1 /* 2 * Copyright 2011-2024 The OpenSSL Project Authors. All Rights Reserved. 3 * 4 * Licensed under the Apache License 2.0 (the "License"). You may not use 5 * this file except in compliance with the License. You can obtain a copy 6 * in the file LICENSE in the source distribution or at 7 * https://www.openssl.org/source/license.html 8 */ 9 10 #include <stdlib.h> 11 #include <string.h> 12 #include <openssl/crypto.h> 13 #include <openssl/err.h> 14 #include <openssl/rand.h> 15 #include <openssl/aes.h> 16 #include <openssl/proverr.h> 17 #include "crypto/modes.h" 18 #include "internal/thread_once.h" 19 #include "prov/implementations.h" 20 #include "prov/providercommon.h" 21 #include "prov/provider_ctx.h" 22 #include "drbg_local.h" 23 24 static OSSL_FUNC_rand_newctx_fn drbg_ctr_new_wrapper; 25 static OSSL_FUNC_rand_freectx_fn drbg_ctr_free; 26 static OSSL_FUNC_rand_instantiate_fn drbg_ctr_instantiate_wrapper; 27 static OSSL_FUNC_rand_uninstantiate_fn drbg_ctr_uninstantiate_wrapper; 28 static OSSL_FUNC_rand_generate_fn drbg_ctr_generate_wrapper; 29 static OSSL_FUNC_rand_reseed_fn drbg_ctr_reseed_wrapper; 30 static OSSL_FUNC_rand_settable_ctx_params_fn drbg_ctr_settable_ctx_params; 31 static OSSL_FUNC_rand_set_ctx_params_fn drbg_ctr_set_ctx_params; 32 static OSSL_FUNC_rand_gettable_ctx_params_fn drbg_ctr_gettable_ctx_params; 33 static OSSL_FUNC_rand_get_ctx_params_fn drbg_ctr_get_ctx_params; 34 static OSSL_FUNC_rand_verify_zeroization_fn drbg_ctr_verify_zeroization; 35 36 /* 37 * The state of a DRBG AES-CTR. 38 */ 39 typedef struct rand_drbg_ctr_st { 40 EVP_CIPHER_CTX *ctx_ecb; 41 EVP_CIPHER_CTX *ctx_ctr; 42 EVP_CIPHER_CTX *ctx_df; 43 EVP_CIPHER *cipher_ecb; 44 EVP_CIPHER *cipher_ctr; 45 size_t keylen; 46 int use_df; 47 unsigned char K[32]; 48 unsigned char V[16]; 49 /* Temporary block storage used by ctr_df */ 50 unsigned char bltmp[16]; 51 size_t bltmp_pos; 52 unsigned char KX[48]; 53 } PROV_DRBG_CTR; 54 55 /* 56 * Implementation of NIST SP 800-90A CTR DRBG. 57 */ 58 static void inc_128(PROV_DRBG_CTR *ctr) 59 { 60 unsigned char *p = &ctr->V[0]; 61 u32 n = 16, c = 1; 62 63 do { 64 --n; 65 c += p[n]; 66 p[n] = (u8)c; 67 c >>= 8; 68 } while (n); 69 } 70 71 static void ctr_XOR(PROV_DRBG_CTR *ctr, const unsigned char *in, size_t inlen) 72 { 73 size_t i, n; 74 75 if (in == NULL || inlen == 0) 76 return; 77 78 /* 79 * Any zero padding will have no effect on the result as we 80 * are XORing. So just process however much input we have. 81 */ 82 n = inlen < ctr->keylen ? inlen : ctr->keylen; 83 for (i = 0; i < n; i++) 84 ctr->K[i] ^= in[i]; 85 if (inlen <= ctr->keylen) 86 return; 87 88 n = inlen - ctr->keylen; 89 if (n > 16) { 90 /* Should never happen */ 91 n = 16; 92 } 93 for (i = 0; i < n; i++) 94 ctr->V[i] ^= in[i + ctr->keylen]; 95 } 96 97 /* 98 * Process a complete block using BCC algorithm of SP 800-90A 10.3.3 99 */ 100 __owur static int ctr_BCC_block(PROV_DRBG_CTR *ctr, unsigned char *out, 101 const unsigned char *in, int len) 102 { 103 int i, outlen = AES_BLOCK_SIZE; 104 105 for (i = 0; i < len; i++) 106 out[i] ^= in[i]; 107 108 if (!EVP_CipherUpdate(ctr->ctx_df, out, &outlen, out, len) 109 || outlen != len) 110 return 0; 111 return 1; 112 } 113 114 115 /* 116 * Handle several BCC operations for as much data as we need for K and X 117 */ 118 __owur static int ctr_BCC_blocks(PROV_DRBG_CTR *ctr, const unsigned char *in) 119 { 120 unsigned char in_tmp[48]; 121 unsigned char num_of_blk = 2; 122 123 memcpy(in_tmp, in, 16); 124 memcpy(in_tmp + 16, in, 16); 125 if (ctr->keylen != 16) { 126 memcpy(in_tmp + 32, in, 16); 127 num_of_blk = 3; 128 } 129 return ctr_BCC_block(ctr, ctr->KX, in_tmp, AES_BLOCK_SIZE * num_of_blk); 130 } 131 132 /* 133 * Initialise BCC blocks: these have the value 0,1,2 in leftmost positions: 134 * see 10.3.1 stage 7. 135 */ 136 __owur static int ctr_BCC_init(PROV_DRBG_CTR *ctr) 137 { 138 unsigned char bltmp[48] = {0}; 139 unsigned char num_of_blk; 140 141 memset(ctr->KX, 0, 48); 142 num_of_blk = ctr->keylen == 16 ? 2 : 3; 143 bltmp[(AES_BLOCK_SIZE * 1) + 3] = 1; 144 bltmp[(AES_BLOCK_SIZE * 2) + 3] = 2; 145 return ctr_BCC_block(ctr, ctr->KX, bltmp, num_of_blk * AES_BLOCK_SIZE); 146 } 147 148 /* 149 * Process several blocks into BCC algorithm, some possibly partial 150 */ 151 __owur static int ctr_BCC_update(PROV_DRBG_CTR *ctr, 152 const unsigned char *in, size_t inlen) 153 { 154 if (in == NULL || inlen == 0) 155 return 1; 156 157 /* If we have partial block handle it first */ 158 if (ctr->bltmp_pos) { 159 size_t left = 16 - ctr->bltmp_pos; 160 161 /* If we now have a complete block process it */ 162 if (inlen >= left) { 163 memcpy(ctr->bltmp + ctr->bltmp_pos, in, left); 164 if (!ctr_BCC_blocks(ctr, ctr->bltmp)) 165 return 0; 166 ctr->bltmp_pos = 0; 167 inlen -= left; 168 in += left; 169 } 170 } 171 172 /* Process zero or more complete blocks */ 173 for (; inlen >= 16; in += 16, inlen -= 16) { 174 if (!ctr_BCC_blocks(ctr, in)) 175 return 0; 176 } 177 178 /* Copy any remaining partial block to the temporary buffer */ 179 if (inlen > 0) { 180 memcpy(ctr->bltmp + ctr->bltmp_pos, in, inlen); 181 ctr->bltmp_pos += inlen; 182 } 183 return 1; 184 } 185 186 __owur static int ctr_BCC_final(PROV_DRBG_CTR *ctr) 187 { 188 if (ctr->bltmp_pos) { 189 memset(ctr->bltmp + ctr->bltmp_pos, 0, 16 - ctr->bltmp_pos); 190 if (!ctr_BCC_blocks(ctr, ctr->bltmp)) 191 return 0; 192 } 193 return 1; 194 } 195 196 __owur static int ctr_df(PROV_DRBG_CTR *ctr, 197 const unsigned char *in1, size_t in1len, 198 const unsigned char *in2, size_t in2len, 199 const unsigned char *in3, size_t in3len) 200 { 201 static unsigned char c80 = 0x80; 202 size_t inlen; 203 unsigned char *p = ctr->bltmp; 204 int outlen = AES_BLOCK_SIZE; 205 206 if (!ctr_BCC_init(ctr)) 207 return 0; 208 if (in1 == NULL) 209 in1len = 0; 210 if (in2 == NULL) 211 in2len = 0; 212 if (in3 == NULL) 213 in3len = 0; 214 inlen = in1len + in2len + in3len; 215 /* Initialise L||N in temporary block */ 216 *p++ = (inlen >> 24) & 0xff; 217 *p++ = (inlen >> 16) & 0xff; 218 *p++ = (inlen >> 8) & 0xff; 219 *p++ = inlen & 0xff; 220 221 /* NB keylen is at most 32 bytes */ 222 *p++ = 0; 223 *p++ = 0; 224 *p++ = 0; 225 *p = (unsigned char)((ctr->keylen + 16) & 0xff); 226 ctr->bltmp_pos = 8; 227 if (!ctr_BCC_update(ctr, in1, in1len) 228 || !ctr_BCC_update(ctr, in2, in2len) 229 || !ctr_BCC_update(ctr, in3, in3len) 230 || !ctr_BCC_update(ctr, &c80, 1) 231 || !ctr_BCC_final(ctr)) 232 return 0; 233 /* Set up key K */ 234 if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->KX, NULL, -1)) 235 return 0; 236 /* X follows key K */ 237 if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX, &outlen, ctr->KX + ctr->keylen, 238 AES_BLOCK_SIZE) 239 || outlen != AES_BLOCK_SIZE) 240 return 0; 241 if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 16, &outlen, ctr->KX, 242 AES_BLOCK_SIZE) 243 || outlen != AES_BLOCK_SIZE) 244 return 0; 245 if (ctr->keylen != 16) 246 if (!EVP_CipherUpdate(ctr->ctx_ecb, ctr->KX + 32, &outlen, 247 ctr->KX + 16, AES_BLOCK_SIZE) 248 || outlen != AES_BLOCK_SIZE) 249 return 0; 250 return 1; 251 } 252 253 /* 254 * NB the no-df Update in SP800-90A specifies a constant input length 255 * of seedlen, however other uses of this algorithm pad the input with 256 * zeroes if necessary and have up to two parameters XORed together, 257 * so we handle both cases in this function instead. 258 */ 259 __owur static int ctr_update(PROV_DRBG *drbg, 260 const unsigned char *in1, size_t in1len, 261 const unsigned char *in2, size_t in2len, 262 const unsigned char *nonce, size_t noncelen) 263 { 264 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 265 int outlen = AES_BLOCK_SIZE; 266 unsigned char V_tmp[48], out[48]; 267 unsigned char len; 268 269 /* correct key is already set up. */ 270 memcpy(V_tmp, ctr->V, 16); 271 inc_128(ctr); 272 memcpy(V_tmp + 16, ctr->V, 16); 273 if (ctr->keylen == 16) { 274 len = 32; 275 } else { 276 inc_128(ctr); 277 memcpy(V_tmp + 32, ctr->V, 16); 278 len = 48; 279 } 280 if (!EVP_CipherUpdate(ctr->ctx_ecb, out, &outlen, V_tmp, len) 281 || outlen != len) 282 return 0; 283 memcpy(ctr->K, out, ctr->keylen); 284 memcpy(ctr->V, out + ctr->keylen, 16); 285 286 if (ctr->use_df) { 287 /* If no input reuse existing derived value */ 288 if (in1 != NULL || nonce != NULL || in2 != NULL) 289 if (!ctr_df(ctr, in1, in1len, nonce, noncelen, in2, in2len)) 290 return 0; 291 /* If this a reuse input in1len != 0 */ 292 if (in1len) 293 ctr_XOR(ctr, ctr->KX, drbg->seedlen); 294 } else { 295 ctr_XOR(ctr, in1, in1len); 296 ctr_XOR(ctr, in2, in2len); 297 } 298 299 if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1) 300 || !EVP_CipherInit_ex(ctr->ctx_ctr, NULL, NULL, ctr->K, NULL, -1)) 301 return 0; 302 return 1; 303 } 304 305 static int drbg_ctr_instantiate(PROV_DRBG *drbg, 306 const unsigned char *entropy, size_t entropylen, 307 const unsigned char *nonce, size_t noncelen, 308 const unsigned char *pers, size_t perslen) 309 { 310 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 311 312 if (entropy == NULL) 313 return 0; 314 315 memset(ctr->K, 0, sizeof(ctr->K)); 316 memset(ctr->V, 0, sizeof(ctr->V)); 317 if (!EVP_CipherInit_ex(ctr->ctx_ecb, NULL, NULL, ctr->K, NULL, -1)) 318 return 0; 319 320 inc_128(ctr); 321 if (!ctr_update(drbg, entropy, entropylen, pers, perslen, nonce, noncelen)) 322 return 0; 323 return 1; 324 } 325 326 static int drbg_ctr_instantiate_wrapper(void *vdrbg, unsigned int strength, 327 int prediction_resistance, 328 const unsigned char *pstr, 329 size_t pstr_len, 330 const OSSL_PARAM params[]) 331 { 332 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 333 334 if (!ossl_prov_is_running() || !drbg_ctr_set_ctx_params(drbg, params)) 335 return 0; 336 return ossl_prov_drbg_instantiate(drbg, strength, prediction_resistance, 337 pstr, pstr_len); 338 } 339 340 static int drbg_ctr_reseed(PROV_DRBG *drbg, 341 const unsigned char *entropy, size_t entropylen, 342 const unsigned char *adin, size_t adinlen) 343 { 344 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 345 346 if (entropy == NULL) 347 return 0; 348 349 inc_128(ctr); 350 if (!ctr_update(drbg, entropy, entropylen, adin, adinlen, NULL, 0)) 351 return 0; 352 return 1; 353 } 354 355 static int drbg_ctr_reseed_wrapper(void *vdrbg, int prediction_resistance, 356 const unsigned char *ent, size_t ent_len, 357 const unsigned char *adin, size_t adin_len) 358 { 359 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 360 361 return ossl_prov_drbg_reseed(drbg, prediction_resistance, ent, ent_len, 362 adin, adin_len); 363 } 364 365 static void ctr96_inc(unsigned char *counter) 366 { 367 u32 n = 12, c = 1; 368 369 do { 370 --n; 371 c += counter[n]; 372 counter[n] = (u8)c; 373 c >>= 8; 374 } while (n); 375 } 376 377 static int drbg_ctr_generate(PROV_DRBG *drbg, 378 unsigned char *out, size_t outlen, 379 const unsigned char *adin, size_t adinlen) 380 { 381 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 382 unsigned int ctr32, blocks; 383 int outl, buflen; 384 385 if (adin != NULL && adinlen != 0) { 386 inc_128(ctr); 387 388 if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) 389 return 0; 390 /* This means we reuse derived value */ 391 if (ctr->use_df) { 392 adin = NULL; 393 adinlen = 1; 394 } 395 } else { 396 adinlen = 0; 397 } 398 399 inc_128(ctr); 400 401 if (outlen == 0) { 402 inc_128(ctr); 403 404 if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) 405 return 0; 406 return 1; 407 } 408 409 memset(out, 0, outlen); 410 411 do { 412 if (!EVP_CipherInit_ex(ctr->ctx_ctr, 413 NULL, NULL, NULL, ctr->V, -1)) 414 return 0; 415 416 /*- 417 * outlen has type size_t while EVP_CipherUpdate takes an 418 * int argument and thus cannot be guaranteed to process more 419 * than 2^31-1 bytes at a time. We process such huge generate 420 * requests in 2^30 byte chunks, which is the greatest multiple 421 * of AES block size lower than or equal to 2^31-1. 422 */ 423 buflen = outlen > (1U << 30) ? (1U << 30) : outlen; 424 blocks = (buflen + 15) / 16; 425 426 ctr32 = GETU32(ctr->V + 12) + blocks; 427 if (ctr32 < blocks) { 428 /* 32-bit counter overflow into V. */ 429 if (ctr32 != 0) { 430 blocks -= ctr32; 431 buflen = blocks * 16; 432 ctr32 = 0; 433 } 434 ctr96_inc(ctr->V); 435 } 436 PUTU32(ctr->V + 12, ctr32); 437 438 if (!EVP_CipherUpdate(ctr->ctx_ctr, out, &outl, out, buflen) 439 || outl != buflen) 440 return 0; 441 442 out += buflen; 443 outlen -= buflen; 444 } while (outlen); 445 446 if (!ctr_update(drbg, adin, adinlen, NULL, 0, NULL, 0)) 447 return 0; 448 return 1; 449 } 450 451 static int drbg_ctr_generate_wrapper 452 (void *vdrbg, unsigned char *out, size_t outlen, 453 unsigned int strength, int prediction_resistance, 454 const unsigned char *adin, size_t adin_len) 455 { 456 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 457 458 return ossl_prov_drbg_generate(drbg, out, outlen, strength, 459 prediction_resistance, adin, adin_len); 460 } 461 462 static int drbg_ctr_uninstantiate(PROV_DRBG *drbg) 463 { 464 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 465 466 OPENSSL_cleanse(ctr->K, sizeof(ctr->K)); 467 OPENSSL_cleanse(ctr->V, sizeof(ctr->V)); 468 OPENSSL_cleanse(ctr->bltmp, sizeof(ctr->bltmp)); 469 OPENSSL_cleanse(ctr->KX, sizeof(ctr->KX)); 470 ctr->bltmp_pos = 0; 471 return ossl_prov_drbg_uninstantiate(drbg); 472 } 473 474 static int drbg_ctr_uninstantiate_wrapper(void *vdrbg) 475 { 476 return drbg_ctr_uninstantiate((PROV_DRBG *)vdrbg); 477 } 478 479 static int drbg_ctr_verify_zeroization(void *vdrbg) 480 { 481 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 482 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 483 484 PROV_DRBG_VERYIFY_ZEROIZATION(ctr->K); 485 PROV_DRBG_VERYIFY_ZEROIZATION(ctr->V); 486 PROV_DRBG_VERYIFY_ZEROIZATION(ctr->bltmp); 487 PROV_DRBG_VERYIFY_ZEROIZATION(ctr->KX); 488 if (ctr->bltmp_pos != 0) 489 return 0; 490 return 1; 491 } 492 493 static int drbg_ctr_init_lengths(PROV_DRBG *drbg) 494 { 495 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 496 int res = 1; 497 498 /* Maximum number of bits per request = 2^19 = 2^16 bytes */ 499 drbg->max_request = 1 << 16; 500 if (ctr->use_df) { 501 drbg->min_entropylen = 0; 502 drbg->max_entropylen = DRBG_MAX_LENGTH; 503 drbg->min_noncelen = 0; 504 drbg->max_noncelen = DRBG_MAX_LENGTH; 505 drbg->max_perslen = DRBG_MAX_LENGTH; 506 drbg->max_adinlen = DRBG_MAX_LENGTH; 507 508 if (ctr->keylen > 0) { 509 drbg->min_entropylen = ctr->keylen; 510 drbg->min_noncelen = drbg->min_entropylen / 2; 511 } 512 } else { 513 const size_t len = ctr->keylen > 0 ? drbg->seedlen : DRBG_MAX_LENGTH; 514 515 drbg->min_entropylen = len; 516 drbg->max_entropylen = len; 517 /* Nonce not used */ 518 drbg->min_noncelen = 0; 519 drbg->max_noncelen = 0; 520 drbg->max_perslen = len; 521 drbg->max_adinlen = len; 522 } 523 return res; 524 } 525 526 static int drbg_ctr_init(PROV_DRBG *drbg) 527 { 528 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 529 size_t keylen; 530 531 if (ctr->cipher_ctr == NULL) { 532 ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_CIPHER); 533 return 0; 534 } 535 ctr->keylen = keylen = EVP_CIPHER_get_key_length(ctr->cipher_ctr); 536 if (ctr->ctx_ecb == NULL) 537 ctr->ctx_ecb = EVP_CIPHER_CTX_new(); 538 if (ctr->ctx_ctr == NULL) 539 ctr->ctx_ctr = EVP_CIPHER_CTX_new(); 540 if (ctr->ctx_ecb == NULL || ctr->ctx_ctr == NULL) { 541 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); 542 goto err; 543 } 544 545 if (!EVP_CipherInit_ex(ctr->ctx_ecb, 546 ctr->cipher_ecb, NULL, NULL, NULL, 1) 547 || !EVP_CipherInit_ex(ctr->ctx_ctr, 548 ctr->cipher_ctr, NULL, NULL, NULL, 1)) { 549 ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_INITIALISE_CIPHERS); 550 goto err; 551 } 552 553 drbg->strength = keylen * 8; 554 drbg->seedlen = keylen + 16; 555 556 if (ctr->use_df) { 557 /* df initialisation */ 558 static const unsigned char df_key[32] = { 559 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 560 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 561 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 562 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f 563 }; 564 565 if (ctr->ctx_df == NULL) 566 ctr->ctx_df = EVP_CIPHER_CTX_new(); 567 if (ctr->ctx_df == NULL) { 568 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); 569 goto err; 570 } 571 /* Set key schedule for df_key */ 572 if (!EVP_CipherInit_ex(ctr->ctx_df, 573 ctr->cipher_ecb, NULL, df_key, NULL, 1)) { 574 ERR_raise(ERR_LIB_PROV, PROV_R_DERIVATION_FUNCTION_INIT_FAILED); 575 goto err; 576 } 577 } 578 return drbg_ctr_init_lengths(drbg); 579 580 err: 581 EVP_CIPHER_CTX_free(ctr->ctx_ecb); 582 EVP_CIPHER_CTX_free(ctr->ctx_ctr); 583 ctr->ctx_ecb = ctr->ctx_ctr = NULL; 584 return 0; 585 } 586 587 static int drbg_ctr_new(PROV_DRBG *drbg) 588 { 589 PROV_DRBG_CTR *ctr; 590 591 ctr = OPENSSL_secure_zalloc(sizeof(*ctr)); 592 if (ctr == NULL) { 593 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); 594 return 0; 595 } 596 597 ctr->use_df = 1; 598 drbg->data = ctr; 599 return drbg_ctr_init_lengths(drbg); 600 } 601 602 static void *drbg_ctr_new_wrapper(void *provctx, void *parent, 603 const OSSL_DISPATCH *parent_dispatch) 604 { 605 return ossl_rand_drbg_new(provctx, parent, parent_dispatch, 606 &drbg_ctr_new, &drbg_ctr_free, 607 &drbg_ctr_instantiate, &drbg_ctr_uninstantiate, 608 &drbg_ctr_reseed, &drbg_ctr_generate); 609 } 610 611 static void drbg_ctr_free(void *vdrbg) 612 { 613 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 614 PROV_DRBG_CTR *ctr; 615 616 if (drbg != NULL && (ctr = (PROV_DRBG_CTR *)drbg->data) != NULL) { 617 EVP_CIPHER_CTX_free(ctr->ctx_ecb); 618 EVP_CIPHER_CTX_free(ctr->ctx_ctr); 619 EVP_CIPHER_CTX_free(ctr->ctx_df); 620 EVP_CIPHER_free(ctr->cipher_ecb); 621 EVP_CIPHER_free(ctr->cipher_ctr); 622 623 OPENSSL_secure_clear_free(ctr, sizeof(*ctr)); 624 } 625 ossl_rand_drbg_free(drbg); 626 } 627 628 static int drbg_ctr_get_ctx_params(void *vdrbg, OSSL_PARAM params[]) 629 { 630 PROV_DRBG *drbg = (PROV_DRBG *)vdrbg; 631 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)drbg->data; 632 OSSL_PARAM *p; 633 634 p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_USE_DF); 635 if (p != NULL && !OSSL_PARAM_set_int(p, ctr->use_df)) 636 return 0; 637 638 p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_CIPHER); 639 if (p != NULL) { 640 if (ctr->cipher_ctr == NULL 641 || !OSSL_PARAM_set_utf8_string(p, 642 EVP_CIPHER_get0_name(ctr->cipher_ctr))) 643 return 0; 644 } 645 646 return ossl_drbg_get_ctx_params(drbg, params); 647 } 648 649 static const OSSL_PARAM *drbg_ctr_gettable_ctx_params(ossl_unused void *vctx, 650 ossl_unused void *provctx) 651 { 652 static const OSSL_PARAM known_gettable_ctx_params[] = { 653 OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), 654 OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), 655 OSSL_PARAM_DRBG_GETTABLE_CTX_COMMON, 656 OSSL_PARAM_END 657 }; 658 return known_gettable_ctx_params; 659 } 660 661 static int drbg_ctr_set_ctx_params(void *vctx, const OSSL_PARAM params[]) 662 { 663 PROV_DRBG *ctx = (PROV_DRBG *)vctx; 664 PROV_DRBG_CTR *ctr = (PROV_DRBG_CTR *)ctx->data; 665 OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); 666 const OSSL_PARAM *p; 667 char *ecb; 668 const char *propquery = NULL; 669 int i, cipher_init = 0; 670 671 if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_USE_DF)) != NULL 672 && OSSL_PARAM_get_int(p, &i)) { 673 /* FIPS errors out in the drbg_ctr_init() call later */ 674 ctr->use_df = i != 0; 675 cipher_init = 1; 676 } 677 678 if ((p = OSSL_PARAM_locate_const(params, 679 OSSL_DRBG_PARAM_PROPERTIES)) != NULL) { 680 if (p->data_type != OSSL_PARAM_UTF8_STRING) 681 return 0; 682 propquery = (const char *)p->data; 683 } 684 685 if ((p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_CIPHER)) != NULL) { 686 const char *base = (const char *)p->data; 687 size_t ctr_str_len = sizeof("CTR") - 1; 688 size_t ecb_str_len = sizeof("ECB") - 1; 689 690 if (p->data_type != OSSL_PARAM_UTF8_STRING 691 || p->data_size < ctr_str_len) 692 return 0; 693 if (OPENSSL_strcasecmp("CTR", base + p->data_size - ctr_str_len) != 0) { 694 ERR_raise(ERR_LIB_PROV, PROV_R_REQUIRE_CTR_MODE_CIPHER); 695 return 0; 696 } 697 if ((ecb = OPENSSL_strndup(base, p->data_size)) == NULL) { 698 ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); 699 return 0; 700 } 701 strcpy(ecb + p->data_size - ecb_str_len, "ECB"); 702 EVP_CIPHER_free(ctr->cipher_ecb); 703 EVP_CIPHER_free(ctr->cipher_ctr); 704 ctr->cipher_ctr = EVP_CIPHER_fetch(libctx, base, propquery); 705 ctr->cipher_ecb = EVP_CIPHER_fetch(libctx, ecb, propquery); 706 OPENSSL_free(ecb); 707 if (ctr->cipher_ctr == NULL || ctr->cipher_ecb == NULL) { 708 ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_FIND_CIPHERS); 709 return 0; 710 } 711 cipher_init = 1; 712 } 713 714 if (cipher_init && !drbg_ctr_init(ctx)) 715 return 0; 716 717 return ossl_drbg_set_ctx_params(ctx, params); 718 } 719 720 static const OSSL_PARAM *drbg_ctr_settable_ctx_params(ossl_unused void *vctx, 721 ossl_unused void *provctx) 722 { 723 static const OSSL_PARAM known_settable_ctx_params[] = { 724 OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_PROPERTIES, NULL, 0), 725 OSSL_PARAM_utf8_string(OSSL_DRBG_PARAM_CIPHER, NULL, 0), 726 OSSL_PARAM_int(OSSL_DRBG_PARAM_USE_DF, NULL), 727 OSSL_PARAM_DRBG_SETTABLE_CTX_COMMON, 728 OSSL_PARAM_END 729 }; 730 return known_settable_ctx_params; 731 } 732 733 const OSSL_DISPATCH ossl_drbg_ctr_functions[] = { 734 { OSSL_FUNC_RAND_NEWCTX, (void(*)(void))drbg_ctr_new_wrapper }, 735 { OSSL_FUNC_RAND_FREECTX, (void(*)(void))drbg_ctr_free }, 736 { OSSL_FUNC_RAND_INSTANTIATE, 737 (void(*)(void))drbg_ctr_instantiate_wrapper }, 738 { OSSL_FUNC_RAND_UNINSTANTIATE, 739 (void(*)(void))drbg_ctr_uninstantiate_wrapper }, 740 { OSSL_FUNC_RAND_GENERATE, (void(*)(void))drbg_ctr_generate_wrapper }, 741 { OSSL_FUNC_RAND_RESEED, (void(*)(void))drbg_ctr_reseed_wrapper }, 742 { OSSL_FUNC_RAND_ENABLE_LOCKING, (void(*)(void))ossl_drbg_enable_locking }, 743 { OSSL_FUNC_RAND_LOCK, (void(*)(void))ossl_drbg_lock }, 744 { OSSL_FUNC_RAND_UNLOCK, (void(*)(void))ossl_drbg_unlock }, 745 { OSSL_FUNC_RAND_SETTABLE_CTX_PARAMS, 746 (void(*)(void))drbg_ctr_settable_ctx_params }, 747 { OSSL_FUNC_RAND_SET_CTX_PARAMS, (void(*)(void))drbg_ctr_set_ctx_params }, 748 { OSSL_FUNC_RAND_GETTABLE_CTX_PARAMS, 749 (void(*)(void))drbg_ctr_gettable_ctx_params }, 750 { OSSL_FUNC_RAND_GET_CTX_PARAMS, (void(*)(void))drbg_ctr_get_ctx_params }, 751 { OSSL_FUNC_RAND_VERIFY_ZEROIZATION, 752 (void(*)(void))drbg_ctr_verify_zeroization }, 753 { OSSL_FUNC_RAND_GET_SEED, (void(*)(void))ossl_drbg_get_seed }, 754 { OSSL_FUNC_RAND_CLEAR_SEED, (void(*)(void))ossl_drbg_clear_seed }, 755 { 0, NULL } 756 }; 757