1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
26 * Copyright (c) 2025, Klara, Inc.
27 */
28
29 #include <assert.h>
30 #include <fcntl.h>
31 #include <libgen.h>
32 #include <poll.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <string.h>
36 #include <limits.h>
37 #include <libzutil.h>
38 #include <sys/crypto/icp.h>
39 #include <sys/processor.h>
40 #include <sys/rrwlock.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/stat.h>
44 #include <sys/systeminfo.h>
45 #include <sys/time.h>
46 #include <sys/utsname.h>
47 #include <sys/zfs_context.h>
48 #include <sys/zfs_onexit.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zstd/zstd.h>
51 #include <sys/zvol.h>
52 #include <zfs_fletcher.h>
53 #include <zlib.h>
54
55 /*
56 * Emulation of kernel services in userland.
57 */
58
59 uint64_t physmem;
60 uint32_t hostid;
61 struct utsname hw_utsname;
62
63 /* If set, all blocks read will be copied to the specified directory. */
64 char *vn_dumpdir = NULL;
65
66 /* this only exists to have its address taken */
67 struct proc p0;
68
69 /*
70 * =========================================================================
71 * threads
72 * =========================================================================
73 *
74 * TS_STACK_MIN is dictated by the minimum allowed pthread stack size. While
75 * TS_STACK_MAX is somewhat arbitrary, it was selected to be large enough for
76 * the expected stack depth while small enough to avoid exhausting address
77 * space with high thread counts.
78 */
79 #define TS_STACK_MIN MAX(PTHREAD_STACK_MIN, 32768)
80 #define TS_STACK_MAX (256 * 1024)
81
82 struct zk_thread_wrapper {
83 void (*func)(void *);
84 void *arg;
85 };
86
87 static void *
zk_thread_wrapper(void * arg)88 zk_thread_wrapper(void *arg)
89 {
90 struct zk_thread_wrapper ztw;
91 memcpy(&ztw, arg, sizeof (ztw));
92 free(arg);
93 ztw.func(ztw.arg);
94 return (NULL);
95 }
96
97 kthread_t *
zk_thread_create(const char * name,void (* func)(void *),void * arg,size_t stksize,int state)98 zk_thread_create(const char *name, void (*func)(void *), void *arg,
99 size_t stksize, int state)
100 {
101 pthread_attr_t attr;
102 pthread_t tid;
103 char *stkstr;
104 struct zk_thread_wrapper *ztw;
105 int detachstate = PTHREAD_CREATE_DETACHED;
106
107 VERIFY0(pthread_attr_init(&attr));
108
109 if (state & TS_JOINABLE)
110 detachstate = PTHREAD_CREATE_JOINABLE;
111
112 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
113
114 /*
115 * We allow the default stack size in user space to be specified by
116 * setting the ZFS_STACK_SIZE environment variable. This allows us
117 * the convenience of observing and debugging stack overruns in
118 * user space. Explicitly specified stack sizes will be honored.
119 * The usage of ZFS_STACK_SIZE is discussed further in the
120 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
121 */
122 if (stksize == 0) {
123 stkstr = getenv("ZFS_STACK_SIZE");
124
125 if (stkstr == NULL)
126 stksize = TS_STACK_MAX;
127 else
128 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
129 }
130
131 VERIFY3S(stksize, >, 0);
132 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
133
134 /*
135 * If this ever fails, it may be because the stack size is not a
136 * multiple of system page size.
137 */
138 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
139 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
140
141 VERIFY(ztw = malloc(sizeof (*ztw)));
142 ztw->func = func;
143 ztw->arg = arg;
144 VERIFY0(pthread_create(&tid, &attr, zk_thread_wrapper, ztw));
145 VERIFY0(pthread_attr_destroy(&attr));
146
147 pthread_setname_np(tid, name);
148
149 return ((void *)(uintptr_t)tid);
150 }
151
152 /*
153 * =========================================================================
154 * kstats
155 * =========================================================================
156 */
157 kstat_t *
kstat_create(const char * module,int instance,const char * name,const char * class,uchar_t type,ulong_t ndata,uchar_t ks_flag)158 kstat_create(const char *module, int instance, const char *name,
159 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
160 {
161 (void) module, (void) instance, (void) name, (void) class, (void) type,
162 (void) ndata, (void) ks_flag;
163 return (NULL);
164 }
165
166 void
kstat_install(kstat_t * ksp)167 kstat_install(kstat_t *ksp)
168 {
169 (void) ksp;
170 }
171
172 void
kstat_delete(kstat_t * ksp)173 kstat_delete(kstat_t *ksp)
174 {
175 (void) ksp;
176 }
177
178 void
kstat_set_raw_ops(kstat_t * ksp,int (* headers)(char * buf,size_t size),int (* data)(char * buf,size_t size,void * data),void * (* addr)(kstat_t * ksp,loff_t index))179 kstat_set_raw_ops(kstat_t *ksp,
180 int (*headers)(char *buf, size_t size),
181 int (*data)(char *buf, size_t size, void *data),
182 void *(*addr)(kstat_t *ksp, loff_t index))
183 {
184 (void) ksp, (void) headers, (void) data, (void) addr;
185 }
186
187 /*
188 * =========================================================================
189 * mutexes
190 * =========================================================================
191 */
192
193 void
mutex_init(kmutex_t * mp,char * name,int type,void * cookie)194 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
195 {
196 (void) name, (void) type, (void) cookie;
197 VERIFY0(pthread_mutex_init(&mp->m_lock, NULL));
198 memset(&mp->m_owner, 0, sizeof (pthread_t));
199 }
200
201 void
mutex_destroy(kmutex_t * mp)202 mutex_destroy(kmutex_t *mp)
203 {
204 VERIFY0(pthread_mutex_destroy(&mp->m_lock));
205 }
206
207 void
mutex_enter(kmutex_t * mp)208 mutex_enter(kmutex_t *mp)
209 {
210 VERIFY0(pthread_mutex_lock(&mp->m_lock));
211 mp->m_owner = pthread_self();
212 }
213
214 int
mutex_enter_check_return(kmutex_t * mp)215 mutex_enter_check_return(kmutex_t *mp)
216 {
217 int error = pthread_mutex_lock(&mp->m_lock);
218 if (error == 0)
219 mp->m_owner = pthread_self();
220 return (error);
221 }
222
223 int
mutex_tryenter(kmutex_t * mp)224 mutex_tryenter(kmutex_t *mp)
225 {
226 int error = pthread_mutex_trylock(&mp->m_lock);
227 if (error == 0) {
228 mp->m_owner = pthread_self();
229 return (1);
230 } else {
231 VERIFY3S(error, ==, EBUSY);
232 return (0);
233 }
234 }
235
236 void
mutex_exit(kmutex_t * mp)237 mutex_exit(kmutex_t *mp)
238 {
239 memset(&mp->m_owner, 0, sizeof (pthread_t));
240 VERIFY0(pthread_mutex_unlock(&mp->m_lock));
241 }
242
243 /*
244 * =========================================================================
245 * rwlocks
246 * =========================================================================
247 */
248
249 void
rw_init(krwlock_t * rwlp,char * name,int type,void * arg)250 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
251 {
252 (void) name, (void) type, (void) arg;
253 VERIFY0(pthread_rwlock_init(&rwlp->rw_lock, NULL));
254 rwlp->rw_readers = 0;
255 rwlp->rw_owner = 0;
256 }
257
258 void
rw_destroy(krwlock_t * rwlp)259 rw_destroy(krwlock_t *rwlp)
260 {
261 VERIFY0(pthread_rwlock_destroy(&rwlp->rw_lock));
262 }
263
264 void
rw_enter(krwlock_t * rwlp,krw_t rw)265 rw_enter(krwlock_t *rwlp, krw_t rw)
266 {
267 if (rw == RW_READER) {
268 VERIFY0(pthread_rwlock_rdlock(&rwlp->rw_lock));
269 atomic_inc_uint(&rwlp->rw_readers);
270 } else {
271 VERIFY0(pthread_rwlock_wrlock(&rwlp->rw_lock));
272 rwlp->rw_owner = pthread_self();
273 }
274 }
275
276 void
rw_exit(krwlock_t * rwlp)277 rw_exit(krwlock_t *rwlp)
278 {
279 if (RW_READ_HELD(rwlp))
280 atomic_dec_uint(&rwlp->rw_readers);
281 else
282 rwlp->rw_owner = 0;
283
284 VERIFY0(pthread_rwlock_unlock(&rwlp->rw_lock));
285 }
286
287 int
rw_tryenter(krwlock_t * rwlp,krw_t rw)288 rw_tryenter(krwlock_t *rwlp, krw_t rw)
289 {
290 int error;
291
292 if (rw == RW_READER)
293 error = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
294 else
295 error = pthread_rwlock_trywrlock(&rwlp->rw_lock);
296
297 if (error == 0) {
298 if (rw == RW_READER)
299 atomic_inc_uint(&rwlp->rw_readers);
300 else
301 rwlp->rw_owner = pthread_self();
302
303 return (1);
304 }
305
306 VERIFY3S(error, ==, EBUSY);
307
308 return (0);
309 }
310
311 uint32_t
zone_get_hostid(void * zonep)312 zone_get_hostid(void *zonep)
313 {
314 /*
315 * We're emulating the system's hostid in userland.
316 */
317 (void) zonep;
318 return (hostid);
319 }
320
321 int
rw_tryupgrade(krwlock_t * rwlp)322 rw_tryupgrade(krwlock_t *rwlp)
323 {
324 (void) rwlp;
325 return (0);
326 }
327
328 /*
329 * =========================================================================
330 * condition variables
331 * =========================================================================
332 */
333
334 void
cv_init(kcondvar_t * cv,char * name,int type,void * arg)335 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
336 {
337 (void) name, (void) type, (void) arg;
338 VERIFY0(pthread_cond_init(cv, NULL));
339 }
340
341 void
cv_destroy(kcondvar_t * cv)342 cv_destroy(kcondvar_t *cv)
343 {
344 VERIFY0(pthread_cond_destroy(cv));
345 }
346
347 void
cv_wait(kcondvar_t * cv,kmutex_t * mp)348 cv_wait(kcondvar_t *cv, kmutex_t *mp)
349 {
350 memset(&mp->m_owner, 0, sizeof (pthread_t));
351 VERIFY0(pthread_cond_wait(cv, &mp->m_lock));
352 mp->m_owner = pthread_self();
353 }
354
355 int
cv_wait_sig(kcondvar_t * cv,kmutex_t * mp)356 cv_wait_sig(kcondvar_t *cv, kmutex_t *mp)
357 {
358 cv_wait(cv, mp);
359 return (1);
360 }
361
362 int
cv_timedwait(kcondvar_t * cv,kmutex_t * mp,clock_t abstime)363 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
364 {
365 int error;
366 struct timeval tv;
367 struct timespec ts;
368 clock_t delta;
369
370 delta = abstime - ddi_get_lbolt();
371 if (delta <= 0)
372 return (-1);
373
374 VERIFY0(gettimeofday(&tv, NULL));
375
376 ts.tv_sec = tv.tv_sec + delta / hz;
377 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
378 if (ts.tv_nsec >= NANOSEC) {
379 ts.tv_sec++;
380 ts.tv_nsec -= NANOSEC;
381 }
382
383 memset(&mp->m_owner, 0, sizeof (pthread_t));
384 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
385 mp->m_owner = pthread_self();
386
387 if (error == ETIMEDOUT)
388 return (-1);
389
390 VERIFY0(error);
391
392 return (1);
393 }
394
395 int
cv_timedwait_hires(kcondvar_t * cv,kmutex_t * mp,hrtime_t tim,hrtime_t res,int flag)396 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
397 int flag)
398 {
399 (void) res;
400 int error;
401 struct timeval tv;
402 struct timespec ts;
403 hrtime_t delta;
404
405 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
406
407 delta = tim;
408 if (flag & CALLOUT_FLAG_ABSOLUTE)
409 delta -= gethrtime();
410
411 if (delta <= 0)
412 return (-1);
413
414 VERIFY0(gettimeofday(&tv, NULL));
415
416 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
417 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
418 if (ts.tv_nsec >= NANOSEC) {
419 ts.tv_sec++;
420 ts.tv_nsec -= NANOSEC;
421 }
422
423 memset(&mp->m_owner, 0, sizeof (pthread_t));
424 error = pthread_cond_timedwait(cv, &mp->m_lock, &ts);
425 mp->m_owner = pthread_self();
426
427 if (error == ETIMEDOUT)
428 return (-1);
429
430 VERIFY0(error);
431
432 return (1);
433 }
434
435 void
cv_signal(kcondvar_t * cv)436 cv_signal(kcondvar_t *cv)
437 {
438 VERIFY0(pthread_cond_signal(cv));
439 }
440
441 void
cv_broadcast(kcondvar_t * cv)442 cv_broadcast(kcondvar_t *cv)
443 {
444 VERIFY0(pthread_cond_broadcast(cv));
445 }
446
447 /*
448 * =========================================================================
449 * procfs list
450 * =========================================================================
451 */
452
453 void
seq_printf(struct seq_file * m,const char * fmt,...)454 seq_printf(struct seq_file *m, const char *fmt, ...)
455 {
456 (void) m, (void) fmt;
457 }
458
459 void
procfs_list_install(const char * module,const char * submodule,const char * name,mode_t mode,procfs_list_t * procfs_list,int (* show)(struct seq_file * f,void * p),int (* show_header)(struct seq_file * f),int (* clear)(procfs_list_t * procfs_list),size_t procfs_list_node_off)460 procfs_list_install(const char *module,
461 const char *submodule,
462 const char *name,
463 mode_t mode,
464 procfs_list_t *procfs_list,
465 int (*show)(struct seq_file *f, void *p),
466 int (*show_header)(struct seq_file *f),
467 int (*clear)(procfs_list_t *procfs_list),
468 size_t procfs_list_node_off)
469 {
470 (void) module, (void) submodule, (void) name, (void) mode, (void) show,
471 (void) show_header, (void) clear;
472 mutex_init(&procfs_list->pl_lock, NULL, MUTEX_DEFAULT, NULL);
473 list_create(&procfs_list->pl_list,
474 procfs_list_node_off + sizeof (procfs_list_node_t),
475 procfs_list_node_off + offsetof(procfs_list_node_t, pln_link));
476 procfs_list->pl_next_id = 1;
477 procfs_list->pl_node_offset = procfs_list_node_off;
478 }
479
480 void
procfs_list_uninstall(procfs_list_t * procfs_list)481 procfs_list_uninstall(procfs_list_t *procfs_list)
482 {
483 (void) procfs_list;
484 }
485
486 void
procfs_list_destroy(procfs_list_t * procfs_list)487 procfs_list_destroy(procfs_list_t *procfs_list)
488 {
489 ASSERT(list_is_empty(&procfs_list->pl_list));
490 list_destroy(&procfs_list->pl_list);
491 mutex_destroy(&procfs_list->pl_lock);
492 }
493
494 #define NODE_ID(procfs_list, obj) \
495 (((procfs_list_node_t *)(((char *)obj) + \
496 (procfs_list)->pl_node_offset))->pln_id)
497
498 void
procfs_list_add(procfs_list_t * procfs_list,void * p)499 procfs_list_add(procfs_list_t *procfs_list, void *p)
500 {
501 ASSERT(MUTEX_HELD(&procfs_list->pl_lock));
502 NODE_ID(procfs_list, p) = procfs_list->pl_next_id++;
503 list_insert_tail(&procfs_list->pl_list, p);
504 }
505
506 /*
507 * =========================================================================
508 * vnode operations
509 * =========================================================================
510 */
511
512 /*
513 * =========================================================================
514 * Figure out which debugging statements to print
515 * =========================================================================
516 */
517
518 static char *dprintf_string;
519 static int dprintf_print_all;
520
521 int
dprintf_find_string(const char * string)522 dprintf_find_string(const char *string)
523 {
524 char *tmp_str = dprintf_string;
525 int len = strlen(string);
526
527 /*
528 * Find out if this is a string we want to print.
529 * String format: file1.c,function_name1,file2.c,file3.c
530 */
531
532 while (tmp_str != NULL) {
533 if (strncmp(tmp_str, string, len) == 0 &&
534 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
535 return (1);
536 tmp_str = strchr(tmp_str, ',');
537 if (tmp_str != NULL)
538 tmp_str++; /* Get rid of , */
539 }
540 return (0);
541 }
542
543 void
dprintf_setup(int * argc,char ** argv)544 dprintf_setup(int *argc, char **argv)
545 {
546 int i, j;
547
548 /*
549 * Debugging can be specified two ways: by setting the
550 * environment variable ZFS_DEBUG, or by including a
551 * "debug=..." argument on the command line. The command
552 * line setting overrides the environment variable.
553 */
554
555 for (i = 1; i < *argc; i++) {
556 int len = strlen("debug=");
557 /* First look for a command line argument */
558 if (strncmp("debug=", argv[i], len) == 0) {
559 dprintf_string = argv[i] + len;
560 /* Remove from args */
561 for (j = i; j < *argc; j++)
562 argv[j] = argv[j+1];
563 argv[j] = NULL;
564 (*argc)--;
565 }
566 }
567
568 if (dprintf_string == NULL) {
569 /* Look for ZFS_DEBUG environment variable */
570 dprintf_string = getenv("ZFS_DEBUG");
571 }
572
573 /*
574 * Are we just turning on all debugging?
575 */
576 if (dprintf_find_string("on"))
577 dprintf_print_all = 1;
578
579 if (dprintf_string != NULL)
580 zfs_flags |= ZFS_DEBUG_DPRINTF;
581 }
582
583 /*
584 * =========================================================================
585 * debug printfs
586 * =========================================================================
587 */
588 void
__dprintf(boolean_t dprint,const char * file,const char * func,int line,const char * fmt,...)589 __dprintf(boolean_t dprint, const char *file, const char *func,
590 int line, const char *fmt, ...)
591 {
592 /* Get rid of annoying "../common/" prefix to filename. */
593 const char *newfile = zfs_basename(file);
594
595 va_list adx;
596 if (dprint) {
597 /* dprintf messages are printed immediately */
598
599 if (!dprintf_print_all &&
600 !dprintf_find_string(newfile) &&
601 !dprintf_find_string(func))
602 return;
603
604 /* Print out just the function name if requested */
605 flockfile(stdout);
606 if (dprintf_find_string("pid"))
607 (void) printf("%d ", getpid());
608 if (dprintf_find_string("tid"))
609 (void) printf("%ju ",
610 (uintmax_t)(uintptr_t)pthread_self());
611 if (dprintf_find_string("cpu"))
612 (void) printf("%u ", getcpuid());
613 if (dprintf_find_string("time"))
614 (void) printf("%llu ", gethrtime());
615 if (dprintf_find_string("long"))
616 (void) printf("%s, line %d: ", newfile, line);
617 (void) printf("dprintf: %s: ", func);
618 va_start(adx, fmt);
619 (void) vprintf(fmt, adx);
620 va_end(adx);
621 funlockfile(stdout);
622 } else {
623 /* zfs_dbgmsg is logged for dumping later */
624 size_t size;
625 char *buf;
626 int i;
627
628 size = 1024;
629 buf = umem_alloc(size, UMEM_NOFAIL);
630 i = snprintf(buf, size, "%s:%d:%s(): ", newfile, line, func);
631
632 if (i < size) {
633 va_start(adx, fmt);
634 (void) vsnprintf(buf + i, size - i, fmt, adx);
635 va_end(adx);
636 }
637
638 __zfs_dbgmsg(buf);
639
640 umem_free(buf, size);
641 }
642 }
643
644 /*
645 * =========================================================================
646 * cmn_err() and panic()
647 * =========================================================================
648 */
649
650 static __attribute__((noreturn)) void
panic_stop_or_abort(void)651 panic_stop_or_abort(void)
652 {
653 const char *stopenv = getenv("LIBZPOOL_PANIC_STOP");
654 if (stopenv != NULL && atoi(stopenv)) {
655 fputs("libzpool: LIBZPOOL_PANIC_STOP is set, sending "
656 "SIGSTOP to process group\n", stderr);
657 fflush(stderr);
658
659 kill(0, SIGSTOP);
660
661 fputs("libzpool: continued after panic stop, "
662 "aborting\n", stderr);
663 }
664
665 abort(); /* think of it as a "user-level crash dump" */
666 }
667
668 static void
vcmn_msg(int ce,const char * fmt,va_list adx)669 vcmn_msg(int ce, const char *fmt, va_list adx)
670 {
671 switch (ce) {
672 case CE_IGNORE:
673 return;
674 case CE_CONT:
675 break;
676 case CE_NOTE:
677 fputs("libzpool: NOTICE: ", stderr);
678 break;
679 case CE_WARN:
680 fputs("libzpool: WARNING: ", stderr);
681 break;
682 case CE_PANIC:
683 fputs("libzpool: PANIC: ", stderr);
684 break;
685 default:
686 fputs("libzpool: [unknown severity %d]: ", stderr);
687 break;
688 }
689
690 vfprintf(stderr, fmt, adx);
691 if (ce != CE_CONT)
692 fputc('\n', stderr);
693 fflush(stderr);
694 }
695
696 void
vcmn_err(int ce,const char * fmt,va_list adx)697 vcmn_err(int ce, const char *fmt, va_list adx)
698 {
699 vcmn_msg(ce, fmt, adx);
700
701 if (ce == CE_PANIC)
702 panic_stop_or_abort();
703 }
704
705 void
cmn_err(int ce,const char * fmt,...)706 cmn_err(int ce, const char *fmt, ...)
707 {
708 va_list adx;
709
710 va_start(adx, fmt);
711 vcmn_err(ce, fmt, adx);
712 va_end(adx);
713 }
714
715 __attribute__((noreturn)) void
panic(const char * fmt,...)716 panic(const char *fmt, ...)
717 {
718 va_list adx;
719
720 va_start(adx, fmt);
721 vcmn_msg(CE_PANIC, fmt, adx);
722 va_end(adx);
723
724 panic_stop_or_abort();
725 }
726
727 __attribute__((noreturn)) void
vpanic(const char * fmt,va_list adx)728 vpanic(const char *fmt, va_list adx)
729 {
730 vcmn_msg(CE_PANIC, fmt, adx);
731 panic_stop_or_abort();
732 }
733
734 /*
735 * =========================================================================
736 * misc routines
737 * =========================================================================
738 */
739
740 void
delay(clock_t ticks)741 delay(clock_t ticks)
742 {
743 (void) poll(0, 0, ticks * (1000 / hz));
744 }
745
746 /*
747 * Find highest one bit set.
748 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
749 * The __builtin_clzll() function is supported by both GCC and Clang.
750 */
751 int
highbit64(uint64_t i)752 highbit64(uint64_t i)
753 {
754 if (i == 0)
755 return (0);
756
757 return (NBBY * sizeof (uint64_t) - __builtin_clzll(i));
758 }
759
760 /*
761 * Find lowest one bit set.
762 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
763 * The __builtin_ffsll() function is supported by both GCC and Clang.
764 */
765 int
lowbit64(uint64_t i)766 lowbit64(uint64_t i)
767 {
768 if (i == 0)
769 return (0);
770
771 return (__builtin_ffsll(i));
772 }
773
774 const char *random_path = "/dev/random";
775 const char *urandom_path = "/dev/urandom";
776 static int random_fd = -1, urandom_fd = -1;
777
778 void
random_init(void)779 random_init(void)
780 {
781 VERIFY((random_fd = open(random_path, O_RDONLY | O_CLOEXEC)) != -1);
782 VERIFY((urandom_fd = open(urandom_path, O_RDONLY | O_CLOEXEC)) != -1);
783 }
784
785 void
random_fini(void)786 random_fini(void)
787 {
788 close(random_fd);
789 close(urandom_fd);
790
791 random_fd = -1;
792 urandom_fd = -1;
793 }
794
795 static int
random_get_bytes_common(uint8_t * ptr,size_t len,int fd)796 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
797 {
798 size_t resid = len;
799 ssize_t bytes;
800
801 ASSERT(fd != -1);
802
803 while (resid != 0) {
804 bytes = read(fd, ptr, resid);
805 ASSERT3S(bytes, >=, 0);
806 ptr += bytes;
807 resid -= bytes;
808 }
809
810 return (0);
811 }
812
813 int
random_get_bytes(uint8_t * ptr,size_t len)814 random_get_bytes(uint8_t *ptr, size_t len)
815 {
816 return (random_get_bytes_common(ptr, len, random_fd));
817 }
818
819 int
random_get_pseudo_bytes(uint8_t * ptr,size_t len)820 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
821 {
822 return (random_get_bytes_common(ptr, len, urandom_fd));
823 }
824
825 int
ddi_strtoull(const char * str,char ** nptr,int base,u_longlong_t * result)826 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
827 {
828 errno = 0;
829 *result = strtoull(str, nptr, base);
830 if (*result == 0)
831 return (errno);
832 return (0);
833 }
834
835 utsname_t *
utsname(void)836 utsname(void)
837 {
838 return (&hw_utsname);
839 }
840
841 /*
842 * =========================================================================
843 * kernel emulation setup & teardown
844 * =========================================================================
845 */
846 static int
umem_out_of_memory(void)847 umem_out_of_memory(void)
848 {
849 char errmsg[] = "out of memory -- generating core dump\n";
850
851 (void) fprintf(stderr, "%s", errmsg);
852 abort();
853 return (0);
854 }
855
856 static void
spa_config_load(void)857 spa_config_load(void)
858 {
859 void *buf = NULL;
860 nvlist_t *nvlist, *child;
861 nvpair_t *nvpair;
862 char *pathname;
863 zfs_file_t *fp;
864 zfs_file_attr_t zfa;
865 uint64_t fsize;
866 int err;
867
868 /*
869 * Open the configuration file.
870 */
871 pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
872
873 (void) snprintf(pathname, MAXPATHLEN, "%s", spa_config_path);
874
875 err = zfs_file_open(pathname, O_RDONLY, 0, &fp);
876 if (err)
877 err = zfs_file_open(ZPOOL_CACHE_BOOT, O_RDONLY, 0, &fp);
878
879 kmem_free(pathname, MAXPATHLEN);
880
881 if (err)
882 return;
883
884 if (zfs_file_getattr(fp, &zfa))
885 goto out;
886
887 fsize = zfa.zfa_size;
888 buf = kmem_alloc(fsize, KM_SLEEP);
889
890 /*
891 * Read the nvlist from the file.
892 */
893 if (zfs_file_read(fp, buf, fsize, NULL) < 0)
894 goto out;
895
896 /*
897 * Unpack the nvlist.
898 */
899 if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
900 goto out;
901
902 /*
903 * Iterate over all elements in the nvlist, creating a new spa_t for
904 * each one with the specified configuration.
905 */
906 mutex_enter(&spa_namespace_lock);
907 nvpair = NULL;
908 while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
909 if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
910 continue;
911
912 child = fnvpair_value_nvlist(nvpair);
913
914 if (spa_lookup(nvpair_name(nvpair)) != NULL)
915 continue;
916 (void) spa_add(nvpair_name(nvpair), child, NULL);
917 }
918 mutex_exit(&spa_namespace_lock);
919
920 nvlist_free(nvlist);
921
922 out:
923 if (buf != NULL)
924 kmem_free(buf, fsize);
925
926 zfs_file_close(fp);
927 }
928
929 void
kernel_init(int mode)930 kernel_init(int mode)
931 {
932 extern uint_t rrw_tsd_key;
933
934 umem_nofail_callback(umem_out_of_memory);
935
936 physmem = sysconf(_SC_PHYS_PAGES);
937
938 dprintf("physmem = %llu pages (%.2f GB)\n", (u_longlong_t)physmem,
939 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
940
941 hostid = (mode & SPA_MODE_WRITE) ? get_system_hostid() : 0;
942
943 random_init();
944
945 VERIFY0(uname(&hw_utsname));
946
947 system_taskq_init();
948 icp_init();
949
950 zstd_init();
951
952 spa_init((spa_mode_t)mode);
953 spa_config_load();
954
955 fletcher_4_init();
956
957 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
958 }
959
960 void
kernel_fini(void)961 kernel_fini(void)
962 {
963 fletcher_4_fini();
964 spa_fini();
965
966 zstd_fini();
967
968 icp_fini();
969 system_taskq_fini();
970
971 random_fini();
972 }
973
974 uid_t
crgetuid(cred_t * cr)975 crgetuid(cred_t *cr)
976 {
977 (void) cr;
978 return (0);
979 }
980
981 uid_t
crgetruid(cred_t * cr)982 crgetruid(cred_t *cr)
983 {
984 (void) cr;
985 return (0);
986 }
987
988 gid_t
crgetgid(cred_t * cr)989 crgetgid(cred_t *cr)
990 {
991 (void) cr;
992 return (0);
993 }
994
995 int
crgetngroups(cred_t * cr)996 crgetngroups(cred_t *cr)
997 {
998 (void) cr;
999 return (0);
1000 }
1001
1002 gid_t *
crgetgroups(cred_t * cr)1003 crgetgroups(cred_t *cr)
1004 {
1005 (void) cr;
1006 return (NULL);
1007 }
1008
1009 int
zfs_secpolicy_snapshot_perms(const char * name,cred_t * cr)1010 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1011 {
1012 (void) name, (void) cr;
1013 return (0);
1014 }
1015
1016 int
zfs_secpolicy_rename_perms(const char * from,const char * to,cred_t * cr)1017 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1018 {
1019 (void) from, (void) to, (void) cr;
1020 return (0);
1021 }
1022
1023 int
zfs_secpolicy_destroy_perms(const char * name,cred_t * cr)1024 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1025 {
1026 (void) name, (void) cr;
1027 return (0);
1028 }
1029
1030 int
secpolicy_zfs(const cred_t * cr)1031 secpolicy_zfs(const cred_t *cr)
1032 {
1033 (void) cr;
1034 return (0);
1035 }
1036
1037 ksiddomain_t *
ksid_lookupdomain(const char * dom)1038 ksid_lookupdomain(const char *dom)
1039 {
1040 ksiddomain_t *kd;
1041
1042 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1043 kd->kd_name = spa_strdup(dom);
1044 return (kd);
1045 }
1046
1047 void
ksiddomain_rele(ksiddomain_t * ksid)1048 ksiddomain_rele(ksiddomain_t *ksid)
1049 {
1050 spa_strfree(ksid->kd_name);
1051 umem_free(ksid, sizeof (ksiddomain_t));
1052 }
1053
1054 char *
kmem_vasprintf(const char * fmt,va_list adx)1055 kmem_vasprintf(const char *fmt, va_list adx)
1056 {
1057 char *buf = NULL;
1058 va_list adx_copy;
1059
1060 va_copy(adx_copy, adx);
1061 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1062 va_end(adx_copy);
1063
1064 return (buf);
1065 }
1066
1067 char *
kmem_asprintf(const char * fmt,...)1068 kmem_asprintf(const char *fmt, ...)
1069 {
1070 char *buf = NULL;
1071 va_list adx;
1072
1073 va_start(adx, fmt);
1074 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1075 va_end(adx);
1076
1077 return (buf);
1078 }
1079
1080 /*
1081 * kmem_scnprintf() will return the number of characters that it would have
1082 * printed whenever it is limited by value of the size variable, rather than
1083 * the number of characters that it did print. This can cause misbehavior on
1084 * subsequent uses of the return value, so we define a safe version that will
1085 * return the number of characters actually printed, minus the NULL format
1086 * character. Subsequent use of this by the safe string functions is safe
1087 * whether it is snprintf(), strlcat() or strlcpy().
1088 */
1089 int
kmem_scnprintf(char * restrict str,size_t size,const char * restrict fmt,...)1090 kmem_scnprintf(char *restrict str, size_t size, const char *restrict fmt, ...)
1091 {
1092 int n;
1093 va_list ap;
1094
1095 /* Make the 0 case a no-op so that we do not return -1 */
1096 if (size == 0)
1097 return (0);
1098
1099 va_start(ap, fmt);
1100 n = vsnprintf(str, size, fmt, ap);
1101 va_end(ap);
1102
1103 if (n >= size)
1104 n = size - 1;
1105
1106 return (n);
1107 }
1108
1109 zfs_file_t *
zfs_onexit_fd_hold(int fd,minor_t * minorp)1110 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1111 {
1112 (void) fd;
1113 *minorp = 0;
1114 return (NULL);
1115 }
1116
1117 void
zfs_onexit_fd_rele(zfs_file_t * fp)1118 zfs_onexit_fd_rele(zfs_file_t *fp)
1119 {
1120 (void) fp;
1121 }
1122
1123 int
zfs_onexit_add_cb(minor_t minor,void (* func)(void *),void * data,uintptr_t * action_handle)1124 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1125 uintptr_t *action_handle)
1126 {
1127 (void) minor, (void) func, (void) data, (void) action_handle;
1128 return (0);
1129 }
1130
1131 fstrans_cookie_t
spl_fstrans_mark(void)1132 spl_fstrans_mark(void)
1133 {
1134 return ((fstrans_cookie_t)0);
1135 }
1136
1137 void
spl_fstrans_unmark(fstrans_cookie_t cookie)1138 spl_fstrans_unmark(fstrans_cookie_t cookie)
1139 {
1140 (void) cookie;
1141 }
1142
1143 int
kmem_cache_reap_active(void)1144 kmem_cache_reap_active(void)
1145 {
1146 return (0);
1147 }
1148
1149 void
zvol_create_minors(const char * name)1150 zvol_create_minors(const char *name)
1151 {
1152 (void) name;
1153 }
1154
1155 void
zvol_remove_minors(spa_t * spa,const char * name,boolean_t async)1156 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1157 {
1158 (void) spa, (void) name, (void) async;
1159 }
1160
1161 void
zvol_rename_minors(spa_t * spa,const char * oldname,const char * newname,boolean_t async)1162 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1163 boolean_t async)
1164 {
1165 (void) spa, (void) oldname, (void) newname, (void) async;
1166 }
1167
1168 /*
1169 * Open file
1170 *
1171 * path - fully qualified path to file
1172 * flags - file attributes O_READ / O_WRITE / O_EXCL
1173 * fpp - pointer to return file pointer
1174 *
1175 * Returns 0 on success underlying error on failure.
1176 */
1177 int
zfs_file_open(const char * path,int flags,int mode,zfs_file_t ** fpp)1178 zfs_file_open(const char *path, int flags, int mode, zfs_file_t **fpp)
1179 {
1180 int fd;
1181 int dump_fd;
1182 int err;
1183 int old_umask = 0;
1184 zfs_file_t *fp;
1185 struct stat64 st;
1186
1187 if (!(flags & O_CREAT) && stat64(path, &st) == -1)
1188 return (errno);
1189
1190 if (!(flags & O_CREAT) && S_ISBLK(st.st_mode))
1191 flags |= O_DIRECT;
1192
1193 if (flags & O_CREAT)
1194 old_umask = umask(0);
1195
1196 fd = open64(path, flags, mode);
1197 if (fd == -1)
1198 return (errno);
1199
1200 if (flags & O_CREAT)
1201 (void) umask(old_umask);
1202
1203 if (vn_dumpdir != NULL) {
1204 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
1205 const char *inpath = zfs_basename(path);
1206
1207 (void) snprintf(dumppath, MAXPATHLEN,
1208 "%s/%s", vn_dumpdir, inpath);
1209 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
1210 umem_free(dumppath, MAXPATHLEN);
1211 if (dump_fd == -1) {
1212 err = errno;
1213 close(fd);
1214 return (err);
1215 }
1216 } else {
1217 dump_fd = -1;
1218 }
1219
1220 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
1221
1222 fp = umem_zalloc(sizeof (zfs_file_t), UMEM_NOFAIL);
1223 fp->f_fd = fd;
1224 fp->f_dump_fd = dump_fd;
1225 *fpp = fp;
1226
1227 return (0);
1228 }
1229
1230 void
zfs_file_close(zfs_file_t * fp)1231 zfs_file_close(zfs_file_t *fp)
1232 {
1233 close(fp->f_fd);
1234 if (fp->f_dump_fd != -1)
1235 close(fp->f_dump_fd);
1236
1237 umem_free(fp, sizeof (zfs_file_t));
1238 }
1239
1240 /*
1241 * Stateful write - use os internal file pointer to determine where to
1242 * write and update on successful completion.
1243 *
1244 * fp - pointer to file (pipe, socket, etc) to write to
1245 * buf - buffer to write
1246 * count - # of bytes to write
1247 * resid - pointer to count of unwritten bytes (if short write)
1248 *
1249 * Returns 0 on success errno on failure.
1250 */
1251 int
zfs_file_write(zfs_file_t * fp,const void * buf,size_t count,ssize_t * resid)1252 zfs_file_write(zfs_file_t *fp, const void *buf, size_t count, ssize_t *resid)
1253 {
1254 ssize_t rc;
1255
1256 rc = write(fp->f_fd, buf, count);
1257 if (rc < 0)
1258 return (errno);
1259
1260 if (resid) {
1261 *resid = count - rc;
1262 } else if (rc != count) {
1263 return (EIO);
1264 }
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * Stateless write - os internal file pointer is not updated.
1271 *
1272 * fp - pointer to file (pipe, socket, etc) to write to
1273 * buf - buffer to write
1274 * count - # of bytes to write
1275 * off - file offset to write to (only valid for seekable types)
1276 * resid - pointer to count of unwritten bytes
1277 *
1278 * Returns 0 on success errno on failure.
1279 */
1280 int
zfs_file_pwrite(zfs_file_t * fp,const void * buf,size_t count,loff_t pos,uint8_t ashift,ssize_t * resid)1281 zfs_file_pwrite(zfs_file_t *fp, const void *buf,
1282 size_t count, loff_t pos, uint8_t ashift, ssize_t *resid)
1283 {
1284 ssize_t rc, split, done;
1285 int sectors;
1286
1287 /*
1288 * To simulate partial disk writes, we split writes into two
1289 * system calls so that the process can be killed in between.
1290 * This is used by ztest to simulate realistic failure modes.
1291 */
1292 sectors = count >> ashift;
1293 split = (sectors > 0 ? rand() % sectors : 0) << ashift;
1294 rc = pwrite64(fp->f_fd, buf, split, pos);
1295 if (rc != -1) {
1296 done = rc;
1297 rc = pwrite64(fp->f_fd, (char *)buf + split,
1298 count - split, pos + split);
1299 }
1300 #ifdef __linux__
1301 if (rc == -1 && errno == EINVAL) {
1302 /*
1303 * Under Linux, this most likely means an alignment issue
1304 * (memory or disk) due to O_DIRECT, so we abort() in order
1305 * to catch the offender.
1306 */
1307 abort();
1308 }
1309 #endif
1310
1311 if (rc < 0)
1312 return (errno);
1313
1314 done += rc;
1315
1316 if (resid) {
1317 *resid = count - done;
1318 } else if (done != count) {
1319 return (EIO);
1320 }
1321
1322 return (0);
1323 }
1324
1325 /*
1326 * Stateful read - use os internal file pointer to determine where to
1327 * read and update on successful completion.
1328 *
1329 * fp - pointer to file (pipe, socket, etc) to read from
1330 * buf - buffer to write
1331 * count - # of bytes to read
1332 * resid - pointer to count of unread bytes (if short read)
1333 *
1334 * Returns 0 on success errno on failure.
1335 */
1336 int
zfs_file_read(zfs_file_t * fp,void * buf,size_t count,ssize_t * resid)1337 zfs_file_read(zfs_file_t *fp, void *buf, size_t count, ssize_t *resid)
1338 {
1339 int rc;
1340
1341 rc = read(fp->f_fd, buf, count);
1342 if (rc < 0)
1343 return (errno);
1344
1345 if (resid) {
1346 *resid = count - rc;
1347 } else if (rc != count) {
1348 return (EIO);
1349 }
1350
1351 return (0);
1352 }
1353
1354 /*
1355 * Stateless read - os internal file pointer is not updated.
1356 *
1357 * fp - pointer to file (pipe, socket, etc) to read from
1358 * buf - buffer to write
1359 * count - # of bytes to write
1360 * off - file offset to read from (only valid for seekable types)
1361 * resid - pointer to count of unwritten bytes (if short write)
1362 *
1363 * Returns 0 on success errno on failure.
1364 */
1365 int
zfs_file_pread(zfs_file_t * fp,void * buf,size_t count,loff_t off,ssize_t * resid)1366 zfs_file_pread(zfs_file_t *fp, void *buf, size_t count, loff_t off,
1367 ssize_t *resid)
1368 {
1369 ssize_t rc;
1370
1371 rc = pread64(fp->f_fd, buf, count, off);
1372 if (rc < 0) {
1373 #ifdef __linux__
1374 /*
1375 * Under Linux, this most likely means an alignment issue
1376 * (memory or disk) due to O_DIRECT, so we abort() in order to
1377 * catch the offender.
1378 */
1379 if (errno == EINVAL)
1380 abort();
1381 #endif
1382 return (errno);
1383 }
1384
1385 if (fp->f_dump_fd != -1) {
1386 int status;
1387
1388 status = pwrite64(fp->f_dump_fd, buf, rc, off);
1389 ASSERT(status != -1);
1390 }
1391
1392 if (resid) {
1393 *resid = count - rc;
1394 } else if (rc != count) {
1395 return (EIO);
1396 }
1397
1398 return (0);
1399 }
1400
1401 /*
1402 * lseek - set / get file pointer
1403 *
1404 * fp - pointer to file (pipe, socket, etc) to read from
1405 * offp - value to seek to, returns current value plus passed offset
1406 * whence - see man pages for standard lseek whence values
1407 *
1408 * Returns 0 on success errno on failure (ESPIPE for non seekable types)
1409 */
1410 int
zfs_file_seek(zfs_file_t * fp,loff_t * offp,int whence)1411 zfs_file_seek(zfs_file_t *fp, loff_t *offp, int whence)
1412 {
1413 loff_t rc;
1414
1415 rc = lseek(fp->f_fd, *offp, whence);
1416 if (rc < 0)
1417 return (errno);
1418
1419 *offp = rc;
1420
1421 return (0);
1422 }
1423
1424 /*
1425 * Get file attributes
1426 *
1427 * filp - file pointer
1428 * zfattr - pointer to file attr structure
1429 *
1430 * Currently only used for fetching size and file mode
1431 *
1432 * Returns 0 on success or error code of underlying getattr call on failure.
1433 */
1434 int
zfs_file_getattr(zfs_file_t * fp,zfs_file_attr_t * zfattr)1435 zfs_file_getattr(zfs_file_t *fp, zfs_file_attr_t *zfattr)
1436 {
1437 struct stat64 st;
1438
1439 if (fstat64_blk(fp->f_fd, &st) == -1)
1440 return (errno);
1441
1442 zfattr->zfa_size = st.st_size;
1443 zfattr->zfa_mode = st.st_mode;
1444
1445 return (0);
1446 }
1447
1448 /*
1449 * Sync file to disk
1450 *
1451 * filp - file pointer
1452 * flags - O_SYNC and or O_DSYNC
1453 *
1454 * Returns 0 on success or error code of underlying sync call on failure.
1455 */
1456 int
zfs_file_fsync(zfs_file_t * fp,int flags)1457 zfs_file_fsync(zfs_file_t *fp, int flags)
1458 {
1459 (void) flags;
1460
1461 if (fsync(fp->f_fd) < 0)
1462 return (errno);
1463
1464 return (0);
1465 }
1466
1467 /*
1468 * deallocate - zero and/or deallocate file storage
1469 *
1470 * fp - file pointer
1471 * offset - offset to start zeroing or deallocating
1472 * len - length to zero or deallocate
1473 */
1474 int
zfs_file_deallocate(zfs_file_t * fp,loff_t offset,loff_t len)1475 zfs_file_deallocate(zfs_file_t *fp, loff_t offset, loff_t len)
1476 {
1477 int rc;
1478 #if defined(__linux__)
1479 rc = fallocate(fp->f_fd,
1480 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, offset, len);
1481 #elif defined(__FreeBSD__) && (__FreeBSD_version >= 1400029)
1482 struct spacectl_range rqsr = {
1483 .r_offset = offset,
1484 .r_len = len,
1485 };
1486 rc = fspacectl(fp->f_fd, SPACECTL_DEALLOC, &rqsr, 0, &rqsr);
1487 #else
1488 (void) fp, (void) offset, (void) len;
1489 rc = EOPNOTSUPP;
1490 #endif
1491 if (rc)
1492 return (SET_ERROR(rc));
1493 return (0);
1494 }
1495
1496 /*
1497 * Request current file pointer offset
1498 *
1499 * fp - pointer to file
1500 *
1501 * Returns current file offset.
1502 */
1503 loff_t
zfs_file_off(zfs_file_t * fp)1504 zfs_file_off(zfs_file_t *fp)
1505 {
1506 return (lseek(fp->f_fd, SEEK_CUR, 0));
1507 }
1508
1509 /*
1510 * unlink file
1511 *
1512 * path - fully qualified file path
1513 *
1514 * Returns 0 on success.
1515 *
1516 * OPTIONAL
1517 */
1518 int
zfs_file_unlink(const char * path)1519 zfs_file_unlink(const char *path)
1520 {
1521 return (remove(path));
1522 }
1523
1524 /*
1525 * Get reference to file pointer
1526 *
1527 * fd - input file descriptor
1528 *
1529 * Returns pointer to file struct or NULL.
1530 * Unsupported in user space.
1531 */
1532 zfs_file_t *
zfs_file_get(int fd)1533 zfs_file_get(int fd)
1534 {
1535 (void) fd;
1536 abort();
1537 return (NULL);
1538 }
1539 /*
1540 * Drop reference to file pointer
1541 *
1542 * fp - pointer to file struct
1543 *
1544 * Unsupported in user space.
1545 */
1546 void
zfs_file_put(zfs_file_t * fp)1547 zfs_file_put(zfs_file_t *fp)
1548 {
1549 abort();
1550 (void) fp;
1551 }
1552
1553 void
zfsvfs_update_fromname(const char * oldname,const char * newname)1554 zfsvfs_update_fromname(const char *oldname, const char *newname)
1555 {
1556 (void) oldname, (void) newname;
1557 }
1558
1559 void
spa_import_os(spa_t * spa)1560 spa_import_os(spa_t *spa)
1561 {
1562 (void) spa;
1563 }
1564
1565 void
spa_export_os(spa_t * spa)1566 spa_export_os(spa_t *spa)
1567 {
1568 (void) spa;
1569 }
1570
1571 void
spa_activate_os(spa_t * spa)1572 spa_activate_os(spa_t *spa)
1573 {
1574 (void) spa;
1575 }
1576
1577 void
spa_deactivate_os(spa_t * spa)1578 spa_deactivate_os(spa_t *spa)
1579 {
1580 (void) spa;
1581 }
1582