for compliance testing
3040 *
3041 * Returns 0 on success or a negative error code on failure.
3042 */
drm_dp_set_phy_test_pattern(struct drm_dp_aux * aux,struct drm_dp_phy_test_params * data,u8 dp_rev)3043 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
3044 struct drm_dp_phy_test_params *data, u8 dp_rev)
3045 {
3046 int err, i;
3047 u8 test_pattern;
3048
3049 test_pattern = data->phy_pattern;
3050 if (dp_rev < 0x12) {
3051 test_pattern = (test_pattern << 2) &
3052 DP_LINK_QUAL_PATTERN_11_MASK;
3053 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
3054 test_pattern);
3055 if (err < 0)
3056 return err;
3057 } else {
3058 for (i = 0; i < data->num_lanes; i++) {
3059 err = drm_dp_dpcd_writeb(aux,
3060 DP_LINK_QUAL_LANE0_SET + i,
3061 test_pattern);
3062 if (err < 0)
3063 return err;
3064 }
3065 }
3066
3067 return 0;
3068 }
3069 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
3070
dp_pixelformat_get_name(enum dp_pixelformat pixelformat)3071 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
3072 {
3073 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3074 return "Invalid";
3075
3076 switch (pixelformat) {
3077 case DP_PIXELFORMAT_RGB:
3078 return "RGB";
3079 case DP_PIXELFORMAT_YUV444:
3080 return "YUV444";
3081 case DP_PIXELFORMAT_YUV422:
3082 return "YUV422";
3083 case DP_PIXELFORMAT_YUV420:
3084 return "YUV420";
3085 case DP_PIXELFORMAT_Y_ONLY:
3086 return "Y_ONLY";
3087 case DP_PIXELFORMAT_RAW:
3088 return "RAW";
3089 default:
3090 return "Reserved";
3091 }
3092 }
3093
dp_colorimetry_get_name(enum dp_pixelformat pixelformat,enum dp_colorimetry colorimetry)3094 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
3095 enum dp_colorimetry colorimetry)
3096 {
3097 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
3098 return "Invalid";
3099
3100 switch (colorimetry) {
3101 case DP_COLORIMETRY_DEFAULT:
3102 switch (pixelformat) {
3103 case DP_PIXELFORMAT_RGB:
3104 return "sRGB";
3105 case DP_PIXELFORMAT_YUV444:
3106 case DP_PIXELFORMAT_YUV422:
3107 case DP_PIXELFORMAT_YUV420:
3108 return "BT.601";
3109 case DP_PIXELFORMAT_Y_ONLY:
3110 return "DICOM PS3.14";
3111 case DP_PIXELFORMAT_RAW:
3112 return "Custom Color Profile";
3113 default:
3114 return "Reserved";
3115 }
3116 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
3117 switch (pixelformat) {
3118 case DP_PIXELFORMAT_RGB:
3119 return "Wide Fixed";
3120 case DP_PIXELFORMAT_YUV444:
3121 case DP_PIXELFORMAT_YUV422:
3122 case DP_PIXELFORMAT_YUV420:
3123 return "BT.709";
3124 default:
3125 return "Reserved";
3126 }
3127 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
3128 switch (pixelformat) {
3129 case DP_PIXELFORMAT_RGB:
3130 return "Wide Float";
3131 case DP_PIXELFORMAT_YUV444:
3132 case DP_PIXELFORMAT_YUV422:
3133 case DP_PIXELFORMAT_YUV420:
3134 return "xvYCC 601";
3135 default:
3136 return "Reserved";
3137 }
3138 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
3139 switch (pixelformat) {
3140 case DP_PIXELFORMAT_RGB:
3141 return "OpRGB";
3142 case DP_PIXELFORMAT_YUV444:
3143 case DP_PIXELFORMAT_YUV422:
3144 case DP_PIXELFORMAT_YUV420:
3145 return "xvYCC 709";
3146 default:
3147 return "Reserved";
3148 }
3149 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
3150 switch (pixelformat) {
3151 case DP_PIXELFORMAT_RGB:
3152 return "DCI-P3";
3153 case DP_PIXELFORMAT_YUV444:
3154 case DP_PIXELFORMAT_YUV422:
3155 case DP_PIXELFORMAT_YUV420:
3156 return "sYCC 601";
3157 default:
3158 return "Reserved";
3159 }
3160 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
3161 switch (pixelformat) {
3162 case DP_PIXELFORMAT_RGB:
3163 return "Custom Profile";
3164 case DP_PIXELFORMAT_YUV444:
3165 case DP_PIXELFORMAT_YUV422:
3166 case DP_PIXELFORMAT_YUV420:
3167 return "OpYCC 601";
3168 default:
3169 return "Reserved";
3170 }
3171 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
3172 switch (pixelformat) {
3173 case DP_PIXELFORMAT_RGB:
3174 return "BT.2020 RGB";
3175 case DP_PIXELFORMAT_YUV444:
3176 case DP_PIXELFORMAT_YUV422:
3177 case DP_PIXELFORMAT_YUV420:
3178 return "BT.2020 CYCC";
3179 default:
3180 return "Reserved";
3181 }
3182 case DP_COLORIMETRY_BT2020_YCC:
3183 switch (pixelformat) {
3184 case DP_PIXELFORMAT_YUV444:
3185 case DP_PIXELFORMAT_YUV422:
3186 case DP_PIXELFORMAT_YUV420:
3187 return "BT.2020 YCC";
3188 default:
3189 return "Reserved";
3190 }
3191 default:
3192 return "Invalid";
3193 }
3194 }
3195
dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)3196 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
3197 {
3198 switch (dynamic_range) {
3199 case DP_DYNAMIC_RANGE_VESA:
3200 return "VESA range";
3201 case DP_DYNAMIC_RANGE_CTA:
3202 return "CTA range";
3203 default:
3204 return "Invalid";
3205 }
3206 }
3207
dp_content_type_get_name(enum dp_content_type content_type)3208 static const char *dp_content_type_get_name(enum dp_content_type content_type)
3209 {
3210 switch (content_type) {
3211 case DP_CONTENT_TYPE_NOT_DEFINED:
3212 return "Not defined";
3213 case DP_CONTENT_TYPE_GRAPHICS:
3214 return "Graphics";
3215 case DP_CONTENT_TYPE_PHOTO:
3216 return "Photo";
3217 case DP_CONTENT_TYPE_VIDEO:
3218 return "Video";
3219 case DP_CONTENT_TYPE_GAME:
3220 return "Game";
3221 default:
3222 return "Reserved";
3223 }
3224 }
3225
drm_dp_vsc_sdp_log(struct drm_printer * p,const struct drm_dp_vsc_sdp * vsc)3226 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
3227 {
3228 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
3229 vsc->revision, vsc->length);
3230 drm_printf(p, " pixelformat: %s\n",
3231 dp_pixelformat_get_name(vsc->pixelformat));
3232 drm_printf(p, " colorimetry: %s\n",
3233 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
3234 drm_printf(p, " bpc: %u\n", vsc->bpc);
3235 drm_printf(p, " dynamic range: %s\n",
3236 dp_dynamic_range_get_name(vsc->dynamic_range));
3237 drm_printf(p, " content type: %s\n",
3238 dp_content_type_get_name(vsc->content_type));
3239 }
3240 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
3241
drm_dp_as_sdp_log(struct drm_printer * p,const struct drm_dp_as_sdp * as_sdp)3242 void drm_dp_as_sdp_log(struct drm_printer *p, const struct drm_dp_as_sdp *as_sdp)
3243 {
3244 drm_printf(p, "DP SDP: AS_SDP, revision %u, length %u\n",
3245 as_sdp->revision, as_sdp->length);
3246 drm_printf(p, " vtotal: %d\n", as_sdp->vtotal);
3247 drm_printf(p, " target_rr: %d\n", as_sdp->target_rr);
3248 drm_printf(p, " duration_incr_ms: %d\n", as_sdp->duration_incr_ms);
3249 drm_printf(p, " duration_decr_ms: %d\n", as_sdp->duration_decr_ms);
3250 drm_printf(p, " operation_mode: %d\n", as_sdp->mode);
3251 }
3252 EXPORT_SYMBOL(drm_dp_as_sdp_log);
3253
3254 /**
3255 * drm_dp_as_sdp_supported() - check if adaptive sync sdp is supported
3256 * @aux: DisplayPort AUX channel
3257 * @dpcd: DisplayPort configuration data
3258 *
3259 * Returns true if adaptive sync sdp is supported, else returns false
3260 */
drm_dp_as_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3261 bool drm_dp_as_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3262 {
3263 u8 rx_feature;
3264
3265 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3266 return false;
3267
3268 if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1,
3269 &rx_feature) != 1) {
3270 drm_dbg_dp(aux->drm_dev,
3271 "Failed to read DP_DPRX_FEATURE_ENUMERATION_LIST_CONT_1\n");
3272 return false;
3273 }
3274
3275 return (rx_feature & DP_ADAPTIVE_SYNC_SDP_SUPPORTED);
3276 }
3277 EXPORT_SYMBOL(drm_dp_as_sdp_supported);
3278
3279 /**
3280 * drm_dp_vsc_sdp_supported() - check if vsc sdp is supported
3281 * @aux: DisplayPort AUX channel
3282 * @dpcd: DisplayPort configuration data
3283 *
3284 * Returns true if vsc sdp is supported, else returns false
3285 */
drm_dp_vsc_sdp_supported(struct drm_dp_aux * aux,const u8 dpcd[DP_RECEIVER_CAP_SIZE])3286 bool drm_dp_vsc_sdp_supported(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE])
3287 {
3288 u8 rx_feature;
3289
3290 if (dpcd[DP_DPCD_REV] < DP_DPCD_REV_13)
3291 return false;
3292
3293 if (drm_dp_dpcd_readb(aux, DP_DPRX_FEATURE_ENUMERATION_LIST, &rx_feature) != 1) {
3294 drm_dbg_dp(aux->drm_dev, "failed to read DP_DPRX_FEATURE_ENUMERATION_LIST\n");
3295 return false;
3296 }
3297
3298 return (rx_feature & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED);
3299 }
3300 EXPORT_SYMBOL(drm_dp_vsc_sdp_supported);
3301
3302 /**
3303 * drm_dp_vsc_sdp_pack() - pack a given vsc sdp into generic dp_sdp
3304 * @vsc: vsc sdp initialized according to its purpose as defined in
3305 * table 2-118 - table 2-120 in DP 1.4a specification
3306 * @sdp: valid handle to the generic dp_sdp which will be packed
3307 *
3308 * Returns length of sdp on success and error code on failure
3309 */
drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp * vsc,struct dp_sdp * sdp)3310 ssize_t drm_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
3311 struct dp_sdp *sdp)
3312 {
3313 size_t length = sizeof(struct dp_sdp);
3314
3315 memset(sdp, 0, sizeof(struct dp_sdp));
3316
3317 /*
3318 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
3319 * VSC SDP Header Bytes
3320 */
3321 sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
3322 sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
3323 sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
3324 sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
3325
3326 if (vsc->revision == 0x6) {
3327 sdp->db[0] = 1;
3328 sdp->db[3] = 1;
3329 }
3330
3331 /*
3332 * Revision 0x5 and revision 0x7 supports Pixel Encoding/Colorimetry
3333 * Format as per DP 1.4a spec and DP 2.0 respectively.
3334 */
3335 if (!(vsc->revision == 0x5 || vsc->revision == 0x7))
3336 goto out;
3337
3338 /* VSC SDP Payload for DB16 through DB18 */
3339 /* Pixel Encoding and Colorimetry Formats */
3340 sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
3341 sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
3342
3343 switch (vsc->bpc) {
3344 case 6:
3345 /* 6bpc: 0x0 */
3346 break;
3347 case 8:
3348 sdp->db[17] = 0x1; /* DB17[3:0] */
3349 break;
3350 case 10:
3351 sdp->db[17] = 0x2;
3352 break;
3353 case 12:
3354 sdp->db[17] = 0x3;
3355 break;
3356 case 16:
3357 sdp->db[17] = 0x4;
3358 break;
3359 default:
3360 WARN(1, "Missing case %d\n", vsc->bpc);
3361 return -EINVAL;
3362 }
3363
3364 /* Dynamic Range and Component Bit Depth */
3365 if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
3366 sdp->db[17] |= 0x80; /* DB17[7] */
3367
3368 /* Content Type */
3369 sdp->db[18] = vsc->content_type & 0x7;
3370
3371 out:
3372 return length;
3373 }
3374 EXPORT_SYMBOL(drm_dp_vsc_sdp_pack);
3375
3376 /**
3377 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
3378 * @dpcd: DisplayPort configuration data
3379 * @port_cap: port capabilities
3380 *
3381 * Returns maximum frl bandwidth supported by PCON in GBPS,
3382 * returns 0 if not supported.
3383 */
drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],const u8 port_cap[4])3384 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
3385 const u8 port_cap[4])
3386 {
3387 int bw;
3388 u8 buf;
3389
3390 buf = port_cap[2];
3391 bw = buf & DP_PCON_MAX_FRL_BW;
3392
3393 switch (bw) {
3394 case DP_PCON_MAX_9GBPS:
3395 return 9;
3396 case DP_PCON_MAX_18GBPS:
3397 return 18;
3398 case DP_PCON_MAX_24GBPS:
3399 return 24;
3400 case DP_PCON_MAX_32GBPS:
3401 return 32;
3402 case DP_PCON_MAX_40GBPS:
3403 return 40;
3404 case DP_PCON_MAX_48GBPS:
3405 return 48;
3406 case DP_PCON_MAX_0GBPS:
3407 default:
3408 return 0;
3409 }
3410
3411 return 0;
3412 }
3413 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
3414
3415 /**
3416 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
3417 * @aux: DisplayPort AUX channel
3418 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
3419 *
3420 * Returns 0 if success, else returns negative error code.
3421 */
drm_dp_pcon_frl_prepare(struct drm_dp_aux * aux,bool enable_frl_ready_hpd)3422 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
3423 {
3424 int ret;
3425 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
3426 DP_PCON_ENABLE_LINK_FRL_MODE;
3427
3428 if (enable_frl_ready_hpd)
3429 buf |= DP_PCON_ENABLE_HPD_READY;
3430
3431 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3432
3433 return ret;
3434 }
3435 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
3436
3437 /**
3438 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
3439 * @aux: DisplayPort AUX channel
3440 *
3441 * Returns true if success, else returns false.
3442 */
drm_dp_pcon_is_frl_ready(struct drm_dp_aux * aux)3443 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
3444 {
3445 int ret;
3446 u8 buf;
3447
3448 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3449 if (ret < 0)
3450 return false;
3451
3452 if (buf & DP_PCON_FRL_READY)
3453 return true;
3454
3455 return false;
3456 }
3457 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
3458
3459 /**
3460 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3461 * @aux: DisplayPort AUX channel
3462 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3463 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3464 * In Concurrent Mode, the FRL link bring up can be done along with
3465 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3466 * the DP Link training.
3467 *
3468 * Returns 0 if success, else returns negative error code.
3469 */
3470
drm_dp_pcon_frl_configure_1(struct drm_dp_aux * aux,int max_frl_gbps,u8 frl_mode)3471 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3472 u8 frl_mode)
3473 {
3474 int ret;
3475 u8 buf;
3476
3477 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3478 if (ret < 0)
3479 return ret;
3480
3481 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3482 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3483 else
3484 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3485
3486 switch (max_frl_gbps) {
3487 case 9:
3488 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3489 break;
3490 case 18:
3491 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3492 break;
3493 case 24:
3494 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3495 break;
3496 case 32:
3497 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3498 break;
3499 case 40:
3500 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3501 break;
3502 case 48:
3503 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3504 break;
3505 case 0:
3506 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3507 break;
3508 default:
3509 return -EINVAL;
3510 }
3511
3512 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3513 if (ret < 0)
3514 return ret;
3515
3516 return 0;
3517 }
3518 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3519
3520 /**
3521 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3522 * @aux: DisplayPort AUX channel
3523 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3524 * @frl_type : FRL training type, can be Extended, or Normal.
3525 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3526 * starting from min, and stops when link training is successful. In Extended
3527 * FRL training, all frl bw selected in the mask are trained by the PCON.
3528 *
3529 * Returns 0 if success, else returns negative error code.
3530 */
drm_dp_pcon_frl_configure_2(struct drm_dp_aux * aux,int max_frl_mask,u8 frl_type)3531 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3532 u8 frl_type)
3533 {
3534 int ret;
3535 u8 buf = max_frl_mask;
3536
3537 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3538 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3539 else
3540 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3541
3542 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3543 if (ret < 0)
3544 return ret;
3545
3546 return 0;
3547 }
3548 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3549
3550 /**
3551 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3552 * @aux: DisplayPort AUX channel
3553 *
3554 * Returns 0 if success, else returns negative error code.
3555 */
drm_dp_pcon_reset_frl_config(struct drm_dp_aux * aux)3556 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3557 {
3558 int ret;
3559
3560 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3561 if (ret < 0)
3562 return ret;
3563
3564 return 0;
3565 }
3566 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3567
3568 /**
3569 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3570 * @aux: DisplayPort AUX channel
3571 *
3572 * Returns 0 if success, else returns negative error code.
3573 */
drm_dp_pcon_frl_enable(struct drm_dp_aux * aux)3574 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3575 {
3576 int ret;
3577 u8 buf = 0;
3578
3579 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3580 if (ret < 0)
3581 return ret;
3582 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3583 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3584 aux->name);
3585 return -EINVAL;
3586 }
3587 buf |= DP_PCON_ENABLE_HDMI_LINK;
3588 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3589 if (ret < 0)
3590 return ret;
3591
3592 return 0;
3593 }
3594 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3595
3596 /**
3597 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3598 * @aux: DisplayPort AUX channel
3599 *
3600 * Returns true if link is active else returns false.
3601 */
drm_dp_pcon_hdmi_link_active(struct drm_dp_aux * aux)3602 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3603 {
3604 u8 buf;
3605 int ret;
3606
3607 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3608 if (ret < 0)
3609 return false;
3610
3611 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3612 }
3613 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3614
3615 /**
3616 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3617 * @aux: DisplayPort AUX channel
3618 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3619 * Valid only if the MODE returned is FRL. For Normal Link training mode
3620 * only 1 of the bits will be set, but in case of Extended mode, more than
3621 * one bits can be set.
3622 *
3623 * Returns the link mode : TMDS or FRL on success, else returns negative error
3624 * code.
3625 */
drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux * aux,u8 * frl_trained_mask)3626 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3627 {
3628 u8 buf;
3629 int mode;
3630 int ret;
3631
3632 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3633 if (ret < 0)
3634 return ret;
3635
3636 mode = buf & DP_PCON_HDMI_LINK_MODE;
3637
3638 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3639 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3640
3641 return mode;
3642 }
3643 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3644
3645 /**
3646 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3647 * during link failure between PCON and HDMI sink
3648 * @aux: DisplayPort AUX channel
3649 * @connector: DRM connector
3650 * code.
3651 **/
3652
drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux * aux,struct drm_connector * connector)3653 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3654 struct drm_connector *connector)
3655 {
3656 u8 buf, error_count;
3657 int i, num_error;
3658 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3659
3660 for (i = 0; i < hdmi->max_lanes; i++) {
3661 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3662 return;
3663
3664 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3665 switch (error_count) {
3666 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3667 num_error = 100;
3668 break;
3669 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3670 num_error = 10;
3671 break;
3672 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3673 num_error = 3;
3674 break;
3675 default:
3676 num_error = 0;
3677 }
3678
3679 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3680 aux->name, num_error, i);
3681 }
3682 }
3683 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3684
3685 /*
3686 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3687 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3688 *
3689 * Returns true is PCON encoder is DSC 1.2 else returns false.
3690 */
drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3691 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3692 {
3693 u8 buf;
3694 u8 major_v, minor_v;
3695
3696 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3697 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3698 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3699
3700 if (major_v == 1 && minor_v == 2)
3701 return true;
3702
3703 return false;
3704 }
3705 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3706
3707 /*
3708 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3709 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3710 *
3711 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3712 */
drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3713 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3714 {
3715 u8 slice_cap1, slice_cap2;
3716
3717 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3718 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3719
3720 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3721 return 24;
3722 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3723 return 20;
3724 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3725 return 16;
3726 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3727 return 12;
3728 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3729 return 10;
3730 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3731 return 8;
3732 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3733 return 6;
3734 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3735 return 4;
3736 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3737 return 2;
3738 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3739 return 1;
3740
3741 return 0;
3742 }
3743 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3744
3745 /*
3746 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3747 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3748 *
3749 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3750 */
drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3751 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3752 {
3753 u8 buf;
3754
3755 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3756
3757 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3758 }
3759 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3760
3761 /*
3762 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3763 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3764 *
3765 * Returns the bpp precision supported by the PCON encoder.
3766 */
drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])3767 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3768 {
3769 u8 buf;
3770
3771 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3772
3773 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3774 case DP_PCON_DSC_ONE_16TH_BPP:
3775 return 16;
3776 case DP_PCON_DSC_ONE_8TH_BPP:
3777 return 8;
3778 case DP_PCON_DSC_ONE_4TH_BPP:
3779 return 4;
3780 case DP_PCON_DSC_ONE_HALF_BPP:
3781 return 2;
3782 case DP_PCON_DSC_ONE_BPP:
3783 return 1;
3784 }
3785
3786 return 0;
3787 }
3788 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3789
3790 static
drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux * aux,u8 pps_buf_config)3791 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3792 {
3793 u8 buf;
3794 int ret;
3795
3796 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3797 if (ret < 0)
3798 return ret;
3799
3800 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3801
3802 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3803 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3804 buf |= pps_buf_config << 2;
3805 }
3806
3807 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3808 if (ret < 0)
3809 return ret;
3810
3811 return 0;
3812 }
3813
3814 /**
3815 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3816 * for DSC1.2 between PCON & HDMI2.1 sink
3817 * @aux: DisplayPort AUX channel
3818 *
3819 * Returns 0 on success, else returns negative error code.
3820 */
drm_dp_pcon_pps_default(struct drm_dp_aux * aux)3821 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3822 {
3823 int ret;
3824
3825 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3826 if (ret < 0)
3827 return ret;
3828
3829 return 0;
3830 }
3831 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3832
3833 /**
3834 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3835 * HDMI sink
3836 * @aux: DisplayPort AUX channel
3837 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3838 *
3839 * Returns 0 on success, else returns negative error code.
3840 */
drm_dp_pcon_pps_override_buf(struct drm_dp_aux * aux,u8 pps_buf[128])3841 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3842 {
3843 int ret;
3844
3845 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3846 if (ret < 0)
3847 return ret;
3848
3849 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3850 if (ret < 0)
3851 return ret;
3852
3853 return 0;
3854 }
3855 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3856
3857 /*
3858 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3859 * override registers
3860 * @aux: DisplayPort AUX channel
3861 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3862 * bits_per_pixel.
3863 *
3864 * Returns 0 on success, else returns negative error code.
3865 */
drm_dp_pcon_pps_override_param(struct drm_dp_aux * aux,u8 pps_param[6])3866 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3867 {
3868 int ret;
3869
3870 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3871 if (ret < 0)
3872 return ret;
3873 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3874 if (ret < 0)
3875 return ret;
3876 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3877 if (ret < 0)
3878 return ret;
3879
3880 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3881 if (ret < 0)
3882 return ret;
3883
3884 return 0;
3885 }
3886 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3887
3888 /*
3889 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3890 * @aux: displayPort AUX channel
3891 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3892 *
3893 * Returns 0 on success, else returns negative error code.
3894 */
drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux * aux,u8 color_spc)3895 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3896 {
3897 int ret;
3898 u8 buf;
3899
3900 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3901 if (ret < 0)
3902 return ret;
3903
3904 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3905 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3906 else
3907 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3908
3909 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3910 if (ret < 0)
3911 return ret;
3912
3913 return 0;
3914 }
3915 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3916
3917 /**
3918 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3919 * @aux: The DP AUX channel to use
3920 * @bl: Backlight capability info from drm_edp_backlight_init()
3921 * @level: The brightness level to set
3922 *
3923 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3924 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3925 *
3926 * Returns: %0 on success, negative error code on failure
3927 */
drm_edp_backlight_set_level(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,u16 level)3928 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3929 u16 level)
3930 {
3931 int ret;
3932 u8 buf[2] = { 0 };
3933
3934 /* The panel uses the PWM for controlling brightness levels */
3935 if (!bl->aux_set)
3936 return 0;
3937
3938 if (bl->lsb_reg_used) {
3939 buf[0] = (level & 0xff00) >> 8;
3940 buf[1] = (level & 0x00ff);
3941 } else {
3942 buf[0] = level;
3943 }
3944
3945 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3946 if (ret != sizeof(buf)) {
3947 drm_err(aux->drm_dev,
3948 "%s: Failed to write aux backlight level: %d\n",
3949 aux->name, ret);
3950 return ret < 0 ? ret : -EIO;
3951 }
3952
3953 return 0;
3954 }
3955 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3956
3957 static int
drm_edp_backlight_set_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,bool enable)3958 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3959 bool enable)
3960 {
3961 int ret;
3962 u8 buf;
3963
3964 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3965 if (!bl->aux_enable)
3966 return 0;
3967
3968 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3969 if (ret != 1) {
3970 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3971 aux->name, ret);
3972 return ret < 0 ? ret : -EIO;
3973 }
3974 if (enable)
3975 buf |= DP_EDP_BACKLIGHT_ENABLE;
3976 else
3977 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3978
3979 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3980 if (ret != 1) {
3981 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3982 aux->name, ret);
3983 return ret < 0 ? ret : -EIO;
3984 }
3985
3986 return 0;
3987 }
3988
3989 /**
3990 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3991 * @aux: The DP AUX channel to use
3992 * @bl: Backlight capability info from drm_edp_backlight_init()
3993 * @level: The initial backlight level to set via AUX, if there is one
3994 *
3995 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3996 * restoring any important backlight state such as the given backlight level, the brightness byte
3997 * count, backlight frequency, etc.
3998 *
3999 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4000 * that the driver handle enabling/disabling the panel through implementation-specific means using
4001 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4002 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
4003 * the EDP_BL_PWR GPIO.
4004 *
4005 * Returns: %0 on success, negative error code on failure.
4006 */
drm_edp_backlight_enable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl,const u16 level)4007 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
4008 const u16 level)
4009 {
4010 int ret;
4011 u8 dpcd_buf;
4012
4013 if (bl->aux_set)
4014 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
4015 else
4016 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
4017
4018 if (bl->pwmgen_bit_count) {
4019 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
4020 if (ret != 1)
4021 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4022 aux->name, ret);
4023 }
4024
4025 if (bl->pwm_freq_pre_divider) {
4026 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
4027 if (ret != 1)
4028 drm_dbg_kms(aux->drm_dev,
4029 "%s: Failed to write aux backlight frequency: %d\n",
4030 aux->name, ret);
4031 else
4032 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
4033 }
4034
4035 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
4036 if (ret != 1) {
4037 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
4038 aux->name, ret);
4039 return ret < 0 ? ret : -EIO;
4040 }
4041
4042 ret = drm_edp_backlight_set_level(aux, bl, level);
4043 if (ret < 0)
4044 return ret;
4045 ret = drm_edp_backlight_set_enable(aux, bl, true);
4046 if (ret < 0)
4047 return ret;
4048
4049 return 0;
4050 }
4051 EXPORT_SYMBOL(drm_edp_backlight_enable);
4052
4053 /**
4054 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
4055 * @aux: The DP AUX channel to use
4056 * @bl: Backlight capability info from drm_edp_backlight_init()
4057 *
4058 * This function handles disabling DPCD backlight controls on a panel over AUX.
4059 *
4060 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
4061 * that the driver handle enabling/disabling the panel through implementation-specific means using
4062 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
4063 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
4064 * the EDP_BL_PWR GPIO.
4065 *
4066 * Returns: %0 on success or no-op, negative error code on failure.
4067 */
drm_edp_backlight_disable(struct drm_dp_aux * aux,const struct drm_edp_backlight_info * bl)4068 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
4069 {
4070 int ret;
4071
4072 ret = drm_edp_backlight_set_enable(aux, bl, false);
4073 if (ret < 0)
4074 return ret;
4075
4076 return 0;
4077 }
4078 EXPORT_SYMBOL(drm_edp_backlight_disable);
4079
4080 static inline int
drm_edp_backlight_probe_max(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])4081 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4082 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
4083 {
4084 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
4085 int ret;
4086 u8 pn, pn_min, pn_max;
4087
4088 if (!bl->aux_set)
4089 return 0;
4090
4091 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
4092 if (ret != 1) {
4093 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
4094 aux->name, ret);
4095 return -ENODEV;
4096 }
4097
4098 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4099 bl->max = (1 << pn) - 1;
4100 if (!driver_pwm_freq_hz)
4101 return 0;
4102
4103 /*
4104 * Set PWM Frequency divider to match desired frequency provided by the driver.
4105 * The PWM Frequency is calculated as 27Mhz / (F x P).
4106 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
4107 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
4108 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
4109 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
4110 */
4111
4112 /* Find desired value of (F x P)
4113 * Note that, if F x P is out of supported range, the maximum value or minimum value will
4114 * applied automatically. So no need to check that.
4115 */
4116 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
4117
4118 /* Use highest possible value of Pn for more granularity of brightness adjustment while
4119 * satisfying the conditions below.
4120 * - Pn is in the range of Pn_min and Pn_max
4121 * - F is in the range of 1 and 255
4122 * - FxP is within 25% of desired value.
4123 * Note: 25% is arbitrary value and may need some tweak.
4124 */
4125 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
4126 if (ret != 1) {
4127 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
4128 aux->name, ret);
4129 return 0;
4130 }
4131 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
4132 if (ret != 1) {
4133 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
4134 aux->name, ret);
4135 return 0;
4136 }
4137 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4138 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
4139
4140 /* Ensure frequency is within 25% of desired value */
4141 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
4142 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
4143 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
4144 drm_dbg_kms(aux->drm_dev,
4145 "%s: Driver defined backlight frequency (%d) out of range\n",
4146 aux->name, driver_pwm_freq_hz);
4147 return 0;
4148 }
4149
4150 for (pn = pn_max; pn >= pn_min; pn--) {
4151 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
4152 fxp_actual = f << pn;
4153 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
4154 break;
4155 }
4156
4157 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
4158 if (ret != 1) {
4159 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
4160 aux->name, ret);
4161 return 0;
4162 }
4163 bl->pwmgen_bit_count = pn;
4164 bl->max = (1 << pn) - 1;
4165
4166 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
4167 bl->pwm_freq_pre_divider = f;
4168 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
4169 aux->name, driver_pwm_freq_hz);
4170 }
4171
4172 return 0;
4173 }
4174
4175 static inline int
drm_edp_backlight_probe_state(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u8 * current_mode)4176 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4177 u8 *current_mode)
4178 {
4179 int ret;
4180 u8 buf[2];
4181 u8 mode_reg;
4182
4183 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
4184 if (ret != 1) {
4185 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
4186 aux->name, ret);
4187 return ret < 0 ? ret : -EIO;
4188 }
4189
4190 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
4191 if (!bl->aux_set)
4192 return 0;
4193
4194 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
4195 int size = 1 + bl->lsb_reg_used;
4196
4197 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
4198 if (ret != size) {
4199 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
4200 aux->name, ret);
4201 return ret < 0 ? ret : -EIO;
4202 }
4203
4204 if (bl->lsb_reg_used)
4205 return (buf[0] << 8) | buf[1];
4206 else
4207 return buf[0];
4208 }
4209
4210 /*
4211 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
4212 * the driver should assume max brightness
4213 */
4214 return bl->max;
4215 }
4216
4217 /**
4218 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
4219 * interface.
4220 * @aux: The DP aux device to use for probing
4221 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
4222 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
4223 * @edp_dpcd: A cached copy of the eDP DPCD
4224 * @current_level: Where to store the probed brightness level, if any
4225 * @current_mode: Where to store the currently set backlight control mode
4226 *
4227 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
4228 * along with also probing the current and maximum supported brightness levels.
4229 *
4230 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
4231 * default frequency from the panel is used.
4232 *
4233 * Returns: %0 on success, negative error code on failure.
4234 */
4235 int
drm_edp_backlight_init(struct drm_dp_aux * aux,struct drm_edp_backlight_info * bl,u16 driver_pwm_freq_hz,const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],u16 * current_level,u8 * current_mode)4236 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
4237 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
4238 u16 *current_level, u8 *current_mode)
4239 {
4240 int ret;
4241
4242 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
4243 bl->aux_enable = true;
4244 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
4245 bl->aux_set = true;
4246 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
4247 bl->lsb_reg_used = true;
4248
4249 /* Sanity check caps */
4250 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
4251 drm_dbg_kms(aux->drm_dev,
4252 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
4253 aux->name);
4254 return -EINVAL;
4255 }
4256
4257 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
4258 if (ret < 0)
4259 return ret;
4260
4261 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
4262 if (ret < 0)
4263 return ret;
4264 *current_level = ret;
4265
4266 drm_dbg_kms(aux->drm_dev,
4267 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
4268 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
4269 if (bl->aux_set) {
4270 drm_dbg_kms(aux->drm_dev,
4271 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
4272 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
4273 bl->lsb_reg_used);
4274 }
4275
4276 return 0;
4277 }
4278 EXPORT_SYMBOL(drm_edp_backlight_init);
4279
4280 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
4281 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
4282
dp_aux_backlight_update_status(struct backlight_device * bd)4283 static int dp_aux_backlight_update_status(struct backlight_device *bd)
4284 {
4285 struct dp_aux_backlight *bl = bl_get_data(bd);
4286 u16 brightness = backlight_get_brightness(bd);
4287 int ret = 0;
4288
4289 if (!backlight_is_blank(bd)) {
4290 if (!bl->enabled) {
4291 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
4292 bl->enabled = true;
4293 return 0;
4294 }
4295 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
4296 } else {
4297 if (bl->enabled) {
4298 drm_edp_backlight_disable(bl->aux, &bl->info);
4299 bl->enabled = false;
4300 }
4301 }
4302
4303 return ret;
4304 }
4305
4306 static const struct backlight_ops dp_aux_bl_ops = {
4307 .update_status = dp_aux_backlight_update_status,
4308 };
4309
4310 /**
4311 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
4312 * @panel: DRM panel
4313 * @aux: The DP AUX channel to use
4314 *
4315 * Use this function to create and handle backlight if your panel
4316 * supports backlight control over DP AUX channel using DPCD
4317 * registers as per VESA's standard backlight control interface.
4318 *
4319 * When the panel is enabled backlight will be enabled after a
4320 * successful call to &drm_panel_funcs.enable()
4321 *
4322 * When the panel is disabled backlight will be disabled before the
4323 * call to &drm_panel_funcs.disable().
4324 *
4325 * A typical implementation for a panel driver supporting backlight
4326 * control over DP AUX will call this function at probe time.
4327 * Backlight will then be handled transparently without requiring
4328 * any intervention from the driver.
4329 *
4330 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
4331 *
4332 * Return: 0 on success or a negative error code on failure.
4333 */
drm_panel_dp_aux_backlight(struct drm_panel * panel,struct drm_dp_aux * aux)4334 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
4335 {
4336 struct dp_aux_backlight *bl;
4337 struct backlight_properties props = { 0 };
4338 u16 current_level;
4339 u8 current_mode;
4340 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
4341 int ret;
4342
4343 if (!panel || !panel->dev || !aux)
4344 return -EINVAL;
4345
4346 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
4347 EDP_DISPLAY_CTL_CAP_SIZE);
4348 if (ret < 0)
4349 return ret;
4350
4351 if (!drm_edp_backlight_supported(edp_dpcd)) {
4352 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
4353 return 0;
4354 }
4355
4356 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
4357 if (!bl)
4358 return -ENOMEM;
4359
4360 bl->aux = aux;
4361
4362 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
4363 ¤t_level, ¤t_mode);
4364 if (ret < 0)
4365 return ret;
4366
4367 props.type = BACKLIGHT_RAW;
4368 props.brightness = current_level;
4369 props.max_brightness = bl->info.max;
4370
4371 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
4372 panel->dev, bl,
4373 &dp_aux_bl_ops, &props);
4374 if (IS_ERR(bl->base))
4375 return PTR_ERR(bl->base);
4376
4377 backlight_disable(bl->base);
4378
4379 panel->backlight = bl->base;
4380
4381 return 0;
4382 }
4383 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
4384
4385 #endif
4386
4387 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
drm_dp_link_symbol_cycles(int lane_count,int pixels,int bpp_x16,int symbol_size,bool is_mst)4388 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
4389 int symbol_size, bool is_mst)
4390 {
4391 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
4392 int align = is_mst ? 4 / lane_count : 1;
4393
4394 return ALIGN(cycles, align);
4395 }
4396
drm_dp_link_dsc_symbol_cycles(int lane_count,int pixels,int slice_count,int bpp_x16,int symbol_size,bool is_mst)4397 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
4398 int bpp_x16, int symbol_size, bool is_mst)
4399 {
4400 int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
4401 int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
4402 bpp_x16, symbol_size, is_mst);
4403 int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
4404
4405 return slice_count * (slice_data_cycles + slice_eoc_cycles);
4406 }
4407
4408 /**
4409 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
4410 * @lane_count: DP link lane count
4411 * @hactive: pixel count of the active period in one scanline of the stream
4412 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
4413 * @bpp_x16: bits per pixel in .4 binary fixed point
4414 * @flags: DRM_DP_OVERHEAD_x flags
4415 *
4416 * Calculate the BW allocation overhead of a DP link stream, depending
4417 * on the link's
4418 * - @lane_count
4419 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
4420 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
4421 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
4422 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
4423 * as well as the stream's
4424 * - @hactive timing
4425 * - @bpp_x16 color depth
4426 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
4427 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
4428 * channel coding efficiency, for that see
4429 * @drm_dp_link_bw_channel_coding_efficiency().
4430 *
4431 * Returns the overhead as 100% + overhead% in 1ppm units.
4432 */
drm_dp_bw_overhead(int lane_count,int hactive,int dsc_slice_count,int bpp_x16,unsigned long flags)4433 int drm_dp_bw_overhead(int lane_count, int hactive,
4434 int dsc_slice_count,
4435 int bpp_x16, unsigned long flags)
4436 {
4437 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
4438 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
4439 u32 overhead = 1000000;
4440 int symbol_cycles;
4441
4442 if (lane_count == 0 || hactive == 0 || bpp_x16 == 0) {
4443 DRM_DEBUG_KMS("Invalid BW overhead params: lane_count %d, hactive %d, bpp_x16 " FXP_Q4_FMT "\n",
4444 lane_count, hactive,
4445 FXP_Q4_ARGS(bpp_x16));
4446 return 0;
4447 }
4448
4449 /*
4450 * DP Standard v2.1 2.6.4.1
4451 * SSC downspread and ref clock variation margin:
4452 * 5300ppm + 300ppm ~ 0.6%
4453 */
4454 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
4455 overhead += 6000;
4456
4457 /*
4458 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
4459 * FEC symbol insertions for 8b/10b channel coding:
4460 * After each 250 data symbols on 2-4 lanes:
4461 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block)
4462 * After each 2 x 250 data symbols on 1 lane:
4463 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
4464 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
4465 * 256 * 256 bytes + 1 FEC_PM
4466 * or
4467 * 128 * 512 bytes + 1 FEC_PM
4468 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4469 */
4470 if (flags & DRM_DP_BW_OVERHEAD_FEC)
4471 overhead += 24016;
4472
4473 /*
4474 * DP Standard v2.1 2.7.9, 5.9.7
4475 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4476 * coding efficiency.
4477 */
4478 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4479 (flags & DRM_DP_BW_OVERHEAD_FEC));
4480
4481 if (flags & DRM_DP_BW_OVERHEAD_DSC)
4482 symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4483 dsc_slice_count,
4484 bpp_x16, symbol_size,
4485 is_mst);
4486 else
4487 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4488 bpp_x16, symbol_size,
4489 is_mst);
4490
4491 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4492 overhead * 16),
4493 hactive * bpp_x16);
4494 }
4495 EXPORT_SYMBOL(drm_dp_bw_overhead);
4496
4497 /**
4498 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4499 * @is_uhbr: Whether the link has a 128b/132b channel coding
4500 *
4501 * Return the channel coding efficiency of the given DP link type, which is
4502 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4503 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4504 * and for 128b/132b any link or PHY level control symbol insertion overhead
4505 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4506 * corresponding FEC overhead is BW allocation specific, included in the value
4507 * returned by drm_dp_bw_overhead().
4508 *
4509 * Returns the efficiency in the 100%/coding-overhead% ratio in
4510 * 1ppm units.
4511 */
drm_dp_bw_channel_coding_efficiency(bool is_uhbr)4512 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4513 {
4514 if (is_uhbr)
4515 return 967100;
4516 else
4517 /*
4518 * Note that on 8b/10b MST the efficiency is only
4519 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4520 * not accounted for here.
4521 */
4522 return 800000;
4523 }
4524 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4525
4526 /**
4527 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4528 * @max_link_rate: max DPRX link rate in 10kbps units
4529 * @max_lanes: max DPRX lane count
4530 *
4531 * Given a link rate and lanes, get the data bandwidth.
4532 *
4533 * Data bandwidth is the actual payload rate, which depends on the data
4534 * bandwidth efficiency and the link rate.
4535 *
4536 * Note that protocol layers above the DPRX link level considered here can
4537 * further limit the maximum data rate. Such layers are the MST topology (with
4538 * limits on the link between the source and first branch device as well as on
4539 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4540 * which in turn can encapsulate an MST link with its own limit - with each
4541 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4542 *
4543 * Returns the maximum data rate in kBps units.
4544 */
drm_dp_max_dprx_data_rate(int max_link_rate,int max_lanes)4545 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4546 {
4547 int ch_coding_efficiency =
4548 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4549
4550 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4551 ch_coding_efficiency),
4552 1000000 * 8);
4553 }
4554 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);
4555