xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision be54f8c558027a218423134dd9b8c7c46d92204a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38 
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 /* timeout in frames waiting for frame done */
63 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
64 
65 /**
66  * enum dpu_enc_rc_events - events for resource control state machine
67  * @DPU_ENC_RC_EVENT_KICKOFF:
68  *	This event happens at NORMAL priority.
69  *	Event that signals the start of the transfer. When this event is
70  *	received, enable MDP/DSI core clocks. Regardless of the previous
71  *	state, the resource should be in ON state at the end of this event.
72  * @DPU_ENC_RC_EVENT_FRAME_DONE:
73  *	This event happens at INTERRUPT level.
74  *	Event signals the end of the data transfer after the PP FRAME_DONE
75  *	event. At the end of this event, a delayed work is scheduled to go to
76  *	IDLE_PC state after IDLE_TIMEOUT time.
77  * @DPU_ENC_RC_EVENT_PRE_STOP:
78  *	This event happens at NORMAL priority.
79  *	This event, when received during the ON state, leave the RC STATE
80  *	in the PRE_OFF state. It should be followed by the STOP event as
81  *	part of encoder disable.
82  *	If received during IDLE or OFF states, it will do nothing.
83  * @DPU_ENC_RC_EVENT_STOP:
84  *	This event happens at NORMAL priority.
85  *	When this event is received, disable all the MDP/DSI core clocks, and
86  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
87  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
88  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
89  *	Resource state should be in OFF at the end of the event.
90  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
91  *	This event happens at NORMAL priority from a work item.
92  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
93  *	This would disable MDP/DSI core clocks and change the resource state
94  *	to IDLE.
95  */
96 enum dpu_enc_rc_events {
97 	DPU_ENC_RC_EVENT_KICKOFF = 1,
98 	DPU_ENC_RC_EVENT_FRAME_DONE,
99 	DPU_ENC_RC_EVENT_PRE_STOP,
100 	DPU_ENC_RC_EVENT_STOP,
101 	DPU_ENC_RC_EVENT_ENTER_IDLE
102 };
103 
104 /*
105  * enum dpu_enc_rc_states - states that the resource control maintains
106  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
107  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
108  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
109  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
110  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
111  */
112 enum dpu_enc_rc_states {
113 	DPU_ENC_RC_STATE_OFF,
114 	DPU_ENC_RC_STATE_PRE_OFF,
115 	DPU_ENC_RC_STATE_ON,
116 	DPU_ENC_RC_STATE_IDLE
117 };
118 
119 /**
120  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
121  *	encoders. Virtual encoder manages one "logical" display. Physical
122  *	encoders manage one intf block, tied to a specific panel/sub-panel.
123  *	Virtual encoder defers as much as possible to the physical encoders.
124  *	Virtual encoder registers itself with the DRM Framework as the encoder.
125  * @base:		drm_encoder base class for registration with DRM
126  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
127  * @enabled:		True if the encoder is active, protected by enc_lock
128  * @commit_done_timedout: True if there has been a timeout on commit after
129  *			enabling the encoder.
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @cur_slave:		As above but for the slave encoder.
135  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @hw_cwb:		Handle to the CWB muxes used for concurrent writeback
138  *			display. Number of CWB muxes can be different than
139  *			num_phys_encs.
140  * @hw_dsc:		Handle to the DSC blocks used for the display.
141  * @dsc_mask:		Bitmask of used DSC blocks.
142  * @cwb_mask:		Bitmask of used CWB muxes
143  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
144  *			for partial update right-only cases, such as pingpong
145  *			split where virtual pingpong does not generate IRQs
146  * @crtc:		Pointer to the currently assigned crtc. Normally you
147  *			would use crtc->state->encoder_mask to determine the
148  *			link between encoder/crtc. However in this case we need
149  *			to track crtc in the disable() hook which is called
150  *			_after_ encoder_mask is cleared.
151  * @connector:		If a mode is set, cached pointer to the active connector
152  * @enc_lock:			Lock around physical encoder
153  *				create/destroy/enable/disable
154  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
155  *				busy processing current command.
156  *				Bit0 = phys_encs[0] etc.
157  * @frame_done_timeout_ms:	frame done timeout in ms
158  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
159  * 				done timeouts
160  * @frame_done_timer:		watchdog timer for frame done event
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @topology:                   topology of the display
169  * @idle_timeout:		idle timeout duration in milliseconds
170  * @wide_bus_en:		wide bus is enabled on this interface
171  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
172  */
173 struct dpu_encoder_virt {
174 	struct drm_encoder base;
175 	spinlock_t enc_spinlock;
176 
177 	bool enabled;
178 	bool commit_done_timedout;
179 
180 	unsigned int num_phys_encs;
181 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 	struct dpu_encoder_phys *cur_master;
183 	struct dpu_encoder_phys *cur_slave;
184 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185 	struct dpu_hw_cwb *hw_cwb[MAX_CHANNELS_PER_ENC];
186 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
187 
188 	unsigned int dsc_mask;
189 	unsigned int cwb_mask;
190 
191 	bool intfs_swapped;
192 
193 	struct drm_crtc *crtc;
194 	struct drm_connector *connector;
195 
196 	struct mutex enc_lock;
197 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
198 
199 	atomic_t frame_done_timeout_ms;
200 	atomic_t frame_done_timeout_cnt;
201 	struct timer_list frame_done_timer;
202 
203 	struct msm_display_info disp_info;
204 
205 	bool idle_pc_supported;
206 	struct mutex rc_lock;
207 	enum dpu_enc_rc_states rc_state;
208 	struct delayed_work delayed_off_work;
209 	struct msm_display_topology topology;
210 
211 	u32 idle_timeout;
212 
213 	bool wide_bus_en;
214 
215 	/* DSC configuration */
216 	struct drm_dsc_config *dsc;
217 };
218 
219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
220 
221 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
222 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
223 };
224 
225 /**
226  * dpu_encoder_get_drm_fmt - return DRM fourcc format
227  * @phys_enc: Pointer to physical encoder structure
228  */
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)229 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
230 {
231 	struct drm_encoder *drm_enc;
232 	struct dpu_encoder_virt *dpu_enc;
233 	struct drm_display_info *info;
234 	struct drm_display_mode *mode;
235 
236 	drm_enc = phys_enc->parent;
237 	dpu_enc = to_dpu_encoder_virt(drm_enc);
238 	info = &dpu_enc->connector->display_info;
239 	mode = &phys_enc->cached_mode;
240 
241 	if (drm_mode_is_420_only(info, mode))
242 		return DRM_FORMAT_YUV420;
243 
244 	return DRM_FORMAT_RGB888;
245 }
246 
247 /**
248  * dpu_encoder_needs_periph_flush - return true if physical encoder requires
249  *	peripheral flush
250  * @phys_enc: Pointer to physical encoder structure
251  */
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)252 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
253 {
254 	struct drm_encoder *drm_enc;
255 	struct dpu_encoder_virt *dpu_enc;
256 	struct msm_display_info *disp_info;
257 	struct msm_drm_private *priv;
258 	struct drm_display_mode *mode;
259 
260 	drm_enc = phys_enc->parent;
261 	dpu_enc = to_dpu_encoder_virt(drm_enc);
262 	disp_info = &dpu_enc->disp_info;
263 	priv = drm_enc->dev->dev_private;
264 	mode = &phys_enc->cached_mode;
265 
266 	return phys_enc->hw_intf->cap->type == INTF_DP &&
267 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
268 }
269 
270 /**
271  * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
272  * @drm_enc:    Pointer to previously created drm encoder structure
273  */
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)274 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
275 {
276 	const struct dpu_encoder_virt *dpu_enc;
277 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
278 	const struct msm_display_info *disp_info;
279 	int index;
280 
281 	dpu_enc = to_dpu_encoder_virt(drm_enc);
282 	disp_info = &dpu_enc->disp_info;
283 	index = disp_info->h_tile_instance[0];
284 
285 	if (disp_info->intf_type == INTF_DP)
286 		return msm_dp_wide_bus_available(priv->dp[index]);
287 	else if (disp_info->intf_type == INTF_DSI)
288 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
289 
290 	return false;
291 }
292 
293 /**
294  * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
295  *				for the encoder.
296  * @drm_enc:    Pointer to previously created drm encoder structure
297  */
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)298 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
299 {
300 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
301 
302 	return dpu_enc->dsc ? true : false;
303 }
304 
305 /**
306  * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
307  *	in virtual encoder that can collect CRC values
308  * @drm_enc:    Pointer to previously created drm encoder structure
309  * Returns:     Number of physical encoders for given drm encoder
310  */
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)311 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
312 {
313 	struct dpu_encoder_virt *dpu_enc;
314 	int i, num_intf = 0;
315 
316 	dpu_enc = to_dpu_encoder_virt(drm_enc);
317 
318 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
319 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
320 
321 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
322 				&& phys->hw_intf->ops.collect_misr)
323 			num_intf++;
324 	}
325 
326 	return num_intf;
327 }
328 
329 /**
330  * dpu_encoder_setup_misr - enable misr calculations
331  * @drm_enc:    Pointer to previously created drm encoder structure
332  */
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)333 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
334 {
335 	struct dpu_encoder_virt *dpu_enc;
336 
337 	int i;
338 
339 	dpu_enc = to_dpu_encoder_virt(drm_enc);
340 
341 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
342 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
343 
344 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
345 			continue;
346 
347 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
348 	}
349 }
350 
351 /**
352  * dpu_encoder_get_crc - get the crc value from interface blocks
353  * @drm_enc:    Pointer to previously created drm encoder structure
354  * @crcs:	array to fill with CRC data
355  * @pos:	offset into the @crcs array
356  * Returns:     0 on success, error otherwise
357  */
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)358 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
359 {
360 	struct dpu_encoder_virt *dpu_enc;
361 
362 	int i, rc = 0, entries_added = 0;
363 
364 	if (!drm_enc->crtc) {
365 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
366 		return -EINVAL;
367 	}
368 
369 	dpu_enc = to_dpu_encoder_virt(drm_enc);
370 
371 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
372 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
373 
374 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
375 			continue;
376 
377 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
378 		if (rc)
379 			return rc;
380 		entries_added++;
381 	}
382 
383 	return entries_added;
384 }
385 
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)386 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
387 {
388 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
389 
390 	if (!hw_pp->ops.setup_dither)
391 		return;
392 
393 	switch (bpc) {
394 	case 6:
395 		dither_cfg.c0_bitdepth = 6;
396 		dither_cfg.c1_bitdepth = 6;
397 		dither_cfg.c2_bitdepth = 6;
398 		dither_cfg.c3_bitdepth = 6;
399 		dither_cfg.temporal_en = 0;
400 		break;
401 	default:
402 		hw_pp->ops.setup_dither(hw_pp, NULL);
403 		return;
404 	}
405 
406 	memcpy(&dither_cfg.matrix, dither_matrix,
407 			sizeof(u32) * DITHER_MATRIX_SZ);
408 
409 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
410 }
411 
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)412 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
413 {
414 	switch (intf_mode) {
415 	case INTF_MODE_VIDEO:
416 		return "INTF_MODE_VIDEO";
417 	case INTF_MODE_CMD:
418 		return "INTF_MODE_CMD";
419 	case INTF_MODE_WB_BLOCK:
420 		return "INTF_MODE_WB_BLOCK";
421 	case INTF_MODE_WB_LINE:
422 		return "INTF_MODE_WB_LINE";
423 	default:
424 		return "INTF_MODE_UNKNOWN";
425 	}
426 }
427 
428 /**
429  * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
430  *	timed out, including reporting frame error event to crtc and debug dump
431  * @phys_enc: Pointer to physical encoder structure
432  * @intr_idx: Failing interrupt index
433  */
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)434 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
435 		enum dpu_intr_idx intr_idx)
436 {
437 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
438 			DRMID(phys_enc->parent),
439 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
440 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
441 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
442 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
443 
444 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
445 				DPU_ENCODER_FRAME_EVENT_ERROR);
446 }
447 
448 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
449 		u32 irq_idx, struct dpu_encoder_wait_info *info);
450 
451 /**
452  * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
453  *	note: will call dpu_encoder_helper_wait_for_irq on timeout
454  * @phys_enc: Pointer to physical encoder structure
455  * @irq_idx: IRQ index
456  * @func: IRQ callback to be called in case of timeout
457  * @wait_info: wait info struct
458  * @return: 0 or -ERROR
459  */
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)460 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
461 		unsigned int irq_idx,
462 		void (*func)(void *arg),
463 		struct dpu_encoder_wait_info *wait_info)
464 {
465 	u32 irq_status;
466 	int ret;
467 
468 	if (!wait_info) {
469 		DPU_ERROR("invalid params\n");
470 		return -EINVAL;
471 	}
472 	/* note: do master / slave checking outside */
473 
474 	/* return EWOULDBLOCK since we know the wait isn't necessary */
475 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
476 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
477 			  DRMID(phys_enc->parent), func,
478 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
479 		return -EWOULDBLOCK;
480 	}
481 
482 	if (irq_idx == 0) {
483 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
484 			      DRMID(phys_enc->parent), func);
485 		return 0;
486 	}
487 
488 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
489 		      DRMID(phys_enc->parent), func,
490 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
491 		      atomic_read(wait_info->atomic_cnt));
492 
493 	ret = dpu_encoder_helper_wait_event_timeout(
494 			DRMID(phys_enc->parent),
495 			irq_idx,
496 			wait_info);
497 
498 	if (ret <= 0) {
499 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
500 		if (irq_status) {
501 			unsigned long flags;
502 
503 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
504 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
505 				      DRMID(phys_enc->parent), func,
506 				      phys_enc->hw_pp->idx - PINGPONG_0,
507 				      atomic_read(wait_info->atomic_cnt));
508 			local_irq_save(flags);
509 			func(phys_enc);
510 			local_irq_restore(flags);
511 			ret = 0;
512 		} else {
513 			ret = -ETIMEDOUT;
514 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
515 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
516 				      DRMID(phys_enc->parent), func,
517 				      phys_enc->hw_pp->idx - PINGPONG_0,
518 				      atomic_read(wait_info->atomic_cnt));
519 		}
520 	} else {
521 		ret = 0;
522 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
523 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
524 			phys_enc->hw_pp->idx - PINGPONG_0,
525 			atomic_read(wait_info->atomic_cnt));
526 	}
527 
528 	return ret;
529 }
530 
531 /**
532  * dpu_encoder_get_vsync_count - get vsync count for the encoder.
533  * @drm_enc:    Pointer to previously created drm encoder structure
534  */
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)535 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
536 {
537 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
538 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
539 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
540 }
541 
542 /**
543  * dpu_encoder_get_linecount - get interface line count for the encoder.
544  * @drm_enc:    Pointer to previously created drm encoder structure
545  */
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)546 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
547 {
548 	struct dpu_encoder_virt *dpu_enc;
549 	struct dpu_encoder_phys *phys;
550 	int linecount = 0;
551 
552 	dpu_enc = to_dpu_encoder_virt(drm_enc);
553 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
554 
555 	if (phys && phys->ops.get_line_count)
556 		linecount = phys->ops.get_line_count(phys);
557 
558 	return linecount;
559 }
560 
561 /**
562  * dpu_encoder_helper_split_config - split display configuration helper function
563  *	This helper function may be used by physical encoders to configure
564  *	the split display related registers.
565  * @phys_enc: Pointer to physical encoder structure
566  * @interface: enum dpu_intf setting
567  */
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)568 void dpu_encoder_helper_split_config(
569 		struct dpu_encoder_phys *phys_enc,
570 		enum dpu_intf interface)
571 {
572 	struct dpu_encoder_virt *dpu_enc;
573 	struct split_pipe_cfg cfg = { 0 };
574 	struct dpu_hw_mdp *hw_mdptop;
575 	struct msm_display_info *disp_info;
576 
577 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
578 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
579 		return;
580 	}
581 
582 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
583 	hw_mdptop = phys_enc->hw_mdptop;
584 	disp_info = &dpu_enc->disp_info;
585 
586 	if (disp_info->intf_type != INTF_DSI)
587 		return;
588 
589 	/**
590 	 * disable split modes since encoder will be operating in as the only
591 	 * encoder, either for the entire use case in the case of, for example,
592 	 * single DSI, or for this frame in the case of left/right only partial
593 	 * update.
594 	 */
595 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
596 		if (hw_mdptop->ops.setup_split_pipe)
597 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
598 		return;
599 	}
600 
601 	cfg.en = true;
602 	cfg.mode = phys_enc->intf_mode;
603 	cfg.intf = interface;
604 
605 	if (cfg.en && phys_enc->ops.needs_single_flush &&
606 			phys_enc->ops.needs_single_flush(phys_enc))
607 		cfg.split_flush_en = true;
608 
609 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
610 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
611 
612 		if (hw_mdptop->ops.setup_split_pipe)
613 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
614 	}
615 }
616 
617 /**
618  * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
619  * @drm_enc:    Pointer to previously created drm encoder structure
620  */
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)621 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
622 {
623 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
624 	int i, intf_count = 0, num_dsc = 0;
625 
626 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
627 		if (dpu_enc->phys_encs[i])
628 			intf_count++;
629 
630 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
631 		if (dpu_enc->hw_dsc[i])
632 			num_dsc++;
633 
634 	return (num_dsc > 0) && (num_dsc > intf_count);
635 }
636 
637 /**
638  * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
639  *   This helper function is used by physical encoder to get DSC config
640  *   used for this encoder.
641  * @drm_enc: Pointer to encoder structure
642  */
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)643 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
644 {
645 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
646 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
647 	int index = dpu_enc->disp_info.h_tile_instance[0];
648 
649 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
650 		return msm_dsi_get_dsc_config(priv->dsi[index]);
651 
652 	return NULL;
653 }
654 
dpu_encoder_update_topology(struct drm_encoder * drm_enc,struct msm_display_topology * topology,struct drm_atomic_state * state,const struct drm_display_mode * adj_mode)655 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
656 				 struct msm_display_topology *topology,
657 				 struct drm_atomic_state *state,
658 				 const struct drm_display_mode *adj_mode)
659 {
660 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
661 	struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
662 	struct msm_display_info *disp_info = &dpu_enc->disp_info;
663 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
664 	struct drm_connector *connector;
665 	struct drm_connector_state *conn_state;
666 	struct drm_framebuffer *fb;
667 	struct drm_dsc_config *dsc;
668 
669 	int i;
670 
671 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
672 		if (dpu_enc->phys_encs[i])
673 			topology->num_intf++;
674 
675 	dsc = dpu_encoder_get_dsc_config(drm_enc);
676 
677 	/* We only support 2 DSC mode (with 2 LM and 1 INTF) */
678 	if (dsc) {
679 		/*
680 		 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces
681 		 * when Display Stream Compression (DSC) is enabled,
682 		 * and when enough DSC blocks are available.
683 		 * This is power-optimal and can drive up to (including) 4k
684 		 * screens.
685 		 */
686 		WARN(topology->num_intf > 2,
687 		     "DSC topology cannot support more than 2 interfaces\n");
688 		if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2)
689 			topology->num_dsc = 2;
690 		else
691 			topology->num_dsc = 1;
692 	}
693 
694 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
695 	if (!connector)
696 		return;
697 	conn_state = drm_atomic_get_new_connector_state(state, connector);
698 	if (!conn_state)
699 		return;
700 
701 	/*
702 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
703 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
704 	 * earlier.
705 	 */
706 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
707 		fb = conn_state->writeback_job->fb;
708 
709 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
710 			topology->num_cdm++;
711 	} else if (disp_info->intf_type == INTF_DP) {
712 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
713 			topology->num_cdm++;
714 	}
715 }
716 
dpu_encoder_needs_modeset(struct drm_encoder * drm_enc,struct drm_atomic_state * state)717 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
718 {
719 	struct drm_connector *connector;
720 	struct drm_connector_state *conn_state;
721 	struct drm_framebuffer *fb;
722 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
723 
724 	if (!drm_enc || !state)
725 		return false;
726 
727 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
728 	if (!connector)
729 		return false;
730 
731 	conn_state = drm_atomic_get_new_connector_state(state, connector);
732 
733 	/**
734 	 * These checks are duplicated from dpu_encoder_update_topology() since
735 	 * CRTC and encoder don't hold topology information
736 	 */
737 	if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
738 		fb = conn_state->writeback_job->fb;
739 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
740 			if (!dpu_enc->cur_master->hw_cdm)
741 				return true;
742 		} else {
743 			if (dpu_enc->cur_master->hw_cdm)
744 				return true;
745 		}
746 	}
747 
748 	return false;
749 }
750 
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)751 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
752 			struct msm_display_info *disp_info)
753 {
754 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
755 	struct msm_drm_private *priv;
756 	struct dpu_kms *dpu_kms;
757 	struct dpu_hw_mdp *hw_mdptop;
758 	struct drm_encoder *drm_enc;
759 	struct dpu_encoder_phys *phys_enc;
760 	int i;
761 
762 	if (!dpu_enc || !disp_info) {
763 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
764 					dpu_enc != NULL, disp_info != NULL);
765 		return;
766 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
767 		DPU_ERROR("invalid num phys enc %d/%d\n",
768 				dpu_enc->num_phys_encs,
769 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
770 		return;
771 	}
772 
773 	drm_enc = &dpu_enc->base;
774 	/* this pointers are checked in virt_enable_helper */
775 	priv = drm_enc->dev->dev_private;
776 
777 	dpu_kms = to_dpu_kms(priv->kms);
778 	hw_mdptop = dpu_kms->hw_mdp;
779 	if (!hw_mdptop) {
780 		DPU_ERROR("invalid mdptop\n");
781 		return;
782 	}
783 
784 	if (hw_mdptop->ops.setup_vsync_source) {
785 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
786 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
787 
788 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
789 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
790 
791 		vsync_cfg.vsync_source = disp_info->vsync_source;
792 
793 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
794 
795 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
796 			phys_enc = dpu_enc->phys_encs[i];
797 
798 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
799 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
800 						vsync_cfg.vsync_source);
801 		}
802 	}
803 }
804 
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)805 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
806 {
807 	struct dpu_encoder_virt *dpu_enc;
808 	int i;
809 
810 	if (!drm_enc) {
811 		DPU_ERROR("invalid encoder\n");
812 		return;
813 	}
814 
815 	dpu_enc = to_dpu_encoder_virt(drm_enc);
816 
817 	DPU_DEBUG_ENC(dpu_enc, "\n");
818 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
819 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
820 
821 		phys->ops.irq_enable(phys);
822 	}
823 }
824 
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)825 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
826 {
827 	struct dpu_encoder_virt *dpu_enc;
828 	int i;
829 
830 	if (!drm_enc) {
831 		DPU_ERROR("invalid encoder\n");
832 		return;
833 	}
834 
835 	dpu_enc = to_dpu_encoder_virt(drm_enc);
836 
837 	DPU_DEBUG_ENC(dpu_enc, "\n");
838 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
839 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
840 
841 		phys->ops.irq_disable(phys);
842 	}
843 }
844 
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)845 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
846 {
847 	struct msm_drm_private *priv;
848 	struct dpu_kms *dpu_kms;
849 	struct dpu_encoder_virt *dpu_enc;
850 
851 	dpu_enc = to_dpu_encoder_virt(drm_enc);
852 	priv = drm_enc->dev->dev_private;
853 	dpu_kms = to_dpu_kms(priv->kms);
854 
855 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
856 
857 	if (!dpu_enc->cur_master) {
858 		DPU_ERROR("encoder master not set\n");
859 		return;
860 	}
861 
862 	/* enable DPU core clks */
863 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
864 
865 	/* enable all the irq */
866 	_dpu_encoder_irq_enable(drm_enc);
867 }
868 
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)869 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
870 {
871 	struct msm_drm_private *priv;
872 	struct dpu_kms *dpu_kms;
873 	struct dpu_encoder_virt *dpu_enc;
874 
875 	dpu_enc = to_dpu_encoder_virt(drm_enc);
876 	priv = drm_enc->dev->dev_private;
877 	dpu_kms = to_dpu_kms(priv->kms);
878 
879 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
880 
881 	if (!dpu_enc->cur_master) {
882 		DPU_ERROR("encoder master not set\n");
883 		return;
884 	}
885 
886 	/* disable all the irq */
887 	_dpu_encoder_irq_disable(drm_enc);
888 
889 	/* disable DPU core clks */
890 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
891 }
892 
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)893 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
894 		u32 sw_event)
895 {
896 	struct dpu_encoder_virt *dpu_enc;
897 	struct msm_drm_private *priv;
898 	bool is_vid_mode = false;
899 
900 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
901 		DPU_ERROR("invalid parameters\n");
902 		return -EINVAL;
903 	}
904 	dpu_enc = to_dpu_encoder_virt(drm_enc);
905 	priv = drm_enc->dev->dev_private;
906 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
907 
908 	/*
909 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
910 	 * events and return early for other events (ie wb display).
911 	 */
912 	if (!dpu_enc->idle_pc_supported &&
913 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
914 			sw_event != DPU_ENC_RC_EVENT_STOP &&
915 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
916 		return 0;
917 
918 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
919 			 dpu_enc->rc_state, "begin");
920 
921 	switch (sw_event) {
922 	case DPU_ENC_RC_EVENT_KICKOFF:
923 		/* cancel delayed off work, if any */
924 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
925 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
926 					sw_event);
927 
928 		mutex_lock(&dpu_enc->rc_lock);
929 
930 		/* return if the resource control is already in ON state */
931 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
932 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
933 				      DRMID(drm_enc), sw_event);
934 			mutex_unlock(&dpu_enc->rc_lock);
935 			return 0;
936 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
937 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
938 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
939 				      DRMID(drm_enc), sw_event,
940 				      dpu_enc->rc_state);
941 			mutex_unlock(&dpu_enc->rc_lock);
942 			return -EINVAL;
943 		}
944 
945 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
946 			_dpu_encoder_irq_enable(drm_enc);
947 		else
948 			_dpu_encoder_resource_enable(drm_enc);
949 
950 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
951 
952 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 				 "kickoff");
955 
956 		mutex_unlock(&dpu_enc->rc_lock);
957 		break;
958 
959 	case DPU_ENC_RC_EVENT_FRAME_DONE:
960 		/*
961 		 * mutex lock is not used as this event happens at interrupt
962 		 * context. And locking is not required as, the other events
963 		 * like KICKOFF and STOP does a wait-for-idle before executing
964 		 * the resource_control
965 		 */
966 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
967 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
968 				      DRMID(drm_enc), sw_event,
969 				      dpu_enc->rc_state);
970 			return -EINVAL;
971 		}
972 
973 		/*
974 		 * schedule off work item only when there are no
975 		 * frames pending
976 		 */
977 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
978 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
979 				      DRMID(drm_enc));
980 			return 0;
981 		}
982 
983 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
984 				   msecs_to_jiffies(dpu_enc->idle_timeout));
985 
986 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
987 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
988 				 "frame done");
989 		break;
990 
991 	case DPU_ENC_RC_EVENT_PRE_STOP:
992 		/* cancel delayed off work, if any */
993 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
994 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
995 					sw_event);
996 
997 		mutex_lock(&dpu_enc->rc_lock);
998 
999 		if (is_vid_mode &&
1000 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1001 			_dpu_encoder_irq_enable(drm_enc);
1002 		}
1003 		/* skip if is already OFF or IDLE, resources are off already */
1004 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1005 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1006 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1007 				      DRMID(drm_enc), sw_event,
1008 				      dpu_enc->rc_state);
1009 			mutex_unlock(&dpu_enc->rc_lock);
1010 			return 0;
1011 		}
1012 
1013 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1014 
1015 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1016 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1017 				 "pre stop");
1018 
1019 		mutex_unlock(&dpu_enc->rc_lock);
1020 		break;
1021 
1022 	case DPU_ENC_RC_EVENT_STOP:
1023 		mutex_lock(&dpu_enc->rc_lock);
1024 
1025 		/* return if the resource control is already in OFF state */
1026 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1027 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1028 				      DRMID(drm_enc), sw_event);
1029 			mutex_unlock(&dpu_enc->rc_lock);
1030 			return 0;
1031 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1032 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1033 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1034 			mutex_unlock(&dpu_enc->rc_lock);
1035 			return -EINVAL;
1036 		}
1037 
1038 		/**
1039 		 * expect to arrive here only if in either idle state or pre-off
1040 		 * and in IDLE state the resources are already disabled
1041 		 */
1042 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1043 			_dpu_encoder_resource_disable(drm_enc);
1044 
1045 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1046 
1047 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1048 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1049 				 "stop");
1050 
1051 		mutex_unlock(&dpu_enc->rc_lock);
1052 		break;
1053 
1054 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1055 		mutex_lock(&dpu_enc->rc_lock);
1056 
1057 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1058 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1059 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1060 			mutex_unlock(&dpu_enc->rc_lock);
1061 			return 0;
1062 		}
1063 
1064 		/*
1065 		 * if we are in ON but a frame was just kicked off,
1066 		 * ignore the IDLE event, it's probably a stale timer event
1067 		 */
1068 		if (dpu_enc->frame_busy_mask[0]) {
1069 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1070 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1071 			mutex_unlock(&dpu_enc->rc_lock);
1072 			return 0;
1073 		}
1074 
1075 		if (is_vid_mode)
1076 			_dpu_encoder_irq_disable(drm_enc);
1077 		else
1078 			_dpu_encoder_resource_disable(drm_enc);
1079 
1080 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1081 
1082 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1083 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1084 				 "idle");
1085 
1086 		mutex_unlock(&dpu_enc->rc_lock);
1087 		break;
1088 
1089 	default:
1090 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1091 			  sw_event);
1092 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1093 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1094 				 "error");
1095 		break;
1096 	}
1097 
1098 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1099 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1100 			 "end");
1101 	return 0;
1102 }
1103 
1104 /**
1105  * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1106  * @drm_enc:    Pointer to previously created drm encoder structure
1107  * @job:        Pointer to the current drm writeback job
1108  */
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1109 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1110 		struct drm_writeback_job *job)
1111 {
1112 	struct dpu_encoder_virt *dpu_enc;
1113 	int i;
1114 
1115 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1116 
1117 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1118 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1119 
1120 		if (phys->ops.prepare_wb_job)
1121 			phys->ops.prepare_wb_job(phys, job);
1122 
1123 	}
1124 }
1125 
1126 /**
1127  * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1128  * @drm_enc:    Pointer to previously created drm encoder structure
1129  * @job:        Pointer to the current drm writeback job
1130  */
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1131 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1132 		struct drm_writeback_job *job)
1133 {
1134 	struct dpu_encoder_virt *dpu_enc;
1135 	int i;
1136 
1137 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1138 
1139 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1140 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1141 
1142 		if (phys->ops.cleanup_wb_job)
1143 			phys->ops.cleanup_wb_job(phys, job);
1144 
1145 	}
1146 }
1147 
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1148 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1149 					     struct drm_crtc_state *crtc_state,
1150 					     struct drm_connector_state *conn_state)
1151 {
1152 	struct dpu_encoder_virt *dpu_enc;
1153 	struct msm_drm_private *priv;
1154 	struct dpu_kms *dpu_kms;
1155 	struct dpu_global_state *global_state;
1156 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1157 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1158 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1159 	struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1160 	int num_ctl, num_pp, num_dsc;
1161 	int num_cwb = 0;
1162 	bool is_cwb_encoder;
1163 	unsigned int dsc_mask = 0;
1164 	unsigned int cwb_mask = 0;
1165 	int i;
1166 
1167 	if (!drm_enc) {
1168 		DPU_ERROR("invalid encoder\n");
1169 		return;
1170 	}
1171 
1172 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1173 	DPU_DEBUG_ENC(dpu_enc, "\n");
1174 
1175 	priv = drm_enc->dev->dev_private;
1176 	dpu_kms = to_dpu_kms(priv->kms);
1177 	is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1178 			dpu_enc->disp_info.intf_type == INTF_WB;
1179 
1180 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1181 	if (IS_ERR_OR_NULL(global_state)) {
1182 		DPU_ERROR("Failed to get global state");
1183 		return;
1184 	}
1185 
1186 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1187 
1188 	/* Query resource that have been reserved in atomic check step. */
1189 	if (is_cwb_encoder) {
1190 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1191 						       drm_enc->crtc,
1192 						       DPU_HW_BLK_DCWB_PINGPONG,
1193 						       hw_pp, ARRAY_SIZE(hw_pp));
1194 		num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1195 						       drm_enc->crtc,
1196 						       DPU_HW_BLK_CWB,
1197 						       hw_cwb, ARRAY_SIZE(hw_cwb));
1198 	} else {
1199 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1200 						       drm_enc->crtc,
1201 						       DPU_HW_BLK_PINGPONG, hw_pp,
1202 						       ARRAY_SIZE(hw_pp));
1203 	}
1204 
1205 	for (i = 0; i < num_cwb; i++) {
1206 		dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1207 		cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1208 	}
1209 
1210 	dpu_enc->cwb_mask = cwb_mask;
1211 
1212 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1213 		drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1214 
1215 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1216 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1217 						: NULL;
1218 
1219 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1220 						drm_enc->crtc, DPU_HW_BLK_DSC,
1221 						hw_dsc, ARRAY_SIZE(hw_dsc));
1222 	for (i = 0; i < num_dsc; i++) {
1223 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1224 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1225 	}
1226 
1227 	dpu_enc->dsc_mask = dsc_mask;
1228 
1229 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1230 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1231 		struct dpu_hw_blk *hw_cdm = NULL;
1232 
1233 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1234 					      drm_enc->crtc, DPU_HW_BLK_CDM,
1235 					      &hw_cdm, 1);
1236 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1237 	}
1238 
1239 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1240 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1241 
1242 		phys->hw_pp = dpu_enc->hw_pp[i];
1243 		if (!phys->hw_pp) {
1244 			DPU_ERROR_ENC(dpu_enc,
1245 				"no pp block assigned at idx: %d\n", i);
1246 			return;
1247 		}
1248 
1249 		/* Use first (and only) CTL if active CTLs are supported */
1250 		if (num_ctl == 1)
1251 			phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]);
1252 		else
1253 			phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1254 		if (!phys->hw_ctl) {
1255 			DPU_ERROR_ENC(dpu_enc,
1256 				"no ctl block assigned at idx: %d\n", i);
1257 			return;
1258 		}
1259 
1260 		phys->cached_mode = crtc_state->adjusted_mode;
1261 		if (phys->ops.atomic_mode_set)
1262 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1263 	}
1264 }
1265 
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1266 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1267 {
1268 	struct dpu_encoder_virt *dpu_enc = NULL;
1269 	int i;
1270 
1271 	if (!drm_enc || !drm_enc->dev) {
1272 		DPU_ERROR("invalid parameters\n");
1273 		return;
1274 	}
1275 
1276 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1277 	if (!dpu_enc || !dpu_enc->cur_master) {
1278 		DPU_ERROR("invalid dpu encoder/master\n");
1279 		return;
1280 	}
1281 
1282 
1283 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1284 		dpu_enc->cur_master->hw_mdptop &&
1285 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1286 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1287 			dpu_enc->cur_master->hw_mdptop);
1288 
1289 	if (dpu_enc->disp_info.is_cmd_mode)
1290 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1291 
1292 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1293 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1294 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1295 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1296 			if (!dpu_enc->hw_pp[i])
1297 				continue;
1298 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1299 		}
1300 	}
1301 }
1302 
1303 /**
1304  * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1305  * @drm_enc:	encoder pointer
1306  */
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1307 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1308 {
1309 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1310 
1311 	mutex_lock(&dpu_enc->enc_lock);
1312 
1313 	if (!dpu_enc->enabled)
1314 		goto out;
1315 
1316 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1317 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1318 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1319 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1320 
1321 	_dpu_encoder_virt_enable_helper(drm_enc);
1322 
1323 out:
1324 	mutex_unlock(&dpu_enc->enc_lock);
1325 }
1326 
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1327 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1328 					struct drm_atomic_state *state)
1329 {
1330 	struct dpu_encoder_virt *dpu_enc = NULL;
1331 	int ret = 0;
1332 	struct drm_display_mode *cur_mode = NULL;
1333 
1334 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1335 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1336 
1337 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1338 
1339 	mutex_lock(&dpu_enc->enc_lock);
1340 
1341 	dpu_enc->commit_done_timedout = false;
1342 
1343 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1344 
1345 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1346 
1347 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1348 
1349 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1350 			     cur_mode->vdisplay);
1351 
1352 	/* always enable slave encoder before master */
1353 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1354 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1355 
1356 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1357 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1358 
1359 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1360 	if (ret) {
1361 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1362 				ret);
1363 		goto out;
1364 	}
1365 
1366 	_dpu_encoder_virt_enable_helper(drm_enc);
1367 
1368 	dpu_enc->enabled = true;
1369 
1370 out:
1371 	mutex_unlock(&dpu_enc->enc_lock);
1372 }
1373 
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1374 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1375 					struct drm_atomic_state *state)
1376 {
1377 	struct dpu_encoder_virt *dpu_enc = NULL;
1378 	struct drm_crtc *crtc;
1379 	struct drm_crtc_state *old_state = NULL;
1380 	int i = 0;
1381 
1382 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1383 	DPU_DEBUG_ENC(dpu_enc, "\n");
1384 
1385 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1386 	if (crtc)
1387 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1388 
1389 	/*
1390 	 * The encoder is already disabled if self refresh mode was set earlier,
1391 	 * in the old_state for the corresponding crtc.
1392 	 */
1393 	if (old_state && old_state->self_refresh_active)
1394 		return;
1395 
1396 	mutex_lock(&dpu_enc->enc_lock);
1397 	dpu_enc->enabled = false;
1398 
1399 	trace_dpu_enc_disable(DRMID(drm_enc));
1400 
1401 	/* wait for idle */
1402 	dpu_encoder_wait_for_tx_complete(drm_enc);
1403 
1404 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1405 
1406 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1407 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1408 
1409 		if (phys->ops.disable)
1410 			phys->ops.disable(phys);
1411 	}
1412 
1413 
1414 	/* after phys waits for frame-done, should be no more frames pending */
1415 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1416 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1417 		timer_delete_sync(&dpu_enc->frame_done_timer);
1418 	}
1419 
1420 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1421 
1422 	dpu_enc->connector = NULL;
1423 
1424 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1425 
1426 	mutex_unlock(&dpu_enc->enc_lock);
1427 }
1428 
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1429 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1430 		struct dpu_rm *dpu_rm,
1431 		enum dpu_intf_type type, u32 controller_id)
1432 {
1433 	int i = 0;
1434 
1435 	if (type == INTF_WB)
1436 		return NULL;
1437 
1438 	for (i = 0; i < catalog->intf_count; i++) {
1439 		if (catalog->intf[i].type == type
1440 		    && catalog->intf[i].controller_id == controller_id) {
1441 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1442 		}
1443 	}
1444 
1445 	return NULL;
1446 }
1447 
1448 /**
1449  * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1450  * @drm_enc:    Pointer to drm encoder structure
1451  * @phy_enc:	Pointer to physical encoder
1452  * Note: This is called from IRQ handler context.
1453  */
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1454 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1455 		struct dpu_encoder_phys *phy_enc)
1456 {
1457 	struct dpu_encoder_virt *dpu_enc = NULL;
1458 	unsigned long lock_flags;
1459 
1460 	if (!drm_enc || !phy_enc)
1461 		return;
1462 
1463 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1464 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1465 
1466 	atomic_inc(&phy_enc->vsync_cnt);
1467 
1468 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1469 	if (dpu_enc->crtc)
1470 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1471 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1472 
1473 	DPU_ATRACE_END("encoder_vblank_callback");
1474 }
1475 
1476 /**
1477  * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1478  * @drm_enc:    Pointer to drm encoder structure
1479  * @phy_enc:	Pointer to physical encoder
1480  * Note: This is called from IRQ handler context.
1481  */
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1482 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1483 		struct dpu_encoder_phys *phy_enc)
1484 {
1485 	if (!phy_enc)
1486 		return;
1487 
1488 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1489 	atomic_inc(&phy_enc->underrun_cnt);
1490 
1491 	/* trigger dump only on the first underrun */
1492 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1493 		msm_disp_snapshot_state(drm_enc->dev);
1494 
1495 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1496 				  atomic_read(&phy_enc->underrun_cnt));
1497 	DPU_ATRACE_END("encoder_underrun_callback");
1498 }
1499 
1500 /**
1501  * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1502  * @drm_enc:	encoder pointer
1503  * @crtc:	crtc pointer
1504  */
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1505 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1506 {
1507 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1508 	unsigned long lock_flags;
1509 
1510 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1511 	/* crtc should always be cleared before re-assigning */
1512 	WARN_ON(crtc && dpu_enc->crtc);
1513 	dpu_enc->crtc = crtc;
1514 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1515 }
1516 
1517 /**
1518  * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1519  *	the encoder is assigned to the given crtc
1520  * @drm_enc:	encoder pointer
1521  * @crtc:	crtc pointer
1522  * @enable:	true if vblank should be enabled
1523  */
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1524 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1525 					struct drm_crtc *crtc, bool enable)
1526 {
1527 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1528 	unsigned long lock_flags;
1529 	int i;
1530 
1531 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1532 
1533 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1534 	if (dpu_enc->crtc != crtc) {
1535 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1536 		return;
1537 	}
1538 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1539 
1540 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1541 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1542 
1543 		if (phys->ops.control_vblank_irq)
1544 			phys->ops.control_vblank_irq(phys, enable);
1545 	}
1546 }
1547 
1548 /**
1549  * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1550  *     encoder completes last request frame
1551  * @drm_enc:    Pointer to drm encoder structure
1552  * @ready_phys:	Pointer to physical encoder
1553  * @event:	Event to process
1554  */
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1555 void dpu_encoder_frame_done_callback(
1556 		struct drm_encoder *drm_enc,
1557 		struct dpu_encoder_phys *ready_phys, u32 event)
1558 {
1559 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1560 	unsigned int i;
1561 
1562 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1563 			| DPU_ENCODER_FRAME_EVENT_ERROR
1564 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1565 
1566 		if (!dpu_enc->frame_busy_mask[0]) {
1567 			/**
1568 			 * suppress frame_done without waiter,
1569 			 * likely autorefresh
1570 			 */
1571 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1572 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1573 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1574 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1575 			return;
1576 		}
1577 
1578 		/* One of the physical encoders has become idle */
1579 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1580 			if (dpu_enc->phys_encs[i] == ready_phys) {
1581 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1582 						dpu_enc->frame_busy_mask[0]);
1583 				clear_bit(i, dpu_enc->frame_busy_mask);
1584 			}
1585 		}
1586 
1587 		if (!dpu_enc->frame_busy_mask[0]) {
1588 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1589 			timer_delete(&dpu_enc->frame_done_timer);
1590 
1591 			dpu_encoder_resource_control(drm_enc,
1592 					DPU_ENC_RC_EVENT_FRAME_DONE);
1593 
1594 			if (dpu_enc->crtc)
1595 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1596 		}
1597 	} else {
1598 		if (dpu_enc->crtc)
1599 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1600 	}
1601 }
1602 
dpu_encoder_off_work(struct work_struct * work)1603 static void dpu_encoder_off_work(struct work_struct *work)
1604 {
1605 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1606 			struct dpu_encoder_virt, delayed_off_work.work);
1607 
1608 	dpu_encoder_resource_control(&dpu_enc->base,
1609 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1610 
1611 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1612 				DPU_ENCODER_FRAME_EVENT_IDLE);
1613 }
1614 
1615 /**
1616  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1617  * @drm_enc: Pointer to drm encoder structure
1618  * @phys: Pointer to physical encoder structure
1619  * @extra_flush_bits: Additional bit mask to include in flush trigger
1620  */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1621 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1622 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1623 {
1624 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1625 	struct dpu_hw_ctl *ctl;
1626 	int pending_kickoff_cnt;
1627 	u32 ret = UINT_MAX;
1628 
1629 	if (!phys->hw_pp) {
1630 		DPU_ERROR("invalid pingpong hw\n");
1631 		return;
1632 	}
1633 
1634 	ctl = phys->hw_ctl;
1635 	if (!ctl->ops.trigger_flush) {
1636 		DPU_ERROR("missing trigger cb\n");
1637 		return;
1638 	}
1639 
1640 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1641 
1642 	/* Return early if encoder is writeback and in clone mode */
1643 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1644 	    dpu_enc->cwb_mask) {
1645 		DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1646 				DRMID(drm_enc));
1647 		return;
1648 	}
1649 
1650 
1651 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1652 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1653 
1654 	ctl->ops.trigger_flush(ctl);
1655 
1656 	if (ctl->ops.get_pending_flush)
1657 		ret = ctl->ops.get_pending_flush(ctl);
1658 
1659 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1660 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1661 			phys->hw_intf ? phys->hw_intf->idx : -1,
1662 			phys->hw_wb ? phys->hw_wb->idx : -1,
1663 			pending_kickoff_cnt, ctl->idx,
1664 			extra_flush_bits, ret);
1665 }
1666 
1667 /**
1668  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1669  * @phys: Pointer to physical encoder structure
1670  */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1671 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1672 {
1673 	struct dpu_encoder_virt *dpu_enc;
1674 
1675 	if (!phys) {
1676 		DPU_ERROR("invalid argument(s)\n");
1677 		return;
1678 	}
1679 
1680 	if (!phys->hw_pp) {
1681 		DPU_ERROR("invalid pingpong hw\n");
1682 		return;
1683 	}
1684 
1685 	dpu_enc = to_dpu_encoder_virt(phys->parent);
1686 
1687 	if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1688 	    dpu_enc->cwb_mask) {
1689 		DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1690 		return;
1691 	}
1692 
1693 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1694 		phys->ops.trigger_start(phys);
1695 }
1696 
1697 /**
1698  * dpu_encoder_helper_trigger_start - control start helper function
1699  *	This helper function may be optionally specified by physical
1700  *	encoders if they require ctl_start triggering.
1701  * @phys_enc: Pointer to physical encoder structure
1702  */
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1703 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1704 {
1705 	struct dpu_hw_ctl *ctl;
1706 
1707 	ctl = phys_enc->hw_ctl;
1708 	if (ctl->ops.trigger_start) {
1709 		ctl->ops.trigger_start(ctl);
1710 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1711 	}
1712 }
1713 
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1714 static int dpu_encoder_helper_wait_event_timeout(
1715 		int32_t drm_id,
1716 		unsigned int irq_idx,
1717 		struct dpu_encoder_wait_info *info)
1718 {
1719 	int rc = 0;
1720 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1721 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1722 	s64 time;
1723 
1724 	do {
1725 		rc = wait_event_timeout(*(info->wq),
1726 				atomic_read(info->atomic_cnt) == 0, jiffies);
1727 		time = ktime_to_ms(ktime_get());
1728 
1729 		trace_dpu_enc_wait_event_timeout(drm_id,
1730 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1731 						 rc, time,
1732 						 expected_time,
1733 						 atomic_read(info->atomic_cnt));
1734 	/* If we timed out, counter is valid and time is less, wait again */
1735 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1736 			(time < expected_time));
1737 
1738 	return rc;
1739 }
1740 
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1741 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1742 {
1743 	struct dpu_encoder_virt *dpu_enc;
1744 	struct dpu_hw_ctl *ctl;
1745 	int rc;
1746 	struct drm_encoder *drm_enc;
1747 
1748 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1749 	ctl = phys_enc->hw_ctl;
1750 	drm_enc = phys_enc->parent;
1751 
1752 	if (!ctl->ops.reset)
1753 		return;
1754 
1755 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1756 		      ctl->idx);
1757 
1758 	rc = ctl->ops.reset(ctl);
1759 	if (rc) {
1760 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1761 		msm_disp_snapshot_state(drm_enc->dev);
1762 	}
1763 
1764 	phys_enc->enable_state = DPU_ENC_ENABLED;
1765 }
1766 
1767 /**
1768  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1769  *	Iterate through the physical encoders and perform consolidated flush
1770  *	and/or control start triggering as needed. This is done in the virtual
1771  *	encoder rather than the individual physical ones in order to handle
1772  *	use cases that require visibility into multiple physical encoders at
1773  *	a time.
1774  * @dpu_enc: Pointer to virtual encoder structure
1775  */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1776 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1777 {
1778 	struct dpu_hw_ctl *ctl;
1779 	uint32_t i, pending_flush;
1780 	unsigned long lock_flags;
1781 
1782 	pending_flush = 0x0;
1783 
1784 	/* update pending counts and trigger kickoff ctl flush atomically */
1785 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1786 
1787 	/* don't perform flush/start operations for slave encoders */
1788 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1789 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1790 
1791 		if (phys->enable_state == DPU_ENC_DISABLED)
1792 			continue;
1793 
1794 		ctl = phys->hw_ctl;
1795 
1796 		/*
1797 		 * This is cleared in frame_done worker, which isn't invoked
1798 		 * for async commits. So don't set this for async, since it'll
1799 		 * roll over to the next commit.
1800 		 */
1801 		if (phys->split_role != ENC_ROLE_SLAVE)
1802 			set_bit(i, dpu_enc->frame_busy_mask);
1803 
1804 		if (!phys->ops.needs_single_flush ||
1805 				!phys->ops.needs_single_flush(phys))
1806 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1807 		else if (ctl->ops.get_pending_flush)
1808 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1809 	}
1810 
1811 	/* for split flush, combine pending flush masks and send to master */
1812 	if (pending_flush && dpu_enc->cur_master) {
1813 		_dpu_encoder_trigger_flush(
1814 				&dpu_enc->base,
1815 				dpu_enc->cur_master,
1816 				pending_flush);
1817 	}
1818 
1819 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1820 
1821 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1822 }
1823 
1824 /**
1825  * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1826  *        kickoff and trigger the ctl prepare progress for command mode display.
1827  * @drm_enc:	encoder pointer
1828  */
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1829 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1830 {
1831 	struct dpu_encoder_virt *dpu_enc;
1832 	struct dpu_encoder_phys *phys;
1833 	unsigned int i;
1834 	struct dpu_hw_ctl *ctl;
1835 	struct msm_display_info *disp_info;
1836 
1837 	if (!drm_enc) {
1838 		DPU_ERROR("invalid encoder\n");
1839 		return;
1840 	}
1841 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1842 	disp_info = &dpu_enc->disp_info;
1843 
1844 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1845 		phys = dpu_enc->phys_encs[i];
1846 
1847 		ctl = phys->hw_ctl;
1848 		ctl->ops.clear_pending_flush(ctl);
1849 
1850 		/* update only for command mode primary ctl */
1851 		if ((phys == dpu_enc->cur_master) &&
1852 		    disp_info->is_cmd_mode
1853 		    && ctl->ops.trigger_pending)
1854 			ctl->ops.trigger_pending(ctl);
1855 	}
1856 }
1857 
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1858 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1859 		struct drm_display_mode *mode)
1860 {
1861 	u64 pclk_rate;
1862 	u32 pclk_period;
1863 	u32 line_time;
1864 
1865 	/*
1866 	 * For linetime calculation, only operate on master encoder.
1867 	 */
1868 	if (!dpu_enc->cur_master)
1869 		return 0;
1870 
1871 	if (!dpu_enc->cur_master->ops.get_line_count) {
1872 		DPU_ERROR("get_line_count function not defined\n");
1873 		return 0;
1874 	}
1875 
1876 	pclk_rate = mode->clock; /* pixel clock in kHz */
1877 	if (pclk_rate == 0) {
1878 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1879 		return 0;
1880 	}
1881 
1882 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1883 	if (pclk_period == 0) {
1884 		DPU_ERROR("pclk period is 0\n");
1885 		return 0;
1886 	}
1887 
1888 	/*
1889 	 * Line time calculation based on Pixel clock and HTOTAL.
1890 	 * Final unit is in ns.
1891 	 */
1892 	line_time = (pclk_period * mode->htotal) / 1000;
1893 	if (line_time == 0) {
1894 		DPU_ERROR("line time calculation is 0\n");
1895 		return 0;
1896 	}
1897 
1898 	DPU_DEBUG_ENC(dpu_enc,
1899 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1900 			pclk_rate, pclk_period, line_time);
1901 
1902 	return line_time;
1903 }
1904 
1905 /**
1906  * dpu_encoder_vsync_time - get the time of the next vsync
1907  * @drm_enc:	encoder pointer
1908  * @wakeup_time: pointer to ktime_t to write the vsync time to
1909  */
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1910 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1911 {
1912 	struct drm_display_mode *mode;
1913 	struct dpu_encoder_virt *dpu_enc;
1914 	u32 cur_line;
1915 	u32 line_time;
1916 	u32 vtotal, time_to_vsync;
1917 	ktime_t cur_time;
1918 
1919 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1920 
1921 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1922 		DPU_ERROR("crtc/crtc state object is NULL\n");
1923 		return -EINVAL;
1924 	}
1925 	mode = &drm_enc->crtc->state->adjusted_mode;
1926 
1927 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1928 	if (!line_time)
1929 		return -EINVAL;
1930 
1931 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1932 
1933 	vtotal = mode->vtotal;
1934 	if (cur_line >= vtotal)
1935 		time_to_vsync = line_time * vtotal;
1936 	else
1937 		time_to_vsync = line_time * (vtotal - cur_line);
1938 
1939 	if (time_to_vsync == 0) {
1940 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1941 				vtotal);
1942 		return -EINVAL;
1943 	}
1944 
1945 	cur_time = ktime_get();
1946 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1947 
1948 	DPU_DEBUG_ENC(dpu_enc,
1949 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1950 			cur_line, vtotal, time_to_vsync,
1951 			ktime_to_ms(cur_time),
1952 			ktime_to_ms(*wakeup_time));
1953 	return 0;
1954 }
1955 
1956 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1957 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1958 				  u32 enc_ip_width)
1959 {
1960 	int ssm_delay, total_pixels, soft_slice_per_enc;
1961 
1962 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1963 
1964 	/*
1965 	 * minimum number of initial line pixels is a sum of:
1966 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1967 	 *    91 for 10 bpc) * 3
1968 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1969 	 * 3. the initial xmit delay
1970 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1971 	 * 5. 6 additional pixels as the output of the rate buffer is
1972 	 *    48 bits wide
1973 	 */
1974 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1975 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1976 	if (soft_slice_per_enc > 1)
1977 		total_pixels += (ssm_delay * 3);
1978 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1979 }
1980 
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1981 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1982 				     struct dpu_hw_dsc *hw_dsc,
1983 				     struct dpu_hw_pingpong *hw_pp,
1984 				     struct drm_dsc_config *dsc,
1985 				     u32 common_mode,
1986 				     u32 initial_lines)
1987 {
1988 	if (hw_dsc->ops.dsc_config)
1989 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1990 
1991 	if (hw_dsc->ops.dsc_config_thresh)
1992 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1993 
1994 	if (hw_pp->ops.setup_dsc)
1995 		hw_pp->ops.setup_dsc(hw_pp);
1996 
1997 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1998 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1999 
2000 	if (hw_pp->ops.enable_dsc)
2001 		hw_pp->ops.enable_dsc(hw_pp);
2002 
2003 	if (ctl->ops.update_pending_flush_dsc)
2004 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2005 }
2006 
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)2007 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2008 				 struct drm_dsc_config *dsc)
2009 {
2010 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2011 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2012 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2013 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2014 	int this_frame_slices;
2015 	int intf_ip_w, enc_ip_w;
2016 	int dsc_common_mode;
2017 	int pic_width;
2018 	u32 initial_lines;
2019 	int num_dsc = 0;
2020 	int i;
2021 
2022 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2023 		hw_pp[i] = dpu_enc->hw_pp[i];
2024 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2025 
2026 		if (!hw_pp[i] || !hw_dsc[i])
2027 			break;
2028 
2029 		num_dsc++;
2030 	}
2031 
2032 	pic_width = dsc->pic_width;
2033 
2034 	dsc_common_mode = 0;
2035 	if (num_dsc > 1)
2036 		dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2037 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
2038 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
2039 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
2040 		dsc_common_mode |= DSC_MODE_VIDEO;
2041 
2042 	this_frame_slices = pic_width / dsc->slice_width;
2043 	intf_ip_w = this_frame_slices * dsc->slice_width;
2044 
2045 	enc_ip_w = intf_ip_w / num_dsc;
2046 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2047 
2048 	for (i = 0; i < num_dsc; i++)
2049 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2050 					 dsc, dsc_common_mode, initial_lines);
2051 }
2052 
2053 /**
2054  * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2055  *	path (i.e. ctl flush and start) at next appropriate time.
2056  *	Immediately: if no previous commit is outstanding.
2057  *	Delayed: Block until next trigger can be issued.
2058  * @drm_enc:	encoder pointer
2059  */
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)2060 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2061 {
2062 	struct dpu_encoder_virt *dpu_enc;
2063 	struct dpu_encoder_phys *phys;
2064 	bool needs_hw_reset = false;
2065 	unsigned int i;
2066 
2067 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2068 
2069 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2070 
2071 	/* prepare for next kickoff, may include waiting on previous kickoff */
2072 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2073 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2074 		phys = dpu_enc->phys_encs[i];
2075 		if (phys->ops.prepare_for_kickoff)
2076 			phys->ops.prepare_for_kickoff(phys);
2077 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2078 			needs_hw_reset = true;
2079 	}
2080 	DPU_ATRACE_END("enc_prepare_for_kickoff");
2081 
2082 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2083 
2084 	/* if any phys needs reset, reset all phys, in-order */
2085 	if (needs_hw_reset) {
2086 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2087 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2088 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2089 		}
2090 	}
2091 
2092 	if (dpu_enc->dsc)
2093 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2094 }
2095 
2096 /**
2097  * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2098  * @drm_enc:    Pointer to drm encoder structure
2099  */
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)2100 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2101 {
2102 	struct dpu_encoder_virt *dpu_enc;
2103 	unsigned int i;
2104 	struct dpu_encoder_phys *phys;
2105 
2106 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2107 
2108 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2109 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2110 			phys = dpu_enc->phys_encs[i];
2111 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2112 				DPU_DEBUG("invalid FB not kicking off\n");
2113 				return false;
2114 			}
2115 		}
2116 	}
2117 
2118 	return true;
2119 }
2120 
2121 /**
2122  * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2123  * @drm_enc: Pointer to drm encoder structure
2124  */
dpu_encoder_start_frame_done_timer(struct drm_encoder * drm_enc)2125 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2126 {
2127 	struct dpu_encoder_virt *dpu_enc;
2128 	unsigned long timeout_ms;
2129 
2130 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2131 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2132 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2133 
2134 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2135 	mod_timer(&dpu_enc->frame_done_timer,
2136 			jiffies + msecs_to_jiffies(timeout_ms));
2137 
2138 }
2139 
2140 /**
2141  * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2142  *	(i.e. ctl flush and start) immediately.
2143  * @drm_enc:	encoder pointer
2144  */
dpu_encoder_kickoff(struct drm_encoder * drm_enc)2145 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2146 {
2147 	struct dpu_encoder_virt *dpu_enc;
2148 	struct dpu_encoder_phys *phys;
2149 	unsigned int i;
2150 
2151 	DPU_ATRACE_BEGIN("encoder_kickoff");
2152 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2153 
2154 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2155 
2156 	/* All phys encs are ready to go, trigger the kickoff */
2157 	_dpu_encoder_kickoff_phys(dpu_enc);
2158 
2159 	/* allow phys encs to handle any post-kickoff business */
2160 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2161 		phys = dpu_enc->phys_encs[i];
2162 		if (phys->ops.handle_post_kickoff)
2163 			phys->ops.handle_post_kickoff(phys);
2164 	}
2165 
2166 	DPU_ATRACE_END("encoder_kickoff");
2167 }
2168 
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2169 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2170 {
2171 	struct dpu_hw_mixer_cfg mixer;
2172 	int i, num_lm;
2173 	struct dpu_global_state *global_state;
2174 	struct dpu_hw_blk *hw_lm[2];
2175 	struct dpu_hw_mixer *hw_mixer[2];
2176 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2177 
2178 	memset(&mixer, 0, sizeof(mixer));
2179 
2180 	/* reset all mixers for this encoder */
2181 	if (ctl->ops.clear_all_blendstages)
2182 		ctl->ops.clear_all_blendstages(ctl);
2183 
2184 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2185 
2186 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2187 		phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2188 
2189 	for (i = 0; i < num_lm; i++) {
2190 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2191 		if (ctl->ops.update_pending_flush_mixer)
2192 			ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2193 
2194 		/* clear all blendstages */
2195 		if (ctl->ops.setup_blendstage)
2196 			ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2197 
2198 		if (ctl->ops.set_active_fetch_pipes)
2199 			ctl->ops.set_active_fetch_pipes(ctl, NULL);
2200 	}
2201 }
2202 
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2203 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2204 				     struct dpu_hw_dsc *hw_dsc,
2205 				     struct dpu_hw_pingpong *hw_pp)
2206 {
2207 	if (hw_dsc->ops.dsc_disable)
2208 		hw_dsc->ops.dsc_disable(hw_dsc);
2209 
2210 	if (hw_pp->ops.disable_dsc)
2211 		hw_pp->ops.disable_dsc(hw_pp);
2212 
2213 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2214 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2215 
2216 	if (ctl->ops.update_pending_flush_dsc)
2217 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2218 }
2219 
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2220 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2221 {
2222 	/* coding only for 2LM, 2enc, 1 dsc config */
2223 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2224 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2225 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2226 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2227 	int i;
2228 
2229 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2230 		hw_pp[i] = dpu_enc->hw_pp[i];
2231 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2232 
2233 		if (hw_pp[i] && hw_dsc[i])
2234 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2235 	}
2236 }
2237 
2238 /**
2239  * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2240  * @phys_enc: Pointer to physical encoder structure
2241  */
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2242 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2243 {
2244 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2245 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2246 	int i;
2247 	struct dpu_encoder_virt *dpu_enc;
2248 
2249 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2250 
2251 	ctl->ops.reset(ctl);
2252 
2253 	dpu_encoder_helper_reset_mixers(phys_enc);
2254 
2255 	/*
2256 	 * TODO: move the once-only operation like CTL flush/trigger
2257 	 * into dpu_encoder_virt_disable() and all operations which need
2258 	 * to be done per phys encoder into the phys_disable() op.
2259 	 */
2260 	if (phys_enc->hw_wb) {
2261 		/* disable the PP block */
2262 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2263 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2264 
2265 		/* mark WB flush as pending */
2266 		if (ctl->ops.update_pending_flush_wb)
2267 			ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2268 	} else {
2269 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2270 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2271 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2272 						dpu_enc->phys_encs[i]->hw_intf,
2273 						PINGPONG_NONE);
2274 
2275 			/* mark INTF flush as pending */
2276 			if (ctl->ops.update_pending_flush_intf)
2277 				ctl->ops.update_pending_flush_intf(ctl,
2278 						dpu_enc->phys_encs[i]->hw_intf->idx);
2279 		}
2280 	}
2281 
2282 	if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2283 		phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2284 
2285 	if (dpu_enc->cwb_mask)
2286 		dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2287 
2288 	/* reset the merge 3D HW block */
2289 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2290 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2291 				BLEND_3D_NONE);
2292 		if (ctl->ops.update_pending_flush_merge_3d)
2293 			ctl->ops.update_pending_flush_merge_3d(ctl,
2294 					phys_enc->hw_pp->merge_3d->idx);
2295 	}
2296 
2297 	if (phys_enc->hw_cdm) {
2298 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2299 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2300 								PINGPONG_NONE);
2301 		if (ctl->ops.update_pending_flush_cdm)
2302 			ctl->ops.update_pending_flush_cdm(ctl,
2303 							  phys_enc->hw_cdm->idx);
2304 	}
2305 
2306 	if (dpu_enc->dsc) {
2307 		dpu_encoder_unprep_dsc(dpu_enc);
2308 		dpu_enc->dsc = NULL;
2309 	}
2310 
2311 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2312 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2313 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2314 	intf_cfg.cwb = dpu_enc->cwb_mask;
2315 
2316 	if (phys_enc->hw_intf)
2317 		intf_cfg.intf = phys_enc->hw_intf->idx;
2318 	if (phys_enc->hw_wb)
2319 		intf_cfg.wb = phys_enc->hw_wb->idx;
2320 
2321 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2322 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2323 
2324 	if (ctl->ops.reset_intf_cfg)
2325 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2326 
2327 	ctl->ops.trigger_flush(ctl);
2328 	ctl->ops.trigger_start(ctl);
2329 	ctl->ops.clear_pending_flush(ctl);
2330 }
2331 
dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys * phys_enc,bool enable)2332 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2333 				       bool enable)
2334 {
2335 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2336 	struct dpu_hw_cwb *hw_cwb;
2337 	struct dpu_hw_ctl *hw_ctl;
2338 	struct dpu_hw_cwb_setup_cfg cwb_cfg;
2339 
2340 	struct dpu_kms *dpu_kms;
2341 	struct dpu_global_state *global_state;
2342 	struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2343 	int num_pp;
2344 
2345 	if (!phys_enc->hw_wb)
2346 		return;
2347 
2348 	hw_ctl = phys_enc->hw_ctl;
2349 
2350 	if (!phys_enc->hw_ctl) {
2351 		DPU_DEBUG("[wb:%d] no ctl assigned\n",
2352 			  phys_enc->hw_wb->idx - WB_0);
2353 		return;
2354 	}
2355 
2356 	dpu_kms = phys_enc->dpu_kms;
2357 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
2358 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2359 					       phys_enc->parent->crtc,
2360 					       DPU_HW_BLK_PINGPONG, rt_pp_list,
2361 					       ARRAY_SIZE(rt_pp_list));
2362 
2363 	if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2364 		DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2365 		return;
2366 	}
2367 
2368 	/*
2369 	 * The CWB mux supports using LM or DSPP as tap points. For now,
2370 	 * always use LM tap point
2371 	 */
2372 	cwb_cfg.input = INPUT_MODE_LM_OUT;
2373 
2374 	for (int i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2375 		hw_cwb = dpu_enc->hw_cwb[i];
2376 		if (!hw_cwb)
2377 			continue;
2378 
2379 		if (enable) {
2380 			struct dpu_hw_pingpong *hw_pp =
2381 					to_dpu_hw_pingpong(rt_pp_list[i]);
2382 			cwb_cfg.pp_idx = hw_pp->idx;
2383 		} else {
2384 			cwb_cfg.pp_idx = PINGPONG_NONE;
2385 		}
2386 
2387 		hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2388 
2389 		if (hw_ctl->ops.update_pending_flush_cwb)
2390 			hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2391 	}
2392 }
2393 
2394 /**
2395  * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2396  * @phys_enc: Pointer to physical encoder
2397  * @dpu_fmt: Pinter to the format description
2398  * @output_type: HDMI/WB
2399  */
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2400 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2401 				       const struct msm_format *dpu_fmt,
2402 				       u32 output_type)
2403 {
2404 	struct dpu_hw_cdm *hw_cdm;
2405 	struct dpu_hw_cdm_cfg *cdm_cfg;
2406 	struct dpu_hw_pingpong *hw_pp;
2407 	int ret;
2408 
2409 	if (!phys_enc)
2410 		return;
2411 
2412 	cdm_cfg = &phys_enc->cdm_cfg;
2413 	hw_pp = phys_enc->hw_pp;
2414 	hw_cdm = phys_enc->hw_cdm;
2415 
2416 	if (!hw_cdm)
2417 		return;
2418 
2419 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2420 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2421 			  &dpu_fmt->pixel_format);
2422 		if (hw_cdm->ops.bind_pingpong_blk)
2423 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2424 
2425 		return;
2426 	}
2427 
2428 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2429 
2430 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2431 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2432 	cdm_cfg->output_fmt = dpu_fmt;
2433 	cdm_cfg->output_type = output_type;
2434 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2435 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2436 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2437 
2438 	/* enable 10 bit logic */
2439 	switch (cdm_cfg->output_fmt->chroma_sample) {
2440 	case CHROMA_FULL:
2441 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2442 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2443 		break;
2444 	case CHROMA_H2V1:
2445 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2446 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2447 		break;
2448 	case CHROMA_420:
2449 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2450 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2451 		break;
2452 	case CHROMA_H1V2:
2453 	default:
2454 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2455 			  DRMID(phys_enc->parent));
2456 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2457 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2458 		break;
2459 	}
2460 
2461 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2462 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2463 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2464 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2465 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2466 
2467 	if (hw_cdm->ops.enable) {
2468 		cdm_cfg->pp_id = hw_pp->idx;
2469 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2470 		if (ret < 0) {
2471 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2472 				  DRMID(phys_enc->parent), ret);
2473 			return;
2474 		}
2475 	}
2476 }
2477 
2478 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2479 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2480 {
2481 	struct drm_encoder *drm_enc = s->private;
2482 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2483 	int i;
2484 
2485 	mutex_lock(&dpu_enc->enc_lock);
2486 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2487 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2488 
2489 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2490 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2491 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2492 				atomic_read(&phys->vsync_cnt),
2493 				atomic_read(&phys->underrun_cnt),
2494 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2495 
2496 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2497 	}
2498 	mutex_unlock(&dpu_enc->enc_lock);
2499 
2500 	return 0;
2501 }
2502 
2503 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2504 
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2505 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2506 {
2507 	/* don't error check these */
2508 	debugfs_create_file("status", 0600,
2509 			    root, drm_enc, &_dpu_encoder_status_fops);
2510 }
2511 #else
2512 #define dpu_encoder_debugfs_init NULL
2513 #endif
2514 
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2515 static int dpu_encoder_virt_add_phys_encs(
2516 		struct drm_device *dev,
2517 		struct msm_display_info *disp_info,
2518 		struct dpu_encoder_virt *dpu_enc,
2519 		struct dpu_enc_phys_init_params *params)
2520 {
2521 	struct dpu_encoder_phys *enc = NULL;
2522 
2523 	DPU_DEBUG_ENC(dpu_enc, "\n");
2524 
2525 	/*
2526 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2527 	 * in this function, check up-front.
2528 	 */
2529 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2530 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2531 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2532 			  dpu_enc->num_phys_encs);
2533 		return -EINVAL;
2534 	}
2535 
2536 
2537 	if (disp_info->intf_type == INTF_WB) {
2538 		enc = dpu_encoder_phys_wb_init(dev, params);
2539 
2540 		if (IS_ERR(enc)) {
2541 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2542 				PTR_ERR(enc));
2543 			return PTR_ERR(enc);
2544 		}
2545 
2546 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2547 		++dpu_enc->num_phys_encs;
2548 	} else if (disp_info->is_cmd_mode) {
2549 		enc = dpu_encoder_phys_cmd_init(dev, params);
2550 
2551 		if (IS_ERR(enc)) {
2552 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2553 				PTR_ERR(enc));
2554 			return PTR_ERR(enc);
2555 		}
2556 
2557 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2558 		++dpu_enc->num_phys_encs;
2559 	} else {
2560 		enc = dpu_encoder_phys_vid_init(dev, params);
2561 
2562 		if (IS_ERR(enc)) {
2563 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2564 				PTR_ERR(enc));
2565 			return PTR_ERR(enc);
2566 		}
2567 
2568 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2569 		++dpu_enc->num_phys_encs;
2570 	}
2571 
2572 	if (params->split_role == ENC_ROLE_SLAVE)
2573 		dpu_enc->cur_slave = enc;
2574 	else
2575 		dpu_enc->cur_master = enc;
2576 
2577 	return 0;
2578 }
2579 
2580 /**
2581  * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2582  * @drm_enc:        DRM encoder pointer
2583  * Returns:         possible_clones mask
2584  */
dpu_encoder_get_clones(struct drm_encoder * drm_enc)2585 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2586 {
2587 	struct drm_encoder *curr;
2588 	int type = drm_enc->encoder_type;
2589 	uint32_t clone_mask = drm_encoder_mask(drm_enc);
2590 
2591 	/*
2592 	 * Set writeback as possible clones of real-time DSI encoders and vice
2593 	 * versa
2594 	 *
2595 	 * Writeback encoders can't be clones of each other and DSI
2596 	 * encoders can't be clones of each other.
2597 	 *
2598 	 * TODO: Add DP encoders as valid possible clones for writeback encoders
2599 	 * (and vice versa) once concurrent writeback has been validated for DP
2600 	 */
2601 	drm_for_each_encoder(curr, drm_enc->dev) {
2602 		if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2603 		    curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2604 		    (type == DRM_MODE_ENCODER_DSI &&
2605 		    curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2606 			clone_mask |= drm_encoder_mask(curr);
2607 	}
2608 
2609 	return clone_mask;
2610 }
2611 
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2612 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2613 				 struct dpu_kms *dpu_kms,
2614 				 struct msm_display_info *disp_info)
2615 {
2616 	int ret = 0;
2617 	int i = 0;
2618 	struct dpu_enc_phys_init_params phys_params;
2619 
2620 	if (!dpu_enc) {
2621 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2622 		return -EINVAL;
2623 	}
2624 
2625 	dpu_enc->cur_master = NULL;
2626 
2627 	memset(&phys_params, 0, sizeof(phys_params));
2628 	phys_params.dpu_kms = dpu_kms;
2629 	phys_params.parent = &dpu_enc->base;
2630 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2631 
2632 	WARN_ON(disp_info->num_of_h_tiles < 1);
2633 
2634 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2635 
2636 	if (disp_info->intf_type != INTF_WB)
2637 		dpu_enc->idle_pc_supported =
2638 				dpu_kms->catalog->caps->has_idle_pc;
2639 
2640 	mutex_lock(&dpu_enc->enc_lock);
2641 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2642 		/*
2643 		 * Left-most tile is at index 0, content is controller id
2644 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2645 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2646 		 */
2647 		u32 controller_id = disp_info->h_tile_instance[i];
2648 
2649 		if (disp_info->num_of_h_tiles > 1) {
2650 			if (i == 0)
2651 				phys_params.split_role = ENC_ROLE_MASTER;
2652 			else
2653 				phys_params.split_role = ENC_ROLE_SLAVE;
2654 		} else {
2655 			phys_params.split_role = ENC_ROLE_SOLO;
2656 		}
2657 
2658 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2659 				i, controller_id, phys_params.split_role);
2660 
2661 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2662 							   disp_info->intf_type,
2663 							   controller_id);
2664 
2665 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2666 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2667 
2668 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2669 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2670 			ret = -EINVAL;
2671 			break;
2672 		}
2673 
2674 		if (phys_params.hw_intf && phys_params.hw_wb) {
2675 			DPU_ERROR_ENC(dpu_enc,
2676 					"invalid phys both intf and wb block at idx: %d\n", i);
2677 			ret = -EINVAL;
2678 			break;
2679 		}
2680 
2681 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2682 				dpu_enc, &phys_params);
2683 		if (ret) {
2684 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2685 			break;
2686 		}
2687 	}
2688 
2689 	mutex_unlock(&dpu_enc->enc_lock);
2690 
2691 	return ret;
2692 }
2693 
dpu_encoder_frame_done_timeout(struct timer_list * t)2694 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2695 {
2696 	struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t,
2697 							      frame_done_timer);
2698 	struct drm_encoder *drm_enc = &dpu_enc->base;
2699 	u32 event;
2700 
2701 	if (!drm_enc->dev) {
2702 		DPU_ERROR("invalid parameters\n");
2703 		return;
2704 	}
2705 
2706 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2707 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2708 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2709 		return;
2710 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2711 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2712 		return;
2713 	}
2714 
2715 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2716 
2717 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2718 		msm_disp_snapshot_state(drm_enc->dev);
2719 
2720 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2721 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2722 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2723 }
2724 
2725 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2726 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2727 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2728 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2729 };
2730 
2731 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2732 	.debugfs_init = dpu_encoder_debugfs_init,
2733 };
2734 
2735 /**
2736  * dpu_encoder_init - initialize virtual encoder object
2737  * @dev:        Pointer to drm device structure
2738  * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2739  * @disp_info:  Pointer to display information structure
2740  * Returns:     Pointer to newly created drm encoder
2741  */
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2742 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2743 		int drm_enc_mode,
2744 		struct msm_display_info *disp_info)
2745 {
2746 	struct msm_drm_private *priv = dev->dev_private;
2747 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2748 	struct dpu_encoder_virt *dpu_enc;
2749 	int ret;
2750 
2751 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2752 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2753 	if (IS_ERR(dpu_enc))
2754 		return ERR_CAST(dpu_enc);
2755 
2756 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2757 
2758 	spin_lock_init(&dpu_enc->enc_spinlock);
2759 	dpu_enc->enabled = false;
2760 	mutex_init(&dpu_enc->enc_lock);
2761 	mutex_init(&dpu_enc->rc_lock);
2762 
2763 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2764 	if (ret) {
2765 		DPU_ERROR("failed to setup encoder\n");
2766 		return ERR_PTR(-ENOMEM);
2767 	}
2768 
2769 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2770 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2771 	timer_setup(&dpu_enc->frame_done_timer,
2772 			dpu_encoder_frame_done_timeout, 0);
2773 
2774 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2775 			dpu_encoder_off_work);
2776 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2777 
2778 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2779 
2780 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2781 
2782 	return &dpu_enc->base;
2783 }
2784 
2785 /**
2786  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2787  * @drm_enc:	encoder pointer
2788  *
2789  * Wait for hardware to have flushed the current pending changes to hardware at
2790  * a vblank or CTL_START. Physical encoders will map this differently depending
2791  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2792  *
2793  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2794  */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2795 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2796 {
2797 	struct dpu_encoder_virt *dpu_enc = NULL;
2798 	int i, ret = 0;
2799 
2800 	if (!drm_enc) {
2801 		DPU_ERROR("invalid encoder\n");
2802 		return -EINVAL;
2803 	}
2804 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2805 	DPU_DEBUG_ENC(dpu_enc, "\n");
2806 
2807 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2808 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2809 
2810 		if (phys->ops.wait_for_commit_done) {
2811 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2812 			ret = phys->ops.wait_for_commit_done(phys);
2813 			DPU_ATRACE_END("wait_for_commit_done");
2814 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2815 				dpu_enc->commit_done_timedout = true;
2816 				msm_disp_snapshot_state(drm_enc->dev);
2817 			}
2818 			if (ret)
2819 				return ret;
2820 		}
2821 	}
2822 
2823 	return ret;
2824 }
2825 
2826 /**
2827  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2828  * @drm_enc:	encoder pointer
2829  *
2830  * Wait for the hardware to transfer all the pixels to the panel. Physical
2831  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2832  * cmd mode -> pp_done.
2833  *
2834  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2835  */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2836 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2837 {
2838 	struct dpu_encoder_virt *dpu_enc = NULL;
2839 	int i, ret = 0;
2840 
2841 	if (!drm_enc) {
2842 		DPU_ERROR("invalid encoder\n");
2843 		return -EINVAL;
2844 	}
2845 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2846 	DPU_DEBUG_ENC(dpu_enc, "\n");
2847 
2848 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2849 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2850 
2851 		if (phys->ops.wait_for_tx_complete) {
2852 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2853 			ret = phys->ops.wait_for_tx_complete(phys);
2854 			DPU_ATRACE_END("wait_for_tx_complete");
2855 			if (ret)
2856 				return ret;
2857 		}
2858 	}
2859 
2860 	return ret;
2861 }
2862 
2863 /**
2864  * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2865  * @encoder: Pointer to drm encoder object
2866  */
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2867 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2868 {
2869 	struct dpu_encoder_virt *dpu_enc = NULL;
2870 
2871 	if (!encoder) {
2872 		DPU_ERROR("invalid encoder\n");
2873 		return INTF_MODE_NONE;
2874 	}
2875 	dpu_enc = to_dpu_encoder_virt(encoder);
2876 
2877 	if (dpu_enc->cur_master)
2878 		return dpu_enc->cur_master->intf_mode;
2879 
2880 	if (dpu_enc->num_phys_encs)
2881 		return dpu_enc->phys_encs[0]->intf_mode;
2882 
2883 	return INTF_MODE_NONE;
2884 }
2885 
2886 /**
2887  * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2888  * @phys_enc: Pointer to physical encoder structure
2889  */
dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys * phys_enc)2890 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2891 {
2892 	struct drm_encoder *encoder = phys_enc->parent;
2893 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2894 
2895 	return dpu_enc->cwb_mask;
2896 }
2897 
2898 /**
2899  * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2900  *   This helper function is used by physical encoder to get DSC blocks mask
2901  *   used for this encoder.
2902  * @phys_enc: Pointer to physical encoder structure
2903  */
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2904 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2905 {
2906 	struct drm_encoder *encoder = phys_enc->parent;
2907 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2908 
2909 	return dpu_enc->dsc_mask;
2910 }
2911 
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2912 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2913 			  struct dpu_enc_phys_init_params *p)
2914 {
2915 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2916 	phys_enc->hw_intf = p->hw_intf;
2917 	phys_enc->hw_wb = p->hw_wb;
2918 	phys_enc->parent = p->parent;
2919 	phys_enc->dpu_kms = p->dpu_kms;
2920 	phys_enc->split_role = p->split_role;
2921 	phys_enc->enc_spinlock = p->enc_spinlock;
2922 	phys_enc->enable_state = DPU_ENC_DISABLED;
2923 
2924 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2925 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2926 
2927 	atomic_set(&phys_enc->vsync_cnt, 0);
2928 	atomic_set(&phys_enc->underrun_cnt, 0);
2929 
2930 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2931 }
2932