1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3 * CDDL HEADER START
4 *
5 * The contents of this file are subject to the terms of the
6 * Common Development and Distribution License (the "License").
7 * You may not use this file except in compliance with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or https://opensource.org/licenses/CDDL-1.0.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
27 * Copyright 2014 HybridCluster. All rights reserved.
28 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
29 * Copyright 2013 Saso Kiselkov. All rights reserved.
30 * Copyright (c) 2017, Intel Corporation.
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 * Copyright (c) 2025, Klara, Inc.
33 */
34
35 /* Portions Copyright 2010 Robert Milkowski */
36
37 #ifndef _SYS_DMU_H
38 #define _SYS_DMU_H
39
40 /*
41 * This file describes the interface that the DMU provides for its
42 * consumers.
43 *
44 * The DMU also interacts with the SPA. That interface is described in
45 * dmu_spa.h.
46 */
47
48 #include <sys/zfs_context.h>
49 #include <sys/inttypes.h>
50 #include <sys/cred.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zio_compress.h>
53 #include <sys/uio.h>
54 #include <sys/zfs_file.h>
55
56 #ifdef __cplusplus
57 extern "C" {
58 #endif
59
60 struct page;
61 struct vnode;
62 struct spa;
63 struct zilog;
64 struct zio;
65 struct blkptr;
66 struct zap_cursor;
67 struct dsl_dataset;
68 struct dsl_pool;
69 struct dnode;
70 struct drr_begin;
71 struct drr_end;
72 struct zbookmark_phys;
73 struct spa;
74 struct nvlist;
75 struct arc_buf;
76 struct zio_prop;
77 struct sa_handle;
78 struct dsl_crypto_params;
79 struct locked_range;
80
81 typedef struct objset objset_t;
82 typedef struct dmu_tx dmu_tx_t;
83 typedef struct dsl_dir dsl_dir_t;
84 typedef struct dnode dnode_t;
85
86 typedef enum dmu_object_byteswap {
87 DMU_BSWAP_UINT8,
88 DMU_BSWAP_UINT16,
89 DMU_BSWAP_UINT32,
90 DMU_BSWAP_UINT64,
91 DMU_BSWAP_ZAP,
92 DMU_BSWAP_DNODE,
93 DMU_BSWAP_OBJSET,
94 DMU_BSWAP_ZNODE,
95 DMU_BSWAP_OLDACL,
96 DMU_BSWAP_ACL,
97 /*
98 * Allocating a new byteswap type number makes the on-disk format
99 * incompatible with any other format that uses the same number.
100 *
101 * Data can usually be structured to work with one of the
102 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
103 */
104 DMU_BSWAP_NUMFUNCS
105 } dmu_object_byteswap_t;
106
107 #define DMU_OT_NEWTYPE 0x80
108 #define DMU_OT_METADATA 0x40
109 #define DMU_OT_ENCRYPTED 0x20
110 #define DMU_OT_BYTESWAP_MASK 0x1f
111
112 /*
113 * Defines a uint8_t object type. Object types specify if the data
114 * in the object is metadata (boolean) and how to byteswap the data
115 * (dmu_object_byteswap_t). All of the types created by this method
116 * are cached in the dbuf metadata cache.
117 */
118 #define DMU_OT(byteswap, metadata, encrypted) \
119 (DMU_OT_NEWTYPE | \
120 ((metadata) ? DMU_OT_METADATA : 0) | \
121 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
122 ((byteswap) & DMU_OT_BYTESWAP_MASK))
123
124 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
125 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
126 (ot) < DMU_OT_NUMTYPES)
127
128 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
129 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
130
131 /*
132 * MDB doesn't have dmu_ot; it defines these macros itself.
133 */
134 #ifndef ZFS_MDB
135 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
136 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
137 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
138 #endif
139
140 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
141 (((ot) & DMU_OT_METADATA) != 0) : \
142 DMU_OT_IS_METADATA_IMPL(ot))
143
144 #define DMU_OT_IS_DDT(ot) \
145 ((ot) == DMU_OT_DDT_ZAP)
146
147 #define DMU_OT_IS_CRITICAL(ot) \
148 (DMU_OT_IS_METADATA(ot) && \
149 (ot) != DMU_OT_DNODE && \
150 (ot) != DMU_OT_DIRECTORY_CONTENTS && \
151 (ot) != DMU_OT_SA)
152
153 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
154 #define DMU_OT_IS_FILE(ot) \
155 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
156
157 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
158 (((ot) & DMU_OT_ENCRYPTED) != 0) : \
159 DMU_OT_IS_ENCRYPTED_IMPL(ot))
160
161 /*
162 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
163 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
164 * is repurposed for embedded BPs.
165 */
166 #define DMU_OT_HAS_FILL(ot) \
167 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
168
169 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
170 ((ot) & DMU_OT_BYTESWAP_MASK) : \
171 DMU_OT_BYTESWAP_IMPL(ot))
172
173 typedef enum dmu_object_type {
174 DMU_OT_NONE,
175 /* general: */
176 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
177 DMU_OT_OBJECT_ARRAY, /* UINT64 */
178 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
179 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
180 DMU_OT_BPOBJ, /* UINT64 */
181 DMU_OT_BPOBJ_HDR, /* UINT64 */
182 /* spa: */
183 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
184 DMU_OT_SPACE_MAP, /* UINT64 */
185 /* zil: */
186 DMU_OT_INTENT_LOG, /* UINT64 */
187 /* dmu: */
188 DMU_OT_DNODE, /* DNODE */
189 DMU_OT_OBJSET, /* OBJSET */
190 /* dsl: */
191 DMU_OT_DSL_DIR, /* UINT64 */
192 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
193 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
194 DMU_OT_DSL_PROPS, /* ZAP */
195 DMU_OT_DSL_DATASET, /* UINT64 */
196 /* zpl: */
197 DMU_OT_ZNODE, /* ZNODE */
198 DMU_OT_OLDACL, /* Old ACL */
199 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
200 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
201 DMU_OT_MASTER_NODE, /* ZAP */
202 DMU_OT_UNLINKED_SET, /* ZAP */
203 /* zvol: */
204 DMU_OT_ZVOL, /* UINT8 */
205 DMU_OT_ZVOL_PROP, /* ZAP */
206 /* other; for testing only! */
207 DMU_OT_PLAIN_OTHER, /* UINT8 */
208 DMU_OT_UINT64_OTHER, /* UINT64 */
209 DMU_OT_ZAP_OTHER, /* ZAP */
210 /* new object types: */
211 DMU_OT_ERROR_LOG, /* ZAP */
212 DMU_OT_SPA_HISTORY, /* UINT8 */
213 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
214 DMU_OT_POOL_PROPS, /* ZAP */
215 DMU_OT_DSL_PERMS, /* ZAP */
216 DMU_OT_ACL, /* ACL */
217 DMU_OT_SYSACL, /* SYSACL */
218 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
219 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
220 DMU_OT_NEXT_CLONES, /* ZAP */
221 DMU_OT_SCAN_QUEUE, /* ZAP */
222 DMU_OT_USERGROUP_USED, /* ZAP */
223 DMU_OT_USERGROUP_QUOTA, /* ZAP */
224 DMU_OT_USERREFS, /* ZAP */
225 DMU_OT_DDT_ZAP, /* ZAP */
226 DMU_OT_DDT_STATS, /* ZAP */
227 DMU_OT_SA, /* System attr */
228 DMU_OT_SA_MASTER_NODE, /* ZAP */
229 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
230 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
231 DMU_OT_SCAN_XLATE, /* ZAP */
232 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
233 DMU_OT_DEADLIST, /* ZAP */
234 DMU_OT_DEADLIST_HDR, /* UINT64 */
235 DMU_OT_DSL_CLONES, /* ZAP */
236 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
237 /*
238 * Do not allocate new object types here. Doing so makes the on-disk
239 * format incompatible with any other format that uses the same object
240 * type number.
241 *
242 * When creating an object which does not have one of the above types
243 * use the DMU_OTN_* type with the correct byteswap and metadata
244 * values.
245 *
246 * The DMU_OTN_* types do not have entries in the dmu_ot table,
247 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
248 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
249 * and DMU_OTN_* types).
250 */
251 DMU_OT_NUMTYPES,
252
253 /*
254 * Names for valid types declared with DMU_OT().
255 */
256 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
257 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
258 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
259 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
260 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
261 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
262 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
263 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
264 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
265 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
266
267 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
268 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
269 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
270 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
271 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
272 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
273 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
274 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
275 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
276 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
277 } dmu_object_type_t;
278
279 /*
280 * These flags are for the dmu_tx_assign() function and describe what to do if
281 * the transaction is full. See the comment above dmu_tx_assign() for more
282 * details on the meaning of these flags.
283 */
284 #define DMU_TX_NOWAIT (0ULL)
285 #define DMU_TX_WAIT (1ULL<<0)
286 #define DMU_TX_NOTHROTTLE (1ULL<<1)
287
288 void byteswap_uint64_array(void *buf, size_t size);
289 void byteswap_uint32_array(void *buf, size_t size);
290 void byteswap_uint16_array(void *buf, size_t size);
291 void byteswap_uint8_array(void *buf, size_t size);
292 void zap_byteswap(void *buf, size_t size);
293 void zfs_oldacl_byteswap(void *buf, size_t size);
294 void zfs_acl_byteswap(void *buf, size_t size);
295 void zfs_znode_byteswap(void *buf, size_t size);
296
297 #define DS_FIND_SNAPSHOTS (1<<0)
298 #define DS_FIND_CHILDREN (1<<1)
299 #define DS_FIND_SERIALIZE (1<<2)
300
301 /*
302 * The maximum number of bytes that can be accessed as part of one
303 * operation, including metadata.
304 */
305 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
306 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
307
308 #define DMU_USERUSED_OBJECT (-1ULL)
309 #define DMU_GROUPUSED_OBJECT (-2ULL)
310 #define DMU_PROJECTUSED_OBJECT (-3ULL)
311
312 /*
313 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
314 */
315 #define DMU_OBJACCT_PREFIX "obj-"
316 #define DMU_OBJACCT_PREFIX_LEN 4
317
318 /*
319 * artificial blkids for bonus buffer and spill blocks
320 */
321 #define DMU_BONUS_BLKID (-1ULL)
322 #define DMU_SPILL_BLKID (-2ULL)
323
324 /*
325 * Public routines to create, destroy, open, and close objsets.
326 */
327 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
328 cred_t *cr, dmu_tx_t *tx);
329
330 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
331 int dmu_objset_own(const char *name, dmu_objset_type_t type,
332 boolean_t readonly, boolean_t key_required, const void *tag,
333 objset_t **osp);
334 void dmu_objset_rele(objset_t *os, const void *tag);
335 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
336 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
337
338 void dmu_objset_evict_dbufs(objset_t *os);
339 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
340 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
341 void *arg);
342 int dmu_objset_clone(const char *name, const char *origin);
343 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
344 struct nvlist *errlist);
345 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
346 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
347 int flags);
348 void dmu_objset_byteswap(void *buf, size_t size);
349 int dsl_dataset_rename_snapshot(const char *fsname,
350 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
351
352 typedef struct dmu_buf {
353 uint64_t db_object; /* object that this buffer is part of */
354 uint64_t db_offset; /* byte offset in this object */
355 uint64_t db_size; /* size of buffer in bytes */
356 void *db_data; /* data in buffer */
357 } dmu_buf_t;
358
359 /*
360 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361 */
362 #define DMU_POOL_DIRECTORY_OBJECT 1
363 #define DMU_POOL_CONFIG "config"
364 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
365 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
366 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
367 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
368 #define DMU_POOL_ROOT_DATASET "root_dataset"
369 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
370 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
371 #define DMU_POOL_ERRLOG_LAST "errlog_last"
372 #define DMU_POOL_SPARES "spares"
373 #define DMU_POOL_DEFLATE "deflate"
374 #define DMU_POOL_HISTORY "history"
375 #define DMU_POOL_PROPS "pool_props"
376 #define DMU_POOL_L2CACHE "l2cache"
377 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
378 #define DMU_POOL_DDT "DDT-%s-%s-%s"
379 #define DMU_POOL_DDT_LOG "DDT-log-%s-%u"
380 #define DMU_POOL_DDT_STATS "DDT-statistics"
381 #define DMU_POOL_DDT_DIR "DDT-%s"
382 #define DMU_POOL_CREATION_VERSION "creation_version"
383 #define DMU_POOL_SCAN "scan"
384 #define DMU_POOL_ERRORSCRUB "error_scrub"
385 #define DMU_POOL_LAST_SCRUBBED_TXG "last_scrubbed_txg"
386 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
387 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
388 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
389 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
390 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
391 #define DMU_POOL_REMOVING "com.delphix:removing"
392 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
393 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
394 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
395 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
396 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
397
398 /*
399 * Allocate an object from this objset. The range of object numbers
400 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
401 *
402 * The transaction must be assigned to a txg. The newly allocated
403 * object will be "held" in the transaction (ie. you can modify the
404 * newly allocated object in this transaction).
405 *
406 * dmu_object_alloc() chooses an object and returns it in *objectp.
407 *
408 * dmu_object_claim() allocates a specific object number. If that
409 * number is already allocated, it fails and returns EEXIST.
410 *
411 * Return 0 on success, or ENOSPC or EEXIST as specified above.
412 */
413 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
414 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
415 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
416 int indirect_blockshift,
417 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
418 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
419 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
420 int dnodesize, dmu_tx_t *tx);
421 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
422 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
423 int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
424 dmu_tx_t *tx);
425 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
426 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
427 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
428 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
429 int dnodesize, dmu_tx_t *tx);
430 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
431 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
432 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
433 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
434 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
435 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
436
437 /*
438 * Free an object from this objset.
439 *
440 * The object's data will be freed as well (ie. you don't need to call
441 * dmu_free(object, 0, -1, tx)).
442 *
443 * The object need not be held in the transaction.
444 *
445 * If there are any holds on this object's buffers (via dmu_buf_hold()),
446 * or tx holds on the object (via dmu_tx_hold_object()), you can not
447 * free it; it fails and returns EBUSY.
448 *
449 * If the object is not allocated, it fails and returns ENOENT.
450 *
451 * Return 0 on success, or EBUSY or ENOENT as specified above.
452 */
453 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
454
455 /*
456 * Find the next allocated or free object.
457 *
458 * The objectp parameter is in-out. It will be updated to be the next
459 * object which is allocated. Ignore objects which have not been
460 * modified since txg.
461 *
462 * XXX Can only be called on a objset with no dirty data.
463 *
464 * Returns 0 on success, or ENOENT if there are no more objects.
465 */
466 int dmu_object_next(objset_t *os, uint64_t *objectp,
467 boolean_t hole, uint64_t txg);
468
469 /*
470 * Set the number of levels on a dnode. nlevels must be greater than the
471 * current number of levels or an EINVAL will be returned.
472 */
473 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
474 dmu_tx_t *tx);
475
476 /*
477 * Set the data blocksize for an object.
478 *
479 * The object cannot have any blocks allocated beyond the first. If
480 * the first block is allocated already, the new size must be greater
481 * than the current block size. If these conditions are not met,
482 * ENOTSUP will be returned.
483 *
484 * Returns 0 on success, or EBUSY if there are any holds on the object
485 * contents, or ENOTSUP as described above.
486 */
487 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
488 int ibs, dmu_tx_t *tx);
489
490 /*
491 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
492 * to accommodate the change. When calling this function, the caller must
493 * ensure that the object's nlevels can sufficiently support the new maxblkid.
494 */
495 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
496 dmu_tx_t *tx);
497
498 /*
499 * Set the checksum property on a dnode. The new checksum algorithm will
500 * apply to all newly written blocks; existing blocks will not be affected.
501 */
502 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
503 dmu_tx_t *tx);
504
505 /*
506 * Set the compress property on a dnode. The new compression algorithm will
507 * apply to all newly written blocks; existing blocks will not be affected.
508 */
509 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
510 dmu_tx_t *tx);
511
512 /*
513 * Get an estimated cache size for an object. Caller must expect races.
514 */
515 int dmu_object_cached_size(objset_t *os, uint64_t object,
516 uint64_t *l1sz, uint64_t *l2sz);
517
518 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
519 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
520 int compressed_size, int byteorder, dmu_tx_t *tx);
521 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
522 dmu_tx_t *tx);
523
524 /*
525 * Decide how to write a block: checksum, compression, number of copies, etc.
526 */
527 #define WP_NOFILL 0x1
528 #define WP_DMU_SYNC 0x2
529 #define WP_SPILL 0x4
530 #define WP_DIRECT_WR 0x8
531
532 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
533 struct zio_prop *zp);
534
535 /*
536 * The bonus data is accessed more or less like a regular buffer.
537 * You must dmu_bonus_hold() to get the buffer, which will give you a
538 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
539 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
540 * before modifying it, and the
541 * object must be held in an assigned transaction before calling
542 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
543 * buffer as well. You must release what you hold with dmu_buf_rele().
544 *
545 * Returns ENOENT, EIO, or 0.
546 */
547 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
548 dmu_buf_t **dbp);
549 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
550 uint32_t flags);
551 int dmu_bonus_max(void);
552 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
553 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
554 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
555 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
556
557 /*
558 * Special spill buffer support used by "SA" framework
559 */
560
561 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
562 dmu_buf_t **dbp);
563 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
564 const void *tag, dmu_buf_t **dbp);
565 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
566
567 /*
568 * Obtain the DMU buffer from the specified object which contains the
569 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
570 * that it will remain in memory. You must release the hold with
571 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
572 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
573 *
574 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
575 * on the returned buffer before reading or writing the buffer's
576 * db_data. The comments for those routines describe what particular
577 * operations are valid after calling them.
578 *
579 * The object number must be a valid, allocated object number.
580 */
581 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
582 const void *tag, dmu_buf_t **, int flags);
583 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
584 uint64_t length, int read, const void *tag, int *numbufsp,
585 dmu_buf_t ***dbpp);
586 int dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
587 const void *tag, dmu_buf_t **dbp);
588 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
589 const void *tag, dmu_buf_t **dbp, int flags);
590 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
591 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
592 dmu_buf_t ***dbpp, uint32_t flags);
593 int dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset, const void *tag,
594 dmu_buf_t **dbp);
595
596 /*
597 * Add a reference to a dmu buffer that has already been held via
598 * dmu_buf_hold() in the current context.
599 */
600 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
601
602 /*
603 * Attempt to add a reference to a dmu buffer that is in an unknown state,
604 * using a pointer that may have been invalidated by eviction processing.
605 * The request will succeed if the passed in dbuf still represents the
606 * same os/object/blkid, is ineligible for eviction, and has at least
607 * one hold by a user other than the syncer.
608 */
609 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
610 uint64_t blkid, const void *tag);
611
612 void dmu_buf_rele(dmu_buf_t *db, const void *tag);
613 uint64_t dmu_buf_refcount(dmu_buf_t *db);
614 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
615
616 /*
617 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
618 * range of an object. A pointer to an array of dmu_buf_t*'s is
619 * returned (in *dbpp).
620 *
621 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
622 * frees the array. The hold on the array of buffers MUST be released
623 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
624 * individually with dmu_buf_rele.
625 */
626 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
627 uint64_t length, boolean_t read, const void *tag,
628 int *numbufsp, dmu_buf_t ***dbpp);
629 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
630
631 typedef void dmu_buf_evict_func_t(void *user_ptr);
632
633 /*
634 * A DMU buffer user object may be associated with a dbuf for the
635 * duration of its lifetime. This allows the user of a dbuf (client)
636 * to attach private data to a dbuf (e.g. in-core only data such as a
637 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
638 * when that dbuf has been evicted. Clients typically respond to the
639 * eviction notification by freeing their private data, thus ensuring
640 * the same lifetime for both dbuf and private data.
641 *
642 * The mapping from a dmu_buf_user_t to any client private data is the
643 * client's responsibility. All current consumers of the API with private
644 * data embed a dmu_buf_user_t as the first member of the structure for
645 * their private data. This allows conversions between the two types
646 * with a simple cast. Since the DMU buf user API never needs access
647 * to the private data, other strategies can be employed if necessary
648 * or convenient for the client (e.g. using container_of() to do the
649 * conversion for private data that cannot have the dmu_buf_user_t as
650 * its first member).
651 *
652 * Eviction callbacks are executed without the dbuf mutex held or any
653 * other type of mechanism to guarantee that the dbuf is still available.
654 * For this reason, users must assume the dbuf has already been freed
655 * and not reference the dbuf from the callback context.
656 *
657 * Users requesting "immediate eviction" are notified as soon as the dbuf
658 * is only referenced by dirty records (dirties == holds). Otherwise the
659 * notification occurs after eviction processing for the dbuf begins.
660 */
661 typedef struct dmu_buf_user {
662 /*
663 * Asynchronous user eviction callback state.
664 */
665 taskq_ent_t dbu_tqent;
666
667 /* Size of user data, for inclusion in dbuf_cache accounting. */
668 uint64_t dbu_size;
669
670 /*
671 * This instance's eviction function pointers.
672 *
673 * dbu_evict_func_sync is called synchronously and then
674 * dbu_evict_func_async is executed asynchronously on a taskq.
675 */
676 dmu_buf_evict_func_t *dbu_evict_func_sync;
677 dmu_buf_evict_func_t *dbu_evict_func_async;
678 #ifdef ZFS_DEBUG
679 /*
680 * Pointer to user's dbuf pointer. NULL for clients that do
681 * not associate a dbuf with their user data.
682 *
683 * The dbuf pointer is cleared upon eviction so as to catch
684 * use-after-evict bugs in clients.
685 */
686 dmu_buf_t **dbu_clear_on_evict_dbufp;
687 #endif
688 } dmu_buf_user_t;
689
690 /*
691 * Initialize the given dmu_buf_user_t instance with the eviction function
692 * evict_func, to be called when the user is evicted.
693 *
694 * NOTE: This function should only be called once on a given dmu_buf_user_t.
695 * To allow enforcement of this, dbu must already be zeroed on entry.
696 */
697 static inline void
dmu_buf_init_user(dmu_buf_user_t * dbu,dmu_buf_evict_func_t * evict_func_sync,dmu_buf_evict_func_t * evict_func_async,dmu_buf_t ** clear_on_evict_dbufp __maybe_unused)698 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
699 dmu_buf_evict_func_t *evict_func_async,
700 dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
701 {
702 ASSERT(dbu->dbu_evict_func_sync == NULL);
703 ASSERT(dbu->dbu_evict_func_async == NULL);
704
705 /* must have at least one evict func */
706 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
707 dbu->dbu_evict_func_sync = evict_func_sync;
708 dbu->dbu_evict_func_async = evict_func_async;
709 taskq_init_ent(&dbu->dbu_tqent);
710 #ifdef ZFS_DEBUG
711 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
712 #endif
713 }
714
715 /*
716 * Attach user data to a dbuf and mark it for normal (when the dbuf's
717 * data is cleared or its reference count goes to zero) eviction processing.
718 *
719 * Returns NULL on success, or the existing user if another user currently
720 * owns the buffer.
721 */
722 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
723
724 /*
725 * Attach user data to a dbuf and mark it for immediate (its dirty and
726 * reference counts are equal) eviction processing.
727 *
728 * Returns NULL on success, or the existing user if another user currently
729 * owns the buffer.
730 */
731 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
732
733 /*
734 * Replace the current user of a dbuf.
735 *
736 * If given the current user of a dbuf, replaces the dbuf's user with
737 * "new_user" and returns the user data pointer that was replaced.
738 * Otherwise returns the current, and unmodified, dbuf user pointer.
739 */
740 void *dmu_buf_replace_user(dmu_buf_t *db,
741 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
742
743 /*
744 * Remove the specified user data for a DMU buffer.
745 *
746 * Returns the user that was removed on success, or the current user if
747 * another user currently owns the buffer.
748 */
749 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
750
751 /*
752 * User data size accounting. This can be used to artifically inflate the size
753 * of the dbuf during cache accounting, so that dbuf_evict_thread evicts enough
754 * to satisfy memory reclaim requests. It's not used for anything else, and
755 * defaults to 0.
756 */
757 uint64_t dmu_buf_user_size(dmu_buf_t *db);
758 void dmu_buf_add_user_size(dmu_buf_t *db, uint64_t nadd);
759 void dmu_buf_sub_user_size(dmu_buf_t *db, uint64_t nsub);
760
761 /*
762 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
763 */
764 void *dmu_buf_get_user(dmu_buf_t *db);
765
766 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
767
768 /* Block until any in-progress dmu buf user evictions complete. */
769 void dmu_buf_user_evict_wait(void);
770
771 /*
772 * Returns the blkptr associated with this dbuf, or NULL if not set.
773 */
774 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
775
776 /*
777 * Indicate that you are going to modify the buffer's data (db_data).
778 *
779 * The transaction (tx) must be assigned to a txg (ie. you've called
780 * dmu_tx_assign()). The buffer's object must be held in the tx
781 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
782 */
783 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
784 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
785 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
786 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
787
788 /*
789 * You must create a transaction, then hold the objects which you will
790 * (or might) modify as part of this transaction. Then you must assign
791 * the transaction to a transaction group. Once the transaction has
792 * been assigned, you can modify buffers which belong to held objects as
793 * part of this transaction. You can't modify buffers before the
794 * transaction has been assigned; you can't modify buffers which don't
795 * belong to objects which this transaction holds; you can't hold
796 * objects once the transaction has been assigned. You may hold an
797 * object which you are going to free (with dmu_object_free()), but you
798 * don't have to.
799 *
800 * You can abort the transaction before it has been assigned.
801 *
802 * Note that you may hold buffers (with dmu_buf_hold) at any time,
803 * regardless of transaction state.
804 */
805
806 #define DMU_NEW_OBJECT (-1ULL)
807 #define DMU_OBJECT_END (-1ULL)
808
809 dmu_tx_t *dmu_tx_create(objset_t *os);
810 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
811 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
812 int len);
813 void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
814 void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
815 int len);
816 void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
817 int len);
818 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
819 uint64_t len);
820 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
821 uint64_t len);
822 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
823 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
824 const char *name);
825 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
826 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
827 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
828 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
829 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
830 void dmu_tx_abort(dmu_tx_t *tx);
831 int dmu_tx_assign(dmu_tx_t *tx, uint64_t flags);
832 void dmu_tx_wait(dmu_tx_t *tx);
833 void dmu_tx_commit(dmu_tx_t *tx);
834 void dmu_tx_mark_netfree(dmu_tx_t *tx);
835
836 /*
837 * To register a commit callback, dmu_tx_callback_register() must be called.
838 *
839 * dcb_data is a pointer to caller private data that is passed on as a
840 * callback parameter. The caller is responsible for properly allocating and
841 * freeing it.
842 *
843 * When registering a callback, the transaction must be already created, but
844 * it cannot be committed or aborted. It can be assigned to a txg or not.
845 *
846 * The callback will be called after the transaction has been safely written
847 * to stable storage and will also be called if the dmu_tx is aborted.
848 * If there is any error which prevents the transaction from being committed to
849 * disk, the callback will be called with a value of error != 0.
850 *
851 * When multiple callbacks are registered to the transaction, the callbacks
852 * will be called in reverse order to let Lustre, the only user of commit
853 * callback currently, take the fast path of its commit callback handling.
854 */
855 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
856
857 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
858 void *dcb_data);
859 void dmu_tx_do_callbacks(list_t *cb_list, int error);
860
861 /*
862 * Free up the data blocks for a defined range of a file. If size is
863 * -1, the range from offset to end-of-file is freed.
864 */
865 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
866 uint64_t size, dmu_tx_t *tx);
867 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
868 uint64_t size);
869 int dmu_free_long_object(objset_t *os, uint64_t object);
870
871 /*
872 * Convenience functions.
873 *
874 * Canfail routines will return 0 on success, or an errno if there is a
875 * nonrecoverable I/O error.
876 */
877 #define DMU_READ_PREFETCH 0 /* prefetch */
878 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
879 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
880 #define DMU_DIRECTIO 4 /* use Direct I/O */
881
882 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
883 void *buf, uint32_t flags);
884 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
885 uint32_t flags);
886 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
887 const void *buf, dmu_tx_t *tx);
888 int dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
889 const void *buf, dmu_tx_t *tx);
890 int dmu_write_by_dnode_flags(dnode_t *dn, uint64_t offset, uint64_t size,
891 const void *buf, dmu_tx_t *tx, uint32_t flags);
892 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
893 dmu_tx_t *tx);
894 #ifdef _KERNEL
895 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
896 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
897 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
898 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
899 dmu_tx_t *tx);
900 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
901 dmu_tx_t *tx);
902 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
903 dmu_tx_t *tx);
904 #endif
905 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
906 void dmu_return_arcbuf(struct arc_buf *buf);
907 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
908 struct arc_buf *buf, dmu_tx_t *tx);
909 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
910 struct arc_buf *buf, dmu_tx_t *tx);
911 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
912 extern uint_t zfs_max_recordsize;
913
914 /*
915 * Asynchronously try to read in the data.
916 */
917 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
918 uint64_t len, enum zio_priority pri);
919 void dmu_prefetch_by_dnode(dnode_t *dn, int64_t level, uint64_t offset,
920 uint64_t len, enum zio_priority pri);
921 void dmu_prefetch_dnode(objset_t *os, uint64_t object, enum zio_priority pri);
922 int dmu_prefetch_wait(objset_t *os, uint64_t object, uint64_t offset,
923 uint64_t size);
924
925 typedef struct dmu_object_info {
926 /* All sizes are in bytes unless otherwise indicated. */
927 uint32_t doi_data_block_size;
928 uint32_t doi_metadata_block_size;
929 dmu_object_type_t doi_type;
930 dmu_object_type_t doi_bonus_type;
931 uint64_t doi_bonus_size;
932 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
933 uint8_t doi_checksum;
934 uint8_t doi_compress;
935 uint8_t doi_nblkptr;
936 uint8_t doi_pad[4];
937 uint64_t doi_dnodesize;
938 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
939 uint64_t doi_max_offset;
940 uint64_t doi_fill_count; /* number of non-empty blocks */
941 } dmu_object_info_t;
942
943 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
944
945 typedef struct dmu_object_type_info {
946 dmu_object_byteswap_t ot_byteswap;
947 boolean_t ot_metadata;
948 boolean_t ot_dbuf_metadata_cache;
949 boolean_t ot_encrypt;
950 const char *ot_name;
951 } dmu_object_type_info_t;
952
953 typedef const struct dmu_object_byteswap_info {
954 arc_byteswap_func_t ob_func;
955 const char *ob_name;
956 } dmu_object_byteswap_info_t;
957
958 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
959 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
960
961 /*
962 * Get information on a DMU object.
963 *
964 * Return 0 on success or ENOENT if object is not allocated.
965 *
966 * If doi is NULL, just indicates whether the object exists.
967 */
968 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
969 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
970 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
971 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
972 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
973 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
974 /*
975 * Like dmu_object_info_from_db, but faster still when you only care about
976 * the size.
977 */
978 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
979 u_longlong_t *nblk512);
980
981 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
982
983 typedef struct dmu_objset_stats {
984 uint64_t dds_num_clones; /* number of clones of this */
985 uint64_t dds_creation_txg;
986 uint64_t dds_guid;
987 dmu_objset_type_t dds_type;
988 uint8_t dds_is_snapshot;
989 uint8_t dds_inconsistent;
990 uint8_t dds_redacted;
991 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
992 } dmu_objset_stats_t;
993
994 /*
995 * Get stats on a dataset.
996 */
997 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
998
999 /*
1000 * Add entries to the nvlist for all the objset's properties. See
1001 * zfs_prop_table[] and zfs(1m) for details on the properties.
1002 */
1003 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
1004
1005 /*
1006 * Get the space usage statistics for statvfs().
1007 *
1008 * refdbytes is the amount of space "referenced" by this objset.
1009 * availbytes is the amount of space available to this objset, taking
1010 * into account quotas & reservations, assuming that no other objsets
1011 * use the space first. These values correspond to the 'referenced' and
1012 * 'available' properties, described in the zfs(1m) manpage.
1013 *
1014 * usedobjs and availobjs are the number of objects currently allocated,
1015 * and available.
1016 */
1017 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
1018 uint64_t *usedobjsp, uint64_t *availobjsp);
1019
1020 /*
1021 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
1022 * (Contrast with the ds_guid which is a 64-bit ID that will never
1023 * change, so there is a small probability that it will collide.)
1024 */
1025 uint64_t dmu_objset_fsid_guid(objset_t *os);
1026
1027 /*
1028 * Get the [cm]time for an objset's snapshot dir
1029 */
1030 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
1031
1032 int dmu_objset_is_snapshot(objset_t *os);
1033
1034 extern struct spa *dmu_objset_spa(objset_t *os);
1035 extern struct zilog *dmu_objset_zil(objset_t *os);
1036 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1037 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1038 extern void dmu_objset_name(objset_t *os, char *buf);
1039 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1040 extern uint64_t dmu_objset_id(objset_t *os);
1041 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1042 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1043 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1044 extern int dmu_objset_blksize(objset_t *os);
1045 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1046 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1047 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
1048 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
1049 int maxlen, boolean_t *conflict);
1050 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1051 uint64_t *idp, uint64_t *offp);
1052
1053 typedef struct zfs_file_info {
1054 uint64_t zfi_user;
1055 uint64_t zfi_group;
1056 uint64_t zfi_project;
1057 uint64_t zfi_generation;
1058 } zfs_file_info_t;
1059
1060 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1061 struct zfs_file_info *zoi);
1062 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1063 file_info_cb_t *cb);
1064 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1065 extern void *dmu_objset_get_user(objset_t *os);
1066
1067 /*
1068 * Return the txg number for the given assigned transaction.
1069 */
1070 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1071
1072 /*
1073 * Synchronous write.
1074 * If a parent zio is provided this function initiates a write on the
1075 * provided buffer as a child of the parent zio.
1076 * In the absence of a parent zio, the write is completed synchronously.
1077 * At write completion, blk is filled with the bp of the written block.
1078 * Note that while the data covered by this function will be on stable
1079 * storage when the write completes this new data does not become a
1080 * permanent part of the file until the associated transaction commits.
1081 */
1082
1083 /*
1084 * {zfs,zvol,ztest}_get_done() args
1085 */
1086 typedef struct zgd {
1087 struct lwb *zgd_lwb;
1088 struct blkptr *zgd_bp;
1089 dmu_buf_t *zgd_db;
1090 struct zfs_locked_range *zgd_lr;
1091 void *zgd_private;
1092 } zgd_t;
1093
1094 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1095 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1096
1097 /*
1098 * Find the next hole or data block in file starting at *off
1099 * Return found offset in *off. Return ESRCH for end of file.
1100 */
1101 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1102 uint64_t *off);
1103
1104 int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset,
1105 uint64_t length, struct blkptr *bps, size_t *nbpsp);
1106 int dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset,
1107 uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps);
1108
1109 /*
1110 * Initial setup and final teardown.
1111 */
1112 extern void dmu_init(void);
1113 extern void dmu_fini(void);
1114
1115 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1116 uint64_t object, uint64_t offset, int len);
1117 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1118 dmu_traverse_cb_t cb, void *arg);
1119
1120 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1121 zfs_file_t *fp, offset_t *offp);
1122
1123 /* CRC64 table */
1124 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1125 extern uint64_t zfs_crc64_table[256];
1126
1127 extern uint_t dmu_prefetch_max;
1128
1129 #ifdef __cplusplus
1130 }
1131 #endif
1132
1133 #endif /* _SYS_DMU_H */
1134