1 /* 2 * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org 3 * 4 * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. 5 * All Rights Reserved. 6 * 7 * Author Rickard E. (Rik) Faith <faith@valinux.com> 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a 10 * copy of this software and associated documentation files (the "Software"), 11 * to deal in the Software without restriction, including without limitation 12 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 13 * and/or sell copies of the Software, and to permit persons to whom the 14 * Software is furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice (including the next 17 * paragraph) shall be included in all copies or substantial portions of the 18 * Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 24 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 25 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 26 * DEALINGS IN THE SOFTWARE. 27 */ 28 29 #include <linux/bitops.h> 30 #include <linux/cgroup_dmem.h> 31 #include <linux/debugfs.h> 32 #include <linux/fs.h> 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/mount.h> 36 #include <linux/pseudo_fs.h> 37 #include <linux/slab.h> 38 #include <linux/sprintf.h> 39 #include <linux/srcu.h> 40 #include <linux/xarray.h> 41 42 #include <drm/drm_accel.h> 43 #include <drm/drm_cache.h> 44 #include <drm/drm_client_event.h> 45 #include <drm/drm_color_mgmt.h> 46 #include <drm/drm_drv.h> 47 #include <drm/drm_file.h> 48 #include <drm/drm_managed.h> 49 #include <drm/drm_mode_object.h> 50 #include <drm/drm_panic.h> 51 #include <drm/drm_print.h> 52 #include <drm/drm_privacy_screen_machine.h> 53 54 #include "drm_crtc_internal.h" 55 #include "drm_internal.h" 56 57 MODULE_AUTHOR("Gareth Hughes, Leif Delgass, José Fonseca, Jon Smirl"); 58 MODULE_DESCRIPTION("DRM shared core routines"); 59 MODULE_LICENSE("GPL and additional rights"); 60 61 DEFINE_XARRAY_ALLOC(drm_minors_xa); 62 63 /* 64 * If the drm core fails to init for whatever reason, 65 * we should prevent any drivers from registering with it. 66 * It's best to check this at drm_dev_init(), as some drivers 67 * prefer to embed struct drm_device into their own device 68 * structure and call drm_dev_init() themselves. 69 */ 70 static bool drm_core_init_complete; 71 72 static struct dentry *drm_debugfs_root; 73 74 DEFINE_STATIC_SRCU(drm_unplug_srcu); 75 76 /* 77 * DRM Minors 78 * A DRM device can provide several char-dev interfaces on the DRM-Major. Each 79 * of them is represented by a drm_minor object. Depending on the capabilities 80 * of the device-driver, different interfaces are registered. 81 * 82 * Minors can be accessed via dev->$minor_name. This pointer is either 83 * NULL or a valid drm_minor pointer and stays valid as long as the device is 84 * valid. This means, DRM minors have the same life-time as the underlying 85 * device. However, this doesn't mean that the minor is active. Minors are 86 * registered and unregistered dynamically according to device-state. 87 */ 88 89 static struct xarray *drm_minor_get_xa(enum drm_minor_type type) 90 { 91 if (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER) 92 return &drm_minors_xa; 93 #if IS_ENABLED(CONFIG_DRM_ACCEL) 94 else if (type == DRM_MINOR_ACCEL) 95 return &accel_minors_xa; 96 #endif 97 else 98 return ERR_PTR(-EOPNOTSUPP); 99 } 100 101 static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, 102 enum drm_minor_type type) 103 { 104 switch (type) { 105 case DRM_MINOR_PRIMARY: 106 return &dev->primary; 107 case DRM_MINOR_RENDER: 108 return &dev->render; 109 case DRM_MINOR_ACCEL: 110 return &dev->accel; 111 default: 112 BUG(); 113 } 114 } 115 116 static void drm_minor_alloc_release(struct drm_device *dev, void *data) 117 { 118 struct drm_minor *minor = data; 119 120 WARN_ON(dev != minor->dev); 121 122 put_device(minor->kdev); 123 124 xa_erase(drm_minor_get_xa(minor->type), minor->index); 125 } 126 127 /* 128 * DRM used to support 64 devices, for backwards compatibility we need to maintain the 129 * minor allocation scheme where minors 0-63 are primary nodes, 64-127 are control nodes, 130 * and 128-191 are render nodes. 131 * After reaching the limit, we're allocating minors dynamically - first-come, first-serve. 132 * Accel nodes are using a distinct major, so the minors are allocated in continuous 0-MAX 133 * range. 134 */ 135 #define DRM_MINOR_LIMIT(t) ({ \ 136 typeof(t) _t = (t); \ 137 _t == DRM_MINOR_ACCEL ? XA_LIMIT(0, ACCEL_MAX_MINORS) : XA_LIMIT(64 * _t, 64 * _t + 63); \ 138 }) 139 #define DRM_EXTENDED_MINOR_LIMIT XA_LIMIT(192, (1 << MINORBITS) - 1) 140 141 static int drm_minor_alloc(struct drm_device *dev, enum drm_minor_type type) 142 { 143 struct drm_minor *minor; 144 int r; 145 146 minor = drmm_kzalloc(dev, sizeof(*minor), GFP_KERNEL); 147 if (!minor) 148 return -ENOMEM; 149 150 minor->type = type; 151 minor->dev = dev; 152 153 r = xa_alloc(drm_minor_get_xa(type), &minor->index, 154 NULL, DRM_MINOR_LIMIT(type), GFP_KERNEL); 155 if (r == -EBUSY && (type == DRM_MINOR_PRIMARY || type == DRM_MINOR_RENDER)) 156 r = xa_alloc(&drm_minors_xa, &minor->index, 157 NULL, DRM_EXTENDED_MINOR_LIMIT, GFP_KERNEL); 158 if (r < 0) 159 return r; 160 161 r = drmm_add_action_or_reset(dev, drm_minor_alloc_release, minor); 162 if (r) 163 return r; 164 165 minor->kdev = drm_sysfs_minor_alloc(minor); 166 if (IS_ERR(minor->kdev)) 167 return PTR_ERR(minor->kdev); 168 169 *drm_minor_get_slot(dev, type) = minor; 170 return 0; 171 } 172 173 static int drm_minor_register(struct drm_device *dev, enum drm_minor_type type) 174 { 175 struct drm_minor *minor; 176 void *entry; 177 int ret; 178 179 DRM_DEBUG("\n"); 180 181 minor = *drm_minor_get_slot(dev, type); 182 if (!minor) 183 return 0; 184 185 if (minor->type != DRM_MINOR_ACCEL) { 186 ret = drm_debugfs_register(minor, minor->index, 187 drm_debugfs_root); 188 if (ret) { 189 DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); 190 goto err_debugfs; 191 } 192 } 193 194 ret = device_add(minor->kdev); 195 if (ret) 196 goto err_debugfs; 197 198 /* replace NULL with @minor so lookups will succeed from now on */ 199 entry = xa_store(drm_minor_get_xa(type), minor->index, minor, GFP_KERNEL); 200 if (xa_is_err(entry)) { 201 ret = xa_err(entry); 202 goto err_debugfs; 203 } 204 WARN_ON(entry); 205 206 DRM_DEBUG("new minor registered %d\n", minor->index); 207 return 0; 208 209 err_debugfs: 210 drm_debugfs_unregister(minor); 211 return ret; 212 } 213 214 static void drm_minor_unregister(struct drm_device *dev, enum drm_minor_type type) 215 { 216 struct drm_minor *minor; 217 218 minor = *drm_minor_get_slot(dev, type); 219 if (!minor || !device_is_registered(minor->kdev)) 220 return; 221 222 /* replace @minor with NULL so lookups will fail from now on */ 223 xa_store(drm_minor_get_xa(type), minor->index, NULL, GFP_KERNEL); 224 225 device_del(minor->kdev); 226 dev_set_drvdata(minor->kdev, NULL); /* safety belt */ 227 drm_debugfs_unregister(minor); 228 } 229 230 /* 231 * Looks up the given minor-ID and returns the respective DRM-minor object. The 232 * refence-count of the underlying device is increased so you must release this 233 * object with drm_minor_release(). 234 * 235 * As long as you hold this minor, it is guaranteed that the object and the 236 * minor->dev pointer will stay valid! However, the device may get unplugged and 237 * unregistered while you hold the minor. 238 */ 239 struct drm_minor *drm_minor_acquire(struct xarray *minor_xa, unsigned int minor_id) 240 { 241 struct drm_minor *minor; 242 243 xa_lock(minor_xa); 244 minor = xa_load(minor_xa, minor_id); 245 if (minor) 246 drm_dev_get(minor->dev); 247 xa_unlock(minor_xa); 248 249 if (!minor) { 250 return ERR_PTR(-ENODEV); 251 } else if (drm_dev_is_unplugged(minor->dev)) { 252 drm_dev_put(minor->dev); 253 return ERR_PTR(-ENODEV); 254 } 255 256 return minor; 257 } 258 259 void drm_minor_release(struct drm_minor *minor) 260 { 261 drm_dev_put(minor->dev); 262 } 263 264 /** 265 * DOC: driver instance overview 266 * 267 * A device instance for a drm driver is represented by &struct drm_device. This 268 * is allocated and initialized with devm_drm_dev_alloc(), usually from 269 * bus-specific ->probe() callbacks implemented by the driver. The driver then 270 * needs to initialize all the various subsystems for the drm device like memory 271 * management, vblank handling, modesetting support and initial output 272 * configuration plus obviously initialize all the corresponding hardware bits. 273 * Finally when everything is up and running and ready for userspace the device 274 * instance can be published using drm_dev_register(). 275 * 276 * There is also deprecated support for initializing device instances using 277 * bus-specific helpers and the &drm_driver.load callback. But due to 278 * backwards-compatibility needs the device instance have to be published too 279 * early, which requires unpretty global locking to make safe and is therefore 280 * only support for existing drivers not yet converted to the new scheme. 281 * 282 * When cleaning up a device instance everything needs to be done in reverse: 283 * First unpublish the device instance with drm_dev_unregister(). Then clean up 284 * any other resources allocated at device initialization and drop the driver's 285 * reference to &drm_device using drm_dev_put(). 286 * 287 * Note that any allocation or resource which is visible to userspace must be 288 * released only when the final drm_dev_put() is called, and not when the 289 * driver is unbound from the underlying physical struct &device. Best to use 290 * &drm_device managed resources with drmm_add_action(), drmm_kmalloc() and 291 * related functions. 292 * 293 * devres managed resources like devm_kmalloc() can only be used for resources 294 * directly related to the underlying hardware device, and only used in code 295 * paths fully protected by drm_dev_enter() and drm_dev_exit(). 296 * 297 * Display driver example 298 * ~~~~~~~~~~~~~~~~~~~~~~ 299 * 300 * The following example shows a typical structure of a DRM display driver. 301 * The example focus on the probe() function and the other functions that is 302 * almost always present and serves as a demonstration of devm_drm_dev_alloc(). 303 * 304 * .. code-block:: c 305 * 306 * struct driver_device { 307 * struct drm_device drm; 308 * void *userspace_facing; 309 * struct clk *pclk; 310 * }; 311 * 312 * static const struct drm_driver driver_drm_driver = { 313 * [...] 314 * }; 315 * 316 * static int driver_probe(struct platform_device *pdev) 317 * { 318 * struct driver_device *priv; 319 * struct drm_device *drm; 320 * int ret; 321 * 322 * priv = devm_drm_dev_alloc(&pdev->dev, &driver_drm_driver, 323 * struct driver_device, drm); 324 * if (IS_ERR(priv)) 325 * return PTR_ERR(priv); 326 * drm = &priv->drm; 327 * 328 * ret = drmm_mode_config_init(drm); 329 * if (ret) 330 * return ret; 331 * 332 * priv->userspace_facing = drmm_kzalloc(..., GFP_KERNEL); 333 * if (!priv->userspace_facing) 334 * return -ENOMEM; 335 * 336 * priv->pclk = devm_clk_get(dev, "PCLK"); 337 * if (IS_ERR(priv->pclk)) 338 * return PTR_ERR(priv->pclk); 339 * 340 * // Further setup, display pipeline etc 341 * 342 * platform_set_drvdata(pdev, drm); 343 * 344 * drm_mode_config_reset(drm); 345 * 346 * ret = drm_dev_register(drm); 347 * if (ret) 348 * return ret; 349 * 350 * drm_fbdev_{...}_setup(drm, 32); 351 * 352 * return 0; 353 * } 354 * 355 * // This function is called before the devm_ resources are released 356 * static int driver_remove(struct platform_device *pdev) 357 * { 358 * struct drm_device *drm = platform_get_drvdata(pdev); 359 * 360 * drm_dev_unregister(drm); 361 * drm_atomic_helper_shutdown(drm) 362 * 363 * return 0; 364 * } 365 * 366 * // This function is called on kernel restart and shutdown 367 * static void driver_shutdown(struct platform_device *pdev) 368 * { 369 * drm_atomic_helper_shutdown(platform_get_drvdata(pdev)); 370 * } 371 * 372 * static int __maybe_unused driver_pm_suspend(struct device *dev) 373 * { 374 * return drm_mode_config_helper_suspend(dev_get_drvdata(dev)); 375 * } 376 * 377 * static int __maybe_unused driver_pm_resume(struct device *dev) 378 * { 379 * drm_mode_config_helper_resume(dev_get_drvdata(dev)); 380 * 381 * return 0; 382 * } 383 * 384 * static const struct dev_pm_ops driver_pm_ops = { 385 * SET_SYSTEM_SLEEP_PM_OPS(driver_pm_suspend, driver_pm_resume) 386 * }; 387 * 388 * static struct platform_driver driver_driver = { 389 * .driver = { 390 * [...] 391 * .pm = &driver_pm_ops, 392 * }, 393 * .probe = driver_probe, 394 * .remove = driver_remove, 395 * .shutdown = driver_shutdown, 396 * }; 397 * module_platform_driver(driver_driver); 398 * 399 * Drivers that want to support device unplugging (USB, DT overlay unload) should 400 * use drm_dev_unplug() instead of drm_dev_unregister(). The driver must protect 401 * regions that is accessing device resources to prevent use after they're 402 * released. This is done using drm_dev_enter() and drm_dev_exit(). There is one 403 * shortcoming however, drm_dev_unplug() marks the drm_device as unplugged before 404 * drm_atomic_helper_shutdown() is called. This means that if the disable code 405 * paths are protected, they will not run on regular driver module unload, 406 * possibly leaving the hardware enabled. 407 */ 408 409 /** 410 * drm_put_dev - Unregister and release a DRM device 411 * @dev: DRM device 412 * 413 * Called at module unload time or when a PCI device is unplugged. 414 * 415 * Cleans up all DRM device, calling drm_lastclose(). 416 * 417 * Note: Use of this function is deprecated. It will eventually go away 418 * completely. Please use drm_dev_unregister() and drm_dev_put() explicitly 419 * instead to make sure that the device isn't userspace accessible any more 420 * while teardown is in progress, ensuring that userspace can't access an 421 * inconsistent state. 422 */ 423 void drm_put_dev(struct drm_device *dev) 424 { 425 DRM_DEBUG("\n"); 426 427 if (!dev) { 428 DRM_ERROR("cleanup called no dev\n"); 429 return; 430 } 431 432 drm_dev_unregister(dev); 433 drm_dev_put(dev); 434 } 435 EXPORT_SYMBOL(drm_put_dev); 436 437 /** 438 * drm_dev_enter - Enter device critical section 439 * @dev: DRM device 440 * @idx: Pointer to index that will be passed to the matching drm_dev_exit() 441 * 442 * This function marks and protects the beginning of a section that should not 443 * be entered after the device has been unplugged. The section end is marked 444 * with drm_dev_exit(). Calls to this function can be nested. 445 * 446 * Returns: 447 * True if it is OK to enter the section, false otherwise. 448 */ 449 bool drm_dev_enter(struct drm_device *dev, int *idx) 450 { 451 *idx = srcu_read_lock(&drm_unplug_srcu); 452 453 if (dev->unplugged) { 454 srcu_read_unlock(&drm_unplug_srcu, *idx); 455 return false; 456 } 457 458 return true; 459 } 460 EXPORT_SYMBOL(drm_dev_enter); 461 462 /** 463 * drm_dev_exit - Exit device critical section 464 * @idx: index returned from drm_dev_enter() 465 * 466 * This function marks the end of a section that should not be entered after 467 * the device has been unplugged. 468 */ 469 void drm_dev_exit(int idx) 470 { 471 srcu_read_unlock(&drm_unplug_srcu, idx); 472 } 473 EXPORT_SYMBOL(drm_dev_exit); 474 475 /** 476 * drm_dev_unplug - unplug a DRM device 477 * @dev: DRM device 478 * 479 * This unplugs a hotpluggable DRM device, which makes it inaccessible to 480 * userspace operations. Entry-points can use drm_dev_enter() and 481 * drm_dev_exit() to protect device resources in a race free manner. This 482 * essentially unregisters the device like drm_dev_unregister(), but can be 483 * called while there are still open users of @dev. 484 */ 485 void drm_dev_unplug(struct drm_device *dev) 486 { 487 /* 488 * After synchronizing any critical read section is guaranteed to see 489 * the new value of ->unplugged, and any critical section which might 490 * still have seen the old value of ->unplugged is guaranteed to have 491 * finished. 492 */ 493 dev->unplugged = true; 494 synchronize_srcu(&drm_unplug_srcu); 495 496 drm_dev_unregister(dev); 497 498 /* Clear all CPU mappings pointing to this device */ 499 unmap_mapping_range(dev->anon_inode->i_mapping, 0, 0, 1); 500 } 501 EXPORT_SYMBOL(drm_dev_unplug); 502 503 /* 504 * Available recovery methods for wedged device. To be sent along with device 505 * wedged uevent. 506 */ 507 static const char *drm_get_wedge_recovery(unsigned int opt) 508 { 509 switch (BIT(opt)) { 510 case DRM_WEDGE_RECOVERY_NONE: 511 return "none"; 512 case DRM_WEDGE_RECOVERY_REBIND: 513 return "rebind"; 514 case DRM_WEDGE_RECOVERY_BUS_RESET: 515 return "bus-reset"; 516 default: 517 return NULL; 518 } 519 } 520 521 /** 522 * drm_dev_wedged_event - generate a device wedged uevent 523 * @dev: DRM device 524 * @method: method(s) to be used for recovery 525 * 526 * This generates a device wedged uevent for the DRM device specified by @dev. 527 * Recovery @method\(s) of choice will be sent in the uevent environment as 528 * ``WEDGED=<method1>[,..,<methodN>]`` in order of less to more side-effects. 529 * If caller is unsure about recovery or @method is unknown (0), 530 * ``WEDGED=unknown`` will be sent instead. 531 * 532 * Refer to "Device Wedging" chapter in Documentation/gpu/drm-uapi.rst for more 533 * details. 534 * 535 * Returns: 0 on success, negative error code otherwise. 536 */ 537 int drm_dev_wedged_event(struct drm_device *dev, unsigned long method) 538 { 539 const char *recovery = NULL; 540 unsigned int len, opt; 541 /* Event string length up to 28+ characters with available methods */ 542 char event_string[32]; 543 char *envp[] = { event_string, NULL }; 544 545 len = scnprintf(event_string, sizeof(event_string), "%s", "WEDGED="); 546 547 for_each_set_bit(opt, &method, BITS_PER_TYPE(method)) { 548 recovery = drm_get_wedge_recovery(opt); 549 if (drm_WARN_ONCE(dev, !recovery, "invalid recovery method %u\n", opt)) 550 break; 551 552 len += scnprintf(event_string + len, sizeof(event_string), "%s,", recovery); 553 } 554 555 if (recovery) 556 /* Get rid of trailing comma */ 557 event_string[len - 1] = '\0'; 558 else 559 /* Caller is unsure about recovery, do the best we can at this point. */ 560 snprintf(event_string, sizeof(event_string), "%s", "WEDGED=unknown"); 561 562 drm_info(dev, "device wedged, %s\n", method == DRM_WEDGE_RECOVERY_NONE ? 563 "but recovered through reset" : "needs recovery"); 564 565 return kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, envp); 566 } 567 EXPORT_SYMBOL(drm_dev_wedged_event); 568 569 /* 570 * DRM internal mount 571 * We want to be able to allocate our own "struct address_space" to control 572 * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow 573 * stand-alone address_space objects, so we need an underlying inode. As there 574 * is no way to allocate an independent inode easily, we need a fake internal 575 * VFS mount-point. 576 * 577 * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() 578 * frees it again. You are allowed to use iget() and iput() to get references to 579 * the inode. But each drm_fs_inode_new() call must be paired with exactly one 580 * drm_fs_inode_free() call (which does not have to be the last iput()). 581 * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it 582 * between multiple inode-users. You could, technically, call 583 * iget() + drm_fs_inode_free() directly after alloc and sometime later do an 584 * iput(), but this way you'd end up with a new vfsmount for each inode. 585 */ 586 587 static int drm_fs_cnt; 588 static struct vfsmount *drm_fs_mnt; 589 590 static int drm_fs_init_fs_context(struct fs_context *fc) 591 { 592 return init_pseudo(fc, 0x010203ff) ? 0 : -ENOMEM; 593 } 594 595 static struct file_system_type drm_fs_type = { 596 .name = "drm", 597 .owner = THIS_MODULE, 598 .init_fs_context = drm_fs_init_fs_context, 599 .kill_sb = kill_anon_super, 600 }; 601 602 static struct inode *drm_fs_inode_new(void) 603 { 604 struct inode *inode; 605 int r; 606 607 r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); 608 if (r < 0) { 609 DRM_ERROR("Cannot mount pseudo fs: %d\n", r); 610 return ERR_PTR(r); 611 } 612 613 inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); 614 if (IS_ERR(inode)) 615 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 616 617 return inode; 618 } 619 620 static void drm_fs_inode_free(struct inode *inode) 621 { 622 if (inode) { 623 iput(inode); 624 simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); 625 } 626 } 627 628 /** 629 * DOC: component helper usage recommendations 630 * 631 * DRM drivers that drive hardware where a logical device consists of a pile of 632 * independent hardware blocks are recommended to use the :ref:`component helper 633 * library<component>`. For consistency and better options for code reuse the 634 * following guidelines apply: 635 * 636 * - The entire device initialization procedure should be run from the 637 * &component_master_ops.master_bind callback, starting with 638 * devm_drm_dev_alloc(), then binding all components with 639 * component_bind_all() and finishing with drm_dev_register(). 640 * 641 * - The opaque pointer passed to all components through component_bind_all() 642 * should point at &struct drm_device of the device instance, not some driver 643 * specific private structure. 644 * 645 * - The component helper fills the niche where further standardization of 646 * interfaces is not practical. When there already is, or will be, a 647 * standardized interface like &drm_bridge or &drm_panel, providing its own 648 * functions to find such components at driver load time, like 649 * drm_of_find_panel_or_bridge(), then the component helper should not be 650 * used. 651 */ 652 653 static void drm_dev_init_release(struct drm_device *dev, void *res) 654 { 655 drm_fs_inode_free(dev->anon_inode); 656 657 put_device(dev->dev); 658 /* Prevent use-after-free in drm_managed_release when debugging is 659 * enabled. Slightly awkward, but can't really be helped. */ 660 dev->dev = NULL; 661 mutex_destroy(&dev->master_mutex); 662 mutex_destroy(&dev->clientlist_mutex); 663 mutex_destroy(&dev->filelist_mutex); 664 mutex_destroy(&dev->struct_mutex); 665 } 666 667 static int drm_dev_init(struct drm_device *dev, 668 const struct drm_driver *driver, 669 struct device *parent) 670 { 671 struct inode *inode; 672 int ret; 673 674 if (!drm_core_init_complete) { 675 DRM_ERROR("DRM core is not initialized\n"); 676 return -ENODEV; 677 } 678 679 if (WARN_ON(!parent)) 680 return -EINVAL; 681 682 kref_init(&dev->ref); 683 dev->dev = get_device(parent); 684 dev->driver = driver; 685 686 INIT_LIST_HEAD(&dev->managed.resources); 687 spin_lock_init(&dev->managed.lock); 688 689 /* no per-device feature limits by default */ 690 dev->driver_features = ~0u; 691 692 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL) && 693 (drm_core_check_feature(dev, DRIVER_RENDER) || 694 drm_core_check_feature(dev, DRIVER_MODESET))) { 695 DRM_ERROR("DRM driver can't be both a compute acceleration and graphics driver\n"); 696 return -EINVAL; 697 } 698 699 INIT_LIST_HEAD(&dev->filelist); 700 INIT_LIST_HEAD(&dev->filelist_internal); 701 INIT_LIST_HEAD(&dev->clientlist); 702 INIT_LIST_HEAD(&dev->vblank_event_list); 703 704 spin_lock_init(&dev->event_lock); 705 mutex_init(&dev->struct_mutex); 706 mutex_init(&dev->filelist_mutex); 707 mutex_init(&dev->clientlist_mutex); 708 mutex_init(&dev->master_mutex); 709 raw_spin_lock_init(&dev->mode_config.panic_lock); 710 711 ret = drmm_add_action_or_reset(dev, drm_dev_init_release, NULL); 712 if (ret) 713 return ret; 714 715 inode = drm_fs_inode_new(); 716 if (IS_ERR(inode)) { 717 ret = PTR_ERR(inode); 718 DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); 719 goto err; 720 } 721 722 dev->anon_inode = inode; 723 724 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) { 725 ret = drm_minor_alloc(dev, DRM_MINOR_ACCEL); 726 if (ret) 727 goto err; 728 } else { 729 if (drm_core_check_feature(dev, DRIVER_RENDER)) { 730 ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); 731 if (ret) 732 goto err; 733 } 734 735 ret = drm_minor_alloc(dev, DRM_MINOR_PRIMARY); 736 if (ret) 737 goto err; 738 } 739 740 if (drm_core_check_feature(dev, DRIVER_GEM)) { 741 ret = drm_gem_init(dev); 742 if (ret) { 743 DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); 744 goto err; 745 } 746 } 747 748 dev->unique = drmm_kstrdup(dev, dev_name(parent), GFP_KERNEL); 749 if (!dev->unique) { 750 ret = -ENOMEM; 751 goto err; 752 } 753 754 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 755 accel_debugfs_init(dev); 756 else 757 drm_debugfs_dev_init(dev, drm_debugfs_root); 758 759 return 0; 760 761 err: 762 drm_managed_release(dev); 763 764 return ret; 765 } 766 767 static void devm_drm_dev_init_release(void *data) 768 { 769 drm_dev_put(data); 770 } 771 772 static int devm_drm_dev_init(struct device *parent, 773 struct drm_device *dev, 774 const struct drm_driver *driver) 775 { 776 int ret; 777 778 ret = drm_dev_init(dev, driver, parent); 779 if (ret) 780 return ret; 781 782 return devm_add_action_or_reset(parent, 783 devm_drm_dev_init_release, dev); 784 } 785 786 void *__devm_drm_dev_alloc(struct device *parent, 787 const struct drm_driver *driver, 788 size_t size, size_t offset) 789 { 790 void *container; 791 struct drm_device *drm; 792 int ret; 793 794 container = kzalloc(size, GFP_KERNEL); 795 if (!container) 796 return ERR_PTR(-ENOMEM); 797 798 drm = container + offset; 799 ret = devm_drm_dev_init(parent, drm, driver); 800 if (ret) { 801 kfree(container); 802 return ERR_PTR(ret); 803 } 804 drmm_add_final_kfree(drm, container); 805 806 return container; 807 } 808 EXPORT_SYMBOL(__devm_drm_dev_alloc); 809 810 /** 811 * drm_dev_alloc - Allocate new DRM device 812 * @driver: DRM driver to allocate device for 813 * @parent: Parent device object 814 * 815 * This is the deprecated version of devm_drm_dev_alloc(), which does not support 816 * subclassing through embedding the struct &drm_device in a driver private 817 * structure, and which does not support automatic cleanup through devres. 818 * 819 * RETURNS: 820 * Pointer to new DRM device, or ERR_PTR on failure. 821 */ 822 struct drm_device *drm_dev_alloc(const struct drm_driver *driver, 823 struct device *parent) 824 { 825 struct drm_device *dev; 826 int ret; 827 828 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 829 if (!dev) 830 return ERR_PTR(-ENOMEM); 831 832 ret = drm_dev_init(dev, driver, parent); 833 if (ret) { 834 kfree(dev); 835 return ERR_PTR(ret); 836 } 837 838 drmm_add_final_kfree(dev, dev); 839 840 return dev; 841 } 842 EXPORT_SYMBOL(drm_dev_alloc); 843 844 static void drm_dev_release(struct kref *ref) 845 { 846 struct drm_device *dev = container_of(ref, struct drm_device, ref); 847 848 /* Just in case register/unregister was never called */ 849 drm_debugfs_dev_fini(dev); 850 851 if (dev->driver->release) 852 dev->driver->release(dev); 853 854 drm_managed_release(dev); 855 856 kfree(dev->managed.final_kfree); 857 } 858 859 /** 860 * drm_dev_get - Take reference of a DRM device 861 * @dev: device to take reference of or NULL 862 * 863 * This increases the ref-count of @dev by one. You *must* already own a 864 * reference when calling this. Use drm_dev_put() to drop this reference 865 * again. 866 * 867 * This function never fails. However, this function does not provide *any* 868 * guarantee whether the device is alive or running. It only provides a 869 * reference to the object and the memory associated with it. 870 */ 871 void drm_dev_get(struct drm_device *dev) 872 { 873 if (dev) 874 kref_get(&dev->ref); 875 } 876 EXPORT_SYMBOL(drm_dev_get); 877 878 /** 879 * drm_dev_put - Drop reference of a DRM device 880 * @dev: device to drop reference of or NULL 881 * 882 * This decreases the ref-count of @dev by one. The device is destroyed if the 883 * ref-count drops to zero. 884 */ 885 void drm_dev_put(struct drm_device *dev) 886 { 887 if (dev) 888 kref_put(&dev->ref, drm_dev_release); 889 } 890 EXPORT_SYMBOL(drm_dev_put); 891 892 static void drmm_cg_unregister_region(struct drm_device *dev, void *arg) 893 { 894 dmem_cgroup_unregister_region(arg); 895 } 896 897 /** 898 * drmm_cgroup_register_region - Register a region of a DRM device to cgroups 899 * @dev: device for region 900 * @region_name: Region name for registering 901 * @size: Size of region in bytes 902 * 903 * This decreases the ref-count of @dev by one. The device is destroyed if the 904 * ref-count drops to zero. 905 */ 906 struct dmem_cgroup_region *drmm_cgroup_register_region(struct drm_device *dev, const char *region_name, u64 size) 907 { 908 struct dmem_cgroup_region *region; 909 int ret; 910 911 region = dmem_cgroup_register_region(size, "drm/%s/%s", dev->unique, region_name); 912 if (IS_ERR_OR_NULL(region)) 913 return region; 914 915 ret = drmm_add_action_or_reset(dev, drmm_cg_unregister_region, region); 916 if (ret) 917 return ERR_PTR(ret); 918 919 return region; 920 } 921 EXPORT_SYMBOL_GPL(drmm_cgroup_register_region); 922 923 static int create_compat_control_link(struct drm_device *dev) 924 { 925 struct drm_minor *minor; 926 char *name; 927 int ret; 928 929 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 930 return 0; 931 932 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 933 if (!minor) 934 return 0; 935 936 /* 937 * Some existing userspace out there uses the existing of the controlD* 938 * sysfs files to figure out whether it's a modeset driver. It only does 939 * readdir, hence a symlink is sufficient (and the least confusing 940 * option). Otherwise controlD* is entirely unused. 941 * 942 * Old controlD chardev have been allocated in the range 943 * 64-127. 944 */ 945 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 946 if (!name) 947 return -ENOMEM; 948 949 ret = sysfs_create_link(minor->kdev->kobj.parent, 950 &minor->kdev->kobj, 951 name); 952 953 kfree(name); 954 955 return ret; 956 } 957 958 static void remove_compat_control_link(struct drm_device *dev) 959 { 960 struct drm_minor *minor; 961 char *name; 962 963 if (!drm_core_check_feature(dev, DRIVER_MODESET)) 964 return; 965 966 minor = *drm_minor_get_slot(dev, DRM_MINOR_PRIMARY); 967 if (!minor) 968 return; 969 970 name = kasprintf(GFP_KERNEL, "controlD%d", minor->index + 64); 971 if (!name) 972 return; 973 974 sysfs_remove_link(minor->kdev->kobj.parent, name); 975 976 kfree(name); 977 } 978 979 /** 980 * drm_dev_register - Register DRM device 981 * @dev: Device to register 982 * @flags: Flags passed to the driver's .load() function 983 * 984 * Register the DRM device @dev with the system, advertise device to user-space 985 * and start normal device operation. @dev must be initialized via drm_dev_init() 986 * previously. 987 * 988 * Never call this twice on any device! 989 * 990 * NOTE: To ensure backward compatibility with existing drivers method this 991 * function calls the &drm_driver.load method after registering the device 992 * nodes, creating race conditions. Usage of the &drm_driver.load methods is 993 * therefore deprecated, drivers must perform all initialization before calling 994 * drm_dev_register(). 995 * 996 * RETURNS: 997 * 0 on success, negative error code on failure. 998 */ 999 int drm_dev_register(struct drm_device *dev, unsigned long flags) 1000 { 1001 const struct drm_driver *driver = dev->driver; 1002 int ret; 1003 1004 if (!driver->load) 1005 drm_mode_config_validate(dev); 1006 1007 WARN_ON(!dev->managed.final_kfree); 1008 1009 if (drm_dev_needs_global_mutex(dev)) 1010 mutex_lock(&drm_global_mutex); 1011 1012 if (drm_core_check_feature(dev, DRIVER_COMPUTE_ACCEL)) 1013 accel_debugfs_register(dev); 1014 else 1015 drm_debugfs_dev_register(dev); 1016 1017 ret = drm_minor_register(dev, DRM_MINOR_RENDER); 1018 if (ret) 1019 goto err_minors; 1020 1021 ret = drm_minor_register(dev, DRM_MINOR_PRIMARY); 1022 if (ret) 1023 goto err_minors; 1024 1025 ret = drm_minor_register(dev, DRM_MINOR_ACCEL); 1026 if (ret) 1027 goto err_minors; 1028 1029 ret = create_compat_control_link(dev); 1030 if (ret) 1031 goto err_minors; 1032 1033 dev->registered = true; 1034 1035 if (driver->load) { 1036 ret = driver->load(dev, flags); 1037 if (ret) 1038 goto err_minors; 1039 } 1040 1041 if (drm_core_check_feature(dev, DRIVER_MODESET)) { 1042 ret = drm_modeset_register_all(dev); 1043 if (ret) 1044 goto err_unload; 1045 } 1046 drm_panic_register(dev); 1047 1048 DRM_INFO("Initialized %s %d.%d.%d for %s on minor %d\n", 1049 driver->name, driver->major, driver->minor, 1050 driver->patchlevel, 1051 dev->dev ? dev_name(dev->dev) : "virtual device", 1052 dev->primary ? dev->primary->index : dev->accel->index); 1053 1054 goto out_unlock; 1055 1056 err_unload: 1057 if (dev->driver->unload) 1058 dev->driver->unload(dev); 1059 err_minors: 1060 remove_compat_control_link(dev); 1061 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1062 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1063 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1064 out_unlock: 1065 if (drm_dev_needs_global_mutex(dev)) 1066 mutex_unlock(&drm_global_mutex); 1067 return ret; 1068 } 1069 EXPORT_SYMBOL(drm_dev_register); 1070 1071 /** 1072 * drm_dev_unregister - Unregister DRM device 1073 * @dev: Device to unregister 1074 * 1075 * Unregister the DRM device from the system. This does the reverse of 1076 * drm_dev_register() but does not deallocate the device. The caller must call 1077 * drm_dev_put() to drop their final reference, unless it is managed with devres 1078 * (as devices allocated with devm_drm_dev_alloc() are), in which case there is 1079 * already an unwind action registered. 1080 * 1081 * A special form of unregistering for hotpluggable devices is drm_dev_unplug(), 1082 * which can be called while there are still open users of @dev. 1083 * 1084 * This should be called first in the device teardown code to make sure 1085 * userspace can't access the device instance any more. 1086 */ 1087 void drm_dev_unregister(struct drm_device *dev) 1088 { 1089 dev->registered = false; 1090 1091 drm_panic_unregister(dev); 1092 1093 drm_client_dev_unregister(dev); 1094 1095 if (drm_core_check_feature(dev, DRIVER_MODESET)) 1096 drm_modeset_unregister_all(dev); 1097 1098 if (dev->driver->unload) 1099 dev->driver->unload(dev); 1100 1101 remove_compat_control_link(dev); 1102 drm_minor_unregister(dev, DRM_MINOR_ACCEL); 1103 drm_minor_unregister(dev, DRM_MINOR_PRIMARY); 1104 drm_minor_unregister(dev, DRM_MINOR_RENDER); 1105 drm_debugfs_dev_fini(dev); 1106 } 1107 EXPORT_SYMBOL(drm_dev_unregister); 1108 1109 /* 1110 * DRM Core 1111 * The DRM core module initializes all global DRM objects and makes them 1112 * available to drivers. Once setup, drivers can probe their respective 1113 * devices. 1114 * Currently, core management includes: 1115 * - The "DRM-Global" key/value database 1116 * - Global ID management for connectors 1117 * - DRM major number allocation 1118 * - DRM minor management 1119 * - DRM sysfs class 1120 * - DRM debugfs root 1121 * 1122 * Furthermore, the DRM core provides dynamic char-dev lookups. For each 1123 * interface registered on a DRM device, you can request minor numbers from DRM 1124 * core. DRM core takes care of major-number management and char-dev 1125 * registration. A stub ->open() callback forwards any open() requests to the 1126 * registered minor. 1127 */ 1128 1129 static int drm_stub_open(struct inode *inode, struct file *filp) 1130 { 1131 const struct file_operations *new_fops; 1132 struct drm_minor *minor; 1133 int err; 1134 1135 DRM_DEBUG("\n"); 1136 1137 minor = drm_minor_acquire(&drm_minors_xa, iminor(inode)); 1138 if (IS_ERR(minor)) 1139 return PTR_ERR(minor); 1140 1141 new_fops = fops_get(minor->dev->driver->fops); 1142 if (!new_fops) { 1143 err = -ENODEV; 1144 goto out; 1145 } 1146 1147 replace_fops(filp, new_fops); 1148 if (filp->f_op->open) 1149 err = filp->f_op->open(inode, filp); 1150 else 1151 err = 0; 1152 1153 out: 1154 drm_minor_release(minor); 1155 1156 return err; 1157 } 1158 1159 static const struct file_operations drm_stub_fops = { 1160 .owner = THIS_MODULE, 1161 .open = drm_stub_open, 1162 .llseek = noop_llseek, 1163 }; 1164 1165 static void drm_core_exit(void) 1166 { 1167 drm_privacy_screen_lookup_exit(); 1168 drm_panic_exit(); 1169 accel_core_exit(); 1170 unregister_chrdev(DRM_MAJOR, "drm"); 1171 debugfs_remove(drm_debugfs_root); 1172 drm_sysfs_destroy(); 1173 WARN_ON(!xa_empty(&drm_minors_xa)); 1174 drm_connector_ida_destroy(); 1175 } 1176 1177 static int __init drm_core_init(void) 1178 { 1179 int ret; 1180 1181 drm_connector_ida_init(); 1182 drm_memcpy_init_early(); 1183 1184 ret = drm_sysfs_init(); 1185 if (ret < 0) { 1186 DRM_ERROR("Cannot create DRM class: %d\n", ret); 1187 goto error; 1188 } 1189 1190 drm_debugfs_root = debugfs_create_dir("dri", NULL); 1191 1192 ret = register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops); 1193 if (ret < 0) 1194 goto error; 1195 1196 ret = accel_core_init(); 1197 if (ret < 0) 1198 goto error; 1199 1200 drm_panic_init(); 1201 1202 drm_privacy_screen_lookup_init(); 1203 1204 drm_core_init_complete = true; 1205 1206 DRM_DEBUG("Initialized\n"); 1207 return 0; 1208 1209 error: 1210 drm_core_exit(); 1211 return ret; 1212 } 1213 1214 module_init(drm_core_init); 1215 module_exit(drm_core_exit); 1216