xref: /freebsd/sys/ufs/ffs/ffs_alloc.c (revision e1ebda4458bbaf7d85fb803e20f3afc5441f24d9)
1  /*-
2   * SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3   *
4   * Copyright (c) 2002 Networks Associates Technology, Inc.
5   * All rights reserved.
6   *
7   * This software was developed for the FreeBSD Project by Marshall
8   * Kirk McKusick and Network Associates Laboratories, the Security
9   * Research Division of Network Associates, Inc. under DARPA/SPAWAR
10   * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
11   * research program
12   *
13   * Redistribution and use in source and binary forms, with or without
14   * modification, are permitted provided that the following conditions
15   * are met:
16   * 1. Redistributions of source code must retain the above copyright
17   *    notice, this list of conditions and the following disclaimer.
18   * 2. Redistributions in binary form must reproduce the above copyright
19   *    notice, this list of conditions and the following disclaimer in the
20   *    documentation and/or other materials provided with the distribution.
21   *
22   * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25   * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32   * SUCH DAMAGE.
33   *
34   * Copyright (c) 1982, 1986, 1989, 1993
35   *	The Regents of the University of California.  All rights reserved.
36   *
37   * Redistribution and use in source and binary forms, with or without
38   * modification, are permitted provided that the following conditions
39   * are met:
40   * 1. Redistributions of source code must retain the above copyright
41   *    notice, this list of conditions and the following disclaimer.
42   * 2. Redistributions in binary form must reproduce the above copyright
43   *    notice, this list of conditions and the following disclaimer in the
44   *    documentation and/or other materials provided with the distribution.
45   * 3. Neither the name of the University nor the names of its contributors
46   *    may be used to endorse or promote products derived from this software
47   *    without specific prior written permission.
48   *
49   * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50   * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51   * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52   * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53   * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54   * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55   * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56   * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57   * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58   * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59   * SUCH DAMAGE.
60   */
61  
62  #include <sys/cdefs.h>
63  #include "opt_quota.h"
64  
65  #include <sys/param.h>
66  #include <sys/systm.h>
67  #include <sys/bio.h>
68  #include <sys/buf.h>
69  #include <sys/capsicum.h>
70  #include <sys/conf.h>
71  #include <sys/fcntl.h>
72  #include <sys/file.h>
73  #include <sys/filedesc.h>
74  #include <sys/gsb_crc32.h>
75  #include <sys/kernel.h>
76  #include <sys/mount.h>
77  #include <sys/priv.h>
78  #include <sys/proc.h>
79  #include <sys/stat.h>
80  #include <sys/syscallsubr.h>
81  #include <sys/sysctl.h>
82  #include <sys/syslog.h>
83  #include <sys/taskqueue.h>
84  #include <sys/vnode.h>
85  
86  #include <security/audit/audit.h>
87  
88  #include <geom/geom.h>
89  #include <geom/geom_vfs.h>
90  
91  #include <ufs/ufs/dir.h>
92  #include <ufs/ufs/extattr.h>
93  #include <ufs/ufs/quota.h>
94  #include <ufs/ufs/inode.h>
95  #include <ufs/ufs/ufs_extern.h>
96  #include <ufs/ufs/ufsmount.h>
97  
98  #include <ufs/ffs/fs.h>
99  #include <ufs/ffs/ffs_extern.h>
100  #include <ufs/ffs/softdep.h>
101  
102  typedef ufs2_daddr_t allocfcn_t(struct inode *ip, uint64_t cg,
103  				  ufs2_daddr_t bpref, int size, int rsize);
104  
105  static ufs2_daddr_t ffs_alloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
106  				  int);
107  static ufs2_daddr_t
108  	      ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int);
109  static void	ffs_blkfree_cg(struct ufsmount *, struct fs *,
110  		    struct vnode *, ufs2_daddr_t, long, ino_t,
111  		    struct workhead *);
112  #ifdef INVARIANTS
113  static int	ffs_checkfreeblk(struct inode *, ufs2_daddr_t, long);
114  #endif
115  static void	ffs_checkcgintegrity(struct fs *, uint64_t, int);
116  static ufs2_daddr_t ffs_clusteralloc(struct inode *, uint64_t, ufs2_daddr_t,
117  				  int);
118  static ino_t	ffs_dirpref(struct inode *);
119  static ufs2_daddr_t ffs_fragextend(struct inode *, uint64_t, ufs2_daddr_t,
120  		    int, int);
121  static ufs2_daddr_t	ffs_hashalloc(struct inode *, uint64_t, ufs2_daddr_t,
122  		    int, int, allocfcn_t *);
123  static ufs2_daddr_t ffs_nodealloccg(struct inode *, uint64_t, ufs2_daddr_t, int,
124  		    int);
125  static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int);
126  static int	ffs_reallocblks_ufs1(struct vop_reallocblks_args *);
127  static int	ffs_reallocblks_ufs2(struct vop_reallocblks_args *);
128  static void	ffs_ckhash_cg(struct buf *);
129  
130  /*
131   * Allocate a block in the filesystem.
132   *
133   * The size of the requested block is given, which must be some
134   * multiple of fs_fsize and <= fs_bsize.
135   * A preference may be optionally specified. If a preference is given
136   * the following hierarchy is used to allocate a block:
137   *   1) allocate the requested block.
138   *   2) allocate a rotationally optimal block in the same cylinder.
139   *   3) allocate a block in the same cylinder group.
140   *   4) quadratically rehash into other cylinder groups, until an
141   *      available block is located.
142   * If no block preference is given the following hierarchy is used
143   * to allocate a block:
144   *   1) allocate a block in the cylinder group that contains the
145   *      inode for the file.
146   *   2) quadratically rehash into other cylinder groups, until an
147   *      available block is located.
148   */
149  int
ffs_alloc(struct inode * ip,ufs2_daddr_t lbn,ufs2_daddr_t bpref,int size,int flags,struct ucred * cred,ufs2_daddr_t * bnp)150  ffs_alloc(struct inode *ip,
151  	ufs2_daddr_t lbn,
152  	ufs2_daddr_t bpref,
153  	int size,
154  	int flags,
155  	struct ucred *cred,
156  	ufs2_daddr_t *bnp)
157  {
158  	struct fs *fs;
159  	struct ufsmount *ump;
160  	ufs2_daddr_t bno;
161  	uint64_t cg, reclaimed;
162  	int64_t delta;
163  #ifdef QUOTA
164  	int error;
165  #endif
166  
167  	*bnp = 0;
168  	ump = ITOUMP(ip);
169  	fs = ump->um_fs;
170  	mtx_assert(UFS_MTX(ump), MA_OWNED);
171  #ifdef INVARIANTS
172  	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
173  		printf("dev = %s, bsize = %ld, size = %d, fs = %s\n",
174  		    devtoname(ump->um_dev), (long)fs->fs_bsize, size,
175  		    fs->fs_fsmnt);
176  		panic("ffs_alloc: bad size");
177  	}
178  	if (cred == NOCRED)
179  		panic("ffs_alloc: missing credential");
180  #endif /* INVARIANTS */
181  	reclaimed = 0;
182  retry:
183  #ifdef QUOTA
184  	UFS_UNLOCK(ump);
185  	error = chkdq(ip, btodb(size), cred, 0);
186  	if (error)
187  		return (error);
188  	UFS_LOCK(ump);
189  #endif
190  	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
191  		goto nospace;
192  	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
193  	    freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0)
194  		goto nospace;
195  	if (bpref >= fs->fs_size)
196  		bpref = 0;
197  	if (bpref == 0)
198  		cg = ino_to_cg(fs, ip->i_number);
199  	else
200  		cg = dtog(fs, bpref);
201  	bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg);
202  	if (bno > 0) {
203  		delta = btodb(size);
204  		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
205  		if (flags & IO_EXT)
206  			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
207  		else
208  			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
209  		*bnp = bno;
210  		return (0);
211  	}
212  nospace:
213  #ifdef QUOTA
214  	UFS_UNLOCK(ump);
215  	/*
216  	 * Restore user's disk quota because allocation failed.
217  	 */
218  	(void) chkdq(ip, -btodb(size), cred, FORCE);
219  	UFS_LOCK(ump);
220  #endif
221  	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
222  		reclaimed = 1;
223  		softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT);
224  		goto retry;
225  	}
226  	if (ffs_fsfail_cleanup_locked(ump, 0)) {
227  		UFS_UNLOCK(ump);
228  		return (ENXIO);
229  	}
230  	if (reclaimed > 0 &&
231  	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
232  		UFS_UNLOCK(ump);
233  		ffs_fserr(fs, ip->i_number, "filesystem full");
234  		uprintf("\n%s: write failed, filesystem is full\n",
235  		    fs->fs_fsmnt);
236  	} else {
237  		UFS_UNLOCK(ump);
238  	}
239  	return (ENOSPC);
240  }
241  
242  /*
243   * Reallocate a fragment to a bigger size
244   *
245   * The number and size of the old block is given, and a preference
246   * and new size is also specified. The allocator attempts to extend
247   * the original block. Failing that, the regular block allocator is
248   * invoked to get an appropriate block.
249   */
250  int
ffs_realloccg(struct inode * ip,ufs2_daddr_t lbprev,ufs2_daddr_t bprev,ufs2_daddr_t bpref,int osize,int nsize,int flags,struct ucred * cred,struct buf ** bpp)251  ffs_realloccg(struct inode *ip,
252  	ufs2_daddr_t lbprev,
253  	ufs2_daddr_t bprev,
254  	ufs2_daddr_t bpref,
255  	int osize,
256  	int nsize,
257  	int flags,
258  	struct ucred *cred,
259  	struct buf **bpp)
260  {
261  	struct vnode *vp;
262  	struct fs *fs;
263  	struct buf *bp;
264  	struct ufsmount *ump;
265  	uint64_t cg, request, reclaimed;
266  	int error, gbflags;
267  	ufs2_daddr_t bno;
268  	int64_t delta;
269  
270  	vp = ITOV(ip);
271  	ump = ITOUMP(ip);
272  	fs = ump->um_fs;
273  	bp = NULL;
274  	gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
275  #ifdef WITNESS
276  	gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0;
277  #endif
278  
279  	mtx_assert(UFS_MTX(ump), MA_OWNED);
280  #ifdef INVARIANTS
281  	if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
282  		panic("ffs_realloccg: allocation on suspended filesystem");
283  	if ((uint64_t)osize > fs->fs_bsize || fragoff(fs, osize) != 0 ||
284  	    (uint64_t)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) {
285  		printf(
286  		"dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n",
287  		    devtoname(ump->um_dev), (long)fs->fs_bsize, osize,
288  		    nsize, fs->fs_fsmnt);
289  		panic("ffs_realloccg: bad size");
290  	}
291  	if (cred == NOCRED)
292  		panic("ffs_realloccg: missing credential");
293  #endif /* INVARIANTS */
294  	reclaimed = 0;
295  retry:
296  	if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) &&
297  	    freespace(fs, fs->fs_minfree) -  numfrags(fs, nsize - osize) < 0) {
298  		goto nospace;
299  	}
300  	if (bprev == 0) {
301  		printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n",
302  		    devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev,
303  		    fs->fs_fsmnt);
304  		panic("ffs_realloccg: bad bprev");
305  	}
306  	UFS_UNLOCK(ump);
307  	/*
308  	 * Allocate the extra space in the buffer.
309  	 */
310  	error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp);
311  	if (error) {
312  		return (error);
313  	}
314  
315  	if (bp->b_blkno == bp->b_lblkno) {
316  		if (lbprev >= UFS_NDADDR)
317  			panic("ffs_realloccg: lbprev out of range");
318  		bp->b_blkno = fsbtodb(fs, bprev);
319  	}
320  
321  #ifdef QUOTA
322  	error = chkdq(ip, btodb(nsize - osize), cred, 0);
323  	if (error) {
324  		brelse(bp);
325  		return (error);
326  	}
327  #endif
328  	/*
329  	 * Check for extension in the existing location.
330  	 */
331  	*bpp = NULL;
332  	cg = dtog(fs, bprev);
333  	UFS_LOCK(ump);
334  	bno = ffs_fragextend(ip, cg, bprev, osize, nsize);
335  	if (bno) {
336  		if (bp->b_blkno != fsbtodb(fs, bno))
337  			panic("ffs_realloccg: bad blockno");
338  		delta = btodb(nsize - osize);
339  		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
340  		if (flags & IO_EXT)
341  			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
342  		else
343  			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
344  		allocbuf(bp, nsize);
345  		bp->b_flags |= B_DONE;
346  		vfs_bio_bzero_buf(bp, osize, nsize - osize);
347  		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
348  			vfs_bio_set_valid(bp, osize, nsize - osize);
349  		*bpp = bp;
350  		return (0);
351  	}
352  	/*
353  	 * Allocate a new disk location.
354  	 */
355  	if (bpref >= fs->fs_size)
356  		bpref = 0;
357  	switch ((int)fs->fs_optim) {
358  	case FS_OPTSPACE:
359  		/*
360  		 * Allocate an exact sized fragment. Although this makes
361  		 * best use of space, we will waste time relocating it if
362  		 * the file continues to grow. If the fragmentation is
363  		 * less than half of the minimum free reserve, we choose
364  		 * to begin optimizing for time.
365  		 */
366  		request = nsize;
367  		if (fs->fs_minfree <= 5 ||
368  		    fs->fs_cstotal.cs_nffree >
369  		    (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100))
370  			break;
371  		log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n",
372  			fs->fs_fsmnt);
373  		fs->fs_optim = FS_OPTTIME;
374  		break;
375  	case FS_OPTTIME:
376  		/*
377  		 * At this point we have discovered a file that is trying to
378  		 * grow a small fragment to a larger fragment. To save time,
379  		 * we allocate a full sized block, then free the unused portion.
380  		 * If the file continues to grow, the `ffs_fragextend' call
381  		 * above will be able to grow it in place without further
382  		 * copying. If aberrant programs cause disk fragmentation to
383  		 * grow within 2% of the free reserve, we choose to begin
384  		 * optimizing for space.
385  		 */
386  		request = fs->fs_bsize;
387  		if (fs->fs_cstotal.cs_nffree <
388  		    (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100)
389  			break;
390  		log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n",
391  			fs->fs_fsmnt);
392  		fs->fs_optim = FS_OPTSPACE;
393  		break;
394  	default:
395  		printf("dev = %s, optim = %ld, fs = %s\n",
396  		    devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt);
397  		panic("ffs_realloccg: bad optim");
398  		/* NOTREACHED */
399  	}
400  	bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg);
401  	if (bno > 0) {
402  		bp->b_blkno = fsbtodb(fs, bno);
403  		if (!DOINGSOFTDEP(vp))
404  			/*
405  			 * The usual case is that a smaller fragment that
406  			 * was just allocated has been replaced with a bigger
407  			 * fragment or a full-size block. If it is marked as
408  			 * B_DELWRI, the current contents have not been written
409  			 * to disk. It is possible that the block was written
410  			 * earlier, but very uncommon. If the block has never
411  			 * been written, there is no need to send a BIO_DELETE
412  			 * for it when it is freed. The gain from avoiding the
413  			 * TRIMs for the common case of unwritten blocks far
414  			 * exceeds the cost of the write amplification for the
415  			 * uncommon case of failing to send a TRIM for a block
416  			 * that had been written.
417  			 */
418  			ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize,
419  			    ip->i_number, vp->v_type, NULL,
420  			    (bp->b_flags & B_DELWRI) != 0 ?
421  			    NOTRIM_KEY : SINGLETON_KEY);
422  		delta = btodb(nsize - osize);
423  		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta);
424  		if (flags & IO_EXT)
425  			UFS_INODE_SET_FLAG(ip, IN_CHANGE);
426  		else
427  			UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
428  		allocbuf(bp, nsize);
429  		bp->b_flags |= B_DONE;
430  		vfs_bio_bzero_buf(bp, osize, nsize - osize);
431  		if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO)
432  			vfs_bio_set_valid(bp, osize, nsize - osize);
433  		*bpp = bp;
434  		return (0);
435  	}
436  #ifdef QUOTA
437  	UFS_UNLOCK(ump);
438  	/*
439  	 * Restore user's disk quota because allocation failed.
440  	 */
441  	(void) chkdq(ip, -btodb(nsize - osize), cred, FORCE);
442  	UFS_LOCK(ump);
443  #endif
444  nospace:
445  	/*
446  	 * no space available
447  	 */
448  	if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) {
449  		reclaimed = 1;
450  		UFS_UNLOCK(ump);
451  		if (bp) {
452  			brelse(bp);
453  			bp = NULL;
454  		}
455  		UFS_LOCK(ump);
456  		softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT);
457  		goto retry;
458  	}
459  	if (bp)
460  		brelse(bp);
461  	if (ffs_fsfail_cleanup_locked(ump, 0)) {
462  		UFS_UNLOCK(ump);
463  		return (ENXIO);
464  	}
465  	if (reclaimed > 0 &&
466  	    ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
467  		UFS_UNLOCK(ump);
468  		ffs_fserr(fs, ip->i_number, "filesystem full");
469  		uprintf("\n%s: write failed, filesystem is full\n",
470  		    fs->fs_fsmnt);
471  	} else {
472  		UFS_UNLOCK(ump);
473  	}
474  	return (ENOSPC);
475  }
476  
477  /*
478   * Reallocate a sequence of blocks into a contiguous sequence of blocks.
479   *
480   * The vnode and an array of buffer pointers for a range of sequential
481   * logical blocks to be made contiguous is given. The allocator attempts
482   * to find a range of sequential blocks starting as close as possible
483   * from the end of the allocation for the logical block immediately
484   * preceding the current range. If successful, the physical block numbers
485   * in the buffer pointers and in the inode are changed to reflect the new
486   * allocation. If unsuccessful, the allocation is left unchanged. The
487   * success in doing the reallocation is returned. Note that the error
488   * return is not reflected back to the user. Rather the previous block
489   * allocation will be used.
490   */
491  
492  SYSCTL_DECL(_vfs_ffs);
493  
494  static int doasyncfree = 1;
495  SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0,
496  "do not force synchronous writes when blocks are reallocated");
497  
498  static int doreallocblks = 1;
499  SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0,
500  "enable block reallocation");
501  
502  static int dotrimcons = 1;
503  SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0,
504  "enable BIO_DELETE / TRIM consolidation");
505  
506  static int maxclustersearch = 10;
507  SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch,
508  0, "max number of cylinder group to search for contigous blocks");
509  
510  #ifdef DIAGNOSTIC
511  static int prtrealloc = 0;
512  SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0,
513  	"print out FFS filesystem block reallocation operations");
514  #endif
515  
516  int
ffs_reallocblks(struct vop_reallocblks_args * ap)517  ffs_reallocblks(
518  	struct vop_reallocblks_args /* {
519  		struct vnode *a_vp;
520  		struct cluster_save *a_buflist;
521  	} */ *ap)
522  {
523  	struct ufsmount *ump;
524  	int error;
525  
526  	/*
527  	 * We used to skip reallocating the blocks of a file into a
528  	 * contiguous sequence if the underlying flash device requested
529  	 * BIO_DELETE notifications, because devices that benefit from
530  	 * BIO_DELETE also benefit from not moving the data. However,
531  	 * the destination for the data is usually moved before the data
532  	 * is written to the initially allocated location, so we rarely
533  	 * suffer the penalty of extra writes. With the addition of the
534  	 * consolidation of contiguous blocks into single BIO_DELETE
535  	 * operations, having fewer but larger contiguous blocks reduces
536  	 * the number of (slow and expensive) BIO_DELETE operations. So
537  	 * when doing BIO_DELETE consolidation, we do block reallocation.
538  	 *
539  	 * Skip if reallocblks has been disabled globally.
540  	 */
541  	ump = ap->a_vp->v_mount->mnt_data;
542  	if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) ||
543  	    doreallocblks == 0)
544  		return (ENOSPC);
545  
546  	/*
547  	 * We can't wait in softdep prealloc as it may fsync and recurse
548  	 * here.  Instead we simply fail to reallocate blocks if this
549  	 * rare condition arises.
550  	 */
551  	if (DOINGSUJ(ap->a_vp))
552  		if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0)
553  			return (ENOSPC);
554  	vn_seqc_write_begin(ap->a_vp);
555  	error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) :
556  	    ffs_reallocblks_ufs2(ap);
557  	vn_seqc_write_end(ap->a_vp);
558  	return (error);
559  }
560  
561  static int
ffs_reallocblks_ufs1(struct vop_reallocblks_args * ap)562  ffs_reallocblks_ufs1(
563  	struct vop_reallocblks_args /* {
564  		struct vnode *a_vp;
565  		struct cluster_save *a_buflist;
566  	} */ *ap)
567  {
568  	struct fs *fs;
569  	struct inode *ip;
570  	struct vnode *vp;
571  	struct buf *sbp, *ebp, *bp;
572  	ufs1_daddr_t *bap, *sbap, *ebap;
573  	struct cluster_save *buflist;
574  	struct ufsmount *ump;
575  	ufs_lbn_t start_lbn, end_lbn;
576  	ufs1_daddr_t soff, newblk, blkno;
577  	ufs2_daddr_t pref;
578  	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
579  	int i, cg, len, start_lvl, end_lvl, ssize;
580  
581  	vp = ap->a_vp;
582  	ip = VTOI(vp);
583  	ump = ITOUMP(ip);
584  	fs = ump->um_fs;
585  	/*
586  	 * If we are not tracking block clusters or if we have less than 4%
587  	 * free blocks left, then do not attempt to cluster. Running with
588  	 * less than 5% free block reserve is not recommended and those that
589  	 * choose to do so do not expect to have good file layout.
590  	 */
591  	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
592  		return (ENOSPC);
593  	buflist = ap->a_buflist;
594  	len = buflist->bs_nchildren;
595  	start_lbn = buflist->bs_children[0]->b_lblkno;
596  	end_lbn = start_lbn + len - 1;
597  #ifdef INVARIANTS
598  	for (i = 0; i < len; i++)
599  		if (!ffs_checkfreeblk(ip,
600  		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
601  			panic("ffs_reallocblks: unallocated block 1");
602  	for (i = 1; i < len; i++)
603  		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
604  			panic("ffs_reallocblks: non-logical cluster");
605  	blkno = buflist->bs_children[0]->b_blkno;
606  	ssize = fsbtodb(fs, fs->fs_frag);
607  	for (i = 1; i < len - 1; i++)
608  		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
609  			panic("ffs_reallocblks: non-physical cluster %d", i);
610  #endif
611  	/*
612  	 * If the cluster crosses the boundary for the first indirect
613  	 * block, leave space for the indirect block. Indirect blocks
614  	 * are initially laid out in a position after the last direct
615  	 * block. Block reallocation would usually destroy locality by
616  	 * moving the indirect block out of the way to make room for
617  	 * data blocks if we didn't compensate here. We should also do
618  	 * this for other indirect block boundaries, but it is only
619  	 * important for the first one.
620  	 */
621  	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
622  		return (ENOSPC);
623  	/*
624  	 * If the latest allocation is in a new cylinder group, assume that
625  	 * the filesystem has decided to move and do not force it back to
626  	 * the previous cylinder group.
627  	 */
628  	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
629  	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
630  		return (ENOSPC);
631  	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
632  	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
633  		return (ENOSPC);
634  	/*
635  	 * Get the starting offset and block map for the first block.
636  	 */
637  	if (start_lvl == 0) {
638  		sbap = &ip->i_din1->di_db[0];
639  		soff = start_lbn;
640  	} else {
641  		idp = &start_ap[start_lvl - 1];
642  		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
643  			brelse(sbp);
644  			return (ENOSPC);
645  		}
646  		sbap = (ufs1_daddr_t *)sbp->b_data;
647  		soff = idp->in_off;
648  	}
649  	/*
650  	 * If the block range spans two block maps, get the second map.
651  	 */
652  	ebap = NULL;
653  	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
654  		ssize = len;
655  	} else {
656  #ifdef INVARIANTS
657  		if (start_lvl > 0 &&
658  		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
659  			panic("ffs_reallocblk: start == end");
660  #endif
661  		ssize = len - (idp->in_off + 1);
662  		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
663  			goto fail;
664  		ebap = (ufs1_daddr_t *)ebp->b_data;
665  	}
666  	/*
667  	 * Find the preferred location for the cluster. If we have not
668  	 * previously failed at this endeavor, then follow our standard
669  	 * preference calculation. If we have failed at it, then pick up
670  	 * where we last ended our search.
671  	 */
672  	UFS_LOCK(ump);
673  	if (ip->i_nextclustercg == -1)
674  		pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap);
675  	else
676  		pref = cgdata(fs, ip->i_nextclustercg);
677  	/*
678  	 * Search the block map looking for an allocation of the desired size.
679  	 * To avoid wasting too much time, we limit the number of cylinder
680  	 * groups that we will search.
681  	 */
682  	cg = dtog(fs, pref);
683  	MPASS(cg < fs->fs_ncg);
684  	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
685  		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
686  			break;
687  		cg += 1;
688  		if (cg >= fs->fs_ncg)
689  			cg = 0;
690  	}
691  	/*
692  	 * If we have failed in our search, record where we gave up for
693  	 * next time. Otherwise, fall back to our usual search citerion.
694  	 */
695  	if (newblk == 0) {
696  		ip->i_nextclustercg = cg;
697  		UFS_UNLOCK(ump);
698  		goto fail;
699  	}
700  	ip->i_nextclustercg = -1;
701  	/*
702  	 * We have found a new contiguous block.
703  	 *
704  	 * First we have to replace the old block pointers with the new
705  	 * block pointers in the inode and indirect blocks associated
706  	 * with the file.
707  	 */
708  #ifdef DIAGNOSTIC
709  	if (prtrealloc)
710  		printf("realloc: ino %ju, lbns %jd-%jd\n\told:",
711  		    (uintmax_t)ip->i_number,
712  		    (intmax_t)start_lbn, (intmax_t)end_lbn);
713  #endif
714  	blkno = newblk;
715  	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
716  		if (i == ssize) {
717  			bap = ebap;
718  			soff = -i;
719  		}
720  #ifdef INVARIANTS
721  		if (!ffs_checkfreeblk(ip,
722  		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
723  			panic("ffs_reallocblks: unallocated block 2");
724  		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
725  			panic("ffs_reallocblks: alloc mismatch");
726  #endif
727  #ifdef DIAGNOSTIC
728  		if (prtrealloc)
729  			printf(" %d,", *bap);
730  #endif
731  		if (DOINGSOFTDEP(vp)) {
732  			if (sbap == &ip->i_din1->di_db[0] && i < ssize)
733  				softdep_setup_allocdirect(ip, start_lbn + i,
734  				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
735  				    buflist->bs_children[i]);
736  			else
737  				softdep_setup_allocindir_page(ip, start_lbn + i,
738  				    i < ssize ? sbp : ebp, soff + i, blkno,
739  				    *bap, buflist->bs_children[i]);
740  		}
741  		*bap++ = blkno;
742  	}
743  	/*
744  	 * Next we must write out the modified inode and indirect blocks.
745  	 * For strict correctness, the writes should be synchronous since
746  	 * the old block values may have been written to disk. In practise
747  	 * they are almost never written, but if we are concerned about
748  	 * strict correctness, the `doasyncfree' flag should be set to zero.
749  	 *
750  	 * The test on `doasyncfree' should be changed to test a flag
751  	 * that shows whether the associated buffers and inodes have
752  	 * been written. The flag should be set when the cluster is
753  	 * started and cleared whenever the buffer or inode is flushed.
754  	 * We can then check below to see if it is set, and do the
755  	 * synchronous write only when it has been cleared.
756  	 */
757  	if (sbap != &ip->i_din1->di_db[0]) {
758  		if (doasyncfree)
759  			bdwrite(sbp);
760  		else
761  			bwrite(sbp);
762  	} else {
763  		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
764  		if (!doasyncfree)
765  			ffs_update(vp, 1);
766  	}
767  	if (ssize < len) {
768  		if (doasyncfree)
769  			bdwrite(ebp);
770  		else
771  			bwrite(ebp);
772  	}
773  	/*
774  	 * Last, free the old blocks and assign the new blocks to the buffers.
775  	 */
776  #ifdef DIAGNOSTIC
777  	if (prtrealloc)
778  		printf("\n\tnew:");
779  #endif
780  	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
781  		bp = buflist->bs_children[i];
782  		if (!DOINGSOFTDEP(vp))
783  			/*
784  			 * The usual case is that a set of N-contiguous blocks
785  			 * that was just allocated has been replaced with a
786  			 * set of N+1-contiguous blocks. If they are marked as
787  			 * B_DELWRI, the current contents have not been written
788  			 * to disk. It is possible that the blocks were written
789  			 * earlier, but very uncommon. If the blocks have never
790  			 * been written, there is no need to send a BIO_DELETE
791  			 * for them when they are freed. The gain from avoiding
792  			 * the TRIMs for the common case of unwritten blocks
793  			 * far exceeds the cost of the write amplification for
794  			 * the uncommon case of failing to send a TRIM for the
795  			 * blocks that had been written.
796  			 */
797  			ffs_blkfree(ump, fs, ump->um_devvp,
798  			    dbtofsb(fs, bp->b_blkno),
799  			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
800  			    (bp->b_flags & B_DELWRI) != 0 ?
801  			    NOTRIM_KEY : SINGLETON_KEY);
802  		bp->b_blkno = fsbtodb(fs, blkno);
803  #ifdef INVARIANTS
804  		if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
805  		    fs->fs_bsize))
806  			panic("ffs_reallocblks: unallocated block 3");
807  #endif
808  #ifdef DIAGNOSTIC
809  		if (prtrealloc)
810  			printf(" %d,", blkno);
811  #endif
812  	}
813  #ifdef DIAGNOSTIC
814  	if (prtrealloc) {
815  		prtrealloc--;
816  		printf("\n");
817  	}
818  #endif
819  	return (0);
820  
821  fail:
822  	if (ssize < len)
823  		brelse(ebp);
824  	if (sbap != &ip->i_din1->di_db[0])
825  		brelse(sbp);
826  	return (ENOSPC);
827  }
828  
829  static int
ffs_reallocblks_ufs2(struct vop_reallocblks_args * ap)830  ffs_reallocblks_ufs2(
831  	struct vop_reallocblks_args /* {
832  		struct vnode *a_vp;
833  		struct cluster_save *a_buflist;
834  	} */ *ap)
835  {
836  	struct fs *fs;
837  	struct inode *ip;
838  	struct vnode *vp;
839  	struct buf *sbp, *ebp, *bp;
840  	ufs2_daddr_t *bap, *sbap, *ebap;
841  	struct cluster_save *buflist;
842  	struct ufsmount *ump;
843  	ufs_lbn_t start_lbn, end_lbn;
844  	ufs2_daddr_t soff, newblk, blkno, pref;
845  	struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp;
846  	int i, cg, len, start_lvl, end_lvl, ssize;
847  
848  	vp = ap->a_vp;
849  	ip = VTOI(vp);
850  	ump = ITOUMP(ip);
851  	fs = ump->um_fs;
852  	/*
853  	 * If we are not tracking block clusters or if we have less than 4%
854  	 * free blocks left, then do not attempt to cluster. Running with
855  	 * less than 5% free block reserve is not recommended and those that
856  	 * choose to do so do not expect to have good file layout.
857  	 */
858  	if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0)
859  		return (ENOSPC);
860  	buflist = ap->a_buflist;
861  	len = buflist->bs_nchildren;
862  	start_lbn = buflist->bs_children[0]->b_lblkno;
863  	end_lbn = start_lbn + len - 1;
864  #ifdef INVARIANTS
865  	for (i = 0; i < len; i++)
866  		if (!ffs_checkfreeblk(ip,
867  		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
868  			panic("ffs_reallocblks: unallocated block 1");
869  	for (i = 1; i < len; i++)
870  		if (buflist->bs_children[i]->b_lblkno != start_lbn + i)
871  			panic("ffs_reallocblks: non-logical cluster");
872  	blkno = buflist->bs_children[0]->b_blkno;
873  	ssize = fsbtodb(fs, fs->fs_frag);
874  	for (i = 1; i < len - 1; i++)
875  		if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize))
876  			panic("ffs_reallocblks: non-physical cluster %d", i);
877  #endif
878  	/*
879  	 * If the cluster crosses the boundary for the first indirect
880  	 * block, do not move anything in it. Indirect blocks are
881  	 * usually initially laid out in a position between the data
882  	 * blocks. Block reallocation would usually destroy locality by
883  	 * moving the indirect block out of the way to make room for
884  	 * data blocks if we didn't compensate here. We should also do
885  	 * this for other indirect block boundaries, but it is only
886  	 * important for the first one.
887  	 */
888  	if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR)
889  		return (ENOSPC);
890  	/*
891  	 * If the latest allocation is in a new cylinder group, assume that
892  	 * the filesystem has decided to move and do not force it back to
893  	 * the previous cylinder group.
894  	 */
895  	if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) !=
896  	    dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno)))
897  		return (ENOSPC);
898  	if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) ||
899  	    ufs_getlbns(vp, end_lbn, end_ap, &end_lvl))
900  		return (ENOSPC);
901  	/*
902  	 * Get the starting offset and block map for the first block.
903  	 */
904  	if (start_lvl == 0) {
905  		sbap = &ip->i_din2->di_db[0];
906  		soff = start_lbn;
907  	} else {
908  		idp = &start_ap[start_lvl - 1];
909  		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) {
910  			brelse(sbp);
911  			return (ENOSPC);
912  		}
913  		sbap = (ufs2_daddr_t *)sbp->b_data;
914  		soff = idp->in_off;
915  	}
916  	/*
917  	 * If the block range spans two block maps, get the second map.
918  	 */
919  	ebap = NULL;
920  	if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) {
921  		ssize = len;
922  	} else {
923  #ifdef INVARIANTS
924  		if (start_lvl > 0 &&
925  		    start_ap[start_lvl - 1].in_lbn == idp->in_lbn)
926  			panic("ffs_reallocblk: start == end");
927  #endif
928  		ssize = len - (idp->in_off + 1);
929  		if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp))
930  			goto fail;
931  		ebap = (ufs2_daddr_t *)ebp->b_data;
932  	}
933  	/*
934  	 * Find the preferred location for the cluster. If we have not
935  	 * previously failed at this endeavor, then follow our standard
936  	 * preference calculation. If we have failed at it, then pick up
937  	 * where we last ended our search.
938  	 */
939  	UFS_LOCK(ump);
940  	if (ip->i_nextclustercg == -1)
941  		pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap);
942  	else
943  		pref = cgdata(fs, ip->i_nextclustercg);
944  	/*
945  	 * Search the block map looking for an allocation of the desired size.
946  	 * To avoid wasting too much time, we limit the number of cylinder
947  	 * groups that we will search.
948  	 */
949  	cg = dtog(fs, pref);
950  	MPASS(cg < fs->fs_ncg);
951  	for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) {
952  		if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0)
953  			break;
954  		cg += 1;
955  		if (cg >= fs->fs_ncg)
956  			cg = 0;
957  	}
958  	/*
959  	 * If we have failed in our search, record where we gave up for
960  	 * next time. Otherwise, fall back to our usual search citerion.
961  	 */
962  	if (newblk == 0) {
963  		ip->i_nextclustercg = cg;
964  		UFS_UNLOCK(ump);
965  		goto fail;
966  	}
967  	ip->i_nextclustercg = -1;
968  	/*
969  	 * We have found a new contiguous block.
970  	 *
971  	 * First we have to replace the old block pointers with the new
972  	 * block pointers in the inode and indirect blocks associated
973  	 * with the file.
974  	 */
975  #ifdef DIAGNOSTIC
976  	if (prtrealloc)
977  		printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number,
978  		    (intmax_t)start_lbn, (intmax_t)end_lbn);
979  #endif
980  	blkno = newblk;
981  	for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) {
982  		if (i == ssize) {
983  			bap = ebap;
984  			soff = -i;
985  		}
986  #ifdef INVARIANTS
987  		if (!ffs_checkfreeblk(ip,
988  		   dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize))
989  			panic("ffs_reallocblks: unallocated block 2");
990  		if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap)
991  			panic("ffs_reallocblks: alloc mismatch");
992  #endif
993  #ifdef DIAGNOSTIC
994  		if (prtrealloc)
995  			printf(" %jd,", (intmax_t)*bap);
996  #endif
997  		if (DOINGSOFTDEP(vp)) {
998  			if (sbap == &ip->i_din2->di_db[0] && i < ssize)
999  				softdep_setup_allocdirect(ip, start_lbn + i,
1000  				    blkno, *bap, fs->fs_bsize, fs->fs_bsize,
1001  				    buflist->bs_children[i]);
1002  			else
1003  				softdep_setup_allocindir_page(ip, start_lbn + i,
1004  				    i < ssize ? sbp : ebp, soff + i, blkno,
1005  				    *bap, buflist->bs_children[i]);
1006  		}
1007  		*bap++ = blkno;
1008  	}
1009  	/*
1010  	 * Next we must write out the modified inode and indirect blocks.
1011  	 * For strict correctness, the writes should be synchronous since
1012  	 * the old block values may have been written to disk. In practise
1013  	 * they are almost never written, but if we are concerned about
1014  	 * strict correctness, the `doasyncfree' flag should be set to zero.
1015  	 *
1016  	 * The test on `doasyncfree' should be changed to test a flag
1017  	 * that shows whether the associated buffers and inodes have
1018  	 * been written. The flag should be set when the cluster is
1019  	 * started and cleared whenever the buffer or inode is flushed.
1020  	 * We can then check below to see if it is set, and do the
1021  	 * synchronous write only when it has been cleared.
1022  	 */
1023  	if (sbap != &ip->i_din2->di_db[0]) {
1024  		if (doasyncfree)
1025  			bdwrite(sbp);
1026  		else
1027  			bwrite(sbp);
1028  	} else {
1029  		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE);
1030  		if (!doasyncfree)
1031  			ffs_update(vp, 1);
1032  	}
1033  	if (ssize < len) {
1034  		if (doasyncfree)
1035  			bdwrite(ebp);
1036  		else
1037  			bwrite(ebp);
1038  	}
1039  	/*
1040  	 * Last, free the old blocks and assign the new blocks to the buffers.
1041  	 */
1042  #ifdef DIAGNOSTIC
1043  	if (prtrealloc)
1044  		printf("\n\tnew:");
1045  #endif
1046  	for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) {
1047  		bp = buflist->bs_children[i];
1048  		if (!DOINGSOFTDEP(vp))
1049  			/*
1050  			 * The usual case is that a set of N-contiguous blocks
1051  			 * that was just allocated has been replaced with a
1052  			 * set of N+1-contiguous blocks. If they are marked as
1053  			 * B_DELWRI, the current contents have not been written
1054  			 * to disk. It is possible that the blocks were written
1055  			 * earlier, but very uncommon. If the blocks have never
1056  			 * been written, there is no need to send a BIO_DELETE
1057  			 * for them when they are freed. The gain from avoiding
1058  			 * the TRIMs for the common case of unwritten blocks
1059  			 * far exceeds the cost of the write amplification for
1060  			 * the uncommon case of failing to send a TRIM for the
1061  			 * blocks that had been written.
1062  			 */
1063  			ffs_blkfree(ump, fs, ump->um_devvp,
1064  			    dbtofsb(fs, bp->b_blkno),
1065  			    fs->fs_bsize, ip->i_number, vp->v_type, NULL,
1066  			    (bp->b_flags & B_DELWRI) != 0 ?
1067  			    NOTRIM_KEY : SINGLETON_KEY);
1068  		bp->b_blkno = fsbtodb(fs, blkno);
1069  #ifdef INVARIANTS
1070  		if (!ffs_checkfreeblk(ip, dbtofsb(fs, bp->b_blkno),
1071  		    fs->fs_bsize))
1072  			panic("ffs_reallocblks: unallocated block 3");
1073  #endif
1074  #ifdef DIAGNOSTIC
1075  		if (prtrealloc)
1076  			printf(" %jd,", (intmax_t)blkno);
1077  #endif
1078  	}
1079  #ifdef DIAGNOSTIC
1080  	if (prtrealloc) {
1081  		prtrealloc--;
1082  		printf("\n");
1083  	}
1084  #endif
1085  	return (0);
1086  
1087  fail:
1088  	if (ssize < len)
1089  		brelse(ebp);
1090  	if (sbap != &ip->i_din2->di_db[0])
1091  		brelse(sbp);
1092  	return (ENOSPC);
1093  }
1094  
1095  /*
1096   * Allocate an inode in the filesystem.
1097   *
1098   * If allocating a directory, use ffs_dirpref to select the inode.
1099   * If allocating in a directory, the following hierarchy is followed:
1100   *   1) allocate the preferred inode.
1101   *   2) allocate an inode in the same cylinder group.
1102   *   3) quadratically rehash into other cylinder groups, until an
1103   *      available inode is located.
1104   * If no inode preference is given the following hierarchy is used
1105   * to allocate an inode:
1106   *   1) allocate an inode in cylinder group 0.
1107   *   2) quadratically rehash into other cylinder groups, until an
1108   *      available inode is located.
1109   */
1110  int
ffs_valloc(struct vnode * pvp,int mode,struct ucred * cred,struct vnode ** vpp)1111  ffs_valloc(struct vnode *pvp,
1112  	int mode,
1113  	struct ucred *cred,
1114  	struct vnode **vpp)
1115  {
1116  	struct inode *pip;
1117  	struct fs *fs;
1118  	struct inode *ip;
1119  	struct timespec ts;
1120  	struct ufsmount *ump;
1121  	ino_t ino, ipref;
1122  	uint64_t cg;
1123  	int error, reclaimed;
1124  
1125  	*vpp = NULL;
1126  	pip = VTOI(pvp);
1127  	ump = ITOUMP(pip);
1128  	fs = ump->um_fs;
1129  
1130  	UFS_LOCK(ump);
1131  	reclaimed = 0;
1132  retry:
1133  	if (fs->fs_cstotal.cs_nifree == 0)
1134  		goto noinodes;
1135  
1136  	if ((mode & IFMT) == IFDIR)
1137  		ipref = ffs_dirpref(pip);
1138  	else
1139  		ipref = pip->i_number;
1140  	if (ipref >= fs->fs_ncg * fs->fs_ipg)
1141  		ipref = 0;
1142  	cg = ino_to_cg(fs, ipref);
1143  	/*
1144  	 * Track number of dirs created one after another
1145  	 * in a same cg without intervening by files.
1146  	 */
1147  	if ((mode & IFMT) == IFDIR) {
1148  		if (fs->fs_contigdirs[cg] < 255)
1149  			fs->fs_contigdirs[cg]++;
1150  	} else {
1151  		if (fs->fs_contigdirs[cg] > 0)
1152  			fs->fs_contigdirs[cg]--;
1153  	}
1154  	ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0,
1155  					(allocfcn_t *)ffs_nodealloccg);
1156  	if (ino == 0)
1157  		goto noinodes;
1158  	/*
1159  	 * Get rid of the cached old vnode, force allocation of a new vnode
1160  	 * for this inode. If this fails, release the allocated ino and
1161  	 * return the error.
1162  	 */
1163  	if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp,
1164  	    FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) {
1165  		ffs_vfree(pvp, ino, mode);
1166  		return (error);
1167  	}
1168  	/*
1169  	 * We got an inode, so check mode and panic if it is already allocated.
1170  	 */
1171  	ip = VTOI(*vpp);
1172  	if (ip->i_mode) {
1173  		printf("mode = 0%o, inum = %ju, fs = %s\n",
1174  		    ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt);
1175  		panic("ffs_valloc: dup alloc");
1176  	}
1177  	if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) {  /* XXX */
1178  		printf("free inode %s/%ju had %ld blocks\n",
1179  		    fs->fs_fsmnt, (intmax_t)ino, (long)DIP(ip, i_blocks));
1180  		DIP_SET(ip, i_blocks, 0);
1181  	}
1182  	ip->i_flags = 0;
1183  	DIP_SET(ip, i_flags, 0);
1184  	if ((mode & IFMT) == IFDIR)
1185  		DIP_SET(ip, i_dirdepth, DIP(pip, i_dirdepth) + 1);
1186  	/*
1187  	 * Set up a new generation number for this inode.
1188  	 */
1189  	while (ip->i_gen == 0 || ++ip->i_gen == 0)
1190  		ip->i_gen = arc4random();
1191  	DIP_SET(ip, i_gen, ip->i_gen);
1192  	if (fs->fs_magic == FS_UFS2_MAGIC) {
1193  		vfs_timestamp(&ts);
1194  		ip->i_din2->di_birthtime = ts.tv_sec;
1195  		ip->i_din2->di_birthnsec = ts.tv_nsec;
1196  	}
1197  	ip->i_flag = 0;
1198  	(*vpp)->v_vflag = 0;
1199  	(*vpp)->v_type = VNON;
1200  	if (fs->fs_magic == FS_UFS2_MAGIC) {
1201  		(*vpp)->v_op = &ffs_vnodeops2;
1202  		UFS_INODE_SET_FLAG(ip, IN_UFS2);
1203  	} else {
1204  		(*vpp)->v_op = &ffs_vnodeops1;
1205  	}
1206  	return (0);
1207  noinodes:
1208  	if (reclaimed == 0) {
1209  		reclaimed = 1;
1210  		softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT);
1211  		goto retry;
1212  	}
1213  	if (ffs_fsfail_cleanup_locked(ump, 0)) {
1214  		UFS_UNLOCK(ump);
1215  		return (ENXIO);
1216  	}
1217  	if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) {
1218  		UFS_UNLOCK(ump);
1219  		ffs_fserr(fs, pip->i_number, "out of inodes");
1220  		uprintf("\n%s: create/symlink failed, no inodes free\n",
1221  		    fs->fs_fsmnt);
1222  	} else {
1223  		UFS_UNLOCK(ump);
1224  	}
1225  	return (ENOSPC);
1226  }
1227  
1228  /*
1229   * Find a cylinder group to place a directory.
1230   *
1231   * The policy implemented by this algorithm is to allocate a
1232   * directory inode in the same cylinder group as its parent
1233   * directory, but also to reserve space for its files inodes
1234   * and data. Restrict the number of directories which may be
1235   * allocated one after another in the same cylinder group
1236   * without intervening allocation of files.
1237   *
1238   * If we allocate a first level directory then force allocation
1239   * in another cylinder group.
1240   */
1241  static ino_t
ffs_dirpref(struct inode * pip)1242  ffs_dirpref(struct inode *pip)
1243  {
1244  	struct fs *fs;
1245  	int cg, prefcg, curcg, dirsize, cgsize;
1246  	int depth, range, start, end, numdirs, power, numerator, denominator;
1247  	uint64_t avgifree, avgbfree, avgndir, curdirsize;
1248  	uint64_t minifree, minbfree, maxndir;
1249  	uint64_t maxcontigdirs;
1250  
1251  	mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED);
1252  	fs = ITOFS(pip);
1253  
1254  	avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg;
1255  	avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1256  	avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg;
1257  
1258  	/*
1259  	 * Select a preferred cylinder group to place a new directory.
1260  	 * If we are near the root of the filesystem we aim to spread
1261  	 * them out as much as possible. As we descend deeper from the
1262  	 * root we cluster them closer together around their parent as
1263  	 * we expect them to be more closely interactive. Higher-level
1264  	 * directories like usr/src/sys and usr/src/bin should be
1265  	 * separated while the directories in these areas are more
1266  	 * likely to be accessed together so should be closer.
1267  	 *
1268  	 * We pick a range of cylinder groups around the cylinder group
1269  	 * of the directory in which we are being created. The size of
1270  	 * the range for our search is based on our depth from the root
1271  	 * of our filesystem. We then probe that range based on how many
1272  	 * directories are already present. The first new directory is at
1273  	 * 1/2 (middle) of the range; the second is in the first 1/4 of the
1274  	 * range, then at 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, 5/16, etc.
1275  	 */
1276  	depth = DIP(pip, i_dirdepth);
1277  	range = fs->fs_ncg / (1 << depth);
1278  	curcg = ino_to_cg(fs, pip->i_number);
1279  	start = curcg - (range / 2);
1280  	if (start < 0)
1281  		start += fs->fs_ncg;
1282  	end = curcg + (range / 2);
1283  	if (end >= fs->fs_ncg)
1284  		end -= fs->fs_ncg;
1285  	numdirs = pip->i_effnlink - 1;
1286  	power = fls(numdirs);
1287  	numerator = (numdirs & ~(1 << (power - 1))) * 2 + 1;
1288  	denominator = 1 << power;
1289  	prefcg = (curcg - (range / 2) + (range * numerator / denominator));
1290  	if (prefcg < 0)
1291  		prefcg += fs->fs_ncg;
1292  	if (prefcg >= fs->fs_ncg)
1293  		prefcg -= fs->fs_ncg;
1294  	/*
1295  	 * If this filesystem is not tracking directory depths,
1296  	 * revert to the old algorithm.
1297  	 */
1298  	if (depth == 0 && pip->i_number != UFS_ROOTINO)
1299  		prefcg = curcg;
1300  
1301  	/*
1302  	 * Count various limits which used for
1303  	 * optimal allocation of a directory inode.
1304  	 */
1305  	maxndir = min(avgndir + (1 << depth), fs->fs_ipg);
1306  	minifree = avgifree - avgifree / 4;
1307  	if (minifree < 1)
1308  		minifree = 1;
1309  	minbfree = avgbfree - avgbfree / 4;
1310  	if (minbfree < 1)
1311  		minbfree = 1;
1312  	cgsize = fs->fs_fsize * fs->fs_fpg;
1313  	dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir;
1314  	curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0;
1315  	if (dirsize < curdirsize)
1316  		dirsize = curdirsize;
1317  	if (dirsize <= 0)
1318  		maxcontigdirs = 0;		/* dirsize overflowed */
1319  	else
1320  		maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255);
1321  	if (fs->fs_avgfpdir > 0)
1322  		maxcontigdirs = min(maxcontigdirs,
1323  				    fs->fs_ipg / fs->fs_avgfpdir);
1324  	if (maxcontigdirs == 0)
1325  		maxcontigdirs = 1;
1326  
1327  	/*
1328  	 * Limit number of dirs in one cg and reserve space for
1329  	 * regular files, but only if we have no deficit in
1330  	 * inodes or space.
1331  	 *
1332  	 * We are trying to find a suitable cylinder group nearby
1333  	 * our preferred cylinder group to place a new directory.
1334  	 * We scan from our preferred cylinder group forward looking
1335  	 * for a cylinder group that meets our criterion. If we get
1336  	 * to the final cylinder group and do not find anything,
1337  	 * we start scanning forwards from the beginning of the
1338  	 * filesystem. While it might seem sensible to start scanning
1339  	 * backwards or even to alternate looking forward and backward,
1340  	 * this approach fails badly when the filesystem is nearly full.
1341  	 * Specifically, we first search all the areas that have no space
1342  	 * and finally try the one preceding that. We repeat this on
1343  	 * every request and in the case of the final block end up
1344  	 * searching the entire filesystem. By jumping to the front
1345  	 * of the filesystem, our future forward searches always look
1346  	 * in new cylinder groups so finds every possible block after
1347  	 * one pass over the filesystem.
1348  	 */
1349  	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1350  		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1351  		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1352  		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1353  			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1354  				return ((ino_t)(fs->fs_ipg * cg));
1355  		}
1356  	for (cg = 0; cg < prefcg; cg++)
1357  		if (fs->fs_cs(fs, cg).cs_ndir < maxndir &&
1358  		    fs->fs_cs(fs, cg).cs_nifree >= minifree &&
1359  		    fs->fs_cs(fs, cg).cs_nbfree >= minbfree) {
1360  			if (fs->fs_contigdirs[cg] < maxcontigdirs)
1361  				return ((ino_t)(fs->fs_ipg * cg));
1362  		}
1363  	/*
1364  	 * This is a backstop when we have deficit in space.
1365  	 */
1366  	for (cg = prefcg; cg < fs->fs_ncg; cg++)
1367  		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1368  			return ((ino_t)(fs->fs_ipg * cg));
1369  	for (cg = 0; cg < prefcg; cg++)
1370  		if (fs->fs_cs(fs, cg).cs_nifree >= avgifree)
1371  			break;
1372  	return ((ino_t)(fs->fs_ipg * cg));
1373  }
1374  
1375  /*
1376   * Select the desired position for the next block in a file.  The file is
1377   * logically divided into sections. The first section is composed of the
1378   * direct blocks and the next fs_maxbpg blocks. Each additional section
1379   * contains fs_maxbpg blocks.
1380   *
1381   * If no blocks have been allocated in the first section, the policy is to
1382   * request a block in the same cylinder group as the inode that describes
1383   * the file. The first indirect is allocated immediately following the last
1384   * direct block and the data blocks for the first indirect immediately
1385   * follow it.
1386   *
1387   * If no blocks have been allocated in any other section, the indirect
1388   * block(s) are allocated in the same cylinder group as its inode in an
1389   * area reserved immediately following the inode blocks. The policy for
1390   * the data blocks is to place them in a cylinder group with a greater than
1391   * average number of free blocks. An appropriate cylinder group is found
1392   * by using a rotor that sweeps the cylinder groups. When a new group of
1393   * blocks is needed, the sweep begins in the cylinder group following the
1394   * cylinder group from which the previous allocation was made. The sweep
1395   * continues until a cylinder group with greater than the average number
1396   * of free blocks is found. If the allocation is for the first block in an
1397   * indirect block or the previous block is a hole, then the information on
1398   * the previous allocation is unavailable; here a best guess is made based
1399   * on the logical block number being allocated.
1400   *
1401   * If a section is already partially allocated, the policy is to
1402   * allocate blocks contiguously within the section if possible.
1403   */
1404  ufs2_daddr_t
ffs_blkpref_ufs1(struct inode * ip,ufs_lbn_t lbn,int indx,ufs1_daddr_t * bap)1405  ffs_blkpref_ufs1(struct inode *ip,
1406  	ufs_lbn_t lbn,
1407  	int indx,
1408  	ufs1_daddr_t *bap)
1409  {
1410  	struct fs *fs;
1411  	uint64_t cg, inocg;
1412  	uint64_t avgbfree, startcg;
1413  	ufs2_daddr_t pref, prevbn;
1414  
1415  	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1416  	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1417  	fs = ITOFS(ip);
1418  	/*
1419  	 * Allocation of indirect blocks is indicated by passing negative
1420  	 * values in indx: -1 for single indirect, -2 for double indirect,
1421  	 * -3 for triple indirect. As noted below, we attempt to allocate
1422  	 * the first indirect inline with the file data. For all later
1423  	 * indirect blocks, the data is often allocated in other cylinder
1424  	 * groups. However to speed random file access and to speed up
1425  	 * fsck, the filesystem reserves the first fs_metaspace blocks
1426  	 * (typically half of fs_minfree) of the data area of each cylinder
1427  	 * group to hold these later indirect blocks.
1428  	 */
1429  	inocg = ino_to_cg(fs, ip->i_number);
1430  	if (indx < 0) {
1431  		/*
1432  		 * Our preference for indirect blocks is the zone at the
1433  		 * beginning of the inode's cylinder group data area that
1434  		 * we try to reserve for indirect blocks.
1435  		 */
1436  		pref = cgmeta(fs, inocg);
1437  		/*
1438  		 * If we are allocating the first indirect block, try to
1439  		 * place it immediately following the last direct block.
1440  		 */
1441  		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1442  		    ip->i_din1->di_db[UFS_NDADDR - 1] != 0) {
1443  			pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1444  			if (dtog(fs, pref) >= fs->fs_ncg)
1445  				pref = 0;
1446  		}
1447  		return (pref);
1448  	}
1449  	/*
1450  	 * If we are allocating the first data block in the first indirect
1451  	 * block and the indirect has been allocated in the data block area,
1452  	 * try to place it immediately following the indirect block.
1453  	 */
1454  	if (lbn == UFS_NDADDR) {
1455  		pref = ip->i_din1->di_ib[0];
1456  		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1457  		    pref < cgbase(fs, inocg + 1)) {
1458  			if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1459  				return (0);
1460  			return (pref + fs->fs_frag);
1461  		}
1462  	}
1463  	/*
1464  	 * If we are at the beginning of a file, or we have already allocated
1465  	 * the maximum number of blocks per cylinder group, or we do not
1466  	 * have a block allocated immediately preceding us, then we need
1467  	 * to decide where to start allocating new blocks.
1468  	 */
1469  	if (indx ==  0) {
1470  		prevbn = 0;
1471  	} else {
1472  		prevbn = bap[indx - 1];
1473  		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1474  		    fs->fs_bsize) != 0)
1475  			prevbn = 0;
1476  	}
1477  	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1478  		/*
1479  		 * If we are allocating a directory data block, we want
1480  		 * to place it in the metadata area.
1481  		 */
1482  		if ((ip->i_mode & IFMT) == IFDIR)
1483  			return (cgmeta(fs, inocg));
1484  		/*
1485  		 * Until we fill all the direct and all the first indirect's
1486  		 * blocks, we try to allocate in the data area of the inode's
1487  		 * cylinder group.
1488  		 */
1489  		if (lbn < UFS_NDADDR + NINDIR(fs))
1490  			return (cgdata(fs, inocg));
1491  		/*
1492  		 * Find a cylinder with greater than average number of
1493  		 * unused data blocks.
1494  		 */
1495  		if (indx == 0 || prevbn == 0)
1496  			startcg = inocg + lbn / fs->fs_maxbpg;
1497  		else
1498  			startcg = dtog(fs, prevbn) + 1;
1499  		startcg %= fs->fs_ncg;
1500  		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1501  		for (cg = startcg; cg < fs->fs_ncg; cg++)
1502  			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1503  				fs->fs_cgrotor = cg;
1504  				return (cgdata(fs, cg));
1505  			}
1506  		for (cg = 0; cg < startcg; cg++)
1507  			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1508  				fs->fs_cgrotor = cg;
1509  				return (cgdata(fs, cg));
1510  			}
1511  		return (0);
1512  	}
1513  	/*
1514  	 * Otherwise, we just always try to lay things out contiguously.
1515  	 */
1516  	if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1517  		return (0);
1518  	return (prevbn + fs->fs_frag);
1519  }
1520  
1521  /*
1522   * Same as above, but for UFS2
1523   */
1524  ufs2_daddr_t
ffs_blkpref_ufs2(struct inode * ip,ufs_lbn_t lbn,int indx,ufs2_daddr_t * bap)1525  ffs_blkpref_ufs2(struct inode *ip,
1526  	ufs_lbn_t lbn,
1527  	int indx,
1528  	ufs2_daddr_t *bap)
1529  {
1530  	struct fs *fs;
1531  	uint64_t cg, inocg;
1532  	uint64_t avgbfree, startcg;
1533  	ufs2_daddr_t pref, prevbn;
1534  
1535  	KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap"));
1536  	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1537  	fs = ITOFS(ip);
1538  	/*
1539  	 * Allocation of indirect blocks is indicated by passing negative
1540  	 * values in indx: -1 for single indirect, -2 for double indirect,
1541  	 * -3 for triple indirect. As noted below, we attempt to allocate
1542  	 * the first indirect inline with the file data. For all later
1543  	 * indirect blocks, the data is often allocated in other cylinder
1544  	 * groups. However to speed random file access and to speed up
1545  	 * fsck, the filesystem reserves the first fs_metaspace blocks
1546  	 * (typically half of fs_minfree) of the data area of each cylinder
1547  	 * group to hold these later indirect blocks.
1548  	 */
1549  	inocg = ino_to_cg(fs, ip->i_number);
1550  	if (indx < 0) {
1551  		/*
1552  		 * Our preference for indirect blocks is the zone at the
1553  		 * beginning of the inode's cylinder group data area that
1554  		 * we try to reserve for indirect blocks.
1555  		 */
1556  		pref = cgmeta(fs, inocg);
1557  		/*
1558  		 * If we are allocating the first indirect block, try to
1559  		 * place it immediately following the last direct block.
1560  		 */
1561  		if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) &&
1562  		    ip->i_din2->di_db[UFS_NDADDR - 1] != 0) {
1563  			pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag;
1564  			if (dtog(fs, pref) >= fs->fs_ncg)
1565  				pref = 0;
1566  		}
1567  		return (pref);
1568  	}
1569  	/*
1570  	 * If we are allocating the first data block in the first indirect
1571  	 * block and the indirect has been allocated in the data block area,
1572  	 * try to place it immediately following the indirect block.
1573  	 */
1574  	if (lbn == UFS_NDADDR) {
1575  		pref = ip->i_din2->di_ib[0];
1576  		if (pref != 0 && pref >= cgdata(fs, inocg) &&
1577  		    pref < cgbase(fs, inocg + 1)) {
1578  			if (dtog(fs, pref + fs->fs_frag) >= fs->fs_ncg)
1579  				return (0);
1580  			return (pref + fs->fs_frag);
1581  		}
1582  	}
1583  	/*
1584  	 * If we are at the beginning of a file, or we have already allocated
1585  	 * the maximum number of blocks per cylinder group, or we do not
1586  	 * have a block allocated immediately preceding us, then we need
1587  	 * to decide where to start allocating new blocks.
1588  	 */
1589  	if (indx ==  0) {
1590  		prevbn = 0;
1591  	} else {
1592  		prevbn = bap[indx - 1];
1593  		if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn,
1594  		    fs->fs_bsize) != 0)
1595  			prevbn = 0;
1596  	}
1597  	if (indx % fs->fs_maxbpg == 0 || prevbn == 0) {
1598  		/*
1599  		 * If we are allocating a directory data block, we want
1600  		 * to place it in the metadata area.
1601  		 */
1602  		if ((ip->i_mode & IFMT) == IFDIR)
1603  			return (cgmeta(fs, inocg));
1604  		/*
1605  		 * Until we fill all the direct and all the first indirect's
1606  		 * blocks, we try to allocate in the data area of the inode's
1607  		 * cylinder group.
1608  		 */
1609  		if (lbn < UFS_NDADDR + NINDIR(fs))
1610  			return (cgdata(fs, inocg));
1611  		/*
1612  		 * Find a cylinder with greater than average number of
1613  		 * unused data blocks.
1614  		 */
1615  		if (indx == 0 || prevbn == 0)
1616  			startcg = inocg + lbn / fs->fs_maxbpg;
1617  		else
1618  			startcg = dtog(fs, prevbn) + 1;
1619  		startcg %= fs->fs_ncg;
1620  		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
1621  		for (cg = startcg; cg < fs->fs_ncg; cg++)
1622  			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1623  				fs->fs_cgrotor = cg;
1624  				return (cgdata(fs, cg));
1625  			}
1626  		for (cg = 0; cg < startcg; cg++)
1627  			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
1628  				fs->fs_cgrotor = cg;
1629  				return (cgdata(fs, cg));
1630  			}
1631  		return (0);
1632  	}
1633  	/*
1634  	 * Otherwise, we just always try to lay things out contiguously.
1635  	 */
1636  	if (dtog(fs, prevbn + fs->fs_frag) >= fs->fs_ncg)
1637  		return (0);
1638  	return (prevbn + fs->fs_frag);
1639  }
1640  
1641  /*
1642   * Implement the cylinder overflow algorithm.
1643   *
1644   * The policy implemented by this algorithm is:
1645   *   1) allocate the block in its requested cylinder group.
1646   *   2) quadratically rehash on the cylinder group number.
1647   *   3) brute force search for a free block.
1648   *
1649   * Must be called with the UFS lock held.  Will release the lock on success
1650   * and return with it held on failure.
1651   */
1652  /*VARARGS5*/
1653  static ufs2_daddr_t
ffs_hashalloc(struct inode * ip,uint64_t cg,ufs2_daddr_t pref,int size,int rsize,allocfcn_t * allocator)1654  ffs_hashalloc(struct inode *ip,
1655  	uint64_t cg,
1656  	ufs2_daddr_t pref,
1657  	int size,	/* Search size for data blocks, mode for inodes */
1658  	int rsize,	/* Real allocated size. */
1659  	allocfcn_t *allocator)
1660  {
1661  	struct fs *fs;
1662  	ufs2_daddr_t result;
1663  	uint64_t i, icg = cg;
1664  
1665  	mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED);
1666  #ifdef INVARIANTS
1667  	if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED)
1668  		panic("ffs_hashalloc: allocation on suspended filesystem");
1669  #endif
1670  	fs = ITOFS(ip);
1671  	/*
1672  	 * 1: preferred cylinder group
1673  	 */
1674  	result = (*allocator)(ip, cg, pref, size, rsize);
1675  	if (result)
1676  		return (result);
1677  	/*
1678  	 * 2: quadratic rehash
1679  	 */
1680  	for (i = 1; i < fs->fs_ncg; i *= 2) {
1681  		cg += i;
1682  		if (cg >= fs->fs_ncg)
1683  			cg -= fs->fs_ncg;
1684  		result = (*allocator)(ip, cg, 0, size, rsize);
1685  		if (result)
1686  			return (result);
1687  	}
1688  	/*
1689  	 * 3: brute force search
1690  	 * Note that we start at i == 2, since 0 was checked initially,
1691  	 * and 1 is always checked in the quadratic rehash.
1692  	 */
1693  	cg = (icg + 2) % fs->fs_ncg;
1694  	for (i = 2; i < fs->fs_ncg; i++) {
1695  		result = (*allocator)(ip, cg, 0, size, rsize);
1696  		if (result)
1697  			return (result);
1698  		cg++;
1699  		if (cg == fs->fs_ncg)
1700  			cg = 0;
1701  	}
1702  	return (0);
1703  }
1704  
1705  /*
1706   * Determine whether a fragment can be extended.
1707   *
1708   * Check to see if the necessary fragments are available, and
1709   * if they are, allocate them.
1710   */
1711  static ufs2_daddr_t
ffs_fragextend(struct inode * ip,uint64_t cg,ufs2_daddr_t bprev,int osize,int nsize)1712  ffs_fragextend(struct inode *ip,
1713  	uint64_t cg,
1714  	ufs2_daddr_t bprev,
1715  	int osize,
1716  	int nsize)
1717  {
1718  	struct fs *fs;
1719  	struct cg *cgp;
1720  	struct buf *bp;
1721  	struct ufsmount *ump;
1722  	int nffree;
1723  	long bno;
1724  	int frags, bbase;
1725  	int i, error;
1726  	uint8_t *blksfree;
1727  
1728  	ump = ITOUMP(ip);
1729  	fs = ump->um_fs;
1730  	if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize))
1731  		return (0);
1732  	frags = numfrags(fs, nsize);
1733  	bbase = fragnum(fs, bprev);
1734  	if (bbase > fragnum(fs, (bprev + frags - 1))) {
1735  		/* cannot extend across a block boundary */
1736  		return (0);
1737  	}
1738  	UFS_UNLOCK(ump);
1739  	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1740  		ffs_checkcgintegrity(fs, cg, error);
1741  		goto fail;
1742  	}
1743  	bno = dtogd(fs, bprev);
1744  	blksfree = cg_blksfree(cgp);
1745  	for (i = numfrags(fs, osize); i < frags; i++)
1746  		if (isclr(blksfree, bno + i))
1747  			goto fail;
1748  	/*
1749  	 * the current fragment can be extended
1750  	 * deduct the count on fragment being extended into
1751  	 * increase the count on the remaining fragment (if any)
1752  	 * allocate the extended piece
1753  	 */
1754  	for (i = frags; i < fs->fs_frag - bbase; i++)
1755  		if (isclr(blksfree, bno + i))
1756  			break;
1757  	cgp->cg_frsum[i - numfrags(fs, osize)]--;
1758  	if (i != frags)
1759  		cgp->cg_frsum[i - frags]++;
1760  	for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) {
1761  		clrbit(blksfree, bno + i);
1762  		cgp->cg_cs.cs_nffree--;
1763  		nffree++;
1764  	}
1765  	UFS_LOCK(ump);
1766  	fs->fs_cstotal.cs_nffree -= nffree;
1767  	fs->fs_cs(fs, cg).cs_nffree -= nffree;
1768  	fs->fs_fmod = 1;
1769  	ACTIVECLEAR(fs, cg);
1770  	UFS_UNLOCK(ump);
1771  	if (DOINGSOFTDEP(ITOV(ip)))
1772  		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev,
1773  		    frags, numfrags(fs, osize));
1774  	bdwrite(bp);
1775  	return (bprev);
1776  
1777  fail:
1778  	brelse(bp);
1779  	UFS_LOCK(ump);
1780  	return (0);
1781  
1782  }
1783  
1784  /*
1785   * Determine whether a block can be allocated.
1786   *
1787   * Check to see if a block of the appropriate size is available,
1788   * and if it is, allocate it.
1789   */
1790  static ufs2_daddr_t
ffs_alloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int size,int rsize)1791  ffs_alloccg(struct inode *ip,
1792  	uint64_t cg,
1793  	ufs2_daddr_t bpref,
1794  	int size,
1795  	int rsize)
1796  {
1797  	struct fs *fs;
1798  	struct cg *cgp;
1799  	struct buf *bp;
1800  	struct ufsmount *ump;
1801  	ufs1_daddr_t bno;
1802  	ufs2_daddr_t blkno;
1803  	int i, allocsiz, error, frags;
1804  	uint8_t *blksfree;
1805  
1806  	ump = ITOUMP(ip);
1807  	fs = ump->um_fs;
1808  	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
1809  		return (0);
1810  	UFS_UNLOCK(ump);
1811  	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 ||
1812  	   (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
1813  		ffs_checkcgintegrity(fs, cg, error);
1814  		goto fail;
1815  	}
1816  	if (size == fs->fs_bsize) {
1817  		UFS_LOCK(ump);
1818  		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1819  		ACTIVECLEAR(fs, cg);
1820  		UFS_UNLOCK(ump);
1821  		bdwrite(bp);
1822  		return (blkno);
1823  	}
1824  	/*
1825  	 * check to see if any fragments are already available
1826  	 * allocsiz is the size which will be allocated, hacking
1827  	 * it down to a smaller size if necessary
1828  	 */
1829  	blksfree = cg_blksfree(cgp);
1830  	frags = numfrags(fs, size);
1831  	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
1832  		if (cgp->cg_frsum[allocsiz] != 0)
1833  			break;
1834  	if (allocsiz == fs->fs_frag) {
1835  		/*
1836  		 * no fragments were available, so a block will be
1837  		 * allocated, and hacked up
1838  		 */
1839  		if (cgp->cg_cs.cs_nbfree == 0)
1840  			goto fail;
1841  		UFS_LOCK(ump);
1842  		blkno = ffs_alloccgblk(ip, bp, bpref, rsize);
1843  		ACTIVECLEAR(fs, cg);
1844  		UFS_UNLOCK(ump);
1845  		bdwrite(bp);
1846  		return (blkno);
1847  	}
1848  	KASSERT(size == rsize,
1849  	    ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize));
1850  	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
1851  	if (bno < 0)
1852  		goto fail;
1853  	for (i = 0; i < frags; i++)
1854  		clrbit(blksfree, bno + i);
1855  	cgp->cg_cs.cs_nffree -= frags;
1856  	cgp->cg_frsum[allocsiz]--;
1857  	if (frags != allocsiz)
1858  		cgp->cg_frsum[allocsiz - frags]++;
1859  	UFS_LOCK(ump);
1860  	fs->fs_cstotal.cs_nffree -= frags;
1861  	fs->fs_cs(fs, cg).cs_nffree -= frags;
1862  	fs->fs_fmod = 1;
1863  	blkno = cgbase(fs, cg) + bno;
1864  	ACTIVECLEAR(fs, cg);
1865  	UFS_UNLOCK(ump);
1866  	if (DOINGSOFTDEP(ITOV(ip)))
1867  		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0);
1868  	bdwrite(bp);
1869  	return (blkno);
1870  
1871  fail:
1872  	brelse(bp);
1873  	UFS_LOCK(ump);
1874  	return (0);
1875  }
1876  
1877  /*
1878   * Allocate a block in a cylinder group.
1879   *
1880   * This algorithm implements the following policy:
1881   *   1) allocate the requested block.
1882   *   2) allocate a rotationally optimal block in the same cylinder.
1883   *   3) allocate the next available block on the block rotor for the
1884   *      specified cylinder group.
1885   * Note that this routine only allocates fs_bsize blocks; these
1886   * blocks may be fragmented by the routine that allocates them.
1887   */
1888  static ufs2_daddr_t
ffs_alloccgblk(struct inode * ip,struct buf * bp,ufs2_daddr_t bpref,int size)1889  ffs_alloccgblk(struct inode *ip,
1890  	struct buf *bp,
1891  	ufs2_daddr_t bpref,
1892  	int size)
1893  {
1894  	struct fs *fs;
1895  	struct cg *cgp;
1896  	struct ufsmount *ump;
1897  	ufs1_daddr_t bno;
1898  	ufs2_daddr_t blkno;
1899  	uint8_t *blksfree;
1900  	int i, cgbpref;
1901  
1902  	ump = ITOUMP(ip);
1903  	fs = ump->um_fs;
1904  	mtx_assert(UFS_MTX(ump), MA_OWNED);
1905  	cgp = (struct cg *)bp->b_data;
1906  	blksfree = cg_blksfree(cgp);
1907  	if (bpref == 0) {
1908  		bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag;
1909  	} else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) {
1910  		/* map bpref to correct zone in this cg */
1911  		if (bpref < cgdata(fs, cgbpref))
1912  			bpref = cgmeta(fs, cgp->cg_cgx);
1913  		else
1914  			bpref = cgdata(fs, cgp->cg_cgx);
1915  	}
1916  	/*
1917  	 * if the requested block is available, use it
1918  	 */
1919  	bno = dtogd(fs, blknum(fs, bpref));
1920  	if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
1921  		goto gotit;
1922  	/*
1923  	 * Take the next available block in this cylinder group.
1924  	 */
1925  	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
1926  	if (bno < 0)
1927  		return (0);
1928  	/* Update cg_rotor only if allocated from the data zone */
1929  	if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx)))
1930  		cgp->cg_rotor = bno;
1931  gotit:
1932  	blkno = fragstoblks(fs, bno);
1933  	ffs_clrblock(fs, blksfree, (long)blkno);
1934  	ffs_clusteracct(fs, cgp, blkno, -1);
1935  	cgp->cg_cs.cs_nbfree--;
1936  	fs->fs_cstotal.cs_nbfree--;
1937  	fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--;
1938  	fs->fs_fmod = 1;
1939  	blkno = cgbase(fs, cgp->cg_cgx) + bno;
1940  	/*
1941  	 * If the caller didn't want the whole block free the frags here.
1942  	 */
1943  	size = numfrags(fs, size);
1944  	if (size != fs->fs_frag) {
1945  		bno = dtogd(fs, blkno);
1946  		for (i = size; i < fs->fs_frag; i++)
1947  			setbit(blksfree, bno + i);
1948  		i = fs->fs_frag - size;
1949  		cgp->cg_cs.cs_nffree += i;
1950  		fs->fs_cstotal.cs_nffree += i;
1951  		fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i;
1952  		fs->fs_fmod = 1;
1953  		cgp->cg_frsum[i]++;
1954  	}
1955  	/* XXX Fixme. */
1956  	UFS_UNLOCK(ump);
1957  	if (DOINGSOFTDEP(ITOV(ip)))
1958  		softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0);
1959  	UFS_LOCK(ump);
1960  	return (blkno);
1961  }
1962  
1963  /*
1964   * Determine whether a cluster can be allocated.
1965   *
1966   * We do not currently check for optimal rotational layout if there
1967   * are multiple choices in the same cylinder group. Instead we just
1968   * take the first one that we find following bpref.
1969   */
1970  static ufs2_daddr_t
ffs_clusteralloc(struct inode * ip,uint64_t cg,ufs2_daddr_t bpref,int len)1971  ffs_clusteralloc(struct inode *ip,
1972  	uint64_t cg,
1973  	ufs2_daddr_t bpref,
1974  	int len)
1975  {
1976  	struct fs *fs;
1977  	struct cg *cgp;
1978  	struct buf *bp;
1979  	struct ufsmount *ump;
1980  	int i, run, bit, map, got, error;
1981  	ufs2_daddr_t bno;
1982  	uint8_t *mapp;
1983  	int32_t *lp;
1984  	uint8_t *blksfree;
1985  
1986  	ump = ITOUMP(ip);
1987  	fs = ump->um_fs;
1988  	MPASS(cg < fs->fs_ncg);
1989  	if (fs->fs_maxcluster[cg] < len)
1990  		return (0);
1991  	UFS_UNLOCK(ump);
1992  	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
1993  		ffs_checkcgintegrity(fs, cg, error);
1994  		UFS_LOCK(ump);
1995  		return (0);
1996  	}
1997  	/*
1998  	 * Check to see if a cluster of the needed size (or bigger) is
1999  	 * available in this cylinder group.
2000  	 */
2001  	lp = &cg_clustersum(cgp)[len];
2002  	for (i = len; i <= fs->fs_contigsumsize; i++)
2003  		if (*lp++ > 0)
2004  			break;
2005  	if (i > fs->fs_contigsumsize) {
2006  		/*
2007  		 * This is the first time looking for a cluster in this
2008  		 * cylinder group. Update the cluster summary information
2009  		 * to reflect the true maximum sized cluster so that
2010  		 * future cluster allocation requests can avoid reading
2011  		 * the cylinder group map only to find no clusters.
2012  		 */
2013  		lp = &cg_clustersum(cgp)[len - 1];
2014  		for (i = len - 1; i > 0; i--)
2015  			if (*lp-- > 0)
2016  				break;
2017  		UFS_LOCK(ump);
2018  		fs->fs_maxcluster[cg] = i;
2019  		brelse(bp);
2020  		return (0);
2021  	}
2022  	/*
2023  	 * Search the cluster map to find a big enough cluster.
2024  	 * We take the first one that we find, even if it is larger
2025  	 * than we need as we prefer to get one close to the previous
2026  	 * block allocation. We do not search before the current
2027  	 * preference point as we do not want to allocate a block
2028  	 * that is allocated before the previous one (as we will
2029  	 * then have to wait for another pass of the elevator
2030  	 * algorithm before it will be read). We prefer to fail and
2031  	 * be recalled to try an allocation in the next cylinder group.
2032  	 */
2033  	if (dtog(fs, bpref) != cg)
2034  		bpref = cgdata(fs, cg);
2035  	else
2036  		bpref = blknum(fs, bpref);
2037  	bpref = fragstoblks(fs, dtogd(fs, bpref));
2038  	mapp = &cg_clustersfree(cgp)[bpref / NBBY];
2039  	map = *mapp++;
2040  	bit = 1 << (bpref % NBBY);
2041  	for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) {
2042  		if ((map & bit) == 0) {
2043  			run = 0;
2044  		} else {
2045  			run++;
2046  			if (run == len)
2047  				break;
2048  		}
2049  		if ((got & (NBBY - 1)) != (NBBY - 1)) {
2050  			bit <<= 1;
2051  		} else {
2052  			map = *mapp++;
2053  			bit = 1;
2054  		}
2055  	}
2056  	if (got >= cgp->cg_nclusterblks) {
2057  		UFS_LOCK(ump);
2058  		brelse(bp);
2059  		return (0);
2060  	}
2061  	/*
2062  	 * Allocate the cluster that we have found.
2063  	 */
2064  	blksfree = cg_blksfree(cgp);
2065  	for (i = 1; i <= len; i++)
2066  		if (!ffs_isblock(fs, blksfree, got - run + i))
2067  			panic("ffs_clusteralloc: map mismatch");
2068  	bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1);
2069  	if (dtog(fs, bno) != cg)
2070  		panic("ffs_clusteralloc: allocated out of group");
2071  	len = blkstofrags(fs, len);
2072  	UFS_LOCK(ump);
2073  	for (i = 0; i < len; i += fs->fs_frag)
2074  		if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i)
2075  			panic("ffs_clusteralloc: lost block");
2076  	ACTIVECLEAR(fs, cg);
2077  	UFS_UNLOCK(ump);
2078  	bdwrite(bp);
2079  	return (bno);
2080  }
2081  
2082  static inline struct buf *
getinobuf(struct inode * ip,uint64_t cg,uint32_t cginoblk,int gbflags)2083  getinobuf(struct inode *ip,
2084  	uint64_t cg,
2085  	uint32_t cginoblk,
2086  	int gbflags)
2087  {
2088  	struct fs *fs;
2089  
2090  	fs = ITOFS(ip);
2091  	return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs,
2092  	    cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0,
2093  	    gbflags));
2094  }
2095  
2096  /*
2097   * Synchronous inode initialization is needed only when barrier writes do not
2098   * work as advertised, and will impose a heavy cost on file creation in a newly
2099   * created filesystem.
2100   */
2101  static int doasyncinodeinit = 1;
2102  SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN,
2103      &doasyncinodeinit, 0,
2104      "Perform inode block initialization using asynchronous writes");
2105  
2106  /*
2107   * Determine whether an inode can be allocated.
2108   *
2109   * Check to see if an inode is available, and if it is,
2110   * allocate it using the following policy:
2111   *   1) allocate the requested inode.
2112   *   2) allocate the next available inode after the requested
2113   *      inode in the specified cylinder group.
2114   */
2115  static ufs2_daddr_t
ffs_nodealloccg(struct inode * ip,uint64_t cg,ufs2_daddr_t ipref,int mode,int unused)2116  ffs_nodealloccg(struct inode *ip,
2117  	uint64_t cg,
2118  	ufs2_daddr_t ipref,
2119  	int mode,
2120  	int unused)
2121  {
2122  	struct fs *fs;
2123  	struct cg *cgp;
2124  	struct buf *bp, *ibp;
2125  	struct ufsmount *ump;
2126  	uint8_t *inosused, *loc;
2127  	struct ufs2_dinode *dp2;
2128  	int error, start, len, i;
2129  	uint32_t old_initediblk;
2130  
2131  	ump = ITOUMP(ip);
2132  	fs = ump->um_fs;
2133  check_nifree:
2134  	if (fs->fs_cs(fs, cg).cs_nifree == 0)
2135  		return (0);
2136  	UFS_UNLOCK(ump);
2137  	if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) {
2138  		ffs_checkcgintegrity(fs, cg, error);
2139  		UFS_LOCK(ump);
2140  		return (0);
2141  	}
2142  restart:
2143  	if (cgp->cg_cs.cs_nifree == 0) {
2144  		brelse(bp);
2145  		UFS_LOCK(ump);
2146  		return (0);
2147  	}
2148  	inosused = cg_inosused(cgp);
2149  	if (ipref) {
2150  		ipref %= fs->fs_ipg;
2151  		if (isclr(inosused, ipref))
2152  			goto gotit;
2153  	}
2154  	start = cgp->cg_irotor / NBBY;
2155  	len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY);
2156  	loc = memcchr(&inosused[start], 0xff, len);
2157  	if (loc == NULL) {
2158  		len = start + 1;
2159  		start = 0;
2160  		loc = memcchr(&inosused[start], 0xff, len);
2161  		if (loc == NULL) {
2162  			printf("cg = %ju, irotor = %ld, fs = %s\n",
2163  			    (intmax_t)cg, (long)cgp->cg_irotor, fs->fs_fsmnt);
2164  			panic("ffs_nodealloccg: map corrupted");
2165  			/* NOTREACHED */
2166  		}
2167  	}
2168  	ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1;
2169  gotit:
2170  	/*
2171  	 * Check to see if we need to initialize more inodes.
2172  	 */
2173  	if (fs->fs_magic == FS_UFS2_MAGIC &&
2174  	    ipref + INOPB(fs) > cgp->cg_initediblk &&
2175  	    cgp->cg_initediblk < cgp->cg_niblk) {
2176  		old_initediblk = cgp->cg_initediblk;
2177  
2178  		/*
2179  		 * Free the cylinder group lock before writing the
2180  		 * initialized inode block.  Entering the
2181  		 * babarrierwrite() with the cylinder group lock
2182  		 * causes lock order violation between the lock and
2183  		 * snaplk.
2184  		 *
2185  		 * Another thread can decide to initialize the same
2186  		 * inode block, but whichever thread first gets the
2187  		 * cylinder group lock after writing the newly
2188  		 * allocated inode block will update it and the other
2189  		 * will realize that it has lost and leave the
2190  		 * cylinder group unchanged.
2191  		 */
2192  		ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT);
2193  		brelse(bp);
2194  		if (ibp == NULL) {
2195  			/*
2196  			 * The inode block buffer is already owned by
2197  			 * another thread, which must initialize it.
2198  			 * Wait on the buffer to allow another thread
2199  			 * to finish the updates, with dropped cg
2200  			 * buffer lock, then retry.
2201  			 */
2202  			ibp = getinobuf(ip, cg, old_initediblk, 0);
2203  			brelse(ibp);
2204  			UFS_LOCK(ump);
2205  			goto check_nifree;
2206  		}
2207  		bzero(ibp->b_data, (int)fs->fs_bsize);
2208  		dp2 = (struct ufs2_dinode *)(ibp->b_data);
2209  		for (i = 0; i < INOPB(fs); i++) {
2210  			while (dp2->di_gen == 0)
2211  				dp2->di_gen = arc4random();
2212  			dp2++;
2213  		}
2214  
2215  		/*
2216  		 * Rather than adding a soft updates dependency to ensure
2217  		 * that the new inode block is written before it is claimed
2218  		 * by the cylinder group map, we just do a barrier write
2219  		 * here. The barrier write will ensure that the inode block
2220  		 * gets written before the updated cylinder group map can be
2221  		 * written. The barrier write should only slow down bulk
2222  		 * loading of newly created filesystems.
2223  		 */
2224  		if (doasyncinodeinit)
2225  			babarrierwrite(ibp);
2226  		else
2227  			bwrite(ibp);
2228  
2229  		/*
2230  		 * After the inode block is written, try to update the
2231  		 * cg initediblk pointer.  If another thread beat us
2232  		 * to it, then leave it unchanged as the other thread
2233  		 * has already set it correctly.
2234  		 */
2235  		error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp);
2236  		UFS_LOCK(ump);
2237  		ACTIVECLEAR(fs, cg);
2238  		UFS_UNLOCK(ump);
2239  		if (error != 0)
2240  			return (error);
2241  		if (cgp->cg_initediblk == old_initediblk)
2242  			cgp->cg_initediblk += INOPB(fs);
2243  		goto restart;
2244  	}
2245  	cgp->cg_irotor = ipref;
2246  	UFS_LOCK(ump);
2247  	ACTIVECLEAR(fs, cg);
2248  	setbit(inosused, ipref);
2249  	cgp->cg_cs.cs_nifree--;
2250  	fs->fs_cstotal.cs_nifree--;
2251  	fs->fs_cs(fs, cg).cs_nifree--;
2252  	fs->fs_fmod = 1;
2253  	if ((mode & IFMT) == IFDIR) {
2254  		cgp->cg_cs.cs_ndir++;
2255  		fs->fs_cstotal.cs_ndir++;
2256  		fs->fs_cs(fs, cg).cs_ndir++;
2257  	}
2258  	UFS_UNLOCK(ump);
2259  	if (DOINGSOFTDEP(ITOV(ip)))
2260  		softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode);
2261  	bdwrite(bp);
2262  	return ((ino_t)(cg * fs->fs_ipg + ipref));
2263  }
2264  
2265  /*
2266   * Free a block or fragment.
2267   *
2268   * The specified block or fragment is placed back in the
2269   * free map. If a fragment is deallocated, a possible
2270   * block reassembly is checked.
2271   */
2272  static void
ffs_blkfree_cg(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,struct workhead * dephd)2273  ffs_blkfree_cg(struct ufsmount *ump,
2274  	struct fs *fs,
2275  	struct vnode *devvp,
2276  	ufs2_daddr_t bno,
2277  	long size,
2278  	ino_t inum,
2279  	struct workhead *dephd)
2280  {
2281  	struct mount *mp;
2282  	struct cg *cgp;
2283  	struct buf *bp;
2284  	daddr_t dbn;
2285  	ufs1_daddr_t fragno, cgbno;
2286  	int i, blk, frags, bbase, error;
2287  	uint64_t cg;
2288  	uint8_t *blksfree;
2289  	struct cdev *dev;
2290  
2291  	cg = dtog(fs, bno);
2292  	if (devvp->v_type == VREG) {
2293  		/* devvp is a snapshot */
2294  		MPASS(devvp->v_mount->mnt_data == ump);
2295  		dev = ump->um_devvp->v_rdev;
2296  	} else if (devvp->v_type == VCHR) {
2297  		/*
2298  		 * devvp is a normal disk device
2299  		 * XXXKIB: devvp is not locked there, v_rdev access depends on
2300  		 * busy mount, which prevents mntfs devvp from reclamation.
2301  		 */
2302  		dev = devvp->v_rdev;
2303  	} else
2304  		return;
2305  #ifdef INVARIANTS
2306  	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
2307  	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
2308  		printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n",
2309  		    devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize,
2310  		    size, fs->fs_fsmnt);
2311  		panic("ffs_blkfree_cg: invalid size");
2312  	}
2313  #endif
2314  	if ((uint64_t)bno >= fs->fs_size) {
2315  		printf("bad block %jd, ino %ju\n", (intmax_t)bno,
2316  		    (intmax_t)inum);
2317  		ffs_fserr(fs, inum, "bad block");
2318  		return;
2319  	}
2320  	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2321  		if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2322  			return;
2323  		/*
2324  		 * Would like to just downgrade to read-only. Until that
2325  		 * capability is available, just toss the cylinder group
2326  		 * update and mark the filesystem as needing to run fsck.
2327  		 */
2328  		fs->fs_flags |= FS_NEEDSFSCK;
2329  		if (devvp->v_type == VREG)
2330  			dbn = fragstoblks(fs, cgtod(fs, cg));
2331  		else
2332  			dbn = fsbtodb(fs, cgtod(fs, cg));
2333  		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2334  		KASSERT(error == 0, ("getblkx failed"));
2335  		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2336  		    numfrags(fs, size), dephd, true);
2337  		bp->b_flags |= B_RELBUF | B_NOCACHE;
2338  		bp->b_flags &= ~B_CACHE;
2339  		bawrite(bp);
2340  		return;
2341  	}
2342  	cgbno = dtogd(fs, bno);
2343  	blksfree = cg_blksfree(cgp);
2344  	UFS_LOCK(ump);
2345  	if (size == fs->fs_bsize) {
2346  		fragno = fragstoblks(fs, cgbno);
2347  		if (!ffs_isfreeblock(fs, blksfree, fragno)) {
2348  			if (devvp->v_type == VREG) {
2349  				UFS_UNLOCK(ump);
2350  				/* devvp is a snapshot */
2351  				brelse(bp);
2352  				return;
2353  			}
2354  			printf("dev = %s, block = %jd, fs = %s\n",
2355  			    devtoname(dev), (intmax_t)bno, fs->fs_fsmnt);
2356  			panic("ffs_blkfree_cg: freeing free block");
2357  		}
2358  		ffs_setblock(fs, blksfree, fragno);
2359  		ffs_clusteracct(fs, cgp, fragno, 1);
2360  		cgp->cg_cs.cs_nbfree++;
2361  		fs->fs_cstotal.cs_nbfree++;
2362  		fs->fs_cs(fs, cg).cs_nbfree++;
2363  	} else {
2364  		bbase = cgbno - fragnum(fs, cgbno);
2365  		/*
2366  		 * decrement the counts associated with the old frags
2367  		 */
2368  		blk = blkmap(fs, blksfree, bbase);
2369  		ffs_fragacct(fs, blk, cgp->cg_frsum, -1);
2370  		/*
2371  		 * deallocate the fragment
2372  		 */
2373  		frags = numfrags(fs, size);
2374  		for (i = 0; i < frags; i++) {
2375  			if (isset(blksfree, cgbno + i)) {
2376  				printf("dev = %s, block = %jd, fs = %s\n",
2377  				    devtoname(dev), (intmax_t)(bno + i),
2378  				    fs->fs_fsmnt);
2379  				panic("ffs_blkfree_cg: freeing free frag");
2380  			}
2381  			setbit(blksfree, cgbno + i);
2382  		}
2383  		cgp->cg_cs.cs_nffree += i;
2384  		fs->fs_cstotal.cs_nffree += i;
2385  		fs->fs_cs(fs, cg).cs_nffree += i;
2386  		/*
2387  		 * add back in counts associated with the new frags
2388  		 */
2389  		blk = blkmap(fs, blksfree, bbase);
2390  		ffs_fragacct(fs, blk, cgp->cg_frsum, 1);
2391  		/*
2392  		 * if a complete block has been reassembled, account for it
2393  		 */
2394  		fragno = fragstoblks(fs, bbase);
2395  		if (ffs_isblock(fs, blksfree, fragno)) {
2396  			cgp->cg_cs.cs_nffree -= fs->fs_frag;
2397  			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
2398  			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
2399  			ffs_clusteracct(fs, cgp, fragno, 1);
2400  			cgp->cg_cs.cs_nbfree++;
2401  			fs->fs_cstotal.cs_nbfree++;
2402  			fs->fs_cs(fs, cg).cs_nbfree++;
2403  		}
2404  	}
2405  	fs->fs_fmod = 1;
2406  	ACTIVECLEAR(fs, cg);
2407  	UFS_UNLOCK(ump);
2408  	mp = UFSTOVFS(ump);
2409  	if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR)
2410  		softdep_setup_blkfree(UFSTOVFS(ump), bp, bno,
2411  		    numfrags(fs, size), dephd, false);
2412  	bdwrite(bp);
2413  }
2414  
2415  /*
2416   * Structures and routines associated with trim management.
2417   *
2418   * The following requests are passed to trim_lookup to indicate
2419   * the actions that should be taken.
2420   */
2421  #define	NEW	1	/* if found, error else allocate and hash it */
2422  #define	OLD	2	/* if not found, error, else return it */
2423  #define	REPLACE	3	/* if not found, error else unhash and reallocate it */
2424  #define	DONE	4	/* if not found, error else unhash and return it */
2425  #define	SINGLE	5	/* don't look up, just allocate it and don't hash it */
2426  
2427  MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures");
2428  
2429  #define	TRIMLIST_HASH(ump, key) \
2430  	(&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize])
2431  
2432  /*
2433   * These structures describe each of the block free requests aggregated
2434   * together to make up a trim request.
2435   */
2436  struct trim_blkreq {
2437  	TAILQ_ENTRY(trim_blkreq) blkreqlist;
2438  	ufs2_daddr_t bno;
2439  	long size;
2440  	struct workhead *pdephd;
2441  	struct workhead dephd;
2442  };
2443  
2444  /*
2445   * Description of a trim request.
2446   */
2447  struct ffs_blkfree_trim_params {
2448  	TAILQ_HEAD(, trim_blkreq) blklist;
2449  	LIST_ENTRY(ffs_blkfree_trim_params) hashlist;
2450  	struct task task;
2451  	struct ufsmount *ump;
2452  	struct vnode *devvp;
2453  	ino_t inum;
2454  	ufs2_daddr_t bno;
2455  	long size;
2456  	long key;
2457  };
2458  
2459  static void	ffs_blkfree_trim_completed(struct buf *);
2460  static void	ffs_blkfree_trim_task(void *ctx, int pending __unused);
2461  static struct	ffs_blkfree_trim_params *trim_lookup(struct ufsmount *,
2462  		    struct vnode *, ufs2_daddr_t, long, ino_t, uint64_t, int);
2463  static void	ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *);
2464  
2465  /*
2466   * Called on trim completion to start a task to free the associated block(s).
2467   */
2468  static void
ffs_blkfree_trim_completed(struct buf * bp)2469  ffs_blkfree_trim_completed(struct buf *bp)
2470  {
2471  	struct ffs_blkfree_trim_params *tp;
2472  
2473  	tp = bp->b_fsprivate1;
2474  	free(bp, M_TRIM);
2475  	TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp);
2476  	taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task);
2477  }
2478  
2479  /*
2480   * Trim completion task that free associated block(s).
2481   */
2482  static void
ffs_blkfree_trim_task(void * ctx,int pending)2483  ffs_blkfree_trim_task(void *ctx, int pending)
2484  {
2485  	struct ffs_blkfree_trim_params *tp;
2486  	struct trim_blkreq *blkelm;
2487  	struct ufsmount *ump;
2488  
2489  	tp = ctx;
2490  	ump = tp->ump;
2491  	while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) {
2492  		ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno,
2493  		    blkelm->size, tp->inum, blkelm->pdephd);
2494  		TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist);
2495  		free(blkelm, M_TRIM);
2496  	}
2497  	vn_finished_secondary_write(UFSTOVFS(ump));
2498  	UFS_LOCK(ump);
2499  	ump->um_trim_inflight -= 1;
2500  	ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size);
2501  	UFS_UNLOCK(ump);
2502  	free(tp, M_TRIM);
2503  }
2504  
2505  /*
2506   * Lookup a trim request by inode number.
2507   * Allocate if requested (NEW, REPLACE, SINGLE).
2508   */
2509  static struct ffs_blkfree_trim_params *
trim_lookup(struct ufsmount * ump,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,uint64_t key,int alloctype)2510  trim_lookup(struct ufsmount *ump,
2511  	struct vnode *devvp,
2512  	ufs2_daddr_t bno,
2513  	long size,
2514  	ino_t inum,
2515  	uint64_t key,
2516  	int alloctype)
2517  {
2518  	struct trimlist_hashhead *tphashhead;
2519  	struct ffs_blkfree_trim_params *tp, *ntp;
2520  
2521  	ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK);
2522  	if (alloctype != SINGLE) {
2523  		KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key"));
2524  		UFS_LOCK(ump);
2525  		tphashhead = TRIMLIST_HASH(ump, key);
2526  		LIST_FOREACH(tp, tphashhead, hashlist)
2527  			if (key == tp->key)
2528  				break;
2529  	}
2530  	switch (alloctype) {
2531  	case NEW:
2532  		KASSERT(tp == NULL, ("trim_lookup: found trim"));
2533  		break;
2534  	case OLD:
2535  		KASSERT(tp != NULL,
2536  		    ("trim_lookup: missing call to ffs_blkrelease_start()"));
2537  		UFS_UNLOCK(ump);
2538  		free(ntp, M_TRIM);
2539  		return (tp);
2540  	case REPLACE:
2541  		KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim"));
2542  		LIST_REMOVE(tp, hashlist);
2543  		/* tp will be freed by caller */
2544  		break;
2545  	case DONE:
2546  		KASSERT(tp != NULL, ("trim_lookup: missing DONE trim"));
2547  		LIST_REMOVE(tp, hashlist);
2548  		UFS_UNLOCK(ump);
2549  		free(ntp, M_TRIM);
2550  		return (tp);
2551  	}
2552  	TAILQ_INIT(&ntp->blklist);
2553  	ntp->ump = ump;
2554  	ntp->devvp = devvp;
2555  	ntp->bno = bno;
2556  	ntp->size = size;
2557  	ntp->inum = inum;
2558  	ntp->key = key;
2559  	if (alloctype != SINGLE) {
2560  		LIST_INSERT_HEAD(tphashhead, ntp, hashlist);
2561  		UFS_UNLOCK(ump);
2562  	}
2563  	return (ntp);
2564  }
2565  
2566  /*
2567   * Dispatch a trim request.
2568   */
2569  static void
ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params * tp)2570  ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp)
2571  {
2572  	struct ufsmount *ump;
2573  	struct mount *mp;
2574  	struct buf *bp;
2575  
2576  	/*
2577  	 * Postpone the set of the free bit in the cg bitmap until the
2578  	 * BIO_DELETE is completed.  Otherwise, due to disk queue
2579  	 * reordering, TRIM might be issued after we reuse the block
2580  	 * and write some new data into it.
2581  	 */
2582  	ump = tp->ump;
2583  	bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO);
2584  	bp->b_iocmd = BIO_DELETE;
2585  	bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno));
2586  	bp->b_iodone = ffs_blkfree_trim_completed;
2587  	bp->b_bcount = tp->size;
2588  	bp->b_fsprivate1 = tp;
2589  	UFS_LOCK(ump);
2590  	ump->um_trim_total += 1;
2591  	ump->um_trim_inflight += 1;
2592  	ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size);
2593  	ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size);
2594  	UFS_UNLOCK(ump);
2595  
2596  	mp = UFSTOVFS(ump);
2597  	vn_start_secondary_write(NULL, &mp, 0);
2598  	g_vfs_strategy(ump->um_bo, bp);
2599  }
2600  
2601  /*
2602   * Allocate a new key to use to identify a range of blocks.
2603   */
2604  uint64_t
ffs_blkrelease_start(struct ufsmount * ump,struct vnode * devvp,ino_t inum)2605  ffs_blkrelease_start(struct ufsmount *ump,
2606  	struct vnode *devvp,
2607  	ino_t inum)
2608  {
2609  	static u_long masterkey;
2610  	uint64_t key;
2611  
2612  	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2613  		return (SINGLETON_KEY);
2614  	do {
2615  		key = atomic_fetchadd_long(&masterkey, 1);
2616  	} while (key < FIRST_VALID_KEY);
2617  	(void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW);
2618  	return (key);
2619  }
2620  
2621  /*
2622   * Deallocate a key that has been used to identify a range of blocks.
2623   */
2624  void
ffs_blkrelease_finish(struct ufsmount * ump,uint64_t key)2625  ffs_blkrelease_finish(struct ufsmount *ump, uint64_t key)
2626  {
2627  	struct ffs_blkfree_trim_params *tp;
2628  
2629  	if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0)
2630  		return;
2631  	/*
2632  	 * If the vfs.ffs.dotrimcons sysctl option is enabled while
2633  	 * a file deletion is active, specifically after a call
2634  	 * to ffs_blkrelease_start() but before the call to
2635  	 * ffs_blkrelease_finish(), ffs_blkrelease_start() will
2636  	 * have handed out SINGLETON_KEY rather than starting a
2637  	 * collection sequence. Thus if we get a SINGLETON_KEY
2638  	 * passed to ffs_blkrelease_finish(), we just return rather
2639  	 * than trying to finish the nonexistent sequence.
2640  	 */
2641  	if (key == SINGLETON_KEY) {
2642  #ifdef INVARIANTS
2643  		printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n",
2644  		    ump->um_mountp->mnt_stat.f_mntonname);
2645  #endif
2646  		return;
2647  	}
2648  	/*
2649  	 * We are done with sending blocks using this key. Look up the key
2650  	 * using the DONE alloctype (in tp) to request that it be unhashed
2651  	 * as we will not be adding to it. If the key has never been used,
2652  	 * tp->size will be zero, so we can just free tp. Otherwise the call
2653  	 * to ffs_blkfree_sendtrim(tp) causes the block range described by
2654  	 * tp to be issued (and then tp to be freed).
2655  	 */
2656  	tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE);
2657  	if (tp->size == 0)
2658  		free(tp, M_TRIM);
2659  	else
2660  		ffs_blkfree_sendtrim(tp);
2661  }
2662  
2663  /*
2664   * Setup to free a block or fragment.
2665   *
2666   * Check for snapshots that might want to claim the block.
2667   * If trims are requested, prepare a trim request. Attempt to
2668   * aggregate consecutive blocks into a single trim request.
2669   */
2670  void
ffs_blkfree(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ufs2_daddr_t bno,long size,ino_t inum,__enum_uint8 (vtype)vtype,struct workhead * dephd,uint64_t key)2671  ffs_blkfree(struct ufsmount *ump,
2672  	struct fs *fs,
2673  	struct vnode *devvp,
2674  	ufs2_daddr_t bno,
2675  	long size,
2676  	ino_t inum,
2677  	__enum_uint8(vtype) vtype,
2678  	struct workhead *dephd,
2679  	uint64_t key)
2680  {
2681  	struct ffs_blkfree_trim_params *tp, *ntp;
2682  	struct trim_blkreq *blkelm;
2683  
2684  	/*
2685  	 * Check to see if a snapshot wants to claim the block.
2686  	 * Check that devvp is a normal disk device, not a snapshot,
2687  	 * it has a snapshot(s) associated with it, and one of the
2688  	 * snapshots wants to claim the block.
2689  	 */
2690  	if (devvp->v_type == VCHR &&
2691  	    (devvp->v_vflag & VV_COPYONWRITE) &&
2692  	    ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) {
2693  		return;
2694  	}
2695  	/*
2696  	 * Nothing to delay if TRIM is not required for this block or TRIM
2697  	 * is disabled or the operation is performed on a snapshot.
2698  	 */
2699  	if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) ||
2700  	    devvp->v_type == VREG) {
2701  		ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd);
2702  		return;
2703  	}
2704  	blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK);
2705  	blkelm->bno = bno;
2706  	blkelm->size = size;
2707  	if (dephd == NULL) {
2708  		blkelm->pdephd = NULL;
2709  	} else {
2710  		LIST_INIT(&blkelm->dephd);
2711  		LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list);
2712  		blkelm->pdephd = &blkelm->dephd;
2713  	}
2714  	if (key == SINGLETON_KEY) {
2715  		/*
2716  		 * Just a single non-contiguous piece. Use the SINGLE
2717  		 * alloctype to return a trim request that will not be
2718  		 * hashed for future lookup.
2719  		 */
2720  		tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE);
2721  		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2722  		ffs_blkfree_sendtrim(tp);
2723  		return;
2724  	}
2725  	/*
2726  	 * The callers of this function are not tracking whether or not
2727  	 * the blocks are contiguous. They are just saying that they
2728  	 * are freeing a set of blocks. It is this code that determines
2729  	 * the pieces of that range that are actually contiguous.
2730  	 *
2731  	 * Calling ffs_blkrelease_start() will have created an entry
2732  	 * that we will use.
2733  	 */
2734  	tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD);
2735  	if (tp->size == 0) {
2736  		/*
2737  		 * First block of a potential range, set block and size
2738  		 * for the trim block.
2739  		 */
2740  		tp->bno = bno;
2741  		tp->size = size;
2742  		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2743  		return;
2744  	}
2745  	/*
2746  	 * If this block is a continuation of the range (either
2747  	 * follows at the end or preceeds in the front) then we
2748  	 * add it to the front or back of the list and return.
2749  	 *
2750  	 * If it is not a continuation of the trim that we were
2751  	 * building, using the REPLACE alloctype, we request that
2752  	 * the old trim request (still in tp) be unhashed and a
2753  	 * new range started (in ntp). The ffs_blkfree_sendtrim(tp)
2754  	 * call causes the block range described by tp to be issued
2755  	 * (and then tp to be freed).
2756  	 */
2757  	if (bno + numfrags(fs, size) == tp->bno) {
2758  		TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist);
2759  		tp->bno = bno;
2760  		tp->size += size;
2761  		return;
2762  	} else if (bno == tp->bno + numfrags(fs, tp->size)) {
2763  		TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist);
2764  		tp->size += size;
2765  		return;
2766  	}
2767  	ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE);
2768  	TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist);
2769  	ffs_blkfree_sendtrim(tp);
2770  }
2771  
2772  #ifdef INVARIANTS
2773  /*
2774   * Verify allocation of a block or fragment.
2775   * Return 1 if block or fragment is free.
2776   */
2777  static int
ffs_checkfreeblk(struct inode * ip,ufs2_daddr_t bno,long size)2778  ffs_checkfreeblk(struct inode *ip,
2779  	ufs2_daddr_t bno,
2780  	long size)
2781  {
2782  	struct fs *fs;
2783  	struct cg *cgp;
2784  	struct buf *bp;
2785  	ufs1_daddr_t cgbno;
2786  	int i, frags, blkalloced;
2787  	uint8_t *blksfree;
2788  
2789  	fs = ITOFS(ip);
2790  	if ((uint64_t)size > fs->fs_bsize || fragoff(fs, size) != 0) {
2791  		printf("bsize = %ld, size = %ld, fs = %s\n",
2792  		    (long)fs->fs_bsize, size, fs->fs_fsmnt);
2793  		panic("ffs_checkfreeblk: bad size");
2794  	}
2795  	if ((uint64_t)bno >= fs->fs_size)
2796  		panic("ffs_checkfreeblk: too big block %jd", (intmax_t)bno);
2797  	if (ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp) != 0)
2798  		return (0);
2799  	blksfree = cg_blksfree(cgp);
2800  	cgbno = dtogd(fs, bno);
2801  	if (size == fs->fs_bsize) {
2802  		blkalloced = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno));
2803  	} else {
2804  		frags = numfrags(fs, size);
2805  		for (blkalloced = 0, i = 0; i < frags; i++)
2806  			if (isset(blksfree, cgbno + i))
2807  				blkalloced++;
2808  		if (blkalloced != 0 && blkalloced != frags)
2809  			panic("ffs_checkfreeblk: partially free fragment");
2810  	}
2811  	brelse(bp);
2812  	return (blkalloced == 0);
2813  }
2814  #endif /* INVARIANTS */
2815  
2816  /*
2817   * Free an inode.
2818   */
2819  int
ffs_vfree(struct vnode * pvp,ino_t ino,int mode)2820  ffs_vfree(struct vnode *pvp,
2821  	ino_t ino,
2822  	int mode)
2823  {
2824  	struct ufsmount *ump;
2825  
2826  	if (DOINGSOFTDEP(pvp)) {
2827  		softdep_freefile(pvp, ino, mode);
2828  		return (0);
2829  	}
2830  	ump = VFSTOUFS(pvp->v_mount);
2831  	return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL));
2832  }
2833  
2834  /*
2835   * Do the actual free operation.
2836   * The specified inode is placed back in the free map.
2837   */
2838  int
ffs_freefile(struct ufsmount * ump,struct fs * fs,struct vnode * devvp,ino_t ino,int mode,struct workhead * wkhd)2839  ffs_freefile(struct ufsmount *ump,
2840  	struct fs *fs,
2841  	struct vnode *devvp,
2842  	ino_t ino,
2843  	int mode,
2844  	struct workhead *wkhd)
2845  {
2846  	struct cg *cgp;
2847  	struct buf *bp;
2848  	daddr_t dbn;
2849  	int error;
2850  	uint64_t cg;
2851  	uint8_t *inosused;
2852  	struct cdev *dev;
2853  	ino_t cgino;
2854  
2855  	cg = ino_to_cg(fs, ino);
2856  	if (devvp->v_type == VREG) {
2857  		/* devvp is a snapshot */
2858  		MPASS(devvp->v_mount->mnt_data == ump);
2859  		dev = ump->um_devvp->v_rdev;
2860  	} else if (devvp->v_type == VCHR) {
2861  		/* devvp is a normal disk device */
2862  		dev = devvp->v_rdev;
2863  	} else {
2864  		bp = NULL;
2865  		return (0);
2866  	}
2867  	if (ino >= fs->fs_ipg * fs->fs_ncg)
2868  		panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s",
2869  		    devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt);
2870  	if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) {
2871  		if (!MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR)
2872  			return (error);
2873  		/*
2874  		 * Would like to just downgrade to read-only. Until that
2875  		 * capability is available, just toss the cylinder group
2876  		 * update and mark the filesystem as needing to run fsck.
2877  		 */
2878  		fs->fs_flags |= FS_NEEDSFSCK;
2879  		if (devvp->v_type == VREG)
2880  			dbn = fragstoblks(fs, cgtod(fs, cg));
2881  		else
2882  			dbn = fsbtodb(fs, cgtod(fs, cg));
2883  		error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp);
2884  		KASSERT(error == 0, ("getblkx failed"));
2885  		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, true);
2886  		bp->b_flags |= B_RELBUF | B_NOCACHE;
2887  		bp->b_flags &= ~B_CACHE;
2888  		bawrite(bp);
2889  		return (error);
2890  	}
2891  	inosused = cg_inosused(cgp);
2892  	cgino = ino % fs->fs_ipg;
2893  	if (isclr(inosused, cgino)) {
2894  		printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev),
2895  		    (uintmax_t)ino, fs->fs_fsmnt);
2896  		if (fs->fs_ronly == 0)
2897  			panic("ffs_freefile: freeing free inode");
2898  	}
2899  	clrbit(inosused, cgino);
2900  	if (cgino < cgp->cg_irotor)
2901  		cgp->cg_irotor = cgino;
2902  	cgp->cg_cs.cs_nifree++;
2903  	UFS_LOCK(ump);
2904  	fs->fs_cstotal.cs_nifree++;
2905  	fs->fs_cs(fs, cg).cs_nifree++;
2906  	if ((mode & IFMT) == IFDIR) {
2907  		cgp->cg_cs.cs_ndir--;
2908  		fs->fs_cstotal.cs_ndir--;
2909  		fs->fs_cs(fs, cg).cs_ndir--;
2910  	}
2911  	fs->fs_fmod = 1;
2912  	ACTIVECLEAR(fs, cg);
2913  	UFS_UNLOCK(ump);
2914  	if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR)
2915  		softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd, false);
2916  	bdwrite(bp);
2917  	return (0);
2918  }
2919  
2920  /*
2921   * Check to see if a file is free.
2922   * Used to check for allocated files in snapshots.
2923   * Return 1 if file is free.
2924   */
2925  int
ffs_checkfreefile(struct fs * fs,struct vnode * devvp,ino_t ino)2926  ffs_checkfreefile(struct fs *fs,
2927  	struct vnode *devvp,
2928  	ino_t ino)
2929  {
2930  	struct cg *cgp;
2931  	struct buf *bp;
2932  	int ret, error;
2933  	uint64_t cg;
2934  	uint8_t *inosused;
2935  
2936  	cg = ino_to_cg(fs, ino);
2937  	if ((devvp->v_type != VREG) && (devvp->v_type != VCHR))
2938  		return (1);
2939  	if (ino >= fs->fs_ipg * fs->fs_ncg)
2940  		return (1);
2941  	if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0)
2942  		return (1);
2943  	inosused = cg_inosused(cgp);
2944  	ino %= fs->fs_ipg;
2945  	ret = isclr(inosused, ino);
2946  	brelse(bp);
2947  	return (ret);
2948  }
2949  
2950  /*
2951   * Find a block of the specified size in the specified cylinder group.
2952   *
2953   * It is a panic if a request is made to find a block if none are
2954   * available.
2955   */
2956  static ufs1_daddr_t
ffs_mapsearch(struct fs * fs,struct cg * cgp,ufs2_daddr_t bpref,int allocsiz)2957  ffs_mapsearch(struct fs *fs,
2958  	struct cg *cgp,
2959  	ufs2_daddr_t bpref,
2960  	int allocsiz)
2961  {
2962  	ufs1_daddr_t bno;
2963  	int start, len, loc, i;
2964  	int blk, field, subfield, pos;
2965  	uint8_t *blksfree;
2966  
2967  	/*
2968  	 * find the fragment by searching through the free block
2969  	 * map for an appropriate bit pattern
2970  	 */
2971  	if (bpref)
2972  		start = dtogd(fs, bpref) / NBBY;
2973  	else
2974  		start = cgp->cg_frotor / NBBY;
2975  	blksfree = cg_blksfree(cgp);
2976  	len = howmany(fs->fs_fpg, NBBY) - start;
2977  	loc = scanc((uint64_t)len, (uint8_t *)&blksfree[start],
2978  		fragtbl[fs->fs_frag],
2979  		(uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2980  	if (loc == 0) {
2981  		len = start + 1;
2982  		start = 0;
2983  		loc = scanc((uint64_t)len, (uint8_t *)&blksfree[0],
2984  			fragtbl[fs->fs_frag],
2985  			(uint8_t)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
2986  		if (loc == 0) {
2987  			printf("start = %d, len = %d, fs = %s\n",
2988  			    start, len, fs->fs_fsmnt);
2989  			panic("ffs_alloccg: map corrupted");
2990  			/* NOTREACHED */
2991  		}
2992  	}
2993  	bno = (start + len - loc) * NBBY;
2994  	cgp->cg_frotor = bno;
2995  	/*
2996  	 * found the byte in the map
2997  	 * sift through the bits to find the selected frag
2998  	 */
2999  	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
3000  		blk = blkmap(fs, blksfree, bno);
3001  		blk <<= 1;
3002  		field = around[allocsiz];
3003  		subfield = inside[allocsiz];
3004  		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
3005  			if ((blk & field) == subfield)
3006  				return (bno + pos);
3007  			field <<= 1;
3008  			subfield <<= 1;
3009  		}
3010  	}
3011  	printf("bno = %ju, fs = %s\n", (intmax_t)bno, fs->fs_fsmnt);
3012  	panic("ffs_alloccg: block not in map");
3013  	return (-1);
3014  }
3015  
3016  /*
3017   * Fetch and verify a cylinder group.
3018   */
3019  int
ffs_getcg(struct fs * fs,struct vnode * devvp,uint64_t cg,int flags,struct buf ** bpp,struct cg ** cgpp)3020  ffs_getcg(struct fs *fs,
3021  	struct vnode *devvp,
3022  	uint64_t cg,
3023  	int flags,
3024  	struct buf **bpp,
3025  	struct cg **cgpp)
3026  {
3027  	struct buf *bp;
3028  	struct cg *cgp;
3029  	struct mount *mp;
3030  	const struct statfs *sfs;
3031  	daddr_t blkno;
3032  	int error;
3033  
3034  	*bpp = NULL;
3035  	*cgpp = NULL;
3036  	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3037  		flags |= GB_CKHASH;
3038  	if (devvp->v_type == VCHR) {
3039  		blkno = fsbtodb(fs, cgtod(fs, cg));
3040  		mp = devvp->v_rdev->si_mountpt;
3041  	} else {
3042  		blkno = fragstoblks(fs, cgtod(fs, cg));
3043  		mp = devvp->v_mount;
3044  	}
3045  	error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL,
3046  	    NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp);
3047  	if (error != 0)
3048  		return (error);
3049  	cgp = (struct cg *)bp->b_data;
3050  	if ((fs->fs_metackhash & CK_CYLGRP) != 0 &&
3051  	    (bp->b_flags & B_CKHASH) != 0 &&
3052  	    cgp->cg_ckhash != bp->b_ckhash) {
3053  		if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3054  		    &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3055  			sfs = &mp->mnt_stat;
3056  			printf("UFS %s%s (%s) cylinder checkhash failed: "
3057  			    "cg %ju, cgp: 0x%x != bp: 0x%jx\n",
3058  			    devvp->v_type == VCHR ? "" : "snapshot of ",
3059  			    sfs->f_mntfromname, sfs->f_mntonname, (intmax_t)cg,
3060  			    cgp->cg_ckhash, (uintmax_t)bp->b_ckhash);
3061  		}
3062  		bp->b_flags &= ~B_CKHASH;
3063  		bp->b_flags |= B_INVAL | B_NOCACHE;
3064  		brelse(bp);
3065  		return (EINTEGRITY);
3066  	}
3067  	if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) {
3068  		if (ppsratecheck(&VFSTOUFS(mp)->um_last_integritymsg,
3069  		    &VFSTOUFS(mp)->um_secs_integritymsg, 1)) {
3070  			sfs = &mp->mnt_stat;
3071  			printf("UFS %s%s (%s)",
3072  			    devvp->v_type == VCHR ? "" : "snapshot of ",
3073  			    sfs->f_mntfromname, sfs->f_mntonname);
3074  			if (!cg_chkmagic(cgp))
3075  				printf(" cg %ju: bad magic number 0x%x should "
3076  				    "be 0x%x\n", (intmax_t)cg, cgp->cg_magic,
3077  				    CG_MAGIC);
3078  			else
3079  				printf(": wrong cylinder group cg %ju != "
3080  				    "cgx %u\n", (intmax_t)cg, cgp->cg_cgx);
3081  		}
3082  		bp->b_flags &= ~B_CKHASH;
3083  		bp->b_flags |= B_INVAL | B_NOCACHE;
3084  		brelse(bp);
3085  		return (EINTEGRITY);
3086  	}
3087  	bp->b_flags &= ~B_CKHASH;
3088  	bp->b_xflags |= BX_BKGRDWRITE;
3089  	/*
3090  	 * If we are using check hashes on the cylinder group then we want
3091  	 * to limit changing the cylinder group time to when we are actually
3092  	 * going to write it to disk so that its check hash remains correct
3093  	 * in memory. If the CK_CYLGRP flag is set the time is updated in
3094  	 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we
3095  	 * update the time here as we have done historically.
3096  	 */
3097  	if ((fs->fs_metackhash & CK_CYLGRP) != 0)
3098  		bp->b_xflags |= BX_CYLGRP;
3099  	else
3100  		cgp->cg_old_time = cgp->cg_time = time_second;
3101  	*bpp = bp;
3102  	*cgpp = cgp;
3103  	return (0);
3104  }
3105  
3106  static void
ffs_ckhash_cg(struct buf * bp)3107  ffs_ckhash_cg(struct buf *bp)
3108  {
3109  	uint32_t ckhash;
3110  	struct cg *cgp;
3111  
3112  	cgp = (struct cg *)bp->b_data;
3113  	ckhash = cgp->cg_ckhash;
3114  	cgp->cg_ckhash = 0;
3115  	bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount);
3116  	cgp->cg_ckhash = ckhash;
3117  }
3118  
3119  /*
3120   * Called when a cylinder group read has failed. If an integrity check
3121   * is the cause of failure then the cylinder group will not be usable
3122   * until the filesystem has been unmounted and fsck has been run to
3123   * repair it. To avoid future attempts to allocate resources from the
3124   * cylinder group, its available resources are set to zero in the
3125   * superblock summary information. Since it will appear to have no
3126   * resources available, no further calls will be made to allocate
3127   * resources from it. When resources are freed to the cylinder group
3128   * the resource free routines will find the cylinder group unusable so
3129   * the resource will simply be discarded and thus will not show up in
3130   * the superblock summary information until they are recovered by fsck.
3131   */
3132  static void
ffs_checkcgintegrity(struct fs * fs,uint64_t cg,int error)3133  ffs_checkcgintegrity(struct fs *fs,
3134  	uint64_t cg,
3135  	int error)
3136  {
3137  
3138  	if (error != EINTEGRITY)
3139  		return;
3140  	fs->fs_cstotal.cs_nffree -= fs->fs_cs(fs, cg).cs_nffree;
3141  	fs->fs_cs(fs, cg).cs_nffree = 0;
3142  	fs->fs_cstotal.cs_nbfree -= fs->fs_cs(fs, cg).cs_nbfree;
3143  	fs->fs_cs(fs, cg).cs_nbfree = 0;
3144  	fs->fs_cstotal.cs_nifree -= fs->fs_cs(fs, cg).cs_nifree;
3145  	fs->fs_cs(fs, cg).cs_nifree = 0;
3146  	fs->fs_maxcluster[cg] = 0;
3147  	fs->fs_flags |= FS_NEEDSFSCK;
3148  	fs->fs_fmod = 1;
3149  }
3150  
3151  /*
3152   * Fserr prints the name of a filesystem with an error diagnostic.
3153   *
3154   * The form of the error message is:
3155   *	fs: error message
3156   */
3157  void
ffs_fserr(struct fs * fs,ino_t inum,char * cp)3158  ffs_fserr(struct fs *fs,
3159  	ino_t inum,
3160  	char *cp)
3161  {
3162  	struct thread *td = curthread;	/* XXX */
3163  	struct proc *p = td->td_proc;
3164  
3165  	log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n",
3166  	    p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum,
3167  	    fs->fs_fsmnt, cp);
3168  }
3169  
3170  /*
3171   * This function provides the capability for the fsck program to
3172   * update an active filesystem. Sixteen operations are provided:
3173   *
3174   * adjrefcnt(inode, amt) - adjusts the reference count on the
3175   *	specified inode by the specified amount. Under normal
3176   *	operation the count should always go down. Decrementing
3177   *	the count to zero will cause the inode to be freed.
3178   * adjblkcnt(inode, amt) - adjust the number of blocks used by the
3179   *	inode by the specified amount.
3180   * adjdepth(inode, amt) - adjust the depth of the specified directory
3181   *	inode by the specified amount.
3182   * setsize(inode, size) - set the size of the inode to the
3183   *	specified size.
3184   * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) -
3185   *	adjust the superblock summary.
3186   * freedirs(inode, count) - directory inodes [inode..inode + count - 1]
3187   *	are marked as free. Inodes should never have to be marked
3188   *	as in use.
3189   * freefiles(inode, count) - file inodes [inode..inode + count - 1]
3190   *	are marked as free. Inodes should never have to be marked
3191   *	as in use.
3192   * freeblks(blockno, size) - blocks [blockno..blockno + size - 1]
3193   *	are marked as free. Blocks should never have to be marked
3194   *	as in use.
3195   * setflags(flags, set/clear) - the fs_flags field has the specified
3196   *	flags set (second parameter +1) or cleared (second parameter -1).
3197   * setcwd(dirinode) - set the current directory to dirinode in the
3198   *	filesystem associated with the snapshot.
3199   * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".."
3200   *	in the current directory is oldvalue then change it to newvalue.
3201   * unlink(nameptr, oldvalue) - Verify that the inode number associated
3202   *	with nameptr in the current directory is oldvalue then unlink it.
3203   */
3204  
3205  static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS);
3206  
3207  SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt,
3208      CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT,
3209      0, 0, sysctl_ffs_fsck, "S,fsck",
3210      "Adjust Inode Reference Count");
3211  
3212  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt,
3213      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3214      "Adjust Inode Used Blocks Count");
3215  
3216  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_DEPTH, adjdepth,
3217      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3218      "Adjust Directory Inode Depth");
3219  
3220  static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize,
3221      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3222      "Set the inode size");
3223  
3224  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir,
3225      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3226      "Adjust number of directories");
3227  
3228  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree,
3229      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3230      "Adjust number of free blocks");
3231  
3232  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree,
3233      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3234      "Adjust number of free inodes");
3235  
3236  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree,
3237      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3238      "Adjust number of free frags");
3239  
3240  static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters,
3241      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3242      "Adjust number of free clusters");
3243  
3244  static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs,
3245      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3246      "Free Range of Directory Inodes");
3247  
3248  static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles,
3249      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3250      "Free Range of File Inodes");
3251  
3252  static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks,
3253      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3254      "Free Range of Blocks");
3255  
3256  static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags,
3257      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3258      "Change Filesystem Flags");
3259  
3260  static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd,
3261      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3262      "Set Current Working Directory");
3263  
3264  static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot,
3265      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3266      "Change Value of .. Entry");
3267  
3268  static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink,
3269      CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck,
3270      "Unlink a Duplicate Name");
3271  
3272  #ifdef DIAGNOSTIC
3273  static int fsckcmds = 0;
3274  SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0,
3275  	"print out fsck_ffs-based filesystem update commands");
3276  #endif /* DIAGNOSTIC */
3277  
3278  static int
sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)3279  sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS)
3280  {
3281  	struct thread *td = curthread;
3282  	struct fsck_cmd cmd;
3283  	struct ufsmount *ump;
3284  	struct vnode *vp, *dvp, *fdvp;
3285  	struct inode *ip, *dp;
3286  	struct mount *mp;
3287  	struct fs *fs;
3288  	struct pwd *pwd;
3289  	ufs2_daddr_t blkno;
3290  	long blkcnt, blksize;
3291  	uint64_t key;
3292  	struct file *fp;
3293  	cap_rights_t rights;
3294  	int filetype, error;
3295  
3296  	if (req->newptr == NULL || req->newlen > sizeof(cmd))
3297  		return (EBADRPC);
3298  	if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0)
3299  		return (error);
3300  	if (cmd.version != FFS_CMD_VERSION)
3301  		return (ERPCMISMATCH);
3302  	if ((error = getvnode(td, cmd.handle,
3303  	    cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0)
3304  		return (error);
3305  	vp = fp->f_vnode;
3306  	if (vp->v_type != VREG && vp->v_type != VDIR) {
3307  		fdrop(fp, td);
3308  		return (EINVAL);
3309  	}
3310  	vn_start_write(vp, &mp, V_WAIT);
3311  	if (mp == NULL ||
3312  	    strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) {
3313  		vn_finished_write(mp);
3314  		fdrop(fp, td);
3315  		return (EINVAL);
3316  	}
3317  	ump = VFSTOUFS(mp);
3318  	if (mp->mnt_flag & MNT_RDONLY) {
3319  		vn_finished_write(mp);
3320  		fdrop(fp, td);
3321  		return (EROFS);
3322  	}
3323  	fs = ump->um_fs;
3324  	filetype = IFREG;
3325  
3326  	switch (oidp->oid_number) {
3327  	case FFS_SET_FLAGS:
3328  #ifdef DIAGNOSTIC
3329  		if (fsckcmds)
3330  			printf("%s: %s flags\n", mp->mnt_stat.f_mntonname,
3331  			    cmd.size > 0 ? "set" : "clear");
3332  #endif /* DIAGNOSTIC */
3333  		if (cmd.size > 0)
3334  			fs->fs_flags |= (long)cmd.value;
3335  		else
3336  			fs->fs_flags &= ~(long)cmd.value;
3337  		break;
3338  
3339  	case FFS_ADJ_REFCNT:
3340  #ifdef DIAGNOSTIC
3341  		if (fsckcmds) {
3342  			printf("%s: adjust inode %jd link count by %jd\n",
3343  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3344  			    (intmax_t)cmd.size);
3345  		}
3346  #endif /* DIAGNOSTIC */
3347  		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3348  			break;
3349  		ip = VTOI(vp);
3350  		ip->i_nlink += cmd.size;
3351  		DIP_SET_NLINK(ip, ip->i_nlink);
3352  		ip->i_effnlink += cmd.size;
3353  		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3354  		error = ffs_update(vp, 1);
3355  		if (DOINGSOFTDEP(vp))
3356  			softdep_change_linkcnt(ip);
3357  		vput(vp);
3358  		break;
3359  
3360  	case FFS_ADJ_BLKCNT:
3361  #ifdef DIAGNOSTIC
3362  		if (fsckcmds) {
3363  			printf("%s: adjust inode %jd block count by %jd\n",
3364  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3365  			    (intmax_t)cmd.size);
3366  		}
3367  #endif /* DIAGNOSTIC */
3368  		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3369  			break;
3370  		ip = VTOI(vp);
3371  		DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size);
3372  		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3373  		error = ffs_update(vp, 1);
3374  		vput(vp);
3375  		break;
3376  
3377  	case FFS_ADJ_DEPTH:
3378  #ifdef DIAGNOSTIC
3379  		if (fsckcmds) {
3380  			printf("%s: adjust directory inode %jd depth by %jd\n",
3381  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3382  			    (intmax_t)cmd.size);
3383  		}
3384  #endif /* DIAGNOSTIC */
3385  		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3386  			break;
3387  		if (vp->v_type != VDIR) {
3388  			vput(vp);
3389  			error = ENOTDIR;
3390  			break;
3391  		}
3392  		ip = VTOI(vp);
3393  		DIP_SET(ip, i_dirdepth, DIP(ip, i_dirdepth) + cmd.size);
3394  		UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED);
3395  		error = ffs_update(vp, 1);
3396  		vput(vp);
3397  		break;
3398  
3399  	case FFS_SET_SIZE:
3400  #ifdef DIAGNOSTIC
3401  		if (fsckcmds) {
3402  			printf("%s: set inode %jd size to %jd\n",
3403  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3404  			    (intmax_t)cmd.size);
3405  		}
3406  #endif /* DIAGNOSTIC */
3407  		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp)))
3408  			break;
3409  		ip = VTOI(vp);
3410  		DIP_SET(ip, i_size, cmd.size);
3411  		UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED);
3412  		error = ffs_update(vp, 1);
3413  		vput(vp);
3414  		break;
3415  
3416  	case FFS_DIR_FREE:
3417  		filetype = IFDIR;
3418  		/* fall through */
3419  
3420  	case FFS_FILE_FREE:
3421  #ifdef DIAGNOSTIC
3422  		if (fsckcmds) {
3423  			if (cmd.size == 1)
3424  				printf("%s: free %s inode %ju\n",
3425  				    mp->mnt_stat.f_mntonname,
3426  				    filetype == IFDIR ? "directory" : "file",
3427  				    (uintmax_t)cmd.value);
3428  			else
3429  				printf("%s: free %s inodes %ju-%ju\n",
3430  				    mp->mnt_stat.f_mntonname,
3431  				    filetype == IFDIR ? "directory" : "file",
3432  				    (uintmax_t)cmd.value,
3433  				    (uintmax_t)(cmd.value + cmd.size - 1));
3434  		}
3435  #endif /* DIAGNOSTIC */
3436  		while (cmd.size > 0) {
3437  			if ((error = ffs_freefile(ump, fs, ump->um_devvp,
3438  			    cmd.value, filetype, NULL)))
3439  				break;
3440  			cmd.size -= 1;
3441  			cmd.value += 1;
3442  		}
3443  		break;
3444  
3445  	case FFS_BLK_FREE:
3446  #ifdef DIAGNOSTIC
3447  		if (fsckcmds) {
3448  			if (cmd.size == 1)
3449  				printf("%s: free block %jd\n",
3450  				    mp->mnt_stat.f_mntonname,
3451  				    (intmax_t)cmd.value);
3452  			else
3453  				printf("%s: free blocks %jd-%jd\n",
3454  				    mp->mnt_stat.f_mntonname,
3455  				    (intmax_t)cmd.value,
3456  				    (intmax_t)cmd.value + cmd.size - 1);
3457  		}
3458  #endif /* DIAGNOSTIC */
3459  		blkno = cmd.value;
3460  		blkcnt = cmd.size;
3461  		blksize = fs->fs_frag - (blkno % fs->fs_frag);
3462  		key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO);
3463  		while (blkcnt > 0) {
3464  			if (blkcnt < blksize)
3465  				blksize = blkcnt;
3466  			ffs_blkfree(ump, fs, ump->um_devvp, blkno,
3467  			    blksize * fs->fs_fsize, UFS_ROOTINO,
3468  			    VDIR, NULL, key);
3469  			blkno += blksize;
3470  			blkcnt -= blksize;
3471  			blksize = fs->fs_frag;
3472  		}
3473  		ffs_blkrelease_finish(ump, key);
3474  		break;
3475  
3476  	/*
3477  	 * Adjust superblock summaries.  fsck(8) is expected to
3478  	 * submit deltas when necessary.
3479  	 */
3480  	case FFS_ADJ_NDIR:
3481  #ifdef DIAGNOSTIC
3482  		if (fsckcmds) {
3483  			printf("%s: adjust number of directories by %jd\n",
3484  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3485  		}
3486  #endif /* DIAGNOSTIC */
3487  		fs->fs_cstotal.cs_ndir += cmd.value;
3488  		break;
3489  
3490  	case FFS_ADJ_NBFREE:
3491  #ifdef DIAGNOSTIC
3492  		if (fsckcmds) {
3493  			printf("%s: adjust number of free blocks by %+jd\n",
3494  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3495  		}
3496  #endif /* DIAGNOSTIC */
3497  		fs->fs_cstotal.cs_nbfree += cmd.value;
3498  		break;
3499  
3500  	case FFS_ADJ_NIFREE:
3501  #ifdef DIAGNOSTIC
3502  		if (fsckcmds) {
3503  			printf("%s: adjust number of free inodes by %+jd\n",
3504  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3505  		}
3506  #endif /* DIAGNOSTIC */
3507  		fs->fs_cstotal.cs_nifree += cmd.value;
3508  		break;
3509  
3510  	case FFS_ADJ_NFFREE:
3511  #ifdef DIAGNOSTIC
3512  		if (fsckcmds) {
3513  			printf("%s: adjust number of free frags by %+jd\n",
3514  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3515  		}
3516  #endif /* DIAGNOSTIC */
3517  		fs->fs_cstotal.cs_nffree += cmd.value;
3518  		break;
3519  
3520  	case FFS_ADJ_NUMCLUSTERS:
3521  #ifdef DIAGNOSTIC
3522  		if (fsckcmds) {
3523  			printf("%s: adjust number of free clusters by %+jd\n",
3524  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3525  		}
3526  #endif /* DIAGNOSTIC */
3527  		fs->fs_cstotal.cs_numclusters += cmd.value;
3528  		break;
3529  
3530  	case FFS_SET_CWD:
3531  #ifdef DIAGNOSTIC
3532  		if (fsckcmds) {
3533  			printf("%s: set current directory to inode %jd\n",
3534  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value);
3535  		}
3536  #endif /* DIAGNOSTIC */
3537  		if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp)))
3538  			break;
3539  		AUDIT_ARG_VNODE1(vp);
3540  		if ((error = change_dir(vp, td)) != 0) {
3541  			vput(vp);
3542  			break;
3543  		}
3544  		VOP_UNLOCK(vp);
3545  		pwd_chdir(td, vp);
3546  		break;
3547  
3548  	case FFS_SET_DOTDOT:
3549  #ifdef DIAGNOSTIC
3550  		if (fsckcmds) {
3551  			printf("%s: change .. in cwd from %jd to %jd\n",
3552  			    mp->mnt_stat.f_mntonname, (intmax_t)cmd.value,
3553  			    (intmax_t)cmd.size);
3554  		}
3555  #endif /* DIAGNOSTIC */
3556  		/*
3557  		 * First we have to get and lock the parent directory
3558  		 * to which ".." points.
3559  		 */
3560  		error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp);
3561  		if (error)
3562  			break;
3563  		/*
3564  		 * Now we get and lock the child directory containing "..".
3565  		 */
3566  		pwd = pwd_hold(td);
3567  		dvp = pwd->pwd_cdir;
3568  		if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) {
3569  			vput(fdvp);
3570  			pwd_drop(pwd);
3571  			break;
3572  		}
3573  		dp = VTOI(dvp);
3574  		SET_I_OFFSET(dp, 12);	/* XXX mastertemplate.dot_reclen */
3575  		error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size,
3576  		    DT_DIR, 0);
3577  		cache_purge(fdvp);
3578  		cache_purge(dvp);
3579  		vput(dvp);
3580  		vput(fdvp);
3581  		pwd_drop(pwd);
3582  		break;
3583  
3584  	case FFS_UNLINK:
3585  #ifdef DIAGNOSTIC
3586  		if (fsckcmds) {
3587  			char buf[32];
3588  
3589  			if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL))
3590  				strncpy(buf, "Name_too_long", 32);
3591  			printf("%s: unlink %s (inode %jd)\n",
3592  			    mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size);
3593  		}
3594  #endif /* DIAGNOSTIC */
3595  		/*
3596  		 * kern_funlinkat will do its own start/finish writes and
3597  		 * they do not nest, so drop ours here. Setting mp == NULL
3598  		 * indicates that vn_finished_write is not needed down below.
3599  		 */
3600  		vn_finished_write(mp);
3601  		mp = NULL;
3602  		error = kern_funlinkat(td, AT_FDCWD,
3603  		    (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE,
3604  		    0, (ino_t)cmd.size);
3605  		break;
3606  
3607  	default:
3608  #ifdef DIAGNOSTIC
3609  		if (fsckcmds) {
3610  			printf("Invalid request %d from fsck\n",
3611  			    oidp->oid_number);
3612  		}
3613  #endif /* DIAGNOSTIC */
3614  		error = EINVAL;
3615  		break;
3616  	}
3617  	fdrop(fp, td);
3618  	vn_finished_write(mp);
3619  	return (error);
3620  }
3621