xref: /linux/fs/namespace.c (revision e7c375b181600caf135cfd03eadbc45eb530f2cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>		/* init_rootfs */
21 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
22 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36 #include <linux/nstree.h>
37 
38 #include "pnode.h"
39 #include "internal.h"
40 
41 /* Maximum number of mounts in a mount namespace */
42 static unsigned int sysctl_mount_max __read_mostly = 100000;
43 
44 static unsigned int m_hash_mask __ro_after_init;
45 static unsigned int m_hash_shift __ro_after_init;
46 static unsigned int mp_hash_mask __ro_after_init;
47 static unsigned int mp_hash_shift __ro_after_init;
48 
49 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)50 static int __init set_mhash_entries(char *str)
51 {
52 	if (!str)
53 		return 0;
54 	mhash_entries = simple_strtoul(str, &str, 0);
55 	return 1;
56 }
57 __setup("mhash_entries=", set_mhash_entries);
58 
59 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)60 static int __init set_mphash_entries(char *str)
61 {
62 	if (!str)
63 		return 0;
64 	mphash_entries = simple_strtoul(str, &str, 0);
65 	return 1;
66 }
67 __setup("mphash_entries=", set_mphash_entries);
68 
69 static char * __initdata initramfs_options;
initramfs_options_setup(char * str)70 static int __init initramfs_options_setup(char *str)
71 {
72 	initramfs_options = str;
73 	return 1;
74 }
75 
76 __setup("initramfs_options=", initramfs_options_setup);
77 
78 static u64 event;
79 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
80 static DEFINE_IDA(mnt_group_ida);
81 
82 /* Don't allow confusion with old 32bit mount ID */
83 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
84 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
85 
86 static struct hlist_head *mount_hashtable __ro_after_init;
87 static struct hlist_head *mountpoint_hashtable __ro_after_init;
88 static struct kmem_cache *mnt_cache __ro_after_init;
89 static DECLARE_RWSEM(namespace_sem);
90 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
91 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
92 static struct mnt_namespace *emptied_ns; /* protected by namespace_sem */
93 
94 static inline void namespace_lock(void);
95 static void namespace_unlock(void);
96 DEFINE_LOCK_GUARD_0(namespace_excl, namespace_lock(), namespace_unlock())
97 DEFINE_LOCK_GUARD_0(namespace_shared, down_read(&namespace_sem),
98 				      up_read(&namespace_sem))
99 
100 DEFINE_FREE(mntput, struct vfsmount *, if (!IS_ERR(_T)) mntput(_T))
101 
102 #ifdef CONFIG_FSNOTIFY
103 LIST_HEAD(notify_list); /* protected by namespace_sem */
104 #endif
105 
106 enum mount_kattr_flags_t {
107 	MOUNT_KATTR_RECURSE		= (1 << 0),
108 	MOUNT_KATTR_IDMAP_REPLACE	= (1 << 1),
109 };
110 
111 struct mount_kattr {
112 	unsigned int attr_set;
113 	unsigned int attr_clr;
114 	unsigned int propagation;
115 	unsigned int lookup_flags;
116 	enum mount_kattr_flags_t kflags;
117 	struct user_namespace *mnt_userns;
118 	struct mnt_idmap *mnt_idmap;
119 };
120 
121 /* /sys/fs */
122 struct kobject *fs_kobj __ro_after_init;
123 EXPORT_SYMBOL_GPL(fs_kobj);
124 
125 /*
126  * vfsmount lock may be taken for read to prevent changes to the
127  * vfsmount hash, ie. during mountpoint lookups or walking back
128  * up the tree.
129  *
130  * It should be taken for write in all cases where the vfsmount
131  * tree or hash is modified or when a vfsmount structure is modified.
132  */
133 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
134 
mnt_ns_release(struct mnt_namespace * ns)135 static void mnt_ns_release(struct mnt_namespace *ns)
136 {
137 	/* keep alive for {list,stat}mount() */
138 	if (ns && refcount_dec_and_test(&ns->passive)) {
139 		fsnotify_mntns_delete(ns);
140 		put_user_ns(ns->user_ns);
141 		kfree(ns);
142 	}
143 }
144 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *,
145 	    if (!IS_ERR(_T)) mnt_ns_release(_T))
146 
mnt_ns_release_rcu(struct rcu_head * rcu)147 static void mnt_ns_release_rcu(struct rcu_head *rcu)
148 {
149 	mnt_ns_release(container_of(rcu, struct mnt_namespace, ns.ns_rcu));
150 }
151 
mnt_ns_tree_remove(struct mnt_namespace * ns)152 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
153 {
154 	/* remove from global mount namespace list */
155 	if (ns_tree_active(ns))
156 		ns_tree_remove(ns);
157 
158 	call_rcu(&ns->ns.ns_rcu, mnt_ns_release_rcu);
159 }
160 
161 /*
162  * Lookup a mount namespace by id and take a passive reference count. Taking a
163  * passive reference means the mount namespace can be emptied if e.g., the last
164  * task holding an active reference exits. To access the mounts of the
165  * namespace the @namespace_sem must first be acquired. If the namespace has
166  * already shut down before acquiring @namespace_sem, {list,stat}mount() will
167  * see that the mount rbtree of the namespace is empty.
168  *
169  * Note the lookup is lockless protected by a sequence counter. We only
170  * need to guard against false negatives as false positives aren't
171  * possible. So if we didn't find a mount namespace and the sequence
172  * counter has changed we need to retry. If the sequence counter is
173  * still the same we know the search actually failed.
174  */
lookup_mnt_ns(u64 mnt_ns_id)175 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
176 {
177 	struct mnt_namespace *mnt_ns;
178 	struct ns_common *ns;
179 
180 	guard(rcu)();
181 	ns = ns_tree_lookup_rcu(mnt_ns_id, CLONE_NEWNS);
182 	if (!ns)
183 		return NULL;
184 
185 	/*
186 	 * The last reference count is put with RCU delay so we can
187 	 * unconditonally acquire a reference here.
188 	 */
189 	mnt_ns = container_of(ns, struct mnt_namespace, ns);
190 	refcount_inc(&mnt_ns->passive);
191 	return mnt_ns;
192 }
193 
lock_mount_hash(void)194 static inline void lock_mount_hash(void)
195 {
196 	write_seqlock(&mount_lock);
197 }
198 
unlock_mount_hash(void)199 static inline void unlock_mount_hash(void)
200 {
201 	write_sequnlock(&mount_lock);
202 }
203 
m_hash(struct vfsmount * mnt,struct dentry * dentry)204 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
205 {
206 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
207 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
208 	tmp = tmp + (tmp >> m_hash_shift);
209 	return &mount_hashtable[tmp & m_hash_mask];
210 }
211 
mp_hash(struct dentry * dentry)212 static inline struct hlist_head *mp_hash(struct dentry *dentry)
213 {
214 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
215 	tmp = tmp + (tmp >> mp_hash_shift);
216 	return &mountpoint_hashtable[tmp & mp_hash_mask];
217 }
218 
mnt_alloc_id(struct mount * mnt)219 static int mnt_alloc_id(struct mount *mnt)
220 {
221 	int res;
222 
223 	xa_lock(&mnt_id_xa);
224 	res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
225 	if (!res)
226 		mnt->mnt_id_unique = ++mnt_id_ctr;
227 	xa_unlock(&mnt_id_xa);
228 	return res;
229 }
230 
mnt_free_id(struct mount * mnt)231 static void mnt_free_id(struct mount *mnt)
232 {
233 	xa_erase(&mnt_id_xa, mnt->mnt_id);
234 }
235 
236 /*
237  * Allocate a new peer group ID
238  */
mnt_alloc_group_id(struct mount * mnt)239 static int mnt_alloc_group_id(struct mount *mnt)
240 {
241 	int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
242 
243 	if (res < 0)
244 		return res;
245 	mnt->mnt_group_id = res;
246 	return 0;
247 }
248 
249 /*
250  * Release a peer group ID
251  */
mnt_release_group_id(struct mount * mnt)252 void mnt_release_group_id(struct mount *mnt)
253 {
254 	ida_free(&mnt_group_ida, mnt->mnt_group_id);
255 	mnt->mnt_group_id = 0;
256 }
257 
258 /*
259  * vfsmount lock must be held for read
260  */
mnt_add_count(struct mount * mnt,int n)261 static inline void mnt_add_count(struct mount *mnt, int n)
262 {
263 #ifdef CONFIG_SMP
264 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
265 #else
266 	preempt_disable();
267 	mnt->mnt_count += n;
268 	preempt_enable();
269 #endif
270 }
271 
272 /*
273  * vfsmount lock must be held for write
274  */
mnt_get_count(struct mount * mnt)275 int mnt_get_count(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278 	int count = 0;
279 	int cpu;
280 
281 	for_each_possible_cpu(cpu) {
282 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
283 	}
284 
285 	return count;
286 #else
287 	return mnt->mnt_count;
288 #endif
289 }
290 
alloc_vfsmnt(const char * name)291 static struct mount *alloc_vfsmnt(const char *name)
292 {
293 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
294 	if (mnt) {
295 		int err;
296 
297 		err = mnt_alloc_id(mnt);
298 		if (err)
299 			goto out_free_cache;
300 
301 		if (name)
302 			mnt->mnt_devname = kstrdup_const(name,
303 							 GFP_KERNEL_ACCOUNT);
304 		else
305 			mnt->mnt_devname = "none";
306 		if (!mnt->mnt_devname)
307 			goto out_free_id;
308 
309 #ifdef CONFIG_SMP
310 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
311 		if (!mnt->mnt_pcp)
312 			goto out_free_devname;
313 
314 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
315 #else
316 		mnt->mnt_count = 1;
317 		mnt->mnt_writers = 0;
318 #endif
319 
320 		INIT_HLIST_NODE(&mnt->mnt_hash);
321 		INIT_LIST_HEAD(&mnt->mnt_child);
322 		INIT_LIST_HEAD(&mnt->mnt_mounts);
323 		INIT_LIST_HEAD(&mnt->mnt_list);
324 		INIT_LIST_HEAD(&mnt->mnt_expire);
325 		INIT_LIST_HEAD(&mnt->mnt_share);
326 		INIT_HLIST_HEAD(&mnt->mnt_slave_list);
327 		INIT_HLIST_NODE(&mnt->mnt_slave);
328 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
329 		INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
330 		RB_CLEAR_NODE(&mnt->mnt_node);
331 		mnt->mnt.mnt_idmap = &nop_mnt_idmap;
332 	}
333 	return mnt;
334 
335 #ifdef CONFIG_SMP
336 out_free_devname:
337 	kfree_const(mnt->mnt_devname);
338 #endif
339 out_free_id:
340 	mnt_free_id(mnt);
341 out_free_cache:
342 	kmem_cache_free(mnt_cache, mnt);
343 	return NULL;
344 }
345 
346 /*
347  * Most r/o checks on a fs are for operations that take
348  * discrete amounts of time, like a write() or unlink().
349  * We must keep track of when those operations start
350  * (for permission checks) and when they end, so that
351  * we can determine when writes are able to occur to
352  * a filesystem.
353  */
354 /*
355  * __mnt_is_readonly: check whether a mount is read-only
356  * @mnt: the mount to check for its write status
357  *
358  * This shouldn't be used directly ouside of the VFS.
359  * It does not guarantee that the filesystem will stay
360  * r/w, just that it is right *now*.  This can not and
361  * should not be used in place of IS_RDONLY(inode).
362  * mnt_want/drop_write() will _keep_ the filesystem
363  * r/w.
364  */
__mnt_is_readonly(const struct vfsmount * mnt)365 bool __mnt_is_readonly(const struct vfsmount *mnt)
366 {
367 	return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
368 }
369 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
370 
mnt_inc_writers(struct mount * mnt)371 static inline void mnt_inc_writers(struct mount *mnt)
372 {
373 #ifdef CONFIG_SMP
374 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
375 #else
376 	mnt->mnt_writers++;
377 #endif
378 }
379 
mnt_dec_writers(struct mount * mnt)380 static inline void mnt_dec_writers(struct mount *mnt)
381 {
382 #ifdef CONFIG_SMP
383 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
384 #else
385 	mnt->mnt_writers--;
386 #endif
387 }
388 
mnt_get_writers(struct mount * mnt)389 static unsigned int mnt_get_writers(struct mount *mnt)
390 {
391 #ifdef CONFIG_SMP
392 	unsigned int count = 0;
393 	int cpu;
394 
395 	for_each_possible_cpu(cpu) {
396 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
397 	}
398 
399 	return count;
400 #else
401 	return mnt->mnt_writers;
402 #endif
403 }
404 
mnt_is_readonly(const struct vfsmount * mnt)405 static int mnt_is_readonly(const struct vfsmount *mnt)
406 {
407 	if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
408 		return 1;
409 	/*
410 	 * The barrier pairs with the barrier in sb_start_ro_state_change()
411 	 * making sure if we don't see s_readonly_remount set yet, we also will
412 	 * not see any superblock / mount flag changes done by remount.
413 	 * It also pairs with the barrier in sb_end_ro_state_change()
414 	 * assuring that if we see s_readonly_remount already cleared, we will
415 	 * see the values of superblock / mount flags updated by remount.
416 	 */
417 	smp_rmb();
418 	return __mnt_is_readonly(mnt);
419 }
420 
421 /*
422  * Most r/o & frozen checks on a fs are for operations that take discrete
423  * amounts of time, like a write() or unlink().  We must keep track of when
424  * those operations start (for permission checks) and when they end, so that we
425  * can determine when writes are able to occur to a filesystem.
426  */
427 /**
428  * mnt_get_write_access - get write access to a mount without freeze protection
429  * @m: the mount on which to take a write
430  *
431  * This tells the low-level filesystem that a write is about to be performed to
432  * it, and makes sure that writes are allowed (mnt it read-write) before
433  * returning success. This operation does not protect against filesystem being
434  * frozen. When the write operation is finished, mnt_put_write_access() must be
435  * called. This is effectively a refcount.
436  */
mnt_get_write_access(struct vfsmount * m)437 int mnt_get_write_access(struct vfsmount *m)
438 {
439 	struct mount *mnt = real_mount(m);
440 	int ret = 0;
441 
442 	preempt_disable();
443 	mnt_inc_writers(mnt);
444 	/*
445 	 * The store to mnt_inc_writers must be visible before we pass
446 	 * WRITE_HOLD loop below, so that the slowpath can see our
447 	 * incremented count after it has set WRITE_HOLD.
448 	 */
449 	smp_mb();
450 	might_lock(&mount_lock.lock);
451 	while (__test_write_hold(READ_ONCE(mnt->mnt_pprev_for_sb))) {
452 		if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
453 			cpu_relax();
454 		} else {
455 			/*
456 			 * This prevents priority inversion, if the task
457 			 * setting WRITE_HOLD got preempted on a remote
458 			 * CPU, and it prevents life lock if the task setting
459 			 * WRITE_HOLD has a lower priority and is bound to
460 			 * the same CPU as the task that is spinning here.
461 			 */
462 			preempt_enable();
463 			read_seqlock_excl(&mount_lock);
464 			read_sequnlock_excl(&mount_lock);
465 			preempt_disable();
466 		}
467 	}
468 	/*
469 	 * The barrier pairs with the barrier sb_start_ro_state_change() making
470 	 * sure that if we see WRITE_HOLD cleared, we will also see
471 	 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
472 	 * mnt_is_readonly() and bail in case we are racing with remount
473 	 * read-only.
474 	 */
475 	smp_rmb();
476 	if (mnt_is_readonly(m)) {
477 		mnt_dec_writers(mnt);
478 		ret = -EROFS;
479 	}
480 	preempt_enable();
481 
482 	return ret;
483 }
484 EXPORT_SYMBOL_GPL(mnt_get_write_access);
485 
486 /**
487  * mnt_want_write - get write access to a mount
488  * @m: the mount on which to take a write
489  *
490  * This tells the low-level filesystem that a write is about to be performed to
491  * it, and makes sure that writes are allowed (mount is read-write, filesystem
492  * is not frozen) before returning success.  When the write operation is
493  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
494  */
mnt_want_write(struct vfsmount * m)495 int mnt_want_write(struct vfsmount *m)
496 {
497 	int ret;
498 
499 	sb_start_write(m->mnt_sb);
500 	ret = mnt_get_write_access(m);
501 	if (ret)
502 		sb_end_write(m->mnt_sb);
503 	return ret;
504 }
505 EXPORT_SYMBOL_GPL(mnt_want_write);
506 
507 /**
508  * mnt_get_write_access_file - get write access to a file's mount
509  * @file: the file who's mount on which to take a write
510  *
511  * This is like mnt_get_write_access, but if @file is already open for write it
512  * skips incrementing mnt_writers (since the open file already has a reference)
513  * and instead only does the check for emergency r/o remounts.  This must be
514  * paired with mnt_put_write_access_file.
515  */
mnt_get_write_access_file(struct file * file)516 int mnt_get_write_access_file(struct file *file)
517 {
518 	if (file->f_mode & FMODE_WRITER) {
519 		/*
520 		 * Superblock may have become readonly while there are still
521 		 * writable fd's, e.g. due to a fs error with errors=remount-ro
522 		 */
523 		if (__mnt_is_readonly(file->f_path.mnt))
524 			return -EROFS;
525 		return 0;
526 	}
527 	return mnt_get_write_access(file->f_path.mnt);
528 }
529 
530 /**
531  * mnt_want_write_file - get write access to a file's mount
532  * @file: the file who's mount on which to take a write
533  *
534  * This is like mnt_want_write, but if the file is already open for writing it
535  * skips incrementing mnt_writers (since the open file already has a reference)
536  * and instead only does the freeze protection and the check for emergency r/o
537  * remounts.  This must be paired with mnt_drop_write_file.
538  */
mnt_want_write_file(struct file * file)539 int mnt_want_write_file(struct file *file)
540 {
541 	int ret;
542 
543 	sb_start_write(file_inode(file)->i_sb);
544 	ret = mnt_get_write_access_file(file);
545 	if (ret)
546 		sb_end_write(file_inode(file)->i_sb);
547 	return ret;
548 }
549 EXPORT_SYMBOL_GPL(mnt_want_write_file);
550 
551 /**
552  * mnt_put_write_access - give up write access to a mount
553  * @mnt: the mount on which to give up write access
554  *
555  * Tells the low-level filesystem that we are done
556  * performing writes to it.  Must be matched with
557  * mnt_get_write_access() call above.
558  */
mnt_put_write_access(struct vfsmount * mnt)559 void mnt_put_write_access(struct vfsmount *mnt)
560 {
561 	preempt_disable();
562 	mnt_dec_writers(real_mount(mnt));
563 	preempt_enable();
564 }
565 EXPORT_SYMBOL_GPL(mnt_put_write_access);
566 
567 /**
568  * mnt_drop_write - give up write access to a mount
569  * @mnt: the mount on which to give up write access
570  *
571  * Tells the low-level filesystem that we are done performing writes to it and
572  * also allows filesystem to be frozen again.  Must be matched with
573  * mnt_want_write() call above.
574  */
mnt_drop_write(struct vfsmount * mnt)575 void mnt_drop_write(struct vfsmount *mnt)
576 {
577 	mnt_put_write_access(mnt);
578 	sb_end_write(mnt->mnt_sb);
579 }
580 EXPORT_SYMBOL_GPL(mnt_drop_write);
581 
mnt_put_write_access_file(struct file * file)582 void mnt_put_write_access_file(struct file *file)
583 {
584 	if (!(file->f_mode & FMODE_WRITER))
585 		mnt_put_write_access(file->f_path.mnt);
586 }
587 
mnt_drop_write_file(struct file * file)588 void mnt_drop_write_file(struct file *file)
589 {
590 	mnt_put_write_access_file(file);
591 	sb_end_write(file_inode(file)->i_sb);
592 }
593 EXPORT_SYMBOL(mnt_drop_write_file);
594 
595 /**
596  * mnt_hold_writers - prevent write access to the given mount
597  * @mnt: mnt to prevent write access to
598  *
599  * Prevents write access to @mnt if there are no active writers for @mnt.
600  * This function needs to be called and return successfully before changing
601  * properties of @mnt that need to remain stable for callers with write access
602  * to @mnt.
603  *
604  * After this functions has been called successfully callers must pair it with
605  * a call to mnt_unhold_writers() in order to stop preventing write access to
606  * @mnt.
607  *
608  * Context: This function expects to be in mount_locked_reader scope serializing
609  *          setting WRITE_HOLD.
610  * Return: On success 0 is returned.
611  *	   On error, -EBUSY is returned.
612  */
mnt_hold_writers(struct mount * mnt)613 static inline int mnt_hold_writers(struct mount *mnt)
614 {
615 	set_write_hold(mnt);
616 	/*
617 	 * After storing WRITE_HOLD, we'll read the counters. This store
618 	 * should be visible before we do.
619 	 */
620 	smp_mb();
621 
622 	/*
623 	 * With writers on hold, if this value is zero, then there are
624 	 * definitely no active writers (although held writers may subsequently
625 	 * increment the count, they'll have to wait, and decrement it after
626 	 * seeing MNT_READONLY).
627 	 *
628 	 * It is OK to have counter incremented on one CPU and decremented on
629 	 * another: the sum will add up correctly. The danger would be when we
630 	 * sum up each counter, if we read a counter before it is incremented,
631 	 * but then read another CPU's count which it has been subsequently
632 	 * decremented from -- we would see more decrements than we should.
633 	 * WRITE_HOLD protects against this scenario, because
634 	 * mnt_want_write first increments count, then smp_mb, then spins on
635 	 * WRITE_HOLD, so it can't be decremented by another CPU while
636 	 * we're counting up here.
637 	 */
638 	if (mnt_get_writers(mnt) > 0)
639 		return -EBUSY;
640 
641 	return 0;
642 }
643 
644 /**
645  * mnt_unhold_writers - stop preventing write access to the given mount
646  * @mnt: mnt to stop preventing write access to
647  *
648  * Stop preventing write access to @mnt allowing callers to gain write access
649  * to @mnt again.
650  *
651  * This function can only be called after a call to mnt_hold_writers().
652  *
653  * Context: This function expects to be in the same mount_locked_reader scope
654  * as the matching mnt_hold_writers().
655  */
mnt_unhold_writers(struct mount * mnt)656 static inline void mnt_unhold_writers(struct mount *mnt)
657 {
658 	if (!test_write_hold(mnt))
659 		return;
660 	/*
661 	 * MNT_READONLY must become visible before ~WRITE_HOLD, so writers
662 	 * that become unheld will see MNT_READONLY.
663 	 */
664 	smp_wmb();
665 	clear_write_hold(mnt);
666 }
667 
mnt_del_instance(struct mount * m)668 static inline void mnt_del_instance(struct mount *m)
669 {
670 	struct mount **p = m->mnt_pprev_for_sb;
671 	struct mount *next = m->mnt_next_for_sb;
672 
673 	if (next)
674 		next->mnt_pprev_for_sb = p;
675 	*p = next;
676 }
677 
mnt_add_instance(struct mount * m,struct super_block * s)678 static inline void mnt_add_instance(struct mount *m, struct super_block *s)
679 {
680 	struct mount *first = s->s_mounts;
681 
682 	if (first)
683 		first->mnt_pprev_for_sb = &m->mnt_next_for_sb;
684 	m->mnt_next_for_sb = first;
685 	m->mnt_pprev_for_sb = &s->s_mounts;
686 	s->s_mounts = m;
687 }
688 
mnt_make_readonly(struct mount * mnt)689 static int mnt_make_readonly(struct mount *mnt)
690 {
691 	int ret;
692 
693 	ret = mnt_hold_writers(mnt);
694 	if (!ret)
695 		mnt->mnt.mnt_flags |= MNT_READONLY;
696 	mnt_unhold_writers(mnt);
697 	return ret;
698 }
699 
sb_prepare_remount_readonly(struct super_block * sb)700 int sb_prepare_remount_readonly(struct super_block *sb)
701 {
702 	int err = 0;
703 
704 	/* Racy optimization.  Recheck the counter under WRITE_HOLD */
705 	if (atomic_long_read(&sb->s_remove_count))
706 		return -EBUSY;
707 
708 	guard(mount_locked_reader)();
709 
710 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
711 		if (!(m->mnt.mnt_flags & MNT_READONLY)) {
712 			err = mnt_hold_writers(m);
713 			if (err)
714 				break;
715 		}
716 	}
717 	if (!err && atomic_long_read(&sb->s_remove_count))
718 		err = -EBUSY;
719 
720 	if (!err)
721 		sb_start_ro_state_change(sb);
722 	for (struct mount *m = sb->s_mounts; m; m = m->mnt_next_for_sb) {
723 		if (test_write_hold(m))
724 			clear_write_hold(m);
725 	}
726 
727 	return err;
728 }
729 
free_vfsmnt(struct mount * mnt)730 static void free_vfsmnt(struct mount *mnt)
731 {
732 	mnt_idmap_put(mnt_idmap(&mnt->mnt));
733 	kfree_const(mnt->mnt_devname);
734 #ifdef CONFIG_SMP
735 	free_percpu(mnt->mnt_pcp);
736 #endif
737 	kmem_cache_free(mnt_cache, mnt);
738 }
739 
delayed_free_vfsmnt(struct rcu_head * head)740 static void delayed_free_vfsmnt(struct rcu_head *head)
741 {
742 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
743 }
744 
745 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)746 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
747 {
748 	struct mount *mnt;
749 	if (read_seqretry(&mount_lock, seq))
750 		return 1;
751 	if (bastard == NULL)
752 		return 0;
753 	mnt = real_mount(bastard);
754 	mnt_add_count(mnt, 1);
755 	smp_mb();		// see mntput_no_expire() and do_umount()
756 	if (likely(!read_seqretry(&mount_lock, seq)))
757 		return 0;
758 	lock_mount_hash();
759 	if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
760 		mnt_add_count(mnt, -1);
761 		unlock_mount_hash();
762 		return 1;
763 	}
764 	unlock_mount_hash();
765 	/* caller will mntput() */
766 	return -1;
767 }
768 
769 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)770 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
771 {
772 	int res = __legitimize_mnt(bastard, seq);
773 	if (likely(!res))
774 		return true;
775 	if (unlikely(res < 0)) {
776 		rcu_read_unlock();
777 		mntput(bastard);
778 		rcu_read_lock();
779 	}
780 	return false;
781 }
782 
783 /**
784  * __lookup_mnt - mount hash lookup
785  * @mnt:	parent mount
786  * @dentry:	dentry of mountpoint
787  *
788  * If @mnt has a child mount @c mounted on @dentry find and return it.
789  * Caller must either hold the spinlock component of @mount_lock or
790  * hold rcu_read_lock(), sample the seqcount component before the call
791  * and recheck it afterwards.
792  *
793  * Return: The child of @mnt mounted on @dentry or %NULL.
794  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)795 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
796 {
797 	struct hlist_head *head = m_hash(mnt, dentry);
798 	struct mount *p;
799 
800 	hlist_for_each_entry_rcu(p, head, mnt_hash)
801 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
802 			return p;
803 	return NULL;
804 }
805 
806 /**
807  * lookup_mnt - Return the child mount mounted at given location
808  * @path:	location in the namespace
809  *
810  * Acquires and returns a new reference to mount at given location
811  * or %NULL if nothing is mounted there.
812  */
lookup_mnt(const struct path * path)813 struct vfsmount *lookup_mnt(const struct path *path)
814 {
815 	struct mount *child_mnt;
816 	struct vfsmount *m;
817 	unsigned seq;
818 
819 	rcu_read_lock();
820 	do {
821 		seq = read_seqbegin(&mount_lock);
822 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
823 		m = child_mnt ? &child_mnt->mnt : NULL;
824 	} while (!legitimize_mnt(m, seq));
825 	rcu_read_unlock();
826 	return m;
827 }
828 
829 /*
830  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
831  *                         current mount namespace.
832  *
833  * The common case is dentries are not mountpoints at all and that
834  * test is handled inline.  For the slow case when we are actually
835  * dealing with a mountpoint of some kind, walk through all of the
836  * mounts in the current mount namespace and test to see if the dentry
837  * is a mountpoint.
838  *
839  * The mount_hashtable is not usable in the context because we
840  * need to identify all mounts that may be in the current mount
841  * namespace not just a mount that happens to have some specified
842  * parent mount.
843  */
__is_local_mountpoint(const struct dentry * dentry)844 bool __is_local_mountpoint(const struct dentry *dentry)
845 {
846 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
847 	struct mount *mnt, *n;
848 
849 	guard(namespace_shared)();
850 
851 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node)
852 		if (mnt->mnt_mountpoint == dentry)
853 			return true;
854 
855 	return false;
856 }
857 
858 struct pinned_mountpoint {
859 	struct hlist_node node;
860 	struct mountpoint *mp;
861 	struct mount *parent;
862 };
863 
lookup_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)864 static bool lookup_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
865 {
866 	struct hlist_head *chain = mp_hash(dentry);
867 	struct mountpoint *mp;
868 
869 	hlist_for_each_entry(mp, chain, m_hash) {
870 		if (mp->m_dentry == dentry) {
871 			hlist_add_head(&m->node, &mp->m_list);
872 			m->mp = mp;
873 			return true;
874 		}
875 	}
876 	return false;
877 }
878 
get_mountpoint(struct dentry * dentry,struct pinned_mountpoint * m)879 static int get_mountpoint(struct dentry *dentry, struct pinned_mountpoint *m)
880 {
881 	struct mountpoint *mp __free(kfree) = NULL;
882 	bool found;
883 	int ret;
884 
885 	if (d_mountpoint(dentry)) {
886 		/* might be worth a WARN_ON() */
887 		if (d_unlinked(dentry))
888 			return -ENOENT;
889 mountpoint:
890 		read_seqlock_excl(&mount_lock);
891 		found = lookup_mountpoint(dentry, m);
892 		read_sequnlock_excl(&mount_lock);
893 		if (found)
894 			return 0;
895 	}
896 
897 	if (!mp)
898 		mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
899 	if (!mp)
900 		return -ENOMEM;
901 
902 	/* Exactly one processes may set d_mounted */
903 	ret = d_set_mounted(dentry);
904 
905 	/* Someone else set d_mounted? */
906 	if (ret == -EBUSY)
907 		goto mountpoint;
908 
909 	/* The dentry is not available as a mountpoint? */
910 	if (ret)
911 		return ret;
912 
913 	/* Add the new mountpoint to the hash table */
914 	read_seqlock_excl(&mount_lock);
915 	mp->m_dentry = dget(dentry);
916 	hlist_add_head(&mp->m_hash, mp_hash(dentry));
917 	INIT_HLIST_HEAD(&mp->m_list);
918 	hlist_add_head(&m->node, &mp->m_list);
919 	m->mp = no_free_ptr(mp);
920 	read_sequnlock_excl(&mount_lock);
921 	return 0;
922 }
923 
924 /*
925  * vfsmount lock must be held.  Additionally, the caller is responsible
926  * for serializing calls for given disposal list.
927  */
maybe_free_mountpoint(struct mountpoint * mp,struct list_head * list)928 static void maybe_free_mountpoint(struct mountpoint *mp, struct list_head *list)
929 {
930 	if (hlist_empty(&mp->m_list)) {
931 		struct dentry *dentry = mp->m_dentry;
932 		spin_lock(&dentry->d_lock);
933 		dentry->d_flags &= ~DCACHE_MOUNTED;
934 		spin_unlock(&dentry->d_lock);
935 		dput_to_list(dentry, list);
936 		hlist_del(&mp->m_hash);
937 		kfree(mp);
938 	}
939 }
940 
941 /*
942  * locks: mount_lock [read_seqlock_excl], namespace_sem [excl]
943  */
unpin_mountpoint(struct pinned_mountpoint * m)944 static void unpin_mountpoint(struct pinned_mountpoint *m)
945 {
946 	if (m->mp) {
947 		hlist_del(&m->node);
948 		maybe_free_mountpoint(m->mp, &ex_mountpoints);
949 	}
950 }
951 
check_mnt(const struct mount * mnt)952 static inline int check_mnt(const struct mount *mnt)
953 {
954 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
955 }
956 
check_anonymous_mnt(struct mount * mnt)957 static inline bool check_anonymous_mnt(struct mount *mnt)
958 {
959 	u64 seq;
960 
961 	if (!is_anon_ns(mnt->mnt_ns))
962 		return false;
963 
964 	seq = mnt->mnt_ns->seq_origin;
965 	return !seq || (seq == current->nsproxy->mnt_ns->ns.ns_id);
966 }
967 
968 /*
969  * vfsmount lock must be held for write
970  */
touch_mnt_namespace(struct mnt_namespace * ns)971 static void touch_mnt_namespace(struct mnt_namespace *ns)
972 {
973 	if (ns) {
974 		ns->event = ++event;
975 		wake_up_interruptible(&ns->poll);
976 	}
977 }
978 
979 /*
980  * vfsmount lock must be held for write
981  */
__touch_mnt_namespace(struct mnt_namespace * ns)982 static void __touch_mnt_namespace(struct mnt_namespace *ns)
983 {
984 	if (ns && ns->event != event) {
985 		ns->event = event;
986 		wake_up_interruptible(&ns->poll);
987 	}
988 }
989 
990 /*
991  * locks: mount_lock[write_seqlock]
992  */
__umount_mnt(struct mount * mnt,struct list_head * shrink_list)993 static void __umount_mnt(struct mount *mnt, struct list_head *shrink_list)
994 {
995 	struct mountpoint *mp;
996 	struct mount *parent = mnt->mnt_parent;
997 	if (unlikely(parent->overmount == mnt))
998 		parent->overmount = NULL;
999 	mnt->mnt_parent = mnt;
1000 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 	list_del_init(&mnt->mnt_child);
1002 	hlist_del_init_rcu(&mnt->mnt_hash);
1003 	hlist_del_init(&mnt->mnt_mp_list);
1004 	mp = mnt->mnt_mp;
1005 	mnt->mnt_mp = NULL;
1006 	maybe_free_mountpoint(mp, shrink_list);
1007 }
1008 
1009 /*
1010  * locks: mount_lock[write_seqlock], namespace_sem[excl] (for ex_mountpoints)
1011  */
umount_mnt(struct mount * mnt)1012 static void umount_mnt(struct mount *mnt)
1013 {
1014 	__umount_mnt(mnt, &ex_mountpoints);
1015 }
1016 
1017 /*
1018  * vfsmount lock must be held for write
1019  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1020 void mnt_set_mountpoint(struct mount *mnt,
1021 			struct mountpoint *mp,
1022 			struct mount *child_mnt)
1023 {
1024 	child_mnt->mnt_mountpoint = mp->m_dentry;
1025 	child_mnt->mnt_parent = mnt;
1026 	child_mnt->mnt_mp = mp;
1027 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1028 }
1029 
make_visible(struct mount * mnt)1030 static void make_visible(struct mount *mnt)
1031 {
1032 	struct mount *parent = mnt->mnt_parent;
1033 	if (unlikely(mnt->mnt_mountpoint == parent->mnt.mnt_root))
1034 		parent->overmount = mnt;
1035 	hlist_add_head_rcu(&mnt->mnt_hash,
1036 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
1037 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1038 }
1039 
1040 /**
1041  * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1042  *              list of child mounts
1043  * @parent:  the parent
1044  * @mnt:     the new mount
1045  * @mp:      the new mountpoint
1046  *
1047  * Mount @mnt at @mp on @parent. Then attach @mnt
1048  * to @parent's child mount list and to @mount_hashtable.
1049  *
1050  * Note, when make_visible() is called @mnt->mnt_parent already points
1051  * to the correct parent.
1052  *
1053  * Context: This function expects namespace_lock() and lock_mount_hash()
1054  *          to have been acquired in that order.
1055  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)1056 static void attach_mnt(struct mount *mnt, struct mount *parent,
1057 		       struct mountpoint *mp)
1058 {
1059 	mnt_set_mountpoint(parent, mp, mnt);
1060 	make_visible(mnt);
1061 }
1062 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1063 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1064 {
1065 	struct mountpoint *old_mp = mnt->mnt_mp;
1066 
1067 	list_del_init(&mnt->mnt_child);
1068 	hlist_del_init(&mnt->mnt_mp_list);
1069 	hlist_del_init_rcu(&mnt->mnt_hash);
1070 
1071 	attach_mnt(mnt, parent, mp);
1072 
1073 	maybe_free_mountpoint(old_mp, &ex_mountpoints);
1074 }
1075 
node_to_mount(struct rb_node * node)1076 static inline struct mount *node_to_mount(struct rb_node *node)
1077 {
1078 	return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1079 }
1080 
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1081 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1082 {
1083 	struct rb_node **link = &ns->mounts.rb_node;
1084 	struct rb_node *parent = NULL;
1085 	bool mnt_first_node = true, mnt_last_node = true;
1086 
1087 	WARN_ON(mnt_ns_attached(mnt));
1088 	mnt->mnt_ns = ns;
1089 	while (*link) {
1090 		parent = *link;
1091 		if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1092 			link = &parent->rb_left;
1093 			mnt_last_node = false;
1094 		} else {
1095 			link = &parent->rb_right;
1096 			mnt_first_node = false;
1097 		}
1098 	}
1099 
1100 	if (mnt_last_node)
1101 		ns->mnt_last_node = &mnt->mnt_node;
1102 	if (mnt_first_node)
1103 		ns->mnt_first_node = &mnt->mnt_node;
1104 	rb_link_node(&mnt->mnt_node, parent, link);
1105 	rb_insert_color(&mnt->mnt_node, &ns->mounts);
1106 
1107 	mnt_notify_add(mnt);
1108 }
1109 
next_mnt(struct mount * p,struct mount * root)1110 static struct mount *next_mnt(struct mount *p, struct mount *root)
1111 {
1112 	struct list_head *next = p->mnt_mounts.next;
1113 	if (next == &p->mnt_mounts) {
1114 		while (1) {
1115 			if (p == root)
1116 				return NULL;
1117 			next = p->mnt_child.next;
1118 			if (next != &p->mnt_parent->mnt_mounts)
1119 				break;
1120 			p = p->mnt_parent;
1121 		}
1122 	}
1123 	return list_entry(next, struct mount, mnt_child);
1124 }
1125 
skip_mnt_tree(struct mount * p)1126 static struct mount *skip_mnt_tree(struct mount *p)
1127 {
1128 	struct list_head *prev = p->mnt_mounts.prev;
1129 	while (prev != &p->mnt_mounts) {
1130 		p = list_entry(prev, struct mount, mnt_child);
1131 		prev = p->mnt_mounts.prev;
1132 	}
1133 	return p;
1134 }
1135 
1136 /*
1137  * vfsmount lock must be held for write
1138  */
commit_tree(struct mount * mnt)1139 static void commit_tree(struct mount *mnt)
1140 {
1141 	struct mnt_namespace *n = mnt->mnt_parent->mnt_ns;
1142 
1143 	if (!mnt_ns_attached(mnt)) {
1144 		for (struct mount *m = mnt; m; m = next_mnt(m, mnt))
1145 			mnt_add_to_ns(n, m);
1146 		n->nr_mounts += n->pending_mounts;
1147 		n->pending_mounts = 0;
1148 	}
1149 
1150 	make_visible(mnt);
1151 	touch_mnt_namespace(n);
1152 }
1153 
setup_mnt(struct mount * m,struct dentry * root)1154 static void setup_mnt(struct mount *m, struct dentry *root)
1155 {
1156 	struct super_block *s = root->d_sb;
1157 
1158 	atomic_inc(&s->s_active);
1159 	m->mnt.mnt_sb = s;
1160 	m->mnt.mnt_root = dget(root);
1161 	m->mnt_mountpoint = m->mnt.mnt_root;
1162 	m->mnt_parent = m;
1163 
1164 	guard(mount_locked_reader)();
1165 	mnt_add_instance(m, s);
1166 }
1167 
1168 /**
1169  * vfs_create_mount - Create a mount for a configured superblock
1170  * @fc: The configuration context with the superblock attached
1171  *
1172  * Create a mount to an already configured superblock.  If necessary, the
1173  * caller should invoke vfs_get_tree() before calling this.
1174  *
1175  * Note that this does not attach the mount to anything.
1176  */
vfs_create_mount(struct fs_context * fc)1177 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1178 {
1179 	struct mount *mnt;
1180 
1181 	if (!fc->root)
1182 		return ERR_PTR(-EINVAL);
1183 
1184 	mnt = alloc_vfsmnt(fc->source);
1185 	if (!mnt)
1186 		return ERR_PTR(-ENOMEM);
1187 
1188 	if (fc->sb_flags & SB_KERNMOUNT)
1189 		mnt->mnt.mnt_flags = MNT_INTERNAL;
1190 
1191 	setup_mnt(mnt, fc->root);
1192 
1193 	return &mnt->mnt;
1194 }
1195 EXPORT_SYMBOL(vfs_create_mount);
1196 
fc_mount(struct fs_context * fc)1197 struct vfsmount *fc_mount(struct fs_context *fc)
1198 {
1199 	int err = vfs_get_tree(fc);
1200 	if (!err) {
1201 		up_write(&fc->root->d_sb->s_umount);
1202 		return vfs_create_mount(fc);
1203 	}
1204 	return ERR_PTR(err);
1205 }
1206 EXPORT_SYMBOL(fc_mount);
1207 
fc_mount_longterm(struct fs_context * fc)1208 struct vfsmount *fc_mount_longterm(struct fs_context *fc)
1209 {
1210 	struct vfsmount *mnt = fc_mount(fc);
1211 	if (!IS_ERR(mnt))
1212 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
1213 	return mnt;
1214 }
1215 EXPORT_SYMBOL(fc_mount_longterm);
1216 
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1217 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1218 				int flags, const char *name,
1219 				void *data)
1220 {
1221 	struct fs_context *fc;
1222 	struct vfsmount *mnt;
1223 	int ret = 0;
1224 
1225 	if (!type)
1226 		return ERR_PTR(-EINVAL);
1227 
1228 	fc = fs_context_for_mount(type, flags);
1229 	if (IS_ERR(fc))
1230 		return ERR_CAST(fc);
1231 
1232 	if (name)
1233 		ret = vfs_parse_fs_string(fc, "source", name);
1234 	if (!ret)
1235 		ret = parse_monolithic_mount_data(fc, data);
1236 	if (!ret)
1237 		mnt = fc_mount(fc);
1238 	else
1239 		mnt = ERR_PTR(ret);
1240 
1241 	put_fs_context(fc);
1242 	return mnt;
1243 }
1244 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1245 
clone_mnt(struct mount * old,struct dentry * root,int flag)1246 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1247 					int flag)
1248 {
1249 	struct mount *mnt;
1250 	int err;
1251 
1252 	mnt = alloc_vfsmnt(old->mnt_devname);
1253 	if (!mnt)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	mnt->mnt.mnt_flags = READ_ONCE(old->mnt.mnt_flags) &
1257 			     ~MNT_INTERNAL_FLAGS;
1258 
1259 	if (flag & (CL_SLAVE | CL_PRIVATE))
1260 		mnt->mnt_group_id = 0; /* not a peer of original */
1261 	else
1262 		mnt->mnt_group_id = old->mnt_group_id;
1263 
1264 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1265 		err = mnt_alloc_group_id(mnt);
1266 		if (err)
1267 			goto out_free;
1268 	}
1269 
1270 	if (mnt->mnt_group_id)
1271 		set_mnt_shared(mnt);
1272 
1273 	mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1274 
1275 	setup_mnt(mnt, root);
1276 
1277 	if (flag & CL_PRIVATE)	// we are done with it
1278 		return mnt;
1279 
1280 	if (peers(mnt, old))
1281 		list_add(&mnt->mnt_share, &old->mnt_share);
1282 
1283 	if ((flag & CL_SLAVE) && old->mnt_group_id) {
1284 		hlist_add_head(&mnt->mnt_slave, &old->mnt_slave_list);
1285 		mnt->mnt_master = old;
1286 	} else if (IS_MNT_SLAVE(old)) {
1287 		hlist_add_behind(&mnt->mnt_slave, &old->mnt_slave);
1288 		mnt->mnt_master = old->mnt_master;
1289 	}
1290 	return mnt;
1291 
1292  out_free:
1293 	mnt_free_id(mnt);
1294 	free_vfsmnt(mnt);
1295 	return ERR_PTR(err);
1296 }
1297 
cleanup_mnt(struct mount * mnt)1298 static void cleanup_mnt(struct mount *mnt)
1299 {
1300 	struct hlist_node *p;
1301 	struct mount *m;
1302 	/*
1303 	 * The warning here probably indicates that somebody messed
1304 	 * up a mnt_want/drop_write() pair.  If this happens, the
1305 	 * filesystem was probably unable to make r/w->r/o transitions.
1306 	 * The locking used to deal with mnt_count decrement provides barriers,
1307 	 * so mnt_get_writers() below is safe.
1308 	 */
1309 	WARN_ON(mnt_get_writers(mnt));
1310 	if (unlikely(mnt->mnt_pins.first))
1311 		mnt_pin_kill(mnt);
1312 	hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1313 		hlist_del(&m->mnt_umount);
1314 		mntput(&m->mnt);
1315 	}
1316 	fsnotify_vfsmount_delete(&mnt->mnt);
1317 	dput(mnt->mnt.mnt_root);
1318 	deactivate_super(mnt->mnt.mnt_sb);
1319 	mnt_free_id(mnt);
1320 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1321 }
1322 
__cleanup_mnt(struct rcu_head * head)1323 static void __cleanup_mnt(struct rcu_head *head)
1324 {
1325 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1326 }
1327 
1328 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1329 static void delayed_mntput(struct work_struct *unused)
1330 {
1331 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1332 	struct mount *m, *t;
1333 
1334 	llist_for_each_entry_safe(m, t, node, mnt_llist)
1335 		cleanup_mnt(m);
1336 }
1337 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1338 
mntput_no_expire(struct mount * mnt)1339 static void mntput_no_expire(struct mount *mnt)
1340 {
1341 	LIST_HEAD(list);
1342 	int count;
1343 
1344 	rcu_read_lock();
1345 	if (likely(READ_ONCE(mnt->mnt_ns))) {
1346 		/*
1347 		 * Since we don't do lock_mount_hash() here,
1348 		 * ->mnt_ns can change under us.  However, if it's
1349 		 * non-NULL, then there's a reference that won't
1350 		 * be dropped until after an RCU delay done after
1351 		 * turning ->mnt_ns NULL.  So if we observe it
1352 		 * non-NULL under rcu_read_lock(), the reference
1353 		 * we are dropping is not the final one.
1354 		 */
1355 		mnt_add_count(mnt, -1);
1356 		rcu_read_unlock();
1357 		return;
1358 	}
1359 	lock_mount_hash();
1360 	/*
1361 	 * make sure that if __legitimize_mnt() has not seen us grab
1362 	 * mount_lock, we'll see their refcount increment here.
1363 	 */
1364 	smp_mb();
1365 	mnt_add_count(mnt, -1);
1366 	count = mnt_get_count(mnt);
1367 	if (count != 0) {
1368 		WARN_ON(count < 0);
1369 		rcu_read_unlock();
1370 		unlock_mount_hash();
1371 		return;
1372 	}
1373 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1374 		rcu_read_unlock();
1375 		unlock_mount_hash();
1376 		return;
1377 	}
1378 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1379 	rcu_read_unlock();
1380 
1381 	mnt_del_instance(mnt);
1382 	if (unlikely(!list_empty(&mnt->mnt_expire)))
1383 		list_del(&mnt->mnt_expire);
1384 
1385 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1386 		struct mount *p, *tmp;
1387 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1388 			__umount_mnt(p, &list);
1389 			hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1390 		}
1391 	}
1392 	unlock_mount_hash();
1393 	shrink_dentry_list(&list);
1394 
1395 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1396 		struct task_struct *task = current;
1397 		if (likely(!(task->flags & PF_KTHREAD))) {
1398 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1399 			if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1400 				return;
1401 		}
1402 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1403 			schedule_delayed_work(&delayed_mntput_work, 1);
1404 		return;
1405 	}
1406 	cleanup_mnt(mnt);
1407 }
1408 
mntput(struct vfsmount * mnt)1409 void mntput(struct vfsmount *mnt)
1410 {
1411 	if (mnt) {
1412 		struct mount *m = real_mount(mnt);
1413 		/* avoid cacheline pingpong */
1414 		if (unlikely(m->mnt_expiry_mark))
1415 			WRITE_ONCE(m->mnt_expiry_mark, 0);
1416 		mntput_no_expire(m);
1417 	}
1418 }
1419 EXPORT_SYMBOL(mntput);
1420 
mntget(struct vfsmount * mnt)1421 struct vfsmount *mntget(struct vfsmount *mnt)
1422 {
1423 	if (mnt)
1424 		mnt_add_count(real_mount(mnt), 1);
1425 	return mnt;
1426 }
1427 EXPORT_SYMBOL(mntget);
1428 
1429 /*
1430  * Make a mount point inaccessible to new lookups.
1431  * Because there may still be current users, the caller MUST WAIT
1432  * for an RCU grace period before destroying the mount point.
1433  */
mnt_make_shortterm(struct vfsmount * mnt)1434 void mnt_make_shortterm(struct vfsmount *mnt)
1435 {
1436 	if (mnt)
1437 		real_mount(mnt)->mnt_ns = NULL;
1438 }
1439 
1440 /**
1441  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1442  * @path: path to check
1443  *
1444  *  d_mountpoint() can only be used reliably to establish if a dentry is
1445  *  not mounted in any namespace and that common case is handled inline.
1446  *  d_mountpoint() isn't aware of the possibility there may be multiple
1447  *  mounts using a given dentry in a different namespace. This function
1448  *  checks if the passed in path is a mountpoint rather than the dentry
1449  *  alone.
1450  */
path_is_mountpoint(const struct path * path)1451 bool path_is_mountpoint(const struct path *path)
1452 {
1453 	unsigned seq;
1454 	bool res;
1455 
1456 	if (!d_mountpoint(path->dentry))
1457 		return false;
1458 
1459 	rcu_read_lock();
1460 	do {
1461 		seq = read_seqbegin(&mount_lock);
1462 		res = __path_is_mountpoint(path);
1463 	} while (read_seqretry(&mount_lock, seq));
1464 	rcu_read_unlock();
1465 
1466 	return res;
1467 }
1468 EXPORT_SYMBOL(path_is_mountpoint);
1469 
mnt_clone_internal(const struct path * path)1470 struct vfsmount *mnt_clone_internal(const struct path *path)
1471 {
1472 	struct mount *p;
1473 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1474 	if (IS_ERR(p))
1475 		return ERR_CAST(p);
1476 	p->mnt.mnt_flags |= MNT_INTERNAL;
1477 	return &p->mnt;
1478 }
1479 
1480 /*
1481  * Returns the mount which either has the specified mnt_id, or has the next
1482  * smallest id afer the specified one.
1483  */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1484 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1485 {
1486 	struct rb_node *node = ns->mounts.rb_node;
1487 	struct mount *ret = NULL;
1488 
1489 	while (node) {
1490 		struct mount *m = node_to_mount(node);
1491 
1492 		if (mnt_id <= m->mnt_id_unique) {
1493 			ret = node_to_mount(node);
1494 			if (mnt_id == m->mnt_id_unique)
1495 				break;
1496 			node = node->rb_left;
1497 		} else {
1498 			node = node->rb_right;
1499 		}
1500 	}
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Returns the mount which either has the specified mnt_id, or has the next
1506  * greater id before the specified one.
1507  */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1508 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1509 {
1510 	struct rb_node *node = ns->mounts.rb_node;
1511 	struct mount *ret = NULL;
1512 
1513 	while (node) {
1514 		struct mount *m = node_to_mount(node);
1515 
1516 		if (mnt_id >= m->mnt_id_unique) {
1517 			ret = node_to_mount(node);
1518 			if (mnt_id == m->mnt_id_unique)
1519 				break;
1520 			node = node->rb_right;
1521 		} else {
1522 			node = node->rb_left;
1523 		}
1524 	}
1525 	return ret;
1526 }
1527 
1528 #ifdef CONFIG_PROC_FS
1529 
1530 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1531 static void *m_start(struct seq_file *m, loff_t *pos)
1532 {
1533 	struct proc_mounts *p = m->private;
1534 
1535 	down_read(&namespace_sem);
1536 
1537 	return mnt_find_id_at(p->ns, *pos);
1538 }
1539 
m_next(struct seq_file * m,void * v,loff_t * pos)1540 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1541 {
1542 	struct mount *next = NULL, *mnt = v;
1543 	struct rb_node *node = rb_next(&mnt->mnt_node);
1544 
1545 	++*pos;
1546 	if (node) {
1547 		next = node_to_mount(node);
1548 		*pos = next->mnt_id_unique;
1549 	}
1550 	return next;
1551 }
1552 
m_stop(struct seq_file * m,void * v)1553 static void m_stop(struct seq_file *m, void *v)
1554 {
1555 	up_read(&namespace_sem);
1556 }
1557 
m_show(struct seq_file * m,void * v)1558 static int m_show(struct seq_file *m, void *v)
1559 {
1560 	struct proc_mounts *p = m->private;
1561 	struct mount *r = v;
1562 	return p->show(m, &r->mnt);
1563 }
1564 
1565 const struct seq_operations mounts_op = {
1566 	.start	= m_start,
1567 	.next	= m_next,
1568 	.stop	= m_stop,
1569 	.show	= m_show,
1570 };
1571 
1572 #endif  /* CONFIG_PROC_FS */
1573 
1574 /**
1575  * may_umount_tree - check if a mount tree is busy
1576  * @m: root of mount tree
1577  *
1578  * This is called to check if a tree of mounts has any
1579  * open files, pwds, chroots or sub mounts that are
1580  * busy.
1581  */
may_umount_tree(struct vfsmount * m)1582 int may_umount_tree(struct vfsmount *m)
1583 {
1584 	struct mount *mnt = real_mount(m);
1585 	bool busy = false;
1586 
1587 	/* write lock needed for mnt_get_count */
1588 	lock_mount_hash();
1589 	for (struct mount *p = mnt; p; p = next_mnt(p, mnt)) {
1590 		if (mnt_get_count(p) > (p == mnt ? 2 : 1)) {
1591 			busy = true;
1592 			break;
1593 		}
1594 	}
1595 	unlock_mount_hash();
1596 
1597 	return !busy;
1598 }
1599 
1600 EXPORT_SYMBOL(may_umount_tree);
1601 
1602 /**
1603  * may_umount - check if a mount point is busy
1604  * @mnt: root of mount
1605  *
1606  * This is called to check if a mount point has any
1607  * open files, pwds, chroots or sub mounts. If the
1608  * mount has sub mounts this will return busy
1609  * regardless of whether the sub mounts are busy.
1610  *
1611  * Doesn't take quota and stuff into account. IOW, in some cases it will
1612  * give false negatives. The main reason why it's here is that we need
1613  * a non-destructive way to look for easily umountable filesystems.
1614  */
may_umount(struct vfsmount * mnt)1615 int may_umount(struct vfsmount *mnt)
1616 {
1617 	int ret = 1;
1618 	down_read(&namespace_sem);
1619 	lock_mount_hash();
1620 	if (propagate_mount_busy(real_mount(mnt), 2))
1621 		ret = 0;
1622 	unlock_mount_hash();
1623 	up_read(&namespace_sem);
1624 	return ret;
1625 }
1626 
1627 EXPORT_SYMBOL(may_umount);
1628 
1629 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1630 static void mnt_notify(struct mount *p)
1631 {
1632 	if (!p->prev_ns && p->mnt_ns) {
1633 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1634 	} else if (p->prev_ns && !p->mnt_ns) {
1635 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1636 	} else if (p->prev_ns == p->mnt_ns) {
1637 		fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1638 	} else {
1639 		fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1640 		fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1641 	}
1642 	p->prev_ns = p->mnt_ns;
1643 }
1644 
notify_mnt_list(void)1645 static void notify_mnt_list(void)
1646 {
1647 	struct mount *m, *tmp;
1648 	/*
1649 	 * Notify about mounts that were added/reparented/detached/remain
1650 	 * connected after unmount.
1651 	 */
1652 	list_for_each_entry_safe(m, tmp, &notify_list, to_notify) {
1653 		mnt_notify(m);
1654 		list_del_init(&m->to_notify);
1655 	}
1656 }
1657 
need_notify_mnt_list(void)1658 static bool need_notify_mnt_list(void)
1659 {
1660 	return !list_empty(&notify_list);
1661 }
1662 #else
notify_mnt_list(void)1663 static void notify_mnt_list(void)
1664 {
1665 }
1666 
need_notify_mnt_list(void)1667 static bool need_notify_mnt_list(void)
1668 {
1669 	return false;
1670 }
1671 #endif
1672 
1673 static void free_mnt_ns(struct mnt_namespace *);
namespace_unlock(void)1674 static void namespace_unlock(void)
1675 {
1676 	struct hlist_head head;
1677 	struct hlist_node *p;
1678 	struct mount *m;
1679 	struct mnt_namespace *ns = emptied_ns;
1680 	LIST_HEAD(list);
1681 
1682 	hlist_move_list(&unmounted, &head);
1683 	list_splice_init(&ex_mountpoints, &list);
1684 	emptied_ns = NULL;
1685 
1686 	if (need_notify_mnt_list()) {
1687 		/*
1688 		 * No point blocking out concurrent readers while notifications
1689 		 * are sent. This will also allow statmount()/listmount() to run
1690 		 * concurrently.
1691 		 */
1692 		downgrade_write(&namespace_sem);
1693 		notify_mnt_list();
1694 		up_read(&namespace_sem);
1695 	} else {
1696 		up_write(&namespace_sem);
1697 	}
1698 	if (unlikely(ns)) {
1699 		/* Make sure we notice when we leak mounts. */
1700 		VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
1701 		free_mnt_ns(ns);
1702 	}
1703 
1704 	shrink_dentry_list(&list);
1705 
1706 	if (likely(hlist_empty(&head)))
1707 		return;
1708 
1709 	synchronize_rcu_expedited();
1710 
1711 	hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1712 		hlist_del(&m->mnt_umount);
1713 		mntput(&m->mnt);
1714 	}
1715 }
1716 
namespace_lock(void)1717 static inline void namespace_lock(void)
1718 {
1719 	down_write(&namespace_sem);
1720 }
1721 
1722 enum umount_tree_flags {
1723 	UMOUNT_SYNC = 1,
1724 	UMOUNT_PROPAGATE = 2,
1725 	UMOUNT_CONNECTED = 4,
1726 };
1727 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1728 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1729 {
1730 	/* Leaving mounts connected is only valid for lazy umounts */
1731 	if (how & UMOUNT_SYNC)
1732 		return true;
1733 
1734 	/* A mount without a parent has nothing to be connected to */
1735 	if (!mnt_has_parent(mnt))
1736 		return true;
1737 
1738 	/* Because the reference counting rules change when mounts are
1739 	 * unmounted and connected, umounted mounts may not be
1740 	 * connected to mounted mounts.
1741 	 */
1742 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1743 		return true;
1744 
1745 	/* Has it been requested that the mount remain connected? */
1746 	if (how & UMOUNT_CONNECTED)
1747 		return false;
1748 
1749 	/* Is the mount locked such that it needs to remain connected? */
1750 	if (IS_MNT_LOCKED(mnt))
1751 		return false;
1752 
1753 	/* By default disconnect the mount */
1754 	return true;
1755 }
1756 
1757 /*
1758  * mount_lock must be held
1759  * namespace_sem must be held for write
1760  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1761 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1762 {
1763 	LIST_HEAD(tmp_list);
1764 	struct mount *p;
1765 
1766 	if (how & UMOUNT_PROPAGATE)
1767 		propagate_mount_unlock(mnt);
1768 
1769 	/* Gather the mounts to umount */
1770 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1771 		p->mnt.mnt_flags |= MNT_UMOUNT;
1772 		if (mnt_ns_attached(p))
1773 			move_from_ns(p);
1774 		list_add_tail(&p->mnt_list, &tmp_list);
1775 	}
1776 
1777 	/* Hide the mounts from mnt_mounts */
1778 	list_for_each_entry(p, &tmp_list, mnt_list) {
1779 		list_del_init(&p->mnt_child);
1780 	}
1781 
1782 	/* Add propagated mounts to the tmp_list */
1783 	if (how & UMOUNT_PROPAGATE)
1784 		propagate_umount(&tmp_list);
1785 
1786 	bulk_make_private(&tmp_list);
1787 
1788 	while (!list_empty(&tmp_list)) {
1789 		struct mnt_namespace *ns;
1790 		bool disconnect;
1791 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1792 		list_del_init(&p->mnt_expire);
1793 		list_del_init(&p->mnt_list);
1794 		ns = p->mnt_ns;
1795 		if (ns) {
1796 			ns->nr_mounts--;
1797 			__touch_mnt_namespace(ns);
1798 		}
1799 		p->mnt_ns = NULL;
1800 		if (how & UMOUNT_SYNC)
1801 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1802 
1803 		disconnect = disconnect_mount(p, how);
1804 		if (mnt_has_parent(p)) {
1805 			if (!disconnect) {
1806 				/* Don't forget about p */
1807 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1808 			} else {
1809 				umount_mnt(p);
1810 			}
1811 		}
1812 		if (disconnect)
1813 			hlist_add_head(&p->mnt_umount, &unmounted);
1814 
1815 		/*
1816 		 * At this point p->mnt_ns is NULL, notification will be queued
1817 		 * only if
1818 		 *
1819 		 *  - p->prev_ns is non-NULL *and*
1820 		 *  - p->prev_ns->n_fsnotify_marks is non-NULL
1821 		 *
1822 		 * This will preclude queuing the mount if this is a cleanup
1823 		 * after a failed copy_tree() or destruction of an anonymous
1824 		 * namespace, etc.
1825 		 */
1826 		mnt_notify_add(p);
1827 	}
1828 }
1829 
1830 static void shrink_submounts(struct mount *mnt);
1831 
do_umount_root(struct super_block * sb)1832 static int do_umount_root(struct super_block *sb)
1833 {
1834 	int ret = 0;
1835 
1836 	down_write(&sb->s_umount);
1837 	if (!sb_rdonly(sb)) {
1838 		struct fs_context *fc;
1839 
1840 		fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1841 						SB_RDONLY);
1842 		if (IS_ERR(fc)) {
1843 			ret = PTR_ERR(fc);
1844 		} else {
1845 			ret = parse_monolithic_mount_data(fc, NULL);
1846 			if (!ret)
1847 				ret = reconfigure_super(fc);
1848 			put_fs_context(fc);
1849 		}
1850 	}
1851 	up_write(&sb->s_umount);
1852 	return ret;
1853 }
1854 
do_umount(struct mount * mnt,int flags)1855 static int do_umount(struct mount *mnt, int flags)
1856 {
1857 	struct super_block *sb = mnt->mnt.mnt_sb;
1858 	int retval;
1859 
1860 	retval = security_sb_umount(&mnt->mnt, flags);
1861 	if (retval)
1862 		return retval;
1863 
1864 	/*
1865 	 * Allow userspace to request a mountpoint be expired rather than
1866 	 * unmounting unconditionally. Unmount only happens if:
1867 	 *  (1) the mark is already set (the mark is cleared by mntput())
1868 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1869 	 */
1870 	if (flags & MNT_EXPIRE) {
1871 		if (&mnt->mnt == current->fs->root.mnt ||
1872 		    flags & (MNT_FORCE | MNT_DETACH))
1873 			return -EINVAL;
1874 
1875 		/*
1876 		 * probably don't strictly need the lock here if we examined
1877 		 * all race cases, but it's a slowpath.
1878 		 */
1879 		lock_mount_hash();
1880 		if (!list_empty(&mnt->mnt_mounts) || mnt_get_count(mnt) != 2) {
1881 			unlock_mount_hash();
1882 			return -EBUSY;
1883 		}
1884 		unlock_mount_hash();
1885 
1886 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1887 			return -EAGAIN;
1888 	}
1889 
1890 	/*
1891 	 * If we may have to abort operations to get out of this
1892 	 * mount, and they will themselves hold resources we must
1893 	 * allow the fs to do things. In the Unix tradition of
1894 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1895 	 * might fail to complete on the first run through as other tasks
1896 	 * must return, and the like. Thats for the mount program to worry
1897 	 * about for the moment.
1898 	 */
1899 
1900 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1901 		sb->s_op->umount_begin(sb);
1902 	}
1903 
1904 	/*
1905 	 * No sense to grab the lock for this test, but test itself looks
1906 	 * somewhat bogus. Suggestions for better replacement?
1907 	 * Ho-hum... In principle, we might treat that as umount + switch
1908 	 * to rootfs. GC would eventually take care of the old vfsmount.
1909 	 * Actually it makes sense, especially if rootfs would contain a
1910 	 * /reboot - static binary that would close all descriptors and
1911 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1912 	 */
1913 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1914 		/*
1915 		 * Special case for "unmounting" root ...
1916 		 * we just try to remount it readonly.
1917 		 */
1918 		if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1919 			return -EPERM;
1920 		return do_umount_root(sb);
1921 	}
1922 
1923 	namespace_lock();
1924 	lock_mount_hash();
1925 
1926 	/* Repeat the earlier racy checks, now that we are holding the locks */
1927 	retval = -EINVAL;
1928 	if (!check_mnt(mnt))
1929 		goto out;
1930 
1931 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1932 		goto out;
1933 
1934 	if (!mnt_has_parent(mnt)) /* not the absolute root */
1935 		goto out;
1936 
1937 	event++;
1938 	if (flags & MNT_DETACH) {
1939 		umount_tree(mnt, UMOUNT_PROPAGATE);
1940 		retval = 0;
1941 	} else {
1942 		smp_mb(); // paired with __legitimize_mnt()
1943 		shrink_submounts(mnt);
1944 		retval = -EBUSY;
1945 		if (!propagate_mount_busy(mnt, 2)) {
1946 			umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1947 			retval = 0;
1948 		}
1949 	}
1950 out:
1951 	unlock_mount_hash();
1952 	namespace_unlock();
1953 	return retval;
1954 }
1955 
1956 /*
1957  * __detach_mounts - lazily unmount all mounts on the specified dentry
1958  *
1959  * During unlink, rmdir, and d_drop it is possible to loose the path
1960  * to an existing mountpoint, and wind up leaking the mount.
1961  * detach_mounts allows lazily unmounting those mounts instead of
1962  * leaking them.
1963  *
1964  * The caller may hold dentry->d_inode->i_rwsem.
1965  */
__detach_mounts(struct dentry * dentry)1966 void __detach_mounts(struct dentry *dentry)
1967 {
1968 	struct pinned_mountpoint mp = {};
1969 	struct mount *mnt;
1970 
1971 	guard(namespace_excl)();
1972 	guard(mount_writer)();
1973 
1974 	if (!lookup_mountpoint(dentry, &mp))
1975 		return;
1976 
1977 	event++;
1978 	while (mp.node.next) {
1979 		mnt = hlist_entry(mp.node.next, struct mount, mnt_mp_list);
1980 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1981 			umount_mnt(mnt);
1982 			hlist_add_head(&mnt->mnt_umount, &unmounted);
1983 		}
1984 		else umount_tree(mnt, UMOUNT_CONNECTED);
1985 	}
1986 	unpin_mountpoint(&mp);
1987 }
1988 
1989 /*
1990  * Is the caller allowed to modify his namespace?
1991  */
may_mount(void)1992 bool may_mount(void)
1993 {
1994 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1995 }
1996 
warn_mandlock(void)1997 static void warn_mandlock(void)
1998 {
1999 	pr_warn_once("=======================================================\n"
2000 		     "WARNING: The mand mount option has been deprecated and\n"
2001 		     "         and is ignored by this kernel. Remove the mand\n"
2002 		     "         option from the mount to silence this warning.\n"
2003 		     "=======================================================\n");
2004 }
2005 
can_umount(const struct path * path,int flags)2006 static int can_umount(const struct path *path, int flags)
2007 {
2008 	struct mount *mnt = real_mount(path->mnt);
2009 	struct super_block *sb = path->dentry->d_sb;
2010 
2011 	if (!may_mount())
2012 		return -EPERM;
2013 	if (!path_mounted(path))
2014 		return -EINVAL;
2015 	if (!check_mnt(mnt))
2016 		return -EINVAL;
2017 	if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2018 		return -EINVAL;
2019 	if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2020 		return -EPERM;
2021 	return 0;
2022 }
2023 
2024 // caller is responsible for flags being sane
path_umount(const struct path * path,int flags)2025 int path_umount(const struct path *path, int flags)
2026 {
2027 	struct mount *mnt = real_mount(path->mnt);
2028 	int ret;
2029 
2030 	ret = can_umount(path, flags);
2031 	if (!ret)
2032 		ret = do_umount(mnt, flags);
2033 
2034 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
2035 	dput(path->dentry);
2036 	mntput_no_expire(mnt);
2037 	return ret;
2038 }
2039 
ksys_umount(char __user * name,int flags)2040 static int ksys_umount(char __user *name, int flags)
2041 {
2042 	int lookup_flags = LOOKUP_MOUNTPOINT;
2043 	struct path path;
2044 	int ret;
2045 
2046 	// basic validity checks done first
2047 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2048 		return -EINVAL;
2049 
2050 	if (!(flags & UMOUNT_NOFOLLOW))
2051 		lookup_flags |= LOOKUP_FOLLOW;
2052 	ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2053 	if (ret)
2054 		return ret;
2055 	return path_umount(&path, flags);
2056 }
2057 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2058 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2059 {
2060 	return ksys_umount(name, flags);
2061 }
2062 
2063 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2064 
2065 /*
2066  *	The 2.0 compatible umount. No flags.
2067  */
SYSCALL_DEFINE1(oldumount,char __user *,name)2068 SYSCALL_DEFINE1(oldumount, char __user *, name)
2069 {
2070 	return ksys_umount(name, 0);
2071 }
2072 
2073 #endif
2074 
is_mnt_ns_file(struct dentry * dentry)2075 static bool is_mnt_ns_file(struct dentry *dentry)
2076 {
2077 	struct ns_common *ns;
2078 
2079 	/* Is this a proxy for a mount namespace? */
2080 	if (dentry->d_op != &ns_dentry_operations)
2081 		return false;
2082 
2083 	ns = d_inode(dentry)->i_private;
2084 
2085 	return ns->ops == &mntns_operations;
2086 }
2087 
from_mnt_ns(struct mnt_namespace * mnt)2088 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2089 {
2090 	return &mnt->ns;
2091 }
2092 
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2093 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2094 {
2095 	struct ns_common *ns;
2096 
2097 	guard(rcu)();
2098 
2099 	for (;;) {
2100 		ns = ns_tree_adjoined_rcu(mntns, previous);
2101 		if (IS_ERR(ns))
2102 			return ERR_CAST(ns);
2103 
2104 		mntns = to_mnt_ns(ns);
2105 
2106 		/*
2107 		 * The last passive reference count is put with RCU
2108 		 * delay so accessing the mount namespace is not just
2109 		 * safe but all relevant members are still valid.
2110 		 */
2111 		if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2112 			continue;
2113 
2114 		/*
2115 		 * We need an active reference count as we're persisting
2116 		 * the mount namespace and it might already be on its
2117 		 * deathbed.
2118 		 */
2119 		if (!ns_ref_get(mntns))
2120 			continue;
2121 
2122 		return mntns;
2123 	}
2124 }
2125 
mnt_ns_from_dentry(struct dentry * dentry)2126 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2127 {
2128 	if (!is_mnt_ns_file(dentry))
2129 		return NULL;
2130 
2131 	return to_mnt_ns(get_proc_ns(dentry->d_inode));
2132 }
2133 
mnt_ns_loop(struct dentry * dentry)2134 static bool mnt_ns_loop(struct dentry *dentry)
2135 {
2136 	/* Could bind mounting the mount namespace inode cause a
2137 	 * mount namespace loop?
2138 	 */
2139 	struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2140 
2141 	if (!mnt_ns)
2142 		return false;
2143 
2144 	return current->nsproxy->mnt_ns->ns.ns_id >= mnt_ns->ns.ns_id;
2145 }
2146 
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2147 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2148 					int flag)
2149 {
2150 	struct mount *res, *src_parent, *src_root_child, *src_mnt,
2151 		*dst_parent, *dst_mnt;
2152 
2153 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2154 		return ERR_PTR(-EINVAL);
2155 
2156 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2157 		return ERR_PTR(-EINVAL);
2158 
2159 	res = dst_mnt = clone_mnt(src_root, dentry, flag);
2160 	if (IS_ERR(dst_mnt))
2161 		return dst_mnt;
2162 
2163 	src_parent = src_root;
2164 
2165 	list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2166 		if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2167 			continue;
2168 
2169 		for (src_mnt = src_root_child; src_mnt;
2170 		    src_mnt = next_mnt(src_mnt, src_root_child)) {
2171 			if (!(flag & CL_COPY_UNBINDABLE) &&
2172 			    IS_MNT_UNBINDABLE(src_mnt)) {
2173 				if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2174 					/* Both unbindable and locked. */
2175 					dst_mnt = ERR_PTR(-EPERM);
2176 					goto out;
2177 				} else {
2178 					src_mnt = skip_mnt_tree(src_mnt);
2179 					continue;
2180 				}
2181 			}
2182 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
2183 			    is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2184 				src_mnt = skip_mnt_tree(src_mnt);
2185 				continue;
2186 			}
2187 			while (src_parent != src_mnt->mnt_parent) {
2188 				src_parent = src_parent->mnt_parent;
2189 				dst_mnt = dst_mnt->mnt_parent;
2190 			}
2191 
2192 			src_parent = src_mnt;
2193 			dst_parent = dst_mnt;
2194 			dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2195 			if (IS_ERR(dst_mnt))
2196 				goto out;
2197 			lock_mount_hash();
2198 			if (src_mnt->mnt.mnt_flags & MNT_LOCKED)
2199 				dst_mnt->mnt.mnt_flags |= MNT_LOCKED;
2200 			if (unlikely(flag & CL_EXPIRE)) {
2201 				/* stick the duplicate mount on the same expiry
2202 				 * list as the original if that was on one */
2203 				if (!list_empty(&src_mnt->mnt_expire))
2204 					list_add(&dst_mnt->mnt_expire,
2205 						 &src_mnt->mnt_expire);
2206 			}
2207 			attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp);
2208 			unlock_mount_hash();
2209 		}
2210 	}
2211 	return res;
2212 
2213 out:
2214 	if (res) {
2215 		lock_mount_hash();
2216 		umount_tree(res, UMOUNT_SYNC);
2217 		unlock_mount_hash();
2218 	}
2219 	return dst_mnt;
2220 }
2221 
extend_array(struct path ** res,struct path ** to_free,unsigned n,unsigned * count,unsigned new_count)2222 static inline bool extend_array(struct path **res, struct path **to_free,
2223 				unsigned n, unsigned *count, unsigned new_count)
2224 {
2225 	struct path *p;
2226 
2227 	if (likely(n < *count))
2228 		return true;
2229 	p = kmalloc_array(new_count, sizeof(struct path), GFP_KERNEL);
2230 	if (p && *count)
2231 		memcpy(p, *res, *count * sizeof(struct path));
2232 	*count = new_count;
2233 	kfree(*to_free);
2234 	*to_free = *res = p;
2235 	return p;
2236 }
2237 
collect_paths(const struct path * path,struct path * prealloc,unsigned count)2238 const struct path *collect_paths(const struct path *path,
2239 			      struct path *prealloc, unsigned count)
2240 {
2241 	struct mount *root = real_mount(path->mnt);
2242 	struct mount *child;
2243 	struct path *res = prealloc, *to_free = NULL;
2244 	unsigned n = 0;
2245 
2246 	guard(namespace_shared)();
2247 
2248 	if (!check_mnt(root))
2249 		return ERR_PTR(-EINVAL);
2250 	if (!extend_array(&res, &to_free, 0, &count, 32))
2251 		return ERR_PTR(-ENOMEM);
2252 	res[n++] = *path;
2253 	list_for_each_entry(child, &root->mnt_mounts, mnt_child) {
2254 		if (!is_subdir(child->mnt_mountpoint, path->dentry))
2255 			continue;
2256 		for (struct mount *m = child; m; m = next_mnt(m, child)) {
2257 			if (!extend_array(&res, &to_free, n, &count, 2 * count))
2258 				return ERR_PTR(-ENOMEM);
2259 			res[n].mnt = &m->mnt;
2260 			res[n].dentry = m->mnt.mnt_root;
2261 			n++;
2262 		}
2263 	}
2264 	if (!extend_array(&res, &to_free, n, &count, count + 1))
2265 		return ERR_PTR(-ENOMEM);
2266 	memset(res + n, 0, (count - n) * sizeof(struct path));
2267 	for (struct path *p = res; p->mnt; p++)
2268 		path_get(p);
2269 	return res;
2270 }
2271 
drop_collected_paths(const struct path * paths,const struct path * prealloc)2272 void drop_collected_paths(const struct path *paths, const struct path *prealloc)
2273 {
2274 	for (const struct path *p = paths; p->mnt; p++)
2275 		path_put(p);
2276 	if (paths != prealloc)
2277 		kfree(paths);
2278 }
2279 
2280 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2281 
dissolve_on_fput(struct vfsmount * mnt)2282 void dissolve_on_fput(struct vfsmount *mnt)
2283 {
2284 	struct mount *m = real_mount(mnt);
2285 
2286 	/*
2287 	 * m used to be the root of anon namespace; if it still is one,
2288 	 * we need to dissolve the mount tree and free that namespace.
2289 	 * Let's try to avoid taking namespace_sem if we can determine
2290 	 * that there's nothing to do without it - rcu_read_lock() is
2291 	 * enough to make anon_ns_root() memory-safe and once m has
2292 	 * left its namespace, it's no longer our concern, since it will
2293 	 * never become a root of anon ns again.
2294 	 */
2295 
2296 	scoped_guard(rcu) {
2297 		if (!anon_ns_root(m))
2298 			return;
2299 	}
2300 
2301 	scoped_guard(namespace_excl) {
2302 		if (!anon_ns_root(m))
2303 			return;
2304 
2305 		emptied_ns = m->mnt_ns;
2306 		lock_mount_hash();
2307 		umount_tree(m, UMOUNT_CONNECTED);
2308 		unlock_mount_hash();
2309 	}
2310 }
2311 
2312 /* locks: namespace_shared && pinned(mnt) || mount_locked_reader */
__has_locked_children(struct mount * mnt,struct dentry * dentry)2313 static bool __has_locked_children(struct mount *mnt, struct dentry *dentry)
2314 {
2315 	struct mount *child;
2316 
2317 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2318 		if (!is_subdir(child->mnt_mountpoint, dentry))
2319 			continue;
2320 
2321 		if (child->mnt.mnt_flags & MNT_LOCKED)
2322 			return true;
2323 	}
2324 	return false;
2325 }
2326 
has_locked_children(struct mount * mnt,struct dentry * dentry)2327 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2328 {
2329 	guard(mount_locked_reader)();
2330 	return __has_locked_children(mnt, dentry);
2331 }
2332 
2333 /*
2334  * Check that there aren't references to earlier/same mount namespaces in the
2335  * specified subtree.  Such references can act as pins for mount namespaces
2336  * that aren't checked by the mount-cycle checking code, thereby allowing
2337  * cycles to be made.
2338  *
2339  * locks: mount_locked_reader || namespace_shared && pinned(subtree)
2340  */
check_for_nsfs_mounts(struct mount * subtree)2341 static bool check_for_nsfs_mounts(struct mount *subtree)
2342 {
2343 	for (struct mount *p = subtree; p; p = next_mnt(p, subtree))
2344 		if (mnt_ns_loop(p->mnt.mnt_root))
2345 			return false;
2346 	return true;
2347 }
2348 
2349 /**
2350  * clone_private_mount - create a private clone of a path
2351  * @path: path to clone
2352  *
2353  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2354  * will not be attached anywhere in the namespace and will be private (i.e.
2355  * changes to the originating mount won't be propagated into this).
2356  *
2357  * This assumes caller has called or done the equivalent of may_mount().
2358  *
2359  * Release with mntput().
2360  */
clone_private_mount(const struct path * path)2361 struct vfsmount *clone_private_mount(const struct path *path)
2362 {
2363 	struct mount *old_mnt = real_mount(path->mnt);
2364 	struct mount *new_mnt;
2365 
2366 	guard(namespace_shared)();
2367 
2368 	if (IS_MNT_UNBINDABLE(old_mnt))
2369 		return ERR_PTR(-EINVAL);
2370 
2371 	/*
2372 	 * Make sure the source mount is acceptable.
2373 	 * Anything mounted in our mount namespace is allowed.
2374 	 * Otherwise, it must be the root of an anonymous mount
2375 	 * namespace, and we need to make sure no namespace
2376 	 * loops get created.
2377 	 */
2378 	if (!check_mnt(old_mnt)) {
2379 		if (!anon_ns_root(old_mnt))
2380 			return ERR_PTR(-EINVAL);
2381 
2382 		if (!check_for_nsfs_mounts(old_mnt))
2383 			return ERR_PTR(-EINVAL);
2384 	}
2385 
2386 	if (!ns_capable(old_mnt->mnt_ns->user_ns, CAP_SYS_ADMIN))
2387 		return ERR_PTR(-EPERM);
2388 
2389 	if (__has_locked_children(old_mnt, path->dentry))
2390 		return ERR_PTR(-EINVAL);
2391 
2392 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2393 	if (IS_ERR(new_mnt))
2394 		return ERR_PTR(-EINVAL);
2395 
2396 	/* Longterm mount to be removed by kern_unmount*() */
2397 	new_mnt->mnt_ns = MNT_NS_INTERNAL;
2398 	return &new_mnt->mnt;
2399 }
2400 EXPORT_SYMBOL_GPL(clone_private_mount);
2401 
lock_mnt_tree(struct mount * mnt)2402 static void lock_mnt_tree(struct mount *mnt)
2403 {
2404 	struct mount *p;
2405 
2406 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2407 		int flags = p->mnt.mnt_flags;
2408 		/* Don't allow unprivileged users to change mount flags */
2409 		flags |= MNT_LOCK_ATIME;
2410 
2411 		if (flags & MNT_READONLY)
2412 			flags |= MNT_LOCK_READONLY;
2413 
2414 		if (flags & MNT_NODEV)
2415 			flags |= MNT_LOCK_NODEV;
2416 
2417 		if (flags & MNT_NOSUID)
2418 			flags |= MNT_LOCK_NOSUID;
2419 
2420 		if (flags & MNT_NOEXEC)
2421 			flags |= MNT_LOCK_NOEXEC;
2422 		/* Don't allow unprivileged users to reveal what is under a mount */
2423 		if (list_empty(&p->mnt_expire) && p != mnt)
2424 			flags |= MNT_LOCKED;
2425 		p->mnt.mnt_flags = flags;
2426 	}
2427 }
2428 
cleanup_group_ids(struct mount * mnt,struct mount * end)2429 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2430 {
2431 	struct mount *p;
2432 
2433 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2434 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
2435 			mnt_release_group_id(p);
2436 	}
2437 }
2438 
invent_group_ids(struct mount * mnt,bool recurse)2439 static int invent_group_ids(struct mount *mnt, bool recurse)
2440 {
2441 	struct mount *p;
2442 
2443 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2444 		if (!p->mnt_group_id) {
2445 			int err = mnt_alloc_group_id(p);
2446 			if (err) {
2447 				cleanup_group_ids(mnt, p);
2448 				return err;
2449 			}
2450 		}
2451 	}
2452 
2453 	return 0;
2454 }
2455 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2456 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2457 {
2458 	unsigned int max = READ_ONCE(sysctl_mount_max);
2459 	unsigned int mounts = 0;
2460 	struct mount *p;
2461 
2462 	if (ns->nr_mounts >= max)
2463 		return -ENOSPC;
2464 	max -= ns->nr_mounts;
2465 	if (ns->pending_mounts >= max)
2466 		return -ENOSPC;
2467 	max -= ns->pending_mounts;
2468 
2469 	for (p = mnt; p; p = next_mnt(p, mnt))
2470 		mounts++;
2471 
2472 	if (mounts > max)
2473 		return -ENOSPC;
2474 
2475 	ns->pending_mounts += mounts;
2476 	return 0;
2477 }
2478 
2479 enum mnt_tree_flags_t {
2480 	MNT_TREE_BENEATH = BIT(0),
2481 	MNT_TREE_PROPAGATION = BIT(1),
2482 };
2483 
2484 /**
2485  * attach_recursive_mnt - attach a source mount tree
2486  * @source_mnt: mount tree to be attached
2487  * @dest:	the context for mounting at the place where the tree should go
2488  *
2489  *  NOTE: in the table below explains the semantics when a source mount
2490  *  of a given type is attached to a destination mount of a given type.
2491  * ---------------------------------------------------------------------------
2492  * |         BIND MOUNT OPERATION                                            |
2493  * |**************************************************************************
2494  * | source-->| shared        |       private  |       slave    | unbindable |
2495  * | dest     |               |                |                |            |
2496  * |   |      |               |                |                |            |
2497  * |   v      |               |                |                |            |
2498  * |**************************************************************************
2499  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2500  * |          |               |                |                |            |
2501  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2502  * ***************************************************************************
2503  * A bind operation clones the source mount and mounts the clone on the
2504  * destination mount.
2505  *
2506  * (++)  the cloned mount is propagated to all the mounts in the propagation
2507  * 	 tree of the destination mount and the cloned mount is added to
2508  * 	 the peer group of the source mount.
2509  * (+)   the cloned mount is created under the destination mount and is marked
2510  *       as shared. The cloned mount is added to the peer group of the source
2511  *       mount.
2512  * (+++) the mount is propagated to all the mounts in the propagation tree
2513  *       of the destination mount and the cloned mount is made slave
2514  *       of the same master as that of the source mount. The cloned mount
2515  *       is marked as 'shared and slave'.
2516  * (*)   the cloned mount is made a slave of the same master as that of the
2517  * 	 source mount.
2518  *
2519  * ---------------------------------------------------------------------------
2520  * |         		MOVE MOUNT OPERATION                                 |
2521  * |**************************************************************************
2522  * | source-->| shared        |       private  |       slave    | unbindable |
2523  * | dest     |               |                |                |            |
2524  * |   |      |               |                |                |            |
2525  * |   v      |               |                |                |            |
2526  * |**************************************************************************
2527  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2528  * |          |               |                |                |            |
2529  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2530  * ***************************************************************************
2531  *
2532  * (+)  the mount is moved to the destination. And is then propagated to
2533  * 	all the mounts in the propagation tree of the destination mount.
2534  * (+*)  the mount is moved to the destination.
2535  * (+++)  the mount is moved to the destination and is then propagated to
2536  * 	all the mounts belonging to the destination mount's propagation tree.
2537  * 	the mount is marked as 'shared and slave'.
2538  * (*)	the mount continues to be a slave at the new location.
2539  *
2540  * if the source mount is a tree, the operations explained above is
2541  * applied to each mount in the tree.
2542  * Must be called without spinlocks held, since this function can sleep
2543  * in allocations.
2544  *
2545  * Context: The function expects namespace_lock() to be held.
2546  * Return: If @source_mnt was successfully attached 0 is returned.
2547  *         Otherwise a negative error code is returned.
2548  */
attach_recursive_mnt(struct mount * source_mnt,const struct pinned_mountpoint * dest)2549 static int attach_recursive_mnt(struct mount *source_mnt,
2550 				const struct pinned_mountpoint *dest)
2551 {
2552 	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2553 	struct mount *dest_mnt = dest->parent;
2554 	struct mountpoint *dest_mp = dest->mp;
2555 	HLIST_HEAD(tree_list);
2556 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
2557 	struct pinned_mountpoint root = {};
2558 	struct mountpoint *shorter = NULL;
2559 	struct mount *child, *p;
2560 	struct mount *top;
2561 	struct hlist_node *n;
2562 	int err = 0;
2563 	bool moving = mnt_has_parent(source_mnt);
2564 
2565 	/*
2566 	 * Preallocate a mountpoint in case the new mounts need to be
2567 	 * mounted beneath mounts on the same mountpoint.
2568 	 */
2569 	for (top = source_mnt; unlikely(top->overmount); top = top->overmount) {
2570 		if (!shorter && is_mnt_ns_file(top->mnt.mnt_root))
2571 			shorter = top->mnt_mp;
2572 	}
2573 	err = get_mountpoint(top->mnt.mnt_root, &root);
2574 	if (err)
2575 		return err;
2576 
2577 	/* Is there space to add these mounts to the mount namespace? */
2578 	if (!moving) {
2579 		err = count_mounts(ns, source_mnt);
2580 		if (err)
2581 			goto out;
2582 	}
2583 
2584 	if (IS_MNT_SHARED(dest_mnt)) {
2585 		err = invent_group_ids(source_mnt, true);
2586 		if (err)
2587 			goto out;
2588 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2589 	}
2590 	lock_mount_hash();
2591 	if (err)
2592 		goto out_cleanup_ids;
2593 
2594 	if (IS_MNT_SHARED(dest_mnt)) {
2595 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2596 			set_mnt_shared(p);
2597 	}
2598 
2599 	if (moving) {
2600 		umount_mnt(source_mnt);
2601 		mnt_notify_add(source_mnt);
2602 		/* if the mount is moved, it should no longer be expired
2603 		 * automatically */
2604 		list_del_init(&source_mnt->mnt_expire);
2605 	} else {
2606 		if (source_mnt->mnt_ns) {
2607 			/* move from anon - the caller will destroy */
2608 			emptied_ns = source_mnt->mnt_ns;
2609 			for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2610 				move_from_ns(p);
2611 		}
2612 	}
2613 
2614 	mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2615 	/*
2616 	 * Now the original copy is in the same state as the secondaries -
2617 	 * its root attached to mountpoint, but not hashed and all mounts
2618 	 * in it are either in our namespace or in no namespace at all.
2619 	 * Add the original to the list of copies and deal with the
2620 	 * rest of work for all of them uniformly.
2621 	 */
2622 	hlist_add_head(&source_mnt->mnt_hash, &tree_list);
2623 
2624 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2625 		struct mount *q;
2626 		hlist_del_init(&child->mnt_hash);
2627 		/* Notice when we are propagating across user namespaces */
2628 		if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2629 			lock_mnt_tree(child);
2630 		q = __lookup_mnt(&child->mnt_parent->mnt,
2631 				 child->mnt_mountpoint);
2632 		commit_tree(child);
2633 		if (q) {
2634 			struct mount *r = topmost_overmount(child);
2635 			struct mountpoint *mp = root.mp;
2636 
2637 			if (unlikely(shorter) && child != source_mnt)
2638 				mp = shorter;
2639 			mnt_change_mountpoint(r, mp, q);
2640 		}
2641 	}
2642 	unpin_mountpoint(&root);
2643 	unlock_mount_hash();
2644 
2645 	return 0;
2646 
2647  out_cleanup_ids:
2648 	while (!hlist_empty(&tree_list)) {
2649 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2650 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2651 		umount_tree(child, UMOUNT_SYNC);
2652 	}
2653 	unlock_mount_hash();
2654 	cleanup_group_ids(source_mnt, NULL);
2655  out:
2656 	ns->pending_mounts = 0;
2657 
2658 	read_seqlock_excl(&mount_lock);
2659 	unpin_mountpoint(&root);
2660 	read_sequnlock_excl(&mount_lock);
2661 
2662 	return err;
2663 }
2664 
where_to_mount(const struct path * path,struct dentry ** dentry,bool beneath)2665 static inline struct mount *where_to_mount(const struct path *path,
2666 					   struct dentry **dentry,
2667 					   bool beneath)
2668 {
2669 	struct mount *m;
2670 
2671 	if (unlikely(beneath)) {
2672 		m = topmost_overmount(real_mount(path->mnt));
2673 		*dentry = m->mnt_mountpoint;
2674 		return m->mnt_parent;
2675 	}
2676 	m = __lookup_mnt(path->mnt, path->dentry);
2677 	if (unlikely(m)) {
2678 		m = topmost_overmount(m);
2679 		*dentry = m->mnt.mnt_root;
2680 		return m;
2681 	}
2682 	*dentry = path->dentry;
2683 	return real_mount(path->mnt);
2684 }
2685 
2686 /**
2687  * do_lock_mount - acquire environment for mounting
2688  * @path:	target path
2689  * @res:	context to set up
2690  * @beneath:	whether the intention is to mount beneath @path
2691  *
2692  * To mount something at given location, we need
2693  *	namespace_sem locked exclusive
2694  *	inode of dentry we are mounting on locked exclusive
2695  *	struct mountpoint for that dentry
2696  *	struct mount we are mounting on
2697  *
2698  * Results are stored in caller-supplied context (pinned_mountpoint);
2699  * on success we have res->parent and res->mp pointing to parent and
2700  * mountpoint respectively and res->node inserted into the ->m_list
2701  * of the mountpoint, making sure the mountpoint won't disappear.
2702  * On failure we have res->parent set to ERR_PTR(-E...), res->mp
2703  * left NULL, res->node - empty.
2704  * In case of success do_lock_mount returns with locks acquired (in
2705  * proper order - inode lock nests outside of namespace_sem).
2706  *
2707  * Request to mount on overmounted location is treated as "mount on
2708  * top of whatever's overmounting it"; request to mount beneath
2709  * a location - "mount immediately beneath the topmost mount at that
2710  * place".
2711  *
2712  * In all cases the location must not have been unmounted and the
2713  * chosen mountpoint must be allowed to be mounted on.  For "beneath"
2714  * case we also require the location to be at the root of a mount
2715  * that has a parent (i.e. is not a root of some namespace).
2716  */
do_lock_mount(const struct path * path,struct pinned_mountpoint * res,bool beneath)2717 static void do_lock_mount(const struct path *path,
2718 			  struct pinned_mountpoint *res,
2719 			  bool beneath)
2720 {
2721 	int err;
2722 
2723 	if (unlikely(beneath) && !path_mounted(path)) {
2724 		res->parent = ERR_PTR(-EINVAL);
2725 		return;
2726 	}
2727 
2728 	do {
2729 		struct dentry *dentry, *d;
2730 		struct mount *m, *n;
2731 
2732 		scoped_guard(mount_locked_reader) {
2733 			m = where_to_mount(path, &dentry, beneath);
2734 			if (&m->mnt != path->mnt) {
2735 				mntget(&m->mnt);
2736 				dget(dentry);
2737 			}
2738 		}
2739 
2740 		inode_lock(dentry->d_inode);
2741 		namespace_lock();
2742 
2743 		// check if the chain of mounts (if any) has changed.
2744 		scoped_guard(mount_locked_reader)
2745 			n = where_to_mount(path, &d, beneath);
2746 
2747 		if (unlikely(n != m || dentry != d))
2748 			err = -EAGAIN;		// something moved, retry
2749 		else if (unlikely(cant_mount(dentry) || !is_mounted(path->mnt)))
2750 			err = -ENOENT;		// not to be mounted on
2751 		else if (beneath && &m->mnt == path->mnt && !m->overmount)
2752 			err = -EINVAL;
2753 		else
2754 			err = get_mountpoint(dentry, res);
2755 
2756 		if (unlikely(err)) {
2757 			res->parent = ERR_PTR(err);
2758 			namespace_unlock();
2759 			inode_unlock(dentry->d_inode);
2760 		} else {
2761 			res->parent = m;
2762 		}
2763 		/*
2764 		 * Drop the temporary references.  This is subtle - on success
2765 		 * we are doing that under namespace_sem, which would normally
2766 		 * be forbidden.  However, in that case we are guaranteed that
2767 		 * refcounts won't reach zero, since we know that path->mnt
2768 		 * is mounted and thus all mounts reachable from it are pinned
2769 		 * and stable, along with their mountpoints and roots.
2770 		 */
2771 		if (&m->mnt != path->mnt) {
2772 			dput(dentry);
2773 			mntput(&m->mnt);
2774 		}
2775 	} while (err == -EAGAIN);
2776 }
2777 
__unlock_mount(struct pinned_mountpoint * m)2778 static void __unlock_mount(struct pinned_mountpoint *m)
2779 {
2780 	inode_unlock(m->mp->m_dentry->d_inode);
2781 	read_seqlock_excl(&mount_lock);
2782 	unpin_mountpoint(m);
2783 	read_sequnlock_excl(&mount_lock);
2784 	namespace_unlock();
2785 }
2786 
unlock_mount(struct pinned_mountpoint * m)2787 static inline void unlock_mount(struct pinned_mountpoint *m)
2788 {
2789 	if (!IS_ERR(m->parent))
2790 		__unlock_mount(m);
2791 }
2792 
2793 #define LOCK_MOUNT_MAYBE_BENEATH(mp, path, beneath) \
2794 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2795 	do_lock_mount((path), &mp, (beneath))
2796 #define LOCK_MOUNT(mp, path) LOCK_MOUNT_MAYBE_BENEATH(mp, (path), false)
2797 #define LOCK_MOUNT_EXACT(mp, path) \
2798 	struct pinned_mountpoint mp __cleanup(unlock_mount) = {}; \
2799 	lock_mount_exact((path), &mp)
2800 
graft_tree(struct mount * mnt,const struct pinned_mountpoint * mp)2801 static int graft_tree(struct mount *mnt, const struct pinned_mountpoint *mp)
2802 {
2803 	if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2804 		return -EINVAL;
2805 
2806 	if (d_is_dir(mp->mp->m_dentry) !=
2807 	      d_is_dir(mnt->mnt.mnt_root))
2808 		return -ENOTDIR;
2809 
2810 	return attach_recursive_mnt(mnt, mp);
2811 }
2812 
may_change_propagation(const struct mount * m)2813 static int may_change_propagation(const struct mount *m)
2814 {
2815         struct mnt_namespace *ns = m->mnt_ns;
2816 
2817 	 // it must be mounted in some namespace
2818 	 if (IS_ERR_OR_NULL(ns))         // is_mounted()
2819 		 return -EINVAL;
2820 	 // and the caller must be admin in userns of that namespace
2821 	 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
2822 		 return -EPERM;
2823 	 return 0;
2824 }
2825 
2826 /*
2827  * Sanity check the flags to change_mnt_propagation.
2828  */
2829 
flags_to_propagation_type(int ms_flags)2830 static int flags_to_propagation_type(int ms_flags)
2831 {
2832 	int type = ms_flags & ~(MS_REC | MS_SILENT);
2833 
2834 	/* Fail if any non-propagation flags are set */
2835 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2836 		return 0;
2837 	/* Only one propagation flag should be set */
2838 	if (!is_power_of_2(type))
2839 		return 0;
2840 	return type;
2841 }
2842 
2843 /*
2844  * recursively change the type of the mountpoint.
2845  */
do_change_type(const struct path * path,int ms_flags)2846 static int do_change_type(const struct path *path, int ms_flags)
2847 {
2848 	struct mount *m;
2849 	struct mount *mnt = real_mount(path->mnt);
2850 	int recurse = ms_flags & MS_REC;
2851 	int type;
2852 	int err;
2853 
2854 	if (!path_mounted(path))
2855 		return -EINVAL;
2856 
2857 	type = flags_to_propagation_type(ms_flags);
2858 	if (!type)
2859 		return -EINVAL;
2860 
2861 	guard(namespace_excl)();
2862 
2863 	err = may_change_propagation(mnt);
2864 	if (err)
2865 		return err;
2866 
2867 	if (type == MS_SHARED) {
2868 		err = invent_group_ids(mnt, recurse);
2869 		if (err)
2870 			return err;
2871 	}
2872 
2873 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2874 		change_mnt_propagation(m, type);
2875 
2876 	return 0;
2877 }
2878 
2879 /* may_copy_tree() - check if a mount tree can be copied
2880  * @path: path to the mount tree to be copied
2881  *
2882  * This helper checks if the caller may copy the mount tree starting
2883  * from @path->mnt. The caller may copy the mount tree under the
2884  * following circumstances:
2885  *
2886  * (1) The caller is located in the mount namespace of the mount tree.
2887  *     This also implies that the mount does not belong to an anonymous
2888  *     mount namespace.
2889  * (2) The caller tries to copy an nfs mount referring to a mount
2890  *     namespace, i.e., the caller is trying to copy a mount namespace
2891  *     entry from nsfs.
2892  * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2893  * (4) The caller is trying to copy a mount tree that belongs to an
2894  *     anonymous mount namespace.
2895  *
2896  *     For that to be safe, this helper enforces that the origin mount
2897  *     namespace the anonymous mount namespace was created from is the
2898  *     same as the caller's mount namespace by comparing the sequence
2899  *     numbers.
2900  *
2901  *     This is not strictly necessary. The current semantics of the new
2902  *     mount api enforce that the caller must be located in the same
2903  *     mount namespace as the mount tree it interacts with. Using the
2904  *     origin sequence number preserves these semantics even for
2905  *     anonymous mount namespaces. However, one could envision extending
2906  *     the api to directly operate across mount namespace if needed.
2907  *
2908  *     The ownership of a non-anonymous mount namespace such as the
2909  *     caller's cannot change.
2910  *     => We know that the caller's mount namespace is stable.
2911  *
2912  *     If the origin sequence number of the anonymous mount namespace is
2913  *     the same as the sequence number of the caller's mount namespace.
2914  *     => The owning namespaces are the same.
2915  *
2916  *     ==> The earlier capability check on the owning namespace of the
2917  *         caller's mount namespace ensures that the caller has the
2918  *         ability to copy the mount tree.
2919  *
2920  * Returns true if the mount tree can be copied, false otherwise.
2921  */
may_copy_tree(const struct path * path)2922 static inline bool may_copy_tree(const struct path *path)
2923 {
2924 	struct mount *mnt = real_mount(path->mnt);
2925 	const struct dentry_operations *d_op;
2926 
2927 	if (check_mnt(mnt))
2928 		return true;
2929 
2930 	d_op = path->dentry->d_op;
2931 	if (d_op == &ns_dentry_operations)
2932 		return true;
2933 
2934 	if (d_op == &pidfs_dentry_operations)
2935 		return true;
2936 
2937 	if (!is_mounted(path->mnt))
2938 		return false;
2939 
2940 	return check_anonymous_mnt(mnt);
2941 }
2942 
2943 
__do_loopback(const struct path * old_path,int recurse)2944 static struct mount *__do_loopback(const struct path *old_path, int recurse)
2945 {
2946 	struct mount *old = real_mount(old_path->mnt);
2947 
2948 	if (IS_MNT_UNBINDABLE(old))
2949 		return ERR_PTR(-EINVAL);
2950 
2951 	if (!may_copy_tree(old_path))
2952 		return ERR_PTR(-EINVAL);
2953 
2954 	if (!recurse && __has_locked_children(old, old_path->dentry))
2955 		return ERR_PTR(-EINVAL);
2956 
2957 	if (recurse)
2958 		return copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2959 	else
2960 		return clone_mnt(old, old_path->dentry, 0);
2961 }
2962 
2963 /*
2964  * do loopback mount.
2965  */
do_loopback(const struct path * path,const char * old_name,int recurse)2966 static int do_loopback(const struct path *path, const char *old_name,
2967 		       int recurse)
2968 {
2969 	struct path old_path __free(path_put) = {};
2970 	struct mount *mnt = NULL;
2971 	int err;
2972 	if (!old_name || !*old_name)
2973 		return -EINVAL;
2974 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2975 	if (err)
2976 		return err;
2977 
2978 	if (mnt_ns_loop(old_path.dentry))
2979 		return -EINVAL;
2980 
2981 	LOCK_MOUNT(mp, path);
2982 	if (IS_ERR(mp.parent))
2983 		return PTR_ERR(mp.parent);
2984 
2985 	if (!check_mnt(mp.parent))
2986 		return -EINVAL;
2987 
2988 	mnt = __do_loopback(&old_path, recurse);
2989 	if (IS_ERR(mnt))
2990 		return PTR_ERR(mnt);
2991 
2992 	err = graft_tree(mnt, &mp);
2993 	if (err) {
2994 		lock_mount_hash();
2995 		umount_tree(mnt, UMOUNT_SYNC);
2996 		unlock_mount_hash();
2997 	}
2998 	return err;
2999 }
3000 
get_detached_copy(const struct path * path,bool recursive)3001 static struct mnt_namespace *get_detached_copy(const struct path *path, bool recursive)
3002 {
3003 	struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3004 	struct user_namespace *user_ns = mnt_ns->user_ns;
3005 	struct mount *mnt, *p;
3006 
3007 	ns = alloc_mnt_ns(user_ns, true);
3008 	if (IS_ERR(ns))
3009 		return ns;
3010 
3011 	guard(namespace_excl)();
3012 
3013 	/*
3014 	 * Record the sequence number of the source mount namespace.
3015 	 * This needs to hold namespace_sem to ensure that the mount
3016 	 * doesn't get attached.
3017 	 */
3018 	if (is_mounted(path->mnt)) {
3019 		src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3020 		if (is_anon_ns(src_mnt_ns))
3021 			ns->seq_origin = src_mnt_ns->seq_origin;
3022 		else
3023 			ns->seq_origin = src_mnt_ns->ns.ns_id;
3024 	}
3025 
3026 	mnt = __do_loopback(path, recursive);
3027 	if (IS_ERR(mnt)) {
3028 		emptied_ns = ns;
3029 		return ERR_CAST(mnt);
3030 	}
3031 
3032 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3033 		mnt_add_to_ns(ns, p);
3034 		ns->nr_mounts++;
3035 	}
3036 	ns->root = mnt;
3037 	return ns;
3038 }
3039 
open_detached_copy(struct path * path,bool recursive)3040 static struct file *open_detached_copy(struct path *path, bool recursive)
3041 {
3042 	struct mnt_namespace *ns = get_detached_copy(path, recursive);
3043 	struct file *file;
3044 
3045 	if (IS_ERR(ns))
3046 		return ERR_CAST(ns);
3047 
3048 	mntput(path->mnt);
3049 	path->mnt = mntget(&ns->root->mnt);
3050 	file = dentry_open(path, O_PATH, current_cred());
3051 	if (IS_ERR(file))
3052 		dissolve_on_fput(path->mnt);
3053 	else
3054 		file->f_mode |= FMODE_NEED_UNMOUNT;
3055 	return file;
3056 }
3057 
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3058 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3059 {
3060 	int ret;
3061 	struct path path __free(path_put) = {};
3062 	int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3063 	bool detached = flags & OPEN_TREE_CLONE;
3064 
3065 	BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3066 
3067 	if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3068 		      AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3069 		      OPEN_TREE_CLOEXEC))
3070 		return ERR_PTR(-EINVAL);
3071 
3072 	if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3073 		return ERR_PTR(-EINVAL);
3074 
3075 	if (flags & AT_NO_AUTOMOUNT)
3076 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
3077 	if (flags & AT_SYMLINK_NOFOLLOW)
3078 		lookup_flags &= ~LOOKUP_FOLLOW;
3079 	if (flags & AT_EMPTY_PATH)
3080 		lookup_flags |= LOOKUP_EMPTY;
3081 
3082 	if (detached && !may_mount())
3083 		return ERR_PTR(-EPERM);
3084 
3085 	ret = user_path_at(dfd, filename, lookup_flags, &path);
3086 	if (unlikely(ret))
3087 		return ERR_PTR(ret);
3088 
3089 	if (detached)
3090 		return open_detached_copy(&path, flags & AT_RECURSIVE);
3091 
3092 	return dentry_open(&path, O_PATH, current_cred());
3093 }
3094 
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3095 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3096 {
3097 	int fd;
3098 	struct file *file __free(fput) = NULL;
3099 
3100 	file = vfs_open_tree(dfd, filename, flags);
3101 	if (IS_ERR(file))
3102 		return PTR_ERR(file);
3103 
3104 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
3105 	if (fd < 0)
3106 		return fd;
3107 
3108 	fd_install(fd, no_free_ptr(file));
3109 	return fd;
3110 }
3111 
3112 /*
3113  * Don't allow locked mount flags to be cleared.
3114  *
3115  * No locks need to be held here while testing the various MNT_LOCK
3116  * flags because those flags can never be cleared once they are set.
3117  */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3118 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3119 {
3120 	unsigned int fl = mnt->mnt.mnt_flags;
3121 
3122 	if ((fl & MNT_LOCK_READONLY) &&
3123 	    !(mnt_flags & MNT_READONLY))
3124 		return false;
3125 
3126 	if ((fl & MNT_LOCK_NODEV) &&
3127 	    !(mnt_flags & MNT_NODEV))
3128 		return false;
3129 
3130 	if ((fl & MNT_LOCK_NOSUID) &&
3131 	    !(mnt_flags & MNT_NOSUID))
3132 		return false;
3133 
3134 	if ((fl & MNT_LOCK_NOEXEC) &&
3135 	    !(mnt_flags & MNT_NOEXEC))
3136 		return false;
3137 
3138 	if ((fl & MNT_LOCK_ATIME) &&
3139 	    ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3140 		return false;
3141 
3142 	return true;
3143 }
3144 
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3145 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3146 {
3147 	bool readonly_request = (mnt_flags & MNT_READONLY);
3148 
3149 	if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3150 		return 0;
3151 
3152 	if (readonly_request)
3153 		return mnt_make_readonly(mnt);
3154 
3155 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
3156 	return 0;
3157 }
3158 
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3159 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3160 {
3161 	mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3162 	mnt->mnt.mnt_flags = mnt_flags;
3163 	touch_mnt_namespace(mnt->mnt_ns);
3164 }
3165 
mnt_warn_timestamp_expiry(const struct path * mountpoint,struct vfsmount * mnt)3166 static void mnt_warn_timestamp_expiry(const struct path *mountpoint,
3167 				      struct vfsmount *mnt)
3168 {
3169 	struct super_block *sb = mnt->mnt_sb;
3170 
3171 	if (!__mnt_is_readonly(mnt) &&
3172 	   (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3173 	   (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3174 		char *buf, *mntpath;
3175 
3176 		buf = (char *)__get_free_page(GFP_KERNEL);
3177 		if (buf)
3178 			mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3179 		else
3180 			mntpath = ERR_PTR(-ENOMEM);
3181 		if (IS_ERR(mntpath))
3182 			mntpath = "(unknown)";
3183 
3184 		pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3185 			sb->s_type->name,
3186 			is_mounted(mnt) ? "remounted" : "mounted",
3187 			mntpath, &sb->s_time_max,
3188 			(unsigned long long)sb->s_time_max);
3189 
3190 		sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3191 		if (buf)
3192 			free_page((unsigned long)buf);
3193 	}
3194 }
3195 
3196 /*
3197  * Handle reconfiguration of the mountpoint only without alteration of the
3198  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
3199  * to mount(2).
3200  */
do_reconfigure_mnt(const struct path * path,unsigned int mnt_flags)3201 static int do_reconfigure_mnt(const struct path *path, unsigned int mnt_flags)
3202 {
3203 	struct super_block *sb = path->mnt->mnt_sb;
3204 	struct mount *mnt = real_mount(path->mnt);
3205 	int ret;
3206 
3207 	if (!check_mnt(mnt))
3208 		return -EINVAL;
3209 
3210 	if (!path_mounted(path))
3211 		return -EINVAL;
3212 
3213 	if (!can_change_locked_flags(mnt, mnt_flags))
3214 		return -EPERM;
3215 
3216 	/*
3217 	 * We're only checking whether the superblock is read-only not
3218 	 * changing it, so only take down_read(&sb->s_umount).
3219 	 */
3220 	down_read(&sb->s_umount);
3221 	lock_mount_hash();
3222 	ret = change_mount_ro_state(mnt, mnt_flags);
3223 	if (ret == 0)
3224 		set_mount_attributes(mnt, mnt_flags);
3225 	unlock_mount_hash();
3226 	up_read(&sb->s_umount);
3227 
3228 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3229 
3230 	return ret;
3231 }
3232 
3233 /*
3234  * change filesystem flags. dir should be a physical root of filesystem.
3235  * If you've mounted a non-root directory somewhere and want to do remount
3236  * on it - tough luck.
3237  */
do_remount(const struct path * path,int sb_flags,int mnt_flags,void * data)3238 static int do_remount(const struct path *path, int sb_flags,
3239 		      int mnt_flags, void *data)
3240 {
3241 	int err;
3242 	struct super_block *sb = path->mnt->mnt_sb;
3243 	struct mount *mnt = real_mount(path->mnt);
3244 	struct fs_context *fc;
3245 
3246 	if (!check_mnt(mnt))
3247 		return -EINVAL;
3248 
3249 	if (!path_mounted(path))
3250 		return -EINVAL;
3251 
3252 	if (!can_change_locked_flags(mnt, mnt_flags))
3253 		return -EPERM;
3254 
3255 	fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3256 	if (IS_ERR(fc))
3257 		return PTR_ERR(fc);
3258 
3259 	/*
3260 	 * Indicate to the filesystem that the remount request is coming
3261 	 * from the legacy mount system call.
3262 	 */
3263 	fc->oldapi = true;
3264 
3265 	err = parse_monolithic_mount_data(fc, data);
3266 	if (!err) {
3267 		down_write(&sb->s_umount);
3268 		err = -EPERM;
3269 		if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3270 			err = reconfigure_super(fc);
3271 			if (!err) {
3272 				lock_mount_hash();
3273 				set_mount_attributes(mnt, mnt_flags);
3274 				unlock_mount_hash();
3275 			}
3276 		}
3277 		up_write(&sb->s_umount);
3278 	}
3279 
3280 	mnt_warn_timestamp_expiry(path, &mnt->mnt);
3281 
3282 	put_fs_context(fc);
3283 	return err;
3284 }
3285 
tree_contains_unbindable(struct mount * mnt)3286 static inline int tree_contains_unbindable(struct mount *mnt)
3287 {
3288 	struct mount *p;
3289 	for (p = mnt; p; p = next_mnt(p, mnt)) {
3290 		if (IS_MNT_UNBINDABLE(p))
3291 			return 1;
3292 	}
3293 	return 0;
3294 }
3295 
do_set_group(const struct path * from_path,const struct path * to_path)3296 static int do_set_group(const struct path *from_path, const struct path *to_path)
3297 {
3298 	struct mount *from = real_mount(from_path->mnt);
3299 	struct mount *to = real_mount(to_path->mnt);
3300 	int err;
3301 
3302 	guard(namespace_excl)();
3303 
3304 	err = may_change_propagation(from);
3305 	if (err)
3306 		return err;
3307 	err = may_change_propagation(to);
3308 	if (err)
3309 		return err;
3310 
3311 	/* To and From paths should be mount roots */
3312 	if (!path_mounted(from_path))
3313 		return -EINVAL;
3314 	if (!path_mounted(to_path))
3315 		return -EINVAL;
3316 
3317 	/* Setting sharing groups is only allowed across same superblock */
3318 	if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3319 		return -EINVAL;
3320 
3321 	/* From mount root should be wider than To mount root */
3322 	if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3323 		return -EINVAL;
3324 
3325 	/* From mount should not have locked children in place of To's root */
3326 	if (__has_locked_children(from, to->mnt.mnt_root))
3327 		return -EINVAL;
3328 
3329 	/* Setting sharing groups is only allowed on private mounts */
3330 	if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3331 		return -EINVAL;
3332 
3333 	/* From should not be private */
3334 	if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3335 		return -EINVAL;
3336 
3337 	if (IS_MNT_SLAVE(from)) {
3338 		hlist_add_behind(&to->mnt_slave, &from->mnt_slave);
3339 		to->mnt_master = from->mnt_master;
3340 	}
3341 
3342 	if (IS_MNT_SHARED(from)) {
3343 		to->mnt_group_id = from->mnt_group_id;
3344 		list_add(&to->mnt_share, &from->mnt_share);
3345 		set_mnt_shared(to);
3346 	}
3347 	return 0;
3348 }
3349 
3350 /**
3351  * path_overmounted - check if path is overmounted
3352  * @path: path to check
3353  *
3354  * Check if path is overmounted, i.e., if there's a mount on top of
3355  * @path->mnt with @path->dentry as mountpoint.
3356  *
3357  * Context: namespace_sem must be held at least shared.
3358  * MUST NOT be called under lock_mount_hash() (there one should just
3359  * call __lookup_mnt() and check if it returns NULL).
3360  * Return: If path is overmounted true is returned, false if not.
3361  */
path_overmounted(const struct path * path)3362 static inline bool path_overmounted(const struct path *path)
3363 {
3364 	unsigned seq = read_seqbegin(&mount_lock);
3365 	bool no_child;
3366 
3367 	rcu_read_lock();
3368 	no_child = !__lookup_mnt(path->mnt, path->dentry);
3369 	rcu_read_unlock();
3370 	if (need_seqretry(&mount_lock, seq)) {
3371 		read_seqlock_excl(&mount_lock);
3372 		no_child = !__lookup_mnt(path->mnt, path->dentry);
3373 		read_sequnlock_excl(&mount_lock);
3374 	}
3375 	return unlikely(!no_child);
3376 }
3377 
3378 /*
3379  * Check if there is a possibly empty chain of descent from p1 to p2.
3380  * Locks: namespace_sem (shared) or mount_lock (read_seqlock_excl).
3381  */
mount_is_ancestor(const struct mount * p1,const struct mount * p2)3382 static bool mount_is_ancestor(const struct mount *p1, const struct mount *p2)
3383 {
3384 	while (p2 != p1 && mnt_has_parent(p2))
3385 		p2 = p2->mnt_parent;
3386 	return p2 == p1;
3387 }
3388 
3389 /**
3390  * can_move_mount_beneath - check that we can mount beneath the top mount
3391  * @mnt_from: mount we are trying to move
3392  * @mnt_to:   mount under which to mount
3393  * @mp:   mountpoint of @mnt_to
3394  *
3395  * - Make sure that nothing can be mounted beneath the caller's current
3396  *   root or the rootfs of the namespace.
3397  * - Make sure that the caller can unmount the topmost mount ensuring
3398  *   that the caller could reveal the underlying mountpoint.
3399  * - Ensure that nothing has been mounted on top of @mnt_from before we
3400  *   grabbed @namespace_sem to avoid creating pointless shadow mounts.
3401  * - Prevent mounting beneath a mount if the propagation relationship
3402  *   between the source mount, parent mount, and top mount would lead to
3403  *   nonsensical mount trees.
3404  *
3405  * Context: This function expects namespace_lock() to be held.
3406  * Return: On success 0, and on error a negative error code is returned.
3407  */
can_move_mount_beneath(const struct mount * mnt_from,const struct mount * mnt_to,const struct mountpoint * mp)3408 static int can_move_mount_beneath(const struct mount *mnt_from,
3409 				  const struct mount *mnt_to,
3410 				  const struct mountpoint *mp)
3411 {
3412 	struct mount *parent_mnt_to = mnt_to->mnt_parent;
3413 
3414 	if (IS_MNT_LOCKED(mnt_to))
3415 		return -EINVAL;
3416 
3417 	/* Avoid creating shadow mounts during mount propagation. */
3418 	if (mnt_from->overmount)
3419 		return -EINVAL;
3420 
3421 	/*
3422 	 * Mounting beneath the rootfs only makes sense when the
3423 	 * semantics of pivot_root(".", ".") are used.
3424 	 */
3425 	if (&mnt_to->mnt == current->fs->root.mnt)
3426 		return -EINVAL;
3427 	if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3428 		return -EINVAL;
3429 
3430 	if (mount_is_ancestor(mnt_to, mnt_from))
3431 		return -EINVAL;
3432 
3433 	/*
3434 	 * If the parent mount propagates to the child mount this would
3435 	 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3436 	 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3437 	 * defeats the whole purpose of mounting beneath another mount.
3438 	 */
3439 	if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3440 		return -EINVAL;
3441 
3442 	/*
3443 	 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3444 	 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3445 	 * Afterwards @mnt_from would be mounted on top of
3446 	 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3447 	 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3448 	 * already mounted on @mnt_from, @mnt_to would ultimately be
3449 	 * remounted on top of @c. Afterwards, @mnt_from would be
3450 	 * covered by a copy @c of @mnt_from and @c would be covered by
3451 	 * @mnt_from itself. This defeats the whole purpose of mounting
3452 	 * @mnt_from beneath @mnt_to.
3453 	 */
3454 	if (check_mnt(mnt_from) &&
3455 	    propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3456 		return -EINVAL;
3457 
3458 	return 0;
3459 }
3460 
3461 /* may_use_mount() - check if a mount tree can be used
3462  * @mnt: vfsmount to be used
3463  *
3464  * This helper checks if the caller may use the mount tree starting
3465  * from @path->mnt. The caller may use the mount tree under the
3466  * following circumstances:
3467  *
3468  * (1) The caller is located in the mount namespace of the mount tree.
3469  *     This also implies that the mount does not belong to an anonymous
3470  *     mount namespace.
3471  * (2) The caller is trying to use a mount tree that belongs to an
3472  *     anonymous mount namespace.
3473  *
3474  *     For that to be safe, this helper enforces that the origin mount
3475  *     namespace the anonymous mount namespace was created from is the
3476  *     same as the caller's mount namespace by comparing the sequence
3477  *     numbers.
3478  *
3479  *     The ownership of a non-anonymous mount namespace such as the
3480  *     caller's cannot change.
3481  *     => We know that the caller's mount namespace is stable.
3482  *
3483  *     If the origin sequence number of the anonymous mount namespace is
3484  *     the same as the sequence number of the caller's mount namespace.
3485  *     => The owning namespaces are the same.
3486  *
3487  *     ==> The earlier capability check on the owning namespace of the
3488  *         caller's mount namespace ensures that the caller has the
3489  *         ability to use the mount tree.
3490  *
3491  * Returns true if the mount tree can be used, false otherwise.
3492  */
may_use_mount(struct mount * mnt)3493 static inline bool may_use_mount(struct mount *mnt)
3494 {
3495 	if (check_mnt(mnt))
3496 		return true;
3497 
3498 	/*
3499 	 * Make sure that noone unmounted the target path or somehow
3500 	 * managed to get their hands on something purely kernel
3501 	 * internal.
3502 	 */
3503 	if (!is_mounted(&mnt->mnt))
3504 		return false;
3505 
3506 	return check_anonymous_mnt(mnt);
3507 }
3508 
do_move_mount(const struct path * old_path,const struct path * new_path,enum mnt_tree_flags_t flags)3509 static int do_move_mount(const struct path *old_path,
3510 			 const struct path *new_path,
3511 			 enum mnt_tree_flags_t flags)
3512 {
3513 	struct mount *old = real_mount(old_path->mnt);
3514 	int err;
3515 	bool beneath = flags & MNT_TREE_BENEATH;
3516 
3517 	if (!path_mounted(old_path))
3518 		return -EINVAL;
3519 
3520 	if (d_is_dir(new_path->dentry) != d_is_dir(old_path->dentry))
3521 		return -EINVAL;
3522 
3523 	LOCK_MOUNT_MAYBE_BENEATH(mp, new_path, beneath);
3524 	if (IS_ERR(mp.parent))
3525 		return PTR_ERR(mp.parent);
3526 
3527 	if (check_mnt(old)) {
3528 		/* if the source is in our namespace... */
3529 		/* ... it should be detachable from parent */
3530 		if (!mnt_has_parent(old) || IS_MNT_LOCKED(old))
3531 			return -EINVAL;
3532 		/* ... which should not be shared */
3533 		if (IS_MNT_SHARED(old->mnt_parent))
3534 			return -EINVAL;
3535 		/* ... and the target should be in our namespace */
3536 		if (!check_mnt(mp.parent))
3537 			return -EINVAL;
3538 	} else {
3539 		/*
3540 		 * otherwise the source must be the root of some anon namespace.
3541 		 */
3542 		if (!anon_ns_root(old))
3543 			return -EINVAL;
3544 		/*
3545 		 * Bail out early if the target is within the same namespace -
3546 		 * subsequent checks would've rejected that, but they lose
3547 		 * some corner cases if we check it early.
3548 		 */
3549 		if (old->mnt_ns == mp.parent->mnt_ns)
3550 			return -EINVAL;
3551 		/*
3552 		 * Target should be either in our namespace or in an acceptable
3553 		 * anon namespace, sensu check_anonymous_mnt().
3554 		 */
3555 		if (!may_use_mount(mp.parent))
3556 			return -EINVAL;
3557 	}
3558 
3559 	if (beneath) {
3560 		struct mount *over = real_mount(new_path->mnt);
3561 
3562 		if (mp.parent != over->mnt_parent)
3563 			over = mp.parent->overmount;
3564 		err = can_move_mount_beneath(old, over, mp.mp);
3565 		if (err)
3566 			return err;
3567 	}
3568 
3569 	/*
3570 	 * Don't move a mount tree containing unbindable mounts to a destination
3571 	 * mount which is shared.
3572 	 */
3573 	if (IS_MNT_SHARED(mp.parent) && tree_contains_unbindable(old))
3574 		return -EINVAL;
3575 	if (!check_for_nsfs_mounts(old))
3576 		return -ELOOP;
3577 	if (mount_is_ancestor(old, mp.parent))
3578 		return -ELOOP;
3579 
3580 	return attach_recursive_mnt(old, &mp);
3581 }
3582 
do_move_mount_old(const struct path * path,const char * old_name)3583 static int do_move_mount_old(const struct path *path, const char *old_name)
3584 {
3585 	struct path old_path __free(path_put) = {};
3586 	int err;
3587 
3588 	if (!old_name || !*old_name)
3589 		return -EINVAL;
3590 
3591 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3592 	if (err)
3593 		return err;
3594 
3595 	return do_move_mount(&old_path, path, 0);
3596 }
3597 
3598 /*
3599  * add a mount into a namespace's mount tree
3600  */
do_add_mount(struct mount * newmnt,const struct pinned_mountpoint * mp,int mnt_flags)3601 static int do_add_mount(struct mount *newmnt, const struct pinned_mountpoint *mp,
3602 			int mnt_flags)
3603 {
3604 	struct mount *parent = mp->parent;
3605 
3606 	if (IS_ERR(parent))
3607 		return PTR_ERR(parent);
3608 
3609 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
3610 
3611 	if (unlikely(!check_mnt(parent))) {
3612 		/* that's acceptable only for automounts done in private ns */
3613 		if (!(mnt_flags & MNT_SHRINKABLE))
3614 			return -EINVAL;
3615 		/* ... and for those we'd better have mountpoint still alive */
3616 		if (!parent->mnt_ns)
3617 			return -EINVAL;
3618 	}
3619 
3620 	/* Refuse the same filesystem on the same mount point */
3621 	if (parent->mnt.mnt_sb == newmnt->mnt.mnt_sb &&
3622 	    parent->mnt.mnt_root == mp->mp->m_dentry)
3623 		return -EBUSY;
3624 
3625 	if (d_is_symlink(newmnt->mnt.mnt_root))
3626 		return -EINVAL;
3627 
3628 	newmnt->mnt.mnt_flags = mnt_flags;
3629 	return graft_tree(newmnt, mp);
3630 }
3631 
3632 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3633 
3634 /*
3635  * Create a new mount using a superblock configuration and request it
3636  * be added to the namespace tree.
3637  */
do_new_mount_fc(struct fs_context * fc,const struct path * mountpoint,unsigned int mnt_flags)3638 static int do_new_mount_fc(struct fs_context *fc, const struct path *mountpoint,
3639 			   unsigned int mnt_flags)
3640 {
3641 	struct super_block *sb;
3642 	struct vfsmount *mnt __free(mntput) = fc_mount(fc);
3643 	int error;
3644 
3645 	if (IS_ERR(mnt))
3646 		return PTR_ERR(mnt);
3647 
3648 	sb = fc->root->d_sb;
3649 	error = security_sb_kern_mount(sb);
3650 	if (unlikely(error))
3651 		return error;
3652 
3653 	if (unlikely(mount_too_revealing(sb, &mnt_flags))) {
3654 		errorfcp(fc, "VFS", "Mount too revealing");
3655 		return -EPERM;
3656 	}
3657 
3658 	mnt_warn_timestamp_expiry(mountpoint, mnt);
3659 
3660 	LOCK_MOUNT(mp, mountpoint);
3661 	error = do_add_mount(real_mount(mnt), &mp, mnt_flags);
3662 	if (!error)
3663 		retain_and_null_ptr(mnt); // consumed on success
3664 	return error;
3665 }
3666 
3667 /*
3668  * create a new mount for userspace and request it to be added into the
3669  * namespace's tree
3670  */
do_new_mount(const struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3671 static int do_new_mount(const struct path *path, const char *fstype,
3672 			int sb_flags, int mnt_flags,
3673 			const char *name, void *data)
3674 {
3675 	struct file_system_type *type;
3676 	struct fs_context *fc;
3677 	const char *subtype = NULL;
3678 	int err = 0;
3679 
3680 	if (!fstype)
3681 		return -EINVAL;
3682 
3683 	type = get_fs_type(fstype);
3684 	if (!type)
3685 		return -ENODEV;
3686 
3687 	if (type->fs_flags & FS_HAS_SUBTYPE) {
3688 		subtype = strchr(fstype, '.');
3689 		if (subtype) {
3690 			subtype++;
3691 			if (!*subtype) {
3692 				put_filesystem(type);
3693 				return -EINVAL;
3694 			}
3695 		}
3696 	}
3697 
3698 	fc = fs_context_for_mount(type, sb_flags);
3699 	put_filesystem(type);
3700 	if (IS_ERR(fc))
3701 		return PTR_ERR(fc);
3702 
3703 	/*
3704 	 * Indicate to the filesystem that the mount request is coming
3705 	 * from the legacy mount system call.
3706 	 */
3707 	fc->oldapi = true;
3708 
3709 	if (subtype)
3710 		err = vfs_parse_fs_string(fc, "subtype", subtype);
3711 	if (!err && name)
3712 		err = vfs_parse_fs_string(fc, "source", name);
3713 	if (!err)
3714 		err = parse_monolithic_mount_data(fc, data);
3715 	if (!err && !mount_capable(fc))
3716 		err = -EPERM;
3717 	if (!err)
3718 		err = do_new_mount_fc(fc, path, mnt_flags);
3719 
3720 	put_fs_context(fc);
3721 	return err;
3722 }
3723 
lock_mount_exact(const struct path * path,struct pinned_mountpoint * mp)3724 static void lock_mount_exact(const struct path *path,
3725 			     struct pinned_mountpoint *mp)
3726 {
3727 	struct dentry *dentry = path->dentry;
3728 	int err;
3729 
3730 	inode_lock(dentry->d_inode);
3731 	namespace_lock();
3732 	if (unlikely(cant_mount(dentry)))
3733 		err = -ENOENT;
3734 	else if (path_overmounted(path))
3735 		err = -EBUSY;
3736 	else
3737 		err = get_mountpoint(dentry, mp);
3738 	if (unlikely(err)) {
3739 		namespace_unlock();
3740 		inode_unlock(dentry->d_inode);
3741 		mp->parent = ERR_PTR(err);
3742 	} else {
3743 		mp->parent = real_mount(path->mnt);
3744 	}
3745 }
3746 
finish_automount(struct vfsmount * __m,const struct path * path)3747 int finish_automount(struct vfsmount *__m, const struct path *path)
3748 {
3749 	struct vfsmount *m __free(mntput) = __m;
3750 	struct mount *mnt;
3751 	int err;
3752 
3753 	if (!m)
3754 		return 0;
3755 	if (IS_ERR(m))
3756 		return PTR_ERR(m);
3757 
3758 	mnt = real_mount(m);
3759 
3760 	if (m->mnt_root == path->dentry)
3761 		return -ELOOP;
3762 
3763 	/*
3764 	 * we don't want to use LOCK_MOUNT() - in this case finding something
3765 	 * that overmounts our mountpoint to be means "quitely drop what we've
3766 	 * got", not "try to mount it on top".
3767 	 */
3768 	LOCK_MOUNT_EXACT(mp, path);
3769 	if (mp.parent == ERR_PTR(-EBUSY))
3770 		return 0;
3771 
3772 	err = do_add_mount(mnt, &mp, path->mnt->mnt_flags | MNT_SHRINKABLE);
3773 	if (likely(!err))
3774 		retain_and_null_ptr(m);
3775 	return err;
3776 }
3777 
3778 /**
3779  * mnt_set_expiry - Put a mount on an expiration list
3780  * @mnt: The mount to list.
3781  * @expiry_list: The list to add the mount to.
3782  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3783 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3784 {
3785 	guard(mount_locked_reader)();
3786 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3787 }
3788 EXPORT_SYMBOL(mnt_set_expiry);
3789 
3790 /*
3791  * process a list of expirable mountpoints with the intent of discarding any
3792  * mountpoints that aren't in use and haven't been touched since last we came
3793  * here
3794  */
mark_mounts_for_expiry(struct list_head * mounts)3795 void mark_mounts_for_expiry(struct list_head *mounts)
3796 {
3797 	struct mount *mnt, *next;
3798 	LIST_HEAD(graveyard);
3799 
3800 	if (list_empty(mounts))
3801 		return;
3802 
3803 	guard(namespace_excl)();
3804 	guard(mount_writer)();
3805 
3806 	/* extract from the expiration list every vfsmount that matches the
3807 	 * following criteria:
3808 	 * - already mounted
3809 	 * - only referenced by its parent vfsmount
3810 	 * - still marked for expiry (marked on the last call here; marks are
3811 	 *   cleared by mntput())
3812 	 */
3813 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3814 		if (!is_mounted(&mnt->mnt))
3815 			continue;
3816 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3817 			propagate_mount_busy(mnt, 1))
3818 			continue;
3819 		list_move(&mnt->mnt_expire, &graveyard);
3820 	}
3821 	while (!list_empty(&graveyard)) {
3822 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3823 		touch_mnt_namespace(mnt->mnt_ns);
3824 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3825 	}
3826 }
3827 
3828 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3829 
3830 /*
3831  * Ripoff of 'select_parent()'
3832  *
3833  * search the list of submounts for a given mountpoint, and move any
3834  * shrinkable submounts to the 'graveyard' list.
3835  */
select_submounts(struct mount * parent,struct list_head * graveyard)3836 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3837 {
3838 	struct mount *this_parent = parent;
3839 	struct list_head *next;
3840 	int found = 0;
3841 
3842 repeat:
3843 	next = this_parent->mnt_mounts.next;
3844 resume:
3845 	while (next != &this_parent->mnt_mounts) {
3846 		struct list_head *tmp = next;
3847 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3848 
3849 		next = tmp->next;
3850 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3851 			continue;
3852 		/*
3853 		 * Descend a level if the d_mounts list is non-empty.
3854 		 */
3855 		if (!list_empty(&mnt->mnt_mounts)) {
3856 			this_parent = mnt;
3857 			goto repeat;
3858 		}
3859 
3860 		if (!propagate_mount_busy(mnt, 1)) {
3861 			list_move_tail(&mnt->mnt_expire, graveyard);
3862 			found++;
3863 		}
3864 	}
3865 	/*
3866 	 * All done at this level ... ascend and resume the search
3867 	 */
3868 	if (this_parent != parent) {
3869 		next = this_parent->mnt_child.next;
3870 		this_parent = this_parent->mnt_parent;
3871 		goto resume;
3872 	}
3873 	return found;
3874 }
3875 
3876 /*
3877  * process a list of expirable mountpoints with the intent of discarding any
3878  * submounts of a specific parent mountpoint
3879  *
3880  * mount_lock must be held for write
3881  */
shrink_submounts(struct mount * mnt)3882 static void shrink_submounts(struct mount *mnt)
3883 {
3884 	LIST_HEAD(graveyard);
3885 	struct mount *m;
3886 
3887 	/* extract submounts of 'mountpoint' from the expiration list */
3888 	while (select_submounts(mnt, &graveyard)) {
3889 		while (!list_empty(&graveyard)) {
3890 			m = list_first_entry(&graveyard, struct mount,
3891 						mnt_expire);
3892 			touch_mnt_namespace(m->mnt_ns);
3893 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3894 		}
3895 	}
3896 }
3897 
copy_mount_options(const void __user * data)3898 static void *copy_mount_options(const void __user * data)
3899 {
3900 	char *copy;
3901 	unsigned left, offset;
3902 
3903 	if (!data)
3904 		return NULL;
3905 
3906 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3907 	if (!copy)
3908 		return ERR_PTR(-ENOMEM);
3909 
3910 	left = copy_from_user(copy, data, PAGE_SIZE);
3911 
3912 	/*
3913 	 * Not all architectures have an exact copy_from_user(). Resort to
3914 	 * byte at a time.
3915 	 */
3916 	offset = PAGE_SIZE - left;
3917 	while (left) {
3918 		char c;
3919 		if (get_user(c, (const char __user *)data + offset))
3920 			break;
3921 		copy[offset] = c;
3922 		left--;
3923 		offset++;
3924 	}
3925 
3926 	if (left == PAGE_SIZE) {
3927 		kfree(copy);
3928 		return ERR_PTR(-EFAULT);
3929 	}
3930 
3931 	return copy;
3932 }
3933 
copy_mount_string(const void __user * data)3934 static char *copy_mount_string(const void __user *data)
3935 {
3936 	return data ? strndup_user(data, PATH_MAX) : NULL;
3937 }
3938 
3939 /*
3940  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3941  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3942  *
3943  * data is a (void *) that can point to any structure up to
3944  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3945  * information (or be NULL).
3946  *
3947  * Pre-0.97 versions of mount() didn't have a flags word.
3948  * When the flags word was introduced its top half was required
3949  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3950  * Therefore, if this magic number is present, it carries no information
3951  * and must be discarded.
3952  */
path_mount(const char * dev_name,const struct path * path,const char * type_page,unsigned long flags,void * data_page)3953 int path_mount(const char *dev_name, const struct path *path,
3954 		const char *type_page, unsigned long flags, void *data_page)
3955 {
3956 	unsigned int mnt_flags = 0, sb_flags;
3957 	int ret;
3958 
3959 	/* Discard magic */
3960 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3961 		flags &= ~MS_MGC_MSK;
3962 
3963 	/* Basic sanity checks */
3964 	if (data_page)
3965 		((char *)data_page)[PAGE_SIZE - 1] = 0;
3966 
3967 	if (flags & MS_NOUSER)
3968 		return -EINVAL;
3969 
3970 	ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3971 	if (ret)
3972 		return ret;
3973 	if (!may_mount())
3974 		return -EPERM;
3975 	if (flags & SB_MANDLOCK)
3976 		warn_mandlock();
3977 
3978 	/* Default to relatime unless overriden */
3979 	if (!(flags & MS_NOATIME))
3980 		mnt_flags |= MNT_RELATIME;
3981 
3982 	/* Separate the per-mountpoint flags */
3983 	if (flags & MS_NOSUID)
3984 		mnt_flags |= MNT_NOSUID;
3985 	if (flags & MS_NODEV)
3986 		mnt_flags |= MNT_NODEV;
3987 	if (flags & MS_NOEXEC)
3988 		mnt_flags |= MNT_NOEXEC;
3989 	if (flags & MS_NOATIME)
3990 		mnt_flags |= MNT_NOATIME;
3991 	if (flags & MS_NODIRATIME)
3992 		mnt_flags |= MNT_NODIRATIME;
3993 	if (flags & MS_STRICTATIME)
3994 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3995 	if (flags & MS_RDONLY)
3996 		mnt_flags |= MNT_READONLY;
3997 	if (flags & MS_NOSYMFOLLOW)
3998 		mnt_flags |= MNT_NOSYMFOLLOW;
3999 
4000 	/* The default atime for remount is preservation */
4001 	if ((flags & MS_REMOUNT) &&
4002 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4003 		       MS_STRICTATIME)) == 0)) {
4004 		mnt_flags &= ~MNT_ATIME_MASK;
4005 		mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4006 	}
4007 
4008 	sb_flags = flags & (SB_RDONLY |
4009 			    SB_SYNCHRONOUS |
4010 			    SB_MANDLOCK |
4011 			    SB_DIRSYNC |
4012 			    SB_SILENT |
4013 			    SB_POSIXACL |
4014 			    SB_LAZYTIME |
4015 			    SB_I_VERSION);
4016 
4017 	if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4018 		return do_reconfigure_mnt(path, mnt_flags);
4019 	if (flags & MS_REMOUNT)
4020 		return do_remount(path, sb_flags, mnt_flags, data_page);
4021 	if (flags & MS_BIND)
4022 		return do_loopback(path, dev_name, flags & MS_REC);
4023 	if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4024 		return do_change_type(path, flags);
4025 	if (flags & MS_MOVE)
4026 		return do_move_mount_old(path, dev_name);
4027 
4028 	return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4029 			    data_page);
4030 }
4031 
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4032 int do_mount(const char *dev_name, const char __user *dir_name,
4033 		const char *type_page, unsigned long flags, void *data_page)
4034 {
4035 	struct path path __free(path_put) = {};
4036 	int ret;
4037 
4038 	ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4039 	if (ret)
4040 		return ret;
4041 	return path_mount(dev_name, &path, type_page, flags, data_page);
4042 }
4043 
inc_mnt_namespaces(struct user_namespace * ns)4044 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4045 {
4046 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4047 }
4048 
dec_mnt_namespaces(struct ucounts * ucounts)4049 static void dec_mnt_namespaces(struct ucounts *ucounts)
4050 {
4051 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4052 }
4053 
free_mnt_ns(struct mnt_namespace * ns)4054 static void free_mnt_ns(struct mnt_namespace *ns)
4055 {
4056 	if (!is_anon_ns(ns))
4057 		ns_common_free(ns);
4058 	dec_mnt_namespaces(ns->ucounts);
4059 	mnt_ns_tree_remove(ns);
4060 }
4061 
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4062 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4063 {
4064 	struct mnt_namespace *new_ns;
4065 	struct ucounts *ucounts;
4066 	int ret;
4067 
4068 	ucounts = inc_mnt_namespaces(user_ns);
4069 	if (!ucounts)
4070 		return ERR_PTR(-ENOSPC);
4071 
4072 	new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4073 	if (!new_ns) {
4074 		dec_mnt_namespaces(ucounts);
4075 		return ERR_PTR(-ENOMEM);
4076 	}
4077 
4078 	if (anon)
4079 		ret = ns_common_init_inum(new_ns, MNT_NS_ANON_INO);
4080 	else
4081 		ret = ns_common_init(new_ns);
4082 	if (ret) {
4083 		kfree(new_ns);
4084 		dec_mnt_namespaces(ucounts);
4085 		return ERR_PTR(ret);
4086 	}
4087 	if (!anon)
4088 		ns_tree_gen_id(&new_ns->ns);
4089 	refcount_set(&new_ns->passive, 1);
4090 	new_ns->mounts = RB_ROOT;
4091 	init_waitqueue_head(&new_ns->poll);
4092 	new_ns->user_ns = get_user_ns(user_ns);
4093 	new_ns->ucounts = ucounts;
4094 	return new_ns;
4095 }
4096 
4097 __latent_entropy
copy_mnt_ns(u64 flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4098 struct mnt_namespace *copy_mnt_ns(u64 flags, struct mnt_namespace *ns,
4099 		struct user_namespace *user_ns, struct fs_struct *new_fs)
4100 {
4101 	struct mnt_namespace *new_ns;
4102 	struct vfsmount *rootmnt __free(mntput) = NULL;
4103 	struct vfsmount *pwdmnt __free(mntput) = NULL;
4104 	struct mount *p, *q;
4105 	struct mount *old;
4106 	struct mount *new;
4107 	int copy_flags;
4108 
4109 	BUG_ON(!ns);
4110 
4111 	if (likely(!(flags & CLONE_NEWNS))) {
4112 		get_mnt_ns(ns);
4113 		return ns;
4114 	}
4115 
4116 	old = ns->root;
4117 
4118 	new_ns = alloc_mnt_ns(user_ns, false);
4119 	if (IS_ERR(new_ns))
4120 		return new_ns;
4121 
4122 	guard(namespace_excl)();
4123 	/* First pass: copy the tree topology */
4124 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4125 	if (user_ns != ns->user_ns)
4126 		copy_flags |= CL_SLAVE;
4127 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4128 	if (IS_ERR(new)) {
4129 		emptied_ns = new_ns;
4130 		return ERR_CAST(new);
4131 	}
4132 	if (user_ns != ns->user_ns) {
4133 		guard(mount_writer)();
4134 		lock_mnt_tree(new);
4135 	}
4136 	new_ns->root = new;
4137 
4138 	/*
4139 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4140 	 * as belonging to new namespace.  We have already acquired a private
4141 	 * fs_struct, so tsk->fs->lock is not needed.
4142 	 */
4143 	p = old;
4144 	q = new;
4145 	while (p) {
4146 		mnt_add_to_ns(new_ns, q);
4147 		new_ns->nr_mounts++;
4148 		if (new_fs) {
4149 			if (&p->mnt == new_fs->root.mnt) {
4150 				new_fs->root.mnt = mntget(&q->mnt);
4151 				rootmnt = &p->mnt;
4152 			}
4153 			if (&p->mnt == new_fs->pwd.mnt) {
4154 				new_fs->pwd.mnt = mntget(&q->mnt);
4155 				pwdmnt = &p->mnt;
4156 			}
4157 		}
4158 		p = next_mnt(p, old);
4159 		q = next_mnt(q, new);
4160 		if (!q)
4161 			break;
4162 		// an mntns binding we'd skipped?
4163 		while (p->mnt.mnt_root != q->mnt.mnt_root)
4164 			p = next_mnt(skip_mnt_tree(p), old);
4165 	}
4166 	ns_tree_add_raw(new_ns);
4167 	return new_ns;
4168 }
4169 
mount_subtree(struct vfsmount * m,const char * name)4170 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4171 {
4172 	struct mount *mnt = real_mount(m);
4173 	struct mnt_namespace *ns;
4174 	struct super_block *s;
4175 	struct path path;
4176 	int err;
4177 
4178 	ns = alloc_mnt_ns(&init_user_ns, true);
4179 	if (IS_ERR(ns)) {
4180 		mntput(m);
4181 		return ERR_CAST(ns);
4182 	}
4183 	ns->root = mnt;
4184 	ns->nr_mounts++;
4185 	mnt_add_to_ns(ns, mnt);
4186 
4187 	err = vfs_path_lookup(m->mnt_root, m,
4188 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4189 
4190 	put_mnt_ns(ns);
4191 
4192 	if (err)
4193 		return ERR_PTR(err);
4194 
4195 	/* trade a vfsmount reference for active sb one */
4196 	s = path.mnt->mnt_sb;
4197 	atomic_inc(&s->s_active);
4198 	mntput(path.mnt);
4199 	/* lock the sucker */
4200 	down_write(&s->s_umount);
4201 	/* ... and return the root of (sub)tree on it */
4202 	return path.dentry;
4203 }
4204 EXPORT_SYMBOL(mount_subtree);
4205 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4206 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4207 		char __user *, type, unsigned long, flags, void __user *, data)
4208 {
4209 	int ret;
4210 	char *kernel_type;
4211 	char *kernel_dev;
4212 	void *options;
4213 
4214 	kernel_type = copy_mount_string(type);
4215 	ret = PTR_ERR(kernel_type);
4216 	if (IS_ERR(kernel_type))
4217 		goto out_type;
4218 
4219 	kernel_dev = copy_mount_string(dev_name);
4220 	ret = PTR_ERR(kernel_dev);
4221 	if (IS_ERR(kernel_dev))
4222 		goto out_dev;
4223 
4224 	options = copy_mount_options(data);
4225 	ret = PTR_ERR(options);
4226 	if (IS_ERR(options))
4227 		goto out_data;
4228 
4229 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4230 
4231 	kfree(options);
4232 out_data:
4233 	kfree(kernel_dev);
4234 out_dev:
4235 	kfree(kernel_type);
4236 out_type:
4237 	return ret;
4238 }
4239 
4240 #define FSMOUNT_VALID_FLAGS                                                    \
4241 	(MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
4242 	 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
4243 	 MOUNT_ATTR_NOSYMFOLLOW)
4244 
4245 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4246 
4247 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4248 	(MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4249 
attr_flags_to_mnt_flags(u64 attr_flags)4250 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4251 {
4252 	unsigned int mnt_flags = 0;
4253 
4254 	if (attr_flags & MOUNT_ATTR_RDONLY)
4255 		mnt_flags |= MNT_READONLY;
4256 	if (attr_flags & MOUNT_ATTR_NOSUID)
4257 		mnt_flags |= MNT_NOSUID;
4258 	if (attr_flags & MOUNT_ATTR_NODEV)
4259 		mnt_flags |= MNT_NODEV;
4260 	if (attr_flags & MOUNT_ATTR_NOEXEC)
4261 		mnt_flags |= MNT_NOEXEC;
4262 	if (attr_flags & MOUNT_ATTR_NODIRATIME)
4263 		mnt_flags |= MNT_NODIRATIME;
4264 	if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4265 		mnt_flags |= MNT_NOSYMFOLLOW;
4266 
4267 	return mnt_flags;
4268 }
4269 
4270 /*
4271  * Create a kernel mount representation for a new, prepared superblock
4272  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4273  */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4274 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4275 		unsigned int, attr_flags)
4276 {
4277 	struct mnt_namespace *ns;
4278 	struct fs_context *fc;
4279 	struct file *file;
4280 	struct path newmount;
4281 	struct mount *mnt;
4282 	unsigned int mnt_flags = 0;
4283 	long ret;
4284 
4285 	if (!may_mount())
4286 		return -EPERM;
4287 
4288 	if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4289 		return -EINVAL;
4290 
4291 	if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4292 		return -EINVAL;
4293 
4294 	mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4295 
4296 	switch (attr_flags & MOUNT_ATTR__ATIME) {
4297 	case MOUNT_ATTR_STRICTATIME:
4298 		break;
4299 	case MOUNT_ATTR_NOATIME:
4300 		mnt_flags |= MNT_NOATIME;
4301 		break;
4302 	case MOUNT_ATTR_RELATIME:
4303 		mnt_flags |= MNT_RELATIME;
4304 		break;
4305 	default:
4306 		return -EINVAL;
4307 	}
4308 
4309 	CLASS(fd, f)(fs_fd);
4310 	if (fd_empty(f))
4311 		return -EBADF;
4312 
4313 	if (fd_file(f)->f_op != &fscontext_fops)
4314 		return -EINVAL;
4315 
4316 	fc = fd_file(f)->private_data;
4317 
4318 	ret = mutex_lock_interruptible(&fc->uapi_mutex);
4319 	if (ret < 0)
4320 		return ret;
4321 
4322 	/* There must be a valid superblock or we can't mount it */
4323 	ret = -EINVAL;
4324 	if (!fc->root)
4325 		goto err_unlock;
4326 
4327 	ret = -EPERM;
4328 	if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4329 		errorfcp(fc, "VFS", "Mount too revealing");
4330 		goto err_unlock;
4331 	}
4332 
4333 	ret = -EBUSY;
4334 	if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4335 		goto err_unlock;
4336 
4337 	if (fc->sb_flags & SB_MANDLOCK)
4338 		warn_mandlock();
4339 
4340 	newmount.mnt = vfs_create_mount(fc);
4341 	if (IS_ERR(newmount.mnt)) {
4342 		ret = PTR_ERR(newmount.mnt);
4343 		goto err_unlock;
4344 	}
4345 	newmount.dentry = dget(fc->root);
4346 	newmount.mnt->mnt_flags = mnt_flags;
4347 
4348 	/* We've done the mount bit - now move the file context into more or
4349 	 * less the same state as if we'd done an fspick().  We don't want to
4350 	 * do any memory allocation or anything like that at this point as we
4351 	 * don't want to have to handle any errors incurred.
4352 	 */
4353 	vfs_clean_context(fc);
4354 
4355 	ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4356 	if (IS_ERR(ns)) {
4357 		ret = PTR_ERR(ns);
4358 		goto err_path;
4359 	}
4360 	mnt = real_mount(newmount.mnt);
4361 	ns->root = mnt;
4362 	ns->nr_mounts = 1;
4363 	mnt_add_to_ns(ns, mnt);
4364 	mntget(newmount.mnt);
4365 
4366 	/* Attach to an apparent O_PATH fd with a note that we need to unmount
4367 	 * it, not just simply put it.
4368 	 */
4369 	file = dentry_open(&newmount, O_PATH, fc->cred);
4370 	if (IS_ERR(file)) {
4371 		dissolve_on_fput(newmount.mnt);
4372 		ret = PTR_ERR(file);
4373 		goto err_path;
4374 	}
4375 	file->f_mode |= FMODE_NEED_UNMOUNT;
4376 
4377 	ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4378 	if (ret >= 0)
4379 		fd_install(ret, file);
4380 	else
4381 		fput(file);
4382 
4383 err_path:
4384 	path_put(&newmount);
4385 err_unlock:
4386 	mutex_unlock(&fc->uapi_mutex);
4387 	return ret;
4388 }
4389 
vfs_move_mount(const struct path * from_path,const struct path * to_path,enum mnt_tree_flags_t mflags)4390 static inline int vfs_move_mount(const struct path *from_path,
4391 				 const struct path *to_path,
4392 				 enum mnt_tree_flags_t mflags)
4393 {
4394 	int ret;
4395 
4396 	ret = security_move_mount(from_path, to_path);
4397 	if (ret)
4398 		return ret;
4399 
4400 	if (mflags & MNT_TREE_PROPAGATION)
4401 		return do_set_group(from_path, to_path);
4402 
4403 	return do_move_mount(from_path, to_path, mflags);
4404 }
4405 
4406 /*
4407  * Move a mount from one place to another.  In combination with
4408  * fsopen()/fsmount() this is used to install a new mount and in combination
4409  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4410  * a mount subtree.
4411  *
4412  * Note the flags value is a combination of MOVE_MOUNT_* flags.
4413  */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4414 SYSCALL_DEFINE5(move_mount,
4415 		int, from_dfd, const char __user *, from_pathname,
4416 		int, to_dfd, const char __user *, to_pathname,
4417 		unsigned int, flags)
4418 {
4419 	struct path to_path __free(path_put) = {};
4420 	struct path from_path __free(path_put) = {};
4421 	struct filename *to_name __free(putname) = NULL;
4422 	struct filename *from_name __free(putname) = NULL;
4423 	unsigned int lflags, uflags;
4424 	enum mnt_tree_flags_t mflags = 0;
4425 	int ret = 0;
4426 
4427 	if (!may_mount())
4428 		return -EPERM;
4429 
4430 	if (flags & ~MOVE_MOUNT__MASK)
4431 		return -EINVAL;
4432 
4433 	if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4434 	    (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4435 		return -EINVAL;
4436 
4437 	if (flags & MOVE_MOUNT_SET_GROUP)	mflags |= MNT_TREE_PROPAGATION;
4438 	if (flags & MOVE_MOUNT_BENEATH)		mflags |= MNT_TREE_BENEATH;
4439 
4440 	uflags = 0;
4441 	if (flags & MOVE_MOUNT_T_EMPTY_PATH)
4442 		uflags = AT_EMPTY_PATH;
4443 
4444 	to_name = getname_maybe_null(to_pathname, uflags);
4445 	if (IS_ERR(to_name))
4446 		return PTR_ERR(to_name);
4447 
4448 	if (!to_name && to_dfd >= 0) {
4449 		CLASS(fd_raw, f_to)(to_dfd);
4450 		if (fd_empty(f_to))
4451 			return -EBADF;
4452 
4453 		to_path = fd_file(f_to)->f_path;
4454 		path_get(&to_path);
4455 	} else {
4456 		lflags = 0;
4457 		if (flags & MOVE_MOUNT_T_SYMLINKS)
4458 			lflags |= LOOKUP_FOLLOW;
4459 		if (flags & MOVE_MOUNT_T_AUTOMOUNTS)
4460 			lflags |= LOOKUP_AUTOMOUNT;
4461 		ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4462 		if (ret)
4463 			return ret;
4464 	}
4465 
4466 	uflags = 0;
4467 	if (flags & MOVE_MOUNT_F_EMPTY_PATH)
4468 		uflags = AT_EMPTY_PATH;
4469 
4470 	from_name = getname_maybe_null(from_pathname, uflags);
4471 	if (IS_ERR(from_name))
4472 		return PTR_ERR(from_name);
4473 
4474 	if (!from_name && from_dfd >= 0) {
4475 		CLASS(fd_raw, f_from)(from_dfd);
4476 		if (fd_empty(f_from))
4477 			return -EBADF;
4478 
4479 		return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4480 	}
4481 
4482 	lflags = 0;
4483 	if (flags & MOVE_MOUNT_F_SYMLINKS)
4484 		lflags |= LOOKUP_FOLLOW;
4485 	if (flags & MOVE_MOUNT_F_AUTOMOUNTS)
4486 		lflags |= LOOKUP_AUTOMOUNT;
4487 	ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4488 	if (ret)
4489 		return ret;
4490 
4491 	return vfs_move_mount(&from_path, &to_path, mflags);
4492 }
4493 
4494 /*
4495  * Return true if path is reachable from root
4496  *
4497  * locks: mount_locked_reader || namespace_shared && is_mounted(mnt)
4498  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4499 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4500 			 const struct path *root)
4501 {
4502 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4503 		dentry = mnt->mnt_mountpoint;
4504 		mnt = mnt->mnt_parent;
4505 	}
4506 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4507 }
4508 
path_is_under(const struct path * path1,const struct path * path2)4509 bool path_is_under(const struct path *path1, const struct path *path2)
4510 {
4511 	guard(mount_locked_reader)();
4512 	return is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4513 }
4514 EXPORT_SYMBOL(path_is_under);
4515 
4516 /*
4517  * pivot_root Semantics:
4518  * Moves the root file system of the current process to the directory put_old,
4519  * makes new_root as the new root file system of the current process, and sets
4520  * root/cwd of all processes which had them on the current root to new_root.
4521  *
4522  * Restrictions:
4523  * The new_root and put_old must be directories, and  must not be on the
4524  * same file  system as the current process root. The put_old  must  be
4525  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
4526  * pointed to by put_old must yield the same directory as new_root. No other
4527  * file system may be mounted on put_old. After all, new_root is a mountpoint.
4528  *
4529  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4530  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4531  * in this situation.
4532  *
4533  * Notes:
4534  *  - we don't move root/cwd if they are not at the root (reason: if something
4535  *    cared enough to change them, it's probably wrong to force them elsewhere)
4536  *  - it's okay to pick a root that isn't the root of a file system, e.g.
4537  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4538  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4539  *    first.
4540  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4541 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4542 		const char __user *, put_old)
4543 {
4544 	struct path new __free(path_put) = {};
4545 	struct path old __free(path_put) = {};
4546 	struct path root __free(path_put) = {};
4547 	struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4548 	int error;
4549 
4550 	if (!may_mount())
4551 		return -EPERM;
4552 
4553 	error = user_path_at(AT_FDCWD, new_root,
4554 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4555 	if (error)
4556 		return error;
4557 
4558 	error = user_path_at(AT_FDCWD, put_old,
4559 			     LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4560 	if (error)
4561 		return error;
4562 
4563 	error = security_sb_pivotroot(&old, &new);
4564 	if (error)
4565 		return error;
4566 
4567 	get_fs_root(current->fs, &root);
4568 
4569 	LOCK_MOUNT(old_mp, &old);
4570 	old_mnt = old_mp.parent;
4571 	if (IS_ERR(old_mnt))
4572 		return PTR_ERR(old_mnt);
4573 
4574 	new_mnt = real_mount(new.mnt);
4575 	root_mnt = real_mount(root.mnt);
4576 	ex_parent = new_mnt->mnt_parent;
4577 	root_parent = root_mnt->mnt_parent;
4578 	if (IS_MNT_SHARED(old_mnt) ||
4579 		IS_MNT_SHARED(ex_parent) ||
4580 		IS_MNT_SHARED(root_parent))
4581 		return -EINVAL;
4582 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4583 		return -EINVAL;
4584 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4585 		return -EINVAL;
4586 	if (d_unlinked(new.dentry))
4587 		return -ENOENT;
4588 	if (new_mnt == root_mnt || old_mnt == root_mnt)
4589 		return -EBUSY; /* loop, on the same file system  */
4590 	if (!path_mounted(&root))
4591 		return -EINVAL; /* not a mountpoint */
4592 	if (!mnt_has_parent(root_mnt))
4593 		return -EINVAL; /* absolute root */
4594 	if (!path_mounted(&new))
4595 		return -EINVAL; /* not a mountpoint */
4596 	if (!mnt_has_parent(new_mnt))
4597 		return -EINVAL; /* absolute root */
4598 	/* make sure we can reach put_old from new_root */
4599 	if (!is_path_reachable(old_mnt, old_mp.mp->m_dentry, &new))
4600 		return -EINVAL;
4601 	/* make certain new is below the root */
4602 	if (!is_path_reachable(new_mnt, new.dentry, &root))
4603 		return -EINVAL;
4604 	lock_mount_hash();
4605 	umount_mnt(new_mnt);
4606 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4607 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4608 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4609 	}
4610 	/* mount new_root on / */
4611 	attach_mnt(new_mnt, root_parent, root_mnt->mnt_mp);
4612 	umount_mnt(root_mnt);
4613 	/* mount old root on put_old */
4614 	attach_mnt(root_mnt, old_mnt, old_mp.mp);
4615 	touch_mnt_namespace(current->nsproxy->mnt_ns);
4616 	/* A moved mount should not expire automatically */
4617 	list_del_init(&new_mnt->mnt_expire);
4618 	unlock_mount_hash();
4619 	mnt_notify_add(root_mnt);
4620 	mnt_notify_add(new_mnt);
4621 	chroot_fs_refs(&root, &new);
4622 	return 0;
4623 }
4624 
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4625 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4626 {
4627 	unsigned int flags = mnt->mnt.mnt_flags;
4628 
4629 	/*  flags to clear */
4630 	flags &= ~kattr->attr_clr;
4631 	/* flags to raise */
4632 	flags |= kattr->attr_set;
4633 
4634 	return flags;
4635 }
4636 
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4637 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4638 {
4639 	struct vfsmount *m = &mnt->mnt;
4640 	struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4641 
4642 	if (!kattr->mnt_idmap)
4643 		return 0;
4644 
4645 	/*
4646 	 * Creating an idmapped mount with the filesystem wide idmapping
4647 	 * doesn't make sense so block that. We don't allow mushy semantics.
4648 	 */
4649 	if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4650 		return -EINVAL;
4651 
4652 	/*
4653 	 * We only allow an mount to change it's idmapping if it has
4654 	 * never been accessible to userspace.
4655 	 */
4656 	if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4657 		return -EPERM;
4658 
4659 	/* The underlying filesystem doesn't support idmapped mounts yet. */
4660 	if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4661 		return -EINVAL;
4662 
4663 	/* The filesystem has turned off idmapped mounts. */
4664 	if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4665 		return -EINVAL;
4666 
4667 	/* We're not controlling the superblock. */
4668 	if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4669 		return -EPERM;
4670 
4671 	/* Mount has already been visible in the filesystem hierarchy. */
4672 	if (!is_anon_ns(mnt->mnt_ns))
4673 		return -EINVAL;
4674 
4675 	return 0;
4676 }
4677 
4678 /**
4679  * mnt_allow_writers() - check whether the attribute change allows writers
4680  * @kattr: the new mount attributes
4681  * @mnt: the mount to which @kattr will be applied
4682  *
4683  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4684  *
4685  * Return: true if writers need to be held, false if not
4686  */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4687 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4688 				     const struct mount *mnt)
4689 {
4690 	return (!(kattr->attr_set & MNT_READONLY) ||
4691 		(mnt->mnt.mnt_flags & MNT_READONLY)) &&
4692 	       !kattr->mnt_idmap;
4693 }
4694 
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4695 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4696 {
4697 	struct mount *m;
4698 	int err;
4699 
4700 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4701 		if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4702 			err = -EPERM;
4703 			break;
4704 		}
4705 
4706 		err = can_idmap_mount(kattr, m);
4707 		if (err)
4708 			break;
4709 
4710 		if (!mnt_allow_writers(kattr, m)) {
4711 			err = mnt_hold_writers(m);
4712 			if (err) {
4713 				m = next_mnt(m, mnt);
4714 				break;
4715 			}
4716 		}
4717 
4718 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4719 			return 0;
4720 	}
4721 
4722 	if (err) {
4723 		/* undo all mnt_hold_writers() we'd done */
4724 		for (struct mount *p = mnt; p != m; p = next_mnt(p, mnt))
4725 			mnt_unhold_writers(p);
4726 	}
4727 	return err;
4728 }
4729 
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4730 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4731 {
4732 	struct mnt_idmap *old_idmap;
4733 
4734 	if (!kattr->mnt_idmap)
4735 		return;
4736 
4737 	old_idmap = mnt_idmap(&mnt->mnt);
4738 
4739 	/* Pairs with smp_load_acquire() in mnt_idmap(). */
4740 	smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4741 	mnt_idmap_put(old_idmap);
4742 }
4743 
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4744 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4745 {
4746 	struct mount *m;
4747 
4748 	for (m = mnt; m; m = next_mnt(m, mnt)) {
4749 		unsigned int flags;
4750 
4751 		do_idmap_mount(kattr, m);
4752 		flags = recalc_flags(kattr, m);
4753 		WRITE_ONCE(m->mnt.mnt_flags, flags);
4754 
4755 		/* If we had to hold writers unblock them. */
4756 		mnt_unhold_writers(m);
4757 
4758 		if (kattr->propagation)
4759 			change_mnt_propagation(m, kattr->propagation);
4760 		if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4761 			break;
4762 	}
4763 	touch_mnt_namespace(mnt->mnt_ns);
4764 }
4765 
do_mount_setattr(const struct path * path,struct mount_kattr * kattr)4766 static int do_mount_setattr(const struct path *path, struct mount_kattr *kattr)
4767 {
4768 	struct mount *mnt = real_mount(path->mnt);
4769 	int err = 0;
4770 
4771 	if (!path_mounted(path))
4772 		return -EINVAL;
4773 
4774 	if (kattr->mnt_userns) {
4775 		struct mnt_idmap *mnt_idmap;
4776 
4777 		mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
4778 		if (IS_ERR(mnt_idmap))
4779 			return PTR_ERR(mnt_idmap);
4780 		kattr->mnt_idmap = mnt_idmap;
4781 	}
4782 
4783 	if (kattr->propagation) {
4784 		/*
4785 		 * Only take namespace_lock() if we're actually changing
4786 		 * propagation.
4787 		 */
4788 		namespace_lock();
4789 		if (kattr->propagation == MS_SHARED) {
4790 			err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
4791 			if (err) {
4792 				namespace_unlock();
4793 				return err;
4794 			}
4795 		}
4796 	}
4797 
4798 	err = -EINVAL;
4799 	lock_mount_hash();
4800 
4801 	if (!anon_ns_root(mnt) && !check_mnt(mnt))
4802 		goto out;
4803 
4804 	/*
4805 	 * First, we get the mount tree in a shape where we can change mount
4806 	 * properties without failure. If we succeeded to do so we commit all
4807 	 * changes and if we failed we clean up.
4808 	 */
4809 	err = mount_setattr_prepare(kattr, mnt);
4810 	if (!err)
4811 		mount_setattr_commit(kattr, mnt);
4812 
4813 out:
4814 	unlock_mount_hash();
4815 
4816 	if (kattr->propagation) {
4817 		if (err)
4818 			cleanup_group_ids(mnt, NULL);
4819 		namespace_unlock();
4820 	}
4821 
4822 	return err;
4823 }
4824 
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4825 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4826 				struct mount_kattr *kattr)
4827 {
4828 	struct ns_common *ns;
4829 	struct user_namespace *mnt_userns;
4830 
4831 	if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4832 		return 0;
4833 
4834 	if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
4835 		/*
4836 		 * We can only remove an idmapping if it's never been
4837 		 * exposed to userspace.
4838 		 */
4839 		if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
4840 			return -EINVAL;
4841 
4842 		/*
4843 		 * Removal of idmappings is equivalent to setting
4844 		 * nop_mnt_idmap.
4845 		 */
4846 		if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
4847 			kattr->mnt_idmap = &nop_mnt_idmap;
4848 			return 0;
4849 		}
4850 	}
4851 
4852 	if (attr->userns_fd > INT_MAX)
4853 		return -EINVAL;
4854 
4855 	CLASS(fd, f)(attr->userns_fd);
4856 	if (fd_empty(f))
4857 		return -EBADF;
4858 
4859 	if (!proc_ns_file(fd_file(f)))
4860 		return -EINVAL;
4861 
4862 	ns = get_proc_ns(file_inode(fd_file(f)));
4863 	if (ns->ns_type != CLONE_NEWUSER)
4864 		return -EINVAL;
4865 
4866 	/*
4867 	 * The initial idmapping cannot be used to create an idmapped
4868 	 * mount. We use the initial idmapping as an indicator of a mount
4869 	 * that is not idmapped. It can simply be passed into helpers that
4870 	 * are aware of idmapped mounts as a convenient shortcut. A user
4871 	 * can just create a dedicated identity mapping to achieve the same
4872 	 * result.
4873 	 */
4874 	mnt_userns = container_of(ns, struct user_namespace, ns);
4875 	if (mnt_userns == &init_user_ns)
4876 		return -EPERM;
4877 
4878 	/* We're not controlling the target namespace. */
4879 	if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
4880 		return -EPERM;
4881 
4882 	kattr->mnt_userns = get_user_ns(mnt_userns);
4883 	return 0;
4884 }
4885 
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)4886 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4887 			     struct mount_kattr *kattr)
4888 {
4889 	if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4890 		return -EINVAL;
4891 	if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4892 		return -EINVAL;
4893 	kattr->propagation = attr->propagation;
4894 
4895 	if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4896 		return -EINVAL;
4897 
4898 	kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4899 	kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4900 
4901 	/*
4902 	 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4903 	 * users wanting to transition to a different atime setting cannot
4904 	 * simply specify the atime setting in @attr_set, but must also
4905 	 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4906 	 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4907 	 * @attr_clr and that @attr_set can't have any atime bits set if
4908 	 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4909 	 */
4910 	if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4911 		if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4912 			return -EINVAL;
4913 
4914 		/*
4915 		 * Clear all previous time settings as they are mutually
4916 		 * exclusive.
4917 		 */
4918 		kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4919 		switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4920 		case MOUNT_ATTR_RELATIME:
4921 			kattr->attr_set |= MNT_RELATIME;
4922 			break;
4923 		case MOUNT_ATTR_NOATIME:
4924 			kattr->attr_set |= MNT_NOATIME;
4925 			break;
4926 		case MOUNT_ATTR_STRICTATIME:
4927 			break;
4928 		default:
4929 			return -EINVAL;
4930 		}
4931 	} else {
4932 		if (attr->attr_set & MOUNT_ATTR__ATIME)
4933 			return -EINVAL;
4934 	}
4935 
4936 	return build_mount_idmapped(attr, usize, kattr);
4937 }
4938 
finish_mount_kattr(struct mount_kattr * kattr)4939 static void finish_mount_kattr(struct mount_kattr *kattr)
4940 {
4941 	if (kattr->mnt_userns) {
4942 		put_user_ns(kattr->mnt_userns);
4943 		kattr->mnt_userns = NULL;
4944 	}
4945 
4946 	if (kattr->mnt_idmap)
4947 		mnt_idmap_put(kattr->mnt_idmap);
4948 }
4949 
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)4950 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
4951 			       struct mount_kattr *kattr)
4952 {
4953 	int ret;
4954 	struct mount_attr attr;
4955 
4956 	BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4957 
4958 	if (unlikely(usize > PAGE_SIZE))
4959 		return -E2BIG;
4960 	if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4961 		return -EINVAL;
4962 
4963 	if (!may_mount())
4964 		return -EPERM;
4965 
4966 	ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4967 	if (ret)
4968 		return ret;
4969 
4970 	/* Don't bother walking through the mounts if this is a nop. */
4971 	if (attr.attr_set == 0 &&
4972 	    attr.attr_clr == 0 &&
4973 	    attr.propagation == 0)
4974 		return 0; /* Tell caller to not bother. */
4975 
4976 	ret = build_mount_kattr(&attr, usize, kattr);
4977 	if (ret < 0)
4978 		return ret;
4979 
4980 	return 1;
4981 }
4982 
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)4983 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4984 		unsigned int, flags, struct mount_attr __user *, uattr,
4985 		size_t, usize)
4986 {
4987 	int err;
4988 	struct path target;
4989 	struct mount_kattr kattr;
4990 	unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4991 
4992 	if (flags & ~(AT_EMPTY_PATH |
4993 		      AT_RECURSIVE |
4994 		      AT_SYMLINK_NOFOLLOW |
4995 		      AT_NO_AUTOMOUNT))
4996 		return -EINVAL;
4997 
4998 	if (flags & AT_NO_AUTOMOUNT)
4999 		lookup_flags &= ~LOOKUP_AUTOMOUNT;
5000 	if (flags & AT_SYMLINK_NOFOLLOW)
5001 		lookup_flags &= ~LOOKUP_FOLLOW;
5002 	if (flags & AT_EMPTY_PATH)
5003 		lookup_flags |= LOOKUP_EMPTY;
5004 
5005 	kattr = (struct mount_kattr) {
5006 		.lookup_flags	= lookup_flags,
5007 	};
5008 
5009 	if (flags & AT_RECURSIVE)
5010 		kattr.kflags |= MOUNT_KATTR_RECURSE;
5011 
5012 	err = wants_mount_setattr(uattr, usize, &kattr);
5013 	if (err <= 0)
5014 		return err;
5015 
5016 	err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5017 	if (!err) {
5018 		err = do_mount_setattr(&target, &kattr);
5019 		path_put(&target);
5020 	}
5021 	finish_mount_kattr(&kattr);
5022 	return err;
5023 }
5024 
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5025 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5026 		unsigned, flags, struct mount_attr __user *, uattr,
5027 		size_t, usize)
5028 {
5029 	struct file __free(fput) *file = NULL;
5030 	int fd;
5031 
5032 	if (!uattr && usize)
5033 		return -EINVAL;
5034 
5035 	file = vfs_open_tree(dfd, filename, flags);
5036 	if (IS_ERR(file))
5037 		return PTR_ERR(file);
5038 
5039 	if (uattr) {
5040 		int ret;
5041 		struct mount_kattr kattr = {};
5042 
5043 		if (flags & OPEN_TREE_CLONE)
5044 			kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5045 		if (flags & AT_RECURSIVE)
5046 			kattr.kflags |= MOUNT_KATTR_RECURSE;
5047 
5048 		ret = wants_mount_setattr(uattr, usize, &kattr);
5049 		if (ret > 0) {
5050 			ret = do_mount_setattr(&file->f_path, &kattr);
5051 			finish_mount_kattr(&kattr);
5052 		}
5053 		if (ret)
5054 			return ret;
5055 	}
5056 
5057 	fd = get_unused_fd_flags(flags & O_CLOEXEC);
5058 	if (fd < 0)
5059 		return fd;
5060 
5061 	fd_install(fd, no_free_ptr(file));
5062 	return fd;
5063 }
5064 
show_path(struct seq_file * m,struct dentry * root)5065 int show_path(struct seq_file *m, struct dentry *root)
5066 {
5067 	if (root->d_sb->s_op->show_path)
5068 		return root->d_sb->s_op->show_path(m, root);
5069 
5070 	seq_dentry(m, root, " \t\n\\");
5071 	return 0;
5072 }
5073 
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5074 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5075 {
5076 	struct mount *mnt = mnt_find_id_at(ns, id);
5077 
5078 	if (!mnt || mnt->mnt_id_unique != id)
5079 		return NULL;
5080 
5081 	return &mnt->mnt;
5082 }
5083 
5084 struct kstatmount {
5085 	struct statmount __user *buf;
5086 	size_t bufsize;
5087 	struct vfsmount *mnt;
5088 	struct mnt_idmap *idmap;
5089 	u64 mask;
5090 	struct path root;
5091 	struct seq_file seq;
5092 
5093 	/* Must be last --ends in a flexible-array member. */
5094 	struct statmount sm;
5095 };
5096 
mnt_to_attr_flags(struct vfsmount * mnt)5097 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5098 {
5099 	unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5100 	u64 attr_flags = 0;
5101 
5102 	if (mnt_flags & MNT_READONLY)
5103 		attr_flags |= MOUNT_ATTR_RDONLY;
5104 	if (mnt_flags & MNT_NOSUID)
5105 		attr_flags |= MOUNT_ATTR_NOSUID;
5106 	if (mnt_flags & MNT_NODEV)
5107 		attr_flags |= MOUNT_ATTR_NODEV;
5108 	if (mnt_flags & MNT_NOEXEC)
5109 		attr_flags |= MOUNT_ATTR_NOEXEC;
5110 	if (mnt_flags & MNT_NODIRATIME)
5111 		attr_flags |= MOUNT_ATTR_NODIRATIME;
5112 	if (mnt_flags & MNT_NOSYMFOLLOW)
5113 		attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5114 
5115 	if (mnt_flags & MNT_NOATIME)
5116 		attr_flags |= MOUNT_ATTR_NOATIME;
5117 	else if (mnt_flags & MNT_RELATIME)
5118 		attr_flags |= MOUNT_ATTR_RELATIME;
5119 	else
5120 		attr_flags |= MOUNT_ATTR_STRICTATIME;
5121 
5122 	if (is_idmapped_mnt(mnt))
5123 		attr_flags |= MOUNT_ATTR_IDMAP;
5124 
5125 	return attr_flags;
5126 }
5127 
mnt_to_propagation_flags(struct mount * m)5128 static u64 mnt_to_propagation_flags(struct mount *m)
5129 {
5130 	u64 propagation = 0;
5131 
5132 	if (IS_MNT_SHARED(m))
5133 		propagation |= MS_SHARED;
5134 	if (IS_MNT_SLAVE(m))
5135 		propagation |= MS_SLAVE;
5136 	if (IS_MNT_UNBINDABLE(m))
5137 		propagation |= MS_UNBINDABLE;
5138 	if (!propagation)
5139 		propagation |= MS_PRIVATE;
5140 
5141 	return propagation;
5142 }
5143 
statmount_sb_basic(struct kstatmount * s)5144 static void statmount_sb_basic(struct kstatmount *s)
5145 {
5146 	struct super_block *sb = s->mnt->mnt_sb;
5147 
5148 	s->sm.mask |= STATMOUNT_SB_BASIC;
5149 	s->sm.sb_dev_major = MAJOR(sb->s_dev);
5150 	s->sm.sb_dev_minor = MINOR(sb->s_dev);
5151 	s->sm.sb_magic = sb->s_magic;
5152 	s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5153 }
5154 
statmount_mnt_basic(struct kstatmount * s)5155 static void statmount_mnt_basic(struct kstatmount *s)
5156 {
5157 	struct mount *m = real_mount(s->mnt);
5158 
5159 	s->sm.mask |= STATMOUNT_MNT_BASIC;
5160 	s->sm.mnt_id = m->mnt_id_unique;
5161 	s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5162 	s->sm.mnt_id_old = m->mnt_id;
5163 	s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5164 	s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5165 	s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5166 	s->sm.mnt_peer_group = m->mnt_group_id;
5167 	s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5168 }
5169 
statmount_propagate_from(struct kstatmount * s)5170 static void statmount_propagate_from(struct kstatmount *s)
5171 {
5172 	struct mount *m = real_mount(s->mnt);
5173 
5174 	s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5175 	if (IS_MNT_SLAVE(m))
5176 		s->sm.propagate_from = get_dominating_id(m, &current->fs->root);
5177 }
5178 
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5179 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5180 {
5181 	int ret;
5182 	size_t start = seq->count;
5183 
5184 	ret = show_path(seq, s->mnt->mnt_root);
5185 	if (ret)
5186 		return ret;
5187 
5188 	if (unlikely(seq_has_overflowed(seq)))
5189 		return -EAGAIN;
5190 
5191 	/*
5192          * Unescape the result. It would be better if supplied string was not
5193          * escaped in the first place, but that's a pretty invasive change.
5194          */
5195 	seq->buf[seq->count] = '\0';
5196 	seq->count = start;
5197 	seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5198 	return 0;
5199 }
5200 
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5201 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5202 {
5203 	struct vfsmount *mnt = s->mnt;
5204 	struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5205 	int err;
5206 
5207 	err = seq_path_root(seq, &mnt_path, &s->root, "");
5208 	return err == SEQ_SKIP ? 0 : err;
5209 }
5210 
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5211 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5212 {
5213 	struct super_block *sb = s->mnt->mnt_sb;
5214 
5215 	seq_puts(seq, sb->s_type->name);
5216 	return 0;
5217 }
5218 
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5219 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5220 {
5221 	struct super_block *sb = s->mnt->mnt_sb;
5222 
5223 	if (sb->s_subtype)
5224 		seq_puts(seq, sb->s_subtype);
5225 }
5226 
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5227 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5228 {
5229 	struct super_block *sb = s->mnt->mnt_sb;
5230 	struct mount *r = real_mount(s->mnt);
5231 
5232 	if (sb->s_op->show_devname) {
5233 		size_t start = seq->count;
5234 		int ret;
5235 
5236 		ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5237 		if (ret)
5238 			return ret;
5239 
5240 		if (unlikely(seq_has_overflowed(seq)))
5241 			return -EAGAIN;
5242 
5243 		/* Unescape the result */
5244 		seq->buf[seq->count] = '\0';
5245 		seq->count = start;
5246 		seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5247 	} else {
5248 		seq_puts(seq, r->mnt_devname);
5249 	}
5250 	return 0;
5251 }
5252 
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5253 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5254 {
5255 	s->sm.mask |= STATMOUNT_MNT_NS_ID;
5256 	s->sm.mnt_ns_id = ns->ns.ns_id;
5257 }
5258 
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5259 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5260 {
5261 	struct vfsmount *mnt = s->mnt;
5262 	struct super_block *sb = mnt->mnt_sb;
5263 	size_t start = seq->count;
5264 	int err;
5265 
5266 	err = security_sb_show_options(seq, sb);
5267 	if (err)
5268 		return err;
5269 
5270 	if (sb->s_op->show_options) {
5271 		err = sb->s_op->show_options(seq, mnt->mnt_root);
5272 		if (err)
5273 			return err;
5274 	}
5275 
5276 	if (unlikely(seq_has_overflowed(seq)))
5277 		return -EAGAIN;
5278 
5279 	if (seq->count == start)
5280 		return 0;
5281 
5282 	/* skip leading comma */
5283 	memmove(seq->buf + start, seq->buf + start + 1,
5284 		seq->count - start - 1);
5285 	seq->count--;
5286 
5287 	return 0;
5288 }
5289 
statmount_opt_process(struct seq_file * seq,size_t start)5290 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5291 {
5292 	char *buf_end, *opt_end, *src, *dst;
5293 	int count = 0;
5294 
5295 	if (unlikely(seq_has_overflowed(seq)))
5296 		return -EAGAIN;
5297 
5298 	buf_end = seq->buf + seq->count;
5299 	dst = seq->buf + start;
5300 	src = dst + 1;	/* skip initial comma */
5301 
5302 	if (src >= buf_end) {
5303 		seq->count = start;
5304 		return 0;
5305 	}
5306 
5307 	*buf_end = '\0';
5308 	for (; src < buf_end; src = opt_end + 1) {
5309 		opt_end = strchrnul(src, ',');
5310 		*opt_end = '\0';
5311 		dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5312 		if (WARN_ON_ONCE(++count == INT_MAX))
5313 			return -EOVERFLOW;
5314 	}
5315 	seq->count = dst - 1 - seq->buf;
5316 	return count;
5317 }
5318 
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5319 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5320 {
5321 	struct vfsmount *mnt = s->mnt;
5322 	struct super_block *sb = mnt->mnt_sb;
5323 	size_t start = seq->count;
5324 	int err;
5325 
5326 	if (!sb->s_op->show_options)
5327 		return 0;
5328 
5329 	err = sb->s_op->show_options(seq, mnt->mnt_root);
5330 	if (err)
5331 		return err;
5332 
5333 	err = statmount_opt_process(seq, start);
5334 	if (err < 0)
5335 		return err;
5336 
5337 	s->sm.opt_num = err;
5338 	return 0;
5339 }
5340 
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5341 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5342 {
5343 	struct vfsmount *mnt = s->mnt;
5344 	struct super_block *sb = mnt->mnt_sb;
5345 	size_t start = seq->count;
5346 	int err;
5347 
5348 	err = security_sb_show_options(seq, sb);
5349 	if (err)
5350 		return err;
5351 
5352 	err = statmount_opt_process(seq, start);
5353 	if (err < 0)
5354 		return err;
5355 
5356 	s->sm.opt_sec_num = err;
5357 	return 0;
5358 }
5359 
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5360 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5361 {
5362 	int ret;
5363 
5364 	ret = statmount_mnt_idmap(s->idmap, seq, true);
5365 	if (ret < 0)
5366 		return ret;
5367 
5368 	s->sm.mnt_uidmap_num = ret;
5369 	/*
5370 	 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5371 	 * mappings. This allows userspace to distinguish between a
5372 	 * non-idmapped mount and an idmapped mount where none of the
5373 	 * individual mappings are valid in the caller's idmapping.
5374 	 */
5375 	if (is_valid_mnt_idmap(s->idmap))
5376 		s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5377 	return 0;
5378 }
5379 
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5380 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5381 {
5382 	int ret;
5383 
5384 	ret = statmount_mnt_idmap(s->idmap, seq, false);
5385 	if (ret < 0)
5386 		return ret;
5387 
5388 	s->sm.mnt_gidmap_num = ret;
5389 	/*
5390 	 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5391 	 * mappings. This allows userspace to distinguish between a
5392 	 * non-idmapped mount and an idmapped mount where none of the
5393 	 * individual mappings are valid in the caller's idmapping.
5394 	 */
5395 	if (is_valid_mnt_idmap(s->idmap))
5396 		s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5397 	return 0;
5398 }
5399 
statmount_string(struct kstatmount * s,u64 flag)5400 static int statmount_string(struct kstatmount *s, u64 flag)
5401 {
5402 	int ret = 0;
5403 	size_t kbufsize;
5404 	struct seq_file *seq = &s->seq;
5405 	struct statmount *sm = &s->sm;
5406 	u32 start, *offp;
5407 
5408 	/* Reserve an empty string at the beginning for any unset offsets */
5409 	if (!seq->count)
5410 		seq_putc(seq, 0);
5411 
5412 	start = seq->count;
5413 
5414 	switch (flag) {
5415 	case STATMOUNT_FS_TYPE:
5416 		offp = &sm->fs_type;
5417 		ret = statmount_fs_type(s, seq);
5418 		break;
5419 	case STATMOUNT_MNT_ROOT:
5420 		offp = &sm->mnt_root;
5421 		ret = statmount_mnt_root(s, seq);
5422 		break;
5423 	case STATMOUNT_MNT_POINT:
5424 		offp = &sm->mnt_point;
5425 		ret = statmount_mnt_point(s, seq);
5426 		break;
5427 	case STATMOUNT_MNT_OPTS:
5428 		offp = &sm->mnt_opts;
5429 		ret = statmount_mnt_opts(s, seq);
5430 		break;
5431 	case STATMOUNT_OPT_ARRAY:
5432 		offp = &sm->opt_array;
5433 		ret = statmount_opt_array(s, seq);
5434 		break;
5435 	case STATMOUNT_OPT_SEC_ARRAY:
5436 		offp = &sm->opt_sec_array;
5437 		ret = statmount_opt_sec_array(s, seq);
5438 		break;
5439 	case STATMOUNT_FS_SUBTYPE:
5440 		offp = &sm->fs_subtype;
5441 		statmount_fs_subtype(s, seq);
5442 		break;
5443 	case STATMOUNT_SB_SOURCE:
5444 		offp = &sm->sb_source;
5445 		ret = statmount_sb_source(s, seq);
5446 		break;
5447 	case STATMOUNT_MNT_UIDMAP:
5448 		offp = &sm->mnt_uidmap;
5449 		ret = statmount_mnt_uidmap(s, seq);
5450 		break;
5451 	case STATMOUNT_MNT_GIDMAP:
5452 		offp = &sm->mnt_gidmap;
5453 		ret = statmount_mnt_gidmap(s, seq);
5454 		break;
5455 	default:
5456 		WARN_ON_ONCE(true);
5457 		return -EINVAL;
5458 	}
5459 
5460 	/*
5461 	 * If nothing was emitted, return to avoid setting the flag
5462 	 * and terminating the buffer.
5463 	 */
5464 	if (seq->count == start)
5465 		return ret;
5466 	if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5467 		return -EOVERFLOW;
5468 	if (kbufsize >= s->bufsize)
5469 		return -EOVERFLOW;
5470 
5471 	/* signal a retry */
5472 	if (unlikely(seq_has_overflowed(seq)))
5473 		return -EAGAIN;
5474 
5475 	if (ret)
5476 		return ret;
5477 
5478 	seq->buf[seq->count++] = '\0';
5479 	sm->mask |= flag;
5480 	*offp = start;
5481 	return 0;
5482 }
5483 
copy_statmount_to_user(struct kstatmount * s)5484 static int copy_statmount_to_user(struct kstatmount *s)
5485 {
5486 	struct statmount *sm = &s->sm;
5487 	struct seq_file *seq = &s->seq;
5488 	char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5489 	size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5490 
5491 	if (seq->count && copy_to_user(str, seq->buf, seq->count))
5492 		return -EFAULT;
5493 
5494 	/* Return the number of bytes copied to the buffer */
5495 	sm->size = copysize + seq->count;
5496 	if (copy_to_user(s->buf, sm, copysize))
5497 		return -EFAULT;
5498 
5499 	return 0;
5500 }
5501 
listmnt_next(struct mount * curr,bool reverse)5502 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5503 {
5504 	struct rb_node *node;
5505 
5506 	if (reverse)
5507 		node = rb_prev(&curr->mnt_node);
5508 	else
5509 		node = rb_next(&curr->mnt_node);
5510 
5511 	return node_to_mount(node);
5512 }
5513 
grab_requested_root(struct mnt_namespace * ns,struct path * root)5514 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5515 {
5516 	struct mount *first, *child;
5517 
5518 	rwsem_assert_held(&namespace_sem);
5519 
5520 	/* We're looking at our own ns, just use get_fs_root. */
5521 	if (ns == current->nsproxy->mnt_ns) {
5522 		get_fs_root(current->fs, root);
5523 		return 0;
5524 	}
5525 
5526 	/*
5527 	 * We have to find the first mount in our ns and use that, however it
5528 	 * may not exist, so handle that properly.
5529 	 */
5530 	if (mnt_ns_empty(ns))
5531 		return -ENOENT;
5532 
5533 	first = child = ns->root;
5534 	for (;;) {
5535 		child = listmnt_next(child, false);
5536 		if (!child)
5537 			return -ENOENT;
5538 		if (child->mnt_parent == first)
5539 			break;
5540 	}
5541 
5542 	root->mnt = mntget(&child->mnt);
5543 	root->dentry = dget(root->mnt->mnt_root);
5544 	return 0;
5545 }
5546 
5547 /* This must be updated whenever a new flag is added */
5548 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5549 			     STATMOUNT_MNT_BASIC | \
5550 			     STATMOUNT_PROPAGATE_FROM | \
5551 			     STATMOUNT_MNT_ROOT | \
5552 			     STATMOUNT_MNT_POINT | \
5553 			     STATMOUNT_FS_TYPE | \
5554 			     STATMOUNT_MNT_NS_ID | \
5555 			     STATMOUNT_MNT_OPTS | \
5556 			     STATMOUNT_FS_SUBTYPE | \
5557 			     STATMOUNT_SB_SOURCE | \
5558 			     STATMOUNT_OPT_ARRAY | \
5559 			     STATMOUNT_OPT_SEC_ARRAY | \
5560 			     STATMOUNT_SUPPORTED_MASK | \
5561 			     STATMOUNT_MNT_UIDMAP | \
5562 			     STATMOUNT_MNT_GIDMAP)
5563 
5564 /* locks: namespace_shared */
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5565 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5566 			struct mnt_namespace *ns)
5567 {
5568 	struct mount *m;
5569 	int err;
5570 
5571 	/* Has the namespace already been emptied? */
5572 	if (mnt_ns_id && mnt_ns_empty(ns))
5573 		return -ENOENT;
5574 
5575 	s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5576 	if (!s->mnt)
5577 		return -ENOENT;
5578 
5579 	err = grab_requested_root(ns, &s->root);
5580 	if (err)
5581 		return err;
5582 
5583 	/*
5584 	 * Don't trigger audit denials. We just want to determine what
5585 	 * mounts to show users.
5586 	 */
5587 	m = real_mount(s->mnt);
5588 	if (!is_path_reachable(m, m->mnt.mnt_root, &s->root) &&
5589 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5590 		return -EPERM;
5591 
5592 	err = security_sb_statfs(s->mnt->mnt_root);
5593 	if (err)
5594 		return err;
5595 
5596 	/*
5597 	 * Note that mount properties in mnt->mnt_flags, mnt->mnt_idmap
5598 	 * can change concurrently as we only hold the read-side of the
5599 	 * namespace semaphore and mount properties may change with only
5600 	 * the mount lock held.
5601 	 *
5602 	 * We could sample the mount lock sequence counter to detect
5603 	 * those changes and retry. But it's not worth it. Worst that
5604 	 * happens is that the mnt->mnt_idmap pointer is already changed
5605 	 * while mnt->mnt_flags isn't or vica versa. So what.
5606 	 *
5607 	 * Both mnt->mnt_flags and mnt->mnt_idmap are set and retrieved
5608 	 * via READ_ONCE()/WRITE_ONCE() and guard against theoretical
5609 	 * torn read/write. That's all we care about right now.
5610 	 */
5611 	s->idmap = mnt_idmap(s->mnt);
5612 	if (s->mask & STATMOUNT_MNT_BASIC)
5613 		statmount_mnt_basic(s);
5614 
5615 	if (s->mask & STATMOUNT_SB_BASIC)
5616 		statmount_sb_basic(s);
5617 
5618 	if (s->mask & STATMOUNT_PROPAGATE_FROM)
5619 		statmount_propagate_from(s);
5620 
5621 	if (s->mask & STATMOUNT_FS_TYPE)
5622 		err = statmount_string(s, STATMOUNT_FS_TYPE);
5623 
5624 	if (!err && s->mask & STATMOUNT_MNT_ROOT)
5625 		err = statmount_string(s, STATMOUNT_MNT_ROOT);
5626 
5627 	if (!err && s->mask & STATMOUNT_MNT_POINT)
5628 		err = statmount_string(s, STATMOUNT_MNT_POINT);
5629 
5630 	if (!err && s->mask & STATMOUNT_MNT_OPTS)
5631 		err = statmount_string(s, STATMOUNT_MNT_OPTS);
5632 
5633 	if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5634 		err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5635 
5636 	if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5637 		err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5638 
5639 	if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5640 		err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5641 
5642 	if (!err && s->mask & STATMOUNT_SB_SOURCE)
5643 		err = statmount_string(s, STATMOUNT_SB_SOURCE);
5644 
5645 	if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5646 		err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5647 
5648 	if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5649 		err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5650 
5651 	if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5652 		statmount_mnt_ns_id(s, ns);
5653 
5654 	if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5655 		s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5656 		s->sm.supported_mask = STATMOUNT_SUPPORTED;
5657 	}
5658 
5659 	if (err)
5660 		return err;
5661 
5662 	/* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5663 	WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5664 
5665 	return 0;
5666 }
5667 
retry_statmount(const long ret,size_t * seq_size)5668 static inline bool retry_statmount(const long ret, size_t *seq_size)
5669 {
5670 	if (likely(ret != -EAGAIN))
5671 		return false;
5672 	if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5673 		return false;
5674 	if (unlikely(*seq_size > MAX_RW_COUNT))
5675 		return false;
5676 	return true;
5677 }
5678 
5679 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5680 			      STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5681 			      STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5682 			      STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5683 			      STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5684 
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5685 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5686 			      struct statmount __user *buf, size_t bufsize,
5687 			      size_t seq_size)
5688 {
5689 	if (!access_ok(buf, bufsize))
5690 		return -EFAULT;
5691 
5692 	memset(ks, 0, sizeof(*ks));
5693 	ks->mask = kreq->param;
5694 	ks->buf = buf;
5695 	ks->bufsize = bufsize;
5696 
5697 	if (ks->mask & STATMOUNT_STRING_REQ) {
5698 		if (bufsize == sizeof(ks->sm))
5699 			return -EOVERFLOW;
5700 
5701 		ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5702 		if (!ks->seq.buf)
5703 			return -ENOMEM;
5704 
5705 		ks->seq.size = seq_size;
5706 	}
5707 
5708 	return 0;
5709 }
5710 
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5711 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5712 			   struct mnt_id_req *kreq)
5713 {
5714 	int ret;
5715 	size_t usize;
5716 
5717 	BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5718 
5719 	ret = get_user(usize, &req->size);
5720 	if (ret)
5721 		return -EFAULT;
5722 	if (unlikely(usize > PAGE_SIZE))
5723 		return -E2BIG;
5724 	if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5725 		return -EINVAL;
5726 	memset(kreq, 0, sizeof(*kreq));
5727 	ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5728 	if (ret)
5729 		return ret;
5730 	if (kreq->mnt_ns_fd != 0 && kreq->mnt_ns_id)
5731 		return -EINVAL;
5732 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5733 	if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5734 		return -EINVAL;
5735 	return 0;
5736 }
5737 
5738 /*
5739  * If the user requested a specific mount namespace id, look that up and return
5740  * that, or if not simply grab a passive reference on our mount namespace and
5741  * return that.
5742  */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5743 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5744 {
5745 	struct mnt_namespace *mnt_ns;
5746 
5747 	if (kreq->mnt_ns_id) {
5748 		mnt_ns = lookup_mnt_ns(kreq->mnt_ns_id);
5749 	} else if (kreq->mnt_ns_fd) {
5750 		struct ns_common *ns;
5751 
5752 		CLASS(fd, f)(kreq->mnt_ns_fd);
5753 		if (fd_empty(f))
5754 			return ERR_PTR(-EBADF);
5755 
5756 		if (!proc_ns_file(fd_file(f)))
5757 			return ERR_PTR(-EINVAL);
5758 
5759 		ns = get_proc_ns(file_inode(fd_file(f)));
5760 		if (ns->ns_type != CLONE_NEWNS)
5761 			return ERR_PTR(-EINVAL);
5762 
5763 		mnt_ns = to_mnt_ns(ns);
5764 	} else {
5765 		mnt_ns = current->nsproxy->mnt_ns;
5766 	}
5767 	if (!mnt_ns)
5768 		return ERR_PTR(-ENOENT);
5769 
5770 	refcount_inc(&mnt_ns->passive);
5771 	return mnt_ns;
5772 }
5773 
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)5774 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
5775 		struct statmount __user *, buf, size_t, bufsize,
5776 		unsigned int, flags)
5777 {
5778 	struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
5779 	struct kstatmount *ks __free(kfree) = NULL;
5780 	struct mnt_id_req kreq;
5781 	/* We currently support retrieval of 3 strings. */
5782 	size_t seq_size = 3 * PATH_MAX;
5783 	int ret;
5784 
5785 	if (flags)
5786 		return -EINVAL;
5787 
5788 	ret = copy_mnt_id_req(req, &kreq);
5789 	if (ret)
5790 		return ret;
5791 
5792 	ns = grab_requested_mnt_ns(&kreq);
5793 	if (IS_ERR(ns))
5794 		return PTR_ERR(ns);
5795 
5796 	if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
5797 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5798 		return -ENOENT;
5799 
5800 	ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
5801 	if (!ks)
5802 		return -ENOMEM;
5803 
5804 retry:
5805 	ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
5806 	if (ret)
5807 		return ret;
5808 
5809 	scoped_guard(namespace_shared)
5810 		ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
5811 
5812 	if (!ret)
5813 		ret = copy_statmount_to_user(ks);
5814 	kvfree(ks->seq.buf);
5815 	path_put(&ks->root);
5816 	if (retry_statmount(ret, &seq_size))
5817 		goto retry;
5818 	return ret;
5819 }
5820 
5821 struct klistmount {
5822 	u64 last_mnt_id;
5823 	u64 mnt_parent_id;
5824 	u64 *kmnt_ids;
5825 	u32 nr_mnt_ids;
5826 	struct mnt_namespace *ns;
5827 	struct path root;
5828 };
5829 
5830 /* locks: namespace_shared */
do_listmount(struct klistmount * kls,bool reverse)5831 static ssize_t do_listmount(struct klistmount *kls, bool reverse)
5832 {
5833 	struct mnt_namespace *ns = kls->ns;
5834 	u64 mnt_parent_id = kls->mnt_parent_id;
5835 	u64 last_mnt_id = kls->last_mnt_id;
5836 	u64 *mnt_ids = kls->kmnt_ids;
5837 	size_t nr_mnt_ids = kls->nr_mnt_ids;
5838 	struct path orig;
5839 	struct mount *r, *first;
5840 	ssize_t ret;
5841 
5842 	rwsem_assert_held(&namespace_sem);
5843 
5844 	ret = grab_requested_root(ns, &kls->root);
5845 	if (ret)
5846 		return ret;
5847 
5848 	if (mnt_parent_id == LSMT_ROOT) {
5849 		orig = kls->root;
5850 	} else {
5851 		orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
5852 		if (!orig.mnt)
5853 			return -ENOENT;
5854 		orig.dentry = orig.mnt->mnt_root;
5855 	}
5856 
5857 	/*
5858 	 * Don't trigger audit denials. We just want to determine what
5859 	 * mounts to show users.
5860 	 */
5861 	if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &kls->root) &&
5862 	    !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5863 		return -EPERM;
5864 
5865 	ret = security_sb_statfs(orig.dentry);
5866 	if (ret)
5867 		return ret;
5868 
5869 	if (!last_mnt_id) {
5870 		if (reverse)
5871 			first = node_to_mount(ns->mnt_last_node);
5872 		else
5873 			first = node_to_mount(ns->mnt_first_node);
5874 	} else {
5875 		if (reverse)
5876 			first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
5877 		else
5878 			first = mnt_find_id_at(ns, last_mnt_id + 1);
5879 	}
5880 
5881 	for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
5882 		if (r->mnt_id_unique == mnt_parent_id)
5883 			continue;
5884 		if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
5885 			continue;
5886 		*mnt_ids = r->mnt_id_unique;
5887 		mnt_ids++;
5888 		nr_mnt_ids--;
5889 		ret++;
5890 	}
5891 	return ret;
5892 }
5893 
__free_klistmount_free(const struct klistmount * kls)5894 static void __free_klistmount_free(const struct klistmount *kls)
5895 {
5896 	path_put(&kls->root);
5897 	kvfree(kls->kmnt_ids);
5898 	mnt_ns_release(kls->ns);
5899 }
5900 
prepare_klistmount(struct klistmount * kls,struct mnt_id_req * kreq,size_t nr_mnt_ids)5901 static inline int prepare_klistmount(struct klistmount *kls, struct mnt_id_req *kreq,
5902 				     size_t nr_mnt_ids)
5903 {
5904 	u64 last_mnt_id = kreq->param;
5905 	struct mnt_namespace *ns;
5906 
5907 	/* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5908 	if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
5909 		return -EINVAL;
5910 
5911 	kls->last_mnt_id = last_mnt_id;
5912 
5913 	kls->nr_mnt_ids = nr_mnt_ids;
5914 	kls->kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kls->kmnt_ids),
5915 				       GFP_KERNEL_ACCOUNT);
5916 	if (!kls->kmnt_ids)
5917 		return -ENOMEM;
5918 
5919 	ns = grab_requested_mnt_ns(kreq);
5920 	if (IS_ERR(ns))
5921 		return PTR_ERR(ns);
5922 	kls->ns = ns;
5923 
5924 	kls->mnt_parent_id = kreq->mnt_id;
5925 	return 0;
5926 }
5927 
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)5928 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
5929 		u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
5930 {
5931 	struct klistmount kls __free(klistmount_free) = {};
5932 	const size_t maxcount = 1000000;
5933 	struct mnt_id_req kreq;
5934 	ssize_t ret;
5935 
5936 	if (flags & ~LISTMOUNT_REVERSE)
5937 		return -EINVAL;
5938 
5939 	/*
5940 	 * If the mount namespace really has more than 1 million mounts the
5941 	 * caller must iterate over the mount namespace (and reconsider their
5942 	 * system design...).
5943 	 */
5944 	if (unlikely(nr_mnt_ids > maxcount))
5945 		return -EOVERFLOW;
5946 
5947 	if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
5948 		return -EFAULT;
5949 
5950 	ret = copy_mnt_id_req(req, &kreq);
5951 	if (ret)
5952 		return ret;
5953 
5954 	ret = prepare_klistmount(&kls, &kreq, nr_mnt_ids);
5955 	if (ret)
5956 		return ret;
5957 
5958 	if (kreq.mnt_ns_id && (kls.ns != current->nsproxy->mnt_ns) &&
5959 	    !ns_capable_noaudit(kls.ns->user_ns, CAP_SYS_ADMIN))
5960 		return -ENOENT;
5961 
5962 	/*
5963 	 * We only need to guard against mount topology changes as
5964 	 * listmount() doesn't care about any mount properties.
5965 	 */
5966 	scoped_guard(namespace_shared)
5967 		ret = do_listmount(&kls, (flags & LISTMOUNT_REVERSE));
5968 	if (ret <= 0)
5969 		return ret;
5970 
5971 	if (copy_to_user(mnt_ids, kls.kmnt_ids, ret * sizeof(*mnt_ids)))
5972 		return -EFAULT;
5973 
5974 	return ret;
5975 }
5976 
5977 struct mnt_namespace init_mnt_ns = {
5978 	.ns.inum	= ns_init_inum(&init_mnt_ns),
5979 	.ns.ops		= &mntns_operations,
5980 	.user_ns	= &init_user_ns,
5981 	.ns.__ns_ref	= REFCOUNT_INIT(1),
5982 	.ns.ns_type	= ns_common_type(&init_mnt_ns),
5983 	.passive	= REFCOUNT_INIT(1),
5984 	.mounts		= RB_ROOT,
5985 	.poll		= __WAIT_QUEUE_HEAD_INITIALIZER(init_mnt_ns.poll),
5986 };
5987 
init_mount_tree(void)5988 static void __init init_mount_tree(void)
5989 {
5990 	struct vfsmount *mnt;
5991 	struct mount *m;
5992 	struct path root;
5993 
5994 	mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", initramfs_options);
5995 	if (IS_ERR(mnt))
5996 		panic("Can't create rootfs");
5997 
5998 	m = real_mount(mnt);
5999 	init_mnt_ns.root = m;
6000 	init_mnt_ns.nr_mounts = 1;
6001 	mnt_add_to_ns(&init_mnt_ns, m);
6002 	init_task.nsproxy->mnt_ns = &init_mnt_ns;
6003 	get_mnt_ns(&init_mnt_ns);
6004 
6005 	root.mnt = mnt;
6006 	root.dentry = mnt->mnt_root;
6007 
6008 	set_fs_pwd(current->fs, &root);
6009 	set_fs_root(current->fs, &root);
6010 
6011 	ns_tree_add(&init_mnt_ns);
6012 }
6013 
mnt_init(void)6014 void __init mnt_init(void)
6015 {
6016 	int err;
6017 
6018 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6019 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6020 
6021 	mount_hashtable = alloc_large_system_hash("Mount-cache",
6022 				sizeof(struct hlist_head),
6023 				mhash_entries, 19,
6024 				HASH_ZERO,
6025 				&m_hash_shift, &m_hash_mask, 0, 0);
6026 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6027 				sizeof(struct hlist_head),
6028 				mphash_entries, 19,
6029 				HASH_ZERO,
6030 				&mp_hash_shift, &mp_hash_mask, 0, 0);
6031 
6032 	if (!mount_hashtable || !mountpoint_hashtable)
6033 		panic("Failed to allocate mount hash table\n");
6034 
6035 	kernfs_init();
6036 
6037 	err = sysfs_init();
6038 	if (err)
6039 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6040 			__func__, err);
6041 	fs_kobj = kobject_create_and_add("fs", NULL);
6042 	if (!fs_kobj)
6043 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
6044 	shmem_init();
6045 	init_rootfs();
6046 	init_mount_tree();
6047 }
6048 
put_mnt_ns(struct mnt_namespace * ns)6049 void put_mnt_ns(struct mnt_namespace *ns)
6050 {
6051 	if (!ns_ref_put(ns))
6052 		return;
6053 	guard(namespace_excl)();
6054 	emptied_ns = ns;
6055 	guard(mount_writer)();
6056 	umount_tree(ns->root, 0);
6057 }
6058 
kern_mount(struct file_system_type * type)6059 struct vfsmount *kern_mount(struct file_system_type *type)
6060 {
6061 	struct vfsmount *mnt;
6062 	mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6063 	if (!IS_ERR(mnt)) {
6064 		/*
6065 		 * it is a longterm mount, don't release mnt until
6066 		 * we unmount before file sys is unregistered
6067 		*/
6068 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6069 	}
6070 	return mnt;
6071 }
6072 EXPORT_SYMBOL_GPL(kern_mount);
6073 
kern_unmount(struct vfsmount * mnt)6074 void kern_unmount(struct vfsmount *mnt)
6075 {
6076 	/* release long term mount so mount point can be released */
6077 	if (!IS_ERR(mnt)) {
6078 		mnt_make_shortterm(mnt);
6079 		synchronize_rcu();	/* yecchhh... */
6080 		mntput(mnt);
6081 	}
6082 }
6083 EXPORT_SYMBOL(kern_unmount);
6084 
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6085 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6086 {
6087 	unsigned int i;
6088 
6089 	for (i = 0; i < num; i++)
6090 		mnt_make_shortterm(mnt[i]);
6091 	synchronize_rcu_expedited();
6092 	for (i = 0; i < num; i++)
6093 		mntput(mnt[i]);
6094 }
6095 EXPORT_SYMBOL(kern_unmount_array);
6096 
our_mnt(struct vfsmount * mnt)6097 bool our_mnt(struct vfsmount *mnt)
6098 {
6099 	return check_mnt(real_mount(mnt));
6100 }
6101 
current_chrooted(void)6102 bool current_chrooted(void)
6103 {
6104 	/* Does the current process have a non-standard root */
6105 	struct path fs_root __free(path_put) = {};
6106 	struct mount *root;
6107 
6108 	get_fs_root(current->fs, &fs_root);
6109 
6110 	/* Find the namespace root */
6111 
6112 	guard(mount_locked_reader)();
6113 
6114 	root = topmost_overmount(current->nsproxy->mnt_ns->root);
6115 
6116 	return fs_root.mnt != &root->mnt || !path_mounted(&fs_root);
6117 }
6118 
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6119 static bool mnt_already_visible(struct mnt_namespace *ns,
6120 				const struct super_block *sb,
6121 				int *new_mnt_flags)
6122 {
6123 	int new_flags = *new_mnt_flags;
6124 	struct mount *mnt, *n;
6125 
6126 	guard(namespace_shared)();
6127 	rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6128 		struct mount *child;
6129 		int mnt_flags;
6130 
6131 		if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6132 			continue;
6133 
6134 		/* This mount is not fully visible if it's root directory
6135 		 * is not the root directory of the filesystem.
6136 		 */
6137 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6138 			continue;
6139 
6140 		/* A local view of the mount flags */
6141 		mnt_flags = mnt->mnt.mnt_flags;
6142 
6143 		/* Don't miss readonly hidden in the superblock flags */
6144 		if (sb_rdonly(mnt->mnt.mnt_sb))
6145 			mnt_flags |= MNT_LOCK_READONLY;
6146 
6147 		/* Verify the mount flags are equal to or more permissive
6148 		 * than the proposed new mount.
6149 		 */
6150 		if ((mnt_flags & MNT_LOCK_READONLY) &&
6151 		    !(new_flags & MNT_READONLY))
6152 			continue;
6153 		if ((mnt_flags & MNT_LOCK_ATIME) &&
6154 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6155 			continue;
6156 
6157 		/* This mount is not fully visible if there are any
6158 		 * locked child mounts that cover anything except for
6159 		 * empty directories.
6160 		 */
6161 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6162 			struct inode *inode = child->mnt_mountpoint->d_inode;
6163 			/* Only worry about locked mounts */
6164 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
6165 				continue;
6166 			/* Is the directory permanently empty? */
6167 			if (!is_empty_dir_inode(inode))
6168 				goto next;
6169 		}
6170 		/* Preserve the locked attributes */
6171 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6172 					       MNT_LOCK_ATIME);
6173 		return true;
6174 	next:	;
6175 	}
6176 	return false;
6177 }
6178 
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6179 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6180 {
6181 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6182 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6183 	unsigned long s_iflags;
6184 
6185 	if (ns->user_ns == &init_user_ns)
6186 		return false;
6187 
6188 	/* Can this filesystem be too revealing? */
6189 	s_iflags = sb->s_iflags;
6190 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
6191 		return false;
6192 
6193 	if ((s_iflags & required_iflags) != required_iflags) {
6194 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6195 			  required_iflags);
6196 		return true;
6197 	}
6198 
6199 	return !mnt_already_visible(ns, sb, new_mnt_flags);
6200 }
6201 
mnt_may_suid(struct vfsmount * mnt)6202 bool mnt_may_suid(struct vfsmount *mnt)
6203 {
6204 	/*
6205 	 * Foreign mounts (accessed via fchdir or through /proc
6206 	 * symlinks) are always treated as if they are nosuid.  This
6207 	 * prevents namespaces from trusting potentially unsafe
6208 	 * suid/sgid bits, file caps, or security labels that originate
6209 	 * in other namespaces.
6210 	 */
6211 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6212 	       current_in_userns(mnt->mnt_sb->s_user_ns);
6213 }
6214 
mntns_get(struct task_struct * task)6215 static struct ns_common *mntns_get(struct task_struct *task)
6216 {
6217 	struct ns_common *ns = NULL;
6218 	struct nsproxy *nsproxy;
6219 
6220 	task_lock(task);
6221 	nsproxy = task->nsproxy;
6222 	if (nsproxy) {
6223 		ns = &nsproxy->mnt_ns->ns;
6224 		get_mnt_ns(to_mnt_ns(ns));
6225 	}
6226 	task_unlock(task);
6227 
6228 	return ns;
6229 }
6230 
mntns_put(struct ns_common * ns)6231 static void mntns_put(struct ns_common *ns)
6232 {
6233 	put_mnt_ns(to_mnt_ns(ns));
6234 }
6235 
mntns_install(struct nsset * nsset,struct ns_common * ns)6236 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6237 {
6238 	struct nsproxy *nsproxy = nsset->nsproxy;
6239 	struct fs_struct *fs = nsset->fs;
6240 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6241 	struct user_namespace *user_ns = nsset->cred->user_ns;
6242 	struct path root;
6243 	int err;
6244 
6245 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6246 	    !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6247 	    !ns_capable(user_ns, CAP_SYS_ADMIN))
6248 		return -EPERM;
6249 
6250 	if (is_anon_ns(mnt_ns))
6251 		return -EINVAL;
6252 
6253 	if (fs->users != 1)
6254 		return -EINVAL;
6255 
6256 	get_mnt_ns(mnt_ns);
6257 	old_mnt_ns = nsproxy->mnt_ns;
6258 	nsproxy->mnt_ns = mnt_ns;
6259 
6260 	/* Find the root */
6261 	err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6262 				"/", LOOKUP_DOWN, &root);
6263 	if (err) {
6264 		/* revert to old namespace */
6265 		nsproxy->mnt_ns = old_mnt_ns;
6266 		put_mnt_ns(mnt_ns);
6267 		return err;
6268 	}
6269 
6270 	put_mnt_ns(old_mnt_ns);
6271 
6272 	/* Update the pwd and root */
6273 	set_fs_pwd(fs, &root);
6274 	set_fs_root(fs, &root);
6275 
6276 	path_put(&root);
6277 	return 0;
6278 }
6279 
mntns_owner(struct ns_common * ns)6280 static struct user_namespace *mntns_owner(struct ns_common *ns)
6281 {
6282 	return to_mnt_ns(ns)->user_ns;
6283 }
6284 
6285 const struct proc_ns_operations mntns_operations = {
6286 	.name		= "mnt",
6287 	.get		= mntns_get,
6288 	.put		= mntns_put,
6289 	.install	= mntns_install,
6290 	.owner		= mntns_owner,
6291 };
6292 
6293 #ifdef CONFIG_SYSCTL
6294 static const struct ctl_table fs_namespace_sysctls[] = {
6295 	{
6296 		.procname	= "mount-max",
6297 		.data		= &sysctl_mount_max,
6298 		.maxlen		= sizeof(unsigned int),
6299 		.mode		= 0644,
6300 		.proc_handler	= proc_dointvec_minmax,
6301 		.extra1		= SYSCTL_ONE,
6302 	},
6303 };
6304 
init_fs_namespace_sysctls(void)6305 static int __init init_fs_namespace_sysctls(void)
6306 {
6307 	register_sysctl_init("fs", fs_namespace_sysctls);
6308 	return 0;
6309 }
6310 fs_initcall(init_fs_namespace_sysctls);
6311 
6312 #endif /* CONFIG_SYSCTL */
6313