1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31 /*
32 * DTrace Process Control
33 *
34 * This file provides a set of routines that permit libdtrace and its clients
35 * to create and grab process handles using libproc, and to share these handles
36 * between library mechanisms that need libproc access, such as ustack(), and
37 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
38 * The library provides several mechanisms in the libproc control layer:
39 *
40 * Reference Counting: The library code and client code can independently grab
41 * the same process handles without interfering with one another. Only when
42 * the reference count drops to zero and the handle is not being cached (see
43 * below for more information on caching) will Prelease() be called on it.
44 *
45 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
46 * the reference count drops to zero, the handle is not immediately released.
47 * Instead, libproc handles are maintained on dph_lrulist in order from most-
48 * recently accessed to least-recently accessed. Idle handles are maintained
49 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls
50 * to ustack() to avoid the overhead of releasing and re-grabbing processes.
51 *
52 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
53 * or created by dt_proc_create(), a control thread is created to provide
54 * callbacks on process exit and symbol table caching on dlopen()s.
55 *
56 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
57 * are provided to synchronize access to the libproc handle between libdtrace
58 * code and client code and the control thread's use of the ps_prochandle.
59 *
60 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
61 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
62 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
63 * synchronization between libdtrace control threads and the client thread.
64 *
65 * The ps_prochandles themselves are maintained along with a dt_proc_t struct
66 * in a hash table indexed by PID. This provides basic locking and reference
67 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
68 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and
69 * the current limit on the number of actively cached entries.
70 *
71 * The control thread for a process establishes breakpoints at the rtld_db
72 * locations of interest, updates mappings and symbol tables at these points,
73 * and handles exec and fork (by always following the parent). The control
74 * thread automatically exits when the process dies or control is lost.
75 *
76 * A simple notification mechanism is provided for libdtrace clients using
77 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
78 * such an event occurs, the dt_proc_t itself is enqueued on a notification
79 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
80 * up using this condition and will then call the client handler as necessary.
81 */
82
83 #include <sys/syscall.h>
84 #include <sys/wait.h>
85 #include <strings.h>
86 #include <signal.h>
87 #include <assert.h>
88 #include <errno.h>
89
90 #include <dt_proc.h>
91 #include <dt_pid.h>
92 #include <dt_impl.h>
93
94 #include <libproc_compat.h>
95
96 #define IS_SYS_EXEC(w) (w == SYS_execve)
97 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_fork)
98
99 static dt_bkpt_t *
dt_proc_bpcreate(dt_proc_t * dpr,uintptr_t addr,dt_bkpt_f * func,void * data)100 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
101 {
102 struct ps_prochandle *P = dpr->dpr_proc;
103 dt_bkpt_t *dbp;
104
105 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
106
107 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
108 dbp->dbp_func = func;
109 dbp->dbp_data = data;
110 dbp->dbp_addr = addr;
111
112 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
113 dbp->dbp_active = B_TRUE;
114
115 dt_list_append(&dpr->dpr_bps, dbp);
116 }
117
118 return (dbp);
119 }
120
121 static void
dt_proc_bpdestroy(dt_proc_t * dpr,int delbkpts)122 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
123 {
124 int state = Pstate(dpr->dpr_proc);
125 dt_bkpt_t *dbp, *nbp;
126
127 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
128
129 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
130 if (delbkpts && dbp->dbp_active &&
131 state != PS_LOST && state != PS_UNDEAD) {
132 (void) Pdelbkpt(dpr->dpr_proc,
133 dbp->dbp_addr, dbp->dbp_instr);
134 }
135 nbp = dt_list_next(dbp);
136 dt_list_delete(&dpr->dpr_bps, dbp);
137 dt_free(dpr->dpr_hdl, dbp);
138 }
139 }
140
141 static void
dt_proc_bpmatch(dtrace_hdl_t * dtp,dt_proc_t * dpr)142 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
143 {
144 unsigned long pc;
145 dt_bkpt_t *dbp;
146
147 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
148
149 proc_regget(dpr->dpr_proc, REG_PC, &pc);
150 proc_bkptregadj(&pc);
151
152 for (dbp = dt_list_next(&dpr->dpr_bps);
153 dbp != NULL; dbp = dt_list_next(dbp)) {
154 if (pc == dbp->dbp_addr)
155 break;
156 }
157
158 if (dbp == NULL) {
159 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
160 (int)dpr->dpr_pid, pc);
161 return;
162 }
163
164 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
165 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
166
167 dbp->dbp_func(dtp, dpr, dbp->dbp_data);
168 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
169 }
170
171 static void
dt_proc_bpenable(dt_proc_t * dpr)172 dt_proc_bpenable(dt_proc_t *dpr)
173 {
174 dt_bkpt_t *dbp;
175
176 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
177
178 for (dbp = dt_list_next(&dpr->dpr_bps);
179 dbp != NULL; dbp = dt_list_next(dbp)) {
180 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
181 dbp->dbp_addr, &dbp->dbp_instr) == 0)
182 dbp->dbp_active = B_TRUE;
183 }
184
185 dt_dprintf("breakpoints enabled\n");
186 }
187
188 static void
dt_proc_bpdisable(dt_proc_t * dpr)189 dt_proc_bpdisable(dt_proc_t *dpr)
190 {
191 dt_bkpt_t *dbp;
192
193 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
194
195 for (dbp = dt_list_next(&dpr->dpr_bps);
196 dbp != NULL; dbp = dt_list_next(dbp)) {
197 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
198 dbp->dbp_addr, dbp->dbp_instr) == 0)
199 dbp->dbp_active = B_FALSE;
200 }
201
202 dt_dprintf("breakpoints disabled\n");
203 }
204
205 static void
dt_proc_notify(dtrace_hdl_t * dtp,dt_proc_hash_t * dph,dt_proc_t * dpr,const char * msg)206 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
207 const char *msg)
208 {
209 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
210
211 if (dprn == NULL) {
212 dt_dprintf("failed to allocate notification for %d %s\n",
213 (int)dpr->dpr_pid, msg);
214 } else {
215 dprn->dprn_dpr = dpr;
216 if (msg == NULL)
217 dprn->dprn_errmsg[0] = '\0';
218 else
219 (void) strlcpy(dprn->dprn_errmsg, msg,
220 sizeof (dprn->dprn_errmsg));
221
222 (void) pthread_mutex_lock(&dph->dph_lock);
223
224 dprn->dprn_next = dph->dph_notify;
225 dph->dph_notify = dprn;
226
227 (void) pthread_cond_broadcast(&dph->dph_cv);
228 (void) pthread_mutex_unlock(&dph->dph_lock);
229 }
230 }
231
232 /*
233 * Check to see if the control thread was requested to stop when the victim
234 * process reached a particular event (why) rather than continuing the victim.
235 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
236 * If 'why' is not set, this function returns immediately and does nothing.
237 */
238 static void
dt_proc_stop(dt_proc_t * dpr,uint8_t why)239 dt_proc_stop(dt_proc_t *dpr, uint8_t why)
240 {
241 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
242 assert(why != DT_PROC_STOP_IDLE);
243
244 if (dpr->dpr_stop & why) {
245 dpr->dpr_stop |= DT_PROC_STOP_IDLE;
246 dpr->dpr_stop &= ~why;
247
248 (void) pthread_cond_broadcast(&dpr->dpr_cv);
249
250 /*
251 * We disable breakpoints while stopped to preserve the
252 * integrity of the program text for both our own disassembly
253 * and that of the kernel.
254 */
255 dt_proc_bpdisable(dpr);
256
257 while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
258 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
259
260 dt_proc_bpenable(dpr);
261 }
262 }
263
264 /*ARGSUSED*/
265 static void
dt_proc_bpmain(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * fname)266 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
267 {
268 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
269 dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
270 }
271
272 static void
dt_proc_rdevent(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * evname)273 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
274 {
275 rd_event_msg_t rdm;
276 rd_err_e err;
277
278 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
279 dt_dprintf("pid %d: failed to get %s event message: %s\n",
280 (int)dpr->dpr_pid, evname, rd_errstr(err));
281 return;
282 }
283
284 dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
285 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
286
287 switch (rdm.type) {
288 case RD_DLACTIVITY:
289 if (rdm.u.state != RD_CONSISTENT)
290 break;
291
292 Pupdate_syms(dpr->dpr_proc);
293 if (dt_pid_create_probes_module(dtp, dpr) != 0)
294 dt_proc_notify(dtp, dtp->dt_procs, dpr,
295 dpr->dpr_errmsg);
296
297 break;
298 case RD_PREINIT:
299 Pupdate_syms(dpr->dpr_proc);
300 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
301 break;
302 case RD_POSTINIT:
303 Pupdate_syms(dpr->dpr_proc);
304 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
305 break;
306 }
307 }
308
309 static void
dt_proc_rdwatch(dt_proc_t * dpr,rd_event_e event,const char * evname)310 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
311 {
312 rd_notify_t rdn;
313 rd_err_e err;
314
315 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
316 dt_dprintf("pid %d: failed to get event address for %s: %s\n",
317 (int)dpr->dpr_pid, evname, rd_errstr(err));
318 return;
319 }
320
321 if (rdn.type != RD_NOTIFY_BPT) {
322 dt_dprintf("pid %d: event %s has unexpected type %d\n",
323 (int)dpr->dpr_pid, evname, rdn.type);
324 return;
325 }
326
327 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
328 /* XXX ugly */
329 (dt_bkpt_f *)dt_proc_rdevent, __DECONST(void *, evname));
330 }
331
332 /*
333 * Common code for enabling events associated with the run-time linker after
334 * attaching to a process or after a victim process completes an exec(2).
335 */
336 static void
dt_proc_attach(dt_proc_t * dpr,int exec)337 dt_proc_attach(dt_proc_t *dpr, int exec)
338 {
339 rd_err_e err;
340 GElf_Sym sym;
341
342 assert(DT_MUTEX_HELD(&dpr->dpr_lock));
343
344 if (exec) {
345
346 dt_proc_bpdestroy(dpr, B_FALSE);
347 }
348 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
349 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
350 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
351 } else {
352 dt_dprintf("pid %d: failed to enable rtld events: %s\n",
353 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
354 "rtld_db agent initialization failed");
355 }
356
357 Pupdate_maps(dpr->dpr_proc);
358
359 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
360 "a.out", "main", &sym, NULL) == 0) {
361 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
362 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
363 } else {
364 dt_dprintf("pid %d: failed to find a.out`main: %s\n",
365 (int)dpr->dpr_pid, strerror(errno));
366 }
367 }
368
369 typedef struct dt_proc_control_data {
370 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
371 dt_proc_t *dpcd_proc; /* proccess to control */
372 } dt_proc_control_data_t;
373
374 /*
375 * Main loop for all victim process control threads. We initialize all the
376 * appropriate /proc control mechanisms, and then enter a loop waiting for
377 * the process to stop on an event or die. We process any events by calling
378 * appropriate subroutines, and exit when the victim dies or we lose control.
379 *
380 * The control thread synchronizes the use of dpr_proc with other libdtrace
381 * threads using dpr_lock. We hold the lock for all of our operations except
382 * waiting while the process is running: this is accomplished by writing a
383 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
384 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
385 */
386 static void *
dt_proc_control(void * arg)387 dt_proc_control(void *arg)
388 {
389 dt_proc_control_data_t *datap = arg;
390 dtrace_hdl_t *dtp = datap->dpcd_hdl;
391 dt_proc_t *dpr = datap->dpcd_proc;
392 dt_proc_hash_t *dph = dtp->dt_procs;
393 struct ps_prochandle *P = dpr->dpr_proc;
394 int pid = dpr->dpr_pid;
395 int notify = B_FALSE;
396
397 /*
398 * We disable the POSIX thread cancellation mechanism so that the
399 * client program using libdtrace can't accidentally cancel our thread.
400 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
401 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
402 */
403 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
404
405 /*
406 * Set up the corresponding process for tracing by libdtrace. We want
407 * to be able to catch breakpoints and efficiently single-step over
408 * them, and we need to enable librtld_db to watch libdl activity.
409 */
410 (void) pthread_mutex_lock(&dpr->dpr_lock);
411
412 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
413
414 /*
415 * If DT_CLOSE_KILL is set, we created the process; otherwise we
416 * grabbed it. Check for an appropriate stop request and wait for
417 * dt_proc_continue.
418 */
419 if (dpr->dpr_close == DT_CLOSE_KILL)
420 dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
421 else
422 dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
423
424 if (Psetrun(P, 0, 0) == -1) {
425 dt_dprintf("pid %d: failed to set running: %s\n",
426 (int)dpr->dpr_pid, strerror(errno));
427 }
428
429 (void) pthread_mutex_unlock(&dpr->dpr_lock);
430
431 /*
432 * Wait for the process corresponding to this control thread to stop,
433 * process the event, and then set it running again. We want to sleep
434 * with dpr_lock *unheld* so that other parts of libdtrace can use the
435 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write
436 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
437 * Once the process stops, we wake up, grab dpr_lock, and then call
438 * Pwait() (which will return immediately) and do our processing.
439 */
440 while (!dpr->dpr_quit) {
441 const lwpstatus_t *psp;
442
443 /* Wait for the process to report status. */
444 proc_wstatus(P);
445 if (errno == EINTR)
446 continue; /* check dpr_quit and continue waiting */
447
448 (void) pthread_mutex_lock(&dpr->dpr_lock);
449
450 switch (Pstate(P)) {
451 case PS_STOP:
452 psp = proc_getlwpstatus(P);
453
454 dt_dprintf("pid %d: proc stopped showing %d/%d\n",
455 pid, psp->pr_why, psp->pr_what);
456
457 /*
458 * If the process stops showing one of the events that
459 * we are tracing, perform the appropriate response.
460 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
461 * PR_JOBCONTROL by design: if one of these conditions
462 * occurs, we will fall through to Psetrun() but the
463 * process will remain stopped in the kernel by the
464 * corresponding mechanism (e.g. job control stop).
465 */
466 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
467 dt_proc_bpmatch(dtp, dpr);
468 else if (psp->pr_why == PR_SYSENTRY &&
469 IS_SYS_FORK(psp->pr_what))
470 dt_proc_bpdisable(dpr);
471 else if (psp->pr_why == PR_SYSEXIT &&
472 IS_SYS_FORK(psp->pr_what))
473 dt_proc_bpenable(dpr);
474 else if (psp->pr_why == PR_SYSEXIT &&
475 IS_SYS_EXEC(psp->pr_what))
476 dt_proc_attach(dpr, B_TRUE);
477 break;
478
479 case PS_LOST:
480 dt_dprintf("pid %d: proc lost: %s\n",
481 pid, strerror(errno));
482
483 dpr->dpr_quit = B_TRUE;
484 notify = B_TRUE;
485 break;
486
487 case PS_UNDEAD:
488 dt_dprintf("pid %d: proc died\n", pid);
489 dpr->dpr_quit = B_TRUE;
490 notify = B_TRUE;
491 break;
492 }
493
494 if (Pstate(P) != PS_UNDEAD) {
495 if (dpr->dpr_quit && dpr->dpr_close == DT_CLOSE_KILL) {
496 /*
497 * We're about to kill the child, so don't
498 * bother resuming it. In some cases, such as
499 * an initialization error, we shouldn't have
500 * started it in the first place, so letting it
501 * run could be harmful.
502 */
503 } else if (Psetrun(P, 0, 0) == -1) {
504 dt_dprintf("pid %d: failed to set running: "
505 "%s\n", (int)dpr->dpr_pid, strerror(errno));
506 }
507 }
508
509 (void) pthread_mutex_unlock(&dpr->dpr_lock);
510 }
511
512 /*
513 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
514 * the dt_proc_t structure on the dt_proc_hash_t notification list.
515 */
516 if (notify)
517 dt_proc_notify(dtp, dph, dpr, NULL);
518
519 /*
520 * Destroy and remove any remaining breakpoints, set dpr_done and clear
521 * dpr_tid to indicate the control thread has exited, and notify any
522 * waiting thread in dt_proc_destroy() that we have succesfully exited.
523 */
524 (void) pthread_mutex_lock(&dpr->dpr_lock);
525
526 dt_proc_bpdestroy(dpr, B_TRUE);
527 dpr->dpr_done = B_TRUE;
528 dpr->dpr_tid = 0;
529
530 (void) pthread_cond_broadcast(&dpr->dpr_cv);
531 (void) pthread_mutex_unlock(&dpr->dpr_lock);
532
533 return (NULL);
534 }
535
536 /*PRINTFLIKE3*/
537 static struct ps_prochandle *
dt_proc_error(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * format,...)538 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
539 {
540 va_list ap;
541
542 va_start(ap, format);
543 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
544 va_end(ap);
545
546 if (dpr->dpr_proc != NULL)
547 Prelease(dpr->dpr_proc, 0);
548
549 dt_free(dtp, dpr);
550 (void) dt_set_errno(dtp, EDT_COMPILER);
551 return (NULL);
552 }
553
554 dt_proc_t *
dt_proc_lookup(dtrace_hdl_t * dtp,struct ps_prochandle * P,int remove)555 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
556 {
557 dt_proc_hash_t *dph = dtp->dt_procs;
558 pid_t pid = proc_getpid(P);
559 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
560
561 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
562 if (dpr->dpr_pid == pid)
563 break;
564 else
565 dpp = &dpr->dpr_hash;
566 }
567
568 assert(dpr != NULL);
569 assert(dpr->dpr_proc == P);
570
571 if (remove)
572 *dpp = dpr->dpr_hash; /* remove from pid hash chain */
573
574 return (dpr);
575 }
576
577 static void
dt_proc_destroy(dtrace_hdl_t * dtp,struct ps_prochandle * P)578 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
579 {
580 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
581 dt_proc_hash_t *dph = dtp->dt_procs;
582 dt_proc_notify_t *npr, **npp;
583 int rflag;
584
585 assert(dpr != NULL);
586
587 switch (dpr->dpr_close) {
588 case DT_CLOSE_KILL:
589 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
590 rflag = PRELEASE_KILL;
591 break;
592 case DT_CLOSE_RUN:
593 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
594 rflag = 0;
595 break;
596 }
597
598 if (dpr->dpr_tid) {
599 /*
600 * Set the dpr_quit flag to tell the daemon thread to exit. We
601 * send it a SIGCANCEL to poke it out of PCWSTOP or any other
602 * long-term /proc system call. Our daemon threads have POSIX
603 * cancellation disabled, so EINTR will be the only effect. We
604 * then wait for dpr_done to indicate the thread has exited.
605 *
606 * We can't use pthread_kill() to send SIGCANCEL because the
607 * interface forbids it and we can't use pthread_cancel()
608 * because with cancellation disabled it won't actually
609 * send SIGCANCEL to the target thread, so we use _lwp_kill()
610 * to do the job. This is all built on evil knowledge of
611 * the details of the cancellation mechanism in libc.
612 */
613 (void) pthread_mutex_lock(&dpr->dpr_lock);
614 dpr->dpr_quit = B_TRUE;
615 pthread_kill(dpr->dpr_tid, SIGTHR);
616
617 /*
618 * If the process is currently idling in dt_proc_stop(), re-
619 * enable breakpoints and poke it into running again.
620 */
621 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
622 dt_proc_bpenable(dpr);
623 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
624 (void) pthread_cond_broadcast(&dpr->dpr_cv);
625 }
626
627 while (!dpr->dpr_done)
628 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
629
630 (void) pthread_mutex_unlock(&dpr->dpr_lock);
631 }
632
633 /*
634 * Before we free the process structure, remove this dt_proc_t from the
635 * lookup hash, and then walk the dt_proc_hash_t's notification list
636 * and remove this dt_proc_t if it is enqueued.
637 */
638 (void) pthread_mutex_lock(&dph->dph_lock);
639 (void) dt_proc_lookup(dtp, P, B_TRUE);
640 npp = &dph->dph_notify;
641
642 while ((npr = *npp) != NULL) {
643 if (npr->dprn_dpr == dpr) {
644 *npp = npr->dprn_next;
645 dt_free(dtp, npr);
646 } else {
647 npp = &npr->dprn_next;
648 }
649 }
650
651 (void) pthread_mutex_unlock(&dph->dph_lock);
652
653 /*
654 * Remove the dt_proc_list from the LRU list, release the underlying
655 * libproc handle, and free our dt_proc_t data structure.
656 */
657 if (dpr->dpr_cacheable) {
658 assert(dph->dph_lrucnt != 0);
659 dph->dph_lrucnt--;
660 }
661
662 dt_list_delete(&dph->dph_lrulist, dpr);
663 Prelease(dpr->dpr_proc, rflag);
664 dt_free(dtp, dpr);
665 }
666
667 static int
dt_proc_create_thread(dtrace_hdl_t * dtp,dt_proc_t * dpr,uint_t stop)668 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
669 {
670 dt_proc_control_data_t data;
671 sigset_t nset, oset;
672 pthread_attr_t a;
673 int err;
674
675 (void) pthread_mutex_lock(&dpr->dpr_lock);
676 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
677
678 (void) pthread_attr_init(&a);
679 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
680
681 (void) sigfillset(&nset);
682 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
683 (void) sigdelset(&nset, SIGUSR1); /* see dt_proc_destroy() */
684
685 data.dpcd_hdl = dtp;
686 data.dpcd_proc = dpr;
687
688 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
689 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
690 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
691
692 /*
693 * If the control thread was created, then wait on dpr_cv for either
694 * dpr_done to be set (the victim died or the control thread failed)
695 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
696 * stopped by /proc and the control thread is at the rendezvous event.
697 * On success, we return with the process and control thread stopped:
698 * the caller can then apply dt_proc_continue() to resume both.
699 */
700 if (err == 0) {
701 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
702 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
703
704 /*
705 * If dpr_done is set, the control thread aborted before it
706 * reached the rendezvous event. This is either due to PS_LOST
707 * or PS_UNDEAD (i.e. the process died). We try to provide a
708 * small amount of useful information to help figure it out.
709 */
710 if (dpr->dpr_done) {
711 int stat = proc_getwstat(dpr->dpr_proc);
712 int pid = proc_getpid(dpr->dpr_proc);
713 if (proc_state(dpr->dpr_proc) == PS_LOST) {
714 (void) dt_proc_error(dpr->dpr_hdl, dpr,
715 "failed to control pid %d: process exec'd "
716 "set-id or unobservable program\n", pid);
717 } else if (WIFSIGNALED(stat)) {
718 (void) dt_proc_error(dpr->dpr_hdl, dpr,
719 "failed to control pid %d: process died "
720 "from signal %d\n", pid, WTERMSIG(stat));
721 } else {
722 (void) dt_proc_error(dpr->dpr_hdl, dpr,
723 "failed to control pid %d: process exited "
724 "with status %d\n", pid, WEXITSTATUS(stat));
725 }
726
727 err = ESRCH; /* cause grab() or create() to fail */
728 }
729 } else {
730 (void) dt_proc_error(dpr->dpr_hdl, dpr,
731 "failed to create control thread for process-id %d: %s\n",
732 (int)dpr->dpr_pid, strerror(err));
733 }
734
735 if (err == 0)
736 (void) pthread_mutex_unlock(&dpr->dpr_lock);
737 (void) pthread_attr_destroy(&a);
738
739 return (err);
740 }
741
742 struct ps_prochandle *
dt_proc_create(dtrace_hdl_t * dtp,const char * file,char * const * argv,proc_child_func * pcf,void * child_arg)743 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
744 proc_child_func *pcf, void *child_arg)
745 {
746 dt_proc_hash_t *dph = dtp->dt_procs;
747 dt_proc_t *dpr;
748 int err;
749
750 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
751 return (NULL); /* errno is set for us */
752
753 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
754 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
755
756 if ((err = proc_create(file, argv, dtp->dt_proc_env, pcf, child_arg,
757 &dpr->dpr_proc)) != 0) {
758 return (dt_proc_error(dtp, dpr,
759 "failed to execute %s: %s\n", file, Pcreate_error(err)));
760 }
761
762 dpr->dpr_hdl = dtp;
763 dpr->dpr_pid = proc_getpid(dpr->dpr_proc);
764 dpr->dpr_close = DT_CLOSE_KILL;
765
766 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
767 return (NULL); /* dt_proc_error() has been called for us */
768
769 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
770 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
771 dt_list_prepend(&dph->dph_lrulist, dpr);
772
773 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
774 dpr->dpr_refs++;
775
776 return (dpr->dpr_proc);
777 }
778
779 struct ps_prochandle *
dt_proc_grab(dtrace_hdl_t * dtp,pid_t pid,int flags,int nomonitor)780 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
781 {
782 dt_proc_hash_t *dph = dtp->dt_procs;
783 uint_t h = pid & (dph->dph_hashlen - 1);
784 dt_proc_t *dpr, *opr;
785 int err;
786
787 /*
788 * Search the hash table for the pid. If it is already grabbed or
789 * created, move the handle to the front of the lrulist, increment
790 * the reference count, and return the existing ps_prochandle.
791 */
792 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
793 if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
794 /*
795 * If the cached handle was opened read-only and
796 * this request is for a writeable handle, mark
797 * the cached handle as stale and open a new handle.
798 * Since it's stale, unmark it as cacheable.
799 */
800 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
801 dt_dprintf("upgrading pid %d\n", (int)pid);
802 dpr->dpr_stale = B_TRUE;
803 dpr->dpr_cacheable = B_FALSE;
804 dph->dph_lrucnt--;
805 break;
806 }
807
808 dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
809 dt_list_delete(&dph->dph_lrulist, dpr);
810 dt_list_prepend(&dph->dph_lrulist, dpr);
811 dpr->dpr_refs++;
812 return (dpr->dpr_proc);
813 }
814 }
815
816 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
817 return (NULL); /* errno is set for us */
818
819 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
820 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
821
822 if ((err = proc_attach(pid, flags, &dpr->dpr_proc)) != 0) {
823 return (dt_proc_error(dtp, dpr,
824 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
825 }
826
827 dpr->dpr_hdl = dtp;
828 dpr->dpr_pid = pid;
829 dpr->dpr_close = DT_CLOSE_RUN;
830
831 /*
832 * If we are attempting to grab the process without a monitor
833 * thread, then mark the process cacheable only if it's being
834 * grabbed read-only. If we're currently caching more process
835 * handles than dph_lrulim permits, attempt to find the
836 * least-recently-used handle that is currently unreferenced and
837 * release it from the cache. Otherwise we are grabbing the process
838 * for control: create a control thread for this process and store
839 * its ID in dpr->dpr_tid.
840 */
841 if (nomonitor || (flags & PGRAB_RDONLY)) {
842 if (dph->dph_lrucnt >= dph->dph_lrulim) {
843 for (opr = dt_list_prev(&dph->dph_lrulist);
844 opr != NULL; opr = dt_list_prev(opr)) {
845 if (opr->dpr_cacheable && opr->dpr_refs == 0) {
846 dt_proc_destroy(dtp, opr->dpr_proc);
847 break;
848 }
849 }
850 }
851
852 if (flags & PGRAB_RDONLY) {
853 dpr->dpr_cacheable = B_TRUE;
854 dpr->dpr_rdonly = B_TRUE;
855 dph->dph_lrucnt++;
856 }
857
858 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
859 return (NULL); /* dt_proc_error() has been called for us */
860
861 dpr->dpr_hash = dph->dph_hash[h];
862 dph->dph_hash[h] = dpr;
863 dt_list_prepend(&dph->dph_lrulist, dpr);
864
865 dt_dprintf("grabbed pid %d\n", (int)pid);
866 dpr->dpr_refs++;
867
868 return (dpr->dpr_proc);
869 }
870
871 void
dt_proc_release(dtrace_hdl_t * dtp,struct ps_prochandle * P)872 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
873 {
874 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
875 dt_proc_hash_t *dph = dtp->dt_procs;
876
877 assert(dpr != NULL);
878 assert(dpr->dpr_refs != 0);
879
880 if (--dpr->dpr_refs == 0 &&
881 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
882 dt_proc_destroy(dtp, P);
883 }
884
885 void
dt_proc_continue(dtrace_hdl_t * dtp,struct ps_prochandle * P)886 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
887 {
888 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
889
890 (void) pthread_mutex_lock(&dpr->dpr_lock);
891
892 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
893 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
894 (void) pthread_cond_broadcast(&dpr->dpr_cv);
895 }
896
897 (void) pthread_mutex_unlock(&dpr->dpr_lock);
898 }
899
900 void
dt_proc_lock(dtrace_hdl_t * dtp,struct ps_prochandle * P)901 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
902 {
903 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
904 int err = pthread_mutex_lock(&dpr->dpr_lock);
905 assert(err == 0); /* check for recursion */
906 }
907
908 void
dt_proc_unlock(dtrace_hdl_t * dtp,struct ps_prochandle * P)909 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
910 {
911 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
912 int err = pthread_mutex_unlock(&dpr->dpr_lock);
913 assert(err == 0); /* check for unheld lock */
914 }
915
916 void
dt_proc_init(dtrace_hdl_t * dtp)917 dt_proc_init(dtrace_hdl_t *dtp)
918 {
919 extern char **environ;
920 static char *envdef[] = {
921 "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */
922 NULL
923 };
924 char **p;
925 int i;
926
927 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
928 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL)
929 return;
930
931 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
932 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
933
934 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
935 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
936
937 /*
938 * Count how big our environment needs to be.
939 */
940 for (i = 1, p = environ; *p != NULL; i++, p++)
941 continue;
942 for (p = envdef; *p != NULL; i++, p++)
943 continue;
944
945 if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL)
946 return;
947
948 for (i = 0, p = environ; *p != NULL; i++, p++) {
949 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
950 goto err;
951 }
952 for (p = envdef; *p != NULL; i++, p++) {
953 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
954 goto err;
955 }
956
957 return;
958
959 err:
960 while (--i != 0) {
961 dt_free(dtp, dtp->dt_proc_env[i]);
962 }
963 dt_free(dtp, dtp->dt_proc_env);
964 dtp->dt_proc_env = NULL;
965 }
966
967 void
dt_proc_fini(dtrace_hdl_t * dtp)968 dt_proc_fini(dtrace_hdl_t *dtp)
969 {
970 dt_proc_hash_t *dph = dtp->dt_procs;
971 dt_proc_t *dpr;
972 char **p;
973
974 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
975 dt_proc_destroy(dtp, dpr->dpr_proc);
976
977 dtp->dt_procs = NULL;
978 dt_free(dtp, dph);
979
980 for (p = dtp->dt_proc_env; *p != NULL; p++)
981 dt_free(dtp, *p);
982
983 dt_free(dtp, dtp->dt_proc_env);
984 dtp->dt_proc_env = NULL;
985 }
986
987 struct ps_prochandle *
dtrace_proc_create(dtrace_hdl_t * dtp,const char * file,char * const * argv,proc_child_func * pcf,void * child_arg)988 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv,
989 proc_child_func *pcf, void *child_arg)
990 {
991 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
992 struct ps_prochandle *P = dt_proc_create(dtp, file, argv, pcf, child_arg);
993
994 if (P != NULL && idp != NULL && idp->di_id == 0) {
995 idp->di_id = proc_getpid(P); /* $target = created pid */
996 }
997
998 return (P);
999 }
1000
1001 struct ps_prochandle *
dtrace_proc_grab(dtrace_hdl_t * dtp,pid_t pid,int flags)1002 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1003 {
1004 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1005 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1006
1007 if (P != NULL && idp != NULL && idp->di_id == 0)
1008 idp->di_id = pid; /* $target = grabbed pid */
1009
1010 return (P);
1011 }
1012
1013 void
dtrace_proc_release(dtrace_hdl_t * dtp,struct ps_prochandle * P)1014 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1015 {
1016 dt_proc_release(dtp, P);
1017 }
1018
1019 void
dtrace_proc_continue(dtrace_hdl_t * dtp,struct ps_prochandle * P)1020 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1021 {
1022 dt_proc_continue(dtp, P);
1023 }
1024