xref: /freebsd/sys/cddl/contrib/opensolaris/uts/common/sys/dtrace.h (revision 4303bde4297a3d19cabdb08ce1550f682578d2ba)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29  * Copyright (c) 2013 by Delphix. All rights reserved.
30  */
31 
32 #ifndef _SYS_DTRACE_H
33 #define	_SYS_DTRACE_H
34 
35 #ifdef	__cplusplus
36 extern "C" {
37 #endif
38 
39 /*
40  * DTrace Dynamic Tracing Software: Kernel Interfaces
41  *
42  * Note: The contents of this file are private to the implementation of the
43  * Solaris system and DTrace subsystem and are subject to change at any time
44  * without notice.  Applications and drivers using these interfaces will fail
45  * to run on future releases.  These interfaces should not be used for any
46  * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47  * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48  */
49 
50 #ifndef _ASM
51 
52 #include <sys/param.h>
53 #include <sys/stdint.h>
54 #ifdef _KERNEL
55 #include <sys/endian.h>
56 #endif
57 #if !defined(IN_BASE) && !defined(_KERNEL)
58 /* Compatibility types to allow including the CTF API */
59 typedef unsigned int zoneid_t;
60 typedef unsigned char uchar_t;
61 typedef unsigned short ushort_t;
62 typedef unsigned int uint_t;
63 typedef unsigned long ulong_t;
64 typedef int processorid_t;
65 #else
66 #include <sys/modctl.h>
67 #include <sys/processor.h>
68 #include <sys/cpuvar.h>
69 #include <sys/param.h>
70 #include <sys/linker.h>
71 #include <sys/ioccom.h>
72 #include <sys/cred.h>
73 #ifdef __FreeBSD__
74 #include <sys/_mutex.h>
75 #endif
76 #include <sys/proc.h>
77 #include <sys/types.h>
78 #include <sys/ucred.h>
79 #endif
80 typedef int model_t;
81 #include <sys/ctf_api.h>
82 
83 /*
84  * DTrace Universal Constants and Typedefs
85  */
86 #define	DTRACE_CPUALL		-1	/* all CPUs */
87 #define	DTRACE_IDNONE		0	/* invalid probe identifier */
88 #define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
89 #define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
90 #define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
91 #define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
92 #define	DTRACE_PROVNONE		0	/* invalid provider identifier */
93 #define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
94 #define	DTRACE_ARGNONE		-1	/* invalid argument index */
95 
96 #define	DTRACE_PROVNAMELEN	64
97 #define	DTRACE_MODNAMELEN	64
98 #define	DTRACE_FUNCNAMELEN	192
99 #define	DTRACE_NAMELEN		64
100 #define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
101 				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
102 #define	DTRACE_ARGTYPELEN	128
103 
104 typedef uint32_t dtrace_id_t;		/* probe identifier */
105 typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
106 typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
107 typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
108 typedef uint16_t dtrace_actkind_t;	/* action kind */
109 typedef int64_t dtrace_optval_t;	/* option value */
110 typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
111 
112 typedef enum dtrace_probespec {
113 	DTRACE_PROBESPEC_NONE = -1,
114 	DTRACE_PROBESPEC_PROVIDER = 0,
115 	DTRACE_PROBESPEC_MOD,
116 	DTRACE_PROBESPEC_FUNC,
117 	DTRACE_PROBESPEC_NAME
118 } dtrace_probespec_t;
119 
120 /*
121  * DTrace Intermediate Format (DIF)
122  *
123  * The following definitions describe the DTrace Intermediate Format (DIF), a
124  * a RISC-like instruction set and program encoding used to represent
125  * predicates and actions that can be bound to DTrace probes.  The constants
126  * below defining the number of available registers are suggested minimums; the
127  * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
128  * registers provided by the current DTrace implementation.
129  */
130 #define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
131 #define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
132 #define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
133 #define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
134 #define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
135 
136 #define	DIF_OP_OR	1		/* or	r1, r2, rd */
137 #define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
138 #define	DIF_OP_AND	3		/* and	r1, r2, rd */
139 #define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
140 #define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
141 #define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
142 #define	DIF_OP_ADD	7		/* add	r1, r2, rd */
143 #define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
144 #define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
145 #define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
146 #define	DIF_OP_SREM	11		/* srem r1, r2, rd */
147 #define	DIF_OP_UREM	12		/* urem r1, r2, rd */
148 #define	DIF_OP_NOT	13		/* not	r1, rd */
149 #define	DIF_OP_MOV	14		/* mov	r1, rd */
150 #define	DIF_OP_CMP	15		/* cmp	r1, r2 */
151 #define	DIF_OP_TST	16		/* tst  r1 */
152 #define	DIF_OP_BA	17		/* ba	label */
153 #define	DIF_OP_BE	18		/* be	label */
154 #define	DIF_OP_BNE	19		/* bne	label */
155 #define	DIF_OP_BG	20		/* bg	label */
156 #define	DIF_OP_BGU	21		/* bgu	label */
157 #define	DIF_OP_BGE	22		/* bge	label */
158 #define	DIF_OP_BGEU	23		/* bgeu	label */
159 #define	DIF_OP_BL	24		/* bl	label */
160 #define	DIF_OP_BLU	25		/* blu	label */
161 #define	DIF_OP_BLE	26		/* ble	label */
162 #define	DIF_OP_BLEU	27		/* bleu	label */
163 #define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
164 #define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
165 #define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
166 #define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
167 #define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
168 #define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
169 #define	DIF_OP_LDX	34		/* ldx	[r1], rd */
170 #define	DIF_OP_RET	35		/* ret	rd */
171 #define	DIF_OP_NOP	36		/* nop */
172 #define	DIF_OP_SETX	37		/* setx	intindex, rd */
173 #define	DIF_OP_SETS	38		/* sets strindex, rd */
174 #define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
175 #define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
176 #define	DIF_OP_LDGS	41		/* ldgs var, rd */
177 #define	DIF_OP_STGS	42		/* stgs var, rs */
178 #define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
179 #define	DIF_OP_LDTS	44		/* ldts var, rd */
180 #define	DIF_OP_STTS	45		/* stts var, rs */
181 #define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
182 #define	DIF_OP_CALL	47		/* call	subr, rd */
183 #define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
184 #define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
185 #define	DIF_OP_POPTS	50		/* popts */
186 #define	DIF_OP_FLUSHTS	51		/* flushts */
187 #define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
188 #define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
189 #define	DIF_OP_STGAA	54		/* stgaa var, rs */
190 #define	DIF_OP_STTAA	55		/* sttaa var, rs */
191 #define	DIF_OP_LDLS	56		/* ldls	var, rd */
192 #define	DIF_OP_STLS	57		/* stls	var, rs */
193 #define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
194 #define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
195 #define	DIF_OP_STB	60		/* stb	r1, [rd] */
196 #define	DIF_OP_STH	61		/* sth	r1, [rd] */
197 #define	DIF_OP_STW	62		/* stw	r1, [rd] */
198 #define	DIF_OP_STX	63		/* stx	r1, [rd] */
199 #define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
200 #define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
201 #define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
202 #define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
203 #define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
204 #define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
205 #define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
206 #define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
207 #define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
208 #define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
209 #define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
210 #define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
211 #define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
212 #define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
213 #define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
214 #define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
215 
216 #define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
217 #define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
218 #define	DIF_REGISTER_MAX	0xff	/* highest register number */
219 #define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
220 #define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
221 
222 #define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
223 #define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
224 #define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
225 
226 #define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
227 #define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
228 #define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
229 
230 #define	DIF_VAR_ARGS		0x0000	/* arguments array */
231 #define	DIF_VAR_REGS		0x0001	/* registers array */
232 #define	DIF_VAR_UREGS		0x0002	/* user registers array */
233 #define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
234 #define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
235 #define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
236 #define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
237 #define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
238 #define	DIF_VAR_ID		0x0105	/* probe ID */
239 #define	DIF_VAR_ARG0		0x0106	/* first argument */
240 #define	DIF_VAR_ARG1		0x0107	/* second argument */
241 #define	DIF_VAR_ARG2		0x0108	/* third argument */
242 #define	DIF_VAR_ARG3		0x0109	/* fourth argument */
243 #define	DIF_VAR_ARG4		0x010a	/* fifth argument */
244 #define	DIF_VAR_ARG5		0x010b	/* sixth argument */
245 #define	DIF_VAR_ARG6		0x010c	/* seventh argument */
246 #define	DIF_VAR_ARG7		0x010d	/* eighth argument */
247 #define	DIF_VAR_ARG8		0x010e	/* ninth argument */
248 #define	DIF_VAR_ARG9		0x010f	/* tenth argument */
249 #define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
250 #define	DIF_VAR_CALLER		0x0111	/* caller */
251 #define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
252 #define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
253 #define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
254 #define	DIF_VAR_PROBENAME	0x0115	/* probe name */
255 #define	DIF_VAR_PID		0x0116	/* process ID */
256 #define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
257 #define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
258 #define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
259 #define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
260 #define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
261 #define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
262 #define	DIF_VAR_PPID		0x011d	/* parent process ID */
263 #define	DIF_VAR_UID		0x011e	/* process user ID */
264 #define	DIF_VAR_GID		0x011f	/* process group ID */
265 #define	DIF_VAR_ERRNO		0x0120	/* thread errno */
266 #define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
267 #define	DIF_VAR_JID		0x0122	/* process jail id */
268 #define	DIF_VAR_JAILNAME	0x0123	/* process jail name */
269 
270 #ifndef illumos
271 #define	DIF_VAR_CPU		0x0200
272 #endif
273 
274 #define	DIF_SUBR_RAND			0
275 #define	DIF_SUBR_MUTEX_OWNED		1
276 #define	DIF_SUBR_MUTEX_OWNER		2
277 #define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
278 #define	DIF_SUBR_MUTEX_TYPE_SPIN	4
279 #define	DIF_SUBR_RW_READ_HELD		5
280 #define	DIF_SUBR_RW_WRITE_HELD		6
281 #define	DIF_SUBR_RW_ISWRITER		7
282 #define	DIF_SUBR_COPYIN			8
283 #define	DIF_SUBR_COPYINSTR		9
284 #define	DIF_SUBR_SPECULATION		10
285 #define	DIF_SUBR_PROGENYOF		11
286 #define	DIF_SUBR_STRLEN			12
287 #define	DIF_SUBR_COPYOUT		13
288 #define	DIF_SUBR_COPYOUTSTR		14
289 #define	DIF_SUBR_ALLOCA			15
290 #define	DIF_SUBR_BCOPY			16
291 #define	DIF_SUBR_COPYINTO		17
292 #define	DIF_SUBR_MSGDSIZE		18
293 #define	DIF_SUBR_MSGSIZE		19
294 #define	DIF_SUBR_GETMAJOR		20
295 #define	DIF_SUBR_GETMINOR		21
296 #define	DIF_SUBR_DDI_PATHNAME		22
297 #define	DIF_SUBR_STRJOIN		23
298 #define	DIF_SUBR_LLTOSTR		24
299 #define	DIF_SUBR_BASENAME		25
300 #define	DIF_SUBR_DIRNAME		26
301 #define	DIF_SUBR_CLEANPATH		27
302 #define	DIF_SUBR_STRCHR			28
303 #define	DIF_SUBR_STRRCHR		29
304 #define	DIF_SUBR_STRSTR			30
305 #define	DIF_SUBR_STRTOK			31
306 #define	DIF_SUBR_SUBSTR			32
307 #define	DIF_SUBR_INDEX			33
308 #define	DIF_SUBR_RINDEX			34
309 #define	DIF_SUBR_HTONS			35
310 #define	DIF_SUBR_HTONL			36
311 #define	DIF_SUBR_HTONLL			37
312 #define	DIF_SUBR_NTOHS			38
313 #define	DIF_SUBR_NTOHL			39
314 #define	DIF_SUBR_NTOHLL			40
315 #define	DIF_SUBR_INET_NTOP		41
316 #define	DIF_SUBR_INET_NTOA		42
317 #define	DIF_SUBR_INET_NTOA6		43
318 #define	DIF_SUBR_TOUPPER		44
319 #define	DIF_SUBR_TOLOWER		45
320 #define	DIF_SUBR_MEMREF			46
321 #define	DIF_SUBR_SX_SHARED_HELD		47
322 #define	DIF_SUBR_SX_EXCLUSIVE_HELD	48
323 #define	DIF_SUBR_SX_ISEXCLUSIVE		49
324 #define	DIF_SUBR_MEMSTR			50
325 #define	DIF_SUBR_GETF			51
326 #define	DIF_SUBR_JSON			52
327 #define	DIF_SUBR_STRTOLL		53
328 #define	DIF_SUBR_MAX			53	/* max subroutine value */
329 
330 typedef uint32_t dif_instr_t;
331 
332 #define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
333 #define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
334 #define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
335 #define	DIF_INSTR_RD(i)			((i) & 0xff)
336 #define	DIF_INSTR_RS(i)			((i) & 0xff)
337 #define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
338 #define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
339 #define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
340 #define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
341 #define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
342 #define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
343 #define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
344 
345 #define	DIF_INSTR_FMT(op, r1, r2, d) \
346 	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
347 
348 #define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
349 #define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
350 #define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
351 #define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
352 #define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
353 #define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
354 #define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
355 #define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
356 #define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
357 #define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
358 #define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
359 #define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
360 #define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
361 #define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
362 #define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
363 #define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
364 #define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
365 #define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
366 #define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
367 #define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
368 #define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
369 
370 #define	DIF_REG_R0	0		/* %r0 is always set to zero */
371 
372 /*
373  * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
374  * of variables, function and associative array arguments, and the return type
375  * for each DIF object (shown below).  It contains a description of the type,
376  * its size in bytes, and a module identifier.
377  */
378 typedef struct dtrace_diftype {
379 	uint8_t dtdt_kind;		/* type kind (see below) */
380 	uint8_t dtdt_ckind;		/* type kind in CTF */
381 	uint8_t dtdt_flags;		/* type flags (see below) */
382 	uint8_t dtdt_pad;		/* reserved for future use */
383 	uint32_t dtdt_size;		/* type size in bytes (unless string) */
384 } dtrace_diftype_t;
385 
386 #define	DIF_TYPE_CTF		0	/* type is a CTF type */
387 #define	DIF_TYPE_STRING		1	/* type is a D string */
388 
389 #define	DIF_TF_BYREF		0x1	/* type is passed by reference */
390 #define	DIF_TF_BYUREF		0x2	/* user type is passed by reference */
391 
392 /*
393  * A DTrace Intermediate Format variable record is used to describe each of the
394  * variables referenced by a given DIF object.  It contains an integer variable
395  * identifier along with variable scope and properties, as shown below.  The
396  * size of this structure must be sizeof (int) aligned.
397  */
398 typedef struct dtrace_difv {
399 	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
400 	uint32_t dtdv_id;		/* variable reference identifier */
401 	uint8_t dtdv_kind;		/* variable kind (see below) */
402 	uint8_t dtdv_scope;		/* variable scope (see below) */
403 	uint16_t dtdv_flags;		/* variable flags (see below) */
404 	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
405 } dtrace_difv_t;
406 
407 #define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
408 #define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
409 
410 #define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
411 #define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
412 #define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
413 
414 #define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
415 #define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
416 
417 /*
418  * DTrace Actions
419  *
420  * The upper byte determines the class of the action; the low bytes determines
421  * the specific action within that class.  The classes of actions are as
422  * follows:
423  *
424  *   [ no class ]                  <= May record process- or kernel-related data
425  *   DTRACEACT_PROC                <= Only records process-related data
426  *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
427  *   DTRACEACT_KERNEL              <= Only records kernel-related data
428  *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
429  *   DTRACEACT_SPECULATIVE         <= Speculation-related action
430  *   DTRACEACT_AGGREGATION         <= Aggregating action
431  */
432 #define	DTRACEACT_NONE			0	/* no action */
433 #define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
434 #define	DTRACEACT_EXIT			2	/* exit() action */
435 #define	DTRACEACT_PRINTF		3	/* printf() action */
436 #define	DTRACEACT_PRINTA		4	/* printa() action */
437 #define	DTRACEACT_LIBACT		5	/* library-controlled action */
438 #define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
439 #define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
440 #define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
441 
442 #define	DTRACEACT_PROC			0x0100
443 #define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
444 #define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
445 #define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
446 #define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
447 #define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
448 
449 #define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
450 #define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
451 #define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
452 #define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
453 #define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
454 
455 #define	DTRACEACT_PROC_CONTROL		0x0300
456 
457 #define	DTRACEACT_KERNEL		0x0400
458 #define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
459 #define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
460 #define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
461 
462 #define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
463 #define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
464 #define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
465 #define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
466 
467 #define	DTRACEACT_SPECULATIVE		0x0600
468 #define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
469 #define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
470 #define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
471 
472 #define	DTRACEACT_CLASS(x)		((x) & 0xff00)
473 
474 #define	DTRACEACT_ISDESTRUCTIVE(x)	\
475 	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
476 	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
477 
478 #define	DTRACEACT_ISSPECULATIVE(x)	\
479 	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
480 
481 #define	DTRACEACT_ISPRINTFLIKE(x)	\
482 	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
483 	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
484 
485 /*
486  * DTrace Aggregating Actions
487  *
488  * These are functions f(x) for which the following is true:
489  *
490  *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
491  *
492  * where x_n is a set of arbitrary data.  Aggregating actions are in their own
493  * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
494  * for easier processing of the aggregation argument and data payload for a few
495  * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
496  */
497 #define	DTRACEACT_AGGREGATION		0x0700
498 #define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
499 #define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
500 #define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
501 #define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
502 #define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
503 #define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
504 #define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
505 #define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
506 #define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
507 
508 #define	DTRACEACT_ISAGG(x)		\
509 	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
510 
511 #define	DTRACE_QUANTIZE_NBUCKETS	\
512 	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
513 
514 #define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
515 
516 #define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
517 	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
518 	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
519 	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
520 	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
521 
522 #define	DTRACE_LQUANTIZE_STEPSHIFT		48
523 #define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
524 #define	DTRACE_LQUANTIZE_LEVELSHIFT		32
525 #define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
526 #define	DTRACE_LQUANTIZE_BASESHIFT		0
527 #define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
528 
529 #define	DTRACE_LQUANTIZE_STEP(x)		\
530 	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
531 	DTRACE_LQUANTIZE_STEPSHIFT)
532 
533 #define	DTRACE_LQUANTIZE_LEVELS(x)		\
534 	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
535 	DTRACE_LQUANTIZE_LEVELSHIFT)
536 
537 #define	DTRACE_LQUANTIZE_BASE(x)		\
538 	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
539 	DTRACE_LQUANTIZE_BASESHIFT)
540 
541 #define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
542 #define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
543 #define	DTRACE_LLQUANTIZE_LOWSHIFT		32
544 #define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
545 #define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
546 #define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
547 #define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
548 #define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
549 
550 #define	DTRACE_LLQUANTIZE_FACTOR(x)		\
551 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
552 	DTRACE_LLQUANTIZE_FACTORSHIFT)
553 
554 #define	DTRACE_LLQUANTIZE_LOW(x)		\
555 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
556 	DTRACE_LLQUANTIZE_LOWSHIFT)
557 
558 #define	DTRACE_LLQUANTIZE_HIGH(x)		\
559 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
560 	DTRACE_LLQUANTIZE_HIGHSHIFT)
561 
562 #define	DTRACE_LLQUANTIZE_NSTEP(x)		\
563 	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
564 	DTRACE_LLQUANTIZE_NSTEPSHIFT)
565 
566 #define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
567 #define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
568 #define	DTRACE_USTACK_ARG(x, y)		\
569 	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
570 
571 #ifndef _LP64
572 #if BYTE_ORDER == _BIG_ENDIAN
573 #define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
574 #else
575 #define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
576 #endif
577 #else
578 #define	DTRACE_PTR(type, name)	type *name
579 #endif
580 
581 /*
582  * DTrace Object Format (DOF)
583  *
584  * DTrace programs can be persistently encoded in the DOF format so that they
585  * may be embedded in other programs (for example, in an ELF file) or in the
586  * dtrace driver configuration file for use in anonymous tracing.  The DOF
587  * format is versioned and extensible so that it can be revised and so that
588  * internal data structures can be modified or extended compatibly.  All DOF
589  * structures use fixed-size types, so the 32-bit and 64-bit representations
590  * are identical and consumers can use either data model transparently.
591  *
592  * The file layout is structured as follows:
593  *
594  * +---------------+-------------------+----- ... ----+---- ... ------+
595  * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
596  * | (file header) | (section headers) | section data | section data  |
597  * +---------------+-------------------+----- ... ----+---- ... ------+
598  * |<------------ dof_hdr.dofh_loadsz --------------->|               |
599  * |<------------ dof_hdr.dofh_filesz ------------------------------->|
600  *
601  * The file header stores meta-data including a magic number, data model for
602  * the instrumentation, data encoding, and properties of the DIF code within.
603  * The header describes its own size and the size of the section headers.  By
604  * convention, an array of section headers follows the file header, and then
605  * the data for all loadable sections and unloadable sections.  This permits
606  * consumer code to easily download the headers and all loadable data into the
607  * DTrace driver in one contiguous chunk, omitting other extraneous sections.
608  *
609  * The section headers describe the size, offset, alignment, and section type
610  * for each section.  Sections are described using a set of #defines that tell
611  * the consumer what kind of data is expected.  Sections can contain links to
612  * other sections by storing a dof_secidx_t, an index into the section header
613  * array, inside of the section data structures.  The section header includes
614  * an entry size so that sections with data arrays can grow their structures.
615  *
616  * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
617  * are represented themselves as a collection of related DOF sections.  This
618  * permits us to change the set of sections associated with a DIFO over time,
619  * and also permits us to encode DIFOs that contain different sets of sections.
620  * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
621  * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
622  * dof_secidx_t's which in turn denote the sections associated with this DIFO.
623  *
624  * This loose coupling of the file structure (header and sections) to the
625  * structure of the DTrace program itself (ECB descriptions, action
626  * descriptions, and DIFOs) permits activities such as relocation processing
627  * to occur in a single pass without having to understand D program structure.
628  *
629  * Finally, strings are always stored in ELF-style string tables along with a
630  * string table section index and string table offset.  Therefore strings in
631  * DOF are always arbitrary-length and not bound to the current implementation.
632  */
633 
634 #define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
635 
636 typedef struct dof_hdr {
637 	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
638 	uint32_t dofh_flags;		/* file attribute flags (if any) */
639 	uint32_t dofh_hdrsize;		/* size of file header in bytes */
640 	uint32_t dofh_secsize;		/* size of section header in bytes */
641 	uint32_t dofh_secnum;		/* number of section headers */
642 	uint64_t dofh_secoff;		/* file offset of section headers */
643 	uint64_t dofh_loadsz;		/* file size of loadable portion */
644 	uint64_t dofh_filesz;		/* file size of entire DOF file */
645 	uint64_t dofh_pad;		/* reserved for future use */
646 } dof_hdr_t;
647 
648 #define	DOF_ID_MAG0	0	/* first byte of magic number */
649 #define	DOF_ID_MAG1	1	/* second byte of magic number */
650 #define	DOF_ID_MAG2	2	/* third byte of magic number */
651 #define	DOF_ID_MAG3	3	/* fourth byte of magic number */
652 #define	DOF_ID_MODEL	4	/* DOF data model (see below) */
653 #define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
654 #define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
655 #define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
656 #define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
657 #define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
658 #define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
659 
660 #define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
661 #define	DOF_MAG_MAG1	'D'
662 #define	DOF_MAG_MAG2	'O'
663 #define	DOF_MAG_MAG3	'F'
664 
665 #define	DOF_MAG_STRING	"\177DOF"
666 #define	DOF_MAG_STRLEN	4
667 
668 #define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
669 #define	DOF_MODEL_ILP32	1
670 #define	DOF_MODEL_LP64	2
671 
672 #ifdef _LP64
673 #define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
674 #else
675 #define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
676 #endif
677 
678 #define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
679 #define	DOF_ENCODE_LSB	1
680 #define	DOF_ENCODE_MSB	2
681 
682 #if BYTE_ORDER == _BIG_ENDIAN
683 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
684 #else
685 #define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
686 #endif
687 
688 #define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
689 #define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
690 #define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
691 
692 #define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
693 
694 typedef uint32_t dof_secidx_t;	/* section header table index type */
695 typedef uint32_t dof_stridx_t;	/* string table index type */
696 
697 #define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
698 #define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
699 
700 typedef struct dof_sec {
701 	uint32_t dofs_type;	/* section type (see below) */
702 	uint32_t dofs_align;	/* section data memory alignment */
703 	uint32_t dofs_flags;	/* section flags (if any) */
704 	uint32_t dofs_entsize;	/* size of section entry (if table) */
705 	uint64_t dofs_offset;	/* offset of section data within file */
706 	uint64_t dofs_size;	/* size of section data in bytes */
707 } dof_sec_t;
708 
709 #define	DOF_SECT_NONE		0	/* null section */
710 #define	DOF_SECT_COMMENTS	1	/* compiler comments */
711 #define	DOF_SECT_SOURCE		2	/* D program source code */
712 #define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
713 #define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
714 #define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
715 #define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
716 #define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
717 #define	DOF_SECT_STRTAB		8	/* string table */
718 #define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
719 #define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
720 #define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
721 #define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
722 #define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
723 #define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
724 #define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
725 #define	DOF_SECT_PROBES		16	/* dof_probe_t array */
726 #define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
727 #define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
728 #define	DOF_SECT_INTTAB		19	/* uint64_t array */
729 #define	DOF_SECT_UTSNAME	20	/* struct utsname */
730 #define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
731 #define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
732 #define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
733 #define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
734 #define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
735 #define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
736 
737 #define	DOF_SECF_LOAD		1	/* section should be loaded */
738 
739 #define	DOF_SEC_ISLOADABLE(x)						\
740 	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
741 	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
742 	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
743 	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
744 	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
745 	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
746 	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
747 	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
748 	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
749 	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
750 	((x) == DOF_SECT_XLEXPORT) ||  ((x) == DOF_SECT_PREXPORT) || 	\
751 	((x) == DOF_SECT_PRENOFFS))
752 
753 typedef struct dof_ecbdesc {
754 	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
755 	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
756 	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
757 	uint32_t dofe_pad;		/* reserved for future use */
758 	uint64_t dofe_uarg;		/* user-supplied library argument */
759 } dof_ecbdesc_t;
760 
761 typedef struct dof_probedesc {
762 	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
763 	dof_stridx_t dofp_provider;	/* provider string */
764 	dof_stridx_t dofp_mod;		/* module string */
765 	dof_stridx_t dofp_func;		/* function string */
766 	dof_stridx_t dofp_name;		/* name string */
767 	uint32_t dofp_id;		/* probe identifier (or zero) */
768 } dof_probedesc_t;
769 
770 typedef struct dof_actdesc {
771 	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
772 	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
773 	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
774 	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
775 	uint64_t dofa_arg;		/* kind-specific argument */
776 	uint64_t dofa_uarg;		/* user-supplied argument */
777 } dof_actdesc_t;
778 
779 typedef struct dof_difohdr {
780 	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
781 	dof_secidx_t dofd_links[1];	/* variable length array of indices */
782 } dof_difohdr_t;
783 
784 typedef struct dof_relohdr {
785 	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
786 	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
787 	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
788 } dof_relohdr_t;
789 
790 typedef struct dof_relodesc {
791 	dof_stridx_t dofr_name;		/* string name of relocation symbol */
792 	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
793 	uint64_t dofr_offset;		/* byte offset for relocation */
794 	uint64_t dofr_data;		/* additional type-specific data */
795 } dof_relodesc_t;
796 
797 #define	DOF_RELO_NONE	0		/* empty relocation entry */
798 #define	DOF_RELO_SETX	1		/* relocate setx value */
799 #define	DOF_RELO_DOFREL	2		/* relocate DOF-relative value */
800 
801 typedef struct dof_optdesc {
802 	uint32_t dofo_option;		/* option identifier */
803 	dof_secidx_t dofo_strtab;	/* string table, if string option */
804 	uint64_t dofo_value;		/* option value or string index */
805 } dof_optdesc_t;
806 
807 typedef uint32_t dof_attr_t;		/* encoded stability attributes */
808 
809 #define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
810 #define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
811 #define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
812 #define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
813 
814 typedef struct dof_provider {
815 	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
816 	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
817 	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
818 	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
819 	dof_stridx_t dofpv_name;	/* provider name string */
820 	dof_attr_t dofpv_provattr;	/* provider attributes */
821 	dof_attr_t dofpv_modattr;	/* module attributes */
822 	dof_attr_t dofpv_funcattr;	/* function attributes */
823 	dof_attr_t dofpv_nameattr;	/* name attributes */
824 	dof_attr_t dofpv_argsattr;	/* args attributes */
825 	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
826 } dof_provider_t;
827 
828 typedef struct dof_probe {
829 	uint64_t dofpr_addr;		/* probe base address or offset */
830 	dof_stridx_t dofpr_func;	/* probe function string */
831 	dof_stridx_t dofpr_name;	/* probe name string */
832 	dof_stridx_t dofpr_nargv;	/* native argument type strings */
833 	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
834 	uint32_t dofpr_argidx;		/* index of first argument mapping */
835 	uint32_t dofpr_offidx;		/* index of first offset entry */
836 	uint8_t dofpr_nargc;		/* native argument count */
837 	uint8_t dofpr_xargc;		/* translated argument count */
838 	uint16_t dofpr_noffs;		/* number of offset entries for probe */
839 	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
840 	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
841 	uint16_t dofpr_pad1;		/* reserved for future use */
842 	uint32_t dofpr_pad2;		/* reserved for future use */
843 } dof_probe_t;
844 
845 typedef struct dof_xlator {
846 	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
847 	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
848 	dof_stridx_t dofxl_argv;	/* input parameter type strings */
849 	uint32_t dofxl_argc;		/* input parameter list length */
850 	dof_stridx_t dofxl_type;	/* output type string name */
851 	dof_attr_t dofxl_attr;		/* output stability attributes */
852 } dof_xlator_t;
853 
854 typedef struct dof_xlmember {
855 	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
856 	dof_stridx_t dofxm_name;	/* member name */
857 	dtrace_diftype_t dofxm_type;	/* member type */
858 } dof_xlmember_t;
859 
860 typedef struct dof_xlref {
861 	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
862 	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
863 	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
864 } dof_xlref_t;
865 
866 /*
867  * DTrace Intermediate Format Object (DIFO)
868  *
869  * A DIFO is used to store the compiled DIF for a D expression, its return
870  * type, and its string and variable tables.  The string table is a single
871  * buffer of character data into which sets instructions and variable
872  * references can reference strings using a byte offset.  The variable table
873  * is an array of dtrace_difv_t structures that describe the name and type of
874  * each variable and the id used in the DIF code.  This structure is described
875  * above in the DIF section of this header file.  The DIFO is used at both
876  * user-level (in the library) and in the kernel, but the structure is never
877  * passed between the two: the DOF structures form the only interface.  As a
878  * result, the definition can change depending on the presence of _KERNEL.
879  */
880 typedef struct dtrace_difo {
881 	dif_instr_t *dtdo_buf;		/* instruction buffer */
882 	uint64_t *dtdo_inttab;		/* integer table (optional) */
883 	char *dtdo_strtab;		/* string table (optional) */
884 	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
885 	uint_t dtdo_len;		/* length of instruction buffer */
886 	uint_t dtdo_intlen;		/* length of integer table */
887 	uint_t dtdo_strlen;		/* length of string table */
888 	uint_t dtdo_varlen;		/* length of variable table */
889 	dtrace_diftype_t dtdo_rtype;	/* return type */
890 	uint_t dtdo_refcnt;		/* owner reference count */
891 	uint_t dtdo_destructive;	/* invokes destructive subroutines */
892 #ifndef _KERNEL
893 	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
894 	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
895 	struct dt_node **dtdo_xlmtab;	/* translator references */
896 	uint_t dtdo_krelen;		/* length of krelo table */
897 	uint_t dtdo_urelen;		/* length of urelo table */
898 	uint_t dtdo_xlmlen;		/* length of translator table */
899 #endif
900 } dtrace_difo_t;
901 
902 /*
903  * DTrace Enabling Description Structures
904  *
905  * When DTrace is tracking the description of a DTrace enabling entity (probe,
906  * predicate, action, ECB, record, etc.), it does so in a description
907  * structure.  These structures all end in "desc", and are used at both
908  * user-level and in the kernel -- but (with the exception of
909  * dtrace_probedesc_t) they are never passed between them.  Typically,
910  * user-level will use the description structures when assembling an enabling.
911  * It will then distill those description structures into a DOF object (see
912  * above), and send it into the kernel.  The kernel will again use the
913  * description structures to create a description of the enabling as it reads
914  * the DOF.  When the description is complete, the enabling will be actually
915  * created -- turning it into the structures that represent the enabling
916  * instead of merely describing it.  Not surprisingly, the description
917  * structures bear a strong resemblance to the DOF structures that act as their
918  * conduit.
919  */
920 struct dtrace_predicate;
921 
922 typedef struct dtrace_probedesc {
923 	dtrace_id_t dtpd_id;			/* probe identifier */
924 	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
925 	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
926 	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
927 	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
928 } dtrace_probedesc_t;
929 
930 typedef struct dtrace_repldesc {
931 	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
932 	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
933 } dtrace_repldesc_t;
934 
935 typedef struct dtrace_preddesc {
936 	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
937 	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
938 } dtrace_preddesc_t;
939 
940 typedef struct dtrace_actdesc {
941 	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
942 	struct dtrace_actdesc *dtad_next;	/* next action */
943 	dtrace_actkind_t dtad_kind;		/* kind of action */
944 	uint32_t dtad_ntuple;			/* number in tuple */
945 	uint64_t dtad_arg;			/* action argument */
946 	uint64_t dtad_uarg;			/* user argument */
947 	int dtad_refcnt;			/* reference count */
948 } dtrace_actdesc_t;
949 
950 typedef struct dtrace_ecbdesc {
951 	dtrace_actdesc_t *dted_action;		/* action description(s) */
952 	dtrace_preddesc_t dted_pred;		/* predicate description */
953 	dtrace_probedesc_t dted_probe;		/* probe description */
954 	uint64_t dted_uarg;			/* library argument */
955 	int dted_refcnt;			/* reference count */
956 } dtrace_ecbdesc_t;
957 
958 /*
959  * DTrace Metadata Description Structures
960  *
961  * DTrace separates the trace data stream from the metadata stream.  The only
962  * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
963  * timestamp) or (in the case of aggregations) aggregation identifiers.  To
964  * determine the structure of the data, DTrace consumers pass the token to the
965  * kernel, and receive in return a corresponding description of the enabled
966  * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
967  * dtrace_aggdesc structure).  Both of these structures are expressed in terms
968  * of record descriptions (via the dtrace_recdesc structure) that describe the
969  * exact structure of the data.  Some record descriptions may also contain a
970  * format identifier; this additional bit of metadata can be retrieved from the
971  * kernel, for which a format description is returned via the dtrace_fmtdesc
972  * structure.  Note that all four of these structures must be bitness-neutral
973  * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
974  */
975 typedef struct dtrace_recdesc {
976 	dtrace_actkind_t dtrd_action;		/* kind of action */
977 	uint32_t dtrd_size;			/* size of record */
978 	uint32_t dtrd_offset;			/* offset in ECB's data */
979 	uint16_t dtrd_alignment;		/* required alignment */
980 	uint16_t dtrd_format;			/* format, if any */
981 	uint64_t dtrd_arg;			/* action argument */
982 	uint64_t dtrd_uarg;			/* user argument */
983 } dtrace_recdesc_t;
984 
985 typedef struct dtrace_eprobedesc {
986 	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
987 	dtrace_id_t dtepd_probeid;		/* probe ID */
988 	uint64_t dtepd_uarg;			/* library argument */
989 	uint32_t dtepd_size;			/* total size */
990 	int dtepd_nrecs;			/* number of records */
991 	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
992 } dtrace_eprobedesc_t;
993 
994 typedef struct dtrace_aggdesc {
995 	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
996 	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
997 	int dtagd_flags;			/* not filled in by kernel */
998 	dtrace_aggid_t dtagd_id;		/* aggregation ID */
999 	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
1000 	uint32_t dtagd_size;			/* size in bytes */
1001 	int dtagd_nrecs;			/* number of records */
1002 	uint32_t dtagd_pad;			/* explicit padding */
1003 	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
1004 } dtrace_aggdesc_t;
1005 
1006 typedef struct dtrace_fmtdesc {
1007 	DTRACE_PTR(char, dtfd_string);		/* format string */
1008 	int dtfd_length;			/* length of format string */
1009 	uint16_t dtfd_format;			/* format identifier */
1010 } dtrace_fmtdesc_t;
1011 
1012 #define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
1013 	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
1014 	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1015 
1016 #define	DTRACE_SIZEOF_AGGDESC(desc)				\
1017 	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
1018 	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1019 
1020 /*
1021  * DTrace Option Interface
1022  *
1023  * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1024  * in a DOF image.  The dof_optdesc structure contains an option identifier and
1025  * an option value.  The valid option identifiers are found below; the mapping
1026  * between option identifiers and option identifying strings is maintained at
1027  * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
1028  * following are potentially valid option values:  all positive integers, zero
1029  * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
1030  * predefined tokens as their values; these are defined with
1031  * DTRACEOPT_{option}_{token}.
1032  */
1033 #define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1034 #define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1035 #define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1036 #define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1037 #define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1038 #define	DTRACEOPT_NSPEC		5	/* number of speculations */
1039 #define	DTRACEOPT_STRSIZE	6	/* string size */
1040 #define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1041 #define	DTRACEOPT_CPU		8	/* CPU to trace */
1042 #define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1043 #define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1044 #define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1045 #define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1046 #define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1047 #define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1048 #define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1049 #define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1050 #define	DTRACEOPT_STATUSRATE	17	/* status rate */
1051 #define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1052 #define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1053 #define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1054 #define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1055 #define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1056 #define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1057 #define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1058 #define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1059 #define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1060 #define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1061 #define	DTRACEOPT_AGGHIST	28	/* histogram aggregation output */
1062 #define	DTRACEOPT_AGGPACK	29	/* packed aggregation output */
1063 #define	DTRACEOPT_AGGZOOM	30	/* zoomed aggregation scaling */
1064 #define	DTRACEOPT_ZONE		31	/* zone in which to enable probes */
1065 #define	DTRACEOPT_MAX		32	/* number of options */
1066 
1067 #define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1068 
1069 #define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1070 #define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1071 #define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1072 
1073 #define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1074 #define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1075 
1076 /*
1077  * DTrace Buffer Interface
1078  *
1079  * In order to get a snapshot of the principal or aggregation buffer,
1080  * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1081  * structure.  This describes which CPU user-level is interested in, and
1082  * where user-level wishes the kernel to snapshot the buffer to (the
1083  * dtbd_data field).  The kernel uses the same structure to pass back some
1084  * information regarding the buffer:  the size of data actually copied out, the
1085  * number of drops, the number of errors, the offset of the oldest record,
1086  * and the time of the snapshot.
1087  *
1088  * If the buffer policy is a "switch" policy, taking a snapshot of the
1089  * principal buffer has the additional effect of switching the active and
1090  * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1091  * the additional effect of switching the active and inactive buffers.
1092  */
1093 typedef struct dtrace_bufdesc {
1094 	uint64_t dtbd_size;			/* size of buffer */
1095 	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1096 	uint32_t dtbd_errors;			/* number of errors */
1097 	uint64_t dtbd_drops;			/* number of drops */
1098 	DTRACE_PTR(char, dtbd_data);		/* data */
1099 	uint64_t dtbd_oldest;			/* offset of oldest record */
1100 	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1101 } dtrace_bufdesc_t;
1102 
1103 /*
1104  * Each record in the buffer (dtbd_data) begins with a header that includes
1105  * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1106  * so that we do not require 8-byte alignment.
1107  */
1108 typedef struct dtrace_rechdr {
1109 	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1110 	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1111 	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1112 } dtrace_rechdr_t;
1113 
1114 #define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1115 	((dtrh)->dtrh_timestamp_lo +				\
1116 	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1117 
1118 #define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1119 	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1120 	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1121 }
1122 
1123 /*
1124  * DTrace Status
1125  *
1126  * The status of DTrace is relayed via the dtrace_status structure.  This
1127  * structure contains members to count drops other than the capacity drops
1128  * available via the buffer interface (see above).  This consists of dynamic
1129  * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1130  * speculative drops (including capacity speculative drops, drops due to busy
1131  * speculative buffers and drops due to unavailable speculative buffers).
1132  * Additionally, the status structure contains a field to indicate the number
1133  * of "fill"-policy buffers have been filled and a boolean field to indicate
1134  * that exit() has been called.  If the dtst_exiting field is non-zero, no
1135  * further data will be generated until tracing is stopped (at which time any
1136  * enablings of the END action will be processed); if user-level sees that
1137  * this field is non-zero, tracing should be stopped as soon as possible.
1138  */
1139 typedef struct dtrace_status {
1140 	uint64_t dtst_dyndrops;			/* dynamic drops */
1141 	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1142 	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1143 	uint64_t dtst_specdrops;		/* speculative drops */
1144 	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1145 	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1146 	uint64_t dtst_errors;			/* total errors */
1147 	uint64_t dtst_filled;			/* number of filled bufs */
1148 	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1149 	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1150 	char dtst_killed;			/* non-zero if killed */
1151 	char dtst_exiting;			/* non-zero if exit() called */
1152 	char dtst_pad[6];			/* pad out to 64-bit align */
1153 } dtrace_status_t;
1154 
1155 /*
1156  * DTrace Configuration
1157  *
1158  * User-level may need to understand some elements of the kernel DTrace
1159  * configuration in order to generate correct DIF.  This information is
1160  * conveyed via the dtrace_conf structure.
1161  */
1162 typedef struct dtrace_conf {
1163 	uint_t dtc_difversion;			/* supported DIF version */
1164 	uint_t dtc_difintregs;			/* # of DIF integer registers */
1165 	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1166 	uint_t dtc_ctfmodel;			/* CTF data model */
1167 	uint_t dtc_pad[8];			/* reserved for future use */
1168 } dtrace_conf_t;
1169 
1170 /*
1171  * DTrace Faults
1172  *
1173  * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1174  * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1175  * postprocessing at user-level.  Probe processing faults induce an ERROR
1176  * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1177  * the error condition using thse symbolic labels.
1178  */
1179 #define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1180 #define	DTRACEFLT_BADADDR		1	/* Bad address */
1181 #define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1182 #define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1183 #define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1184 #define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1185 #define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1186 #define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1187 #define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1188 #define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1189 
1190 #define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1191 
1192 /*
1193  * DTrace Argument Types
1194  *
1195  * Because it would waste both space and time, argument types do not reside
1196  * with the probe.  In order to determine argument types for args[X]
1197  * variables, the D compiler queries for argument types on a probe-by-probe
1198  * basis.  (This optimizes for the common case that arguments are either not
1199  * used or used in an untyped fashion.)  Typed arguments are specified with a
1200  * string of the type name in the dtragd_native member of the argument
1201  * description structure.  Typed arguments may be further translated to types
1202  * of greater stability; the provider indicates such a translated argument by
1203  * filling in the dtargd_xlate member with the string of the translated type.
1204  * Finally, the provider may indicate which argument value a given argument
1205  * maps to by setting the dtargd_mapping member -- allowing a single argument
1206  * to map to multiple args[X] variables.
1207  */
1208 typedef struct dtrace_argdesc {
1209 	dtrace_id_t dtargd_id;			/* probe identifier */
1210 	int dtargd_ndx;				/* arg number (-1 iff none) */
1211 	int dtargd_mapping;			/* value mapping */
1212 	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1213 	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1214 } dtrace_argdesc_t;
1215 
1216 /*
1217  * DTrace Stability Attributes
1218  *
1219  * Each DTrace provider advertises the name and data stability of each of its
1220  * probe description components, as well as its architectural dependencies.
1221  * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1222  * order to compute the properties of an input program and report them.
1223  */
1224 typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1225 typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1226 
1227 #define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1228 #define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1229 #define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1230 #define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1231 #define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1232 #define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1233 #define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1234 #define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1235 #define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1236 
1237 #define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1238 #define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1239 #define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1240 #define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1241 #define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1242 #define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1243 #define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1244 
1245 #define	DTRACE_PRIV_NONE	0x0000
1246 #define	DTRACE_PRIV_KERNEL	0x0001
1247 #define	DTRACE_PRIV_USER	0x0002
1248 #define	DTRACE_PRIV_PROC	0x0004
1249 #define	DTRACE_PRIV_OWNER	0x0008
1250 #define	DTRACE_PRIV_ZONEOWNER	0x0010
1251 
1252 #define	DTRACE_PRIV_ALL	\
1253 	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1254 	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1255 
1256 typedef struct dtrace_ppriv {
1257 	uint32_t dtpp_flags;			/* privilege flags */
1258 	uid_t dtpp_uid;				/* user ID */
1259 	zoneid_t dtpp_zoneid;			/* zone ID */
1260 } dtrace_ppriv_t;
1261 
1262 typedef struct dtrace_attribute {
1263 	dtrace_stability_t dtat_name;		/* entity name stability */
1264 	dtrace_stability_t dtat_data;		/* entity data stability */
1265 	dtrace_class_t dtat_class;		/* entity data dependency */
1266 } dtrace_attribute_t;
1267 
1268 typedef struct dtrace_pattr {
1269 	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1270 	dtrace_attribute_t dtpa_mod;		/* module attributes */
1271 	dtrace_attribute_t dtpa_func;		/* function attributes */
1272 	dtrace_attribute_t dtpa_name;		/* name attributes */
1273 	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1274 } dtrace_pattr_t;
1275 
1276 typedef struct dtrace_providerdesc {
1277 	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1278 	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1279 	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1280 } dtrace_providerdesc_t;
1281 
1282 /*
1283  * DTrace Pseudodevice Interface
1284  *
1285  * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1286  * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1287  * DTrace.
1288  */
1289 #ifdef illumos
1290 #define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1291 #define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1292 #define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1293 #define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1294 #define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1295 #define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1296 #define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1297 #define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1298 #define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1299 #define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1300 #define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1301 #define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1302 #define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1303 #define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1304 #define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1305 #define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1306 #define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1307 #else
1308 #define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1309 							/* provider query */
1310 #define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1311 							/* probe query */
1312 #define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1313 							/* snapshot buffer */
1314 #define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1315 							/* match probes */
1316 typedef struct {
1317 	void	*dof;		/* DOF userland address written to driver. */
1318 	int	n_matched;	/* # matches returned by driver. */
1319 } dtrace_enable_io_t;
1320 #define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1321 							/* enable probes */
1322 #define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1323 							/* snapshot agg. */
1324 #define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1325 							/* get eprobe desc. */
1326 #define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1327 							/* get probe arg */
1328 #define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1329 							/* get config. */
1330 #define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1331 							/* get status */
1332 #define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1333 							/* start tracing */
1334 #define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1335 							/* stop tracing */
1336 #define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1337 							/* get agg. desc. */
1338 #define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1339 							/* get format str */
1340 #define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1341 							/* get DOF */
1342 #define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1343 							/* replicate enab */
1344 #endif
1345 
1346 /*
1347  * DTrace Helpers
1348  *
1349  * In general, DTrace establishes probes in processes and takes actions on
1350  * processes without knowing their specific user-level structures.  Instead of
1351  * existing in the framework, process-specific knowledge is contained by the
1352  * enabling D program -- which can apply process-specific knowledge by making
1353  * appropriate use of DTrace primitives like copyin() and copyinstr() to
1354  * operate on user-level data.  However, there may exist some specific probes
1355  * of particular semantic relevance that the application developer may wish to
1356  * explicitly export.  For example, an application may wish to export a probe
1357  * at the point that it begins and ends certain well-defined transactions.  In
1358  * addition to providing probes, programs may wish to offer assistance for
1359  * certain actions.  For example, in highly dynamic environments (e.g., Java),
1360  * it may be difficult to obtain a stack trace in terms of meaningful symbol
1361  * names (the translation from instruction addresses to corresponding symbol
1362  * names may only be possible in situ); these environments may wish to define
1363  * a series of actions to be applied in situ to obtain a meaningful stack
1364  * trace.
1365  *
1366  * These two mechanisms -- user-level statically defined tracing and assisting
1367  * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1368  * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1369  * providers, probes and their arguments.  If a helper wishes to provide
1370  * action assistance, probe descriptions and corresponding DIF actions may be
1371  * specified in the helper DOF.  For such helper actions, however, the probe
1372  * description describes the specific helper:  all DTrace helpers have the
1373  * provider name "dtrace" and the module name "helper", and the name of the
1374  * helper is contained in the function name (for example, the ustack() helper
1375  * is named "ustack").  Any helper-specific name may be contained in the name
1376  * (for example, if a helper were to have a constructor, it might be named
1377  * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1378  * action that they are helping is taken.  Helper actions may only return DIF
1379  * expressions, and may only call the following subroutines:
1380  *
1381  *    alloca()      <= Allocates memory out of the consumer's scratch space
1382  *    bcopy()       <= Copies memory to scratch space
1383  *    copyin()      <= Copies memory from user-level into consumer's scratch
1384  *    copyinto()    <= Copies memory into a specific location in scratch
1385  *    copyinstr()   <= Copies a string into a specific location in scratch
1386  *
1387  * Helper actions may only access the following built-in variables:
1388  *
1389  *    curthread     <= Current kthread_t pointer
1390  *    tid           <= Current thread identifier
1391  *    pid           <= Current process identifier
1392  *    ppid          <= Parent process identifier
1393  *    uid           <= Current user ID
1394  *    gid           <= Current group ID
1395  *    execname      <= Current executable name
1396  *    zonename      <= Current zone name
1397  *
1398  * Helper actions may not manipulate or allocate dynamic variables, but they
1399  * may have clause-local and statically-allocated global variables.  The
1400  * helper action variable state is specific to the helper action -- variables
1401  * used by the helper action may not be accessed outside of the helper
1402  * action, and the helper action may not access variables that like outside
1403  * of it.  Helper actions may not load from kernel memory at-large; they are
1404  * restricting to loading current user state (via copyin() and variants) and
1405  * scratch space.  As with probe enablings, helper actions are executed in
1406  * program order.  The result of the helper action is the result of the last
1407  * executing helper expression.
1408  *
1409  * Helpers -- composed of either providers/probes or probes/actions (or both)
1410  * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1411  * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1412  * encapsulates the name and base address of the user-level library or
1413  * executable publishing the helpers and probes as well as the DOF that
1414  * contains the definitions of those helpers and probes.
1415  *
1416  * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1417  * helpers and should no longer be used.  No other ioctls are valid on the
1418  * helper minor node.
1419  */
1420 #ifdef illumos
1421 #define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1422 #define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1423 #define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1424 #define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1425 #else
1426 #define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1427 #define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1428 #endif
1429 
1430 typedef struct dof_helper {
1431 	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1432 	uint64_t dofhp_addr;			/* base address of object */
1433 	uint64_t dofhp_dof;			/* address of helper DOF */
1434 #ifdef __FreeBSD__
1435 	pid_t dofhp_pid;			/* target process ID */
1436 	int dofhp_gen;
1437 #endif
1438 } dof_helper_t;
1439 
1440 #define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1441 #define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1442 #define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1443 #define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1444 #define	DTRACEMNRN_CLONE	2		/* first clone minor */
1445 
1446 #ifdef _KERNEL
1447 
1448 /*
1449  * DTrace Provider API
1450  *
1451  * The following functions are implemented by the DTrace framework and are
1452  * used to implement separate in-kernel DTrace providers.  Common functions
1453  * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1454  * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1455  *
1456  * The provider API has two halves:  the API that the providers consume from
1457  * DTrace, and the API that providers make available to DTrace.
1458  *
1459  * 1 Framework-to-Provider API
1460  *
1461  * 1.1  Overview
1462  *
1463  * The Framework-to-Provider API is represented by the dtrace_pops structure
1464  * that the provider passes to the framework when registering itself.  This
1465  * structure consists of the following members:
1466  *
1467  *   dtps_provide()          <-- Provide all probes, all modules
1468  *   dtps_provide_module()   <-- Provide all probes in specified module
1469  *   dtps_enable()           <-- Enable specified probe
1470  *   dtps_disable()          <-- Disable specified probe
1471  *   dtps_suspend()          <-- Suspend specified probe
1472  *   dtps_resume()           <-- Resume specified probe
1473  *   dtps_getargdesc()       <-- Get the argument description for args[X]
1474  *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1475  *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1476  *   dtps_destroy()          <-- Destroy all state associated with this probe
1477  *
1478  * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1479  *
1480  * 1.2.1  Overview
1481  *
1482  *   Called to indicate that the provider should provide all probes.  If the
1483  *   specified description is non-NULL, dtps_provide() is being called because
1484  *   no probe matched a specified probe -- if the provider has the ability to
1485  *   create custom probes, it may wish to create a probe that matches the
1486  *   specified description.
1487  *
1488  * 1.2.2  Arguments and notes
1489  *
1490  *   The first argument is the cookie as passed to dtrace_register().  The
1491  *   second argument is a pointer to a probe description that the provider may
1492  *   wish to consider when creating custom probes.  The provider is expected to
1493  *   call back into the DTrace framework via dtrace_probe_create() to create
1494  *   any necessary probes.  dtps_provide() may be called even if the provider
1495  *   has made available all probes; the provider should check the return value
1496  *   of dtrace_probe_create() to handle this case.  Note that the provider need
1497  *   not implement both dtps_provide() and dtps_provide_module(); see
1498  *   "Arguments and Notes" for dtrace_register(), below.
1499  *
1500  * 1.2.3  Return value
1501  *
1502  *   None.
1503  *
1504  * 1.2.4  Caller's context
1505  *
1506  *   dtps_provide() is typically called from open() or ioctl() context, but may
1507  *   be called from other contexts as well.  The DTrace framework is locked in
1508  *   such a way that providers may not register or unregister.  This means that
1509  *   the provider may not call any DTrace API that affects its registration with
1510  *   the framework, including dtrace_register(), dtrace_unregister(),
1511  *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1512  *   that the provider may (and indeed, is expected to) call probe-related
1513  *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1514  *   and dtrace_probe_arg().
1515  *
1516  * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1517  *
1518  * 1.3.1  Overview
1519  *
1520  *   Called to indicate that the provider should provide all probes in the
1521  *   specified module.
1522  *
1523  * 1.3.2  Arguments and notes
1524  *
1525  *   The first argument is the cookie as passed to dtrace_register().  The
1526  *   second argument is a pointer to a modctl structure that indicates the
1527  *   module for which probes should be created.
1528  *
1529  * 1.3.3  Return value
1530  *
1531  *   None.
1532  *
1533  * 1.3.4  Caller's context
1534  *
1535  *   dtps_provide_module() may be called from open() or ioctl() context, but
1536  *   may also be called from a module loading context.  mod_lock is held, and
1537  *   the DTrace framework is locked in such a way that providers may not
1538  *   register or unregister.  This means that the provider may not call any
1539  *   DTrace API that affects its registration with the framework, including
1540  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1541  *   dtrace_condense().  However, the context is such that the provider may (and
1542  *   indeed, is expected to) call probe-related DTrace routines, including
1543  *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1544  *   that the provider need not implement both dtps_provide() and
1545  *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1546  *   below.
1547  *
1548  * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1549  *
1550  * 1.4.1  Overview
1551  *
1552  *   Called to enable the specified probe.
1553  *
1554  * 1.4.2  Arguments and notes
1555  *
1556  *   The first argument is the cookie as passed to dtrace_register().  The
1557  *   second argument is the identifier of the probe to be enabled.  The third
1558  *   argument is the probe argument as passed to dtrace_probe_create().
1559  *   dtps_enable() will be called when a probe transitions from not being
1560  *   enabled at all to having one or more ECB.  The number of ECBs associated
1561  *   with the probe may change without subsequent calls into the provider.
1562  *   When the number of ECBs drops to zero, the provider will be explicitly
1563  *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1564  *   be called for a probe identifier that hasn't been explicitly enabled via
1565  *   dtps_enable().
1566  *
1567  * 1.4.3  Return value
1568  *
1569  *   None.
1570  *
1571  * 1.4.4  Caller's context
1572  *
1573  *   The DTrace framework is locked in such a way that it may not be called
1574  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1575  *   be acquired.
1576  *
1577  * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1578  *
1579  * 1.5.1  Overview
1580  *
1581  *   Called to disable the specified probe.
1582  *
1583  * 1.5.2  Arguments and notes
1584  *
1585  *   The first argument is the cookie as passed to dtrace_register().  The
1586  *   second argument is the identifier of the probe to be disabled.  The third
1587  *   argument is the probe argument as passed to dtrace_probe_create().
1588  *   dtps_disable() will be called when a probe transitions from being enabled
1589  *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1590  *   identifier that has been explicitly enabled via dtps_disable().
1591  *
1592  * 1.5.3  Return value
1593  *
1594  *   None.
1595  *
1596  * 1.5.4  Caller's context
1597  *
1598  *   The DTrace framework is locked in such a way that it may not be called
1599  *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1600  *   be acquired.
1601  *
1602  * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1603  *
1604  * 1.6.1  Overview
1605  *
1606  *   Called to suspend the specified enabled probe.  This entry point is for
1607  *   providers that may need to suspend some or all of their probes when CPUs
1608  *   are being powered on or when the boot monitor is being entered for a
1609  *   prolonged period of time.
1610  *
1611  * 1.6.2  Arguments and notes
1612  *
1613  *   The first argument is the cookie as passed to dtrace_register().  The
1614  *   second argument is the identifier of the probe to be suspended.  The
1615  *   third argument is the probe argument as passed to dtrace_probe_create().
1616  *   dtps_suspend will only be called on an enabled probe.  Providers that
1617  *   provide a dtps_suspend entry point will want to take roughly the action
1618  *   that it takes for dtps_disable.
1619  *
1620  * 1.6.3  Return value
1621  *
1622  *   None.
1623  *
1624  * 1.6.4  Caller's context
1625  *
1626  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1627  *   specified probe cannot be disabled or destroyed for the duration of
1628  *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1629  *   little latitude; the provider is expected to do no more than a store to
1630  *   memory.
1631  *
1632  * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1633  *
1634  * 1.7.1  Overview
1635  *
1636  *   Called to resume the specified enabled probe.  This entry point is for
1637  *   providers that may need to resume some or all of their probes after the
1638  *   completion of an event that induced a call to dtps_suspend().
1639  *
1640  * 1.7.2  Arguments and notes
1641  *
1642  *   The first argument is the cookie as passed to dtrace_register().  The
1643  *   second argument is the identifier of the probe to be resumed.  The
1644  *   third argument is the probe argument as passed to dtrace_probe_create().
1645  *   dtps_resume will only be called on an enabled probe.  Providers that
1646  *   provide a dtps_resume entry point will want to take roughly the action
1647  *   that it takes for dtps_enable.
1648  *
1649  * 1.7.3  Return value
1650  *
1651  *   None.
1652  *
1653  * 1.7.4  Caller's context
1654  *
1655  *   Interrupts are disabled.  The DTrace framework is in a state such that the
1656  *   specified probe cannot be disabled or destroyed for the duration of
1657  *   dtps_resume().  As interrupts are disabled, the provider is afforded
1658  *   little latitude; the provider is expected to do no more than a store to
1659  *   memory.
1660  *
1661  * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1662  *           dtrace_argdesc_t *desc)
1663  *
1664  * 1.8.1  Overview
1665  *
1666  *   Called to retrieve the argument description for an args[X] variable.
1667  *
1668  * 1.8.2  Arguments and notes
1669  *
1670  *   The first argument is the cookie as passed to dtrace_register(). The
1671  *   second argument is the identifier of the current probe. The third
1672  *   argument is the probe argument as passed to dtrace_probe_create(). The
1673  *   fourth argument is a pointer to the argument description.  This
1674  *   description is both an input and output parameter:  it contains the
1675  *   index of the desired argument in the dtargd_ndx field, and expects
1676  *   the other fields to be filled in upon return.  If there is no argument
1677  *   corresponding to the specified index, the dtargd_ndx field should be set
1678  *   to DTRACE_ARGNONE.
1679  *
1680  * 1.8.3  Return value
1681  *
1682  *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1683  *   members of the dtrace_argdesc_t structure are all output values.
1684  *
1685  * 1.8.4  Caller's context
1686  *
1687  *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1688  *   the DTrace framework is locked in such a way that providers may not
1689  *   register or unregister.  This means that the provider may not call any
1690  *   DTrace API that affects its registration with the framework, including
1691  *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1692  *   dtrace_condense().
1693  *
1694  * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1695  *               int argno, int aframes)
1696  *
1697  * 1.9.1  Overview
1698  *
1699  *   Called to retrieve a value for an argX or args[X] variable.
1700  *
1701  * 1.9.2  Arguments and notes
1702  *
1703  *   The first argument is the cookie as passed to dtrace_register(). The
1704  *   second argument is the identifier of the current probe. The third
1705  *   argument is the probe argument as passed to dtrace_probe_create(). The
1706  *   fourth argument is the number of the argument (the X in the example in
1707  *   1.9.1). The fifth argument is the number of stack frames that were used
1708  *   to get from the actual place in the code that fired the probe to
1709  *   dtrace_probe() itself, the so-called artificial frames. This argument may
1710  *   be used to descend an appropriate number of frames to find the correct
1711  *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1712  *   function is used.
1713  *
1714  * 1.9.3  Return value
1715  *
1716  *   The value of the argument.
1717  *
1718  * 1.9.4  Caller's context
1719  *
1720  *   This is called from within dtrace_probe() meaning that interrupts
1721  *   are disabled. No locks should be taken within this entry point.
1722  *
1723  * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1724  *
1725  * 1.10.1  Overview
1726  *
1727  *   Called to determine if the probe was fired in a user context.
1728  *
1729  * 1.10.2  Arguments and notes
1730  *
1731  *   The first argument is the cookie as passed to dtrace_register(). The
1732  *   second argument is the identifier of the current probe. The third
1733  *   argument is the probe argument as passed to dtrace_probe_create().  This
1734  *   entry point must not be left NULL for providers whose probes allow for
1735  *   mixed mode tracing, that is to say those probes that can fire during
1736  *   kernel- _or_ user-mode execution
1737  *
1738  * 1.10.3  Return value
1739  *
1740  *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1741  *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1742  *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1743  *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1744  *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1745  *   in the probe firing being silently ignored for the enabling; if the
1746  *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1747  *   prevent probe processing for the enabling, but restrictions will be in
1748  *   place that induce a UPRIV fault upon attempt to examine probe arguments
1749  *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1750  *   is set, similar restrictions will be placed upon operation if the
1751  *   privilege is sufficient to process the enabling, but does not otherwise
1752  *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1753  *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1754  *   two policies must be specified), but either may be combined (or not)
1755  *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1756  *
1757  * 1.10.4  Caller's context
1758  *
1759  *   This is called from within dtrace_probe() meaning that interrupts
1760  *   are disabled. No locks should be taken within this entry point.
1761  *
1762  * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1763  *
1764  * 1.11.1 Overview
1765  *
1766  *   Called to destroy the specified probe.
1767  *
1768  * 1.11.2 Arguments and notes
1769  *
1770  *   The first argument is the cookie as passed to dtrace_register().  The
1771  *   second argument is the identifier of the probe to be destroyed.  The third
1772  *   argument is the probe argument as passed to dtrace_probe_create().  The
1773  *   provider should free all state associated with the probe.  The framework
1774  *   guarantees that dtps_destroy() is only called for probes that have either
1775  *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1776  *   Once dtps_disable() has been called for a probe, no further call will be
1777  *   made specifying the probe.
1778  *
1779  * 1.11.3 Return value
1780  *
1781  *   None.
1782  *
1783  * 1.11.4 Caller's context
1784  *
1785  *   The DTrace framework is locked in such a way that it may not be called
1786  *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1787  *   acquired.
1788  *
1789  *
1790  * 2 Provider-to-Framework API
1791  *
1792  * 2.1  Overview
1793  *
1794  * The Provider-to-Framework API provides the mechanism for the provider to
1795  * register itself with the DTrace framework, to create probes, to lookup
1796  * probes and (most importantly) to fire probes.  The Provider-to-Framework
1797  * consists of:
1798  *
1799  *   dtrace_register()       <-- Register a provider with the DTrace framework
1800  *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1801  *   dtrace_invalidate()     <-- Invalidate the specified provider
1802  *   dtrace_condense()       <-- Remove a provider's unenabled probes
1803  *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1804  *   dtrace_probe_create()   <-- Create a DTrace probe
1805  *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1806  *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1807  *   dtrace_probe()          <-- Fire the specified probe
1808  *
1809  * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1810  *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1811  *          dtrace_provider_id_t *idp)
1812  *
1813  * 2.2.1  Overview
1814  *
1815  *   dtrace_register() registers the calling provider with the DTrace
1816  *   framework.  It should generally be called by DTrace providers in their
1817  *   attach(9E) entry point.
1818  *
1819  * 2.2.2  Arguments and Notes
1820  *
1821  *   The first argument is the name of the provider.  The second argument is a
1822  *   pointer to the stability attributes for the provider.  The third argument
1823  *   is the privilege flags for the provider, and must be some combination of:
1824  *
1825  *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1826  *
1827  *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1828  *                             enable probes from this provider
1829  *
1830  *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1831  *                             enable probes from this provider
1832  *
1833  *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1834  *                             may enable probes from this provider
1835  *
1836  *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1837  *                             the privilege requirements above. These probes
1838  *                             require either (a) a user ID matching the user
1839  *                             ID of the cred passed in the fourth argument
1840  *                             or (b) the PRIV_PROC_OWNER privilege.
1841  *
1842  *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1843  *                             the privilege requirements above. These probes
1844  *                             require either (a) a zone ID matching the zone
1845  *                             ID of the cred passed in the fourth argument
1846  *                             or (b) the PRIV_PROC_ZONE privilege.
1847  *
1848  *   Note that these flags designate the _visibility_ of the probes, not
1849  *   the conditions under which they may or may not fire.
1850  *
1851  *   The fourth argument is the credential that is associated with the
1852  *   provider.  This argument should be NULL if the privilege flags don't
1853  *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1854  *   framework stashes the uid and zoneid represented by this credential
1855  *   for use at probe-time, in implicit predicates.  These limit visibility
1856  *   of the probes to users and/or zones which have sufficient privilege to
1857  *   access them.
1858  *
1859  *   The fifth argument is a DTrace provider operations vector, which provides
1860  *   the implementation for the Framework-to-Provider API.  (See Section 1,
1861  *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1862  *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1863  *   members (if the provider so desires, _one_ of these members may be left
1864  *   NULL -- denoting that the provider only implements the other) and (2)
1865  *   the dtps_suspend() and dtps_resume() members, which must either both be
1866  *   NULL or both be non-NULL.
1867  *
1868  *   The sixth argument is a cookie to be specified as the first argument for
1869  *   each function in the Framework-to-Provider API.  This argument may have
1870  *   any value.
1871  *
1872  *   The final argument is a pointer to dtrace_provider_id_t.  If
1873  *   dtrace_register() successfully completes, the provider identifier will be
1874  *   stored in the memory pointed to be this argument.  This argument must be
1875  *   non-NULL.
1876  *
1877  * 2.2.3  Return value
1878  *
1879  *   On success, dtrace_register() returns 0 and stores the new provider's
1880  *   identifier into the memory pointed to by the idp argument.  On failure,
1881  *   dtrace_register() returns an errno:
1882  *
1883  *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1884  *              This may because a parameter that must be non-NULL was NULL,
1885  *              because the name was invalid (either empty or an illegal
1886  *              provider name) or because the attributes were invalid.
1887  *
1888  *   No other failure code is returned.
1889  *
1890  * 2.2.4  Caller's context
1891  *
1892  *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1893  *   hold no locks across dtrace_register() that may also be acquired by
1894  *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1895  *
1896  * 2.3  int dtrace_unregister(dtrace_provider_t id)
1897  *
1898  * 2.3.1  Overview
1899  *
1900  *   Unregisters the specified provider from the DTrace framework.  It should
1901  *   generally be called by DTrace providers in their detach(9E) entry point.
1902  *
1903  * 2.3.2  Arguments and Notes
1904  *
1905  *   The only argument is the provider identifier, as returned from a
1906  *   successful call to dtrace_register().  As a result of calling
1907  *   dtrace_unregister(), the DTrace framework will call back into the provider
1908  *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1909  *   completes, however, the DTrace framework will no longer make calls through
1910  *   the Framework-to-Provider API.
1911  *
1912  * 2.3.3  Return value
1913  *
1914  *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1915  *   returns an errno:
1916  *
1917  *     EBUSY    There are currently processes that have the DTrace pseudodevice
1918  *              open, or there exists an anonymous enabling that hasn't yet
1919  *              been claimed.
1920  *
1921  *   No other failure code is returned.
1922  *
1923  * 2.3.4  Caller's context
1924  *
1925  *   Because a call to dtrace_unregister() may induce calls through the
1926  *   Framework-to-Provider API, the caller may not hold any lock across
1927  *   dtrace_register() that is also acquired in any of the Framework-to-
1928  *   Provider API functions.  Additionally, mod_lock may not be held.
1929  *
1930  * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1931  *
1932  * 2.4.1  Overview
1933  *
1934  *   Invalidates the specified provider.  All subsequent probe lookups for the
1935  *   specified provider will fail, but its probes will not be removed.
1936  *
1937  * 2.4.2  Arguments and note
1938  *
1939  *   The only argument is the provider identifier, as returned from a
1940  *   successful call to dtrace_register().  In general, a provider's probes
1941  *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1942  *   an entire provider, regardless of whether or not probes are enabled or
1943  *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1944  *   probes from firing -- it will merely prevent any new enablings of the
1945  *   provider's probes.
1946  *
1947  * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1948  *
1949  * 2.5.1  Overview
1950  *
1951  *   Removes all the unenabled probes for the given provider. This function is
1952  *   not unlike dtrace_unregister(), except that it doesn't remove the
1953  *   provider just as many of its associated probes as it can.
1954  *
1955  * 2.5.2  Arguments and Notes
1956  *
1957  *   As with dtrace_unregister(), the sole argument is the provider identifier
1958  *   as returned from a successful call to dtrace_register().  As a result of
1959  *   calling dtrace_condense(), the DTrace framework will call back into the
1960  *   given provider's dtps_destroy() entry point for each of the provider's
1961  *   unenabled probes.
1962  *
1963  * 2.5.3  Return value
1964  *
1965  *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1966  *   function should check the return value as appropriate; its behavior may
1967  *   change in the future.
1968  *
1969  * 2.5.4  Caller's context
1970  *
1971  *   As with dtrace_unregister(), the caller may not hold any lock across
1972  *   dtrace_condense() that is also acquired in the provider's entry points.
1973  *   Also, mod_lock may not be held.
1974  *
1975  * 2.6 int dtrace_attached()
1976  *
1977  * 2.6.1  Overview
1978  *
1979  *   Indicates whether or not DTrace has attached.
1980  *
1981  * 2.6.2  Arguments and Notes
1982  *
1983  *   For most providers, DTrace makes initial contact beyond registration.
1984  *   That is, once a provider has registered with DTrace, it waits to hear
1985  *   from DTrace to create probes.  However, some providers may wish to
1986  *   proactively create probes without first being told by DTrace to do so.
1987  *   If providers wish to do this, they must first call dtrace_attached() to
1988  *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1989  *   the provider must not make any other Provider-to-Framework API call.
1990  *
1991  * 2.6.3  Return value
1992  *
1993  *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1994  *
1995  * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1996  *	    const char *func, const char *name, int aframes, void *arg)
1997  *
1998  * 2.7.1  Overview
1999  *
2000  *   Creates a probe with specified module name, function name, and name.
2001  *
2002  * 2.7.2  Arguments and Notes
2003  *
2004  *   The first argument is the provider identifier, as returned from a
2005  *   successful call to dtrace_register().  The second, third, and fourth
2006  *   arguments are the module name, function name, and probe name,
2007  *   respectively.  Of these, module name and function name may both be NULL
2008  *   (in which case the probe is considered to be unanchored), or they may both
2009  *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
2010  *   string.
2011  *
2012  *   The fifth argument is the number of artificial stack frames that will be
2013  *   found on the stack when dtrace_probe() is called for the new probe.  These
2014  *   artificial frames will be automatically be pruned should the stack() or
2015  *   stackdepth() functions be called as part of one of the probe's ECBs.  If
2016  *   the parameter doesn't add an artificial frame, this parameter should be
2017  *   zero.
2018  *
2019  *   The final argument is a probe argument that will be passed back to the
2020  *   provider when a probe-specific operation is called.  (e.g., via
2021  *   dtps_enable(), dtps_disable(), etc.)
2022  *
2023  *   Note that it is up to the provider to be sure that the probe that it
2024  *   creates does not already exist -- if the provider is unsure of the probe's
2025  *   existence, it should assure its absence with dtrace_probe_lookup() before
2026  *   calling dtrace_probe_create().
2027  *
2028  * 2.7.3  Return value
2029  *
2030  *   dtrace_probe_create() always succeeds, and always returns the identifier
2031  *   of the newly-created probe.
2032  *
2033  * 2.7.4  Caller's context
2034  *
2035  *   While dtrace_probe_create() is generally expected to be called from
2036  *   dtps_provide() and/or dtps_provide_module(), it may be called from other
2037  *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2038  *
2039  * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2040  *	    const char *func, const char *name)
2041  *
2042  * 2.8.1  Overview
2043  *
2044  *   Looks up a probe based on provdider and one or more of module name,
2045  *   function name and probe name.
2046  *
2047  * 2.8.2  Arguments and Notes
2048  *
2049  *   The first argument is the provider identifier, as returned from a
2050  *   successful call to dtrace_register().  The second, third, and fourth
2051  *   arguments are the module name, function name, and probe name,
2052  *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
2053  *   the identifier of the first probe that is provided by the specified
2054  *   provider and matches all of the non-NULL matching criteria.
2055  *   dtrace_probe_lookup() is generally used by a provider to be check the
2056  *   existence of a probe before creating it with dtrace_probe_create().
2057  *
2058  * 2.8.3  Return value
2059  *
2060  *   If the probe exists, returns its identifier.  If the probe does not exist,
2061  *   return DTRACE_IDNONE.
2062  *
2063  * 2.8.4  Caller's context
2064  *
2065  *   While dtrace_probe_lookup() is generally expected to be called from
2066  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2067  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2068  *
2069  * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2070  *
2071  * 2.9.1  Overview
2072  *
2073  *   Returns the probe argument associated with the specified probe.
2074  *
2075  * 2.9.2  Arguments and Notes
2076  *
2077  *   The first argument is the provider identifier, as returned from a
2078  *   successful call to dtrace_register().  The second argument is a probe
2079  *   identifier, as returned from dtrace_probe_lookup() or
2080  *   dtrace_probe_create().  This is useful if a probe has multiple
2081  *   provider-specific components to it:  the provider can create the probe
2082  *   once with provider-specific state, and then add to the state by looking
2083  *   up the probe based on probe identifier.
2084  *
2085  * 2.9.3  Return value
2086  *
2087  *   Returns the argument associated with the specified probe.  If the
2088  *   specified probe does not exist, or if the specified probe is not provided
2089  *   by the specified provider, NULL is returned.
2090  *
2091  * 2.9.4  Caller's context
2092  *
2093  *   While dtrace_probe_arg() is generally expected to be called from
2094  *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2095  *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2096  *
2097  * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2098  *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2099  *
2100  * 2.10.1  Overview
2101  *
2102  *   The epicenter of DTrace:  fires the specified probes with the specified
2103  *   arguments.
2104  *
2105  * 2.10.2  Arguments and Notes
2106  *
2107  *   The first argument is a probe identifier as returned by
2108  *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2109  *   arguments are the values to which the D variables "arg0" through "arg4"
2110  *   will be mapped.
2111  *
2112  *   dtrace_probe() should be called whenever the specified probe has fired --
2113  *   however the provider defines it.
2114  *
2115  * 2.10.3  Return value
2116  *
2117  *   None.
2118  *
2119  * 2.10.4  Caller's context
2120  *
2121  *   dtrace_probe() may be called in virtually any context:  kernel, user,
2122  *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2123  *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2124  *   that must be afforded to DTrace is the ability to make calls within
2125  *   itself (and to its in-kernel subroutines) and the ability to access
2126  *   arbitrary (but mapped) memory.  On some platforms, this constrains
2127  *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2128  *   from any context in which TL is greater than zero.  dtrace_probe() may
2129  *   also not be called from any routine which may be called by dtrace_probe()
2130  *   -- which includes functions in the DTrace framework and some in-kernel
2131  *   DTrace subroutines.  All such functions "dtrace_"; providers that
2132  *   instrument the kernel arbitrarily should be sure to not instrument these
2133  *   routines.
2134  */
2135 typedef struct dtrace_pops {
2136 	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2137 	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2138 	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2139 	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2140 	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2141 	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2142 	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2143 	    dtrace_argdesc_t *desc);
2144 	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2145 	    int argno, int aframes);
2146 	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2147 	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2148 } dtrace_pops_t;
2149 
2150 #define	DTRACE_MODE_KERNEL			0x01
2151 #define	DTRACE_MODE_USER			0x02
2152 #define	DTRACE_MODE_NOPRIV_DROP			0x10
2153 #define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2154 #define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2155 
2156 typedef uintptr_t	dtrace_provider_id_t;
2157 
2158 extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2159     cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2160 extern int dtrace_unregister(dtrace_provider_id_t);
2161 extern int dtrace_condense(dtrace_provider_id_t);
2162 extern void dtrace_invalidate(dtrace_provider_id_t);
2163 extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2164     char *, char *);
2165 extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2166     const char *, const char *, int, void *);
2167 extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2168 extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2169     uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2170 
2171 /*
2172  * DTrace Meta Provider API
2173  *
2174  * The following functions are implemented by the DTrace framework and are
2175  * used to implement meta providers. Meta providers plug into the DTrace
2176  * framework and are used to instantiate new providers on the fly. At
2177  * present, there is only one type of meta provider and only one meta
2178  * provider may be registered with the DTrace framework at a time. The
2179  * sole meta provider type provides user-land static tracing facilities
2180  * by taking meta probe descriptions and adding a corresponding provider
2181  * into the DTrace framework.
2182  *
2183  * 1 Framework-to-Provider
2184  *
2185  * 1.1 Overview
2186  *
2187  * The Framework-to-Provider API is represented by the dtrace_mops structure
2188  * that the meta provider passes to the framework when registering itself as
2189  * a meta provider. This structure consists of the following members:
2190  *
2191  *   dtms_create_probe()	<-- Add a new probe to a created provider
2192  *   dtms_provide_pid()		<-- Create a new provider for a given process
2193  *   dtms_remove_pid()		<-- Remove a previously created provider
2194  *
2195  * 1.2  void dtms_create_probe(void *arg, void *parg,
2196  *           dtrace_helper_probedesc_t *probedesc);
2197  *
2198  * 1.2.1  Overview
2199  *
2200  *   Called by the DTrace framework to create a new probe in a provider
2201  *   created by this meta provider.
2202  *
2203  * 1.2.2  Arguments and notes
2204  *
2205  *   The first argument is the cookie as passed to dtrace_meta_register().
2206  *   The second argument is the provider cookie for the associated provider;
2207  *   this is obtained from the return value of dtms_provide_pid(). The third
2208  *   argument is the helper probe description.
2209  *
2210  * 1.2.3  Return value
2211  *
2212  *   None
2213  *
2214  * 1.2.4  Caller's context
2215  *
2216  *   dtms_create_probe() is called from either ioctl() or module load context
2217  *   in the context of a newly-created provider (that is, a provider that
2218  *   is a result of a call to dtms_provide_pid()). The DTrace framework is
2219  *   locked in such a way that meta providers may not register or unregister,
2220  *   such that no other thread can call into a meta provider operation and that
2221  *   atomicity is assured with respect to meta provider operations across
2222  *   dtms_provide_pid() and subsequent calls to dtms_create_probe().
2223  *   The context is thus effectively single-threaded with respect to the meta
2224  *   provider, and that the meta provider cannot call dtrace_meta_register()
2225  *   or dtrace_meta_unregister(). However, the context is such that the
2226  *   provider may (and is expected to) call provider-related DTrace provider
2227  *   APIs including dtrace_probe_create().
2228  *
2229  * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2230  *	      pid_t pid)
2231  *
2232  * 1.3.1  Overview
2233  *
2234  *   Called by the DTrace framework to instantiate a new provider given the
2235  *   description of the provider and probes in the mprov argument. The
2236  *   meta provider should call dtrace_register() to insert the new provider
2237  *   into the DTrace framework.
2238  *
2239  * 1.3.2  Arguments and notes
2240  *
2241  *   The first argument is the cookie as passed to dtrace_meta_register().
2242  *   The second argument is a pointer to a structure describing the new
2243  *   helper provider. The third argument is the process identifier for
2244  *   process associated with this new provider. Note that the name of the
2245  *   provider as passed to dtrace_register() should be the contatenation of
2246  *   the dtmpb_provname member of the mprov argument and the processs
2247  *   identifier as a string.
2248  *
2249  * 1.3.3  Return value
2250  *
2251  *   The cookie for the provider that the meta provider creates. This is
2252  *   the same value that it passed to dtrace_register().
2253  *
2254  * 1.3.4  Caller's context
2255  *
2256  *   dtms_provide_pid() is called from either ioctl() or module load context.
2257  *   The DTrace framework is locked in such a way that meta providers may not
2258  *   register or unregister. This means that the meta provider cannot call
2259  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2260  *   is such that the provider may -- and is expected to --  call
2261  *   provider-related DTrace provider APIs including dtrace_register().
2262  *
2263  * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2264  *	     pid_t pid)
2265  *
2266  * 1.4.1  Overview
2267  *
2268  *   Called by the DTrace framework to remove a provider that had previously
2269  *   been instantiated via the dtms_provide_pid() entry point. The meta
2270  *   provider need not remove the provider immediately, but this entry
2271  *   point indicates that the provider should be removed as soon as possible
2272  *   using the dtrace_unregister() API.
2273  *
2274  * 1.4.2  Arguments and notes
2275  *
2276  *   The first argument is the cookie as passed to dtrace_meta_register().
2277  *   The second argument is a pointer to a structure describing the helper
2278  *   provider. The third argument is the process identifier for process
2279  *   associated with this new provider.
2280  *
2281  * 1.4.3  Return value
2282  *
2283  *   None
2284  *
2285  * 1.4.4  Caller's context
2286  *
2287  *   dtms_remove_pid() is called from either ioctl() or exit() context.
2288  *   The DTrace framework is locked in such a way that meta providers may not
2289  *   register or unregister. This means that the meta provider cannot call
2290  *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2291  *   is such that the provider may -- and is expected to -- call
2292  *   provider-related DTrace provider APIs including dtrace_unregister().
2293  */
2294 typedef struct dtrace_helper_probedesc {
2295 	char *dthpb_mod;			/* probe module */
2296 	char *dthpb_func; 			/* probe function */
2297 	char *dthpb_name; 			/* probe name */
2298 	uint64_t dthpb_base;			/* base address */
2299 	uint32_t *dthpb_offs;			/* offsets array */
2300 	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2301 	uint32_t dthpb_noffs;			/* offsets count */
2302 	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2303 	uint8_t *dthpb_args;			/* argument mapping array */
2304 	uint8_t dthpb_xargc;			/* translated argument count */
2305 	uint8_t dthpb_nargc;			/* native argument count */
2306 	char *dthpb_xtypes;			/* translated types strings */
2307 	char *dthpb_ntypes;			/* native types strings */
2308 } dtrace_helper_probedesc_t;
2309 
2310 typedef struct dtrace_helper_provdesc {
2311 	char *dthpv_provname;			/* provider name */
2312 	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2313 } dtrace_helper_provdesc_t;
2314 
2315 typedef struct dtrace_mops {
2316 	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2317 	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2318 	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2319 } dtrace_mops_t;
2320 
2321 typedef uintptr_t	dtrace_meta_provider_id_t;
2322 
2323 extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2324     dtrace_meta_provider_id_t *);
2325 extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2326 
2327 /*
2328  * DTrace Kernel Hooks
2329  *
2330  * The following functions are implemented by the base kernel and form a set of
2331  * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2332  * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2333  * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2334  */
2335 
2336 typedef enum dtrace_vtime_state {
2337 	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2338 	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2339 	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2340 	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2341 } dtrace_vtime_state_t;
2342 
2343 #ifdef illumos
2344 extern dtrace_vtime_state_t dtrace_vtime_active;
2345 #endif
2346 extern void dtrace_vtime_switch(kthread_t *next);
2347 extern void dtrace_vtime_enable_tnf(void);
2348 extern void dtrace_vtime_disable_tnf(void);
2349 extern void dtrace_vtime_enable(void);
2350 extern void dtrace_vtime_disable(void);
2351 
2352 struct regs;
2353 struct reg;
2354 
2355 #ifdef illumos
2356 extern int (*dtrace_pid_probe_ptr)(struct reg *);
2357 extern int (*dtrace_return_probe_ptr)(struct reg *);
2358 extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2359 extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2360 extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2361 extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2362 #endif
2363 
2364 typedef uintptr_t dtrace_icookie_t;
2365 typedef void (*dtrace_xcall_t)(void *);
2366 
2367 extern dtrace_icookie_t dtrace_interrupt_disable(void);
2368 extern void dtrace_interrupt_enable(dtrace_icookie_t);
2369 
2370 extern void dtrace_membar_producer(void);
2371 extern void dtrace_membar_consumer(void);
2372 
2373 extern void (*dtrace_cpu_init)(processorid_t);
2374 #ifdef illumos
2375 extern void (*dtrace_modload)(modctl_t *);
2376 extern void (*dtrace_modunload)(modctl_t *);
2377 #endif
2378 extern void (*dtrace_helpers_cleanup)(void);
2379 extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2380 extern void (*dtrace_cpustart_init)(void);
2381 extern void (*dtrace_cpustart_fini)(void);
2382 extern void (*dtrace_closef)(void);
2383 
2384 extern void (*dtrace_debugger_init)(void);
2385 extern void (*dtrace_debugger_fini)(void);
2386 extern dtrace_cacheid_t dtrace_predcache_id;
2387 
2388 #ifdef illumos
2389 extern hrtime_t dtrace_gethrtime(void);
2390 #else
2391 void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2392 #endif
2393 extern void dtrace_sync(void);
2394 extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2395 extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2396 extern void dtrace_vpanic(const char *, __va_list);
2397 extern void dtrace_panic(const char *, ...);
2398 
2399 extern int dtrace_safe_defer_signal(void);
2400 extern void dtrace_safe_synchronous_signal(void);
2401 
2402 extern int dtrace_mach_aframes(void);
2403 
2404 #if defined(__i386) || defined(__amd64)
2405 extern int dtrace_instr_size_isa(uint8_t *, model_t, int *);
2406 #ifdef __i386
2407 extern void dtrace_invop_callsite(void);
2408 #endif
2409 #endif
2410 extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t));
2411 extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *,
2412     uintptr_t));
2413 
2414 #ifdef __sparc
2415 extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2416 extern void dtrace_getfsr(uint64_t *);
2417 #endif
2418 
2419 #ifndef illumos
2420 extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2421 extern void dtrace_helpers_destroy(proc_t *);
2422 #endif
2423 
2424 #define	DTRACE_CPUFLAG_ISSET(flag) \
2425 	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2426 
2427 #define	DTRACE_CPUFLAG_SET(flag) do {				\
2428 	__compiler_membar();					\
2429 	cpu_core[curcpu].cpuc_dtrace_flags |= (flag);		\
2430 	__compiler_membar();					\
2431 } while (0)
2432 
2433 #define	DTRACE_CPUFLAG_CLEAR(flag) do {				\
2434 	__compiler_membar();					\
2435 	cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag);		\
2436 	__compiler_membar();					\
2437 } while (0)
2438 
2439 #endif /* _KERNEL */
2440 
2441 extern int dtrace_instr_size(uint8_t *instr);
2442 
2443 #if defined(__i386) || defined(__amd64)
2444 extern int dtrace_dis_get_byte(void *p);
2445 #endif
2446 
2447 #if defined(__riscv)
2448 extern int dtrace_match_opcode(uint32_t insn, int match, int mask);
2449 extern int dtrace_instr_sdsp(uint32_t **instr);
2450 extern int dtrace_instr_ret(uint32_t **instr);
2451 extern int dtrace_instr_c_sdsp(uint32_t **instr);
2452 extern int dtrace_instr_c_ret(uint32_t **instr);
2453 #endif
2454 
2455 #endif	/* _ASM */
2456 
2457 #if defined(__i386) || defined(__amd64)
2458 
2459 #define	DTRACE_INVOP_PUSHL_EBP		1
2460 #define	DTRACE_INVOP_PUSHQ_RBP		DTRACE_INVOP_PUSHL_EBP
2461 #define	DTRACE_INVOP_POPL_EBP		2
2462 #define	DTRACE_INVOP_POPQ_RBP		DTRACE_INVOP_POPL_EBP
2463 #define	DTRACE_INVOP_LEAVE		3
2464 #define	DTRACE_INVOP_NOP		4
2465 #define	DTRACE_INVOP_RET		5
2466 
2467 #if defined(__amd64)
2468 #define	DTRACE_INVOP_CALL		6
2469 #endif
2470 
2471 #elif defined(__powerpc__)
2472 
2473 #define DTRACE_INVOP_BCTR	1
2474 #define DTRACE_INVOP_BLR	2
2475 #define DTRACE_INVOP_JUMP	3
2476 #define DTRACE_INVOP_MFLR_R0	4
2477 #define DTRACE_INVOP_NOP	5
2478 
2479 #elif defined(__arm__)
2480 
2481 #define	DTRACE_INVOP_SHIFT	4
2482 #define	DTRACE_INVOP_MASK	((1 << DTRACE_INVOP_SHIFT) - 1)
2483 #define	DTRACE_INVOP_DATA(x)	((x) >> DTRACE_INVOP_SHIFT)
2484 
2485 #define DTRACE_INVOP_PUSHM	1
2486 #define DTRACE_INVOP_POPM	2
2487 #define DTRACE_INVOP_B		3
2488 
2489 #elif defined(__aarch64__)
2490 
2491 #define	INSN_SIZE	4
2492 
2493 #define	BRK_INSTR	0xd4200000
2494 #define	BRK_IMM16_SHIFT	5
2495 #define	BRK_IMM16_VAL	(0x40d << BRK_IMM16_SHIFT)
2496 
2497 #define	B_MASK		0xff000000
2498 #define	B_DATA_MASK	0x00ffffff
2499 #define	B_INSTR		0x14000000
2500 
2501 #define	BTI_MASK	0xffffff3f
2502 #define	BTI_INSTR	0xd503241f
2503 
2504 #define	NOP_INSTR	0xd503201f
2505 
2506 #define	RET_INSTR	0xd65f03c0
2507 
2508 #define	SUB_MASK	0xffc00000
2509 #define	SUB_INSTR	0xd1000000
2510 #define	SUB_RD_SHIFT	0
2511 #define	SUB_RN_SHIFT	5
2512 #define	SUB_R_MASK	0x1f
2513 #define	SUB_IMM_SHIFT	10
2514 #define	SUB_IMM_MASK	0xfff
2515 
2516 #define	LDP_STP_MASK	0xffc00000
2517 #define	STP_32		0x29800000
2518 #define	STP_64		0xa9800000
2519 #define	LDP_32		0x28c00000
2520 #define	LDP_64		0xa8c00000
2521 #define	LDP_STP_PREIND	(1 << 24)
2522 #define	LDP_STP_DIR	(1 << 22) /* Load instruction */
2523 #define	ARG1_SHIFT	0
2524 #define	ARG1_MASK	0x1f
2525 #define	ARG2_SHIFT	10
2526 #define	ARG2_MASK	0x1f
2527 #define	ADDR_SHIFT	5
2528 #define	ADDR_MASK	0x1f
2529 #define	OFFSET_SHIFT	15
2530 #define	OFFSET_SIZE	7
2531 #define	OFFSET_MASK	((1 << OFFSET_SIZE) - 1)
2532 
2533 #define	DTRACE_PATCHVAL		(BRK_INSTR | BRK_IMM16_VAL)
2534 
2535 #define	DTRACE_INVOP_STP	1
2536 #define	DTRACE_INVOP_RET	2
2537 #define	DTRACE_INVOP_B		3
2538 #define	DTRACE_INVOP_SUB	4
2539 
2540 #elif defined(__mips__)
2541 
2542 #define	INSN_SIZE		4
2543 
2544 /* Load/Store double RA to/from SP */
2545 #define	LDSD_RA_SP_MASK		0xffff0000
2546 #define	LDSD_DATA_MASK		0x0000ffff
2547 #define	SD_RA_SP		0xffbf0000
2548 #define	LD_RA_SP		0xdfbf0000
2549 
2550 #define	DTRACE_INVOP_SD		1
2551 #define	DTRACE_INVOP_LD		2
2552 
2553 #elif defined(__riscv)
2554 
2555 #define	DTRACE_INVOP_SD		1
2556 #define	DTRACE_INVOP_C_SDSP	2
2557 #define	DTRACE_INVOP_RET	3
2558 #define	DTRACE_INVOP_C_RET	4
2559 #define	DTRACE_INVOP_NOP	5
2560 
2561 #endif
2562 
2563 #ifdef	__cplusplus
2564 }
2565 #endif
2566 
2567 #endif	/* _SYS_DTRACE_H */
2568