1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
26 */
27
28 #include <assert.h>
29 #include <fcntl.h>
30 #include <libgen.h>
31 #include <poll.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <limits.h>
36 #include <libzutil.h>
37 #include <sys/crypto/icp.h>
38 #include <sys/processor.h>
39 #include <sys/rrwlock.h>
40 #include <sys/spa.h>
41 #include <sys/stat.h>
42 #include <sys/systeminfo.h>
43 #include <sys/time.h>
44 #include <sys/utsname.h>
45 #include <sys/zfs_context.h>
46 #include <sys/zfs_onexit.h>
47 #include <sys/zfs_vfsops.h>
48 #include <sys/zstd/zstd.h>
49 #include <sys/zvol.h>
50 #include <zfs_fletcher.h>
51 #include <zlib.h>
52
53 /*
54 * Emulation of kernel services in userland.
55 */
56
57 uint64_t physmem;
58 uint32_t hostid;
59 struct utsname hw_utsname;
60
61 /* If set, all blocks read will be copied to the specified directory. */
62 char *vn_dumpdir = NULL;
63
64 /* this only exists to have its address taken */
65 struct proc p0;
66
67 /*
68 * =========================================================================
69 * threads
70 * =========================================================================
71 *
72 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While
73 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
74 * the expected stack depth while small enough to avoid exhausting address
75 * space with high thread counts.
76 */
77 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768)
78 #define TS_STACK_MAX (256 * 1024)
79
80 struct zk_thread_wrapper {
81 void (*func)(void *);
82 void *arg;
83 };
84
85 static void *
zk_thread_wrapper(void * arg)86 zk_thread_wrapper(void *arg)
87 {
88 struct zk_thread_wrapper ztw;
89 memcpy(&ztw, arg, sizeof (ztw));
90 free(arg);
91 ztw.func(ztw.arg);
92 return (NULL);
93 }
94
95 kthread_t *
zk_thread_create(const char * name,void (* func)(void *),void * arg,size_t stksize,int state)96 zk_thread_create(const char *name, void (*func)(void *), void *arg,
97 size_t stksize, int state)
98 {
99 pthread_attr_t attr;
100 pthread_t tid;
101 char *stkstr;
102 struct zk_thread_wrapper *ztw;
103 int detachstate = PTHREAD_CREATE_DETACHED;
104
105 VERIFY0(pthread_attr_init(&attr));
106
107 if (state & TS_JOINABLE)
108 detachstate = PTHREAD_CREATE_JOINABLE;
109
110 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
111
112 /*
113 * We allow the default stack size in user space to be specified by
114 * setting the ZFS_STACK_SIZE environment variable. This allows us
115 * the convenience of observing and debugging stack overruns in
116 * user space. Explicitly specified stack sizes will be honored.
117 * The usage of ZFS_STACK_SIZE is discussed further in the
118 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
119 */
120 if (stksize == 0) {
121 stkstr = getenv("ZFS_STACK_SIZE");
122
123 if (stkstr == NULL)
124 stksize = TS_STACK_MAX;
125 else
126 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
127 }
128
129 VERIFY3S(stksize, >, 0);
130 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
131
132 /*
133 * If this ever fails, it may be because the stack size is not a
134 * multiple of system page size.
135 */
136 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
137 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
138
139 VERIFY(ztw = malloc(sizeof (*ztw)));
140 ztw->func = func;
141 ztw->arg = arg;
142 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
143 VERIFY0(pthread_attr_destroy(&attr));
144
145 pthread_setname_np(tid, name);
146
147 return ((void *)(uintptr_t)tid);
148 }
149
150 /*
151 * =========================================================================
152 * kstats
153 * =========================================================================
154 */
155 kstat_t *
kstat_create(const char * module,int instance,const char * name,const char * class,uchar_t type,ulong_t ndata,uchar_t ks_flag)156 kstat_create(const char *module, int instance, const char *name,
157 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
158 {
159 (void) module, (void) instance, (void) name, (void) class, (void) type,
160 (void) ndata, (void) ks_flag;
161 return (NULL);
162 }
163
164 void
kstat_install(kstat_t * ksp)165 kstat_install(kstat_t *ksp)
166 {
167 (void) ksp;
168 }
169
170 void
kstat_delete(kstat_t * ksp)171 kstat_delete(kstat_t *ksp)
172 {
173 (void) ksp;
174 }
175
176 void
kstat_set_raw_ops(kstat_t * ksp,int (* headers)(char * buf,size_t size),int (* data)(char * buf,size_t size,void * data),void * (* addr)(kstat_t * ksp,loff_t index))177 kstat_set_raw_ops(kstat_t *ksp,
178 int (*headers)(char *buf, size_t size),
179 int (*data)(char *buf, size_t size, void *data),
180 void *(*addr)(kstat_t *ksp, loff_t index))
181 {
182 (void) ksp, (void) headers, (void) data, (void) addr;
183 }
184
185 /*
186 * =========================================================================
187 * mutexes
188 * =========================================================================
189 */
190
191 void
mutex_init(kmutex_t * mp,char * name,int type,void * cookie)192 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
193 {
194 (void) name, (void) type, (void) cookie;
195 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
196 memset(&mp->m_owner, 0, sizeof (pthread_t));
197 }
198
199 void
mutex_destroy(kmutex_t * mp)200 mutex_destroy(kmutex_t *mp)
201 {
202 VERIFY0(pthread_mutex_destroy(&mp->m_lock));
203 }
204
205 void
mutex_enter(kmutex_t * mp)206 mutex_enter(kmutex_t *mp)
207 {
208 VERIFY0(pthread_mutex_lock(&mp->m_lock));
209 mp->m_owner = pthread_self();
210 }
211
212 int
mutex_enter_check_return(kmutex_t * mp)213 mutex_enter_check_return(kmutex_t *mp)
214 {
215 int error = pthread_mutex_lock(&mp->m_lock);
216 if (error == 0)
217 mp->m_owner = pthread_self();
218 return (error);
219 }
220
221 int
mutex_tryenter(kmutex_t * mp)222 mutex_tryenter(kmutex_t *mp)
223 {
224 int error = pthread_mutex_trylock(&mp->m_lock);
225 if (error == 0) {
226 mp->m_owner = pthread_self();
227 return (1);
228 } else {
229 VERIFY3S(error, ==, EBUSY);
230 return (0);
231 }
232 }
233
234 void
mutex_exit(kmutex_t * mp)235 mutex_exit(kmutex_t *mp)
236 {
237 memset(&mp->m_owner, 0, sizeof (pthread_t));
238 VERIFY0(pthread_mutex_unlock(&mp->m_lock));
239 }
240
241 /*
242 * =========================================================================
243 * rwlocks
244 * =========================================================================
245 */
246
247 void
rw_init(krwlock_t * rwlp,char * name,int type,void * arg)248 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
249 {
250 (void) name, (void) type, (void) arg;
251 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
252 rwlp->rw_readers = 0;
253 rwlp->rw_owner = 0;
254 }
255
256 void
rw_destroy(krwlock_t * rwlp)257 rw_destroy(krwlock_t *rwlp)
258 {
259 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
260 }
261
262 void
rw_enter(krwlock_t * rwlp,krw_t rw)263 rw_enter(krwlock_t *rwlp, krw_t rw)
264 {
265 if (rw == RW_READER) {
266 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
267 atomic_inc_uint(&rwlp->rw_readers);
268 } else {
269 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
270 rwlp->rw_owner = pthread_self();
271 }
272 }
273
274 void
rw_exit(krwlock_t * rwlp)275 rw_exit(krwlock_t *rwlp)
276 {
277 if (RW_READ_HELD(rwlp))
278 atomic_dec_uint(&rwlp->rw_readers);
279 else
280 rwlp->rw_owner = 0;
281
282 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
283 }
284
285 int
rw_tryenter(krwlock_t * rwlp,krw_t rw)286 rw_tryenter(krwlock_t *rwlp, krw_t rw)
287 {
288 int error;
289
290 if (rw == RW_READER)
291 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
292 else
293 error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
294
295 if (error == 0) {
296 if (rw == RW_READER)
297 atomic_inc_uint(&rwlp->rw_readers);
298 else
299 rwlp->rw_owner = pthread_self();
300
301 return (1);
302 }
303
304 VERIFY3S(error, ==, EBUSY);
305
306 return (0);
307 }
308
309 uint32_t
zone_get_hostid(void * zonep)310 zone_get_hostid(void *zonep)
311 {
312 /*
313 * We're emulating the system's hostid in userland.
314 */
315 (void) zonep;
316 return (hostid);
317 }
318
319 int
rw_tryupgrade(krwlock_t * rwlp)320 rw_tryupgrade(krwlock_t *rwlp)
321 {
322 (void) rwlp;
323 return (0);
324 }
325
326 /*
327 * =========================================================================
328 * condition variables
329 * =========================================================================
330 */
331
332 void
cv_init(kcondvar_t * cv,char * name,int type,void * arg)333 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
334 {
335 (void) name, (void) type, (void) arg;
336 VERIFY0(pthread_cond_init(cv, NULL));
337 }
338
339 void
cv_destroy(kcondvar_t * cv)340 cv_destroy(kcondvar_t *cv)
341 {
342 VERIFY0(pthread_cond_destroy(cv));
343 }
344
345 void
cv_wait(kcondvar_t * cv,kmutex_t * mp)346 cv_wait(kcondvar_t *cv, kmutex_t *mp)
347 {
348 memset(&mp->m_owner, 0, sizeof (pthread_t));
349 VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
350 mp->m_owner = pthread_self();
351 }
352
353 int
cv_wait_sig(kcondvar_t * cv,kmutex_t * mp)354 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
355 {
356 cv_wait(cv, mp);
357 return (1);
358 }
359
360 int
cv_timedwait(kcondvar_t * cv,kmutex_t * mp,clock_t abstime)361 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
362 {
363 int error;
364 struct timeval tv;
365 struct timespec ts;
366 clock_t delta;
367
368 delta = abstime - ddi_get_lbolt();
369 if (delta <= 0)
370 return (-1);
371
372 VERIFY(gettimeofday(&tv, NULL) == 0);
373
374 ts.tv_sec = tv.tv_sec + delta / hz;
375 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
376 if (ts.tv_nsec >= NANOSEC) {
377 ts.tv_sec++;
378 ts.tv_nsec -= NANOSEC;
379 }
380
381 memset(&mp->m_owner, 0, sizeof (pthread_t));
382 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
383 mp->m_owner = pthread_self();
384
385 if (error == ETIMEDOUT)
386 return (-1);
387
388 VERIFY0(error);
389
390 return (1);
391 }
392
393 int
cv_timedwait_hires(kcondvar_t * cv,kmutex_t * mp,hrtime_t tim,hrtime_t res,int flag)394 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
395 int flag)
396 {
397 (void) res;
398 int error;
399 struct timeval tv;
400 struct timespec ts;
401 hrtime_t delta;
402
403 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
404
405 delta = tim;
406 if (flag & CALLOUT_FLAG_ABSOLUTE)
407 delta -= gethrtime();
408
409 if (delta <= 0)
410 return (-1);
411
412 VERIFY0(gettimeofday(&tv, NULL));
413
414 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
415 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
416 if (ts.tv_nsec >= NANOSEC) {
417 ts.tv_sec++;
418 ts.tv_nsec -= NANOSEC;
419 }
420
421 memset(&mp->m_owner, 0, sizeof (pthread_t));
422 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
423 mp->m_owner = pthread_self();
424
425 if (error == ETIMEDOUT)
426 return (-1);
427
428 VERIFY0(error);
429
430 return (1);
431 }
432
433 void
cv_signal(kcondvar_t * cv)434 cv_signal(kcondvar_t *cv)
435 {
436 VERIFY0(pthread_cond_signal(cv));
437 }
438
439 void
cv_broadcast(kcondvar_t * cv)440 cv_broadcast(kcondvar_t *cv)
441 {
442 VERIFY0(pthread_cond_broadcast(cv));
443 }
444
445 /*
446 * =========================================================================
447 * procfs list
448 * =========================================================================
449 */
450
451 void
seq_printf(struct seq_file * m,const char * fmt,...)452 seq_printf(struct seq_file *m, const char *fmt, ...)
453 {
454 (void) m, (void) fmt;
455 }
456
457 void
procfs_list_install(const char * module,const char * submodule,const char * name,mode_t mode,procfs_list_t * procfs_list,int (* show)(struct seq_file * f,void * p),int (* show_header)(struct seq_file * f),int (* clear)(procfs_list_t * procfs_list),size_t procfs_list_node_off)458 procfs_list_install(const char *module,
459 const char *submodule,
460 const char *name,
461 mode_t mode,
462 procfs_list_t *procfs_list,
463 int (*show)(struct seq_file *f, void *p),
464 int (*show_header)(struct seq_file *f),
465 int (*clear)(procfs_list_t *procfs_list),
466 size_t procfs_list_node_off)
467 {
468 (void) module, (void) submodule, (void) name, (void) mode, (void) show,
469 (void) show_header, (void) clear;
470 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
471 list_create(&procfs_list->pl_list,
472 procfs_list_node_off + sizeof (procfs_list_node_t),
473 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
474 procfs_list->pl_next_id = 1;
475 procfs_list->pl_node_offset = procfs_list_node_off;
476 }
477
478 void
procfs_list_uninstall(procfs_list_t * procfs_list)479 procfs_list_uninstall(procfs_list_t *procfs_list)
480 {
481 (void) procfs_list;
482 }
483
484 void
procfs_list_destroy(procfs_list_t * procfs_list)485 procfs_list_destroy(procfs_list_t *procfs_list)
486 {
487 ASSERT(list_is_empty(&procfs_list->pl_list));
488 list_destroy(&procfs_list->pl_list);
489 mutex_destroy(&procfs_list->pl_lock);
490 }
491
492 #define NODE_ID(procfs_list, obj) \
493 (((procfs_list_node_t *)(((char *)obj) + \
494 (procfs_list)->pl_node_offset))->pln_id)
495
496 void
procfs_list_add(procfs_list_t * procfs_list,void * p)497 procfs_list_add(procfs_list_t *procfs_list, void *p)
498 {
499 ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
500 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
501 list_insert_tail(&procfs_list->pl_list, p);
502 }
503
504 /*
505 * =========================================================================
506 * vnode operations
507 * =========================================================================
508 */
509
510 /*
511 * =========================================================================
512 * Figure out which debugging statements to print
513 * =========================================================================
514 */
515
516 static char *dprintf_string;
517 static int dprintf_print_all;
518
519 int
dprintf_find_string(const char * string)520 dprintf_find_string(const char *string)
521 {
522 char *tmp_str = dprintf_string;
523 int len = strlen(string);
524
525 /*
526 * Find out if this is a string we want to print.
527 * String format: file1.c,function_name1,file2.c,file3.c
528 */
529
530 while (tmp_str != NULL) {
531 if (strncmp(tmp_str, string, len) == 0 &&
532 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
533 return (1);
534 tmp_str = strchr(tmp_str, ',');
535 if (tmp_str != NULL)
536 tmp_str++; /* Get rid of , */
537 }
538 return (0);
539 }
540
541 void
dprintf_setup(int * argc,char ** argv)542 dprintf_setup(int *argc, char **argv)
543 {
544 int i, j;
545
546 /*
547 * Debugging can be specified two ways: by setting the
548 * environment variable ZFS_DEBUG, or by including a
549 * "debug=..." argument on the command line. The command
550 * line setting overrides the environment variable.
551 */
552
553 for (i = 1; i < *argc; i++) {
554 int len = strlen("debug=");
555 /* First look for a command line argument */
556 if (strncmp("debug=", argv[i], len) == 0) {
557 dprintf_string = argv[i] + len;
558 /* Remove from args */
559 for (j = i; j < *argc; j++)
560 argv[j] = argv[j+1];
561 argv[j] = NULL;
562 (*argc)--;
563 }
564 }
565
566 if (dprintf_string == NULL) {
567 /* Look for ZFS_DEBUG environment variable */
568 dprintf_string = getenv("ZFS_DEBUG");
569 }
570
571 /*
572 * Are we just turning on all debugging?
573 */
574 if (dprintf_find_string("on"))
575 dprintf_print_all = 1;
576
577 if (dprintf_string != NULL)
578 zfs_flags |= ZFS_DEBUG_DPRINTF;
579 }
580
581 /*
582 * =========================================================================
583 * debug printfs
584 * =========================================================================
585 */
586 void
__dprintf(boolean_t dprint,const char * file,const char * func,int line,const char * fmt,...)587 __dprintf(boolean_t dprint, const char *file, const char *func,
588 int line, const char *fmt, ...)
589 {
590 /* Get rid of annoying "../common/" prefix to filename. */
591 const char *newfile = zfs_basename(file);
592
593 va_list adx;
594 if (dprint) {
595 /* dprintf messages are printed immediately */
596
597 if (!dprintf_print_all &&
598 !dprintf_find_string(newfile) &&
599 !dprintf_find_string(func))
600 return;
601
602 /* Print out just the function name if requested */
603 flockfile(stdout);
604 if (dprintf_find_string("pid"))
605 (void) printf("%d ", getpid());
606 if (dprintf_find_string("tid"))
607 (void) printf("%ju ",
608 (uintmax_t)(uintptr_t)pthread_self());
609 if (dprintf_find_string("cpu"))
610 (void) printf("%u ", getcpuid());
611 if (dprintf_find_string("time"))
612 (void) printf("%llu ", gethrtime());
613 if (dprintf_find_string("long"))
614 (void) printf("%s, line %d: ", newfile, line);
615 (void) printf("dprintf: %s: ", func);
616 va_start(adx, fmt);
617 (void) vprintf(fmt, adx);
618 va_end(adx);
619 funlockfile(stdout);
620 } else {
621 /* zfs_dbgmsg is logged for dumping later */
622 size_t size;
623 char *buf;
624 int i;
625
626 size = 1024;
627 buf = umem_alloc(size, UMEM_NOFAIL);
628 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
629
630 if (i < size) {
631 va_start(adx, fmt);
632 (void) vsnprintf(buf + i, size - i, fmt, adx);
633 va_end(adx);
634 }
635
636 __zfs_dbgmsg(buf);
637
638 umem_free(buf, size);
639 }
640 }
641
642 /*
643 * =========================================================================
644 * cmn_err() and panic()
645 * =========================================================================
646 */
647 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
648 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
649
650 __attribute__((noreturn)) void
vpanic(const char * fmt,va_list adx)651 vpanic(const char *fmt, va_list adx)
652 {
653 (void) fprintf(stderr, "error: ");
654 (void) vfprintf(stderr, fmt, adx);
655 (void) fprintf(stderr, "\n");
656
657 abort(); /* think of it as a "user-level crash dump" */
658 }
659
660 __attribute__((noreturn)) void
panic(const char * fmt,...)661 panic(const char *fmt, ...)
662 {
663 va_list adx;
664
665 va_start(adx, fmt);
666 vpanic(fmt, adx);
667 va_end(adx);
668 }
669
670 void
vcmn_err(int ce,const char * fmt,va_list adx)671 vcmn_err(int ce, const char *fmt, va_list adx)
672 {
673 if (ce == CE_PANIC)
674 vpanic(fmt, adx);
675 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
676 (void) fprintf(stderr, "%s", ce_prefix[ce]);
677 (void) vfprintf(stderr, fmt, adx);
678 (void) fprintf(stderr, "%s", ce_suffix[ce]);
679 }
680 }
681
682 void
cmn_err(int ce,const char * fmt,...)683 cmn_err(int ce, const char *fmt, ...)
684 {
685 va_list adx;
686
687 va_start(adx, fmt);
688 vcmn_err(ce, fmt, adx);
689 va_end(adx);
690 }
691
692 /*
693 * =========================================================================
694 * misc routines
695 * =========================================================================
696 */
697
698 void
delay(clock_t ticks)699 delay(clock_t ticks)
700 {
701 (void) poll(0, 0, ticks * (1000 / hz));
702 }
703
704 /*
705 * Find highest one bit set.
706 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
707 * The __builtin_clzll() function is supported by both GCC and Clang.
708 */
709 int
highbit64(uint64_t i)710 highbit64(uint64_t i)
711 {
712 if (i == 0)
713 return (0);
714
715 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
716 }
717
718 /*
719 * Find lowest one bit set.
720 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
721 * The __builtin_ffsll() function is supported by both GCC and Clang.
722 */
723 int
lowbit64(uint64_t i)724 lowbit64(uint64_t i)
725 {
726 if (i == 0)
727 return (0);
728
729 return (__builtin_ffsll(i));
730 }
731
732 const char *random_path = "/dev/random";
733 const char *urandom_path = "/dev/urandom";
734 static int random_fd = -1, urandom_fd = -1;
735
736 void
random_init(void)737 random_init(void)
738 {
739 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
740 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
741 }
742
743 void
random_fini(void)744 random_fini(void)
745 {
746 close(random_fd);
747 close(urandom_fd);
748
749 random_fd = -1;
750 urandom_fd = -1;
751 }
752
753 static int
random_get_bytes_common(uint8_t * ptr,size_t len,int fd)754 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
755 {
756 size_t resid = len;
757 ssize_t bytes;
758
759 ASSERT(fd != -1);
760
761 while (resid != 0) {
762 bytes = read(fd, ptr, resid);
763 ASSERT3S(bytes, >=, 0);
764 ptr += bytes;
765 resid -= bytes;
766 }
767
768 return (0);
769 }
770
771 int
random_get_bytes(uint8_t * ptr,size_t len)772 random_get_bytes(uint8_t *ptr, size_t len)
773 {
774 return (random_get_bytes_common(ptr, len, random_fd));
775 }
776
777 int
random_get_pseudo_bytes(uint8_t * ptr,size_t len)778 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
779 {
780 return (random_get_bytes_common(ptr, len, urandom_fd));
781 }
782
783 int
ddi_strtoull(const char * str,char ** nptr,int base,u_longlong_t * result)784 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
785 {
786 errno = 0;
787 *result = strtoull(str, nptr, base);
788 if (*result == 0)
789 return (errno);
790 return (0);
791 }
792
793 utsname_t *
utsname(void)794 utsname(void)
795 {
796 return (&hw_utsname);
797 }
798
799 /*
800 * =========================================================================
801 * kernel emulation setup & teardown
802 * =========================================================================
803 */
804 static int
umem_out_of_memory(void)805 umem_out_of_memory(void)
806 {
807 char errmsg[] = "out of memory -- generating core dump\n";
808
809 (void) fprintf(stderr, "%s", errmsg);
810 abort();
811 return (0);
812 }
813
814 void
kernel_init(int mode)815 kernel_init(int mode)
816 {
817 extern uint_t rrw_tsd_key;
818
819 umem_nofail_callback(umem_out_of_memory);
820
821 physmem = sysconf(_SC_PHYS_PAGES);
822
823 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
824 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
825
826 hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0;
827
828 random_init();
829
830 VERIFY0(uname(&hw_utsname));
831
832 system_taskq_init();
833 icp_init();
834
835 zstd_init();
836
837 spa_init((spa_mode_t)mode);
838
839 fletcher_4_init();
840
841 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
842 }
843
844 void
kernel_fini(void)845 kernel_fini(void)
846 {
847 fletcher_4_fini();
848 spa_fini();
849
850 zstd_fini();
851
852 icp_fini();
853 system_taskq_fini();
854
855 random_fini();
856 }
857
858 uid_t
crgetuid(cred_t * cr)859 crgetuid(cred_t *cr)
860 {
861 (void) cr;
862 return (0);
863 }
864
865 uid_t
crgetruid(cred_t * cr)866 crgetruid(cred_t *cr)
867 {
868 (void) cr;
869 return (0);
870 }
871
872 gid_t
crgetgid(cred_t * cr)873 crgetgid(cred_t *cr)
874 {
875 (void) cr;
876 return (0);
877 }
878
879 int
crgetngroups(cred_t * cr)880 crgetngroups(cred_t *cr)
881 {
882 (void) cr;
883 return (0);
884 }
885
886 gid_t *
crgetgroups(cred_t * cr)887 crgetgroups(cred_t *cr)
888 {
889 (void) cr;
890 return (NULL);
891 }
892
893 int
zfs_secpolicy_snapshot_perms(const char * name,cred_t * cr)894 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
895 {
896 (void) name, (void) cr;
897 return (0);
898 }
899
900 int
zfs_secpolicy_rename_perms(const char * from,const char * to,cred_t * cr)901 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
902 {
903 (void) from, (void) to, (void) cr;
904 return (0);
905 }
906
907 int
zfs_secpolicy_destroy_perms(const char * name,cred_t * cr)908 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
909 {
910 (void) name, (void) cr;
911 return (0);
912 }
913
914 int
secpolicy_zfs(const cred_t * cr)915 secpolicy_zfs(const cred_t *cr)
916 {
917 (void) cr;
918 return (0);
919 }
920
921 ksiddomain_t *
ksid_lookupdomain(const char * dom)922 ksid_lookupdomain(const char *dom)
923 {
924 ksiddomain_t *kd;
925
926 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
927 kd->kd_name = spa_strdup(dom);
928 return (kd);
929 }
930
931 void
ksiddomain_rele(ksiddomain_t * ksid)932 ksiddomain_rele(ksiddomain_t *ksid)
933 {
934 spa_strfree(ksid->kd_name);
935 umem_free(ksid, sizeof (ksiddomain_t));
936 }
937
938 char *
kmem_vasprintf(const char * fmt,va_list adx)939 kmem_vasprintf(const char *fmt, va_list adx)
940 {
941 char *buf = NULL;
942 va_list adx_copy;
943
944 va_copy(adx_copy, adx);
945 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
946 va_end(adx_copy);
947
948 return (buf);
949 }
950
951 char *
kmem_asprintf(const char * fmt,...)952 kmem_asprintf(const char *fmt, ...)
953 {
954 char *buf = NULL;
955 va_list adx;
956
957 va_start(adx, fmt);
958 VERIFY(vasprintf(&buf, fmt, adx) != -1);
959 va_end(adx);
960
961 return (buf);
962 }
963
964 /*
965 * kmem_scnprintf() will return the number of characters that it would have
966 * printed whenever it is limited by value of the size variable, rather than
967 * the number of characters that it did print. This can cause misbehavior on
968 * subsequent uses of the return value, so we define a safe version that will
969 * return the number of characters actually printed, minus the NULL format
970 * character. Subsequent use of this by the safe string functions is safe
971 * whether it is snprintf(), strlcat() or strlcpy().
972 */
973 int
kmem_scnprintf(char * restrict str,size_t size,const char * restrict fmt,...)974 kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...)
975 {
976 int n;
977 va_list ap;
978
979 /* Make the 0 case a no-op so that we do not return -1 */
980 if (size == 0)
981 return (0);
982
983 va_start(ap, fmt);
984 n = vsnprintf(str, size, fmt, ap);
985 va_end(ap);
986
987 if (n >= size)
988 n = size - 1;
989
990 return (n);
991 }
992
993 zfs_file_t *
zfs_onexit_fd_hold(int fd,minor_t * minorp)994 zfs_onexit_fd_hold(int fd, minor_t *minorp)
995 {
996 (void) fd;
997 *minorp = 0;
998 return (NULL);
999 }
1000
1001 void
zfs_onexit_fd_rele(zfs_file_t * fp)1002 zfs_onexit_fd_rele(zfs_file_t *fp)
1003 {
1004 (void) fp;
1005 }
1006
1007 int
zfs_onexit_add_cb(minor_t minor,void (* func)(void *),void * data,uintptr_t * action_handle)1008 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1009 uintptr_t *action_handle)
1010 {
1011 (void) minor, (void) func, (void) data, (void) action_handle;
1012 return (0);
1013 }
1014
1015 fstrans_cookie_t
spl_fstrans_mark(void)1016 spl_fstrans_mark(void)
1017 {
1018 return ((fstrans_cookie_t)0);
1019 }
1020
1021 void
spl_fstrans_unmark(fstrans_cookie_t cookie)1022 spl_fstrans_unmark(fstrans_cookie_t cookie)
1023 {
1024 (void) cookie;
1025 }
1026
1027 int
__spl_pf_fstrans_check(void)1028 __spl_pf_fstrans_check(void)
1029 {
1030 return (0);
1031 }
1032
1033 int
kmem_cache_reap_active(void)1034 kmem_cache_reap_active(void)
1035 {
1036 return (0);
1037 }
1038
1039 void
zvol_create_minor(const char * name)1040 zvol_create_minor(const char *name)
1041 {
1042 (void) name;
1043 }
1044
1045 void
zvol_create_minors_recursive(const char * name)1046 zvol_create_minors_recursive(const char *name)
1047 {
1048 (void) name;
1049 }
1050
1051 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)1052 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1053 {
1054 (void) spa, (void) name, (void) async;
1055 }
1056
1057 void
zvol_rename_minors(spa_t * spa,const char * oldname,const char * newname,boolean_t async)1058 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1059 boolean_t async)
1060 {
1061 (void) spa, (void) oldname, (void) newname, (void) async;
1062 }
1063
1064 /*
1065 * Open file
1066 *
1067 * path - fully qualified path to file
1068 * flags - file attributes O_READ / O_WRITE / O_EXCL
1069 * fpp - pointer to return file pointer
1070 *
1071 * Returns 0 on success underlying error on failure.
1072 */
1073 int
zfs_file_open(const char * path,int flags,int mode,zfs_file_t ** fpp)1074 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1075 {
1076 int fd = -1;
1077 int dump_fd = -1;
1078 int err;
1079 int old_umask = 0;
1080 zfs_file_t *fp;
1081 struct stat64 st;
1082
1083 if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1084 return (errno);
1085
1086 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1087 flags |= O_DIRECT;
1088
1089 if (flags & O_CREAT)
1090 old_umask = umask(0);
1091
1092 fd = open64(path, flags, mode);
1093 if (fd == -1)
1094 return (errno);
1095
1096 if (flags & O_CREAT)
1097 (void) umask(old_umask);
1098
1099 if (vn_dumpdir != NULL) {
1100 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1101 const char *inpath = zfs_basename(path);
1102
1103 (void) snprintf(dumppath, MAXPATHLEN,
1104 "%s/%s", vn_dumpdir, inpath);
1105 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1106 umem_free(dumppath, MAXPATHLEN);
1107 if (dump_fd == -1) {
1108 err = errno;
1109 close(fd);
1110 return (err);
1111 }
1112 } else {
1113 dump_fd = -1;
1114 }
1115
1116 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1117
1118 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1119 fp->f_fd = fd;
1120 fp->f_dump_fd = dump_fd;
1121 *fpp = fp;
1122
1123 return (0);
1124 }
1125
1126 void
zfs_file_close(zfs_file_t * fp)1127 zfs_file_close(zfs_file_t *fp)
1128 {
1129 close(fp->f_fd);
1130 if (fp->f_dump_fd != -1)
1131 close(fp->f_dump_fd);
1132
1133 umem_free(fp, sizeof (zfs_file_t));
1134 }
1135
1136 /*
1137 * Stateful write - use os internal file pointer to determine where to
1138 * write and update on successful completion.
1139 *
1140 * fp - pointer to file (pipe, socket, etc) to write to
1141 * buf - buffer to write
1142 * count - # of bytes to write
1143 * resid - pointer to count of unwritten bytes (if short write)
1144 *
1145 * Returns 0 on success errno on failure.
1146 */
1147 int
zfs_file_write(zfs_file_t * fp,const void * buf,size_t count,ssize_t * resid)1148 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1149 {
1150 ssize_t rc;
1151
1152 rc = write(fp->f_fd, buf, count);
1153 if (rc < 0)
1154 return (errno);
1155
1156 if (resid) {
1157 *resid = count - rc;
1158 } else if (rc != count) {
1159 return (EIO);
1160 }
1161
1162 return (0);
1163 }
1164
1165 /*
1166 * Stateless write - os internal file pointer is not updated.
1167 *
1168 * fp - pointer to file (pipe, socket, etc) to write to
1169 * buf - buffer to write
1170 * count - # of bytes to write
1171 * off - file offset to write to (only valid for seekable types)
1172 * resid - pointer to count of unwritten bytes
1173 *
1174 * Returns 0 on success errno on failure.
1175 */
1176 int
zfs_file_pwrite(zfs_file_t * fp,const void * buf,size_t count,loff_t pos,ssize_t * resid)1177 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1178 size_t count, loff_t pos, ssize_t *resid)
1179 {
1180 ssize_t rc, split, done;
1181 int sectors;
1182
1183 /*
1184 * To simulate partial disk writes, we split writes into two
1185 * system calls so that the process can be killed in between.
1186 * This is used by ztest to simulate realistic failure modes.
1187 */
1188 sectors = count >> SPA_MINBLOCKSHIFT;
1189 split = (sectors > 0 ? rand() % sectors : 0) << SPA_MINBLOCKSHIFT;
1190 rc = pwrite64(fp->f_fd, buf, split, pos);
1191 if (rc != -1) {
1192 done = rc;
1193 rc = pwrite64(fp->f_fd, (char *)buf + split,
1194 count - split, pos + split);
1195 }
1196 #ifdef __linux__
1197 if (rc == -1 && errno == EINVAL) {
1198 /*
1199 * Under Linux, this most likely means an alignment issue
1200 * (memory or disk) due to O_DIRECT, so we abort() in order
1201 * to catch the offender.
1202 */
1203 abort();
1204 }
1205 #endif
1206
1207 if (rc < 0)
1208 return (errno);
1209
1210 done += rc;
1211
1212 if (resid) {
1213 *resid = count - done;
1214 } else if (done != count) {
1215 return (EIO);
1216 }
1217
1218 return (0);
1219 }
1220
1221 /*
1222 * Stateful read - use os internal file pointer to determine where to
1223 * read and update on successful completion.
1224 *
1225 * fp - pointer to file (pipe, socket, etc) to read from
1226 * buf - buffer to write
1227 * count - # of bytes to read
1228 * resid - pointer to count of unread bytes (if short read)
1229 *
1230 * Returns 0 on success errno on failure.
1231 */
1232 int
zfs_file_read(zfs_file_t * fp,void * buf,size_t count,ssize_t * resid)1233 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1234 {
1235 int rc;
1236
1237 rc = read(fp->f_fd, buf, count);
1238 if (rc < 0)
1239 return (errno);
1240
1241 if (resid) {
1242 *resid = count - rc;
1243 } else if (rc != count) {
1244 return (EIO);
1245 }
1246
1247 return (0);
1248 }
1249
1250 /*
1251 * Stateless read - os internal file pointer is not updated.
1252 *
1253 * fp - pointer to file (pipe, socket, etc) to read from
1254 * buf - buffer to write
1255 * count - # of bytes to write
1256 * off - file offset to read from (only valid for seekable types)
1257 * resid - pointer to count of unwritten bytes (if short write)
1258 *
1259 * Returns 0 on success errno on failure.
1260 */
1261 int
zfs_file_pread(zfs_file_t * fp,void * buf,size_t count,loff_t off,ssize_t * resid)1262 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1263 ssize_t *resid)
1264 {
1265 ssize_t rc;
1266
1267 rc = pread64(fp->f_fd, buf, count, off);
1268 if (rc < 0) {
1269 #ifdef __linux__
1270 /*
1271 * Under Linux, this most likely means an alignment issue
1272 * (memory or disk) due to O_DIRECT, so we abort() in order to
1273 * catch the offender.
1274 */
1275 if (errno == EINVAL)
1276 abort();
1277 #endif
1278 return (errno);
1279 }
1280
1281 if (fp->f_dump_fd != -1) {
1282 int status;
1283
1284 status = pwrite64(fp->f_dump_fd, buf, rc, off);
1285 ASSERT(status != -1);
1286 }
1287
1288 if (resid) {
1289 *resid = count - rc;
1290 } else if (rc != count) {
1291 return (EIO);
1292 }
1293
1294 return (0);
1295 }
1296
1297 /*
1298 * lseek - set / get file pointer
1299 *
1300 * fp - pointer to file (pipe, socket, etc) to read from
1301 * offp - value to seek to, returns current value plus passed offset
1302 * whence - see man pages for standard lseek whence values
1303 *
1304 * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1305 */
1306 int
zfs_file_seek(zfs_file_t * fp,loff_t * offp,int whence)1307 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1308 {
1309 loff_t rc;
1310
1311 rc = lseek(fp->f_fd, *offp, whence);
1312 if (rc < 0)
1313 return (errno);
1314
1315 *offp = rc;
1316
1317 return (0);
1318 }
1319
1320 /*
1321 * Get file attributes
1322 *
1323 * filp - file pointer
1324 * zfattr - pointer to file attr structure
1325 *
1326 * Currently only used for fetching size and file mode
1327 *
1328 * Returns 0 on success or error code of underlying getattr call on failure.
1329 */
1330 int
zfs_file_getattr(zfs_file_t * fp,zfs_file_attr_t * zfattr)1331 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1332 {
1333 struct stat64 st;
1334
1335 if (fstat64_blk(fp->f_fd, &st) == -1)
1336 return (errno);
1337
1338 zfattr->zfa_size = st.st_size;
1339 zfattr->zfa_mode = st.st_mode;
1340
1341 return (0);
1342 }
1343
1344 /*
1345 * Sync file to disk
1346 *
1347 * filp - file pointer
1348 * flags - O_SYNC and or O_DSYNC
1349 *
1350 * Returns 0 on success or error code of underlying sync call on failure.
1351 */
1352 int
zfs_file_fsync(zfs_file_t * fp,int flags)1353 zfs_file_fsync(zfs_file_t *fp, int flags)
1354 {
1355 (void) flags;
1356
1357 if (fsync(fp->f_fd) < 0)
1358 return (errno);
1359
1360 return (0);
1361 }
1362
1363 /*
1364 * deallocate - zero and/or deallocate file storage
1365 *
1366 * fp - file pointer
1367 * offset - offset to start zeroing or deallocating
1368 * len - length to zero or deallocate
1369 */
1370 int
zfs_file_deallocate(zfs_file_t * fp,loff_t offset,loff_t len)1371 zfs_file_deallocate(zfs_file_t *fp, loff_t offset, loff_t len)
1372 {
1373 int rc;
1374 #if defined(__linux__)
1375 rc = fallocate(fp->f_fd,
1376 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, len);
1377 #elif defined(__FreeBSD__) && (__FreeBSD_version >= 1400029)
1378 struct spacectl_range rqsr = {
1379 .r_offset = offset,
1380 .r_len = len,
1381 };
1382 rc = fspacectl(fp->f_fd, SPACECTL_DEALLOC, &rqsr, 0, &rqsr);
1383 #else
1384 (void) fp, (void) offset, (void) len;
1385 rc = EOPNOTSUPP;
1386 #endif
1387 if (rc)
1388 return (SET_ERROR(rc));
1389 return (0);
1390 }
1391
1392 /*
1393 * Request current file pointer offset
1394 *
1395 * fp - pointer to file
1396 *
1397 * Returns current file offset.
1398 */
1399 loff_t
zfs_file_off(zfs_file_t * fp)1400 zfs_file_off(zfs_file_t *fp)
1401 {
1402 return (lseek(fp->f_fd, SEEK_CUR, 0));
1403 }
1404
1405 /*
1406 * unlink file
1407 *
1408 * path - fully qualified file path
1409 *
1410 * Returns 0 on success.
1411 *
1412 * OPTIONAL
1413 */
1414 int
zfs_file_unlink(const char * path)1415 zfs_file_unlink(const char *path)
1416 {
1417 return (remove(path));
1418 }
1419
1420 /*
1421 * Get reference to file pointer
1422 *
1423 * fd - input file descriptor
1424 *
1425 * Returns pointer to file struct or NULL.
1426 * Unsupported in user space.
1427 */
1428 zfs_file_t *
zfs_file_get(int fd)1429 zfs_file_get(int fd)
1430 {
1431 (void) fd;
1432 abort();
1433 return (NULL);
1434 }
1435 /*
1436 * Drop reference to file pointer
1437 *
1438 * fp - pointer to file struct
1439 *
1440 * Unsupported in user space.
1441 */
1442 void
zfs_file_put(zfs_file_t * fp)1443 zfs_file_put(zfs_file_t *fp)
1444 {
1445 abort();
1446 (void) fp;
1447 }
1448
1449 void
zfsvfs_update_fromname(const char * oldname,const char * newname)1450 zfsvfs_update_fromname(const char *oldname, const char *newname)
1451 {
1452 (void) oldname, (void) newname;
1453 }
1454
1455 void
spa_import_os(spa_t * spa)1456 spa_import_os(spa_t *spa)
1457 {
1458 (void) spa;
1459 }
1460
1461 void
spa_export_os(spa_t * spa)1462 spa_export_os(spa_t *spa)
1463 {
1464 (void) spa;
1465 }
1466
1467 void
spa_activate_os(spa_t * spa)1468 spa_activate_os(spa_t *spa)
1469 {
1470 (void) spa;
1471 }
1472
1473 void
spa_deactivate_os(spa_t * spa)1474 spa_deactivate_os(spa_t *spa)
1475 {
1476 (void) spa;
1477 }
1478