xref: /linux/include/linux/seqlock.h (revision 06d07429858317ded2db7986113a9e0129cd599b)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4 
5 /*
6  * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7  * lockless readers (read-only retry loops), and no writer starvation.
8  *
9  * See Documentation/locking/seqlock.rst
10  *
11  * Copyrights:
12  * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13  * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14  */
15 
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/preempt.h>
21 #include <linux/seqlock_types.h>
22 #include <linux/spinlock.h>
23 
24 #include <asm/processor.h>
25 
26 /*
27  * The seqlock seqcount_t interface does not prescribe a precise sequence of
28  * read begin/retry/end. For readers, typically there is a call to
29  * read_seqcount_begin() and read_seqcount_retry(), however, there are more
30  * esoteric cases which do not follow this pattern.
31  *
32  * As a consequence, we take the following best-effort approach for raw usage
33  * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
34  * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
35  * atomics; if there is a matching read_seqcount_retry() call, no following
36  * memory operations are considered atomic. Usage of the seqlock_t interface
37  * is not affected.
38  */
39 #define KCSAN_SEQLOCK_REGION_MAX 1000
40 
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)41 static inline void __seqcount_init(seqcount_t *s, const char *name,
42 					  struct lock_class_key *key)
43 {
44 	/*
45 	 * Make sure we are not reinitializing a held lock:
46 	 */
47 	lockdep_init_map(&s->dep_map, name, key, 0);
48 	s->sequence = 0;
49 }
50 
51 #ifdef CONFIG_DEBUG_LOCK_ALLOC
52 
53 # define SEQCOUNT_DEP_MAP_INIT(lockname)				\
54 		.dep_map = { .name = #lockname }
55 
56 /**
57  * seqcount_init() - runtime initializer for seqcount_t
58  * @s: Pointer to the seqcount_t instance
59  */
60 # define seqcount_init(s)						\
61 	do {								\
62 		static struct lock_class_key __key;			\
63 		__seqcount_init((s), #s, &__key);			\
64 	} while (0)
65 
seqcount_lockdep_reader_access(const seqcount_t * s)66 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
67 {
68 	seqcount_t *l = (seqcount_t *)s;
69 	unsigned long flags;
70 
71 	local_irq_save(flags);
72 	seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
73 	seqcount_release(&l->dep_map, _RET_IP_);
74 	local_irq_restore(flags);
75 }
76 
77 #else
78 # define SEQCOUNT_DEP_MAP_INIT(lockname)
79 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
80 # define seqcount_lockdep_reader_access(x)
81 #endif
82 
83 /**
84  * SEQCNT_ZERO() - static initializer for seqcount_t
85  * @name: Name of the seqcount_t instance
86  */
87 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
88 
89 /*
90  * Sequence counters with associated locks (seqcount_LOCKNAME_t)
91  *
92  * A sequence counter which associates the lock used for writer
93  * serialization at initialization time. This enables lockdep to validate
94  * that the write side critical section is properly serialized.
95  *
96  * For associated locks which do not implicitly disable preemption,
97  * preemption protection is enforced in the write side function.
98  *
99  * Lockdep is never used in any for the raw write variants.
100  *
101  * See Documentation/locking/seqlock.rst
102  */
103 
104 /*
105  * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
106  * @seqcount:	The real sequence counter
107  * @lock:	Pointer to the associated lock
108  *
109  * A plain sequence counter with external writer synchronization by
110  * LOCKNAME @lock. The lock is associated to the sequence counter in the
111  * static initializer or init function. This enables lockdep to validate
112  * that the write side critical section is properly serialized.
113  *
114  * LOCKNAME:	raw_spinlock, spinlock, rwlock or mutex
115  */
116 
117 /*
118  * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
119  * @s:		Pointer to the seqcount_LOCKNAME_t instance
120  * @lock:	Pointer to the associated lock
121  */
122 
123 #define seqcount_LOCKNAME_init(s, _lock, lockname)			\
124 	do {								\
125 		seqcount_##lockname##_t *____s = (s);			\
126 		seqcount_init(&____s->seqcount);			\
127 		__SEQ_LOCK(____s->lock = (_lock));			\
128 	} while (0)
129 
130 #define seqcount_raw_spinlock_init(s, lock)	seqcount_LOCKNAME_init(s, lock, raw_spinlock)
131 #define seqcount_spinlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, spinlock)
132 #define seqcount_rwlock_init(s, lock)		seqcount_LOCKNAME_init(s, lock, rwlock)
133 #define seqcount_mutex_init(s, lock)		seqcount_LOCKNAME_init(s, lock, mutex)
134 
135 /*
136  * SEQCOUNT_LOCKNAME()	- Instantiate seqcount_LOCKNAME_t and helpers
137  * seqprop_LOCKNAME_*()	- Property accessors for seqcount_LOCKNAME_t
138  *
139  * @lockname:		"LOCKNAME" part of seqcount_LOCKNAME_t
140  * @locktype:		LOCKNAME canonical C data type
141  * @preemptible:	preemptibility of above locktype
142  * @lockbase:		prefix for associated lock/unlock
143  */
144 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockbase)	\
145 static __always_inline seqcount_t *					\
146 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s)			\
147 {									\
148 	return &s->seqcount;						\
149 }									\
150 									\
151 static __always_inline const seqcount_t *				\
152 __seqprop_##lockname##_const_ptr(const seqcount_##lockname##_t *s)	\
153 {									\
154 	return &s->seqcount;						\
155 }									\
156 									\
157 static __always_inline unsigned						\
158 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s)	\
159 {									\
160 	unsigned seq = READ_ONCE(s->seqcount.sequence);			\
161 									\
162 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
163 		return seq;						\
164 									\
165 	if (preemptible && unlikely(seq & 1)) {				\
166 		__SEQ_LOCK(lockbase##_lock(s->lock));			\
167 		__SEQ_LOCK(lockbase##_unlock(s->lock));			\
168 									\
169 		/*							\
170 		 * Re-read the sequence counter since the (possibly	\
171 		 * preempted) writer made progress.			\
172 		 */							\
173 		seq = READ_ONCE(s->seqcount.sequence);			\
174 	}								\
175 									\
176 	return seq;							\
177 }									\
178 									\
179 static __always_inline bool						\
180 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s)	\
181 {									\
182 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))				\
183 		return preemptible;					\
184 									\
185 	/* PREEMPT_RT relies on the above LOCK+UNLOCK */		\
186 	return false;							\
187 }									\
188 									\
189 static __always_inline void						\
190 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s)		\
191 {									\
192 	__SEQ_LOCK(lockdep_assert_held(s->lock));			\
193 }
194 
195 /*
196  * __seqprop() for seqcount_t
197  */
198 
__seqprop_ptr(seqcount_t * s)199 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
200 {
201 	return s;
202 }
203 
__seqprop_const_ptr(const seqcount_t * s)204 static inline const seqcount_t *__seqprop_const_ptr(const seqcount_t *s)
205 {
206 	return s;
207 }
208 
__seqprop_sequence(const seqcount_t * s)209 static inline unsigned __seqprop_sequence(const seqcount_t *s)
210 {
211 	return READ_ONCE(s->sequence);
212 }
213 
__seqprop_preemptible(const seqcount_t * s)214 static inline bool __seqprop_preemptible(const seqcount_t *s)
215 {
216 	return false;
217 }
218 
__seqprop_assert(const seqcount_t * s)219 static inline void __seqprop_assert(const seqcount_t *s)
220 {
221 	lockdep_assert_preemption_disabled();
222 }
223 
224 #define __SEQ_RT	IS_ENABLED(CONFIG_PREEMPT_RT)
225 
SEQCOUNT_LOCKNAME(raw_spinlock,raw_spinlock_t,false,raw_spin)226 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t,  false,    raw_spin)
227 SEQCOUNT_LOCKNAME(spinlock,     spinlock_t,      __SEQ_RT, spin)
228 SEQCOUNT_LOCKNAME(rwlock,       rwlock_t,        __SEQ_RT, read)
229 SEQCOUNT_LOCKNAME(mutex,        struct mutex,    true,     mutex)
230 #undef SEQCOUNT_LOCKNAME
231 
232 /*
233  * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
234  * @name:	Name of the seqcount_LOCKNAME_t instance
235  * @lock:	Pointer to the associated LOCKNAME
236  */
237 
238 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) {			\
239 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
240 	__SEQ_LOCK(.lock	= (assoc_lock))				\
241 }
242 
243 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
244 #define SEQCNT_SPINLOCK_ZERO(name, lock)	SEQCOUNT_LOCKNAME_ZERO(name, lock)
245 #define SEQCNT_RWLOCK_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
246 #define SEQCNT_MUTEX_ZERO(name, lock)		SEQCOUNT_LOCKNAME_ZERO(name, lock)
247 #define SEQCNT_WW_MUTEX_ZERO(name, lock) 	SEQCOUNT_LOCKNAME_ZERO(name, lock)
248 
249 #define __seqprop_case(s, lockname, prop)				\
250 	seqcount_##lockname##_t: __seqprop_##lockname##_##prop
251 
252 #define __seqprop(s, prop) _Generic(*(s),				\
253 	seqcount_t:		__seqprop_##prop,			\
254 	__seqprop_case((s),	raw_spinlock,	prop),			\
255 	__seqprop_case((s),	spinlock,	prop),			\
256 	__seqprop_case((s),	rwlock,		prop),			\
257 	__seqprop_case((s),	mutex,		prop))
258 
259 #define seqprop_ptr(s)			__seqprop(s, ptr)(s)
260 #define seqprop_const_ptr(s)		__seqprop(s, const_ptr)(s)
261 #define seqprop_sequence(s)		__seqprop(s, sequence)(s)
262 #define seqprop_preemptible(s)		__seqprop(s, preemptible)(s)
263 #define seqprop_assert(s)		__seqprop(s, assert)(s)
264 
265 /**
266  * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
267  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
268  *
269  * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
270  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
271  * provided before actually loading any of the variables that are to be
272  * protected in this critical section.
273  *
274  * Use carefully, only in critical code, and comment how the barrier is
275  * provided.
276  *
277  * Return: count to be passed to read_seqcount_retry()
278  */
279 #define __read_seqcount_begin(s)					\
280 ({									\
281 	unsigned __seq;							\
282 									\
283 	while ((__seq = seqprop_sequence(s)) & 1)			\
284 		cpu_relax();						\
285 									\
286 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
287 	__seq;								\
288 })
289 
290 /**
291  * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
292  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
293  *
294  * Return: count to be passed to read_seqcount_retry()
295  */
296 #define raw_read_seqcount_begin(s)					\
297 ({									\
298 	unsigned _seq = __read_seqcount_begin(s);			\
299 									\
300 	smp_rmb();							\
301 	_seq;								\
302 })
303 
304 /**
305  * read_seqcount_begin() - begin a seqcount_t read critical section
306  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
307  *
308  * Return: count to be passed to read_seqcount_retry()
309  */
310 #define read_seqcount_begin(s)						\
311 ({									\
312 	seqcount_lockdep_reader_access(seqprop_const_ptr(s));		\
313 	raw_read_seqcount_begin(s);					\
314 })
315 
316 /**
317  * raw_read_seqcount() - read the raw seqcount_t counter value
318  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
319  *
320  * raw_read_seqcount opens a read critical section of the given
321  * seqcount_t, without any lockdep checking, and without checking or
322  * masking the sequence counter LSB. Calling code is responsible for
323  * handling that.
324  *
325  * Return: count to be passed to read_seqcount_retry()
326  */
327 #define raw_read_seqcount(s)						\
328 ({									\
329 	unsigned __seq = seqprop_sequence(s);				\
330 									\
331 	smp_rmb();							\
332 	kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX);			\
333 	__seq;								\
334 })
335 
336 /**
337  * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
338  *                        lockdep and w/o counter stabilization
339  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
340  *
341  * raw_seqcount_begin opens a read critical section of the given
342  * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
343  * for the count to stabilize. If a writer is active when it begins, it
344  * will fail the read_seqcount_retry() at the end of the read critical
345  * section instead of stabilizing at the beginning of it.
346  *
347  * Use this only in special kernel hot paths where the read section is
348  * small and has a high probability of success through other external
349  * means. It will save a single branching instruction.
350  *
351  * Return: count to be passed to read_seqcount_retry()
352  */
353 #define raw_seqcount_begin(s)						\
354 ({									\
355 	/*								\
356 	 * If the counter is odd, let read_seqcount_retry() fail	\
357 	 * by decrementing the counter.					\
358 	 */								\
359 	raw_read_seqcount(s) & ~1;					\
360 })
361 
362 /**
363  * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
364  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
365  * @start: count, from read_seqcount_begin()
366  *
367  * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
368  * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
369  * provided before actually loading any of the variables that are to be
370  * protected in this critical section.
371  *
372  * Use carefully, only in critical code, and comment how the barrier is
373  * provided.
374  *
375  * Return: true if a read section retry is required, else false
376  */
377 #define __read_seqcount_retry(s, start)					\
378 	do___read_seqcount_retry(seqprop_const_ptr(s), start)
379 
380 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
381 {
382 	kcsan_atomic_next(0);
383 	return unlikely(READ_ONCE(s->sequence) != start);
384 }
385 
386 /**
387  * read_seqcount_retry() - end a seqcount_t read critical section
388  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
389  * @start: count, from read_seqcount_begin()
390  *
391  * read_seqcount_retry closes the read critical section of given
392  * seqcount_t.  If the critical section was invalid, it must be ignored
393  * (and typically retried).
394  *
395  * Return: true if a read section retry is required, else false
396  */
397 #define read_seqcount_retry(s, start)					\
398 	do_read_seqcount_retry(seqprop_const_ptr(s), start)
399 
do_read_seqcount_retry(const seqcount_t * s,unsigned start)400 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
401 {
402 	smp_rmb();
403 	return do___read_seqcount_retry(s, start);
404 }
405 
406 /**
407  * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
408  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
409  *
410  * Context: check write_seqcount_begin()
411  */
412 #define raw_write_seqcount_begin(s)					\
413 do {									\
414 	if (seqprop_preemptible(s))					\
415 		preempt_disable();					\
416 									\
417 	do_raw_write_seqcount_begin(seqprop_ptr(s));			\
418 } while (0)
419 
do_raw_write_seqcount_begin(seqcount_t * s)420 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
421 {
422 	kcsan_nestable_atomic_begin();
423 	s->sequence++;
424 	smp_wmb();
425 }
426 
427 /**
428  * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
429  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
430  *
431  * Context: check write_seqcount_end()
432  */
433 #define raw_write_seqcount_end(s)					\
434 do {									\
435 	do_raw_write_seqcount_end(seqprop_ptr(s));			\
436 									\
437 	if (seqprop_preemptible(s))					\
438 		preempt_enable();					\
439 } while (0)
440 
do_raw_write_seqcount_end(seqcount_t * s)441 static inline void do_raw_write_seqcount_end(seqcount_t *s)
442 {
443 	smp_wmb();
444 	s->sequence++;
445 	kcsan_nestable_atomic_end();
446 }
447 
448 /**
449  * write_seqcount_begin_nested() - start a seqcount_t write section with
450  *                                 custom lockdep nesting level
451  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
452  * @subclass: lockdep nesting level
453  *
454  * See Documentation/locking/lockdep-design.rst
455  * Context: check write_seqcount_begin()
456  */
457 #define write_seqcount_begin_nested(s, subclass)			\
458 do {									\
459 	seqprop_assert(s);						\
460 									\
461 	if (seqprop_preemptible(s))					\
462 		preempt_disable();					\
463 									\
464 	do_write_seqcount_begin_nested(seqprop_ptr(s), subclass);	\
465 } while (0)
466 
do_write_seqcount_begin_nested(seqcount_t * s,int subclass)467 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
468 {
469 	seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
470 	do_raw_write_seqcount_begin(s);
471 }
472 
473 /**
474  * write_seqcount_begin() - start a seqcount_t write side critical section
475  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
476  *
477  * Context: sequence counter write side sections must be serialized and
478  * non-preemptible. Preemption will be automatically disabled if and
479  * only if the seqcount write serialization lock is associated, and
480  * preemptible.  If readers can be invoked from hardirq or softirq
481  * context, interrupts or bottom halves must be respectively disabled.
482  */
483 #define write_seqcount_begin(s)						\
484 do {									\
485 	seqprop_assert(s);						\
486 									\
487 	if (seqprop_preemptible(s))					\
488 		preempt_disable();					\
489 									\
490 	do_write_seqcount_begin(seqprop_ptr(s));			\
491 } while (0)
492 
do_write_seqcount_begin(seqcount_t * s)493 static inline void do_write_seqcount_begin(seqcount_t *s)
494 {
495 	do_write_seqcount_begin_nested(s, 0);
496 }
497 
498 /**
499  * write_seqcount_end() - end a seqcount_t write side critical section
500  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
501  *
502  * Context: Preemption will be automatically re-enabled if and only if
503  * the seqcount write serialization lock is associated, and preemptible.
504  */
505 #define write_seqcount_end(s)						\
506 do {									\
507 	do_write_seqcount_end(seqprop_ptr(s));				\
508 									\
509 	if (seqprop_preemptible(s))					\
510 		preempt_enable();					\
511 } while (0)
512 
do_write_seqcount_end(seqcount_t * s)513 static inline void do_write_seqcount_end(seqcount_t *s)
514 {
515 	seqcount_release(&s->dep_map, _RET_IP_);
516 	do_raw_write_seqcount_end(s);
517 }
518 
519 /**
520  * raw_write_seqcount_barrier() - do a seqcount_t write barrier
521  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
522  *
523  * This can be used to provide an ordering guarantee instead of the usual
524  * consistency guarantee. It is one wmb cheaper, because it can collapse
525  * the two back-to-back wmb()s.
526  *
527  * Note that writes surrounding the barrier should be declared atomic (e.g.
528  * via WRITE_ONCE): a) to ensure the writes become visible to other threads
529  * atomically, avoiding compiler optimizations; b) to document which writes are
530  * meant to propagate to the reader critical section. This is necessary because
531  * neither writes before nor after the barrier are enclosed in a seq-writer
532  * critical section that would ensure readers are aware of ongoing writes::
533  *
534  *	seqcount_t seq;
535  *	bool X = true, Y = false;
536  *
537  *	void read(void)
538  *	{
539  *		bool x, y;
540  *
541  *		do {
542  *			int s = read_seqcount_begin(&seq);
543  *
544  *			x = X; y = Y;
545  *
546  *		} while (read_seqcount_retry(&seq, s));
547  *
548  *		BUG_ON(!x && !y);
549  *      }
550  *
551  *      void write(void)
552  *      {
553  *		WRITE_ONCE(Y, true);
554  *
555  *		raw_write_seqcount_barrier(seq);
556  *
557  *		WRITE_ONCE(X, false);
558  *      }
559  */
560 #define raw_write_seqcount_barrier(s)					\
561 	do_raw_write_seqcount_barrier(seqprop_ptr(s))
562 
do_raw_write_seqcount_barrier(seqcount_t * s)563 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
564 {
565 	kcsan_nestable_atomic_begin();
566 	s->sequence++;
567 	smp_wmb();
568 	s->sequence++;
569 	kcsan_nestable_atomic_end();
570 }
571 
572 /**
573  * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
574  *                               side operations
575  * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
576  *
577  * After write_seqcount_invalidate, no seqcount_t read side operations
578  * will complete successfully and see data older than this.
579  */
580 #define write_seqcount_invalidate(s)					\
581 	do_write_seqcount_invalidate(seqprop_ptr(s))
582 
do_write_seqcount_invalidate(seqcount_t * s)583 static inline void do_write_seqcount_invalidate(seqcount_t *s)
584 {
585 	smp_wmb();
586 	kcsan_nestable_atomic_begin();
587 	s->sequence+=2;
588 	kcsan_nestable_atomic_end();
589 }
590 
591 /*
592  * Latch sequence counters (seqcount_latch_t)
593  *
594  * A sequence counter variant where the counter even/odd value is used to
595  * switch between two copies of protected data. This allows the read path,
596  * typically NMIs, to safely interrupt the write side critical section.
597  *
598  * As the write sections are fully preemptible, no special handling for
599  * PREEMPT_RT is needed.
600  */
601 typedef struct {
602 	seqcount_t seqcount;
603 } seqcount_latch_t;
604 
605 /**
606  * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
607  * @seq_name: Name of the seqcount_latch_t instance
608  */
609 #define SEQCNT_LATCH_ZERO(seq_name) {					\
610 	.seqcount		= SEQCNT_ZERO(seq_name.seqcount),	\
611 }
612 
613 /**
614  * seqcount_latch_init() - runtime initializer for seqcount_latch_t
615  * @s: Pointer to the seqcount_latch_t instance
616  */
617 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
618 
619 /**
620  * raw_read_seqcount_latch() - pick even/odd latch data copy
621  * @s: Pointer to seqcount_latch_t
622  *
623  * See raw_write_seqcount_latch() for details and a full reader/writer
624  * usage example.
625  *
626  * Return: sequence counter raw value. Use the lowest bit as an index for
627  * picking which data copy to read. The full counter must then be checked
628  * with raw_read_seqcount_latch_retry().
629  */
raw_read_seqcount_latch(const seqcount_latch_t * s)630 static __always_inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
631 {
632 	/*
633 	 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
634 	 * Due to the dependent load, a full smp_rmb() is not needed.
635 	 */
636 	return READ_ONCE(s->seqcount.sequence);
637 }
638 
639 /**
640  * raw_read_seqcount_latch_retry() - end a seqcount_latch_t read section
641  * @s:		Pointer to seqcount_latch_t
642  * @start:	count, from raw_read_seqcount_latch()
643  *
644  * Return: true if a read section retry is required, else false
645  */
646 static __always_inline int
raw_read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)647 raw_read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
648 {
649 	smp_rmb();
650 	return unlikely(READ_ONCE(s->seqcount.sequence) != start);
651 }
652 
653 /**
654  * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
655  * @s: Pointer to seqcount_latch_t
656  *
657  * The latch technique is a multiversion concurrency control method that allows
658  * queries during non-atomic modifications. If you can guarantee queries never
659  * interrupt the modification -- e.g. the concurrency is strictly between CPUs
660  * -- you most likely do not need this.
661  *
662  * Where the traditional RCU/lockless data structures rely on atomic
663  * modifications to ensure queries observe either the old or the new state the
664  * latch allows the same for non-atomic updates. The trade-off is doubling the
665  * cost of storage; we have to maintain two copies of the entire data
666  * structure.
667  *
668  * Very simply put: we first modify one copy and then the other. This ensures
669  * there is always one copy in a stable state, ready to give us an answer.
670  *
671  * The basic form is a data structure like::
672  *
673  *	struct latch_struct {
674  *		seqcount_latch_t	seq;
675  *		struct data_struct	data[2];
676  *	};
677  *
678  * Where a modification, which is assumed to be externally serialized, does the
679  * following::
680  *
681  *	void latch_modify(struct latch_struct *latch, ...)
682  *	{
683  *		smp_wmb();	// Ensure that the last data[1] update is visible
684  *		latch->seq.sequence++;
685  *		smp_wmb();	// Ensure that the seqcount update is visible
686  *
687  *		modify(latch->data[0], ...);
688  *
689  *		smp_wmb();	// Ensure that the data[0] update is visible
690  *		latch->seq.sequence++;
691  *		smp_wmb();	// Ensure that the seqcount update is visible
692  *
693  *		modify(latch->data[1], ...);
694  *	}
695  *
696  * The query will have a form like::
697  *
698  *	struct entry *latch_query(struct latch_struct *latch, ...)
699  *	{
700  *		struct entry *entry;
701  *		unsigned seq, idx;
702  *
703  *		do {
704  *			seq = raw_read_seqcount_latch(&latch->seq);
705  *
706  *			idx = seq & 0x01;
707  *			entry = data_query(latch->data[idx], ...);
708  *
709  *		// This includes needed smp_rmb()
710  *		} while (raw_read_seqcount_latch_retry(&latch->seq, seq));
711  *
712  *		return entry;
713  *	}
714  *
715  * So during the modification, queries are first redirected to data[1]. Then we
716  * modify data[0]. When that is complete, we redirect queries back to data[0]
717  * and we can modify data[1].
718  *
719  * NOTE:
720  *
721  *	The non-requirement for atomic modifications does _NOT_ include
722  *	the publishing of new entries in the case where data is a dynamic
723  *	data structure.
724  *
725  *	An iteration might start in data[0] and get suspended long enough
726  *	to miss an entire modification sequence, once it resumes it might
727  *	observe the new entry.
728  *
729  * NOTE2:
730  *
731  *	When data is a dynamic data structure; one should use regular RCU
732  *	patterns to manage the lifetimes of the objects within.
733  */
raw_write_seqcount_latch(seqcount_latch_t * s)734 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
735 {
736 	smp_wmb();	/* prior stores before incrementing "sequence" */
737 	s->seqcount.sequence++;
738 	smp_wmb();      /* increment "sequence" before following stores */
739 }
740 
741 #define __SEQLOCK_UNLOCKED(lockname)					\
742 	{								\
743 		.seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
744 		.lock =	__SPIN_LOCK_UNLOCKED(lockname)			\
745 	}
746 
747 /**
748  * seqlock_init() - dynamic initializer for seqlock_t
749  * @sl: Pointer to the seqlock_t instance
750  */
751 #define seqlock_init(sl)						\
752 	do {								\
753 		spin_lock_init(&(sl)->lock);				\
754 		seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock);	\
755 	} while (0)
756 
757 /**
758  * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
759  * @sl: Name of the seqlock_t instance
760  */
761 #define DEFINE_SEQLOCK(sl) \
762 		seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
763 
764 /**
765  * read_seqbegin() - start a seqlock_t read side critical section
766  * @sl: Pointer to seqlock_t
767  *
768  * Return: count, to be passed to read_seqretry()
769  */
read_seqbegin(const seqlock_t * sl)770 static inline unsigned read_seqbegin(const seqlock_t *sl)
771 {
772 	unsigned ret = read_seqcount_begin(&sl->seqcount);
773 
774 	kcsan_atomic_next(0);  /* non-raw usage, assume closing read_seqretry() */
775 	kcsan_flat_atomic_begin();
776 	return ret;
777 }
778 
779 /**
780  * read_seqretry() - end a seqlock_t read side section
781  * @sl: Pointer to seqlock_t
782  * @start: count, from read_seqbegin()
783  *
784  * read_seqretry closes the read side critical section of given seqlock_t.
785  * If the critical section was invalid, it must be ignored (and typically
786  * retried).
787  *
788  * Return: true if a read section retry is required, else false
789  */
read_seqretry(const seqlock_t * sl,unsigned start)790 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
791 {
792 	/*
793 	 * Assume not nested: read_seqretry() may be called multiple times when
794 	 * completing read critical section.
795 	 */
796 	kcsan_flat_atomic_end();
797 
798 	return read_seqcount_retry(&sl->seqcount, start);
799 }
800 
801 /*
802  * For all seqlock_t write side functions, use the internal
803  * do_write_seqcount_begin() instead of generic write_seqcount_begin().
804  * This way, no redundant lockdep_assert_held() checks are added.
805  */
806 
807 /**
808  * write_seqlock() - start a seqlock_t write side critical section
809  * @sl: Pointer to seqlock_t
810  *
811  * write_seqlock opens a write side critical section for the given
812  * seqlock_t.  It also implicitly acquires the spinlock_t embedded inside
813  * that sequential lock. All seqlock_t write side sections are thus
814  * automatically serialized and non-preemptible.
815  *
816  * Context: if the seqlock_t read section, or other write side critical
817  * sections, can be invoked from hardirq or softirq contexts, use the
818  * _irqsave or _bh variants of this function instead.
819  */
write_seqlock(seqlock_t * sl)820 static inline void write_seqlock(seqlock_t *sl)
821 {
822 	spin_lock(&sl->lock);
823 	do_write_seqcount_begin(&sl->seqcount.seqcount);
824 }
825 
826 /**
827  * write_sequnlock() - end a seqlock_t write side critical section
828  * @sl: Pointer to seqlock_t
829  *
830  * write_sequnlock closes the (serialized and non-preemptible) write side
831  * critical section of given seqlock_t.
832  */
write_sequnlock(seqlock_t * sl)833 static inline void write_sequnlock(seqlock_t *sl)
834 {
835 	do_write_seqcount_end(&sl->seqcount.seqcount);
836 	spin_unlock(&sl->lock);
837 }
838 
839 /**
840  * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
841  * @sl: Pointer to seqlock_t
842  *
843  * _bh variant of write_seqlock(). Use only if the read side section, or
844  * other write side sections, can be invoked from softirq contexts.
845  */
write_seqlock_bh(seqlock_t * sl)846 static inline void write_seqlock_bh(seqlock_t *sl)
847 {
848 	spin_lock_bh(&sl->lock);
849 	do_write_seqcount_begin(&sl->seqcount.seqcount);
850 }
851 
852 /**
853  * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
854  * @sl: Pointer to seqlock_t
855  *
856  * write_sequnlock_bh closes the serialized, non-preemptible, and
857  * softirqs-disabled, seqlock_t write side critical section opened with
858  * write_seqlock_bh().
859  */
write_sequnlock_bh(seqlock_t * sl)860 static inline void write_sequnlock_bh(seqlock_t *sl)
861 {
862 	do_write_seqcount_end(&sl->seqcount.seqcount);
863 	spin_unlock_bh(&sl->lock);
864 }
865 
866 /**
867  * write_seqlock_irq() - start a non-interruptible seqlock_t write section
868  * @sl: Pointer to seqlock_t
869  *
870  * _irq variant of write_seqlock(). Use only if the read side section, or
871  * other write sections, can be invoked from hardirq contexts.
872  */
write_seqlock_irq(seqlock_t * sl)873 static inline void write_seqlock_irq(seqlock_t *sl)
874 {
875 	spin_lock_irq(&sl->lock);
876 	do_write_seqcount_begin(&sl->seqcount.seqcount);
877 }
878 
879 /**
880  * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
881  * @sl: Pointer to seqlock_t
882  *
883  * write_sequnlock_irq closes the serialized and non-interruptible
884  * seqlock_t write side section opened with write_seqlock_irq().
885  */
write_sequnlock_irq(seqlock_t * sl)886 static inline void write_sequnlock_irq(seqlock_t *sl)
887 {
888 	do_write_seqcount_end(&sl->seqcount.seqcount);
889 	spin_unlock_irq(&sl->lock);
890 }
891 
__write_seqlock_irqsave(seqlock_t * sl)892 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
893 {
894 	unsigned long flags;
895 
896 	spin_lock_irqsave(&sl->lock, flags);
897 	do_write_seqcount_begin(&sl->seqcount.seqcount);
898 	return flags;
899 }
900 
901 /**
902  * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
903  *                           section
904  * @lock:  Pointer to seqlock_t
905  * @flags: Stack-allocated storage for saving caller's local interrupt
906  *         state, to be passed to write_sequnlock_irqrestore().
907  *
908  * _irqsave variant of write_seqlock(). Use it only if the read side
909  * section, or other write sections, can be invoked from hardirq context.
910  */
911 #define write_seqlock_irqsave(lock, flags)				\
912 	do { flags = __write_seqlock_irqsave(lock); } while (0)
913 
914 /**
915  * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
916  *                                section
917  * @sl:    Pointer to seqlock_t
918  * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
919  *
920  * write_sequnlock_irqrestore closes the serialized and non-interruptible
921  * seqlock_t write section previously opened with write_seqlock_irqsave().
922  */
923 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)924 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
925 {
926 	do_write_seqcount_end(&sl->seqcount.seqcount);
927 	spin_unlock_irqrestore(&sl->lock, flags);
928 }
929 
930 /**
931  * read_seqlock_excl() - begin a seqlock_t locking reader section
932  * @sl:	Pointer to seqlock_t
933  *
934  * read_seqlock_excl opens a seqlock_t locking reader critical section.  A
935  * locking reader exclusively locks out *both* other writers *and* other
936  * locking readers, but it does not update the embedded sequence number.
937  *
938  * Locking readers act like a normal spin_lock()/spin_unlock().
939  *
940  * Context: if the seqlock_t write section, *or other read sections*, can
941  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
942  * variant of this function instead.
943  *
944  * The opened read section must be closed with read_sequnlock_excl().
945  */
read_seqlock_excl(seqlock_t * sl)946 static inline void read_seqlock_excl(seqlock_t *sl)
947 {
948 	spin_lock(&sl->lock);
949 }
950 
951 /**
952  * read_sequnlock_excl() - end a seqlock_t locking reader critical section
953  * @sl: Pointer to seqlock_t
954  */
read_sequnlock_excl(seqlock_t * sl)955 static inline void read_sequnlock_excl(seqlock_t *sl)
956 {
957 	spin_unlock(&sl->lock);
958 }
959 
960 /**
961  * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
962  *			    softirqs disabled
963  * @sl: Pointer to seqlock_t
964  *
965  * _bh variant of read_seqlock_excl(). Use this variant only if the
966  * seqlock_t write side section, *or other read sections*, can be invoked
967  * from softirq contexts.
968  */
read_seqlock_excl_bh(seqlock_t * sl)969 static inline void read_seqlock_excl_bh(seqlock_t *sl)
970 {
971 	spin_lock_bh(&sl->lock);
972 }
973 
974 /**
975  * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
976  *			      reader section
977  * @sl: Pointer to seqlock_t
978  */
read_sequnlock_excl_bh(seqlock_t * sl)979 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
980 {
981 	spin_unlock_bh(&sl->lock);
982 }
983 
984 /**
985  * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
986  *			     reader section
987  * @sl: Pointer to seqlock_t
988  *
989  * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
990  * write side section, *or other read sections*, can be invoked from a
991  * hardirq context.
992  */
read_seqlock_excl_irq(seqlock_t * sl)993 static inline void read_seqlock_excl_irq(seqlock_t *sl)
994 {
995 	spin_lock_irq(&sl->lock);
996 }
997 
998 /**
999  * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1000  *                             locking reader section
1001  * @sl: Pointer to seqlock_t
1002  */
read_sequnlock_excl_irq(seqlock_t * sl)1003 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1004 {
1005 	spin_unlock_irq(&sl->lock);
1006 }
1007 
__read_seqlock_excl_irqsave(seqlock_t * sl)1008 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1009 {
1010 	unsigned long flags;
1011 
1012 	spin_lock_irqsave(&sl->lock, flags);
1013 	return flags;
1014 }
1015 
1016 /**
1017  * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1018  *				 locking reader section
1019  * @lock:  Pointer to seqlock_t
1020  * @flags: Stack-allocated storage for saving caller's local interrupt
1021  *         state, to be passed to read_sequnlock_excl_irqrestore().
1022  *
1023  * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1024  * write side section, *or other read sections*, can be invoked from a
1025  * hardirq context.
1026  */
1027 #define read_seqlock_excl_irqsave(lock, flags)				\
1028 	do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1029 
1030 /**
1031  * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1032  *				      locking reader section
1033  * @sl:    Pointer to seqlock_t
1034  * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1035  */
1036 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)1037 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1038 {
1039 	spin_unlock_irqrestore(&sl->lock, flags);
1040 }
1041 
1042 /**
1043  * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1044  * @lock: Pointer to seqlock_t
1045  * @seq : Marker and return parameter. If the passed value is even, the
1046  * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1047  * If the passed value is odd, the reader will become a *locking* reader
1048  * as in read_seqlock_excl().  In the first call to this function, the
1049  * caller *must* initialize and pass an even value to @seq; this way, a
1050  * lockless read can be optimistically tried first.
1051  *
1052  * read_seqbegin_or_lock is an API designed to optimistically try a normal
1053  * lockless seqlock_t read section first.  If an odd counter is found, the
1054  * lockless read trial has failed, and the next read iteration transforms
1055  * itself into a full seqlock_t locking reader.
1056  *
1057  * This is typically used to avoid seqlock_t lockless readers starvation
1058  * (too much retry loops) in the case of a sharp spike in write side
1059  * activity.
1060  *
1061  * Context: if the seqlock_t write section, *or other read sections*, can
1062  * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1063  * variant of this function instead.
1064  *
1065  * Check Documentation/locking/seqlock.rst for template example code.
1066  *
1067  * Return: the encountered sequence counter value, through the @seq
1068  * parameter, which is overloaded as a return parameter. This returned
1069  * value must be checked with need_seqretry(). If the read section need to
1070  * be retried, this returned value must also be passed as the @seq
1071  * parameter of the next read_seqbegin_or_lock() iteration.
1072  */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)1073 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1074 {
1075 	if (!(*seq & 1))	/* Even */
1076 		*seq = read_seqbegin(lock);
1077 	else			/* Odd */
1078 		read_seqlock_excl(lock);
1079 }
1080 
1081 /**
1082  * need_seqretry() - validate seqlock_t "locking or lockless" read section
1083  * @lock: Pointer to seqlock_t
1084  * @seq: sequence count, from read_seqbegin_or_lock()
1085  *
1086  * Return: true if a read section retry is required, false otherwise
1087  */
need_seqretry(seqlock_t * lock,int seq)1088 static inline int need_seqretry(seqlock_t *lock, int seq)
1089 {
1090 	return !(seq & 1) && read_seqretry(lock, seq);
1091 }
1092 
1093 /**
1094  * done_seqretry() - end seqlock_t "locking or lockless" reader section
1095  * @lock: Pointer to seqlock_t
1096  * @seq: count, from read_seqbegin_or_lock()
1097  *
1098  * done_seqretry finishes the seqlock_t read side critical section started
1099  * with read_seqbegin_or_lock() and validated by need_seqretry().
1100  */
done_seqretry(seqlock_t * lock,int seq)1101 static inline void done_seqretry(seqlock_t *lock, int seq)
1102 {
1103 	if (seq & 1)
1104 		read_sequnlock_excl(lock);
1105 }
1106 
1107 /**
1108  * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1109  *                                   a non-interruptible locking reader
1110  * @lock: Pointer to seqlock_t
1111  * @seq:  Marker and return parameter. Check read_seqbegin_or_lock().
1112  *
1113  * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1114  * the seqlock_t write section, *or other read sections*, can be invoked
1115  * from hardirq context.
1116  *
1117  * Note: Interrupts will be disabled only for "locking reader" mode.
1118  *
1119  * Return:
1120  *
1121  *   1. The saved local interrupts state in case of a locking reader, to
1122  *      be passed to done_seqretry_irqrestore().
1123  *
1124  *   2. The encountered sequence counter value, returned through @seq
1125  *      overloaded as a return parameter. Check read_seqbegin_or_lock().
1126  */
1127 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)1128 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1129 {
1130 	unsigned long flags = 0;
1131 
1132 	if (!(*seq & 1))	/* Even */
1133 		*seq = read_seqbegin(lock);
1134 	else			/* Odd */
1135 		read_seqlock_excl_irqsave(lock, flags);
1136 
1137 	return flags;
1138 }
1139 
1140 /**
1141  * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1142  *				non-interruptible locking reader section
1143  * @lock:  Pointer to seqlock_t
1144  * @seq:   Count, from read_seqbegin_or_lock_irqsave()
1145  * @flags: Caller's saved local interrupt state in case of a locking
1146  *	   reader, also from read_seqbegin_or_lock_irqsave()
1147  *
1148  * This is the _irqrestore variant of done_seqretry(). The read section
1149  * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1150  * by need_seqretry().
1151  */
1152 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)1153 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1154 {
1155 	if (seq & 1)
1156 		read_sequnlock_excl_irqrestore(lock, flags);
1157 }
1158 #endif /* __LINUX_SEQLOCK_H */
1159