1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 #include <asm/runtime-const.h>
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
65 * s_roots lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
75 */
76 int sysctl_vfs_cache_pressure __read_mostly = 100;
77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
78
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
80
81 EXPORT_SYMBOL(rename_lock);
82
83 static struct kmem_cache *dentry_cache __ro_after_init;
84
85 const struct qstr empty_name = QSTR_INIT("", 0);
86 EXPORT_SYMBOL(empty_name);
87 const struct qstr slash_name = QSTR_INIT("/", 1);
88 EXPORT_SYMBOL(slash_name);
89 const struct qstr dotdot_name = QSTR_INIT("..", 2);
90 EXPORT_SYMBOL(dotdot_name);
91
92 /*
93 * This is the single most critical data structure when it comes
94 * to the dcache: the hashtable for lookups. Somebody should try
95 * to make this good - I've just made it work.
96 *
97 * This hash-function tries to avoid losing too many bits of hash
98 * information, yet avoid using a prime hash-size or similar.
99 *
100 * Marking the variables "used" ensures that the compiler doesn't
101 * optimize them away completely on architectures with runtime
102 * constant infrastructure, this allows debuggers to see their
103 * values. But updating these values has no effect on those arches.
104 */
105
106 static unsigned int d_hash_shift __ro_after_init __used;
107
108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
109
d_hash(unsigned long hashlen)110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
111 {
112 return runtime_const_ptr(dentry_hashtable) +
113 runtime_const_shift_right_32(hashlen, d_hash_shift);
114 }
115
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118
in_lookup_hash(const struct dentry * parent,unsigned int hash)119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120 unsigned int hash)
121 {
122 hash += (unsigned long) parent / L1_CACHE_BYTES;
123 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 }
125
126 struct dentry_stat_t {
127 long nr_dentry;
128 long nr_unused;
129 long age_limit; /* age in seconds */
130 long want_pages; /* pages requested by system */
131 long nr_negative; /* # of unused negative dentries */
132 long dummy; /* Reserved for future use */
133 };
134
135 static DEFINE_PER_CPU(long, nr_dentry);
136 static DEFINE_PER_CPU(long, nr_dentry_unused);
137 static DEFINE_PER_CPU(long, nr_dentry_negative);
138 static int dentry_negative_policy;
139
140 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
141 /* Statistics gathering. */
142 static struct dentry_stat_t dentry_stat = {
143 .age_limit = 45,
144 };
145
146 /*
147 * Here we resort to our own counters instead of using generic per-cpu counters
148 * for consistency with what the vfs inode code does. We are expected to harvest
149 * better code and performance by having our own specialized counters.
150 *
151 * Please note that the loop is done over all possible CPUs, not over all online
152 * CPUs. The reason for this is that we don't want to play games with CPUs going
153 * on and off. If one of them goes off, we will just keep their counters.
154 *
155 * glommer: See cffbc8a for details, and if you ever intend to change this,
156 * please update all vfs counters to match.
157 */
get_nr_dentry(void)158 static long get_nr_dentry(void)
159 {
160 int i;
161 long sum = 0;
162 for_each_possible_cpu(i)
163 sum += per_cpu(nr_dentry, i);
164 return sum < 0 ? 0 : sum;
165 }
166
get_nr_dentry_unused(void)167 static long get_nr_dentry_unused(void)
168 {
169 int i;
170 long sum = 0;
171 for_each_possible_cpu(i)
172 sum += per_cpu(nr_dentry_unused, i);
173 return sum < 0 ? 0 : sum;
174 }
175
get_nr_dentry_negative(void)176 static long get_nr_dentry_negative(void)
177 {
178 int i;
179 long sum = 0;
180
181 for_each_possible_cpu(i)
182 sum += per_cpu(nr_dentry_negative, i);
183 return sum < 0 ? 0 : sum;
184 }
185
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)186 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
187 size_t *lenp, loff_t *ppos)
188 {
189 dentry_stat.nr_dentry = get_nr_dentry();
190 dentry_stat.nr_unused = get_nr_dentry_unused();
191 dentry_stat.nr_negative = get_nr_dentry_negative();
192 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193 }
194
195 static const struct ctl_table fs_dcache_sysctls[] = {
196 {
197 .procname = "dentry-state",
198 .data = &dentry_stat,
199 .maxlen = 6*sizeof(long),
200 .mode = 0444,
201 .proc_handler = proc_nr_dentry,
202 },
203 {
204 .procname = "dentry-negative",
205 .data = &dentry_negative_policy,
206 .maxlen = sizeof(dentry_negative_policy),
207 .mode = 0644,
208 .proc_handler = proc_dointvec_minmax,
209 .extra1 = SYSCTL_ZERO,
210 .extra2 = SYSCTL_ONE,
211 },
212 };
213
init_fs_dcache_sysctls(void)214 static int __init init_fs_dcache_sysctls(void)
215 {
216 register_sysctl_init("fs", fs_dcache_sysctls);
217 return 0;
218 }
219 fs_initcall(init_fs_dcache_sysctls);
220 #endif
221
222 /*
223 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
224 * The strings are both count bytes long, and count is non-zero.
225 */
226 #ifdef CONFIG_DCACHE_WORD_ACCESS
227
228 #include <asm/word-at-a-time.h>
229 /*
230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
231 * aligned allocation for this particular component. We don't
232 * strictly need the load_unaligned_zeropad() safety, but it
233 * doesn't hurt either.
234 *
235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
236 * need the careful unaligned handling.
237 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)238 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
239 {
240 unsigned long a,b,mask;
241
242 for (;;) {
243 a = read_word_at_a_time(cs);
244 b = load_unaligned_zeropad(ct);
245 if (tcount < sizeof(unsigned long))
246 break;
247 if (unlikely(a != b))
248 return 1;
249 cs += sizeof(unsigned long);
250 ct += sizeof(unsigned long);
251 tcount -= sizeof(unsigned long);
252 if (!tcount)
253 return 0;
254 }
255 mask = bytemask_from_count(tcount);
256 return unlikely(!!((a ^ b) & mask));
257 }
258
259 #else
260
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)261 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
262 {
263 do {
264 if (*cs != *ct)
265 return 1;
266 cs++;
267 ct++;
268 tcount--;
269 } while (tcount);
270 return 0;
271 }
272
273 #endif
274
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)275 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
276 {
277 /*
278 * Be careful about RCU walk racing with rename:
279 * use 'READ_ONCE' to fetch the name pointer.
280 *
281 * NOTE! Even if a rename will mean that the length
282 * was not loaded atomically, we don't care. The
283 * RCU walk will check the sequence count eventually,
284 * and catch it. And we won't overrun the buffer,
285 * because we're reading the name pointer atomically,
286 * and a dentry name is guaranteed to be properly
287 * terminated with a NUL byte.
288 *
289 * End result: even if 'len' is wrong, we'll exit
290 * early because the data cannot match (there can
291 * be no NUL in the ct/tcount data)
292 */
293 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
294
295 return dentry_string_cmp(cs, ct, tcount);
296 }
297
298 /*
299 * long names are allocated separately from dentry and never modified.
300 * Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
301 * for the reason why ->count and ->head can't be combined into a union.
302 * dentry_string_cmp() relies upon ->name[] being word-aligned.
303 */
304 struct external_name {
305 atomic_t count;
306 struct rcu_head head;
307 unsigned char name[] __aligned(sizeof(unsigned long));
308 };
309
external_name(struct dentry * dentry)310 static inline struct external_name *external_name(struct dentry *dentry)
311 {
312 return container_of(dentry->d_name.name, struct external_name, name[0]);
313 }
314
__d_free(struct rcu_head * head)315 static void __d_free(struct rcu_head *head)
316 {
317 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
318
319 kmem_cache_free(dentry_cache, dentry);
320 }
321
__d_free_external(struct rcu_head * head)322 static void __d_free_external(struct rcu_head *head)
323 {
324 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
325 kfree(external_name(dentry));
326 kmem_cache_free(dentry_cache, dentry);
327 }
328
dname_external(const struct dentry * dentry)329 static inline int dname_external(const struct dentry *dentry)
330 {
331 return dentry->d_name.name != dentry->d_shortname.string;
332 }
333
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)334 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
335 {
336 unsigned seq;
337 const unsigned char *s;
338
339 rcu_read_lock();
340 retry:
341 seq = read_seqcount_begin(&dentry->d_seq);
342 s = READ_ONCE(dentry->d_name.name);
343 name->name.hash_len = dentry->d_name.hash_len;
344 name->name.name = name->inline_name.string;
345 if (likely(s == dentry->d_shortname.string)) {
346 name->inline_name = dentry->d_shortname;
347 } else {
348 struct external_name *p;
349 p = container_of(s, struct external_name, name[0]);
350 // get a valid reference
351 if (unlikely(!atomic_inc_not_zero(&p->count)))
352 goto retry;
353 name->name.name = s;
354 }
355 if (read_seqcount_retry(&dentry->d_seq, seq)) {
356 release_dentry_name_snapshot(name);
357 goto retry;
358 }
359 rcu_read_unlock();
360 }
361 EXPORT_SYMBOL(take_dentry_name_snapshot);
362
release_dentry_name_snapshot(struct name_snapshot * name)363 void release_dentry_name_snapshot(struct name_snapshot *name)
364 {
365 if (unlikely(name->name.name != name->inline_name.string)) {
366 struct external_name *p;
367 p = container_of(name->name.name, struct external_name, name[0]);
368 if (unlikely(atomic_dec_and_test(&p->count)))
369 kfree_rcu(p, head);
370 }
371 }
372 EXPORT_SYMBOL(release_dentry_name_snapshot);
373
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)374 static inline void __d_set_inode_and_type(struct dentry *dentry,
375 struct inode *inode,
376 unsigned type_flags)
377 {
378 unsigned flags;
379
380 dentry->d_inode = inode;
381 flags = READ_ONCE(dentry->d_flags);
382 flags &= ~DCACHE_ENTRY_TYPE;
383 flags |= type_flags;
384 smp_store_release(&dentry->d_flags, flags);
385 }
386
__d_clear_type_and_inode(struct dentry * dentry)387 static inline void __d_clear_type_and_inode(struct dentry *dentry)
388 {
389 unsigned flags = READ_ONCE(dentry->d_flags);
390
391 flags &= ~DCACHE_ENTRY_TYPE;
392 WRITE_ONCE(dentry->d_flags, flags);
393 dentry->d_inode = NULL;
394 /*
395 * The negative counter only tracks dentries on the LRU. Don't inc if
396 * d_lru is on another list.
397 */
398 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
399 this_cpu_inc(nr_dentry_negative);
400 }
401
dentry_free(struct dentry * dentry)402 static void dentry_free(struct dentry *dentry)
403 {
404 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
405 if (unlikely(dname_external(dentry))) {
406 struct external_name *p = external_name(dentry);
407 if (likely(atomic_dec_and_test(&p->count))) {
408 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
409 return;
410 }
411 }
412 /* if dentry was never visible to RCU, immediate free is OK */
413 if (dentry->d_flags & DCACHE_NORCU)
414 __d_free(&dentry->d_u.d_rcu);
415 else
416 call_rcu(&dentry->d_u.d_rcu, __d_free);
417 }
418
419 /*
420 * Release the dentry's inode, using the filesystem
421 * d_iput() operation if defined.
422 */
dentry_unlink_inode(struct dentry * dentry)423 static void dentry_unlink_inode(struct dentry * dentry)
424 __releases(dentry->d_lock)
425 __releases(dentry->d_inode->i_lock)
426 {
427 struct inode *inode = dentry->d_inode;
428
429 raw_write_seqcount_begin(&dentry->d_seq);
430 __d_clear_type_and_inode(dentry);
431 hlist_del_init(&dentry->d_u.d_alias);
432 raw_write_seqcount_end(&dentry->d_seq);
433 spin_unlock(&dentry->d_lock);
434 spin_unlock(&inode->i_lock);
435 if (!inode->i_nlink)
436 fsnotify_inoderemove(inode);
437 if (dentry->d_op && dentry->d_op->d_iput)
438 dentry->d_op->d_iput(dentry, inode);
439 else
440 iput(inode);
441 }
442
443 /*
444 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
445 * is in use - which includes both the "real" per-superblock
446 * LRU list _and_ the DCACHE_SHRINK_LIST use.
447 *
448 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
449 * on the shrink list (ie not on the superblock LRU list).
450 *
451 * The per-cpu "nr_dentry_unused" counters are updated with
452 * the DCACHE_LRU_LIST bit.
453 *
454 * The per-cpu "nr_dentry_negative" counters are only updated
455 * when deleted from or added to the per-superblock LRU list, not
456 * from/to the shrink list. That is to avoid an unneeded dec/inc
457 * pair when moving from LRU to shrink list in select_collect().
458 *
459 * These helper functions make sure we always follow the
460 * rules. d_lock must be held by the caller.
461 */
462 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)463 static void d_lru_add(struct dentry *dentry)
464 {
465 D_FLAG_VERIFY(dentry, 0);
466 dentry->d_flags |= DCACHE_LRU_LIST;
467 this_cpu_inc(nr_dentry_unused);
468 if (d_is_negative(dentry))
469 this_cpu_inc(nr_dentry_negative);
470 WARN_ON_ONCE(!list_lru_add_obj(
471 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
472 }
473
d_lru_del(struct dentry * dentry)474 static void d_lru_del(struct dentry *dentry)
475 {
476 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
477 dentry->d_flags &= ~DCACHE_LRU_LIST;
478 this_cpu_dec(nr_dentry_unused);
479 if (d_is_negative(dentry))
480 this_cpu_dec(nr_dentry_negative);
481 WARN_ON_ONCE(!list_lru_del_obj(
482 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
483 }
484
d_shrink_del(struct dentry * dentry)485 static void d_shrink_del(struct dentry *dentry)
486 {
487 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
488 list_del_init(&dentry->d_lru);
489 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
490 this_cpu_dec(nr_dentry_unused);
491 }
492
d_shrink_add(struct dentry * dentry,struct list_head * list)493 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
494 {
495 D_FLAG_VERIFY(dentry, 0);
496 list_add(&dentry->d_lru, list);
497 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
498 this_cpu_inc(nr_dentry_unused);
499 }
500
501 /*
502 * These can only be called under the global LRU lock, ie during the
503 * callback for freeing the LRU list. "isolate" removes it from the
504 * LRU lists entirely, while shrink_move moves it to the indicated
505 * private list.
506 */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)507 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
508 {
509 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
510 dentry->d_flags &= ~DCACHE_LRU_LIST;
511 this_cpu_dec(nr_dentry_unused);
512 if (d_is_negative(dentry))
513 this_cpu_dec(nr_dentry_negative);
514 list_lru_isolate(lru, &dentry->d_lru);
515 }
516
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)517 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
518 struct list_head *list)
519 {
520 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
521 dentry->d_flags |= DCACHE_SHRINK_LIST;
522 if (d_is_negative(dentry))
523 this_cpu_dec(nr_dentry_negative);
524 list_lru_isolate_move(lru, &dentry->d_lru, list);
525 }
526
___d_drop(struct dentry * dentry)527 static void ___d_drop(struct dentry *dentry)
528 {
529 struct hlist_bl_head *b;
530 /*
531 * Hashed dentries are normally on the dentry hashtable,
532 * with the exception of those newly allocated by
533 * d_obtain_root, which are always IS_ROOT:
534 */
535 if (unlikely(IS_ROOT(dentry)))
536 b = &dentry->d_sb->s_roots;
537 else
538 b = d_hash(dentry->d_name.hash);
539
540 hlist_bl_lock(b);
541 __hlist_bl_del(&dentry->d_hash);
542 hlist_bl_unlock(b);
543 }
544
__d_drop(struct dentry * dentry)545 void __d_drop(struct dentry *dentry)
546 {
547 if (!d_unhashed(dentry)) {
548 ___d_drop(dentry);
549 dentry->d_hash.pprev = NULL;
550 write_seqcount_invalidate(&dentry->d_seq);
551 }
552 }
553 EXPORT_SYMBOL(__d_drop);
554
555 /**
556 * d_drop - drop a dentry
557 * @dentry: dentry to drop
558 *
559 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
560 * be found through a VFS lookup any more. Note that this is different from
561 * deleting the dentry - d_delete will try to mark the dentry negative if
562 * possible, giving a successful _negative_ lookup, while d_drop will
563 * just make the cache lookup fail.
564 *
565 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
566 * reason (NFS timeouts or autofs deletes).
567 *
568 * __d_drop requires dentry->d_lock
569 *
570 * ___d_drop doesn't mark dentry as "unhashed"
571 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
572 */
d_drop(struct dentry * dentry)573 void d_drop(struct dentry *dentry)
574 {
575 spin_lock(&dentry->d_lock);
576 __d_drop(dentry);
577 spin_unlock(&dentry->d_lock);
578 }
579 EXPORT_SYMBOL(d_drop);
580
dentry_unlist(struct dentry * dentry)581 static inline void dentry_unlist(struct dentry *dentry)
582 {
583 struct dentry *next;
584 /*
585 * Inform d_walk() and shrink_dentry_list() that we are no longer
586 * attached to the dentry tree
587 */
588 dentry->d_flags |= DCACHE_DENTRY_KILLED;
589 if (unlikely(hlist_unhashed(&dentry->d_sib)))
590 return;
591 __hlist_del(&dentry->d_sib);
592 /*
593 * Cursors can move around the list of children. While we'd been
594 * a normal list member, it didn't matter - ->d_sib.next would've
595 * been updated. However, from now on it won't be and for the
596 * things like d_walk() it might end up with a nasty surprise.
597 * Normally d_walk() doesn't care about cursors moving around -
598 * ->d_lock on parent prevents that and since a cursor has no children
599 * of its own, we get through it without ever unlocking the parent.
600 * There is one exception, though - if we ascend from a child that
601 * gets killed as soon as we unlock it, the next sibling is found
602 * using the value left in its ->d_sib.next. And if _that_
603 * pointed to a cursor, and cursor got moved (e.g. by lseek())
604 * before d_walk() regains parent->d_lock, we'll end up skipping
605 * everything the cursor had been moved past.
606 *
607 * Solution: make sure that the pointer left behind in ->d_sib.next
608 * points to something that won't be moving around. I.e. skip the
609 * cursors.
610 */
611 while (dentry->d_sib.next) {
612 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
613 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
614 break;
615 dentry->d_sib.next = next->d_sib.next;
616 }
617 }
618
__dentry_kill(struct dentry * dentry)619 static struct dentry *__dentry_kill(struct dentry *dentry)
620 {
621 struct dentry *parent = NULL;
622 bool can_free = true;
623
624 /*
625 * The dentry is now unrecoverably dead to the world.
626 */
627 lockref_mark_dead(&dentry->d_lockref);
628
629 /*
630 * inform the fs via d_prune that this dentry is about to be
631 * unhashed and destroyed.
632 */
633 if (dentry->d_flags & DCACHE_OP_PRUNE)
634 dentry->d_op->d_prune(dentry);
635
636 if (dentry->d_flags & DCACHE_LRU_LIST) {
637 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
638 d_lru_del(dentry);
639 }
640 /* if it was on the hash then remove it */
641 __d_drop(dentry);
642 if (dentry->d_inode)
643 dentry_unlink_inode(dentry);
644 else
645 spin_unlock(&dentry->d_lock);
646 this_cpu_dec(nr_dentry);
647 if (dentry->d_op && dentry->d_op->d_release)
648 dentry->d_op->d_release(dentry);
649
650 cond_resched();
651 /* now that it's negative, ->d_parent is stable */
652 if (!IS_ROOT(dentry)) {
653 parent = dentry->d_parent;
654 spin_lock(&parent->d_lock);
655 }
656 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
657 dentry_unlist(dentry);
658 if (dentry->d_flags & DCACHE_SHRINK_LIST)
659 can_free = false;
660 spin_unlock(&dentry->d_lock);
661 if (likely(can_free))
662 dentry_free(dentry);
663 if (parent && --parent->d_lockref.count) {
664 spin_unlock(&parent->d_lock);
665 return NULL;
666 }
667 return parent;
668 }
669
670 /*
671 * Lock a dentry for feeding it to __dentry_kill().
672 * Called under rcu_read_lock() and dentry->d_lock; the former
673 * guarantees that nothing we access will be freed under us.
674 * Note that dentry is *not* protected from concurrent dentry_kill(),
675 * d_delete(), etc.
676 *
677 * Return false if dentry is busy. Otherwise, return true and have
678 * that dentry's inode locked.
679 */
680
lock_for_kill(struct dentry * dentry)681 static bool lock_for_kill(struct dentry *dentry)
682 {
683 struct inode *inode = dentry->d_inode;
684
685 if (unlikely(dentry->d_lockref.count))
686 return false;
687
688 if (!inode || likely(spin_trylock(&inode->i_lock)))
689 return true;
690
691 do {
692 spin_unlock(&dentry->d_lock);
693 spin_lock(&inode->i_lock);
694 spin_lock(&dentry->d_lock);
695 if (likely(inode == dentry->d_inode))
696 break;
697 spin_unlock(&inode->i_lock);
698 inode = dentry->d_inode;
699 } while (inode);
700 if (likely(!dentry->d_lockref.count))
701 return true;
702 if (inode)
703 spin_unlock(&inode->i_lock);
704 return false;
705 }
706
707 /*
708 * Decide if dentry is worth retaining. Usually this is called with dentry
709 * locked; if not locked, we are more limited and might not be able to tell
710 * without a lock. False in this case means "punt to locked path and recheck".
711 *
712 * In case we aren't locked, these predicates are not "stable". However, it is
713 * sufficient that at some point after we dropped the reference the dentry was
714 * hashed and the flags had the proper value. Other dentry users may have
715 * re-gotten a reference to the dentry and change that, but our work is done -
716 * we can leave the dentry around with a zero refcount.
717 */
retain_dentry(struct dentry * dentry,bool locked)718 static inline bool retain_dentry(struct dentry *dentry, bool locked)
719 {
720 unsigned int d_flags;
721
722 smp_rmb();
723 d_flags = READ_ONCE(dentry->d_flags);
724
725 // Unreachable? Nobody would be able to look it up, no point retaining
726 if (unlikely(d_unhashed(dentry)))
727 return false;
728
729 // Same if it's disconnected
730 if (unlikely(d_flags & DCACHE_DISCONNECTED))
731 return false;
732
733 // ->d_delete() might tell us not to bother, but that requires
734 // ->d_lock; can't decide without it
735 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
736 if (!locked || dentry->d_op->d_delete(dentry))
737 return false;
738 }
739
740 // Explicitly told not to bother
741 if (unlikely(d_flags & DCACHE_DONTCACHE))
742 return false;
743
744 // At this point it looks like we ought to keep it. We also might
745 // need to do something - put it on LRU if it wasn't there already
746 // and mark it referenced if it was on LRU, but not marked yet.
747 // Unfortunately, both actions require ->d_lock, so in lockless
748 // case we'd have to punt rather than doing those.
749 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
750 if (!locked)
751 return false;
752 d_lru_add(dentry);
753 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
754 if (!locked)
755 return false;
756 dentry->d_flags |= DCACHE_REFERENCED;
757 }
758 return true;
759 }
760
d_mark_dontcache(struct inode * inode)761 void d_mark_dontcache(struct inode *inode)
762 {
763 struct dentry *de;
764
765 spin_lock(&inode->i_lock);
766 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
767 spin_lock(&de->d_lock);
768 de->d_flags |= DCACHE_DONTCACHE;
769 spin_unlock(&de->d_lock);
770 }
771 inode->i_state |= I_DONTCACHE;
772 spin_unlock(&inode->i_lock);
773 }
774 EXPORT_SYMBOL(d_mark_dontcache);
775
776 /*
777 * Try to do a lockless dput(), and return whether that was successful.
778 *
779 * If unsuccessful, we return false, having already taken the dentry lock.
780 * In that case refcount is guaranteed to be zero and we have already
781 * decided that it's not worth keeping around.
782 *
783 * The caller needs to hold the RCU read lock, so that the dentry is
784 * guaranteed to stay around even if the refcount goes down to zero!
785 */
fast_dput(struct dentry * dentry)786 static inline bool fast_dput(struct dentry *dentry)
787 {
788 int ret;
789
790 /*
791 * try to decrement the lockref optimistically.
792 */
793 ret = lockref_put_return(&dentry->d_lockref);
794
795 /*
796 * If the lockref_put_return() failed due to the lock being held
797 * by somebody else, the fast path has failed. We will need to
798 * get the lock, and then check the count again.
799 */
800 if (unlikely(ret < 0)) {
801 spin_lock(&dentry->d_lock);
802 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
803 spin_unlock(&dentry->d_lock);
804 return true;
805 }
806 dentry->d_lockref.count--;
807 goto locked;
808 }
809
810 /*
811 * If we weren't the last ref, we're done.
812 */
813 if (ret)
814 return true;
815
816 /*
817 * Can we decide that decrement of refcount is all we needed without
818 * taking the lock? There's a very common case when it's all we need -
819 * dentry looks like it ought to be retained and there's nothing else
820 * to do.
821 */
822 if (retain_dentry(dentry, false))
823 return true;
824
825 /*
826 * Either not worth retaining or we can't tell without the lock.
827 * Get the lock, then. We've already decremented the refcount to 0,
828 * but we'll need to re-check the situation after getting the lock.
829 */
830 spin_lock(&dentry->d_lock);
831
832 /*
833 * Did somebody else grab a reference to it in the meantime, and
834 * we're no longer the last user after all? Alternatively, somebody
835 * else could have killed it and marked it dead. Either way, we
836 * don't need to do anything else.
837 */
838 locked:
839 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
840 spin_unlock(&dentry->d_lock);
841 return true;
842 }
843 return false;
844 }
845
846
847 /*
848 * This is dput
849 *
850 * This is complicated by the fact that we do not want to put
851 * dentries that are no longer on any hash chain on the unused
852 * list: we'd much rather just get rid of them immediately.
853 *
854 * However, that implies that we have to traverse the dentry
855 * tree upwards to the parents which might _also_ now be
856 * scheduled for deletion (it may have been only waiting for
857 * its last child to go away).
858 *
859 * This tail recursion is done by hand as we don't want to depend
860 * on the compiler to always get this right (gcc generally doesn't).
861 * Real recursion would eat up our stack space.
862 */
863
864 /*
865 * dput - release a dentry
866 * @dentry: dentry to release
867 *
868 * Release a dentry. This will drop the usage count and if appropriate
869 * call the dentry unlink method as well as removing it from the queues and
870 * releasing its resources. If the parent dentries were scheduled for release
871 * they too may now get deleted.
872 */
dput(struct dentry * dentry)873 void dput(struct dentry *dentry)
874 {
875 if (!dentry)
876 return;
877 might_sleep();
878 rcu_read_lock();
879 if (likely(fast_dput(dentry))) {
880 rcu_read_unlock();
881 return;
882 }
883 while (lock_for_kill(dentry)) {
884 rcu_read_unlock();
885 dentry = __dentry_kill(dentry);
886 if (!dentry)
887 return;
888 if (retain_dentry(dentry, true)) {
889 spin_unlock(&dentry->d_lock);
890 return;
891 }
892 rcu_read_lock();
893 }
894 rcu_read_unlock();
895 spin_unlock(&dentry->d_lock);
896 }
897 EXPORT_SYMBOL(dput);
898
to_shrink_list(struct dentry * dentry,struct list_head * list)899 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
900 __must_hold(&dentry->d_lock)
901 {
902 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
903 if (dentry->d_flags & DCACHE_LRU_LIST)
904 d_lru_del(dentry);
905 d_shrink_add(dentry, list);
906 }
907 }
908
dput_to_list(struct dentry * dentry,struct list_head * list)909 void dput_to_list(struct dentry *dentry, struct list_head *list)
910 {
911 rcu_read_lock();
912 if (likely(fast_dput(dentry))) {
913 rcu_read_unlock();
914 return;
915 }
916 rcu_read_unlock();
917 to_shrink_list(dentry, list);
918 spin_unlock(&dentry->d_lock);
919 }
920
dget_parent(struct dentry * dentry)921 struct dentry *dget_parent(struct dentry *dentry)
922 {
923 int gotref;
924 struct dentry *ret;
925 unsigned seq;
926
927 /*
928 * Do optimistic parent lookup without any
929 * locking.
930 */
931 rcu_read_lock();
932 seq = raw_seqcount_begin(&dentry->d_seq);
933 ret = READ_ONCE(dentry->d_parent);
934 gotref = lockref_get_not_zero(&ret->d_lockref);
935 rcu_read_unlock();
936 if (likely(gotref)) {
937 if (!read_seqcount_retry(&dentry->d_seq, seq))
938 return ret;
939 dput(ret);
940 }
941
942 repeat:
943 /*
944 * Don't need rcu_dereference because we re-check it was correct under
945 * the lock.
946 */
947 rcu_read_lock();
948 ret = dentry->d_parent;
949 spin_lock(&ret->d_lock);
950 if (unlikely(ret != dentry->d_parent)) {
951 spin_unlock(&ret->d_lock);
952 rcu_read_unlock();
953 goto repeat;
954 }
955 rcu_read_unlock();
956 BUG_ON(!ret->d_lockref.count);
957 ret->d_lockref.count++;
958 spin_unlock(&ret->d_lock);
959 return ret;
960 }
961 EXPORT_SYMBOL(dget_parent);
962
__d_find_any_alias(struct inode * inode)963 static struct dentry * __d_find_any_alias(struct inode *inode)
964 {
965 struct dentry *alias;
966
967 if (hlist_empty(&inode->i_dentry))
968 return NULL;
969 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
970 lockref_get(&alias->d_lockref);
971 return alias;
972 }
973
974 /**
975 * d_find_any_alias - find any alias for a given inode
976 * @inode: inode to find an alias for
977 *
978 * If any aliases exist for the given inode, take and return a
979 * reference for one of them. If no aliases exist, return %NULL.
980 */
d_find_any_alias(struct inode * inode)981 struct dentry *d_find_any_alias(struct inode *inode)
982 {
983 struct dentry *de;
984
985 spin_lock(&inode->i_lock);
986 de = __d_find_any_alias(inode);
987 spin_unlock(&inode->i_lock);
988 return de;
989 }
990 EXPORT_SYMBOL(d_find_any_alias);
991
__d_find_alias(struct inode * inode)992 static struct dentry *__d_find_alias(struct inode *inode)
993 {
994 struct dentry *alias;
995
996 if (S_ISDIR(inode->i_mode))
997 return __d_find_any_alias(inode);
998
999 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1000 spin_lock(&alias->d_lock);
1001 if (!d_unhashed(alias)) {
1002 dget_dlock(alias);
1003 spin_unlock(&alias->d_lock);
1004 return alias;
1005 }
1006 spin_unlock(&alias->d_lock);
1007 }
1008 return NULL;
1009 }
1010
1011 /**
1012 * d_find_alias - grab a hashed alias of inode
1013 * @inode: inode in question
1014 *
1015 * If inode has a hashed alias, or is a directory and has any alias,
1016 * acquire the reference to alias and return it. Otherwise return NULL.
1017 * Notice that if inode is a directory there can be only one alias and
1018 * it can be unhashed only if it has no children, or if it is the root
1019 * of a filesystem, or if the directory was renamed and d_revalidate
1020 * was the first vfs operation to notice.
1021 *
1022 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1023 * any other hashed alias over that one.
1024 */
d_find_alias(struct inode * inode)1025 struct dentry *d_find_alias(struct inode *inode)
1026 {
1027 struct dentry *de = NULL;
1028
1029 if (!hlist_empty(&inode->i_dentry)) {
1030 spin_lock(&inode->i_lock);
1031 de = __d_find_alias(inode);
1032 spin_unlock(&inode->i_lock);
1033 }
1034 return de;
1035 }
1036 EXPORT_SYMBOL(d_find_alias);
1037
1038 /*
1039 * Caller MUST be holding rcu_read_lock() and be guaranteed
1040 * that inode won't get freed until rcu_read_unlock().
1041 */
d_find_alias_rcu(struct inode * inode)1042 struct dentry *d_find_alias_rcu(struct inode *inode)
1043 {
1044 struct hlist_head *l = &inode->i_dentry;
1045 struct dentry *de = NULL;
1046
1047 spin_lock(&inode->i_lock);
1048 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1049 // used without having I_FREEING set, which means no aliases left
1050 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1051 if (S_ISDIR(inode->i_mode)) {
1052 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1053 } else {
1054 hlist_for_each_entry(de, l, d_u.d_alias)
1055 if (!d_unhashed(de))
1056 break;
1057 }
1058 }
1059 spin_unlock(&inode->i_lock);
1060 return de;
1061 }
1062
1063 /*
1064 * Try to kill dentries associated with this inode.
1065 * WARNING: you must own a reference to inode.
1066 */
d_prune_aliases(struct inode * inode)1067 void d_prune_aliases(struct inode *inode)
1068 {
1069 LIST_HEAD(dispose);
1070 struct dentry *dentry;
1071
1072 spin_lock(&inode->i_lock);
1073 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1074 spin_lock(&dentry->d_lock);
1075 if (!dentry->d_lockref.count)
1076 to_shrink_list(dentry, &dispose);
1077 spin_unlock(&dentry->d_lock);
1078 }
1079 spin_unlock(&inode->i_lock);
1080 shrink_dentry_list(&dispose);
1081 }
1082 EXPORT_SYMBOL(d_prune_aliases);
1083
shrink_kill(struct dentry * victim)1084 static inline void shrink_kill(struct dentry *victim)
1085 {
1086 do {
1087 rcu_read_unlock();
1088 victim = __dentry_kill(victim);
1089 rcu_read_lock();
1090 } while (victim && lock_for_kill(victim));
1091 rcu_read_unlock();
1092 if (victim)
1093 spin_unlock(&victim->d_lock);
1094 }
1095
shrink_dentry_list(struct list_head * list)1096 void shrink_dentry_list(struct list_head *list)
1097 {
1098 while (!list_empty(list)) {
1099 struct dentry *dentry;
1100
1101 dentry = list_entry(list->prev, struct dentry, d_lru);
1102 spin_lock(&dentry->d_lock);
1103 rcu_read_lock();
1104 if (!lock_for_kill(dentry)) {
1105 bool can_free;
1106 rcu_read_unlock();
1107 d_shrink_del(dentry);
1108 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1109 spin_unlock(&dentry->d_lock);
1110 if (can_free)
1111 dentry_free(dentry);
1112 continue;
1113 }
1114 d_shrink_del(dentry);
1115 shrink_kill(dentry);
1116 }
1117 }
1118
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1119 static enum lru_status dentry_lru_isolate(struct list_head *item,
1120 struct list_lru_one *lru, void *arg)
1121 {
1122 struct list_head *freeable = arg;
1123 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1124
1125
1126 /*
1127 * we are inverting the lru lock/dentry->d_lock here,
1128 * so use a trylock. If we fail to get the lock, just skip
1129 * it
1130 */
1131 if (!spin_trylock(&dentry->d_lock))
1132 return LRU_SKIP;
1133
1134 /*
1135 * Referenced dentries are still in use. If they have active
1136 * counts, just remove them from the LRU. Otherwise give them
1137 * another pass through the LRU.
1138 */
1139 if (dentry->d_lockref.count) {
1140 d_lru_isolate(lru, dentry);
1141 spin_unlock(&dentry->d_lock);
1142 return LRU_REMOVED;
1143 }
1144
1145 if (dentry->d_flags & DCACHE_REFERENCED) {
1146 dentry->d_flags &= ~DCACHE_REFERENCED;
1147 spin_unlock(&dentry->d_lock);
1148
1149 /*
1150 * The list move itself will be made by the common LRU code. At
1151 * this point, we've dropped the dentry->d_lock but keep the
1152 * lru lock. This is safe to do, since every list movement is
1153 * protected by the lru lock even if both locks are held.
1154 *
1155 * This is guaranteed by the fact that all LRU management
1156 * functions are intermediated by the LRU API calls like
1157 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1158 * only ever occur through this functions or through callbacks
1159 * like this one, that are called from the LRU API.
1160 *
1161 * The only exceptions to this are functions like
1162 * shrink_dentry_list, and code that first checks for the
1163 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1164 * operating only with stack provided lists after they are
1165 * properly isolated from the main list. It is thus, always a
1166 * local access.
1167 */
1168 return LRU_ROTATE;
1169 }
1170
1171 d_lru_shrink_move(lru, dentry, freeable);
1172 spin_unlock(&dentry->d_lock);
1173
1174 return LRU_REMOVED;
1175 }
1176
1177 /**
1178 * prune_dcache_sb - shrink the dcache
1179 * @sb: superblock
1180 * @sc: shrink control, passed to list_lru_shrink_walk()
1181 *
1182 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1183 * is done when we need more memory and called from the superblock shrinker
1184 * function.
1185 *
1186 * This function may fail to free any resources if all the dentries are in
1187 * use.
1188 */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1189 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1190 {
1191 LIST_HEAD(dispose);
1192 long freed;
1193
1194 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1195 dentry_lru_isolate, &dispose);
1196 shrink_dentry_list(&dispose);
1197 return freed;
1198 }
1199
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1200 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1201 struct list_lru_one *lru, void *arg)
1202 {
1203 struct list_head *freeable = arg;
1204 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1205
1206 /*
1207 * we are inverting the lru lock/dentry->d_lock here,
1208 * so use a trylock. If we fail to get the lock, just skip
1209 * it
1210 */
1211 if (!spin_trylock(&dentry->d_lock))
1212 return LRU_SKIP;
1213
1214 d_lru_shrink_move(lru, dentry, freeable);
1215 spin_unlock(&dentry->d_lock);
1216
1217 return LRU_REMOVED;
1218 }
1219
1220
1221 /**
1222 * shrink_dcache_sb - shrink dcache for a superblock
1223 * @sb: superblock
1224 *
1225 * Shrink the dcache for the specified super block. This is used to free
1226 * the dcache before unmounting a file system.
1227 */
shrink_dcache_sb(struct super_block * sb)1228 void shrink_dcache_sb(struct super_block *sb)
1229 {
1230 do {
1231 LIST_HEAD(dispose);
1232
1233 list_lru_walk(&sb->s_dentry_lru,
1234 dentry_lru_isolate_shrink, &dispose, 1024);
1235 shrink_dentry_list(&dispose);
1236 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1237 }
1238 EXPORT_SYMBOL(shrink_dcache_sb);
1239
1240 /**
1241 * enum d_walk_ret - action to talke during tree walk
1242 * @D_WALK_CONTINUE: contrinue walk
1243 * @D_WALK_QUIT: quit walk
1244 * @D_WALK_NORETRY: quit when retry is needed
1245 * @D_WALK_SKIP: skip this dentry and its children
1246 */
1247 enum d_walk_ret {
1248 D_WALK_CONTINUE,
1249 D_WALK_QUIT,
1250 D_WALK_NORETRY,
1251 D_WALK_SKIP,
1252 };
1253
1254 /**
1255 * d_walk - walk the dentry tree
1256 * @parent: start of walk
1257 * @data: data passed to @enter() and @finish()
1258 * @enter: callback when first entering the dentry
1259 *
1260 * The @enter() callbacks are called with d_lock held.
1261 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1262 static void d_walk(struct dentry *parent, void *data,
1263 enum d_walk_ret (*enter)(void *, struct dentry *))
1264 {
1265 struct dentry *this_parent, *dentry;
1266 unsigned seq = 0;
1267 enum d_walk_ret ret;
1268 bool retry = true;
1269
1270 again:
1271 read_seqbegin_or_lock(&rename_lock, &seq);
1272 this_parent = parent;
1273 spin_lock(&this_parent->d_lock);
1274
1275 ret = enter(data, this_parent);
1276 switch (ret) {
1277 case D_WALK_CONTINUE:
1278 break;
1279 case D_WALK_QUIT:
1280 case D_WALK_SKIP:
1281 goto out_unlock;
1282 case D_WALK_NORETRY:
1283 retry = false;
1284 break;
1285 }
1286 repeat:
1287 dentry = d_first_child(this_parent);
1288 resume:
1289 hlist_for_each_entry_from(dentry, d_sib) {
1290 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1291 continue;
1292
1293 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1294
1295 ret = enter(data, dentry);
1296 switch (ret) {
1297 case D_WALK_CONTINUE:
1298 break;
1299 case D_WALK_QUIT:
1300 spin_unlock(&dentry->d_lock);
1301 goto out_unlock;
1302 case D_WALK_NORETRY:
1303 retry = false;
1304 break;
1305 case D_WALK_SKIP:
1306 spin_unlock(&dentry->d_lock);
1307 continue;
1308 }
1309
1310 if (!hlist_empty(&dentry->d_children)) {
1311 spin_unlock(&this_parent->d_lock);
1312 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1313 this_parent = dentry;
1314 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1315 goto repeat;
1316 }
1317 spin_unlock(&dentry->d_lock);
1318 }
1319 /*
1320 * All done at this level ... ascend and resume the search.
1321 */
1322 rcu_read_lock();
1323 ascend:
1324 if (this_parent != parent) {
1325 dentry = this_parent;
1326 this_parent = dentry->d_parent;
1327
1328 spin_unlock(&dentry->d_lock);
1329 spin_lock(&this_parent->d_lock);
1330
1331 /* might go back up the wrong parent if we have had a rename. */
1332 if (need_seqretry(&rename_lock, seq))
1333 goto rename_retry;
1334 /* go into the first sibling still alive */
1335 hlist_for_each_entry_continue(dentry, d_sib) {
1336 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1337 rcu_read_unlock();
1338 goto resume;
1339 }
1340 }
1341 goto ascend;
1342 }
1343 if (need_seqretry(&rename_lock, seq))
1344 goto rename_retry;
1345 rcu_read_unlock();
1346
1347 out_unlock:
1348 spin_unlock(&this_parent->d_lock);
1349 done_seqretry(&rename_lock, seq);
1350 return;
1351
1352 rename_retry:
1353 spin_unlock(&this_parent->d_lock);
1354 rcu_read_unlock();
1355 BUG_ON(seq & 1);
1356 if (!retry)
1357 return;
1358 seq = 1;
1359 goto again;
1360 }
1361
1362 struct check_mount {
1363 struct vfsmount *mnt;
1364 unsigned int mounted;
1365 };
1366
path_check_mount(void * data,struct dentry * dentry)1367 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1368 {
1369 struct check_mount *info = data;
1370 struct path path = { .mnt = info->mnt, .dentry = dentry };
1371
1372 if (likely(!d_mountpoint(dentry)))
1373 return D_WALK_CONTINUE;
1374 if (__path_is_mountpoint(&path)) {
1375 info->mounted = 1;
1376 return D_WALK_QUIT;
1377 }
1378 return D_WALK_CONTINUE;
1379 }
1380
1381 /**
1382 * path_has_submounts - check for mounts over a dentry in the
1383 * current namespace.
1384 * @parent: path to check.
1385 *
1386 * Return true if the parent or its subdirectories contain
1387 * a mount point in the current namespace.
1388 */
path_has_submounts(const struct path * parent)1389 int path_has_submounts(const struct path *parent)
1390 {
1391 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1392
1393 read_seqlock_excl(&mount_lock);
1394 d_walk(parent->dentry, &data, path_check_mount);
1395 read_sequnlock_excl(&mount_lock);
1396
1397 return data.mounted;
1398 }
1399 EXPORT_SYMBOL(path_has_submounts);
1400
1401 /*
1402 * Called by mount code to set a mountpoint and check if the mountpoint is
1403 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1404 * subtree can become unreachable).
1405 *
1406 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1407 * this reason take rename_lock and d_lock on dentry and ancestors.
1408 */
d_set_mounted(struct dentry * dentry)1409 int d_set_mounted(struct dentry *dentry)
1410 {
1411 struct dentry *p;
1412 int ret = -ENOENT;
1413 write_seqlock(&rename_lock);
1414 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1415 /* Need exclusion wrt. d_invalidate() */
1416 spin_lock(&p->d_lock);
1417 if (unlikely(d_unhashed(p))) {
1418 spin_unlock(&p->d_lock);
1419 goto out;
1420 }
1421 spin_unlock(&p->d_lock);
1422 }
1423 spin_lock(&dentry->d_lock);
1424 if (!d_unlinked(dentry)) {
1425 ret = -EBUSY;
1426 if (!d_mountpoint(dentry)) {
1427 dentry->d_flags |= DCACHE_MOUNTED;
1428 ret = 0;
1429 }
1430 }
1431 spin_unlock(&dentry->d_lock);
1432 out:
1433 write_sequnlock(&rename_lock);
1434 return ret;
1435 }
1436
1437 /*
1438 * Search the dentry child list of the specified parent,
1439 * and move any unused dentries to the end of the unused
1440 * list for prune_dcache(). We descend to the next level
1441 * whenever the d_children list is non-empty and continue
1442 * searching.
1443 *
1444 * It returns zero iff there are no unused children,
1445 * otherwise it returns the number of children moved to
1446 * the end of the unused list. This may not be the total
1447 * number of unused children, because select_parent can
1448 * drop the lock and return early due to latency
1449 * constraints.
1450 */
1451
1452 struct select_data {
1453 struct dentry *start;
1454 union {
1455 long found;
1456 struct dentry *victim;
1457 };
1458 struct list_head dispose;
1459 };
1460
select_collect(void * _data,struct dentry * dentry)1461 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1462 {
1463 struct select_data *data = _data;
1464 enum d_walk_ret ret = D_WALK_CONTINUE;
1465
1466 if (data->start == dentry)
1467 goto out;
1468
1469 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1470 data->found++;
1471 } else if (!dentry->d_lockref.count) {
1472 to_shrink_list(dentry, &data->dispose);
1473 data->found++;
1474 } else if (dentry->d_lockref.count < 0) {
1475 data->found++;
1476 }
1477 /*
1478 * We can return to the caller if we have found some (this
1479 * ensures forward progress). We'll be coming back to find
1480 * the rest.
1481 */
1482 if (!list_empty(&data->dispose))
1483 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1484 out:
1485 return ret;
1486 }
1487
select_collect2(void * _data,struct dentry * dentry)1488 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1489 {
1490 struct select_data *data = _data;
1491 enum d_walk_ret ret = D_WALK_CONTINUE;
1492
1493 if (data->start == dentry)
1494 goto out;
1495
1496 if (!dentry->d_lockref.count) {
1497 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1498 rcu_read_lock();
1499 data->victim = dentry;
1500 return D_WALK_QUIT;
1501 }
1502 to_shrink_list(dentry, &data->dispose);
1503 }
1504 /*
1505 * We can return to the caller if we have found some (this
1506 * ensures forward progress). We'll be coming back to find
1507 * the rest.
1508 */
1509 if (!list_empty(&data->dispose))
1510 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1511 out:
1512 return ret;
1513 }
1514
1515 /**
1516 * shrink_dcache_parent - prune dcache
1517 * @parent: parent of entries to prune
1518 *
1519 * Prune the dcache to remove unused children of the parent dentry.
1520 */
shrink_dcache_parent(struct dentry * parent)1521 void shrink_dcache_parent(struct dentry *parent)
1522 {
1523 for (;;) {
1524 struct select_data data = {.start = parent};
1525
1526 INIT_LIST_HEAD(&data.dispose);
1527 d_walk(parent, &data, select_collect);
1528
1529 if (!list_empty(&data.dispose)) {
1530 shrink_dentry_list(&data.dispose);
1531 continue;
1532 }
1533
1534 cond_resched();
1535 if (!data.found)
1536 break;
1537 data.victim = NULL;
1538 d_walk(parent, &data, select_collect2);
1539 if (data.victim) {
1540 spin_lock(&data.victim->d_lock);
1541 if (!lock_for_kill(data.victim)) {
1542 spin_unlock(&data.victim->d_lock);
1543 rcu_read_unlock();
1544 } else {
1545 shrink_kill(data.victim);
1546 }
1547 }
1548 if (!list_empty(&data.dispose))
1549 shrink_dentry_list(&data.dispose);
1550 }
1551 }
1552 EXPORT_SYMBOL(shrink_dcache_parent);
1553
umount_check(void * _data,struct dentry * dentry)1554 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1555 {
1556 /* it has busy descendents; complain about those instead */
1557 if (!hlist_empty(&dentry->d_children))
1558 return D_WALK_CONTINUE;
1559
1560 /* root with refcount 1 is fine */
1561 if (dentry == _data && dentry->d_lockref.count == 1)
1562 return D_WALK_CONTINUE;
1563
1564 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1565 " still in use (%d) [unmount of %s %s]\n",
1566 dentry,
1567 dentry->d_inode ?
1568 dentry->d_inode->i_ino : 0UL,
1569 dentry,
1570 dentry->d_lockref.count,
1571 dentry->d_sb->s_type->name,
1572 dentry->d_sb->s_id);
1573 return D_WALK_CONTINUE;
1574 }
1575
do_one_tree(struct dentry * dentry)1576 static void do_one_tree(struct dentry *dentry)
1577 {
1578 shrink_dcache_parent(dentry);
1579 d_walk(dentry, dentry, umount_check);
1580 d_drop(dentry);
1581 dput(dentry);
1582 }
1583
1584 /*
1585 * destroy the dentries attached to a superblock on unmounting
1586 */
shrink_dcache_for_umount(struct super_block * sb)1587 void shrink_dcache_for_umount(struct super_block *sb)
1588 {
1589 struct dentry *dentry;
1590
1591 rwsem_assert_held_write(&sb->s_umount);
1592
1593 dentry = sb->s_root;
1594 sb->s_root = NULL;
1595 do_one_tree(dentry);
1596
1597 while (!hlist_bl_empty(&sb->s_roots)) {
1598 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1599 do_one_tree(dentry);
1600 }
1601 }
1602
find_submount(void * _data,struct dentry * dentry)1603 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1604 {
1605 struct dentry **victim = _data;
1606 if (d_mountpoint(dentry)) {
1607 *victim = dget_dlock(dentry);
1608 return D_WALK_QUIT;
1609 }
1610 return D_WALK_CONTINUE;
1611 }
1612
1613 /**
1614 * d_invalidate - detach submounts, prune dcache, and drop
1615 * @dentry: dentry to invalidate (aka detach, prune and drop)
1616 */
d_invalidate(struct dentry * dentry)1617 void d_invalidate(struct dentry *dentry)
1618 {
1619 bool had_submounts = false;
1620 spin_lock(&dentry->d_lock);
1621 if (d_unhashed(dentry)) {
1622 spin_unlock(&dentry->d_lock);
1623 return;
1624 }
1625 __d_drop(dentry);
1626 spin_unlock(&dentry->d_lock);
1627
1628 /* Negative dentries can be dropped without further checks */
1629 if (!dentry->d_inode)
1630 return;
1631
1632 shrink_dcache_parent(dentry);
1633 for (;;) {
1634 struct dentry *victim = NULL;
1635 d_walk(dentry, &victim, find_submount);
1636 if (!victim) {
1637 if (had_submounts)
1638 shrink_dcache_parent(dentry);
1639 return;
1640 }
1641 had_submounts = true;
1642 detach_mounts(victim);
1643 dput(victim);
1644 }
1645 }
1646 EXPORT_SYMBOL(d_invalidate);
1647
1648 /**
1649 * __d_alloc - allocate a dcache entry
1650 * @sb: filesystem it will belong to
1651 * @name: qstr of the name
1652 *
1653 * Allocates a dentry. It returns %NULL if there is insufficient memory
1654 * available. On a success the dentry is returned. The name passed in is
1655 * copied and the copy passed in may be reused after this call.
1656 */
1657
__d_alloc(struct super_block * sb,const struct qstr * name)1658 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1659 {
1660 struct dentry *dentry;
1661 char *dname;
1662 int err;
1663
1664 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1665 GFP_KERNEL);
1666 if (!dentry)
1667 return NULL;
1668
1669 /*
1670 * We guarantee that the inline name is always NUL-terminated.
1671 * This way the memcpy() done by the name switching in rename
1672 * will still always have a NUL at the end, even if we might
1673 * be overwriting an internal NUL character
1674 */
1675 dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1676 if (unlikely(!name)) {
1677 name = &slash_name;
1678 dname = dentry->d_shortname.string;
1679 } else if (name->len > DNAME_INLINE_LEN-1) {
1680 size_t size = offsetof(struct external_name, name[1]);
1681 struct external_name *p = kmalloc(size + name->len,
1682 GFP_KERNEL_ACCOUNT |
1683 __GFP_RECLAIMABLE);
1684 if (!p) {
1685 kmem_cache_free(dentry_cache, dentry);
1686 return NULL;
1687 }
1688 atomic_set(&p->count, 1);
1689 dname = p->name;
1690 } else {
1691 dname = dentry->d_shortname.string;
1692 }
1693
1694 dentry->d_name.len = name->len;
1695 dentry->d_name.hash = name->hash;
1696 memcpy(dname, name->name, name->len);
1697 dname[name->len] = 0;
1698
1699 /* Make sure we always see the terminating NUL character */
1700 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1701
1702 dentry->d_flags = 0;
1703 lockref_init(&dentry->d_lockref);
1704 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1705 dentry->d_inode = NULL;
1706 dentry->d_parent = dentry;
1707 dentry->d_sb = sb;
1708 dentry->d_op = NULL;
1709 dentry->d_fsdata = NULL;
1710 INIT_HLIST_BL_NODE(&dentry->d_hash);
1711 INIT_LIST_HEAD(&dentry->d_lru);
1712 INIT_HLIST_HEAD(&dentry->d_children);
1713 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1714 INIT_HLIST_NODE(&dentry->d_sib);
1715 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1716
1717 if (dentry->d_op && dentry->d_op->d_init) {
1718 err = dentry->d_op->d_init(dentry);
1719 if (err) {
1720 if (dname_external(dentry))
1721 kfree(external_name(dentry));
1722 kmem_cache_free(dentry_cache, dentry);
1723 return NULL;
1724 }
1725 }
1726
1727 this_cpu_inc(nr_dentry);
1728
1729 return dentry;
1730 }
1731
1732 /**
1733 * d_alloc - allocate a dcache entry
1734 * @parent: parent of entry to allocate
1735 * @name: qstr of the name
1736 *
1737 * Allocates a dentry. It returns %NULL if there is insufficient memory
1738 * available. On a success the dentry is returned. The name passed in is
1739 * copied and the copy passed in may be reused after this call.
1740 */
d_alloc(struct dentry * parent,const struct qstr * name)1741 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1742 {
1743 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1744 if (!dentry)
1745 return NULL;
1746 spin_lock(&parent->d_lock);
1747 /*
1748 * don't need child lock because it is not subject
1749 * to concurrency here
1750 */
1751 dentry->d_parent = dget_dlock(parent);
1752 hlist_add_head(&dentry->d_sib, &parent->d_children);
1753 spin_unlock(&parent->d_lock);
1754
1755 return dentry;
1756 }
1757 EXPORT_SYMBOL(d_alloc);
1758
d_alloc_anon(struct super_block * sb)1759 struct dentry *d_alloc_anon(struct super_block *sb)
1760 {
1761 return __d_alloc(sb, NULL);
1762 }
1763 EXPORT_SYMBOL(d_alloc_anon);
1764
d_alloc_cursor(struct dentry * parent)1765 struct dentry *d_alloc_cursor(struct dentry * parent)
1766 {
1767 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1768 if (dentry) {
1769 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1770 dentry->d_parent = dget(parent);
1771 }
1772 return dentry;
1773 }
1774
1775 /**
1776 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1777 * @sb: the superblock
1778 * @name: qstr of the name
1779 *
1780 * For a filesystem that just pins its dentries in memory and never
1781 * performs lookups at all, return an unhashed IS_ROOT dentry.
1782 * This is used for pipes, sockets et.al. - the stuff that should
1783 * never be anyone's children or parents. Unlike all other
1784 * dentries, these will not have RCU delay between dropping the
1785 * last reference and freeing them.
1786 *
1787 * The only user is alloc_file_pseudo() and that's what should
1788 * be considered a public interface. Don't use directly.
1789 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1790 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1791 {
1792 static const struct dentry_operations anon_ops = {
1793 .d_dname = simple_dname
1794 };
1795 struct dentry *dentry = __d_alloc(sb, name);
1796 if (likely(dentry)) {
1797 dentry->d_flags |= DCACHE_NORCU;
1798 if (!sb->s_d_op)
1799 d_set_d_op(dentry, &anon_ops);
1800 }
1801 return dentry;
1802 }
1803
d_alloc_name(struct dentry * parent,const char * name)1804 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1805 {
1806 struct qstr q;
1807
1808 q.name = name;
1809 q.hash_len = hashlen_string(parent, name);
1810 return d_alloc(parent, &q);
1811 }
1812 EXPORT_SYMBOL(d_alloc_name);
1813
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1814 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1815 {
1816 WARN_ON_ONCE(dentry->d_op);
1817 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1818 DCACHE_OP_COMPARE |
1819 DCACHE_OP_REVALIDATE |
1820 DCACHE_OP_WEAK_REVALIDATE |
1821 DCACHE_OP_DELETE |
1822 DCACHE_OP_REAL));
1823 dentry->d_op = op;
1824 if (!op)
1825 return;
1826 if (op->d_hash)
1827 dentry->d_flags |= DCACHE_OP_HASH;
1828 if (op->d_compare)
1829 dentry->d_flags |= DCACHE_OP_COMPARE;
1830 if (op->d_revalidate)
1831 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1832 if (op->d_weak_revalidate)
1833 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1834 if (op->d_delete)
1835 dentry->d_flags |= DCACHE_OP_DELETE;
1836 if (op->d_prune)
1837 dentry->d_flags |= DCACHE_OP_PRUNE;
1838 if (op->d_real)
1839 dentry->d_flags |= DCACHE_OP_REAL;
1840
1841 }
1842 EXPORT_SYMBOL(d_set_d_op);
1843
d_flags_for_inode(struct inode * inode)1844 static unsigned d_flags_for_inode(struct inode *inode)
1845 {
1846 unsigned add_flags = DCACHE_REGULAR_TYPE;
1847
1848 if (!inode)
1849 return DCACHE_MISS_TYPE;
1850
1851 if (S_ISDIR(inode->i_mode)) {
1852 add_flags = DCACHE_DIRECTORY_TYPE;
1853 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1854 if (unlikely(!inode->i_op->lookup))
1855 add_flags = DCACHE_AUTODIR_TYPE;
1856 else
1857 inode->i_opflags |= IOP_LOOKUP;
1858 }
1859 goto type_determined;
1860 }
1861
1862 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1863 if (unlikely(inode->i_op->get_link)) {
1864 add_flags = DCACHE_SYMLINK_TYPE;
1865 goto type_determined;
1866 }
1867 inode->i_opflags |= IOP_NOFOLLOW;
1868 }
1869
1870 if (unlikely(!S_ISREG(inode->i_mode)))
1871 add_flags = DCACHE_SPECIAL_TYPE;
1872
1873 type_determined:
1874 if (unlikely(IS_AUTOMOUNT(inode)))
1875 add_flags |= DCACHE_NEED_AUTOMOUNT;
1876 return add_flags;
1877 }
1878
__d_instantiate(struct dentry * dentry,struct inode * inode)1879 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1880 {
1881 unsigned add_flags = d_flags_for_inode(inode);
1882 WARN_ON(d_in_lookup(dentry));
1883
1884 spin_lock(&dentry->d_lock);
1885 /*
1886 * The negative counter only tracks dentries on the LRU. Don't dec if
1887 * d_lru is on another list.
1888 */
1889 if ((dentry->d_flags &
1890 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1891 this_cpu_dec(nr_dentry_negative);
1892 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1893 raw_write_seqcount_begin(&dentry->d_seq);
1894 __d_set_inode_and_type(dentry, inode, add_flags);
1895 raw_write_seqcount_end(&dentry->d_seq);
1896 fsnotify_update_flags(dentry);
1897 spin_unlock(&dentry->d_lock);
1898 }
1899
1900 /**
1901 * d_instantiate - fill in inode information for a dentry
1902 * @entry: dentry to complete
1903 * @inode: inode to attach to this dentry
1904 *
1905 * Fill in inode information in the entry.
1906 *
1907 * This turns negative dentries into productive full members
1908 * of society.
1909 *
1910 * NOTE! This assumes that the inode count has been incremented
1911 * (or otherwise set) by the caller to indicate that it is now
1912 * in use by the dcache.
1913 */
1914
d_instantiate(struct dentry * entry,struct inode * inode)1915 void d_instantiate(struct dentry *entry, struct inode * inode)
1916 {
1917 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1918 if (inode) {
1919 security_d_instantiate(entry, inode);
1920 spin_lock(&inode->i_lock);
1921 __d_instantiate(entry, inode);
1922 spin_unlock(&inode->i_lock);
1923 }
1924 }
1925 EXPORT_SYMBOL(d_instantiate);
1926
1927 /*
1928 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1929 * with lockdep-related part of unlock_new_inode() done before
1930 * anything else. Use that instead of open-coding d_instantiate()/
1931 * unlock_new_inode() combinations.
1932 */
d_instantiate_new(struct dentry * entry,struct inode * inode)1933 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1934 {
1935 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1936 BUG_ON(!inode);
1937 lockdep_annotate_inode_mutex_key(inode);
1938 security_d_instantiate(entry, inode);
1939 spin_lock(&inode->i_lock);
1940 __d_instantiate(entry, inode);
1941 WARN_ON(!(inode->i_state & I_NEW));
1942 inode->i_state &= ~I_NEW & ~I_CREATING;
1943 /*
1944 * Pairs with the barrier in prepare_to_wait_event() to make sure
1945 * ___wait_var_event() either sees the bit cleared or
1946 * waitqueue_active() check in wake_up_var() sees the waiter.
1947 */
1948 smp_mb();
1949 inode_wake_up_bit(inode, __I_NEW);
1950 spin_unlock(&inode->i_lock);
1951 }
1952 EXPORT_SYMBOL(d_instantiate_new);
1953
d_make_root(struct inode * root_inode)1954 struct dentry *d_make_root(struct inode *root_inode)
1955 {
1956 struct dentry *res = NULL;
1957
1958 if (root_inode) {
1959 res = d_alloc_anon(root_inode->i_sb);
1960 if (res)
1961 d_instantiate(res, root_inode);
1962 else
1963 iput(root_inode);
1964 }
1965 return res;
1966 }
1967 EXPORT_SYMBOL(d_make_root);
1968
__d_obtain_alias(struct inode * inode,bool disconnected)1969 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1970 {
1971 struct super_block *sb;
1972 struct dentry *new, *res;
1973
1974 if (!inode)
1975 return ERR_PTR(-ESTALE);
1976 if (IS_ERR(inode))
1977 return ERR_CAST(inode);
1978
1979 sb = inode->i_sb;
1980
1981 res = d_find_any_alias(inode); /* existing alias? */
1982 if (res)
1983 goto out;
1984
1985 new = d_alloc_anon(sb);
1986 if (!new) {
1987 res = ERR_PTR(-ENOMEM);
1988 goto out;
1989 }
1990
1991 security_d_instantiate(new, inode);
1992 spin_lock(&inode->i_lock);
1993 res = __d_find_any_alias(inode); /* recheck under lock */
1994 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1995 unsigned add_flags = d_flags_for_inode(inode);
1996
1997 if (disconnected)
1998 add_flags |= DCACHE_DISCONNECTED;
1999
2000 spin_lock(&new->d_lock);
2001 __d_set_inode_and_type(new, inode, add_flags);
2002 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2003 if (!disconnected) {
2004 hlist_bl_lock(&sb->s_roots);
2005 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2006 hlist_bl_unlock(&sb->s_roots);
2007 }
2008 spin_unlock(&new->d_lock);
2009 spin_unlock(&inode->i_lock);
2010 inode = NULL; /* consumed by new->d_inode */
2011 res = new;
2012 } else {
2013 spin_unlock(&inode->i_lock);
2014 dput(new);
2015 }
2016
2017 out:
2018 iput(inode);
2019 return res;
2020 }
2021
2022 /**
2023 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2024 * @inode: inode to allocate the dentry for
2025 *
2026 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2027 * similar open by handle operations. The returned dentry may be anonymous,
2028 * or may have a full name (if the inode was already in the cache).
2029 *
2030 * When called on a directory inode, we must ensure that the inode only ever
2031 * has one dentry. If a dentry is found, that is returned instead of
2032 * allocating a new one.
2033 *
2034 * On successful return, the reference to the inode has been transferred
2035 * to the dentry. In case of an error the reference on the inode is released.
2036 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2037 * be passed in and the error will be propagated to the return value,
2038 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2039 */
d_obtain_alias(struct inode * inode)2040 struct dentry *d_obtain_alias(struct inode *inode)
2041 {
2042 return __d_obtain_alias(inode, true);
2043 }
2044 EXPORT_SYMBOL(d_obtain_alias);
2045
2046 /**
2047 * d_obtain_root - find or allocate a dentry for a given inode
2048 * @inode: inode to allocate the dentry for
2049 *
2050 * Obtain an IS_ROOT dentry for the root of a filesystem.
2051 *
2052 * We must ensure that directory inodes only ever have one dentry. If a
2053 * dentry is found, that is returned instead of allocating a new one.
2054 *
2055 * On successful return, the reference to the inode has been transferred
2056 * to the dentry. In case of an error the reference on the inode is
2057 * released. A %NULL or IS_ERR inode may be passed in and will be the
2058 * error will be propagate to the return value, with a %NULL @inode
2059 * replaced by ERR_PTR(-ESTALE).
2060 */
d_obtain_root(struct inode * inode)2061 struct dentry *d_obtain_root(struct inode *inode)
2062 {
2063 return __d_obtain_alias(inode, false);
2064 }
2065 EXPORT_SYMBOL(d_obtain_root);
2066
2067 /**
2068 * d_add_ci - lookup or allocate new dentry with case-exact name
2069 * @dentry: the negative dentry that was passed to the parent's lookup func
2070 * @inode: the inode case-insensitive lookup has found
2071 * @name: the case-exact name to be associated with the returned dentry
2072 *
2073 * This is to avoid filling the dcache with case-insensitive names to the
2074 * same inode, only the actual correct case is stored in the dcache for
2075 * case-insensitive filesystems.
2076 *
2077 * For a case-insensitive lookup match and if the case-exact dentry
2078 * already exists in the dcache, use it and return it.
2079 *
2080 * If no entry exists with the exact case name, allocate new dentry with
2081 * the exact case, and return the spliced entry.
2082 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2083 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2084 struct qstr *name)
2085 {
2086 struct dentry *found, *res;
2087
2088 /*
2089 * First check if a dentry matching the name already exists,
2090 * if not go ahead and create it now.
2091 */
2092 found = d_hash_and_lookup(dentry->d_parent, name);
2093 if (found) {
2094 iput(inode);
2095 return found;
2096 }
2097 if (d_in_lookup(dentry)) {
2098 found = d_alloc_parallel(dentry->d_parent, name,
2099 dentry->d_wait);
2100 if (IS_ERR(found) || !d_in_lookup(found)) {
2101 iput(inode);
2102 return found;
2103 }
2104 } else {
2105 found = d_alloc(dentry->d_parent, name);
2106 if (!found) {
2107 iput(inode);
2108 return ERR_PTR(-ENOMEM);
2109 }
2110 }
2111 res = d_splice_alias(inode, found);
2112 if (res) {
2113 d_lookup_done(found);
2114 dput(found);
2115 return res;
2116 }
2117 return found;
2118 }
2119 EXPORT_SYMBOL(d_add_ci);
2120
2121 /**
2122 * d_same_name - compare dentry name with case-exact name
2123 * @dentry: the negative dentry that was passed to the parent's lookup func
2124 * @parent: parent dentry
2125 * @name: the case-exact name to be associated with the returned dentry
2126 *
2127 * Return: true if names are same, or false
2128 */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2129 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2130 const struct qstr *name)
2131 {
2132 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2133 if (dentry->d_name.len != name->len)
2134 return false;
2135 return dentry_cmp(dentry, name->name, name->len) == 0;
2136 }
2137 return parent->d_op->d_compare(dentry,
2138 dentry->d_name.len, dentry->d_name.name,
2139 name) == 0;
2140 }
2141 EXPORT_SYMBOL_GPL(d_same_name);
2142
2143 /*
2144 * This is __d_lookup_rcu() when the parent dentry has
2145 * DCACHE_OP_COMPARE, which makes things much nastier.
2146 */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2147 static noinline struct dentry *__d_lookup_rcu_op_compare(
2148 const struct dentry *parent,
2149 const struct qstr *name,
2150 unsigned *seqp)
2151 {
2152 u64 hashlen = name->hash_len;
2153 struct hlist_bl_head *b = d_hash(hashlen);
2154 struct hlist_bl_node *node;
2155 struct dentry *dentry;
2156
2157 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2158 int tlen;
2159 const char *tname;
2160 unsigned seq;
2161
2162 seqretry:
2163 seq = raw_seqcount_begin(&dentry->d_seq);
2164 if (dentry->d_parent != parent)
2165 continue;
2166 if (d_unhashed(dentry))
2167 continue;
2168 if (dentry->d_name.hash != hashlen_hash(hashlen))
2169 continue;
2170 tlen = dentry->d_name.len;
2171 tname = dentry->d_name.name;
2172 /* we want a consistent (name,len) pair */
2173 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2174 cpu_relax();
2175 goto seqretry;
2176 }
2177 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2178 continue;
2179 *seqp = seq;
2180 return dentry;
2181 }
2182 return NULL;
2183 }
2184
2185 /**
2186 * __d_lookup_rcu - search for a dentry (racy, store-free)
2187 * @parent: parent dentry
2188 * @name: qstr of name we wish to find
2189 * @seqp: returns d_seq value at the point where the dentry was found
2190 * Returns: dentry, or NULL
2191 *
2192 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2193 * resolution (store-free path walking) design described in
2194 * Documentation/filesystems/path-lookup.txt.
2195 *
2196 * This is not to be used outside core vfs.
2197 *
2198 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2199 * held, and rcu_read_lock held. The returned dentry must not be stored into
2200 * without taking d_lock and checking d_seq sequence count against @seq
2201 * returned here.
2202 *
2203 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2204 * the returned dentry, so long as its parent's seqlock is checked after the
2205 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2206 * is formed, giving integrity down the path walk.
2207 *
2208 * NOTE! The caller *has* to check the resulting dentry against the sequence
2209 * number we've returned before using any of the resulting dentry state!
2210 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2211 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2212 const struct qstr *name,
2213 unsigned *seqp)
2214 {
2215 u64 hashlen = name->hash_len;
2216 const unsigned char *str = name->name;
2217 struct hlist_bl_head *b = d_hash(hashlen);
2218 struct hlist_bl_node *node;
2219 struct dentry *dentry;
2220
2221 /*
2222 * Note: There is significant duplication with __d_lookup_rcu which is
2223 * required to prevent single threaded performance regressions
2224 * especially on architectures where smp_rmb (in seqcounts) are costly.
2225 * Keep the two functions in sync.
2226 */
2227
2228 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2229 return __d_lookup_rcu_op_compare(parent, name, seqp);
2230
2231 /*
2232 * The hash list is protected using RCU.
2233 *
2234 * Carefully use d_seq when comparing a candidate dentry, to avoid
2235 * races with d_move().
2236 *
2237 * It is possible that concurrent renames can mess up our list
2238 * walk here and result in missing our dentry, resulting in the
2239 * false-negative result. d_lookup() protects against concurrent
2240 * renames using rename_lock seqlock.
2241 *
2242 * See Documentation/filesystems/path-lookup.txt for more details.
2243 */
2244 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2245 unsigned seq;
2246
2247 /*
2248 * The dentry sequence count protects us from concurrent
2249 * renames, and thus protects parent and name fields.
2250 *
2251 * The caller must perform a seqcount check in order
2252 * to do anything useful with the returned dentry.
2253 *
2254 * NOTE! We do a "raw" seqcount_begin here. That means that
2255 * we don't wait for the sequence count to stabilize if it
2256 * is in the middle of a sequence change. If we do the slow
2257 * dentry compare, we will do seqretries until it is stable,
2258 * and if we end up with a successful lookup, we actually
2259 * want to exit RCU lookup anyway.
2260 *
2261 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2262 * we are still guaranteed NUL-termination of ->d_name.name.
2263 */
2264 seq = raw_seqcount_begin(&dentry->d_seq);
2265 if (dentry->d_parent != parent)
2266 continue;
2267 if (d_unhashed(dentry))
2268 continue;
2269 if (dentry->d_name.hash_len != hashlen)
2270 continue;
2271 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2272 continue;
2273 *seqp = seq;
2274 return dentry;
2275 }
2276 return NULL;
2277 }
2278
2279 /**
2280 * d_lookup - search for a dentry
2281 * @parent: parent dentry
2282 * @name: qstr of name we wish to find
2283 * Returns: dentry, or NULL
2284 *
2285 * d_lookup searches the children of the parent dentry for the name in
2286 * question. If the dentry is found its reference count is incremented and the
2287 * dentry is returned. The caller must use dput to free the entry when it has
2288 * finished using it. %NULL is returned if the dentry does not exist.
2289 */
d_lookup(const struct dentry * parent,const struct qstr * name)2290 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2291 {
2292 struct dentry *dentry;
2293 unsigned seq;
2294
2295 do {
2296 seq = read_seqbegin(&rename_lock);
2297 dentry = __d_lookup(parent, name);
2298 if (dentry)
2299 break;
2300 } while (read_seqretry(&rename_lock, seq));
2301 return dentry;
2302 }
2303 EXPORT_SYMBOL(d_lookup);
2304
2305 /**
2306 * __d_lookup - search for a dentry (racy)
2307 * @parent: parent dentry
2308 * @name: qstr of name we wish to find
2309 * Returns: dentry, or NULL
2310 *
2311 * __d_lookup is like d_lookup, however it may (rarely) return a
2312 * false-negative result due to unrelated rename activity.
2313 *
2314 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2315 * however it must be used carefully, eg. with a following d_lookup in
2316 * the case of failure.
2317 *
2318 * __d_lookup callers must be commented.
2319 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2320 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2321 {
2322 unsigned int hash = name->hash;
2323 struct hlist_bl_head *b = d_hash(hash);
2324 struct hlist_bl_node *node;
2325 struct dentry *found = NULL;
2326 struct dentry *dentry;
2327
2328 /*
2329 * Note: There is significant duplication with __d_lookup_rcu which is
2330 * required to prevent single threaded performance regressions
2331 * especially on architectures where smp_rmb (in seqcounts) are costly.
2332 * Keep the two functions in sync.
2333 */
2334
2335 /*
2336 * The hash list is protected using RCU.
2337 *
2338 * Take d_lock when comparing a candidate dentry, to avoid races
2339 * with d_move().
2340 *
2341 * It is possible that concurrent renames can mess up our list
2342 * walk here and result in missing our dentry, resulting in the
2343 * false-negative result. d_lookup() protects against concurrent
2344 * renames using rename_lock seqlock.
2345 *
2346 * See Documentation/filesystems/path-lookup.txt for more details.
2347 */
2348 rcu_read_lock();
2349
2350 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2351
2352 if (dentry->d_name.hash != hash)
2353 continue;
2354
2355 spin_lock(&dentry->d_lock);
2356 if (dentry->d_parent != parent)
2357 goto next;
2358 if (d_unhashed(dentry))
2359 goto next;
2360
2361 if (!d_same_name(dentry, parent, name))
2362 goto next;
2363
2364 dentry->d_lockref.count++;
2365 found = dentry;
2366 spin_unlock(&dentry->d_lock);
2367 break;
2368 next:
2369 spin_unlock(&dentry->d_lock);
2370 }
2371 rcu_read_unlock();
2372
2373 return found;
2374 }
2375
2376 /**
2377 * d_hash_and_lookup - hash the qstr then search for a dentry
2378 * @dir: Directory to search in
2379 * @name: qstr of name we wish to find
2380 *
2381 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2382 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2383 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2384 {
2385 /*
2386 * Check for a fs-specific hash function. Note that we must
2387 * calculate the standard hash first, as the d_op->d_hash()
2388 * routine may choose to leave the hash value unchanged.
2389 */
2390 name->hash = full_name_hash(dir, name->name, name->len);
2391 if (dir->d_flags & DCACHE_OP_HASH) {
2392 int err = dir->d_op->d_hash(dir, name);
2393 if (unlikely(err < 0))
2394 return ERR_PTR(err);
2395 }
2396 return d_lookup(dir, name);
2397 }
2398 EXPORT_SYMBOL(d_hash_and_lookup);
2399
2400 /*
2401 * When a file is deleted, we have two options:
2402 * - turn this dentry into a negative dentry
2403 * - unhash this dentry and free it.
2404 *
2405 * Usually, we want to just turn this into
2406 * a negative dentry, but if anybody else is
2407 * currently using the dentry or the inode
2408 * we can't do that and we fall back on removing
2409 * it from the hash queues and waiting for
2410 * it to be deleted later when it has no users
2411 */
2412
2413 /**
2414 * d_delete - delete a dentry
2415 * @dentry: The dentry to delete
2416 *
2417 * Turn the dentry into a negative dentry if possible, otherwise
2418 * remove it from the hash queues so it can be deleted later
2419 */
2420
d_delete(struct dentry * dentry)2421 void d_delete(struct dentry * dentry)
2422 {
2423 struct inode *inode = dentry->d_inode;
2424
2425 spin_lock(&inode->i_lock);
2426 spin_lock(&dentry->d_lock);
2427 /*
2428 * Are we the only user?
2429 */
2430 if (dentry->d_lockref.count == 1) {
2431 if (dentry_negative_policy)
2432 __d_drop(dentry);
2433 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2434 dentry_unlink_inode(dentry);
2435 } else {
2436 __d_drop(dentry);
2437 spin_unlock(&dentry->d_lock);
2438 spin_unlock(&inode->i_lock);
2439 }
2440 }
2441 EXPORT_SYMBOL(d_delete);
2442
__d_rehash(struct dentry * entry)2443 static void __d_rehash(struct dentry *entry)
2444 {
2445 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2446
2447 hlist_bl_lock(b);
2448 hlist_bl_add_head_rcu(&entry->d_hash, b);
2449 hlist_bl_unlock(b);
2450 }
2451
2452 /**
2453 * d_rehash - add an entry back to the hash
2454 * @entry: dentry to add to the hash
2455 *
2456 * Adds a dentry to the hash according to its name.
2457 */
2458
d_rehash(struct dentry * entry)2459 void d_rehash(struct dentry * entry)
2460 {
2461 spin_lock(&entry->d_lock);
2462 __d_rehash(entry);
2463 spin_unlock(&entry->d_lock);
2464 }
2465 EXPORT_SYMBOL(d_rehash);
2466
start_dir_add(struct inode * dir)2467 static inline unsigned start_dir_add(struct inode *dir)
2468 {
2469 preempt_disable_nested();
2470 for (;;) {
2471 unsigned n = dir->i_dir_seq;
2472 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2473 return n;
2474 cpu_relax();
2475 }
2476 }
2477
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2478 static inline void end_dir_add(struct inode *dir, unsigned int n,
2479 wait_queue_head_t *d_wait)
2480 {
2481 smp_store_release(&dir->i_dir_seq, n + 2);
2482 preempt_enable_nested();
2483 wake_up_all(d_wait);
2484 }
2485
d_wait_lookup(struct dentry * dentry)2486 static void d_wait_lookup(struct dentry *dentry)
2487 {
2488 if (d_in_lookup(dentry)) {
2489 DECLARE_WAITQUEUE(wait, current);
2490 add_wait_queue(dentry->d_wait, &wait);
2491 do {
2492 set_current_state(TASK_UNINTERRUPTIBLE);
2493 spin_unlock(&dentry->d_lock);
2494 schedule();
2495 spin_lock(&dentry->d_lock);
2496 } while (d_in_lookup(dentry));
2497 }
2498 }
2499
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2500 struct dentry *d_alloc_parallel(struct dentry *parent,
2501 const struct qstr *name,
2502 wait_queue_head_t *wq)
2503 {
2504 unsigned int hash = name->hash;
2505 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2506 struct hlist_bl_node *node;
2507 struct dentry *new = d_alloc(parent, name);
2508 struct dentry *dentry;
2509 unsigned seq, r_seq, d_seq;
2510
2511 if (unlikely(!new))
2512 return ERR_PTR(-ENOMEM);
2513
2514 retry:
2515 rcu_read_lock();
2516 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2517 r_seq = read_seqbegin(&rename_lock);
2518 dentry = __d_lookup_rcu(parent, name, &d_seq);
2519 if (unlikely(dentry)) {
2520 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2521 rcu_read_unlock();
2522 goto retry;
2523 }
2524 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2525 rcu_read_unlock();
2526 dput(dentry);
2527 goto retry;
2528 }
2529 rcu_read_unlock();
2530 dput(new);
2531 return dentry;
2532 }
2533 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2534 rcu_read_unlock();
2535 goto retry;
2536 }
2537
2538 if (unlikely(seq & 1)) {
2539 rcu_read_unlock();
2540 goto retry;
2541 }
2542
2543 hlist_bl_lock(b);
2544 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2545 hlist_bl_unlock(b);
2546 rcu_read_unlock();
2547 goto retry;
2548 }
2549 /*
2550 * No changes for the parent since the beginning of d_lookup().
2551 * Since all removals from the chain happen with hlist_bl_lock(),
2552 * any potential in-lookup matches are going to stay here until
2553 * we unlock the chain. All fields are stable in everything
2554 * we encounter.
2555 */
2556 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2557 if (dentry->d_name.hash != hash)
2558 continue;
2559 if (dentry->d_parent != parent)
2560 continue;
2561 if (!d_same_name(dentry, parent, name))
2562 continue;
2563 hlist_bl_unlock(b);
2564 /* now we can try to grab a reference */
2565 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2566 rcu_read_unlock();
2567 goto retry;
2568 }
2569
2570 rcu_read_unlock();
2571 /*
2572 * somebody is likely to be still doing lookup for it;
2573 * wait for them to finish
2574 */
2575 spin_lock(&dentry->d_lock);
2576 d_wait_lookup(dentry);
2577 /*
2578 * it's not in-lookup anymore; in principle we should repeat
2579 * everything from dcache lookup, but it's likely to be what
2580 * d_lookup() would've found anyway. If it is, just return it;
2581 * otherwise we really have to repeat the whole thing.
2582 */
2583 if (unlikely(dentry->d_name.hash != hash))
2584 goto mismatch;
2585 if (unlikely(dentry->d_parent != parent))
2586 goto mismatch;
2587 if (unlikely(d_unhashed(dentry)))
2588 goto mismatch;
2589 if (unlikely(!d_same_name(dentry, parent, name)))
2590 goto mismatch;
2591 /* OK, it *is* a hashed match; return it */
2592 spin_unlock(&dentry->d_lock);
2593 dput(new);
2594 return dentry;
2595 }
2596 rcu_read_unlock();
2597 /* we can't take ->d_lock here; it's OK, though. */
2598 new->d_flags |= DCACHE_PAR_LOOKUP;
2599 new->d_wait = wq;
2600 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2601 hlist_bl_unlock(b);
2602 return new;
2603 mismatch:
2604 spin_unlock(&dentry->d_lock);
2605 dput(dentry);
2606 goto retry;
2607 }
2608 EXPORT_SYMBOL(d_alloc_parallel);
2609
2610 /*
2611 * - Unhash the dentry
2612 * - Retrieve and clear the waitqueue head in dentry
2613 * - Return the waitqueue head
2614 */
__d_lookup_unhash(struct dentry * dentry)2615 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2616 {
2617 wait_queue_head_t *d_wait;
2618 struct hlist_bl_head *b;
2619
2620 lockdep_assert_held(&dentry->d_lock);
2621
2622 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2623 hlist_bl_lock(b);
2624 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2625 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2626 d_wait = dentry->d_wait;
2627 dentry->d_wait = NULL;
2628 hlist_bl_unlock(b);
2629 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2630 INIT_LIST_HEAD(&dentry->d_lru);
2631 return d_wait;
2632 }
2633
__d_lookup_unhash_wake(struct dentry * dentry)2634 void __d_lookup_unhash_wake(struct dentry *dentry)
2635 {
2636 spin_lock(&dentry->d_lock);
2637 wake_up_all(__d_lookup_unhash(dentry));
2638 spin_unlock(&dentry->d_lock);
2639 }
2640 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2641
2642 /* inode->i_lock held if inode is non-NULL */
2643
__d_add(struct dentry * dentry,struct inode * inode)2644 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2645 {
2646 wait_queue_head_t *d_wait;
2647 struct inode *dir = NULL;
2648 unsigned n;
2649 spin_lock(&dentry->d_lock);
2650 if (unlikely(d_in_lookup(dentry))) {
2651 dir = dentry->d_parent->d_inode;
2652 n = start_dir_add(dir);
2653 d_wait = __d_lookup_unhash(dentry);
2654 }
2655 if (inode) {
2656 unsigned add_flags = d_flags_for_inode(inode);
2657 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2658 raw_write_seqcount_begin(&dentry->d_seq);
2659 __d_set_inode_and_type(dentry, inode, add_flags);
2660 raw_write_seqcount_end(&dentry->d_seq);
2661 fsnotify_update_flags(dentry);
2662 }
2663 __d_rehash(dentry);
2664 if (dir)
2665 end_dir_add(dir, n, d_wait);
2666 spin_unlock(&dentry->d_lock);
2667 if (inode)
2668 spin_unlock(&inode->i_lock);
2669 }
2670
2671 /**
2672 * d_add - add dentry to hash queues
2673 * @entry: dentry to add
2674 * @inode: The inode to attach to this dentry
2675 *
2676 * This adds the entry to the hash queues and initializes @inode.
2677 * The entry was actually filled in earlier during d_alloc().
2678 */
2679
d_add(struct dentry * entry,struct inode * inode)2680 void d_add(struct dentry *entry, struct inode *inode)
2681 {
2682 if (inode) {
2683 security_d_instantiate(entry, inode);
2684 spin_lock(&inode->i_lock);
2685 }
2686 __d_add(entry, inode);
2687 }
2688 EXPORT_SYMBOL(d_add);
2689
2690 /**
2691 * d_exact_alias - find and hash an exact unhashed alias
2692 * @entry: dentry to add
2693 * @inode: The inode to go with this dentry
2694 *
2695 * If an unhashed dentry with the same name/parent and desired
2696 * inode already exists, hash and return it. Otherwise, return
2697 * NULL.
2698 *
2699 * Parent directory should be locked.
2700 */
d_exact_alias(struct dentry * entry,struct inode * inode)2701 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2702 {
2703 struct dentry *alias;
2704 unsigned int hash = entry->d_name.hash;
2705
2706 spin_lock(&inode->i_lock);
2707 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2708 /*
2709 * Don't need alias->d_lock here, because aliases with
2710 * d_parent == entry->d_parent are not subject to name or
2711 * parent changes, because the parent inode i_mutex is held.
2712 */
2713 if (alias->d_name.hash != hash)
2714 continue;
2715 if (alias->d_parent != entry->d_parent)
2716 continue;
2717 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2718 continue;
2719 spin_lock(&alias->d_lock);
2720 if (!d_unhashed(alias)) {
2721 spin_unlock(&alias->d_lock);
2722 alias = NULL;
2723 } else {
2724 dget_dlock(alias);
2725 __d_rehash(alias);
2726 spin_unlock(&alias->d_lock);
2727 }
2728 spin_unlock(&inode->i_lock);
2729 return alias;
2730 }
2731 spin_unlock(&inode->i_lock);
2732 return NULL;
2733 }
2734 EXPORT_SYMBOL(d_exact_alias);
2735
swap_names(struct dentry * dentry,struct dentry * target)2736 static void swap_names(struct dentry *dentry, struct dentry *target)
2737 {
2738 if (unlikely(dname_external(target))) {
2739 if (unlikely(dname_external(dentry))) {
2740 /*
2741 * Both external: swap the pointers
2742 */
2743 swap(target->d_name.name, dentry->d_name.name);
2744 } else {
2745 /*
2746 * dentry:internal, target:external. Steal target's
2747 * storage and make target internal.
2748 */
2749 dentry->d_name.name = target->d_name.name;
2750 target->d_shortname = dentry->d_shortname;
2751 target->d_name.name = target->d_shortname.string;
2752 }
2753 } else {
2754 if (unlikely(dname_external(dentry))) {
2755 /*
2756 * dentry:external, target:internal. Give dentry's
2757 * storage to target and make dentry internal
2758 */
2759 target->d_name.name = dentry->d_name.name;
2760 dentry->d_shortname = target->d_shortname;
2761 dentry->d_name.name = dentry->d_shortname.string;
2762 } else {
2763 /*
2764 * Both are internal.
2765 */
2766 for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2767 swap(dentry->d_shortname.words[i],
2768 target->d_shortname.words[i]);
2769 }
2770 }
2771 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2772 }
2773
copy_name(struct dentry * dentry,struct dentry * target)2774 static void copy_name(struct dentry *dentry, struct dentry *target)
2775 {
2776 struct external_name *old_name = NULL;
2777 if (unlikely(dname_external(dentry)))
2778 old_name = external_name(dentry);
2779 if (unlikely(dname_external(target))) {
2780 atomic_inc(&external_name(target)->count);
2781 dentry->d_name = target->d_name;
2782 } else {
2783 dentry->d_shortname = target->d_shortname;
2784 dentry->d_name.name = dentry->d_shortname.string;
2785 dentry->d_name.hash_len = target->d_name.hash_len;
2786 }
2787 if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2788 kfree_rcu(old_name, head);
2789 }
2790
2791 /*
2792 * __d_move - move a dentry
2793 * @dentry: entry to move
2794 * @target: new dentry
2795 * @exchange: exchange the two dentries
2796 *
2797 * Update the dcache to reflect the move of a file name. Negative
2798 * dcache entries should not be moved in this way. Caller must hold
2799 * rename_lock, the i_mutex of the source and target directories,
2800 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2801 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2802 static void __d_move(struct dentry *dentry, struct dentry *target,
2803 bool exchange)
2804 {
2805 struct dentry *old_parent, *p;
2806 wait_queue_head_t *d_wait;
2807 struct inode *dir = NULL;
2808 unsigned n;
2809
2810 WARN_ON(!dentry->d_inode);
2811 if (WARN_ON(dentry == target))
2812 return;
2813
2814 BUG_ON(d_ancestor(target, dentry));
2815 old_parent = dentry->d_parent;
2816 p = d_ancestor(old_parent, target);
2817 if (IS_ROOT(dentry)) {
2818 BUG_ON(p);
2819 spin_lock(&target->d_parent->d_lock);
2820 } else if (!p) {
2821 /* target is not a descendent of dentry->d_parent */
2822 spin_lock(&target->d_parent->d_lock);
2823 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2824 } else {
2825 BUG_ON(p == dentry);
2826 spin_lock(&old_parent->d_lock);
2827 if (p != target)
2828 spin_lock_nested(&target->d_parent->d_lock,
2829 DENTRY_D_LOCK_NESTED);
2830 }
2831 spin_lock_nested(&dentry->d_lock, 2);
2832 spin_lock_nested(&target->d_lock, 3);
2833
2834 if (unlikely(d_in_lookup(target))) {
2835 dir = target->d_parent->d_inode;
2836 n = start_dir_add(dir);
2837 d_wait = __d_lookup_unhash(target);
2838 }
2839
2840 write_seqcount_begin(&dentry->d_seq);
2841 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2842
2843 /* unhash both */
2844 if (!d_unhashed(dentry))
2845 ___d_drop(dentry);
2846 if (!d_unhashed(target))
2847 ___d_drop(target);
2848
2849 /* ... and switch them in the tree */
2850 dentry->d_parent = target->d_parent;
2851 if (!exchange) {
2852 copy_name(dentry, target);
2853 target->d_hash.pprev = NULL;
2854 dentry->d_parent->d_lockref.count++;
2855 if (dentry != old_parent) /* wasn't IS_ROOT */
2856 WARN_ON(!--old_parent->d_lockref.count);
2857 } else {
2858 target->d_parent = old_parent;
2859 swap_names(dentry, target);
2860 if (!hlist_unhashed(&target->d_sib))
2861 __hlist_del(&target->d_sib);
2862 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2863 __d_rehash(target);
2864 fsnotify_update_flags(target);
2865 }
2866 if (!hlist_unhashed(&dentry->d_sib))
2867 __hlist_del(&dentry->d_sib);
2868 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2869 __d_rehash(dentry);
2870 fsnotify_update_flags(dentry);
2871 fscrypt_handle_d_move(dentry);
2872
2873 write_seqcount_end(&target->d_seq);
2874 write_seqcount_end(&dentry->d_seq);
2875
2876 if (dir)
2877 end_dir_add(dir, n, d_wait);
2878
2879 if (dentry->d_parent != old_parent)
2880 spin_unlock(&dentry->d_parent->d_lock);
2881 if (dentry != old_parent)
2882 spin_unlock(&old_parent->d_lock);
2883 spin_unlock(&target->d_lock);
2884 spin_unlock(&dentry->d_lock);
2885 }
2886
2887 /*
2888 * d_move - move a dentry
2889 * @dentry: entry to move
2890 * @target: new dentry
2891 *
2892 * Update the dcache to reflect the move of a file name. Negative
2893 * dcache entries should not be moved in this way. See the locking
2894 * requirements for __d_move.
2895 */
d_move(struct dentry * dentry,struct dentry * target)2896 void d_move(struct dentry *dentry, struct dentry *target)
2897 {
2898 write_seqlock(&rename_lock);
2899 __d_move(dentry, target, false);
2900 write_sequnlock(&rename_lock);
2901 }
2902 EXPORT_SYMBOL(d_move);
2903
2904 /*
2905 * d_exchange - exchange two dentries
2906 * @dentry1: first dentry
2907 * @dentry2: second dentry
2908 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2909 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2910 {
2911 write_seqlock(&rename_lock);
2912
2913 WARN_ON(!dentry1->d_inode);
2914 WARN_ON(!dentry2->d_inode);
2915 WARN_ON(IS_ROOT(dentry1));
2916 WARN_ON(IS_ROOT(dentry2));
2917
2918 __d_move(dentry1, dentry2, true);
2919
2920 write_sequnlock(&rename_lock);
2921 }
2922
2923 /**
2924 * d_ancestor - search for an ancestor
2925 * @p1: ancestor dentry
2926 * @p2: child dentry
2927 *
2928 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2929 * an ancestor of p2, else NULL.
2930 */
d_ancestor(struct dentry * p1,struct dentry * p2)2931 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2932 {
2933 struct dentry *p;
2934
2935 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2936 if (p->d_parent == p1)
2937 return p;
2938 }
2939 return NULL;
2940 }
2941
2942 /*
2943 * This helper attempts to cope with remotely renamed directories
2944 *
2945 * It assumes that the caller is already holding
2946 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2947 *
2948 * Note: If ever the locking in lock_rename() changes, then please
2949 * remember to update this too...
2950 */
__d_unalias(struct dentry * dentry,struct dentry * alias)2951 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2952 {
2953 struct mutex *m1 = NULL;
2954 struct rw_semaphore *m2 = NULL;
2955 int ret = -ESTALE;
2956
2957 /* If alias and dentry share a parent, then no extra locks required */
2958 if (alias->d_parent == dentry->d_parent)
2959 goto out_unalias;
2960
2961 /* See lock_rename() */
2962 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2963 goto out_err;
2964 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2965 if (!inode_trylock_shared(alias->d_parent->d_inode))
2966 goto out_err;
2967 m2 = &alias->d_parent->d_inode->i_rwsem;
2968 out_unalias:
2969 if (alias->d_op && alias->d_op->d_unalias_trylock &&
2970 !alias->d_op->d_unalias_trylock(alias))
2971 goto out_err;
2972 __d_move(alias, dentry, false);
2973 if (alias->d_op && alias->d_op->d_unalias_unlock)
2974 alias->d_op->d_unalias_unlock(alias);
2975 ret = 0;
2976 out_err:
2977 if (m2)
2978 up_read(m2);
2979 if (m1)
2980 mutex_unlock(m1);
2981 return ret;
2982 }
2983
2984 /**
2985 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2986 * @inode: the inode which may have a disconnected dentry
2987 * @dentry: a negative dentry which we want to point to the inode.
2988 *
2989 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2990 * place of the given dentry and return it, else simply d_add the inode
2991 * to the dentry and return NULL.
2992 *
2993 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2994 * we should error out: directories can't have multiple aliases.
2995 *
2996 * This is needed in the lookup routine of any filesystem that is exportable
2997 * (via knfsd) so that we can build dcache paths to directories effectively.
2998 *
2999 * If a dentry was found and moved, then it is returned. Otherwise NULL
3000 * is returned. This matches the expected return value of ->lookup.
3001 *
3002 * Cluster filesystems may call this function with a negative, hashed dentry.
3003 * In that case, we know that the inode will be a regular file, and also this
3004 * will only occur during atomic_open. So we need to check for the dentry
3005 * being already hashed only in the final case.
3006 */
d_splice_alias(struct inode * inode,struct dentry * dentry)3007 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3008 {
3009 if (IS_ERR(inode))
3010 return ERR_CAST(inode);
3011
3012 BUG_ON(!d_unhashed(dentry));
3013
3014 if (!inode)
3015 goto out;
3016
3017 security_d_instantiate(dentry, inode);
3018 spin_lock(&inode->i_lock);
3019 if (S_ISDIR(inode->i_mode)) {
3020 struct dentry *new = __d_find_any_alias(inode);
3021 if (unlikely(new)) {
3022 /* The reference to new ensures it remains an alias */
3023 spin_unlock(&inode->i_lock);
3024 write_seqlock(&rename_lock);
3025 if (unlikely(d_ancestor(new, dentry))) {
3026 write_sequnlock(&rename_lock);
3027 dput(new);
3028 new = ERR_PTR(-ELOOP);
3029 pr_warn_ratelimited(
3030 "VFS: Lookup of '%s' in %s %s"
3031 " would have caused loop\n",
3032 dentry->d_name.name,
3033 inode->i_sb->s_type->name,
3034 inode->i_sb->s_id);
3035 } else if (!IS_ROOT(new)) {
3036 struct dentry *old_parent = dget(new->d_parent);
3037 int err = __d_unalias(dentry, new);
3038 write_sequnlock(&rename_lock);
3039 if (err) {
3040 dput(new);
3041 new = ERR_PTR(err);
3042 }
3043 dput(old_parent);
3044 } else {
3045 __d_move(new, dentry, false);
3046 write_sequnlock(&rename_lock);
3047 }
3048 iput(inode);
3049 return new;
3050 }
3051 }
3052 out:
3053 __d_add(dentry, inode);
3054 return NULL;
3055 }
3056 EXPORT_SYMBOL(d_splice_alias);
3057
3058 /*
3059 * Test whether new_dentry is a subdirectory of old_dentry.
3060 *
3061 * Trivially implemented using the dcache structure
3062 */
3063
3064 /**
3065 * is_subdir - is new dentry a subdirectory of old_dentry
3066 * @new_dentry: new dentry
3067 * @old_dentry: old dentry
3068 *
3069 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3070 * Returns false otherwise.
3071 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3072 */
3073
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3074 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3075 {
3076 bool subdir;
3077 unsigned seq;
3078
3079 if (new_dentry == old_dentry)
3080 return true;
3081
3082 /* Access d_parent under rcu as d_move() may change it. */
3083 rcu_read_lock();
3084 seq = read_seqbegin(&rename_lock);
3085 subdir = d_ancestor(old_dentry, new_dentry);
3086 /* Try lockless once... */
3087 if (read_seqretry(&rename_lock, seq)) {
3088 /* ...else acquire lock for progress even on deep chains. */
3089 read_seqlock_excl(&rename_lock);
3090 subdir = d_ancestor(old_dentry, new_dentry);
3091 read_sequnlock_excl(&rename_lock);
3092 }
3093 rcu_read_unlock();
3094 return subdir;
3095 }
3096 EXPORT_SYMBOL(is_subdir);
3097
d_genocide_kill(void * data,struct dentry * dentry)3098 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3099 {
3100 struct dentry *root = data;
3101 if (dentry != root) {
3102 if (d_unhashed(dentry) || !dentry->d_inode)
3103 return D_WALK_SKIP;
3104
3105 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3106 dentry->d_flags |= DCACHE_GENOCIDE;
3107 dentry->d_lockref.count--;
3108 }
3109 }
3110 return D_WALK_CONTINUE;
3111 }
3112
d_genocide(struct dentry * parent)3113 void d_genocide(struct dentry *parent)
3114 {
3115 d_walk(parent, parent, d_genocide_kill);
3116 }
3117
d_mark_tmpfile(struct file * file,struct inode * inode)3118 void d_mark_tmpfile(struct file *file, struct inode *inode)
3119 {
3120 struct dentry *dentry = file->f_path.dentry;
3121
3122 BUG_ON(dname_external(dentry) ||
3123 !hlist_unhashed(&dentry->d_u.d_alias) ||
3124 !d_unlinked(dentry));
3125 spin_lock(&dentry->d_parent->d_lock);
3126 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3127 dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3128 (unsigned long long)inode->i_ino);
3129 spin_unlock(&dentry->d_lock);
3130 spin_unlock(&dentry->d_parent->d_lock);
3131 }
3132 EXPORT_SYMBOL(d_mark_tmpfile);
3133
d_tmpfile(struct file * file,struct inode * inode)3134 void d_tmpfile(struct file *file, struct inode *inode)
3135 {
3136 struct dentry *dentry = file->f_path.dentry;
3137
3138 inode_dec_link_count(inode);
3139 d_mark_tmpfile(file, inode);
3140 d_instantiate(dentry, inode);
3141 }
3142 EXPORT_SYMBOL(d_tmpfile);
3143
3144 /*
3145 * Obtain inode number of the parent dentry.
3146 */
d_parent_ino(struct dentry * dentry)3147 ino_t d_parent_ino(struct dentry *dentry)
3148 {
3149 struct dentry *parent;
3150 struct inode *iparent;
3151 unsigned seq;
3152 ino_t ret;
3153
3154 scoped_guard(rcu) {
3155 seq = raw_seqcount_begin(&dentry->d_seq);
3156 parent = READ_ONCE(dentry->d_parent);
3157 iparent = d_inode_rcu(parent);
3158 if (likely(iparent)) {
3159 ret = iparent->i_ino;
3160 if (!read_seqcount_retry(&dentry->d_seq, seq))
3161 return ret;
3162 }
3163 }
3164
3165 spin_lock(&dentry->d_lock);
3166 ret = dentry->d_parent->d_inode->i_ino;
3167 spin_unlock(&dentry->d_lock);
3168 return ret;
3169 }
3170 EXPORT_SYMBOL(d_parent_ino);
3171
3172 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3173 static int __init set_dhash_entries(char *str)
3174 {
3175 if (!str)
3176 return 0;
3177 dhash_entries = simple_strtoul(str, &str, 0);
3178 return 1;
3179 }
3180 __setup("dhash_entries=", set_dhash_entries);
3181
dcache_init_early(void)3182 static void __init dcache_init_early(void)
3183 {
3184 /* If hashes are distributed across NUMA nodes, defer
3185 * hash allocation until vmalloc space is available.
3186 */
3187 if (hashdist)
3188 return;
3189
3190 dentry_hashtable =
3191 alloc_large_system_hash("Dentry cache",
3192 sizeof(struct hlist_bl_head),
3193 dhash_entries,
3194 13,
3195 HASH_EARLY | HASH_ZERO,
3196 &d_hash_shift,
3197 NULL,
3198 0,
3199 0);
3200 d_hash_shift = 32 - d_hash_shift;
3201
3202 runtime_const_init(shift, d_hash_shift);
3203 runtime_const_init(ptr, dentry_hashtable);
3204 }
3205
dcache_init(void)3206 static void __init dcache_init(void)
3207 {
3208 /*
3209 * A constructor could be added for stable state like the lists,
3210 * but it is probably not worth it because of the cache nature
3211 * of the dcache.
3212 */
3213 dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3214 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3215 d_shortname.string);
3216
3217 /* Hash may have been set up in dcache_init_early */
3218 if (!hashdist)
3219 return;
3220
3221 dentry_hashtable =
3222 alloc_large_system_hash("Dentry cache",
3223 sizeof(struct hlist_bl_head),
3224 dhash_entries,
3225 13,
3226 HASH_ZERO,
3227 &d_hash_shift,
3228 NULL,
3229 0,
3230 0);
3231 d_hash_shift = 32 - d_hash_shift;
3232
3233 runtime_const_init(shift, d_hash_shift);
3234 runtime_const_init(ptr, dentry_hashtable);
3235 }
3236
3237 /* SLAB cache for __getname() consumers */
3238 struct kmem_cache *names_cachep __ro_after_init;
3239 EXPORT_SYMBOL(names_cachep);
3240
vfs_caches_init_early(void)3241 void __init vfs_caches_init_early(void)
3242 {
3243 int i;
3244
3245 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3246 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3247
3248 dcache_init_early();
3249 inode_init_early();
3250 }
3251
vfs_caches_init(void)3252 void __init vfs_caches_init(void)
3253 {
3254 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3255 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3256
3257 dcache_init();
3258 inode_init();
3259 files_init();
3260 files_maxfiles_init();
3261 mnt_init();
3262 bdev_cache_init();
3263 chrdev_init();
3264 }
3265