1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2015, 2016 The FreeBSD Foundation
5 * Copyright (c) 2004, David Xu <davidxu@freebsd.org>
6 * Copyright (c) 2002, Jeffrey Roberson <jeff@freebsd.org>
7 * All rights reserved.
8 *
9 * Portions of this software were developed by Konstantin Belousov
10 * under sponsorship from the FreeBSD Foundation.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice unmodified, this list of conditions, and the following
17 * disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #include "opt_umtx_profiling.h"
36
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/fcntl.h>
40 #include <sys/file.h>
41 #include <sys/filedesc.h>
42 #include <sys/limits.h>
43 #include <sys/lock.h>
44 #include <sys/malloc.h>
45 #include <sys/mman.h>
46 #include <sys/mutex.h>
47 #include <sys/priv.h>
48 #include <sys/proc.h>
49 #include <sys/resource.h>
50 #include <sys/resourcevar.h>
51 #include <sys/rwlock.h>
52 #include <sys/sbuf.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/sysctl.h>
56 #include <sys/systm.h>
57 #include <sys/sysproto.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/taskqueue.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 #include <sys/umtx.h>
63 #include <sys/umtxvar.h>
64
65 #include <security/mac/mac_framework.h>
66
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <vm/pmap.h>
70 #include <vm/uma.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_object.h>
73
74 #include <machine/atomic.h>
75 #include <machine/cpu.h>
76
77 #include <compat/freebsd32/freebsd32.h>
78 #ifdef COMPAT_FREEBSD32
79 #include <compat/freebsd32/freebsd32_proto.h>
80 #endif
81
82 #define _UMUTEX_TRY 1
83 #define _UMUTEX_WAIT 2
84
85 #ifdef UMTX_PROFILING
86 #define UPROF_PERC_BIGGER(w, f, sw, sf) \
87 (((w) > (sw)) || ((w) == (sw) && (f) > (sf)))
88 #endif
89
90 #define UMTXQ_LOCKED_ASSERT(uc) mtx_assert(&(uc)->uc_lock, MA_OWNED)
91 #ifdef INVARIANTS
92 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do { \
93 struct umtxq_chain *uc; \
94 \
95 uc = umtxq_getchain(key); \
96 mtx_assert(&uc->uc_lock, MA_OWNED); \
97 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy")); \
98 } while (0)
99 #else
100 #define UMTXQ_ASSERT_LOCKED_BUSY(key) do {} while (0)
101 #endif
102
103 /*
104 * Don't propagate time-sharing priority, there is a security reason,
105 * a user can simply introduce PI-mutex, let thread A lock the mutex,
106 * and let another thread B block on the mutex, because B is
107 * sleeping, its priority will be boosted, this causes A's priority to
108 * be boosted via priority propagating too and will never be lowered even
109 * if it is using 100%CPU, this is unfair to other processes.
110 */
111
112 #define UPRI(td) (((td)->td_user_pri >= PRI_MIN_TIMESHARE &&\
113 (td)->td_user_pri <= PRI_MAX_TIMESHARE) ?\
114 PRI_MAX_TIMESHARE : (td)->td_user_pri)
115
116 #define GOLDEN_RATIO_PRIME 2654404609U
117 #ifndef UMTX_CHAINS
118 #define UMTX_CHAINS 512
119 #endif
120 #define UMTX_SHIFTS (__WORD_BIT - 9)
121
122 #define GET_SHARE(flags) \
123 (((flags) & USYNC_PROCESS_SHARED) == 0 ? THREAD_SHARE : PROCESS_SHARE)
124
125 #define BUSY_SPINS 200
126
127 struct umtx_copyops {
128 int (*copyin_timeout)(const void *uaddr, struct timespec *tsp);
129 int (*copyin_umtx_time)(const void *uaddr, size_t size,
130 struct _umtx_time *tp);
131 int (*copyin_robust_lists)(const void *uaddr, size_t size,
132 struct umtx_robust_lists_params *rbp);
133 int (*copyout_timeout)(void *uaddr, size_t size,
134 struct timespec *tsp);
135 const size_t timespec_sz;
136 const size_t umtx_time_sz;
137 const bool compat32;
138 };
139
140 _Static_assert(sizeof(struct umutex) == sizeof(struct umutex32), "umutex32");
141 _Static_assert(__offsetof(struct umutex, m_spare[0]) ==
142 __offsetof(struct umutex32, m_spare[0]), "m_spare32");
143
144 int umtx_shm_vnobj_persistent = 0;
145 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_vnode_persistent, CTLFLAG_RWTUN,
146 &umtx_shm_vnobj_persistent, 0,
147 "False forces destruction of umtx attached to file, on last close");
148 static int umtx_max_rb = 1000;
149 SYSCTL_INT(_kern_ipc, OID_AUTO, umtx_max_robust, CTLFLAG_RWTUN,
150 &umtx_max_rb, 0,
151 "Maximum number of robust mutexes allowed for each thread");
152
153 static uma_zone_t umtx_pi_zone;
154 static struct umtxq_chain umtxq_chains[2][UMTX_CHAINS];
155 static MALLOC_DEFINE(M_UMTX, "umtx", "UMTX queue memory");
156 static int umtx_pi_allocated;
157
158 static SYSCTL_NODE(_debug, OID_AUTO, umtx, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
159 "umtx debug");
160 SYSCTL_INT(_debug_umtx, OID_AUTO, umtx_pi_allocated, CTLFLAG_RD,
161 &umtx_pi_allocated, 0, "Allocated umtx_pi");
162 static int umtx_verbose_rb = 1;
163 SYSCTL_INT(_debug_umtx, OID_AUTO, robust_faults_verbose, CTLFLAG_RWTUN,
164 &umtx_verbose_rb, 0,
165 "");
166
167 #ifdef UMTX_PROFILING
168 static long max_length;
169 SYSCTL_LONG(_debug_umtx, OID_AUTO, max_length, CTLFLAG_RD, &max_length, 0, "max_length");
170 static SYSCTL_NODE(_debug_umtx, OID_AUTO, chains, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
171 "umtx chain stats");
172 #endif
173
174 static inline void umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
175 const struct _umtx_time *umtxtime);
176
177 static void umtx_shm_init(void);
178 static void umtxq_sysinit(void *);
179 static void umtxq_hash(struct umtx_key *key);
180 static int do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags,
181 bool rb);
182 static void umtx_thread_cleanup(struct thread *td);
183 SYSINIT(umtx, SI_SUB_EVENTHANDLER+1, SI_ORDER_MIDDLE, umtxq_sysinit, NULL);
184
185 #define umtxq_signal(key, nwake) umtxq_signal_queue((key), (nwake), UMTX_SHARED_QUEUE)
186
187 static struct mtx umtx_lock;
188
189 #ifdef UMTX_PROFILING
190 static void
umtx_init_profiling(void)191 umtx_init_profiling(void)
192 {
193 struct sysctl_oid *chain_oid;
194 char chain_name[10];
195 int i;
196
197 for (i = 0; i < UMTX_CHAINS; ++i) {
198 snprintf(chain_name, sizeof(chain_name), "%d", i);
199 chain_oid = SYSCTL_ADD_NODE(NULL,
200 SYSCTL_STATIC_CHILDREN(_debug_umtx_chains), OID_AUTO,
201 chain_name, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
202 "umtx hash stats");
203 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
204 "max_length0", CTLFLAG_RD, &umtxq_chains[0][i].max_length, 0, NULL);
205 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(chain_oid), OID_AUTO,
206 "max_length1", CTLFLAG_RD, &umtxq_chains[1][i].max_length, 0, NULL);
207 }
208 }
209
210 static int
sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)211 sysctl_debug_umtx_chains_peaks(SYSCTL_HANDLER_ARGS)
212 {
213 char buf[512];
214 struct sbuf sb;
215 struct umtxq_chain *uc;
216 u_int fract, i, j, tot, whole;
217 u_int sf0, sf1, sf2, sf3, sf4;
218 u_int si0, si1, si2, si3, si4;
219 u_int sw0, sw1, sw2, sw3, sw4;
220
221 sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
222 for (i = 0; i < 2; i++) {
223 tot = 0;
224 for (j = 0; j < UMTX_CHAINS; ++j) {
225 uc = &umtxq_chains[i][j];
226 mtx_lock(&uc->uc_lock);
227 tot += uc->max_length;
228 mtx_unlock(&uc->uc_lock);
229 }
230 if (tot == 0)
231 sbuf_printf(&sb, "%u) Empty ", i);
232 else {
233 sf0 = sf1 = sf2 = sf3 = sf4 = 0;
234 si0 = si1 = si2 = si3 = si4 = 0;
235 sw0 = sw1 = sw2 = sw3 = sw4 = 0;
236 for (j = 0; j < UMTX_CHAINS; j++) {
237 uc = &umtxq_chains[i][j];
238 mtx_lock(&uc->uc_lock);
239 whole = uc->max_length * 100;
240 mtx_unlock(&uc->uc_lock);
241 fract = (whole % tot) * 100;
242 if (UPROF_PERC_BIGGER(whole, fract, sw0, sf0)) {
243 sf0 = fract;
244 si0 = j;
245 sw0 = whole;
246 } else if (UPROF_PERC_BIGGER(whole, fract, sw1,
247 sf1)) {
248 sf1 = fract;
249 si1 = j;
250 sw1 = whole;
251 } else if (UPROF_PERC_BIGGER(whole, fract, sw2,
252 sf2)) {
253 sf2 = fract;
254 si2 = j;
255 sw2 = whole;
256 } else if (UPROF_PERC_BIGGER(whole, fract, sw3,
257 sf3)) {
258 sf3 = fract;
259 si3 = j;
260 sw3 = whole;
261 } else if (UPROF_PERC_BIGGER(whole, fract, sw4,
262 sf4)) {
263 sf4 = fract;
264 si4 = j;
265 sw4 = whole;
266 }
267 }
268 sbuf_printf(&sb, "queue %u:\n", i);
269 sbuf_printf(&sb, "1st: %u.%u%% idx: %u\n", sw0 / tot,
270 sf0 / tot, si0);
271 sbuf_printf(&sb, "2nd: %u.%u%% idx: %u\n", sw1 / tot,
272 sf1 / tot, si1);
273 sbuf_printf(&sb, "3rd: %u.%u%% idx: %u\n", sw2 / tot,
274 sf2 / tot, si2);
275 sbuf_printf(&sb, "4th: %u.%u%% idx: %u\n", sw3 / tot,
276 sf3 / tot, si3);
277 sbuf_printf(&sb, "5th: %u.%u%% idx: %u\n", sw4 / tot,
278 sf4 / tot, si4);
279 }
280 }
281 sbuf_trim(&sb);
282 sbuf_finish(&sb);
283 sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
284 sbuf_delete(&sb);
285 return (0);
286 }
287
288 static int
sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)289 sysctl_debug_umtx_chains_clear(SYSCTL_HANDLER_ARGS)
290 {
291 struct umtxq_chain *uc;
292 u_int i, j;
293 int clear, error;
294
295 clear = 0;
296 error = sysctl_handle_int(oidp, &clear, 0, req);
297 if (error != 0 || req->newptr == NULL)
298 return (error);
299
300 if (clear != 0) {
301 for (i = 0; i < 2; ++i) {
302 for (j = 0; j < UMTX_CHAINS; ++j) {
303 uc = &umtxq_chains[i][j];
304 mtx_lock(&uc->uc_lock);
305 uc->length = 0;
306 uc->max_length = 0;
307 mtx_unlock(&uc->uc_lock);
308 }
309 }
310 }
311 return (0);
312 }
313
314 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, clear,
315 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
316 sysctl_debug_umtx_chains_clear, "I",
317 "Clear umtx chains statistics");
318 SYSCTL_PROC(_debug_umtx_chains, OID_AUTO, peaks,
319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 0,
320 sysctl_debug_umtx_chains_peaks, "A",
321 "Highest peaks in chains max length");
322 #endif
323
324 static void
umtxq_sysinit(void * arg __unused)325 umtxq_sysinit(void *arg __unused)
326 {
327 int i, j;
328
329 umtx_pi_zone = uma_zcreate("umtx pi", sizeof(struct umtx_pi),
330 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
331 for (i = 0; i < 2; ++i) {
332 for (j = 0; j < UMTX_CHAINS; ++j) {
333 mtx_init(&umtxq_chains[i][j].uc_lock, "umtxql", NULL,
334 MTX_DEF | MTX_DUPOK);
335 LIST_INIT(&umtxq_chains[i][j].uc_queue[0]);
336 LIST_INIT(&umtxq_chains[i][j].uc_queue[1]);
337 LIST_INIT(&umtxq_chains[i][j].uc_spare_queue);
338 TAILQ_INIT(&umtxq_chains[i][j].uc_pi_list);
339 umtxq_chains[i][j].uc_busy = 0;
340 umtxq_chains[i][j].uc_waiters = 0;
341 #ifdef UMTX_PROFILING
342 umtxq_chains[i][j].length = 0;
343 umtxq_chains[i][j].max_length = 0;
344 #endif
345 }
346 }
347 #ifdef UMTX_PROFILING
348 umtx_init_profiling();
349 #endif
350 mtx_init(&umtx_lock, "umtx lock", NULL, MTX_DEF);
351 umtx_shm_init();
352 }
353
354 struct umtx_q *
umtxq_alloc(void)355 umtxq_alloc(void)
356 {
357 struct umtx_q *uq;
358
359 uq = malloc(sizeof(struct umtx_q), M_UMTX, M_WAITOK | M_ZERO);
360 uq->uq_spare_queue = malloc(sizeof(struct umtxq_queue), M_UMTX,
361 M_WAITOK | M_ZERO);
362 TAILQ_INIT(&uq->uq_spare_queue->head);
363 TAILQ_INIT(&uq->uq_pi_contested);
364 uq->uq_inherited_pri = PRI_MAX;
365 return (uq);
366 }
367
368 void
umtxq_free(struct umtx_q * uq)369 umtxq_free(struct umtx_q *uq)
370 {
371
372 MPASS(uq->uq_spare_queue != NULL);
373 free(uq->uq_spare_queue, M_UMTX);
374 free(uq, M_UMTX);
375 }
376
377 static inline void
umtxq_hash(struct umtx_key * key)378 umtxq_hash(struct umtx_key *key)
379 {
380 unsigned n;
381
382 n = (uintptr_t)key->info.both.a + key->info.both.b;
383 key->hash = ((n * GOLDEN_RATIO_PRIME) >> UMTX_SHIFTS) % UMTX_CHAINS;
384 }
385
386 struct umtxq_chain *
umtxq_getchain(struct umtx_key * key)387 umtxq_getchain(struct umtx_key *key)
388 {
389
390 if (key->type <= TYPE_SEM)
391 return (&umtxq_chains[1][key->hash]);
392 return (&umtxq_chains[0][key->hash]);
393 }
394
395 /*
396 * Set chain to busy state when following operation
397 * may be blocked (kernel mutex can not be used).
398 */
399 void
umtxq_busy(struct umtx_key * key)400 umtxq_busy(struct umtx_key *key)
401 {
402 struct umtxq_chain *uc;
403
404 uc = umtxq_getchain(key);
405 mtx_assert(&uc->uc_lock, MA_OWNED);
406 if (uc->uc_busy) {
407 #ifdef SMP
408 if (smp_cpus > 1) {
409 int count = BUSY_SPINS;
410 if (count > 0) {
411 umtxq_unlock(key);
412 while (uc->uc_busy && --count > 0)
413 cpu_spinwait();
414 umtxq_lock(key);
415 }
416 }
417 #endif
418 while (uc->uc_busy) {
419 uc->uc_waiters++;
420 msleep(uc, &uc->uc_lock, 0, "umtxqb", 0);
421 uc->uc_waiters--;
422 }
423 }
424 uc->uc_busy = 1;
425 }
426
427 /*
428 * Unbusy a chain.
429 */
430 void
umtxq_unbusy(struct umtx_key * key)431 umtxq_unbusy(struct umtx_key *key)
432 {
433 struct umtxq_chain *uc;
434
435 uc = umtxq_getchain(key);
436 mtx_assert(&uc->uc_lock, MA_OWNED);
437 KASSERT(uc->uc_busy != 0, ("not busy"));
438 uc->uc_busy = 0;
439 if (uc->uc_waiters)
440 wakeup_one(uc);
441 }
442
443 void
umtxq_busy_unlocked(struct umtx_key * key)444 umtxq_busy_unlocked(struct umtx_key *key)
445 {
446 umtxq_lock(key);
447 umtxq_busy(key);
448 umtxq_unlock(key);
449 }
450
451 void
umtxq_unbusy_unlocked(struct umtx_key * key)452 umtxq_unbusy_unlocked(struct umtx_key *key)
453 {
454 umtxq_lock(key);
455 umtxq_unbusy(key);
456 umtxq_unlock(key);
457 }
458
459 static struct umtxq_queue *
umtxq_queue_lookup(struct umtx_key * key,int q)460 umtxq_queue_lookup(struct umtx_key *key, int q)
461 {
462 struct umtxq_queue *uh;
463 struct umtxq_chain *uc;
464
465 uc = umtxq_getchain(key);
466 UMTXQ_LOCKED_ASSERT(uc);
467 LIST_FOREACH(uh, &uc->uc_queue[q], link) {
468 if (umtx_key_match(&uh->key, key))
469 return (uh);
470 }
471
472 return (NULL);
473 }
474
475 void
umtxq_insert_queue(struct umtx_q * uq,int q)476 umtxq_insert_queue(struct umtx_q *uq, int q)
477 {
478 struct umtxq_queue *uh;
479 struct umtxq_chain *uc;
480
481 uc = umtxq_getchain(&uq->uq_key);
482 UMTXQ_LOCKED_ASSERT(uc);
483 KASSERT((uq->uq_flags & UQF_UMTXQ) == 0, ("umtx_q is already on queue"));
484 uh = umtxq_queue_lookup(&uq->uq_key, q);
485 if (uh != NULL) {
486 LIST_INSERT_HEAD(&uc->uc_spare_queue, uq->uq_spare_queue, link);
487 } else {
488 uh = uq->uq_spare_queue;
489 uh->key = uq->uq_key;
490 LIST_INSERT_HEAD(&uc->uc_queue[q], uh, link);
491 #ifdef UMTX_PROFILING
492 uc->length++;
493 if (uc->length > uc->max_length) {
494 uc->max_length = uc->length;
495 if (uc->max_length > max_length)
496 max_length = uc->max_length;
497 }
498 #endif
499 }
500 uq->uq_spare_queue = NULL;
501
502 TAILQ_INSERT_TAIL(&uh->head, uq, uq_link);
503 uh->length++;
504 uq->uq_flags |= UQF_UMTXQ;
505 uq->uq_cur_queue = uh;
506 return;
507 }
508
509 void
umtxq_remove_queue(struct umtx_q * uq,int q)510 umtxq_remove_queue(struct umtx_q *uq, int q)
511 {
512 struct umtxq_chain *uc;
513 struct umtxq_queue *uh;
514
515 uc = umtxq_getchain(&uq->uq_key);
516 UMTXQ_LOCKED_ASSERT(uc);
517 if (uq->uq_flags & UQF_UMTXQ) {
518 uh = uq->uq_cur_queue;
519 TAILQ_REMOVE(&uh->head, uq, uq_link);
520 uh->length--;
521 uq->uq_flags &= ~UQF_UMTXQ;
522 if (TAILQ_EMPTY(&uh->head)) {
523 KASSERT(uh->length == 0,
524 ("inconsistent umtxq_queue length"));
525 #ifdef UMTX_PROFILING
526 uc->length--;
527 #endif
528 LIST_REMOVE(uh, link);
529 } else {
530 uh = LIST_FIRST(&uc->uc_spare_queue);
531 KASSERT(uh != NULL, ("uc_spare_queue is empty"));
532 LIST_REMOVE(uh, link);
533 }
534 uq->uq_spare_queue = uh;
535 uq->uq_cur_queue = NULL;
536 }
537 }
538
539 /*
540 * Check if there are multiple waiters
541 */
542 int
umtxq_count(struct umtx_key * key)543 umtxq_count(struct umtx_key *key)
544 {
545 struct umtxq_queue *uh;
546
547 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
548 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
549 if (uh != NULL)
550 return (uh->length);
551 return (0);
552 }
553
554 /*
555 * Check if there are multiple PI waiters and returns first
556 * waiter.
557 */
558 static int
umtxq_count_pi(struct umtx_key * key,struct umtx_q ** first)559 umtxq_count_pi(struct umtx_key *key, struct umtx_q **first)
560 {
561 struct umtxq_queue *uh;
562
563 *first = NULL;
564 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
565 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
566 if (uh != NULL) {
567 *first = TAILQ_FIRST(&uh->head);
568 return (uh->length);
569 }
570 return (0);
571 }
572
573 /*
574 * Wake up threads waiting on an userland object by a bit mask.
575 */
576 int
umtxq_signal_mask(struct umtx_key * key,int n_wake,u_int bitset)577 umtxq_signal_mask(struct umtx_key *key, int n_wake, u_int bitset)
578 {
579 struct umtxq_queue *uh;
580 struct umtx_q *uq, *uq_temp;
581 int ret;
582
583 ret = 0;
584 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
585 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
586 if (uh == NULL)
587 return (0);
588 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
589 if ((uq->uq_bitset & bitset) == 0)
590 continue;
591 umtxq_remove_queue(uq, UMTX_SHARED_QUEUE);
592 wakeup_one(uq);
593 if (++ret >= n_wake)
594 break;
595 }
596 return (ret);
597 }
598
599 /*
600 * Wake up threads waiting on an userland object.
601 */
602
603 static int
umtxq_signal_queue(struct umtx_key * key,int n_wake,int q)604 umtxq_signal_queue(struct umtx_key *key, int n_wake, int q)
605 {
606 struct umtxq_queue *uh;
607 struct umtx_q *uq;
608 int ret;
609
610 ret = 0;
611 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
612 uh = umtxq_queue_lookup(key, q);
613 if (uh != NULL) {
614 while ((uq = TAILQ_FIRST(&uh->head)) != NULL) {
615 umtxq_remove_queue(uq, q);
616 wakeup(uq);
617 if (++ret >= n_wake)
618 return (ret);
619 }
620 }
621 return (ret);
622 }
623
624 /*
625 * Wake up specified thread.
626 */
627 static inline void
umtxq_signal_thread(struct umtx_q * uq)628 umtxq_signal_thread(struct umtx_q *uq)
629 {
630
631 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
632 umtxq_remove(uq);
633 wakeup(uq);
634 }
635
636 /*
637 * Wake up a maximum of n_wake threads that are waiting on an userland
638 * object identified by key. The remaining threads are removed from queue
639 * identified by key and added to the queue identified by key2 (requeued).
640 * The n_requeue specifies an upper limit on the number of threads that
641 * are requeued to the second queue.
642 */
643 int
umtxq_requeue(struct umtx_key * key,int n_wake,struct umtx_key * key2,int n_requeue)644 umtxq_requeue(struct umtx_key *key, int n_wake, struct umtx_key *key2,
645 int n_requeue)
646 {
647 struct umtxq_queue *uh;
648 struct umtx_q *uq, *uq_temp;
649 int ret;
650
651 ret = 0;
652 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key));
653 UMTXQ_LOCKED_ASSERT(umtxq_getchain(key2));
654 uh = umtxq_queue_lookup(key, UMTX_SHARED_QUEUE);
655 if (uh == NULL)
656 return (0);
657 TAILQ_FOREACH_SAFE(uq, &uh->head, uq_link, uq_temp) {
658 if (++ret <= n_wake) {
659 umtxq_remove(uq);
660 wakeup_one(uq);
661 } else {
662 umtxq_remove(uq);
663 uq->uq_key = *key2;
664 umtxq_insert(uq);
665 if (ret - n_wake == n_requeue)
666 break;
667 }
668 }
669 return (ret);
670 }
671
672 static inline int
tstohz(const struct timespec * tsp)673 tstohz(const struct timespec *tsp)
674 {
675 struct timeval tv;
676
677 TIMESPEC_TO_TIMEVAL(&tv, tsp);
678 return tvtohz(&tv);
679 }
680
681 void
umtx_abs_timeout_init(struct umtx_abs_timeout * timo,int clockid,int absolute,const struct timespec * timeout)682 umtx_abs_timeout_init(struct umtx_abs_timeout *timo, int clockid,
683 int absolute, const struct timespec *timeout)
684 {
685
686 timo->clockid = clockid;
687 if (!absolute) {
688 timo->is_abs_real = false;
689 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
690 timespecadd(&timo->cur, timeout, &timo->end);
691 } else {
692 timo->end = *timeout;
693 timo->is_abs_real = clockid == CLOCK_REALTIME ||
694 clockid == CLOCK_REALTIME_FAST ||
695 clockid == CLOCK_REALTIME_PRECISE ||
696 clockid == CLOCK_SECOND;
697 }
698 }
699
700 static void
umtx_abs_timeout_init2(struct umtx_abs_timeout * timo,const struct _umtx_time * umtxtime)701 umtx_abs_timeout_init2(struct umtx_abs_timeout *timo,
702 const struct _umtx_time *umtxtime)
703 {
704
705 umtx_abs_timeout_init(timo, umtxtime->_clockid,
706 (umtxtime->_flags & UMTX_ABSTIME) != 0, &umtxtime->_timeout);
707 }
708
709 static void
umtx_abs_timeout_enforce_min(sbintime_t * sbt)710 umtx_abs_timeout_enforce_min(sbintime_t *sbt)
711 {
712 sbintime_t when, mint;
713
714 mint = curproc->p_umtx_min_timeout;
715 if (__predict_false(mint != 0)) {
716 when = sbinuptime() + mint;
717 if (*sbt < when)
718 *sbt = when;
719 }
720 }
721
722 static int
umtx_abs_timeout_getsbt(struct umtx_abs_timeout * timo,sbintime_t * sbt,int * flags)723 umtx_abs_timeout_getsbt(struct umtx_abs_timeout *timo, sbintime_t *sbt,
724 int *flags)
725 {
726 struct bintime bt, bbt;
727 struct timespec tts;
728 sbintime_t rem;
729
730 switch (timo->clockid) {
731
732 /* Clocks that can be converted into absolute time. */
733 case CLOCK_REALTIME:
734 case CLOCK_REALTIME_PRECISE:
735 case CLOCK_REALTIME_FAST:
736 case CLOCK_MONOTONIC:
737 case CLOCK_MONOTONIC_PRECISE:
738 case CLOCK_MONOTONIC_FAST:
739 case CLOCK_UPTIME:
740 case CLOCK_UPTIME_PRECISE:
741 case CLOCK_UPTIME_FAST:
742 case CLOCK_SECOND:
743 timespec2bintime(&timo->end, &bt);
744 switch (timo->clockid) {
745 case CLOCK_REALTIME:
746 case CLOCK_REALTIME_PRECISE:
747 case CLOCK_REALTIME_FAST:
748 case CLOCK_SECOND:
749 getboottimebin(&bbt);
750 bintime_sub(&bt, &bbt);
751 break;
752 }
753 if (bt.sec < 0)
754 return (ETIMEDOUT);
755 if (bt.sec >= (SBT_MAX >> 32)) {
756 *sbt = 0;
757 *flags = 0;
758 return (0);
759 }
760 *sbt = bttosbt(bt);
761 umtx_abs_timeout_enforce_min(sbt);
762
763 /*
764 * Check if the absolute time should be aligned to
765 * avoid firing multiple timer events in non-periodic
766 * timer mode.
767 */
768 switch (timo->clockid) {
769 case CLOCK_REALTIME_FAST:
770 case CLOCK_MONOTONIC_FAST:
771 case CLOCK_UPTIME_FAST:
772 rem = *sbt % tc_tick_sbt;
773 if (__predict_true(rem != 0))
774 *sbt += tc_tick_sbt - rem;
775 break;
776 case CLOCK_SECOND:
777 rem = *sbt % SBT_1S;
778 if (__predict_true(rem != 0))
779 *sbt += SBT_1S - rem;
780 break;
781 }
782 *flags = C_ABSOLUTE;
783 return (0);
784
785 /* Clocks that has to be periodically polled. */
786 case CLOCK_VIRTUAL:
787 case CLOCK_PROF:
788 case CLOCK_THREAD_CPUTIME_ID:
789 case CLOCK_PROCESS_CPUTIME_ID:
790 default:
791 kern_clock_gettime(curthread, timo->clockid, &timo->cur);
792 if (timespeccmp(&timo->end, &timo->cur, <=))
793 return (ETIMEDOUT);
794 timespecsub(&timo->end, &timo->cur, &tts);
795 *sbt = tick_sbt * tstohz(&tts);
796 *flags = C_HARDCLOCK;
797 return (0);
798 }
799 }
800
801 static uint32_t
umtx_unlock_val(uint32_t flags,bool rb)802 umtx_unlock_val(uint32_t flags, bool rb)
803 {
804
805 if (rb)
806 return (UMUTEX_RB_OWNERDEAD);
807 else if ((flags & UMUTEX_NONCONSISTENT) != 0)
808 return (UMUTEX_RB_NOTRECOV);
809 else
810 return (UMUTEX_UNOWNED);
811
812 }
813
814 /*
815 * Put thread into sleep state, before sleeping, check if
816 * thread was removed from umtx queue.
817 */
818 int
umtxq_sleep(struct umtx_q * uq,const char * wmesg,struct umtx_abs_timeout * timo)819 umtxq_sleep(struct umtx_q *uq, const char *wmesg,
820 struct umtx_abs_timeout *timo)
821 {
822 struct umtxq_chain *uc;
823 sbintime_t sbt = 0;
824 int error, flags = 0;
825
826 uc = umtxq_getchain(&uq->uq_key);
827 UMTXQ_LOCKED_ASSERT(uc);
828 for (;;) {
829 if (!(uq->uq_flags & UQF_UMTXQ)) {
830 error = 0;
831 break;
832 }
833 if (timo != NULL) {
834 if (timo->is_abs_real)
835 curthread->td_rtcgen =
836 atomic_load_acq_int(&rtc_generation);
837 error = umtx_abs_timeout_getsbt(timo, &sbt, &flags);
838 if (error != 0)
839 break;
840 }
841 error = msleep_sbt(uq, &uc->uc_lock, PCATCH | PDROP, wmesg,
842 sbt, 0, flags);
843 uc = umtxq_getchain(&uq->uq_key);
844 mtx_lock(&uc->uc_lock);
845 if (error == EINTR || error == ERESTART)
846 break;
847 if (error == EWOULDBLOCK && (flags & C_ABSOLUTE) != 0) {
848 error = ETIMEDOUT;
849 break;
850 }
851 }
852
853 curthread->td_rtcgen = 0;
854 return (error);
855 }
856
857 /*
858 * Convert userspace address into unique logical address.
859 */
860 int
umtx_key_get(const void * addr,int type,int share,struct umtx_key * key)861 umtx_key_get(const void *addr, int type, int share, struct umtx_key *key)
862 {
863 struct thread *td = curthread;
864 vm_map_t map;
865 vm_map_entry_t entry;
866 vm_pindex_t pindex;
867 vm_prot_t prot;
868 boolean_t wired;
869
870 key->type = type;
871 if (share == THREAD_SHARE) {
872 key->shared = 0;
873 key->info.private.vs = td->td_proc->p_vmspace;
874 key->info.private.addr = (uintptr_t)addr;
875 } else {
876 MPASS(share == PROCESS_SHARE || share == AUTO_SHARE);
877 map = &td->td_proc->p_vmspace->vm_map;
878 if (vm_map_lookup(&map, (vm_offset_t)addr, VM_PROT_WRITE,
879 &entry, &key->info.shared.object, &pindex, &prot,
880 &wired) != KERN_SUCCESS) {
881 return (EFAULT);
882 }
883
884 if ((share == PROCESS_SHARE) ||
885 (share == AUTO_SHARE &&
886 VM_INHERIT_SHARE == entry->inheritance)) {
887 key->shared = 1;
888 key->info.shared.offset = (vm_offset_t)addr -
889 entry->start + entry->offset;
890 vm_object_reference(key->info.shared.object);
891 } else {
892 key->shared = 0;
893 key->info.private.vs = td->td_proc->p_vmspace;
894 key->info.private.addr = (uintptr_t)addr;
895 }
896 vm_map_lookup_done(map, entry);
897 }
898
899 umtxq_hash(key);
900 return (0);
901 }
902
903 /*
904 * Release key.
905 */
906 void
umtx_key_release(struct umtx_key * key)907 umtx_key_release(struct umtx_key *key)
908 {
909 if (key->shared)
910 vm_object_deallocate(key->info.shared.object);
911 }
912
913 #ifdef COMPAT_FREEBSD10
914 /*
915 * Lock a umtx object.
916 */
917 static int
do_lock_umtx(struct thread * td,struct umtx * umtx,u_long id,const struct timespec * timeout)918 do_lock_umtx(struct thread *td, struct umtx *umtx, u_long id,
919 const struct timespec *timeout)
920 {
921 struct umtx_abs_timeout timo;
922 struct umtx_q *uq;
923 u_long owner;
924 u_long old;
925 int error = 0;
926
927 uq = td->td_umtxq;
928 if (timeout != NULL)
929 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
930
931 /*
932 * Care must be exercised when dealing with umtx structure. It
933 * can fault on any access.
934 */
935 for (;;) {
936 /*
937 * Try the uncontested case. This should be done in userland.
938 */
939 owner = casuword(&umtx->u_owner, UMTX_UNOWNED, id);
940
941 /* The acquire succeeded. */
942 if (owner == UMTX_UNOWNED)
943 return (0);
944
945 /* The address was invalid. */
946 if (owner == -1)
947 return (EFAULT);
948
949 /* If no one owns it but it is contested try to acquire it. */
950 if (owner == UMTX_CONTESTED) {
951 owner = casuword(&umtx->u_owner,
952 UMTX_CONTESTED, id | UMTX_CONTESTED);
953
954 if (owner == UMTX_CONTESTED)
955 return (0);
956
957 /* The address was invalid. */
958 if (owner == -1)
959 return (EFAULT);
960
961 error = thread_check_susp(td, false);
962 if (error != 0)
963 break;
964
965 /* If this failed the lock has changed, restart. */
966 continue;
967 }
968
969 /*
970 * If we caught a signal, we have retried and now
971 * exit immediately.
972 */
973 if (error != 0)
974 break;
975
976 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK,
977 AUTO_SHARE, &uq->uq_key)) != 0)
978 return (error);
979
980 umtxq_lock(&uq->uq_key);
981 umtxq_busy(&uq->uq_key);
982 umtxq_insert(uq);
983 umtxq_unbusy(&uq->uq_key);
984 umtxq_unlock(&uq->uq_key);
985
986 /*
987 * Set the contested bit so that a release in user space
988 * knows to use the system call for unlock. If this fails
989 * either some one else has acquired the lock or it has been
990 * released.
991 */
992 old = casuword(&umtx->u_owner, owner, owner | UMTX_CONTESTED);
993
994 /* The address was invalid. */
995 if (old == -1) {
996 umtxq_lock(&uq->uq_key);
997 umtxq_remove(uq);
998 umtxq_unlock(&uq->uq_key);
999 umtx_key_release(&uq->uq_key);
1000 return (EFAULT);
1001 }
1002
1003 /*
1004 * We set the contested bit, sleep. Otherwise the lock changed
1005 * and we need to retry or we lost a race to the thread
1006 * unlocking the umtx.
1007 */
1008 umtxq_lock(&uq->uq_key);
1009 if (old == owner)
1010 error = umtxq_sleep(uq, "umtx", timeout == NULL ? NULL :
1011 &timo);
1012 umtxq_remove(uq);
1013 umtxq_unlock(&uq->uq_key);
1014 umtx_key_release(&uq->uq_key);
1015
1016 if (error == 0)
1017 error = thread_check_susp(td, false);
1018 }
1019
1020 if (timeout == NULL) {
1021 /* Mutex locking is restarted if it is interrupted. */
1022 if (error == EINTR)
1023 error = ERESTART;
1024 } else {
1025 /* Timed-locking is not restarted. */
1026 if (error == ERESTART)
1027 error = EINTR;
1028 }
1029 return (error);
1030 }
1031
1032 /*
1033 * Unlock a umtx object.
1034 */
1035 static int
do_unlock_umtx(struct thread * td,struct umtx * umtx,u_long id)1036 do_unlock_umtx(struct thread *td, struct umtx *umtx, u_long id)
1037 {
1038 struct umtx_key key;
1039 u_long owner;
1040 u_long old;
1041 int error;
1042 int count;
1043
1044 /*
1045 * Make sure we own this mtx.
1046 */
1047 owner = fuword(__DEVOLATILE(u_long *, &umtx->u_owner));
1048 if (owner == -1)
1049 return (EFAULT);
1050
1051 if ((owner & ~UMTX_CONTESTED) != id)
1052 return (EPERM);
1053
1054 /* This should be done in userland */
1055 if ((owner & UMTX_CONTESTED) == 0) {
1056 old = casuword(&umtx->u_owner, owner, UMTX_UNOWNED);
1057 if (old == -1)
1058 return (EFAULT);
1059 if (old == owner)
1060 return (0);
1061 owner = old;
1062 }
1063
1064 /* We should only ever be in here for contested locks */
1065 if ((error = umtx_key_get(umtx, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1066 &key)) != 0)
1067 return (error);
1068
1069 umtxq_lock(&key);
1070 umtxq_busy(&key);
1071 count = umtxq_count(&key);
1072 umtxq_unlock(&key);
1073
1074 /*
1075 * When unlocking the umtx, it must be marked as unowned if
1076 * there is zero or one thread only waiting for it.
1077 * Otherwise, it must be marked as contested.
1078 */
1079 old = casuword(&umtx->u_owner, owner,
1080 count <= 1 ? UMTX_UNOWNED : UMTX_CONTESTED);
1081 umtxq_lock(&key);
1082 umtxq_signal(&key,1);
1083 umtxq_unbusy(&key);
1084 umtxq_unlock(&key);
1085 umtx_key_release(&key);
1086 if (old == -1)
1087 return (EFAULT);
1088 if (old != owner)
1089 return (EINVAL);
1090 return (0);
1091 }
1092
1093 #ifdef COMPAT_FREEBSD32
1094
1095 /*
1096 * Lock a umtx object.
1097 */
1098 static int
do_lock_umtx32(struct thread * td,uint32_t * m,uint32_t id,const struct timespec * timeout)1099 do_lock_umtx32(struct thread *td, uint32_t *m, uint32_t id,
1100 const struct timespec *timeout)
1101 {
1102 struct umtx_abs_timeout timo;
1103 struct umtx_q *uq;
1104 uint32_t owner;
1105 uint32_t old;
1106 int error = 0;
1107
1108 uq = td->td_umtxq;
1109
1110 if (timeout != NULL)
1111 umtx_abs_timeout_init(&timo, CLOCK_REALTIME, 0, timeout);
1112
1113 /*
1114 * Care must be exercised when dealing with umtx structure. It
1115 * can fault on any access.
1116 */
1117 for (;;) {
1118 /*
1119 * Try the uncontested case. This should be done in userland.
1120 */
1121 owner = casuword32(m, UMUTEX_UNOWNED, id);
1122
1123 /* The acquire succeeded. */
1124 if (owner == UMUTEX_UNOWNED)
1125 return (0);
1126
1127 /* The address was invalid. */
1128 if (owner == -1)
1129 return (EFAULT);
1130
1131 /* If no one owns it but it is contested try to acquire it. */
1132 if (owner == UMUTEX_CONTESTED) {
1133 owner = casuword32(m,
1134 UMUTEX_CONTESTED, id | UMUTEX_CONTESTED);
1135 if (owner == UMUTEX_CONTESTED)
1136 return (0);
1137
1138 /* The address was invalid. */
1139 if (owner == -1)
1140 return (EFAULT);
1141
1142 error = thread_check_susp(td, false);
1143 if (error != 0)
1144 break;
1145
1146 /* If this failed the lock has changed, restart. */
1147 continue;
1148 }
1149
1150 /*
1151 * If we caught a signal, we have retried and now
1152 * exit immediately.
1153 */
1154 if (error != 0)
1155 return (error);
1156
1157 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK,
1158 AUTO_SHARE, &uq->uq_key)) != 0)
1159 return (error);
1160
1161 umtxq_lock(&uq->uq_key);
1162 umtxq_busy(&uq->uq_key);
1163 umtxq_insert(uq);
1164 umtxq_unbusy(&uq->uq_key);
1165 umtxq_unlock(&uq->uq_key);
1166
1167 /*
1168 * Set the contested bit so that a release in user space
1169 * knows to use the system call for unlock. If this fails
1170 * either some one else has acquired the lock or it has been
1171 * released.
1172 */
1173 old = casuword32(m, owner, owner | UMUTEX_CONTESTED);
1174
1175 /* The address was invalid. */
1176 if (old == -1) {
1177 umtxq_lock(&uq->uq_key);
1178 umtxq_remove(uq);
1179 umtxq_unlock(&uq->uq_key);
1180 umtx_key_release(&uq->uq_key);
1181 return (EFAULT);
1182 }
1183
1184 /*
1185 * We set the contested bit, sleep. Otherwise the lock changed
1186 * and we need to retry or we lost a race to the thread
1187 * unlocking the umtx.
1188 */
1189 umtxq_lock(&uq->uq_key);
1190 if (old == owner)
1191 error = umtxq_sleep(uq, "umtx", timeout == NULL ?
1192 NULL : &timo);
1193 umtxq_remove(uq);
1194 umtxq_unlock(&uq->uq_key);
1195 umtx_key_release(&uq->uq_key);
1196
1197 if (error == 0)
1198 error = thread_check_susp(td, false);
1199 }
1200
1201 if (timeout == NULL) {
1202 /* Mutex locking is restarted if it is interrupted. */
1203 if (error == EINTR)
1204 error = ERESTART;
1205 } else {
1206 /* Timed-locking is not restarted. */
1207 if (error == ERESTART)
1208 error = EINTR;
1209 }
1210 return (error);
1211 }
1212
1213 /*
1214 * Unlock a umtx object.
1215 */
1216 static int
do_unlock_umtx32(struct thread * td,uint32_t * m,uint32_t id)1217 do_unlock_umtx32(struct thread *td, uint32_t *m, uint32_t id)
1218 {
1219 struct umtx_key key;
1220 uint32_t owner;
1221 uint32_t old;
1222 int error;
1223 int count;
1224
1225 /*
1226 * Make sure we own this mtx.
1227 */
1228 owner = fuword32(m);
1229 if (owner == -1)
1230 return (EFAULT);
1231
1232 if ((owner & ~UMUTEX_CONTESTED) != id)
1233 return (EPERM);
1234
1235 /* This should be done in userland */
1236 if ((owner & UMUTEX_CONTESTED) == 0) {
1237 old = casuword32(m, owner, UMUTEX_UNOWNED);
1238 if (old == -1)
1239 return (EFAULT);
1240 if (old == owner)
1241 return (0);
1242 owner = old;
1243 }
1244
1245 /* We should only ever be in here for contested locks */
1246 if ((error = umtx_key_get(m, TYPE_SIMPLE_LOCK, AUTO_SHARE,
1247 &key)) != 0)
1248 return (error);
1249
1250 umtxq_lock(&key);
1251 umtxq_busy(&key);
1252 count = umtxq_count(&key);
1253 umtxq_unlock(&key);
1254
1255 /*
1256 * When unlocking the umtx, it must be marked as unowned if
1257 * there is zero or one thread only waiting for it.
1258 * Otherwise, it must be marked as contested.
1259 */
1260 old = casuword32(m, owner,
1261 count <= 1 ? UMUTEX_UNOWNED : UMUTEX_CONTESTED);
1262 umtxq_lock(&key);
1263 umtxq_signal(&key,1);
1264 umtxq_unbusy(&key);
1265 umtxq_unlock(&key);
1266 umtx_key_release(&key);
1267 if (old == -1)
1268 return (EFAULT);
1269 if (old != owner)
1270 return (EINVAL);
1271 return (0);
1272 }
1273 #endif /* COMPAT_FREEBSD32 */
1274 #endif /* COMPAT_FREEBSD10 */
1275
1276 /*
1277 * Fetch and compare value, sleep on the address if value is not changed.
1278 */
1279 static int
do_wait(struct thread * td,void * addr,u_long id,struct _umtx_time * timeout,int compat32,int is_private)1280 do_wait(struct thread *td, void *addr, u_long id,
1281 struct _umtx_time *timeout, int compat32, int is_private)
1282 {
1283 struct umtx_abs_timeout timo;
1284 struct umtx_q *uq;
1285 u_long tmp;
1286 uint32_t tmp32;
1287 int error = 0;
1288
1289 uq = td->td_umtxq;
1290 if ((error = umtx_key_get(addr, TYPE_SIMPLE_WAIT,
1291 is_private ? THREAD_SHARE : AUTO_SHARE, &uq->uq_key)) != 0)
1292 return (error);
1293
1294 if (timeout != NULL)
1295 umtx_abs_timeout_init2(&timo, timeout);
1296
1297 umtxq_lock(&uq->uq_key);
1298 umtxq_insert(uq);
1299 umtxq_unlock(&uq->uq_key);
1300 if (compat32 == 0) {
1301 error = fueword(addr, &tmp);
1302 if (error != 0)
1303 error = EFAULT;
1304 } else {
1305 error = fueword32(addr, &tmp32);
1306 if (error == 0)
1307 tmp = tmp32;
1308 else
1309 error = EFAULT;
1310 }
1311 umtxq_lock(&uq->uq_key);
1312 if (error == 0) {
1313 if (tmp == id)
1314 error = umtxq_sleep(uq, "uwait", timeout == NULL ?
1315 NULL : &timo);
1316 if ((uq->uq_flags & UQF_UMTXQ) == 0)
1317 error = 0;
1318 else
1319 umtxq_remove(uq);
1320 } else if ((uq->uq_flags & UQF_UMTXQ) != 0) {
1321 umtxq_remove(uq);
1322 }
1323 umtxq_unlock(&uq->uq_key);
1324 umtx_key_release(&uq->uq_key);
1325 if (error == ERESTART)
1326 error = EINTR;
1327 return (error);
1328 }
1329
1330 /*
1331 * Wake up threads sleeping on the specified address.
1332 */
1333 int
kern_umtx_wake(struct thread * td,void * uaddr,int n_wake,int is_private)1334 kern_umtx_wake(struct thread *td, void *uaddr, int n_wake, int is_private)
1335 {
1336 struct umtx_key key;
1337 int ret;
1338
1339 if ((ret = umtx_key_get(uaddr, TYPE_SIMPLE_WAIT,
1340 is_private ? THREAD_SHARE : AUTO_SHARE, &key)) != 0)
1341 return (ret);
1342 umtxq_lock(&key);
1343 umtxq_signal(&key, n_wake);
1344 umtxq_unlock(&key);
1345 umtx_key_release(&key);
1346 return (0);
1347 }
1348
1349 /*
1350 * Lock PTHREAD_PRIO_NONE protocol POSIX mutex.
1351 */
1352 static int
do_lock_normal(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int mode)1353 do_lock_normal(struct thread *td, struct umutex *m, uint32_t flags,
1354 struct _umtx_time *timeout, int mode)
1355 {
1356 struct umtx_abs_timeout timo;
1357 struct umtx_q *uq;
1358 uint32_t owner, old, id;
1359 int error, rv;
1360
1361 id = td->td_tid;
1362 uq = td->td_umtxq;
1363 error = 0;
1364 if (timeout != NULL)
1365 umtx_abs_timeout_init2(&timo, timeout);
1366
1367 /*
1368 * Care must be exercised when dealing with umtx structure. It
1369 * can fault on any access.
1370 */
1371 for (;;) {
1372 rv = fueword32(&m->m_owner, &owner);
1373 if (rv == -1)
1374 return (EFAULT);
1375 if (mode == _UMUTEX_WAIT) {
1376 if (owner == UMUTEX_UNOWNED ||
1377 owner == UMUTEX_CONTESTED ||
1378 owner == UMUTEX_RB_OWNERDEAD ||
1379 owner == UMUTEX_RB_NOTRECOV)
1380 return (0);
1381 } else {
1382 /*
1383 * Robust mutex terminated. Kernel duty is to
1384 * return EOWNERDEAD to the userspace. The
1385 * umutex.m_flags UMUTEX_NONCONSISTENT is set
1386 * by the common userspace code.
1387 */
1388 if (owner == UMUTEX_RB_OWNERDEAD) {
1389 rv = casueword32(&m->m_owner,
1390 UMUTEX_RB_OWNERDEAD, &owner,
1391 id | UMUTEX_CONTESTED);
1392 if (rv == -1)
1393 return (EFAULT);
1394 if (rv == 0) {
1395 MPASS(owner == UMUTEX_RB_OWNERDEAD);
1396 return (EOWNERDEAD); /* success */
1397 }
1398 MPASS(rv == 1);
1399 rv = thread_check_susp(td, false);
1400 if (rv != 0)
1401 return (rv);
1402 continue;
1403 }
1404 if (owner == UMUTEX_RB_NOTRECOV)
1405 return (ENOTRECOVERABLE);
1406
1407 /*
1408 * Try the uncontested case. This should be
1409 * done in userland.
1410 */
1411 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED,
1412 &owner, id);
1413 /* The address was invalid. */
1414 if (rv == -1)
1415 return (EFAULT);
1416
1417 /* The acquire succeeded. */
1418 if (rv == 0) {
1419 MPASS(owner == UMUTEX_UNOWNED);
1420 return (0);
1421 }
1422
1423 /*
1424 * If no one owns it but it is contested try
1425 * to acquire it.
1426 */
1427 MPASS(rv == 1);
1428 if (owner == UMUTEX_CONTESTED) {
1429 rv = casueword32(&m->m_owner,
1430 UMUTEX_CONTESTED, &owner,
1431 id | UMUTEX_CONTESTED);
1432 /* The address was invalid. */
1433 if (rv == -1)
1434 return (EFAULT);
1435 if (rv == 0) {
1436 MPASS(owner == UMUTEX_CONTESTED);
1437 return (0);
1438 }
1439 if (rv == 1) {
1440 rv = thread_check_susp(td, false);
1441 if (rv != 0)
1442 return (rv);
1443 }
1444
1445 /*
1446 * If this failed the lock has
1447 * changed, restart.
1448 */
1449 continue;
1450 }
1451
1452 /* rv == 1 but not contested, likely store failure */
1453 rv = thread_check_susp(td, false);
1454 if (rv != 0)
1455 return (rv);
1456 }
1457
1458 if (mode == _UMUTEX_TRY)
1459 return (EBUSY);
1460
1461 /*
1462 * If we caught a signal, we have retried and now
1463 * exit immediately.
1464 */
1465 if (error != 0)
1466 return (error);
1467
1468 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX,
1469 GET_SHARE(flags), &uq->uq_key)) != 0)
1470 return (error);
1471
1472 umtxq_lock(&uq->uq_key);
1473 umtxq_busy(&uq->uq_key);
1474 umtxq_insert(uq);
1475 umtxq_unlock(&uq->uq_key);
1476
1477 /*
1478 * Set the contested bit so that a release in user space
1479 * knows to use the system call for unlock. If this fails
1480 * either some one else has acquired the lock or it has been
1481 * released.
1482 */
1483 rv = casueword32(&m->m_owner, owner, &old,
1484 owner | UMUTEX_CONTESTED);
1485
1486 /* The address was invalid or casueword failed to store. */
1487 if (rv == -1 || rv == 1) {
1488 umtxq_lock(&uq->uq_key);
1489 umtxq_remove(uq);
1490 umtxq_unbusy(&uq->uq_key);
1491 umtxq_unlock(&uq->uq_key);
1492 umtx_key_release(&uq->uq_key);
1493 if (rv == -1)
1494 return (EFAULT);
1495 if (rv == 1) {
1496 rv = thread_check_susp(td, false);
1497 if (rv != 0)
1498 return (rv);
1499 }
1500 continue;
1501 }
1502
1503 /*
1504 * We set the contested bit, sleep. Otherwise the lock changed
1505 * and we need to retry or we lost a race to the thread
1506 * unlocking the umtx.
1507 */
1508 umtxq_lock(&uq->uq_key);
1509 umtxq_unbusy(&uq->uq_key);
1510 MPASS(old == owner);
1511 error = umtxq_sleep(uq, "umtxn", timeout == NULL ?
1512 NULL : &timo);
1513 umtxq_remove(uq);
1514 umtxq_unlock(&uq->uq_key);
1515 umtx_key_release(&uq->uq_key);
1516
1517 if (error == 0)
1518 error = thread_check_susp(td, false);
1519 }
1520
1521 return (0);
1522 }
1523
1524 /*
1525 * Unlock PTHREAD_PRIO_NONE protocol POSIX mutex.
1526 */
1527 static int
do_unlock_normal(struct thread * td,struct umutex * m,uint32_t flags,bool rb)1528 do_unlock_normal(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
1529 {
1530 struct umtx_key key;
1531 uint32_t owner, old, id, newlock;
1532 int error, count;
1533
1534 id = td->td_tid;
1535
1536 again:
1537 /*
1538 * Make sure we own this mtx.
1539 */
1540 error = fueword32(&m->m_owner, &owner);
1541 if (error == -1)
1542 return (EFAULT);
1543
1544 if ((owner & ~UMUTEX_CONTESTED) != id)
1545 return (EPERM);
1546
1547 newlock = umtx_unlock_val(flags, rb);
1548 if ((owner & UMUTEX_CONTESTED) == 0) {
1549 error = casueword32(&m->m_owner, owner, &old, newlock);
1550 if (error == -1)
1551 return (EFAULT);
1552 if (error == 1) {
1553 error = thread_check_susp(td, false);
1554 if (error != 0)
1555 return (error);
1556 goto again;
1557 }
1558 MPASS(old == owner);
1559 return (0);
1560 }
1561
1562 /* We should only ever be in here for contested locks */
1563 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1564 &key)) != 0)
1565 return (error);
1566
1567 umtxq_lock(&key);
1568 umtxq_busy(&key);
1569 count = umtxq_count(&key);
1570 umtxq_unlock(&key);
1571
1572 /*
1573 * When unlocking the umtx, it must be marked as unowned if
1574 * there is zero or one thread only waiting for it.
1575 * Otherwise, it must be marked as contested.
1576 */
1577 if (count > 1)
1578 newlock |= UMUTEX_CONTESTED;
1579 error = casueword32(&m->m_owner, owner, &old, newlock);
1580 umtxq_lock(&key);
1581 umtxq_signal(&key, 1);
1582 umtxq_unbusy(&key);
1583 umtxq_unlock(&key);
1584 umtx_key_release(&key);
1585 if (error == -1)
1586 return (EFAULT);
1587 if (error == 1) {
1588 if (old != owner)
1589 return (EINVAL);
1590 error = thread_check_susp(td, false);
1591 if (error != 0)
1592 return (error);
1593 goto again;
1594 }
1595 return (0);
1596 }
1597
1598 /*
1599 * Check if the mutex is available and wake up a waiter,
1600 * only for simple mutex.
1601 */
1602 static int
do_wake_umutex(struct thread * td,struct umutex * m)1603 do_wake_umutex(struct thread *td, struct umutex *m)
1604 {
1605 struct umtx_key key;
1606 uint32_t owner;
1607 uint32_t flags;
1608 int error;
1609 int count;
1610
1611 again:
1612 error = fueword32(&m->m_owner, &owner);
1613 if (error == -1)
1614 return (EFAULT);
1615
1616 if ((owner & ~UMUTEX_CONTESTED) != 0 && owner != UMUTEX_RB_OWNERDEAD &&
1617 owner != UMUTEX_RB_NOTRECOV)
1618 return (0);
1619
1620 error = fueword32(&m->m_flags, &flags);
1621 if (error == -1)
1622 return (EFAULT);
1623
1624 /* We should only ever be in here for contested locks */
1625 if ((error = umtx_key_get(m, TYPE_NORMAL_UMUTEX, GET_SHARE(flags),
1626 &key)) != 0)
1627 return (error);
1628
1629 umtxq_lock(&key);
1630 umtxq_busy(&key);
1631 count = umtxq_count(&key);
1632 umtxq_unlock(&key);
1633
1634 if (count <= 1 && owner != UMUTEX_RB_OWNERDEAD &&
1635 owner != UMUTEX_RB_NOTRECOV) {
1636 error = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
1637 UMUTEX_UNOWNED);
1638 if (error == -1) {
1639 error = EFAULT;
1640 } else if (error == 1) {
1641 umtxq_lock(&key);
1642 umtxq_unbusy(&key);
1643 umtxq_unlock(&key);
1644 umtx_key_release(&key);
1645 error = thread_check_susp(td, false);
1646 if (error != 0)
1647 return (error);
1648 goto again;
1649 }
1650 }
1651
1652 umtxq_lock(&key);
1653 if (error == 0 && count != 0) {
1654 MPASS((owner & ~UMUTEX_CONTESTED) == 0 ||
1655 owner == UMUTEX_RB_OWNERDEAD ||
1656 owner == UMUTEX_RB_NOTRECOV);
1657 umtxq_signal(&key, 1);
1658 }
1659 umtxq_unbusy(&key);
1660 umtxq_unlock(&key);
1661 umtx_key_release(&key);
1662 return (error);
1663 }
1664
1665 /*
1666 * Check if the mutex has waiters and tries to fix contention bit.
1667 */
1668 static int
do_wake2_umutex(struct thread * td,struct umutex * m,uint32_t flags)1669 do_wake2_umutex(struct thread *td, struct umutex *m, uint32_t flags)
1670 {
1671 struct umtx_key key;
1672 uint32_t owner, old;
1673 int type;
1674 int error;
1675 int count;
1676
1677 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT |
1678 UMUTEX_ROBUST)) {
1679 case 0:
1680 case UMUTEX_ROBUST:
1681 type = TYPE_NORMAL_UMUTEX;
1682 break;
1683 case UMUTEX_PRIO_INHERIT:
1684 type = TYPE_PI_UMUTEX;
1685 break;
1686 case (UMUTEX_PRIO_INHERIT | UMUTEX_ROBUST):
1687 type = TYPE_PI_ROBUST_UMUTEX;
1688 break;
1689 case UMUTEX_PRIO_PROTECT:
1690 type = TYPE_PP_UMUTEX;
1691 break;
1692 case (UMUTEX_PRIO_PROTECT | UMUTEX_ROBUST):
1693 type = TYPE_PP_ROBUST_UMUTEX;
1694 break;
1695 default:
1696 return (EINVAL);
1697 }
1698 if ((error = umtx_key_get(m, type, GET_SHARE(flags), &key)) != 0)
1699 return (error);
1700
1701 owner = 0;
1702 umtxq_lock(&key);
1703 umtxq_busy(&key);
1704 count = umtxq_count(&key);
1705 umtxq_unlock(&key);
1706
1707 error = fueword32(&m->m_owner, &owner);
1708 if (error == -1)
1709 error = EFAULT;
1710
1711 /*
1712 * Only repair contention bit if there is a waiter, this means
1713 * the mutex is still being referenced by userland code,
1714 * otherwise don't update any memory.
1715 */
1716 while (error == 0 && (owner & UMUTEX_CONTESTED) == 0 &&
1717 (count > 1 || (count == 1 && (owner & ~UMUTEX_CONTESTED) != 0))) {
1718 error = casueword32(&m->m_owner, owner, &old,
1719 owner | UMUTEX_CONTESTED);
1720 if (error == -1) {
1721 error = EFAULT;
1722 break;
1723 }
1724 if (error == 0) {
1725 MPASS(old == owner);
1726 break;
1727 }
1728 owner = old;
1729 error = thread_check_susp(td, false);
1730 }
1731
1732 umtxq_lock(&key);
1733 if (error == EFAULT) {
1734 umtxq_signal(&key, INT_MAX);
1735 } else if (count != 0 && ((owner & ~UMUTEX_CONTESTED) == 0 ||
1736 owner == UMUTEX_RB_OWNERDEAD || owner == UMUTEX_RB_NOTRECOV))
1737 umtxq_signal(&key, 1);
1738 umtxq_unbusy(&key);
1739 umtxq_unlock(&key);
1740 umtx_key_release(&key);
1741 return (error);
1742 }
1743
1744 struct umtx_pi *
umtx_pi_alloc(int flags)1745 umtx_pi_alloc(int flags)
1746 {
1747 struct umtx_pi *pi;
1748
1749 pi = uma_zalloc(umtx_pi_zone, M_ZERO | flags);
1750 if (pi == NULL)
1751 return (NULL);
1752
1753 TAILQ_INIT(&pi->pi_blocked);
1754 atomic_add_int(&umtx_pi_allocated, 1);
1755 return (pi);
1756 }
1757
1758 void
umtx_pi_free(struct umtx_pi * pi)1759 umtx_pi_free(struct umtx_pi *pi)
1760 {
1761 uma_zfree(umtx_pi_zone, pi);
1762 atomic_add_int(&umtx_pi_allocated, -1);
1763 }
1764
1765 /*
1766 * Adjust the thread's position on a pi_state after its priority has been
1767 * changed.
1768 */
1769 static int
umtx_pi_adjust_thread(struct umtx_pi * pi,struct thread * td)1770 umtx_pi_adjust_thread(struct umtx_pi *pi, struct thread *td)
1771 {
1772 struct umtx_q *uq, *uq1, *uq2;
1773 struct thread *td1;
1774
1775 mtx_assert(&umtx_lock, MA_OWNED);
1776 if (pi == NULL)
1777 return (0);
1778
1779 uq = td->td_umtxq;
1780
1781 /*
1782 * Check if the thread needs to be moved on the blocked chain.
1783 * It needs to be moved if either its priority is lower than
1784 * the previous thread or higher than the next thread.
1785 */
1786 uq1 = TAILQ_PREV(uq, umtxq_head, uq_lockq);
1787 uq2 = TAILQ_NEXT(uq, uq_lockq);
1788 if ((uq1 != NULL && UPRI(td) < UPRI(uq1->uq_thread)) ||
1789 (uq2 != NULL && UPRI(td) > UPRI(uq2->uq_thread))) {
1790 /*
1791 * Remove thread from blocked chain and determine where
1792 * it should be moved to.
1793 */
1794 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
1795 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
1796 td1 = uq1->uq_thread;
1797 MPASS(td1->td_proc->p_magic == P_MAGIC);
1798 if (UPRI(td1) > UPRI(td))
1799 break;
1800 }
1801
1802 if (uq1 == NULL)
1803 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
1804 else
1805 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
1806 }
1807 return (1);
1808 }
1809
1810 static struct umtx_pi *
umtx_pi_next(struct umtx_pi * pi)1811 umtx_pi_next(struct umtx_pi *pi)
1812 {
1813 struct umtx_q *uq_owner;
1814
1815 if (pi->pi_owner == NULL)
1816 return (NULL);
1817 uq_owner = pi->pi_owner->td_umtxq;
1818 if (uq_owner == NULL)
1819 return (NULL);
1820 return (uq_owner->uq_pi_blocked);
1821 }
1822
1823 /*
1824 * Floyd's Cycle-Finding Algorithm.
1825 */
1826 static bool
umtx_pi_check_loop(struct umtx_pi * pi)1827 umtx_pi_check_loop(struct umtx_pi *pi)
1828 {
1829 struct umtx_pi *pi1; /* fast iterator */
1830
1831 mtx_assert(&umtx_lock, MA_OWNED);
1832 if (pi == NULL)
1833 return (false);
1834 pi1 = pi;
1835 for (;;) {
1836 pi = umtx_pi_next(pi);
1837 if (pi == NULL)
1838 break;
1839 pi1 = umtx_pi_next(pi1);
1840 if (pi1 == NULL)
1841 break;
1842 pi1 = umtx_pi_next(pi1);
1843 if (pi1 == NULL)
1844 break;
1845 if (pi == pi1)
1846 return (true);
1847 }
1848 return (false);
1849 }
1850
1851 /*
1852 * Propagate priority when a thread is blocked on POSIX
1853 * PI mutex.
1854 */
1855 static void
umtx_propagate_priority(struct thread * td)1856 umtx_propagate_priority(struct thread *td)
1857 {
1858 struct umtx_q *uq;
1859 struct umtx_pi *pi;
1860 int pri;
1861
1862 mtx_assert(&umtx_lock, MA_OWNED);
1863 pri = UPRI(td);
1864 uq = td->td_umtxq;
1865 pi = uq->uq_pi_blocked;
1866 if (pi == NULL)
1867 return;
1868 if (umtx_pi_check_loop(pi))
1869 return;
1870
1871 for (;;) {
1872 td = pi->pi_owner;
1873 if (td == NULL || td == curthread)
1874 return;
1875
1876 MPASS(td->td_proc != NULL);
1877 MPASS(td->td_proc->p_magic == P_MAGIC);
1878
1879 thread_lock(td);
1880 if (td->td_lend_user_pri > pri)
1881 sched_lend_user_prio(td, pri);
1882 else {
1883 thread_unlock(td);
1884 break;
1885 }
1886 thread_unlock(td);
1887
1888 /*
1889 * Pick up the lock that td is blocked on.
1890 */
1891 uq = td->td_umtxq;
1892 pi = uq->uq_pi_blocked;
1893 if (pi == NULL)
1894 break;
1895 /* Resort td on the list if needed. */
1896 umtx_pi_adjust_thread(pi, td);
1897 }
1898 }
1899
1900 /*
1901 * Unpropagate priority for a PI mutex when a thread blocked on
1902 * it is interrupted by signal or resumed by others.
1903 */
1904 static void
umtx_repropagate_priority(struct umtx_pi * pi)1905 umtx_repropagate_priority(struct umtx_pi *pi)
1906 {
1907 struct umtx_q *uq, *uq_owner;
1908 struct umtx_pi *pi2;
1909 int pri;
1910
1911 mtx_assert(&umtx_lock, MA_OWNED);
1912
1913 if (umtx_pi_check_loop(pi))
1914 return;
1915 while (pi != NULL && pi->pi_owner != NULL) {
1916 pri = PRI_MAX;
1917 uq_owner = pi->pi_owner->td_umtxq;
1918
1919 TAILQ_FOREACH(pi2, &uq_owner->uq_pi_contested, pi_link) {
1920 uq = TAILQ_FIRST(&pi2->pi_blocked);
1921 if (uq != NULL) {
1922 if (pri > UPRI(uq->uq_thread))
1923 pri = UPRI(uq->uq_thread);
1924 }
1925 }
1926
1927 if (pri > uq_owner->uq_inherited_pri)
1928 pri = uq_owner->uq_inherited_pri;
1929 thread_lock(pi->pi_owner);
1930 sched_lend_user_prio(pi->pi_owner, pri);
1931 thread_unlock(pi->pi_owner);
1932 if ((pi = uq_owner->uq_pi_blocked) != NULL)
1933 umtx_pi_adjust_thread(pi, uq_owner->uq_thread);
1934 }
1935 }
1936
1937 /*
1938 * Insert a PI mutex into owned list.
1939 */
1940 static void
umtx_pi_setowner(struct umtx_pi * pi,struct thread * owner)1941 umtx_pi_setowner(struct umtx_pi *pi, struct thread *owner)
1942 {
1943 struct umtx_q *uq_owner;
1944
1945 uq_owner = owner->td_umtxq;
1946 mtx_assert(&umtx_lock, MA_OWNED);
1947 MPASS(pi->pi_owner == NULL);
1948 pi->pi_owner = owner;
1949 TAILQ_INSERT_TAIL(&uq_owner->uq_pi_contested, pi, pi_link);
1950 }
1951
1952 /*
1953 * Disown a PI mutex, and remove it from the owned list.
1954 */
1955 static void
umtx_pi_disown(struct umtx_pi * pi)1956 umtx_pi_disown(struct umtx_pi *pi)
1957 {
1958
1959 mtx_assert(&umtx_lock, MA_OWNED);
1960 TAILQ_REMOVE(&pi->pi_owner->td_umtxq->uq_pi_contested, pi, pi_link);
1961 pi->pi_owner = NULL;
1962 }
1963
1964 /*
1965 * Claim ownership of a PI mutex.
1966 */
1967 int
umtx_pi_claim(struct umtx_pi * pi,struct thread * owner)1968 umtx_pi_claim(struct umtx_pi *pi, struct thread *owner)
1969 {
1970 struct umtx_q *uq;
1971 int pri;
1972
1973 mtx_lock(&umtx_lock);
1974 if (pi->pi_owner == owner) {
1975 mtx_unlock(&umtx_lock);
1976 return (0);
1977 }
1978
1979 if (pi->pi_owner != NULL) {
1980 /*
1981 * userland may have already messed the mutex, sigh.
1982 */
1983 mtx_unlock(&umtx_lock);
1984 return (EPERM);
1985 }
1986 umtx_pi_setowner(pi, owner);
1987 uq = TAILQ_FIRST(&pi->pi_blocked);
1988 if (uq != NULL) {
1989 pri = UPRI(uq->uq_thread);
1990 thread_lock(owner);
1991 if (pri < UPRI(owner))
1992 sched_lend_user_prio(owner, pri);
1993 thread_unlock(owner);
1994 }
1995 mtx_unlock(&umtx_lock);
1996 return (0);
1997 }
1998
1999 /*
2000 * Adjust a thread's order position in its blocked PI mutex,
2001 * this may result new priority propagating process.
2002 */
2003 void
umtx_pi_adjust(struct thread * td,u_char oldpri)2004 umtx_pi_adjust(struct thread *td, u_char oldpri)
2005 {
2006 struct umtx_q *uq;
2007 struct umtx_pi *pi;
2008
2009 uq = td->td_umtxq;
2010 mtx_lock(&umtx_lock);
2011 /*
2012 * Pick up the lock that td is blocked on.
2013 */
2014 pi = uq->uq_pi_blocked;
2015 if (pi != NULL) {
2016 umtx_pi_adjust_thread(pi, td);
2017 umtx_repropagate_priority(pi);
2018 }
2019 mtx_unlock(&umtx_lock);
2020 }
2021
2022 /*
2023 * Sleep on a PI mutex.
2024 */
2025 int
umtxq_sleep_pi(struct umtx_q * uq,struct umtx_pi * pi,uint32_t owner,const char * wmesg,struct umtx_abs_timeout * timo,bool shared)2026 umtxq_sleep_pi(struct umtx_q *uq, struct umtx_pi *pi, uint32_t owner,
2027 const char *wmesg, struct umtx_abs_timeout *timo, bool shared)
2028 {
2029 struct thread *td, *td1;
2030 struct umtx_q *uq1;
2031 int error, pri;
2032 #ifdef INVARIANTS
2033 struct umtxq_chain *uc;
2034
2035 uc = umtxq_getchain(&pi->pi_key);
2036 #endif
2037 error = 0;
2038 td = uq->uq_thread;
2039 KASSERT(td == curthread, ("inconsistent uq_thread"));
2040 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&uq->uq_key));
2041 KASSERT(uc->uc_busy != 0, ("umtx chain is not busy"));
2042 umtxq_insert(uq);
2043 mtx_lock(&umtx_lock);
2044 if (pi->pi_owner == NULL) {
2045 mtx_unlock(&umtx_lock);
2046 td1 = tdfind(owner, shared ? -1 : td->td_proc->p_pid);
2047 mtx_lock(&umtx_lock);
2048 if (td1 != NULL) {
2049 if (pi->pi_owner == NULL)
2050 umtx_pi_setowner(pi, td1);
2051 PROC_UNLOCK(td1->td_proc);
2052 }
2053 }
2054
2055 TAILQ_FOREACH(uq1, &pi->pi_blocked, uq_lockq) {
2056 pri = UPRI(uq1->uq_thread);
2057 if (pri > UPRI(td))
2058 break;
2059 }
2060
2061 if (uq1 != NULL)
2062 TAILQ_INSERT_BEFORE(uq1, uq, uq_lockq);
2063 else
2064 TAILQ_INSERT_TAIL(&pi->pi_blocked, uq, uq_lockq);
2065
2066 uq->uq_pi_blocked = pi;
2067 thread_lock(td);
2068 td->td_flags |= TDF_UPIBLOCKED;
2069 thread_unlock(td);
2070 umtx_propagate_priority(td);
2071 mtx_unlock(&umtx_lock);
2072 umtxq_unbusy(&uq->uq_key);
2073
2074 error = umtxq_sleep(uq, wmesg, timo);
2075 umtxq_remove(uq);
2076
2077 mtx_lock(&umtx_lock);
2078 uq->uq_pi_blocked = NULL;
2079 thread_lock(td);
2080 td->td_flags &= ~TDF_UPIBLOCKED;
2081 thread_unlock(td);
2082 TAILQ_REMOVE(&pi->pi_blocked, uq, uq_lockq);
2083 umtx_repropagate_priority(pi);
2084 mtx_unlock(&umtx_lock);
2085 umtxq_unlock(&uq->uq_key);
2086
2087 return (error);
2088 }
2089
2090 /*
2091 * Add reference count for a PI mutex.
2092 */
2093 void
umtx_pi_ref(struct umtx_pi * pi)2094 umtx_pi_ref(struct umtx_pi *pi)
2095 {
2096
2097 UMTXQ_LOCKED_ASSERT(umtxq_getchain(&pi->pi_key));
2098 pi->pi_refcount++;
2099 }
2100
2101 /*
2102 * Decrease reference count for a PI mutex, if the counter
2103 * is decreased to zero, its memory space is freed.
2104 */
2105 void
umtx_pi_unref(struct umtx_pi * pi)2106 umtx_pi_unref(struct umtx_pi *pi)
2107 {
2108 struct umtxq_chain *uc;
2109
2110 uc = umtxq_getchain(&pi->pi_key);
2111 UMTXQ_LOCKED_ASSERT(uc);
2112 KASSERT(pi->pi_refcount > 0, ("invalid reference count"));
2113 if (--pi->pi_refcount == 0) {
2114 mtx_lock(&umtx_lock);
2115 if (pi->pi_owner != NULL)
2116 umtx_pi_disown(pi);
2117 KASSERT(TAILQ_EMPTY(&pi->pi_blocked),
2118 ("blocked queue not empty"));
2119 mtx_unlock(&umtx_lock);
2120 TAILQ_REMOVE(&uc->uc_pi_list, pi, pi_hashlink);
2121 umtx_pi_free(pi);
2122 }
2123 }
2124
2125 /*
2126 * Find a PI mutex in hash table.
2127 */
2128 struct umtx_pi *
umtx_pi_lookup(struct umtx_key * key)2129 umtx_pi_lookup(struct umtx_key *key)
2130 {
2131 struct umtxq_chain *uc;
2132 struct umtx_pi *pi;
2133
2134 uc = umtxq_getchain(key);
2135 UMTXQ_LOCKED_ASSERT(uc);
2136
2137 TAILQ_FOREACH(pi, &uc->uc_pi_list, pi_hashlink) {
2138 if (umtx_key_match(&pi->pi_key, key)) {
2139 return (pi);
2140 }
2141 }
2142 return (NULL);
2143 }
2144
2145 /*
2146 * Insert a PI mutex into hash table.
2147 */
2148 void
umtx_pi_insert(struct umtx_pi * pi)2149 umtx_pi_insert(struct umtx_pi *pi)
2150 {
2151 struct umtxq_chain *uc;
2152
2153 uc = umtxq_getchain(&pi->pi_key);
2154 UMTXQ_LOCKED_ASSERT(uc);
2155 TAILQ_INSERT_TAIL(&uc->uc_pi_list, pi, pi_hashlink);
2156 }
2157
2158 /*
2159 * Drop a PI mutex and wakeup a top waiter.
2160 */
2161 int
umtx_pi_drop(struct thread * td,struct umtx_key * key,bool rb,int * count)2162 umtx_pi_drop(struct thread *td, struct umtx_key *key, bool rb, int *count)
2163 {
2164 struct umtx_q *uq_first, *uq_first2, *uq_me;
2165 struct umtx_pi *pi, *pi2;
2166 int pri;
2167
2168 UMTXQ_ASSERT_LOCKED_BUSY(key);
2169 *count = umtxq_count_pi(key, &uq_first);
2170 if (uq_first != NULL) {
2171 mtx_lock(&umtx_lock);
2172 pi = uq_first->uq_pi_blocked;
2173 KASSERT(pi != NULL, ("pi == NULL?"));
2174 if (pi->pi_owner != td && !(rb && pi->pi_owner == NULL)) {
2175 mtx_unlock(&umtx_lock);
2176 /* userland messed the mutex */
2177 return (EPERM);
2178 }
2179 uq_me = td->td_umtxq;
2180 if (pi->pi_owner == td)
2181 umtx_pi_disown(pi);
2182 /* get highest priority thread which is still sleeping. */
2183 uq_first = TAILQ_FIRST(&pi->pi_blocked);
2184 while (uq_first != NULL &&
2185 (uq_first->uq_flags & UQF_UMTXQ) == 0) {
2186 uq_first = TAILQ_NEXT(uq_first, uq_lockq);
2187 }
2188 pri = PRI_MAX;
2189 TAILQ_FOREACH(pi2, &uq_me->uq_pi_contested, pi_link) {
2190 uq_first2 = TAILQ_FIRST(&pi2->pi_blocked);
2191 if (uq_first2 != NULL) {
2192 if (pri > UPRI(uq_first2->uq_thread))
2193 pri = UPRI(uq_first2->uq_thread);
2194 }
2195 }
2196 thread_lock(td);
2197 sched_lend_user_prio(td, pri);
2198 thread_unlock(td);
2199 mtx_unlock(&umtx_lock);
2200 if (uq_first)
2201 umtxq_signal_thread(uq_first);
2202 } else {
2203 pi = umtx_pi_lookup(key);
2204 /*
2205 * A umtx_pi can exist if a signal or timeout removed the
2206 * last waiter from the umtxq, but there is still
2207 * a thread in do_lock_pi() holding the umtx_pi.
2208 */
2209 if (pi != NULL) {
2210 /*
2211 * The umtx_pi can be unowned, such as when a thread
2212 * has just entered do_lock_pi(), allocated the
2213 * umtx_pi, and unlocked the umtxq.
2214 * If the current thread owns it, it must disown it.
2215 */
2216 mtx_lock(&umtx_lock);
2217 if (pi->pi_owner == td)
2218 umtx_pi_disown(pi);
2219 mtx_unlock(&umtx_lock);
2220 }
2221 }
2222 return (0);
2223 }
2224
2225 /*
2226 * Lock a PI mutex.
2227 */
2228 static int
do_lock_pi(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int try)2229 do_lock_pi(struct thread *td, struct umutex *m, uint32_t flags,
2230 struct _umtx_time *timeout, int try)
2231 {
2232 struct umtx_abs_timeout timo;
2233 struct umtx_q *uq;
2234 struct umtx_pi *pi, *new_pi;
2235 uint32_t id, old_owner, owner, old;
2236 int error, rv;
2237
2238 id = td->td_tid;
2239 uq = td->td_umtxq;
2240
2241 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2242 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2243 &uq->uq_key)) != 0)
2244 return (error);
2245
2246 if (timeout != NULL)
2247 umtx_abs_timeout_init2(&timo, timeout);
2248
2249 umtxq_lock(&uq->uq_key);
2250 pi = umtx_pi_lookup(&uq->uq_key);
2251 if (pi == NULL) {
2252 new_pi = umtx_pi_alloc(M_NOWAIT);
2253 if (new_pi == NULL) {
2254 umtxq_unlock(&uq->uq_key);
2255 new_pi = umtx_pi_alloc(M_WAITOK);
2256 umtxq_lock(&uq->uq_key);
2257 pi = umtx_pi_lookup(&uq->uq_key);
2258 if (pi != NULL) {
2259 umtx_pi_free(new_pi);
2260 new_pi = NULL;
2261 }
2262 }
2263 if (new_pi != NULL) {
2264 new_pi->pi_key = uq->uq_key;
2265 umtx_pi_insert(new_pi);
2266 pi = new_pi;
2267 }
2268 }
2269 umtx_pi_ref(pi);
2270 umtxq_unlock(&uq->uq_key);
2271
2272 /*
2273 * Care must be exercised when dealing with umtx structure. It
2274 * can fault on any access.
2275 */
2276 for (;;) {
2277 /*
2278 * Try the uncontested case. This should be done in userland.
2279 */
2280 rv = casueword32(&m->m_owner, UMUTEX_UNOWNED, &owner, id);
2281 /* The address was invalid. */
2282 if (rv == -1) {
2283 error = EFAULT;
2284 break;
2285 }
2286 /* The acquire succeeded. */
2287 if (rv == 0) {
2288 MPASS(owner == UMUTEX_UNOWNED);
2289 error = 0;
2290 break;
2291 }
2292
2293 if (owner == UMUTEX_RB_NOTRECOV) {
2294 error = ENOTRECOVERABLE;
2295 break;
2296 }
2297
2298 /*
2299 * Nobody owns it, but the acquire failed. This can happen
2300 * with ll/sc atomics.
2301 */
2302 if (owner == UMUTEX_UNOWNED) {
2303 error = thread_check_susp(td, true);
2304 if (error != 0)
2305 break;
2306 continue;
2307 }
2308
2309 /*
2310 * Avoid overwriting a possible error from sleep due
2311 * to the pending signal with suspension check result.
2312 */
2313 if (error == 0) {
2314 error = thread_check_susp(td, true);
2315 if (error != 0)
2316 break;
2317 }
2318
2319 /* If no one owns it but it is contested try to acquire it. */
2320 if (owner == UMUTEX_CONTESTED || owner == UMUTEX_RB_OWNERDEAD) {
2321 old_owner = owner;
2322 rv = casueword32(&m->m_owner, owner, &owner,
2323 id | UMUTEX_CONTESTED);
2324 /* The address was invalid. */
2325 if (rv == -1) {
2326 error = EFAULT;
2327 break;
2328 }
2329 if (rv == 1) {
2330 if (error == 0) {
2331 error = thread_check_susp(td, true);
2332 if (error != 0)
2333 break;
2334 }
2335
2336 /*
2337 * If this failed the lock could
2338 * changed, restart.
2339 */
2340 continue;
2341 }
2342
2343 MPASS(rv == 0);
2344 MPASS(owner == old_owner);
2345 umtxq_lock(&uq->uq_key);
2346 umtxq_busy(&uq->uq_key);
2347 error = umtx_pi_claim(pi, td);
2348 umtxq_unbusy(&uq->uq_key);
2349 umtxq_unlock(&uq->uq_key);
2350 if (error != 0) {
2351 /*
2352 * Since we're going to return an
2353 * error, restore the m_owner to its
2354 * previous, unowned state to avoid
2355 * compounding the problem.
2356 */
2357 (void)casuword32(&m->m_owner,
2358 id | UMUTEX_CONTESTED, old_owner);
2359 }
2360 if (error == 0 && old_owner == UMUTEX_RB_OWNERDEAD)
2361 error = EOWNERDEAD;
2362 break;
2363 }
2364
2365 if ((owner & ~UMUTEX_CONTESTED) == id) {
2366 error = EDEADLK;
2367 break;
2368 }
2369
2370 if (try != 0) {
2371 error = EBUSY;
2372 break;
2373 }
2374
2375 /*
2376 * If we caught a signal, we have retried and now
2377 * exit immediately.
2378 */
2379 if (error != 0)
2380 break;
2381
2382 umtxq_busy_unlocked(&uq->uq_key);
2383
2384 /*
2385 * Set the contested bit so that a release in user space
2386 * knows to use the system call for unlock. If this fails
2387 * either some one else has acquired the lock or it has been
2388 * released.
2389 */
2390 rv = casueword32(&m->m_owner, owner, &old, owner |
2391 UMUTEX_CONTESTED);
2392
2393 /* The address was invalid. */
2394 if (rv == -1) {
2395 umtxq_unbusy_unlocked(&uq->uq_key);
2396 error = EFAULT;
2397 break;
2398 }
2399 if (rv == 1) {
2400 umtxq_unbusy_unlocked(&uq->uq_key);
2401 error = thread_check_susp(td, true);
2402 if (error != 0)
2403 break;
2404
2405 /*
2406 * The lock changed and we need to retry or we
2407 * lost a race to the thread unlocking the
2408 * umtx. Note that the UMUTEX_RB_OWNERDEAD
2409 * value for owner is impossible there.
2410 */
2411 continue;
2412 }
2413
2414 umtxq_lock(&uq->uq_key);
2415
2416 /* We set the contested bit, sleep. */
2417 MPASS(old == owner);
2418 error = umtxq_sleep_pi(uq, pi, owner & ~UMUTEX_CONTESTED,
2419 "umtxpi", timeout == NULL ? NULL : &timo,
2420 (flags & USYNC_PROCESS_SHARED) != 0);
2421 if (error != 0)
2422 continue;
2423
2424 error = thread_check_susp(td, false);
2425 if (error != 0)
2426 break;
2427 }
2428
2429 umtxq_lock(&uq->uq_key);
2430 umtx_pi_unref(pi);
2431 umtxq_unlock(&uq->uq_key);
2432
2433 umtx_key_release(&uq->uq_key);
2434 return (error);
2435 }
2436
2437 /*
2438 * Unlock a PI mutex.
2439 */
2440 static int
do_unlock_pi(struct thread * td,struct umutex * m,uint32_t flags,bool rb)2441 do_unlock_pi(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2442 {
2443 struct umtx_key key;
2444 uint32_t id, new_owner, old, owner;
2445 int count, error;
2446
2447 id = td->td_tid;
2448
2449 usrloop:
2450 /*
2451 * Make sure we own this mtx.
2452 */
2453 error = fueword32(&m->m_owner, &owner);
2454 if (error == -1)
2455 return (EFAULT);
2456
2457 if ((owner & ~UMUTEX_CONTESTED) != id)
2458 return (EPERM);
2459
2460 new_owner = umtx_unlock_val(flags, rb);
2461
2462 /* This should be done in userland */
2463 if ((owner & UMUTEX_CONTESTED) == 0) {
2464 error = casueword32(&m->m_owner, owner, &old, new_owner);
2465 if (error == -1)
2466 return (EFAULT);
2467 if (error == 1) {
2468 error = thread_check_susp(td, true);
2469 if (error != 0)
2470 return (error);
2471 goto usrloop;
2472 }
2473 if (old == owner)
2474 return (0);
2475 owner = old;
2476 }
2477
2478 /* We should only ever be in here for contested locks */
2479 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2480 TYPE_PI_ROBUST_UMUTEX : TYPE_PI_UMUTEX, GET_SHARE(flags),
2481 &key)) != 0)
2482 return (error);
2483
2484 umtxq_lock(&key);
2485 umtxq_busy(&key);
2486 error = umtx_pi_drop(td, &key, rb, &count);
2487 if (error != 0) {
2488 umtxq_unbusy(&key);
2489 umtxq_unlock(&key);
2490 umtx_key_release(&key);
2491 /* userland messed the mutex */
2492 return (error);
2493 }
2494 umtxq_unlock(&key);
2495
2496 /*
2497 * When unlocking the umtx, it must be marked as unowned if
2498 * there is zero or one thread only waiting for it.
2499 * Otherwise, it must be marked as contested.
2500 */
2501
2502 if (count > 1)
2503 new_owner |= UMUTEX_CONTESTED;
2504 again:
2505 error = casueword32(&m->m_owner, owner, &old, new_owner);
2506 if (error == 1) {
2507 error = thread_check_susp(td, false);
2508 if (error == 0)
2509 goto again;
2510 }
2511 umtxq_unbusy_unlocked(&key);
2512 umtx_key_release(&key);
2513 if (error == -1)
2514 return (EFAULT);
2515 if (error == 0 && old != owner)
2516 return (EINVAL);
2517 return (error);
2518 }
2519
2520 /*
2521 * Lock a PP mutex.
2522 */
2523 static int
do_lock_pp(struct thread * td,struct umutex * m,uint32_t flags,struct _umtx_time * timeout,int try)2524 do_lock_pp(struct thread *td, struct umutex *m, uint32_t flags,
2525 struct _umtx_time *timeout, int try)
2526 {
2527 struct umtx_abs_timeout timo;
2528 struct umtx_q *uq, *uq2;
2529 struct umtx_pi *pi;
2530 uint32_t ceiling;
2531 uint32_t owner, id;
2532 int error, pri, old_inherited_pri, new_pri, rv;
2533 bool su;
2534
2535 id = td->td_tid;
2536 uq = td->td_umtxq;
2537 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2538 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2539 &uq->uq_key)) != 0)
2540 return (error);
2541
2542 if (timeout != NULL)
2543 umtx_abs_timeout_init2(&timo, timeout);
2544
2545 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2546 for (;;) {
2547 old_inherited_pri = uq->uq_inherited_pri;
2548 umtxq_busy_unlocked(&uq->uq_key);
2549
2550 rv = fueword32(&m->m_ceilings[0], &ceiling);
2551 if (rv == -1) {
2552 error = EFAULT;
2553 goto out;
2554 }
2555 ceiling = RTP_PRIO_MAX - ceiling;
2556 if (ceiling > RTP_PRIO_MAX) {
2557 error = EINVAL;
2558 goto out;
2559 }
2560 new_pri = PRI_MIN_REALTIME + ceiling;
2561
2562 if (td->td_base_user_pri < new_pri) {
2563 error = EINVAL;
2564 goto out;
2565 }
2566 if (su) {
2567 mtx_lock(&umtx_lock);
2568 if (new_pri < uq->uq_inherited_pri) {
2569 uq->uq_inherited_pri = new_pri;
2570 thread_lock(td);
2571 if (new_pri < UPRI(td))
2572 sched_lend_user_prio(td, new_pri);
2573 thread_unlock(td);
2574 }
2575 mtx_unlock(&umtx_lock);
2576 }
2577
2578 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2579 id | UMUTEX_CONTESTED);
2580 /* The address was invalid. */
2581 if (rv == -1) {
2582 error = EFAULT;
2583 break;
2584 }
2585 if (rv == 0) {
2586 MPASS(owner == UMUTEX_CONTESTED);
2587 error = 0;
2588 break;
2589 }
2590 /* rv == 1 */
2591 if (owner == UMUTEX_RB_OWNERDEAD) {
2592 rv = casueword32(&m->m_owner, UMUTEX_RB_OWNERDEAD,
2593 &owner, id | UMUTEX_CONTESTED);
2594 if (rv == -1) {
2595 error = EFAULT;
2596 break;
2597 }
2598 if (rv == 0) {
2599 MPASS(owner == UMUTEX_RB_OWNERDEAD);
2600 error = EOWNERDEAD; /* success */
2601 break;
2602 }
2603
2604 /*
2605 * rv == 1, only check for suspension if we
2606 * did not already catched a signal. If we
2607 * get an error from the check, the same
2608 * condition is checked by the umtxq_sleep()
2609 * call below, so we should obliterate the
2610 * error to not skip the last loop iteration.
2611 */
2612 if (error == 0) {
2613 error = thread_check_susp(td, false);
2614 if (error == 0 && try == 0) {
2615 umtxq_unbusy_unlocked(&uq->uq_key);
2616 continue;
2617 }
2618 error = 0;
2619 }
2620 } else if (owner == UMUTEX_RB_NOTRECOV) {
2621 error = ENOTRECOVERABLE;
2622 } else if (owner == UMUTEX_CONTESTED) {
2623 /* Spurious failure, retry. */
2624 umtxq_unbusy_unlocked(&uq->uq_key);
2625 continue;
2626 }
2627
2628 if (try != 0)
2629 error = EBUSY;
2630
2631 /*
2632 * If we caught a signal, we have retried and now
2633 * exit immediately.
2634 */
2635 if (error != 0)
2636 break;
2637
2638 umtxq_lock(&uq->uq_key);
2639 umtxq_insert(uq);
2640 umtxq_unbusy(&uq->uq_key);
2641 error = umtxq_sleep(uq, "umtxpp", timeout == NULL ?
2642 NULL : &timo);
2643 umtxq_remove(uq);
2644 umtxq_unlock(&uq->uq_key);
2645
2646 mtx_lock(&umtx_lock);
2647 uq->uq_inherited_pri = old_inherited_pri;
2648 pri = PRI_MAX;
2649 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2650 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2651 if (uq2 != NULL) {
2652 if (pri > UPRI(uq2->uq_thread))
2653 pri = UPRI(uq2->uq_thread);
2654 }
2655 }
2656 if (pri > uq->uq_inherited_pri)
2657 pri = uq->uq_inherited_pri;
2658 thread_lock(td);
2659 sched_lend_user_prio(td, pri);
2660 thread_unlock(td);
2661 mtx_unlock(&umtx_lock);
2662 }
2663
2664 if (error != 0 && error != EOWNERDEAD) {
2665 mtx_lock(&umtx_lock);
2666 uq->uq_inherited_pri = old_inherited_pri;
2667 pri = PRI_MAX;
2668 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2669 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2670 if (uq2 != NULL) {
2671 if (pri > UPRI(uq2->uq_thread))
2672 pri = UPRI(uq2->uq_thread);
2673 }
2674 }
2675 if (pri > uq->uq_inherited_pri)
2676 pri = uq->uq_inherited_pri;
2677 thread_lock(td);
2678 sched_lend_user_prio(td, pri);
2679 thread_unlock(td);
2680 mtx_unlock(&umtx_lock);
2681 }
2682
2683 out:
2684 umtxq_unbusy_unlocked(&uq->uq_key);
2685 umtx_key_release(&uq->uq_key);
2686 return (error);
2687 }
2688
2689 /*
2690 * Unlock a PP mutex.
2691 */
2692 static int
do_unlock_pp(struct thread * td,struct umutex * m,uint32_t flags,bool rb)2693 do_unlock_pp(struct thread *td, struct umutex *m, uint32_t flags, bool rb)
2694 {
2695 struct umtx_key key;
2696 struct umtx_q *uq, *uq2;
2697 struct umtx_pi *pi;
2698 uint32_t id, owner, rceiling;
2699 int error, pri, new_inherited_pri;
2700 bool su;
2701
2702 id = td->td_tid;
2703 uq = td->td_umtxq;
2704 su = (priv_check(td, PRIV_SCHED_RTPRIO) == 0);
2705
2706 /*
2707 * Make sure we own this mtx.
2708 */
2709 error = fueword32(&m->m_owner, &owner);
2710 if (error == -1)
2711 return (EFAULT);
2712
2713 if ((owner & ~UMUTEX_CONTESTED) != id)
2714 return (EPERM);
2715
2716 error = copyin(&m->m_ceilings[1], &rceiling, sizeof(uint32_t));
2717 if (error != 0)
2718 return (error);
2719
2720 if (rceiling == -1)
2721 new_inherited_pri = PRI_MAX;
2722 else {
2723 rceiling = RTP_PRIO_MAX - rceiling;
2724 if (rceiling > RTP_PRIO_MAX)
2725 return (EINVAL);
2726 new_inherited_pri = PRI_MIN_REALTIME + rceiling;
2727 }
2728
2729 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2730 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2731 &key)) != 0)
2732 return (error);
2733 umtxq_busy_unlocked(&key);
2734
2735 /*
2736 * For priority protected mutex, always set unlocked state
2737 * to UMUTEX_CONTESTED, so that userland always enters kernel
2738 * to lock the mutex, it is necessary because thread priority
2739 * has to be adjusted for such mutex.
2740 */
2741 error = suword32(&m->m_owner, umtx_unlock_val(flags, rb) |
2742 UMUTEX_CONTESTED);
2743
2744 umtxq_lock(&key);
2745 if (error == 0)
2746 umtxq_signal(&key, 1);
2747 umtxq_unbusy(&key);
2748 umtxq_unlock(&key);
2749
2750 if (error == -1)
2751 error = EFAULT;
2752 else {
2753 mtx_lock(&umtx_lock);
2754 if (su || new_inherited_pri == PRI_MAX)
2755 uq->uq_inherited_pri = new_inherited_pri;
2756 pri = PRI_MAX;
2757 TAILQ_FOREACH(pi, &uq->uq_pi_contested, pi_link) {
2758 uq2 = TAILQ_FIRST(&pi->pi_blocked);
2759 if (uq2 != NULL) {
2760 if (pri > UPRI(uq2->uq_thread))
2761 pri = UPRI(uq2->uq_thread);
2762 }
2763 }
2764 if (pri > uq->uq_inherited_pri)
2765 pri = uq->uq_inherited_pri;
2766 thread_lock(td);
2767 sched_lend_user_prio(td, pri);
2768 thread_unlock(td);
2769 mtx_unlock(&umtx_lock);
2770 }
2771 umtx_key_release(&key);
2772 return (error);
2773 }
2774
2775 static int
do_set_ceiling(struct thread * td,struct umutex * m,uint32_t ceiling,uint32_t * old_ceiling)2776 do_set_ceiling(struct thread *td, struct umutex *m, uint32_t ceiling,
2777 uint32_t *old_ceiling)
2778 {
2779 struct umtx_q *uq;
2780 uint32_t flags, id, owner, save_ceiling;
2781 int error, rv, rv1;
2782
2783 error = fueword32(&m->m_flags, &flags);
2784 if (error == -1)
2785 return (EFAULT);
2786 if ((flags & UMUTEX_PRIO_PROTECT) == 0)
2787 return (EINVAL);
2788 if (ceiling > RTP_PRIO_MAX)
2789 return (EINVAL);
2790 id = td->td_tid;
2791 uq = td->td_umtxq;
2792 if ((error = umtx_key_get(m, (flags & UMUTEX_ROBUST) != 0 ?
2793 TYPE_PP_ROBUST_UMUTEX : TYPE_PP_UMUTEX, GET_SHARE(flags),
2794 &uq->uq_key)) != 0)
2795 return (error);
2796 for (;;) {
2797 umtxq_busy_unlocked(&uq->uq_key);
2798
2799 rv = fueword32(&m->m_ceilings[0], &save_ceiling);
2800 if (rv == -1) {
2801 error = EFAULT;
2802 break;
2803 }
2804
2805 rv = casueword32(&m->m_owner, UMUTEX_CONTESTED, &owner,
2806 id | UMUTEX_CONTESTED);
2807 if (rv == -1) {
2808 error = EFAULT;
2809 break;
2810 }
2811
2812 if (rv == 0) {
2813 MPASS(owner == UMUTEX_CONTESTED);
2814 rv = suword32(&m->m_ceilings[0], ceiling);
2815 rv1 = suword32(&m->m_owner, UMUTEX_CONTESTED);
2816 error = (rv == 0 && rv1 == 0) ? 0: EFAULT;
2817 break;
2818 }
2819
2820 if ((owner & ~UMUTEX_CONTESTED) == id) {
2821 rv = suword32(&m->m_ceilings[0], ceiling);
2822 error = rv == 0 ? 0 : EFAULT;
2823 break;
2824 }
2825
2826 if (owner == UMUTEX_RB_OWNERDEAD) {
2827 error = EOWNERDEAD;
2828 break;
2829 } else if (owner == UMUTEX_RB_NOTRECOV) {
2830 error = ENOTRECOVERABLE;
2831 break;
2832 } else if (owner == UMUTEX_CONTESTED) {
2833 /* Spurious failure, retry. */
2834 umtxq_unbusy_unlocked(&uq->uq_key);
2835 continue;
2836 }
2837
2838 /*
2839 * If we caught a signal, we have retried and now
2840 * exit immediately.
2841 */
2842 if (error != 0)
2843 break;
2844
2845 /*
2846 * We set the contested bit, sleep. Otherwise the lock changed
2847 * and we need to retry or we lost a race to the thread
2848 * unlocking the umtx.
2849 */
2850 umtxq_lock(&uq->uq_key);
2851 umtxq_insert(uq);
2852 umtxq_unbusy(&uq->uq_key);
2853 error = umtxq_sleep(uq, "umtxpp", NULL);
2854 umtxq_remove(uq);
2855 umtxq_unlock(&uq->uq_key);
2856 }
2857 umtxq_lock(&uq->uq_key);
2858 if (error == 0)
2859 umtxq_signal(&uq->uq_key, INT_MAX);
2860 umtxq_unbusy(&uq->uq_key);
2861 umtxq_unlock(&uq->uq_key);
2862 umtx_key_release(&uq->uq_key);
2863 if (error == 0 && old_ceiling != NULL) {
2864 rv = suword32(old_ceiling, save_ceiling);
2865 error = rv == 0 ? 0 : EFAULT;
2866 }
2867 return (error);
2868 }
2869
2870 /*
2871 * Lock a userland POSIX mutex.
2872 */
2873 static int
do_lock_umutex(struct thread * td,struct umutex * m,struct _umtx_time * timeout,int mode)2874 do_lock_umutex(struct thread *td, struct umutex *m,
2875 struct _umtx_time *timeout, int mode)
2876 {
2877 uint32_t flags;
2878 int error;
2879
2880 error = fueword32(&m->m_flags, &flags);
2881 if (error == -1)
2882 return (EFAULT);
2883
2884 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2885 case 0:
2886 error = do_lock_normal(td, m, flags, timeout, mode);
2887 break;
2888 case UMUTEX_PRIO_INHERIT:
2889 error = do_lock_pi(td, m, flags, timeout, mode);
2890 break;
2891 case UMUTEX_PRIO_PROTECT:
2892 error = do_lock_pp(td, m, flags, timeout, mode);
2893 break;
2894 default:
2895 return (EINVAL);
2896 }
2897 if (timeout == NULL) {
2898 if (error == EINTR && mode != _UMUTEX_WAIT)
2899 error = ERESTART;
2900 } else {
2901 /* Timed-locking is not restarted. */
2902 if (error == ERESTART)
2903 error = EINTR;
2904 }
2905 return (error);
2906 }
2907
2908 /*
2909 * Unlock a userland POSIX mutex.
2910 */
2911 static int
do_unlock_umutex(struct thread * td,struct umutex * m,bool rb)2912 do_unlock_umutex(struct thread *td, struct umutex *m, bool rb)
2913 {
2914 uint32_t flags;
2915 int error;
2916
2917 error = fueword32(&m->m_flags, &flags);
2918 if (error == -1)
2919 return (EFAULT);
2920
2921 switch (flags & (UMUTEX_PRIO_INHERIT | UMUTEX_PRIO_PROTECT)) {
2922 case 0:
2923 return (do_unlock_normal(td, m, flags, rb));
2924 case UMUTEX_PRIO_INHERIT:
2925 return (do_unlock_pi(td, m, flags, rb));
2926 case UMUTEX_PRIO_PROTECT:
2927 return (do_unlock_pp(td, m, flags, rb));
2928 }
2929
2930 return (EINVAL);
2931 }
2932
2933 static int
do_cv_wait(struct thread * td,struct ucond * cv,struct umutex * m,struct timespec * timeout,u_long wflags)2934 do_cv_wait(struct thread *td, struct ucond *cv, struct umutex *m,
2935 struct timespec *timeout, u_long wflags)
2936 {
2937 struct umtx_abs_timeout timo;
2938 struct umtx_q *uq;
2939 uint32_t flags, clockid, hasw;
2940 int error;
2941
2942 uq = td->td_umtxq;
2943 error = fueword32(&cv->c_flags, &flags);
2944 if (error == -1)
2945 return (EFAULT);
2946 error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &uq->uq_key);
2947 if (error != 0)
2948 return (error);
2949
2950 if ((wflags & CVWAIT_CLOCKID) != 0) {
2951 error = fueword32(&cv->c_clockid, &clockid);
2952 if (error == -1) {
2953 umtx_key_release(&uq->uq_key);
2954 return (EFAULT);
2955 }
2956 if (clockid < CLOCK_REALTIME ||
2957 clockid >= CLOCK_THREAD_CPUTIME_ID) {
2958 /* hmm, only HW clock id will work. */
2959 umtx_key_release(&uq->uq_key);
2960 return (EINVAL);
2961 }
2962 } else {
2963 clockid = CLOCK_REALTIME;
2964 }
2965
2966 umtxq_lock(&uq->uq_key);
2967 umtxq_busy(&uq->uq_key);
2968 umtxq_insert(uq);
2969 umtxq_unlock(&uq->uq_key);
2970
2971 /*
2972 * Set c_has_waiters to 1 before releasing user mutex, also
2973 * don't modify cache line when unnecessary.
2974 */
2975 error = fueword32(&cv->c_has_waiters, &hasw);
2976 if (error == 0 && hasw == 0)
2977 error = suword32(&cv->c_has_waiters, 1);
2978 if (error != 0) {
2979 umtxq_lock(&uq->uq_key);
2980 umtxq_remove(uq);
2981 umtxq_unbusy(&uq->uq_key);
2982 error = EFAULT;
2983 goto out;
2984 }
2985
2986 umtxq_unbusy_unlocked(&uq->uq_key);
2987
2988 error = do_unlock_umutex(td, m, false);
2989
2990 if (timeout != NULL)
2991 umtx_abs_timeout_init(&timo, clockid,
2992 (wflags & CVWAIT_ABSTIME) != 0, timeout);
2993
2994 umtxq_lock(&uq->uq_key);
2995 if (error == 0) {
2996 error = umtxq_sleep(uq, "ucond", timeout == NULL ?
2997 NULL : &timo);
2998 }
2999
3000 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3001 error = 0;
3002 else {
3003 /*
3004 * This must be timeout,interrupted by signal or
3005 * surprious wakeup, clear c_has_waiter flag when
3006 * necessary.
3007 */
3008 umtxq_busy(&uq->uq_key);
3009 if ((uq->uq_flags & UQF_UMTXQ) != 0) {
3010 int oldlen = uq->uq_cur_queue->length;
3011 umtxq_remove(uq);
3012 if (oldlen == 1) {
3013 umtxq_unlock(&uq->uq_key);
3014 if (suword32(&cv->c_has_waiters, 0) != 0 &&
3015 error == 0)
3016 error = EFAULT;
3017 umtxq_lock(&uq->uq_key);
3018 }
3019 }
3020 umtxq_unbusy(&uq->uq_key);
3021 if (error == ERESTART)
3022 error = EINTR;
3023 }
3024 out:
3025 umtxq_unlock(&uq->uq_key);
3026 umtx_key_release(&uq->uq_key);
3027 return (error);
3028 }
3029
3030 /*
3031 * Signal a userland condition variable.
3032 */
3033 static int
do_cv_signal(struct thread * td,struct ucond * cv)3034 do_cv_signal(struct thread *td, struct ucond *cv)
3035 {
3036 struct umtx_key key;
3037 int error, cnt, nwake;
3038 uint32_t flags;
3039
3040 error = fueword32(&cv->c_flags, &flags);
3041 if (error == -1)
3042 return (EFAULT);
3043 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3044 return (error);
3045 umtxq_lock(&key);
3046 umtxq_busy(&key);
3047 cnt = umtxq_count(&key);
3048 nwake = umtxq_signal(&key, 1);
3049 if (cnt <= nwake) {
3050 umtxq_unlock(&key);
3051 error = suword32(&cv->c_has_waiters, 0);
3052 if (error == -1)
3053 error = EFAULT;
3054 umtxq_lock(&key);
3055 }
3056 umtxq_unbusy(&key);
3057 umtxq_unlock(&key);
3058 umtx_key_release(&key);
3059 return (error);
3060 }
3061
3062 static int
do_cv_broadcast(struct thread * td,struct ucond * cv)3063 do_cv_broadcast(struct thread *td, struct ucond *cv)
3064 {
3065 struct umtx_key key;
3066 int error;
3067 uint32_t flags;
3068
3069 error = fueword32(&cv->c_flags, &flags);
3070 if (error == -1)
3071 return (EFAULT);
3072 if ((error = umtx_key_get(cv, TYPE_CV, GET_SHARE(flags), &key)) != 0)
3073 return (error);
3074
3075 umtxq_lock(&key);
3076 umtxq_busy(&key);
3077 umtxq_signal(&key, INT_MAX);
3078 umtxq_unlock(&key);
3079
3080 error = suword32(&cv->c_has_waiters, 0);
3081 if (error == -1)
3082 error = EFAULT;
3083
3084 umtxq_unbusy_unlocked(&key);
3085
3086 umtx_key_release(&key);
3087 return (error);
3088 }
3089
3090 static int
do_rw_rdlock(struct thread * td,struct urwlock * rwlock,long fflag,struct _umtx_time * timeout)3091 do_rw_rdlock(struct thread *td, struct urwlock *rwlock, long fflag,
3092 struct _umtx_time *timeout)
3093 {
3094 struct umtx_abs_timeout timo;
3095 struct umtx_q *uq;
3096 uint32_t flags, wrflags;
3097 int32_t state, oldstate;
3098 int32_t blocked_readers;
3099 int error, error1, rv;
3100
3101 uq = td->td_umtxq;
3102 error = fueword32(&rwlock->rw_flags, &flags);
3103 if (error == -1)
3104 return (EFAULT);
3105 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3106 if (error != 0)
3107 return (error);
3108
3109 if (timeout != NULL)
3110 umtx_abs_timeout_init2(&timo, timeout);
3111
3112 wrflags = URWLOCK_WRITE_OWNER;
3113 if (!(fflag & URWLOCK_PREFER_READER) && !(flags & URWLOCK_PREFER_READER))
3114 wrflags |= URWLOCK_WRITE_WAITERS;
3115
3116 for (;;) {
3117 rv = fueword32(&rwlock->rw_state, &state);
3118 if (rv == -1) {
3119 umtx_key_release(&uq->uq_key);
3120 return (EFAULT);
3121 }
3122
3123 /* try to lock it */
3124 while (!(state & wrflags)) {
3125 if (__predict_false(URWLOCK_READER_COUNT(state) ==
3126 URWLOCK_MAX_READERS)) {
3127 umtx_key_release(&uq->uq_key);
3128 return (EAGAIN);
3129 }
3130 rv = casueword32(&rwlock->rw_state, state,
3131 &oldstate, state + 1);
3132 if (rv == -1) {
3133 umtx_key_release(&uq->uq_key);
3134 return (EFAULT);
3135 }
3136 if (rv == 0) {
3137 MPASS(oldstate == state);
3138 umtx_key_release(&uq->uq_key);
3139 return (0);
3140 }
3141 error = thread_check_susp(td, true);
3142 if (error != 0)
3143 break;
3144 state = oldstate;
3145 }
3146
3147 if (error)
3148 break;
3149
3150 /* grab monitor lock */
3151 umtxq_busy_unlocked(&uq->uq_key);
3152
3153 /*
3154 * re-read the state, in case it changed between the try-lock above
3155 * and the check below
3156 */
3157 rv = fueword32(&rwlock->rw_state, &state);
3158 if (rv == -1)
3159 error = EFAULT;
3160
3161 /* set read contention bit */
3162 while (error == 0 && (state & wrflags) &&
3163 !(state & URWLOCK_READ_WAITERS)) {
3164 rv = casueword32(&rwlock->rw_state, state,
3165 &oldstate, state | URWLOCK_READ_WAITERS);
3166 if (rv == -1) {
3167 error = EFAULT;
3168 break;
3169 }
3170 if (rv == 0) {
3171 MPASS(oldstate == state);
3172 goto sleep;
3173 }
3174 state = oldstate;
3175 error = thread_check_susp(td, false);
3176 if (error != 0)
3177 break;
3178 }
3179 if (error != 0) {
3180 umtxq_unbusy_unlocked(&uq->uq_key);
3181 break;
3182 }
3183
3184 /* state is changed while setting flags, restart */
3185 if (!(state & wrflags)) {
3186 umtxq_unbusy_unlocked(&uq->uq_key);
3187 error = thread_check_susp(td, true);
3188 if (error != 0)
3189 break;
3190 continue;
3191 }
3192
3193 sleep:
3194 /*
3195 * Contention bit is set, before sleeping, increase
3196 * read waiter count.
3197 */
3198 rv = fueword32(&rwlock->rw_blocked_readers,
3199 &blocked_readers);
3200 if (rv == 0)
3201 rv = suword32(&rwlock->rw_blocked_readers,
3202 blocked_readers + 1);
3203 if (rv == -1) {
3204 umtxq_unbusy_unlocked(&uq->uq_key);
3205 error = EFAULT;
3206 break;
3207 }
3208
3209 while (state & wrflags) {
3210 umtxq_lock(&uq->uq_key);
3211 umtxq_insert(uq);
3212 umtxq_unbusy(&uq->uq_key);
3213
3214 error = umtxq_sleep(uq, "urdlck", timeout == NULL ?
3215 NULL : &timo);
3216
3217 umtxq_busy(&uq->uq_key);
3218 umtxq_remove(uq);
3219 umtxq_unlock(&uq->uq_key);
3220 if (error)
3221 break;
3222 rv = fueword32(&rwlock->rw_state, &state);
3223 if (rv == -1) {
3224 error = EFAULT;
3225 break;
3226 }
3227 }
3228
3229 /* decrease read waiter count, and may clear read contention bit */
3230 rv = fueword32(&rwlock->rw_blocked_readers,
3231 &blocked_readers);
3232 if (rv == 0)
3233 rv = suword32(&rwlock->rw_blocked_readers,
3234 blocked_readers - 1);
3235 if (rv == -1) {
3236 umtxq_unbusy_unlocked(&uq->uq_key);
3237 error = EFAULT;
3238 break;
3239 }
3240 if (blocked_readers == 1) {
3241 rv = fueword32(&rwlock->rw_state, &state);
3242 if (rv == -1) {
3243 umtxq_unbusy_unlocked(&uq->uq_key);
3244 error = EFAULT;
3245 break;
3246 }
3247 for (;;) {
3248 rv = casueword32(&rwlock->rw_state, state,
3249 &oldstate, state & ~URWLOCK_READ_WAITERS);
3250 if (rv == -1) {
3251 error = EFAULT;
3252 break;
3253 }
3254 if (rv == 0) {
3255 MPASS(oldstate == state);
3256 break;
3257 }
3258 state = oldstate;
3259 error1 = thread_check_susp(td, false);
3260 if (error1 != 0) {
3261 if (error == 0)
3262 error = error1;
3263 break;
3264 }
3265 }
3266 }
3267
3268 umtxq_unbusy_unlocked(&uq->uq_key);
3269 if (error != 0)
3270 break;
3271 }
3272 umtx_key_release(&uq->uq_key);
3273 if (error == ERESTART)
3274 error = EINTR;
3275 return (error);
3276 }
3277
3278 static int
do_rw_wrlock(struct thread * td,struct urwlock * rwlock,struct _umtx_time * timeout)3279 do_rw_wrlock(struct thread *td, struct urwlock *rwlock, struct _umtx_time *timeout)
3280 {
3281 struct umtx_abs_timeout timo;
3282 struct umtx_q *uq;
3283 uint32_t flags;
3284 int32_t state, oldstate;
3285 int32_t blocked_writers;
3286 int32_t blocked_readers;
3287 int error, error1, rv;
3288
3289 uq = td->td_umtxq;
3290 error = fueword32(&rwlock->rw_flags, &flags);
3291 if (error == -1)
3292 return (EFAULT);
3293 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3294 if (error != 0)
3295 return (error);
3296
3297 if (timeout != NULL)
3298 umtx_abs_timeout_init2(&timo, timeout);
3299
3300 blocked_readers = 0;
3301 for (;;) {
3302 rv = fueword32(&rwlock->rw_state, &state);
3303 if (rv == -1) {
3304 umtx_key_release(&uq->uq_key);
3305 return (EFAULT);
3306 }
3307 while ((state & URWLOCK_WRITE_OWNER) == 0 &&
3308 URWLOCK_READER_COUNT(state) == 0) {
3309 rv = casueword32(&rwlock->rw_state, state,
3310 &oldstate, state | URWLOCK_WRITE_OWNER);
3311 if (rv == -1) {
3312 umtx_key_release(&uq->uq_key);
3313 return (EFAULT);
3314 }
3315 if (rv == 0) {
3316 MPASS(oldstate == state);
3317 umtx_key_release(&uq->uq_key);
3318 return (0);
3319 }
3320 state = oldstate;
3321 error = thread_check_susp(td, true);
3322 if (error != 0)
3323 break;
3324 }
3325
3326 if (error) {
3327 if ((state & (URWLOCK_WRITE_OWNER |
3328 URWLOCK_WRITE_WAITERS)) == 0 &&
3329 blocked_readers != 0) {
3330 umtxq_lock(&uq->uq_key);
3331 umtxq_busy(&uq->uq_key);
3332 umtxq_signal_queue(&uq->uq_key, INT_MAX,
3333 UMTX_SHARED_QUEUE);
3334 umtxq_unbusy(&uq->uq_key);
3335 umtxq_unlock(&uq->uq_key);
3336 }
3337
3338 break;
3339 }
3340
3341 /* grab monitor lock */
3342 umtxq_busy_unlocked(&uq->uq_key);
3343
3344 /*
3345 * Re-read the state, in case it changed between the
3346 * try-lock above and the check below.
3347 */
3348 rv = fueword32(&rwlock->rw_state, &state);
3349 if (rv == -1)
3350 error = EFAULT;
3351
3352 while (error == 0 && ((state & URWLOCK_WRITE_OWNER) ||
3353 URWLOCK_READER_COUNT(state) != 0) &&
3354 (state & URWLOCK_WRITE_WAITERS) == 0) {
3355 rv = casueword32(&rwlock->rw_state, state,
3356 &oldstate, state | URWLOCK_WRITE_WAITERS);
3357 if (rv == -1) {
3358 error = EFAULT;
3359 break;
3360 }
3361 if (rv == 0) {
3362 MPASS(oldstate == state);
3363 goto sleep;
3364 }
3365 state = oldstate;
3366 error = thread_check_susp(td, false);
3367 if (error != 0)
3368 break;
3369 }
3370 if (error != 0) {
3371 umtxq_unbusy_unlocked(&uq->uq_key);
3372 break;
3373 }
3374
3375 if ((state & URWLOCK_WRITE_OWNER) == 0 &&
3376 URWLOCK_READER_COUNT(state) == 0) {
3377 umtxq_unbusy_unlocked(&uq->uq_key);
3378 error = thread_check_susp(td, false);
3379 if (error != 0)
3380 break;
3381 continue;
3382 }
3383 sleep:
3384 rv = fueword32(&rwlock->rw_blocked_writers,
3385 &blocked_writers);
3386 if (rv == 0)
3387 rv = suword32(&rwlock->rw_blocked_writers,
3388 blocked_writers + 1);
3389 if (rv == -1) {
3390 umtxq_unbusy_unlocked(&uq->uq_key);
3391 error = EFAULT;
3392 break;
3393 }
3394
3395 while ((state & URWLOCK_WRITE_OWNER) ||
3396 URWLOCK_READER_COUNT(state) != 0) {
3397 umtxq_lock(&uq->uq_key);
3398 umtxq_insert_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3399 umtxq_unbusy(&uq->uq_key);
3400
3401 error = umtxq_sleep(uq, "uwrlck", timeout == NULL ?
3402 NULL : &timo);
3403
3404 umtxq_busy(&uq->uq_key);
3405 umtxq_remove_queue(uq, UMTX_EXCLUSIVE_QUEUE);
3406 umtxq_unlock(&uq->uq_key);
3407 if (error)
3408 break;
3409 rv = fueword32(&rwlock->rw_state, &state);
3410 if (rv == -1) {
3411 error = EFAULT;
3412 break;
3413 }
3414 }
3415
3416 rv = fueword32(&rwlock->rw_blocked_writers,
3417 &blocked_writers);
3418 if (rv == 0)
3419 rv = suword32(&rwlock->rw_blocked_writers,
3420 blocked_writers - 1);
3421 if (rv == -1) {
3422 umtxq_unbusy_unlocked(&uq->uq_key);
3423 error = EFAULT;
3424 break;
3425 }
3426 if (blocked_writers == 1) {
3427 rv = fueword32(&rwlock->rw_state, &state);
3428 if (rv == -1) {
3429 umtxq_unbusy_unlocked(&uq->uq_key);
3430 error = EFAULT;
3431 break;
3432 }
3433 for (;;) {
3434 rv = casueword32(&rwlock->rw_state, state,
3435 &oldstate, state & ~URWLOCK_WRITE_WAITERS);
3436 if (rv == -1) {
3437 error = EFAULT;
3438 break;
3439 }
3440 if (rv == 0) {
3441 MPASS(oldstate == state);
3442 break;
3443 }
3444 state = oldstate;
3445 error1 = thread_check_susp(td, false);
3446 /*
3447 * We are leaving the URWLOCK_WRITE_WAITERS
3448 * behind, but this should not harm the
3449 * correctness.
3450 */
3451 if (error1 != 0) {
3452 if (error == 0)
3453 error = error1;
3454 break;
3455 }
3456 }
3457 rv = fueword32(&rwlock->rw_blocked_readers,
3458 &blocked_readers);
3459 if (rv == -1) {
3460 umtxq_unbusy_unlocked(&uq->uq_key);
3461 error = EFAULT;
3462 break;
3463 }
3464 } else
3465 blocked_readers = 0;
3466
3467 umtxq_unbusy_unlocked(&uq->uq_key);
3468 }
3469
3470 umtx_key_release(&uq->uq_key);
3471 if (error == ERESTART)
3472 error = EINTR;
3473 return (error);
3474 }
3475
3476 static int
do_rw_unlock(struct thread * td,struct urwlock * rwlock)3477 do_rw_unlock(struct thread *td, struct urwlock *rwlock)
3478 {
3479 struct umtx_q *uq;
3480 uint32_t flags;
3481 int32_t state, oldstate;
3482 int error, rv, q, count;
3483
3484 uq = td->td_umtxq;
3485 error = fueword32(&rwlock->rw_flags, &flags);
3486 if (error == -1)
3487 return (EFAULT);
3488 error = umtx_key_get(rwlock, TYPE_RWLOCK, GET_SHARE(flags), &uq->uq_key);
3489 if (error != 0)
3490 return (error);
3491
3492 error = fueword32(&rwlock->rw_state, &state);
3493 if (error == -1) {
3494 error = EFAULT;
3495 goto out;
3496 }
3497 if (state & URWLOCK_WRITE_OWNER) {
3498 for (;;) {
3499 rv = casueword32(&rwlock->rw_state, state,
3500 &oldstate, state & ~URWLOCK_WRITE_OWNER);
3501 if (rv == -1) {
3502 error = EFAULT;
3503 goto out;
3504 }
3505 if (rv == 1) {
3506 state = oldstate;
3507 if (!(oldstate & URWLOCK_WRITE_OWNER)) {
3508 error = EPERM;
3509 goto out;
3510 }
3511 error = thread_check_susp(td, true);
3512 if (error != 0)
3513 goto out;
3514 } else
3515 break;
3516 }
3517 } else if (URWLOCK_READER_COUNT(state) != 0) {
3518 for (;;) {
3519 rv = casueword32(&rwlock->rw_state, state,
3520 &oldstate, state - 1);
3521 if (rv == -1) {
3522 error = EFAULT;
3523 goto out;
3524 }
3525 if (rv == 1) {
3526 state = oldstate;
3527 if (URWLOCK_READER_COUNT(oldstate) == 0) {
3528 error = EPERM;
3529 goto out;
3530 }
3531 error = thread_check_susp(td, true);
3532 if (error != 0)
3533 goto out;
3534 } else
3535 break;
3536 }
3537 } else {
3538 error = EPERM;
3539 goto out;
3540 }
3541
3542 count = 0;
3543
3544 if (!(flags & URWLOCK_PREFER_READER)) {
3545 if (state & URWLOCK_WRITE_WAITERS) {
3546 count = 1;
3547 q = UMTX_EXCLUSIVE_QUEUE;
3548 } else if (state & URWLOCK_READ_WAITERS) {
3549 count = INT_MAX;
3550 q = UMTX_SHARED_QUEUE;
3551 }
3552 } else {
3553 if (state & URWLOCK_READ_WAITERS) {
3554 count = INT_MAX;
3555 q = UMTX_SHARED_QUEUE;
3556 } else if (state & URWLOCK_WRITE_WAITERS) {
3557 count = 1;
3558 q = UMTX_EXCLUSIVE_QUEUE;
3559 }
3560 }
3561
3562 if (count) {
3563 umtxq_lock(&uq->uq_key);
3564 umtxq_busy(&uq->uq_key);
3565 umtxq_signal_queue(&uq->uq_key, count, q);
3566 umtxq_unbusy(&uq->uq_key);
3567 umtxq_unlock(&uq->uq_key);
3568 }
3569 out:
3570 umtx_key_release(&uq->uq_key);
3571 return (error);
3572 }
3573
3574 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
3575 static int
do_sem_wait(struct thread * td,struct _usem * sem,struct _umtx_time * timeout)3576 do_sem_wait(struct thread *td, struct _usem *sem, struct _umtx_time *timeout)
3577 {
3578 struct umtx_abs_timeout timo;
3579 struct umtx_q *uq;
3580 uint32_t flags, count, count1;
3581 int error, rv, rv1;
3582
3583 uq = td->td_umtxq;
3584 error = fueword32(&sem->_flags, &flags);
3585 if (error == -1)
3586 return (EFAULT);
3587 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3588 if (error != 0)
3589 return (error);
3590
3591 if (timeout != NULL)
3592 umtx_abs_timeout_init2(&timo, timeout);
3593
3594 again:
3595 umtxq_lock(&uq->uq_key);
3596 umtxq_busy(&uq->uq_key);
3597 umtxq_insert(uq);
3598 umtxq_unlock(&uq->uq_key);
3599 rv = casueword32(&sem->_has_waiters, 0, &count1, 1);
3600 if (rv != -1)
3601 rv1 = fueword32(&sem->_count, &count);
3602 if (rv == -1 || rv1 == -1 || count != 0 || (rv == 1 && count1 == 0)) {
3603 if (rv == 0)
3604 rv = suword32(&sem->_has_waiters, 0);
3605 umtxq_lock(&uq->uq_key);
3606 umtxq_unbusy(&uq->uq_key);
3607 umtxq_remove(uq);
3608 umtxq_unlock(&uq->uq_key);
3609 if (rv == -1 || rv1 == -1) {
3610 error = EFAULT;
3611 goto out;
3612 }
3613 if (count != 0) {
3614 error = 0;
3615 goto out;
3616 }
3617 MPASS(rv == 1 && count1 == 0);
3618 rv = thread_check_susp(td, true);
3619 if (rv == 0)
3620 goto again;
3621 error = rv;
3622 goto out;
3623 }
3624 umtxq_lock(&uq->uq_key);
3625 umtxq_unbusy(&uq->uq_key);
3626
3627 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3628
3629 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3630 error = 0;
3631 else {
3632 umtxq_remove(uq);
3633 /* A relative timeout cannot be restarted. */
3634 if (error == ERESTART && timeout != NULL &&
3635 (timeout->_flags & UMTX_ABSTIME) == 0)
3636 error = EINTR;
3637 }
3638 umtxq_unlock(&uq->uq_key);
3639 out:
3640 umtx_key_release(&uq->uq_key);
3641 return (error);
3642 }
3643
3644 /*
3645 * Signal a userland semaphore.
3646 */
3647 static int
do_sem_wake(struct thread * td,struct _usem * sem)3648 do_sem_wake(struct thread *td, struct _usem *sem)
3649 {
3650 struct umtx_key key;
3651 int error, cnt;
3652 uint32_t flags;
3653
3654 error = fueword32(&sem->_flags, &flags);
3655 if (error == -1)
3656 return (EFAULT);
3657 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3658 return (error);
3659 umtxq_lock(&key);
3660 umtxq_busy(&key);
3661 cnt = umtxq_count(&key);
3662 if (cnt > 0) {
3663 /*
3664 * Check if count is greater than 0, this means the memory is
3665 * still being referenced by user code, so we can safely
3666 * update _has_waiters flag.
3667 */
3668 if (cnt == 1) {
3669 umtxq_unlock(&key);
3670 error = suword32(&sem->_has_waiters, 0);
3671 umtxq_lock(&key);
3672 if (error == -1)
3673 error = EFAULT;
3674 }
3675 umtxq_signal(&key, 1);
3676 }
3677 umtxq_unbusy(&key);
3678 umtxq_unlock(&key);
3679 umtx_key_release(&key);
3680 return (error);
3681 }
3682 #endif
3683
3684 static int
do_sem2_wait(struct thread * td,struct _usem2 * sem,struct _umtx_time * timeout)3685 do_sem2_wait(struct thread *td, struct _usem2 *sem, struct _umtx_time *timeout)
3686 {
3687 struct umtx_abs_timeout timo;
3688 struct umtx_q *uq;
3689 uint32_t count, flags;
3690 int error, rv;
3691
3692 uq = td->td_umtxq;
3693 flags = fuword32(&sem->_flags);
3694 if (timeout != NULL)
3695 umtx_abs_timeout_init2(&timo, timeout);
3696
3697 again:
3698 error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &uq->uq_key);
3699 if (error != 0)
3700 return (error);
3701 umtxq_lock(&uq->uq_key);
3702 umtxq_busy(&uq->uq_key);
3703 umtxq_insert(uq);
3704 umtxq_unlock(&uq->uq_key);
3705 rv = fueword32(&sem->_count, &count);
3706 if (rv == -1) {
3707 umtxq_lock(&uq->uq_key);
3708 umtxq_unbusy(&uq->uq_key);
3709 umtxq_remove(uq);
3710 umtxq_unlock(&uq->uq_key);
3711 umtx_key_release(&uq->uq_key);
3712 return (EFAULT);
3713 }
3714 for (;;) {
3715 if (USEM_COUNT(count) != 0) {
3716 umtxq_lock(&uq->uq_key);
3717 umtxq_unbusy(&uq->uq_key);
3718 umtxq_remove(uq);
3719 umtxq_unlock(&uq->uq_key);
3720 umtx_key_release(&uq->uq_key);
3721 return (0);
3722 }
3723 if (count == USEM_HAS_WAITERS)
3724 break;
3725 rv = casueword32(&sem->_count, 0, &count, USEM_HAS_WAITERS);
3726 if (rv == 0)
3727 break;
3728 umtxq_lock(&uq->uq_key);
3729 umtxq_unbusy(&uq->uq_key);
3730 umtxq_remove(uq);
3731 umtxq_unlock(&uq->uq_key);
3732 umtx_key_release(&uq->uq_key);
3733 if (rv == -1)
3734 return (EFAULT);
3735 rv = thread_check_susp(td, true);
3736 if (rv != 0)
3737 return (rv);
3738 goto again;
3739 }
3740 umtxq_lock(&uq->uq_key);
3741 umtxq_unbusy(&uq->uq_key);
3742
3743 error = umtxq_sleep(uq, "usem", timeout == NULL ? NULL : &timo);
3744
3745 if ((uq->uq_flags & UQF_UMTXQ) == 0)
3746 error = 0;
3747 else {
3748 umtxq_remove(uq);
3749 if (timeout != NULL && (timeout->_flags & UMTX_ABSTIME) == 0) {
3750 /* A relative timeout cannot be restarted. */
3751 if (error == ERESTART)
3752 error = EINTR;
3753 if (error == EINTR) {
3754 kern_clock_gettime(curthread, timo.clockid,
3755 &timo.cur);
3756 timespecsub(&timo.end, &timo.cur,
3757 &timeout->_timeout);
3758 }
3759 }
3760 }
3761 umtxq_unlock(&uq->uq_key);
3762 umtx_key_release(&uq->uq_key);
3763 return (error);
3764 }
3765
3766 /*
3767 * Signal a userland semaphore.
3768 */
3769 static int
do_sem2_wake(struct thread * td,struct _usem2 * sem)3770 do_sem2_wake(struct thread *td, struct _usem2 *sem)
3771 {
3772 struct umtx_key key;
3773 int error, cnt, rv;
3774 uint32_t count, flags;
3775
3776 rv = fueword32(&sem->_flags, &flags);
3777 if (rv == -1)
3778 return (EFAULT);
3779 if ((error = umtx_key_get(sem, TYPE_SEM, GET_SHARE(flags), &key)) != 0)
3780 return (error);
3781 umtxq_lock(&key);
3782 umtxq_busy(&key);
3783 cnt = umtxq_count(&key);
3784 if (cnt > 0) {
3785 /*
3786 * If this was the last sleeping thread, clear the waiters
3787 * flag in _count.
3788 */
3789 if (cnt == 1) {
3790 umtxq_unlock(&key);
3791 rv = fueword32(&sem->_count, &count);
3792 while (rv != -1 && count & USEM_HAS_WAITERS) {
3793 rv = casueword32(&sem->_count, count, &count,
3794 count & ~USEM_HAS_WAITERS);
3795 if (rv == 1) {
3796 rv = thread_check_susp(td, false);
3797 if (rv != 0)
3798 break;
3799 }
3800 }
3801 if (rv == -1)
3802 error = EFAULT;
3803 else if (rv > 0) {
3804 error = rv;
3805 }
3806 umtxq_lock(&key);
3807 }
3808
3809 umtxq_signal(&key, 1);
3810 }
3811 umtxq_unbusy(&key);
3812 umtxq_unlock(&key);
3813 umtx_key_release(&key);
3814 return (error);
3815 }
3816
3817 #ifdef COMPAT_FREEBSD10
3818 int
freebsd10__umtx_lock(struct thread * td,struct freebsd10__umtx_lock_args * uap)3819 freebsd10__umtx_lock(struct thread *td, struct freebsd10__umtx_lock_args *uap)
3820 {
3821 return (do_lock_umtx(td, uap->umtx, td->td_tid, 0));
3822 }
3823
3824 int
freebsd10__umtx_unlock(struct thread * td,struct freebsd10__umtx_unlock_args * uap)3825 freebsd10__umtx_unlock(struct thread *td,
3826 struct freebsd10__umtx_unlock_args *uap)
3827 {
3828 return (do_unlock_umtx(td, uap->umtx, td->td_tid));
3829 }
3830 #endif
3831
3832 inline int
umtx_copyin_timeout(const void * uaddr,struct timespec * tsp)3833 umtx_copyin_timeout(const void *uaddr, struct timespec *tsp)
3834 {
3835 int error;
3836
3837 error = copyin(uaddr, tsp, sizeof(*tsp));
3838 if (error == 0) {
3839 if (!timespecvalid_interval(tsp))
3840 error = EINVAL;
3841 }
3842 return (error);
3843 }
3844
3845 static inline int
umtx_copyin_umtx_time(const void * uaddr,size_t size,struct _umtx_time * tp)3846 umtx_copyin_umtx_time(const void *uaddr, size_t size, struct _umtx_time *tp)
3847 {
3848 int error;
3849
3850 if (size <= sizeof(tp->_timeout)) {
3851 tp->_clockid = CLOCK_REALTIME;
3852 tp->_flags = 0;
3853 error = copyin(uaddr, &tp->_timeout, sizeof(tp->_timeout));
3854 } else
3855 error = copyin(uaddr, tp, sizeof(*tp));
3856 if (error != 0)
3857 return (error);
3858 if (!timespecvalid_interval(&tp->_timeout))
3859 return (EINVAL);
3860 return (0);
3861 }
3862
3863 static int
umtx_copyin_robust_lists(const void * uaddr,size_t size,struct umtx_robust_lists_params * rb)3864 umtx_copyin_robust_lists(const void *uaddr, size_t size,
3865 struct umtx_robust_lists_params *rb)
3866 {
3867
3868 if (size > sizeof(*rb))
3869 return (EINVAL);
3870 return (copyin(uaddr, rb, size));
3871 }
3872
3873 static int
umtx_copyout_timeout(void * uaddr,size_t sz,struct timespec * tsp)3874 umtx_copyout_timeout(void *uaddr, size_t sz, struct timespec *tsp)
3875 {
3876
3877 /*
3878 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
3879 * and we're only called if sz >= sizeof(timespec) as supplied in the
3880 * copyops.
3881 */
3882 KASSERT(sz >= sizeof(*tsp),
3883 ("umtx_copyops specifies incorrect sizes"));
3884
3885 return (copyout(tsp, uaddr, sizeof(*tsp)));
3886 }
3887
3888 #ifdef COMPAT_FREEBSD10
3889 static int
__umtx_op_lock_umtx(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3890 __umtx_op_lock_umtx(struct thread *td, struct _umtx_op_args *uap,
3891 const struct umtx_copyops *ops)
3892 {
3893 struct timespec *ts, timeout;
3894 int error;
3895
3896 /* Allow a null timespec (wait forever). */
3897 if (uap->uaddr2 == NULL)
3898 ts = NULL;
3899 else {
3900 error = ops->copyin_timeout(uap->uaddr2, &timeout);
3901 if (error != 0)
3902 return (error);
3903 ts = &timeout;
3904 }
3905 #ifdef COMPAT_FREEBSD32
3906 if (ops->compat32)
3907 return (do_lock_umtx32(td, uap->obj, uap->val, ts));
3908 #endif
3909 return (do_lock_umtx(td, uap->obj, uap->val, ts));
3910 }
3911
3912 static int
__umtx_op_unlock_umtx(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3913 __umtx_op_unlock_umtx(struct thread *td, struct _umtx_op_args *uap,
3914 const struct umtx_copyops *ops)
3915 {
3916 #ifdef COMPAT_FREEBSD32
3917 if (ops->compat32)
3918 return (do_unlock_umtx32(td, uap->obj, uap->val));
3919 #endif
3920 return (do_unlock_umtx(td, uap->obj, uap->val));
3921 }
3922 #endif /* COMPAT_FREEBSD10 */
3923
3924 #if !defined(COMPAT_FREEBSD10)
3925 static int
__umtx_op_unimpl(struct thread * td __unused,struct _umtx_op_args * uap __unused,const struct umtx_copyops * ops __unused)3926 __umtx_op_unimpl(struct thread *td __unused, struct _umtx_op_args *uap __unused,
3927 const struct umtx_copyops *ops __unused)
3928 {
3929 return (EOPNOTSUPP);
3930 }
3931 #endif /* COMPAT_FREEBSD10 */
3932
3933 static int
__umtx_op_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3934 __umtx_op_wait(struct thread *td, struct _umtx_op_args *uap,
3935 const struct umtx_copyops *ops)
3936 {
3937 struct _umtx_time timeout, *tm_p;
3938 int error;
3939
3940 if (uap->uaddr2 == NULL)
3941 tm_p = NULL;
3942 else {
3943 error = ops->copyin_umtx_time(
3944 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3945 if (error != 0)
3946 return (error);
3947 tm_p = &timeout;
3948 }
3949 return (do_wait(td, uap->obj, uap->val, tm_p, ops->compat32, 0));
3950 }
3951
3952 static int
__umtx_op_wait_uint(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3953 __umtx_op_wait_uint(struct thread *td, struct _umtx_op_args *uap,
3954 const struct umtx_copyops *ops)
3955 {
3956 struct _umtx_time timeout, *tm_p;
3957 int error;
3958
3959 if (uap->uaddr2 == NULL)
3960 tm_p = NULL;
3961 else {
3962 error = ops->copyin_umtx_time(
3963 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3964 if (error != 0)
3965 return (error);
3966 tm_p = &timeout;
3967 }
3968 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 0));
3969 }
3970
3971 static int
__umtx_op_wait_uint_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)3972 __umtx_op_wait_uint_private(struct thread *td, struct _umtx_op_args *uap,
3973 const struct umtx_copyops *ops)
3974 {
3975 struct _umtx_time *tm_p, timeout;
3976 int error;
3977
3978 if (uap->uaddr2 == NULL)
3979 tm_p = NULL;
3980 else {
3981 error = ops->copyin_umtx_time(
3982 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
3983 if (error != 0)
3984 return (error);
3985 tm_p = &timeout;
3986 }
3987 return (do_wait(td, uap->obj, uap->val, tm_p, 1, 1));
3988 }
3989
3990 static int
__umtx_op_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)3991 __umtx_op_wake(struct thread *td, struct _umtx_op_args *uap,
3992 const struct umtx_copyops *ops __unused)
3993 {
3994
3995 return (kern_umtx_wake(td, uap->obj, uap->val, 0));
3996 }
3997
3998 #define BATCH_SIZE 128
3999 static int
__umtx_op_nwake_private_native(struct thread * td,struct _umtx_op_args * uap)4000 __umtx_op_nwake_private_native(struct thread *td, struct _umtx_op_args *uap)
4001 {
4002 char *uaddrs[BATCH_SIZE], **upp;
4003 int count, error, i, pos, tocopy;
4004
4005 upp = (char **)uap->obj;
4006 error = 0;
4007 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4008 pos += tocopy) {
4009 tocopy = MIN(count, BATCH_SIZE);
4010 error = copyin(upp + pos, uaddrs, tocopy * sizeof(char *));
4011 if (error != 0)
4012 break;
4013 for (i = 0; i < tocopy; ++i) {
4014 kern_umtx_wake(td, uaddrs[i], INT_MAX, 1);
4015 }
4016 maybe_yield();
4017 }
4018 return (error);
4019 }
4020
4021 static int
__umtx_op_nwake_private_compat32(struct thread * td,struct _umtx_op_args * uap)4022 __umtx_op_nwake_private_compat32(struct thread *td, struct _umtx_op_args *uap)
4023 {
4024 uint32_t uaddrs[BATCH_SIZE], *upp;
4025 int count, error, i, pos, tocopy;
4026
4027 upp = (uint32_t *)uap->obj;
4028 error = 0;
4029 for (count = uap->val, pos = 0; count > 0; count -= tocopy,
4030 pos += tocopy) {
4031 tocopy = MIN(count, BATCH_SIZE);
4032 error = copyin(upp + pos, uaddrs, tocopy * sizeof(uint32_t));
4033 if (error != 0)
4034 break;
4035 for (i = 0; i < tocopy; ++i) {
4036 kern_umtx_wake(td, (void *)(uintptr_t)uaddrs[i],
4037 INT_MAX, 1);
4038 }
4039 maybe_yield();
4040 }
4041 return (error);
4042 }
4043
4044 static int
__umtx_op_nwake_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4045 __umtx_op_nwake_private(struct thread *td, struct _umtx_op_args *uap,
4046 const struct umtx_copyops *ops)
4047 {
4048
4049 if (ops->compat32)
4050 return (__umtx_op_nwake_private_compat32(td, uap));
4051 return (__umtx_op_nwake_private_native(td, uap));
4052 }
4053
4054 static int
__umtx_op_wake_private(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4055 __umtx_op_wake_private(struct thread *td, struct _umtx_op_args *uap,
4056 const struct umtx_copyops *ops __unused)
4057 {
4058
4059 return (kern_umtx_wake(td, uap->obj, uap->val, 1));
4060 }
4061
4062 static int
__umtx_op_lock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4063 __umtx_op_lock_umutex(struct thread *td, struct _umtx_op_args *uap,
4064 const struct umtx_copyops *ops)
4065 {
4066 struct _umtx_time *tm_p, timeout;
4067 int error;
4068
4069 /* Allow a null timespec (wait forever). */
4070 if (uap->uaddr2 == NULL)
4071 tm_p = NULL;
4072 else {
4073 error = ops->copyin_umtx_time(
4074 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4075 if (error != 0)
4076 return (error);
4077 tm_p = &timeout;
4078 }
4079 return (do_lock_umutex(td, uap->obj, tm_p, 0));
4080 }
4081
4082 static int
__umtx_op_trylock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4083 __umtx_op_trylock_umutex(struct thread *td, struct _umtx_op_args *uap,
4084 const struct umtx_copyops *ops __unused)
4085 {
4086
4087 return (do_lock_umutex(td, uap->obj, NULL, _UMUTEX_TRY));
4088 }
4089
4090 static int
__umtx_op_wait_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4091 __umtx_op_wait_umutex(struct thread *td, struct _umtx_op_args *uap,
4092 const struct umtx_copyops *ops)
4093 {
4094 struct _umtx_time *tm_p, timeout;
4095 int error;
4096
4097 /* Allow a null timespec (wait forever). */
4098 if (uap->uaddr2 == NULL)
4099 tm_p = NULL;
4100 else {
4101 error = ops->copyin_umtx_time(
4102 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4103 if (error != 0)
4104 return (error);
4105 tm_p = &timeout;
4106 }
4107 return (do_lock_umutex(td, uap->obj, tm_p, _UMUTEX_WAIT));
4108 }
4109
4110 static int
__umtx_op_wake_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4111 __umtx_op_wake_umutex(struct thread *td, struct _umtx_op_args *uap,
4112 const struct umtx_copyops *ops __unused)
4113 {
4114
4115 return (do_wake_umutex(td, uap->obj));
4116 }
4117
4118 static int
__umtx_op_unlock_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4119 __umtx_op_unlock_umutex(struct thread *td, struct _umtx_op_args *uap,
4120 const struct umtx_copyops *ops __unused)
4121 {
4122
4123 return (do_unlock_umutex(td, uap->obj, false));
4124 }
4125
4126 static int
__umtx_op_set_ceiling(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4127 __umtx_op_set_ceiling(struct thread *td, struct _umtx_op_args *uap,
4128 const struct umtx_copyops *ops __unused)
4129 {
4130
4131 return (do_set_ceiling(td, uap->obj, uap->val, uap->uaddr1));
4132 }
4133
4134 static int
__umtx_op_cv_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4135 __umtx_op_cv_wait(struct thread *td, struct _umtx_op_args *uap,
4136 const struct umtx_copyops *ops)
4137 {
4138 struct timespec *ts, timeout;
4139 int error;
4140
4141 /* Allow a null timespec (wait forever). */
4142 if (uap->uaddr2 == NULL)
4143 ts = NULL;
4144 else {
4145 error = ops->copyin_timeout(uap->uaddr2, &timeout);
4146 if (error != 0)
4147 return (error);
4148 ts = &timeout;
4149 }
4150 return (do_cv_wait(td, uap->obj, uap->uaddr1, ts, uap->val));
4151 }
4152
4153 static int
__umtx_op_cv_signal(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4154 __umtx_op_cv_signal(struct thread *td, struct _umtx_op_args *uap,
4155 const struct umtx_copyops *ops __unused)
4156 {
4157
4158 return (do_cv_signal(td, uap->obj));
4159 }
4160
4161 static int
__umtx_op_cv_broadcast(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4162 __umtx_op_cv_broadcast(struct thread *td, struct _umtx_op_args *uap,
4163 const struct umtx_copyops *ops __unused)
4164 {
4165
4166 return (do_cv_broadcast(td, uap->obj));
4167 }
4168
4169 static int
__umtx_op_rw_rdlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4170 __umtx_op_rw_rdlock(struct thread *td, struct _umtx_op_args *uap,
4171 const struct umtx_copyops *ops)
4172 {
4173 struct _umtx_time timeout;
4174 int error;
4175
4176 /* Allow a null timespec (wait forever). */
4177 if (uap->uaddr2 == NULL) {
4178 error = do_rw_rdlock(td, uap->obj, uap->val, 0);
4179 } else {
4180 error = ops->copyin_umtx_time(uap->uaddr2,
4181 (size_t)uap->uaddr1, &timeout);
4182 if (error != 0)
4183 return (error);
4184 error = do_rw_rdlock(td, uap->obj, uap->val, &timeout);
4185 }
4186 return (error);
4187 }
4188
4189 static int
__umtx_op_rw_wrlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4190 __umtx_op_rw_wrlock(struct thread *td, struct _umtx_op_args *uap,
4191 const struct umtx_copyops *ops)
4192 {
4193 struct _umtx_time timeout;
4194 int error;
4195
4196 /* Allow a null timespec (wait forever). */
4197 if (uap->uaddr2 == NULL) {
4198 error = do_rw_wrlock(td, uap->obj, 0);
4199 } else {
4200 error = ops->copyin_umtx_time(uap->uaddr2,
4201 (size_t)uap->uaddr1, &timeout);
4202 if (error != 0)
4203 return (error);
4204
4205 error = do_rw_wrlock(td, uap->obj, &timeout);
4206 }
4207 return (error);
4208 }
4209
4210 static int
__umtx_op_rw_unlock(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4211 __umtx_op_rw_unlock(struct thread *td, struct _umtx_op_args *uap,
4212 const struct umtx_copyops *ops __unused)
4213 {
4214
4215 return (do_rw_unlock(td, uap->obj));
4216 }
4217
4218 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4219 static int
__umtx_op_sem_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4220 __umtx_op_sem_wait(struct thread *td, struct _umtx_op_args *uap,
4221 const struct umtx_copyops *ops)
4222 {
4223 struct _umtx_time *tm_p, timeout;
4224 int error;
4225
4226 /* Allow a null timespec (wait forever). */
4227 if (uap->uaddr2 == NULL)
4228 tm_p = NULL;
4229 else {
4230 error = ops->copyin_umtx_time(
4231 uap->uaddr2, (size_t)uap->uaddr1, &timeout);
4232 if (error != 0)
4233 return (error);
4234 tm_p = &timeout;
4235 }
4236 return (do_sem_wait(td, uap->obj, tm_p));
4237 }
4238
4239 static int
__umtx_op_sem_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4240 __umtx_op_sem_wake(struct thread *td, struct _umtx_op_args *uap,
4241 const struct umtx_copyops *ops __unused)
4242 {
4243
4244 return (do_sem_wake(td, uap->obj));
4245 }
4246 #endif
4247
4248 static int
__umtx_op_wake2_umutex(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4249 __umtx_op_wake2_umutex(struct thread *td, struct _umtx_op_args *uap,
4250 const struct umtx_copyops *ops __unused)
4251 {
4252
4253 return (do_wake2_umutex(td, uap->obj, uap->val));
4254 }
4255
4256 static int
__umtx_op_sem2_wait(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4257 __umtx_op_sem2_wait(struct thread *td, struct _umtx_op_args *uap,
4258 const struct umtx_copyops *ops)
4259 {
4260 struct _umtx_time *tm_p, timeout;
4261 size_t uasize;
4262 int error;
4263
4264 /* Allow a null timespec (wait forever). */
4265 if (uap->uaddr2 == NULL) {
4266 uasize = 0;
4267 tm_p = NULL;
4268 } else {
4269 uasize = (size_t)uap->uaddr1;
4270 error = ops->copyin_umtx_time(uap->uaddr2, uasize, &timeout);
4271 if (error != 0)
4272 return (error);
4273 tm_p = &timeout;
4274 }
4275 error = do_sem2_wait(td, uap->obj, tm_p);
4276 if (error == EINTR && uap->uaddr2 != NULL &&
4277 (timeout._flags & UMTX_ABSTIME) == 0 &&
4278 uasize >= ops->umtx_time_sz + ops->timespec_sz) {
4279 error = ops->copyout_timeout(
4280 (void *)((uintptr_t)uap->uaddr2 + ops->umtx_time_sz),
4281 uasize - ops->umtx_time_sz, &timeout._timeout);
4282 if (error == 0) {
4283 error = EINTR;
4284 }
4285 }
4286
4287 return (error);
4288 }
4289
4290 static int
__umtx_op_sem2_wake(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4291 __umtx_op_sem2_wake(struct thread *td, struct _umtx_op_args *uap,
4292 const struct umtx_copyops *ops __unused)
4293 {
4294
4295 return (do_sem2_wake(td, uap->obj));
4296 }
4297
4298 #define USHM_OBJ_UMTX(o) \
4299 ((struct umtx_shm_obj_list *)(&(o)->umtx_data))
4300
4301 #define USHMF_LINKED 0x0001
4302 struct umtx_shm_reg {
4303 TAILQ_ENTRY(umtx_shm_reg) ushm_reg_link;
4304 LIST_ENTRY(umtx_shm_reg) ushm_obj_link;
4305 struct umtx_key ushm_key;
4306 struct ucred *ushm_cred;
4307 struct shmfd *ushm_obj;
4308 u_int ushm_refcnt;
4309 u_int ushm_flags;
4310 };
4311
4312 LIST_HEAD(umtx_shm_obj_list, umtx_shm_reg);
4313 TAILQ_HEAD(umtx_shm_reg_head, umtx_shm_reg);
4314
4315 static uma_zone_t umtx_shm_reg_zone;
4316 static struct umtx_shm_reg_head umtx_shm_registry[UMTX_CHAINS];
4317 static struct mtx umtx_shm_lock;
4318 static struct umtx_shm_reg_head umtx_shm_reg_delfree =
4319 TAILQ_HEAD_INITIALIZER(umtx_shm_reg_delfree);
4320
4321 static void umtx_shm_free_reg(struct umtx_shm_reg *reg);
4322
4323 static void
umtx_shm_reg_delfree_tq(void * context __unused,int pending __unused)4324 umtx_shm_reg_delfree_tq(void *context __unused, int pending __unused)
4325 {
4326 struct umtx_shm_reg_head d;
4327 struct umtx_shm_reg *reg, *reg1;
4328
4329 TAILQ_INIT(&d);
4330 mtx_lock(&umtx_shm_lock);
4331 TAILQ_CONCAT(&d, &umtx_shm_reg_delfree, ushm_reg_link);
4332 mtx_unlock(&umtx_shm_lock);
4333 TAILQ_FOREACH_SAFE(reg, &d, ushm_reg_link, reg1) {
4334 TAILQ_REMOVE(&d, reg, ushm_reg_link);
4335 umtx_shm_free_reg(reg);
4336 }
4337 }
4338
4339 static struct task umtx_shm_reg_delfree_task =
4340 TASK_INITIALIZER(0, umtx_shm_reg_delfree_tq, NULL);
4341
4342 /*
4343 * Returns 0 if a SHM with the passed key is found in the registry, in which
4344 * case it is returned through 'oreg'. Otherwise, returns an error among ESRCH
4345 * (no corresponding SHM; ESRCH was chosen for compatibility, ENOENT would have
4346 * been preferable) or EOVERFLOW (there is a corresponding SHM, but reference
4347 * count would overflow, so can't return it), in which case '*oreg' is left
4348 * unchanged.
4349 */
4350 static int
umtx_shm_find_reg_locked(const struct umtx_key * key,struct umtx_shm_reg ** const oreg)4351 umtx_shm_find_reg_locked(const struct umtx_key *key,
4352 struct umtx_shm_reg **const oreg)
4353 {
4354 struct umtx_shm_reg *reg;
4355 struct umtx_shm_reg_head *reg_head;
4356
4357 KASSERT(key->shared, ("umtx_p_find_rg: private key"));
4358 mtx_assert(&umtx_shm_lock, MA_OWNED);
4359 reg_head = &umtx_shm_registry[key->hash];
4360 TAILQ_FOREACH(reg, reg_head, ushm_reg_link) {
4361 KASSERT(reg->ushm_key.shared,
4362 ("non-shared key on reg %p %d", reg, reg->ushm_key.shared));
4363 if (reg->ushm_key.info.shared.object ==
4364 key->info.shared.object &&
4365 reg->ushm_key.info.shared.offset ==
4366 key->info.shared.offset) {
4367 KASSERT(reg->ushm_key.type == TYPE_SHM, ("TYPE_USHM"));
4368 KASSERT(reg->ushm_refcnt != 0,
4369 ("reg %p refcnt 0 onlist", reg));
4370 KASSERT((reg->ushm_flags & USHMF_LINKED) != 0,
4371 ("reg %p not linked", reg));
4372 /*
4373 * Don't let overflow happen, just deny a new reference
4374 * (this is additional protection against some reference
4375 * count leak, which is known not to be the case at the
4376 * time of this writing).
4377 */
4378 if (__predict_false(reg->ushm_refcnt == UINT_MAX))
4379 return (EOVERFLOW);
4380 reg->ushm_refcnt++;
4381 *oreg = reg;
4382 return (0);
4383 }
4384 }
4385 return (ESRCH);
4386 }
4387
4388 /*
4389 * Calls umtx_shm_find_reg_unlocked() under the 'umtx_shm_lock'.
4390 */
4391 static int
umtx_shm_find_reg(const struct umtx_key * key,struct umtx_shm_reg ** const oreg)4392 umtx_shm_find_reg(const struct umtx_key *key, struct umtx_shm_reg **const oreg)
4393 {
4394 int error;
4395
4396 mtx_lock(&umtx_shm_lock);
4397 error = umtx_shm_find_reg_locked(key, oreg);
4398 mtx_unlock(&umtx_shm_lock);
4399 return (error);
4400 }
4401
4402 static void
umtx_shm_free_reg(struct umtx_shm_reg * reg)4403 umtx_shm_free_reg(struct umtx_shm_reg *reg)
4404 {
4405
4406 chgumtxcnt(reg->ushm_cred->cr_ruidinfo, -1, 0);
4407 crfree(reg->ushm_cred);
4408 shm_drop(reg->ushm_obj);
4409 uma_zfree(umtx_shm_reg_zone, reg);
4410 }
4411
4412 static bool
umtx_shm_unref_reg_locked(struct umtx_shm_reg * reg,bool linked_ref)4413 umtx_shm_unref_reg_locked(struct umtx_shm_reg *reg, bool linked_ref)
4414 {
4415 mtx_assert(&umtx_shm_lock, MA_OWNED);
4416 KASSERT(reg->ushm_refcnt != 0, ("ushm_reg %p refcnt 0", reg));
4417
4418 if (linked_ref) {
4419 if ((reg->ushm_flags & USHMF_LINKED) == 0)
4420 /*
4421 * The reference tied to USHMF_LINKED has already been
4422 * released concurrently.
4423 */
4424 return (false);
4425
4426 TAILQ_REMOVE(&umtx_shm_registry[reg->ushm_key.hash], reg,
4427 ushm_reg_link);
4428 LIST_REMOVE(reg, ushm_obj_link);
4429 reg->ushm_flags &= ~USHMF_LINKED;
4430 }
4431
4432 reg->ushm_refcnt--;
4433 return (reg->ushm_refcnt == 0);
4434 }
4435
4436 static void
umtx_shm_unref_reg(struct umtx_shm_reg * reg,bool linked_ref)4437 umtx_shm_unref_reg(struct umtx_shm_reg *reg, bool linked_ref)
4438 {
4439 vm_object_t object;
4440 bool dofree;
4441
4442 if (linked_ref) {
4443 /*
4444 * Note: This may be executed multiple times on the same
4445 * shared-memory VM object in presence of concurrent callers
4446 * because 'umtx_shm_lock' is not held all along in umtx_shm()
4447 * and here.
4448 */
4449 object = reg->ushm_obj->shm_object;
4450 VM_OBJECT_WLOCK(object);
4451 vm_object_set_flag(object, OBJ_UMTXDEAD);
4452 VM_OBJECT_WUNLOCK(object);
4453 }
4454 mtx_lock(&umtx_shm_lock);
4455 dofree = umtx_shm_unref_reg_locked(reg, linked_ref);
4456 mtx_unlock(&umtx_shm_lock);
4457 if (dofree)
4458 umtx_shm_free_reg(reg);
4459 }
4460
4461 void
umtx_shm_object_init(vm_object_t object)4462 umtx_shm_object_init(vm_object_t object)
4463 {
4464
4465 LIST_INIT(USHM_OBJ_UMTX(object));
4466 }
4467
4468 void
umtx_shm_object_terminated(vm_object_t object)4469 umtx_shm_object_terminated(vm_object_t object)
4470 {
4471 struct umtx_shm_reg *reg, *reg1;
4472 bool dofree;
4473
4474 if (LIST_EMPTY(USHM_OBJ_UMTX(object)))
4475 return;
4476
4477 dofree = false;
4478 mtx_lock(&umtx_shm_lock);
4479 LIST_FOREACH_SAFE(reg, USHM_OBJ_UMTX(object), ushm_obj_link, reg1) {
4480 if (umtx_shm_unref_reg_locked(reg, true)) {
4481 TAILQ_INSERT_TAIL(&umtx_shm_reg_delfree, reg,
4482 ushm_reg_link);
4483 dofree = true;
4484 }
4485 }
4486 mtx_unlock(&umtx_shm_lock);
4487 if (dofree)
4488 taskqueue_enqueue(taskqueue_thread, &umtx_shm_reg_delfree_task);
4489 }
4490
4491 static int
umtx_shm_create_reg(struct thread * td,const struct umtx_key * key,struct umtx_shm_reg ** res)4492 umtx_shm_create_reg(struct thread *td, const struct umtx_key *key,
4493 struct umtx_shm_reg **res)
4494 {
4495 struct shmfd *shm;
4496 struct umtx_shm_reg *reg, *reg1;
4497 struct ucred *cred;
4498 int error;
4499
4500 error = umtx_shm_find_reg(key, res);
4501 if (error != ESRCH) {
4502 /*
4503 * Either no error occured, and '*res' was filled, or EOVERFLOW
4504 * was returned, indicating a reference count limit, and we
4505 * won't create a duplicate registration. In both cases, we are
4506 * done.
4507 */
4508 return (error);
4509 }
4510 /* No entry, we will create one. */
4511
4512 cred = td->td_ucred;
4513 if (!chgumtxcnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_UMTXP)))
4514 return (ENOMEM);
4515 shm = shm_alloc(td->td_ucred, O_RDWR, false);
4516 if (shm == NULL) {
4517 chgumtxcnt(cred->cr_ruidinfo, -1, 0);
4518 return (ENOMEM);
4519 }
4520 reg = uma_zalloc(umtx_shm_reg_zone, M_WAITOK | M_ZERO);
4521 bcopy(key, ®->ushm_key, sizeof(*key));
4522 reg->ushm_obj = shm;
4523 reg->ushm_cred = crhold(cred);
4524 error = shm_dotruncate(reg->ushm_obj, PAGE_SIZE);
4525 if (error != 0) {
4526 umtx_shm_free_reg(reg);
4527 return (error);
4528 }
4529 mtx_lock(&umtx_shm_lock);
4530 /* Re-lookup as 'umtx_shm_lock' has been temporarily released. */
4531 error = umtx_shm_find_reg_locked(key, ®1);
4532 switch (error) {
4533 case 0:
4534 mtx_unlock(&umtx_shm_lock);
4535 umtx_shm_free_reg(reg);
4536 *res = reg1;
4537 return (0);
4538 case ESRCH:
4539 break;
4540 default:
4541 mtx_unlock(&umtx_shm_lock);
4542 umtx_shm_free_reg(reg);
4543 return (error);
4544 }
4545 TAILQ_INSERT_TAIL(&umtx_shm_registry[key->hash], reg, ushm_reg_link);
4546 LIST_INSERT_HEAD(USHM_OBJ_UMTX(key->info.shared.object), reg,
4547 ushm_obj_link);
4548 reg->ushm_flags = USHMF_LINKED;
4549 /*
4550 * This is one reference for the registry and the list of shared
4551 * mutexes referenced by the VM object containing the lock pointer, and
4552 * another for the caller, which it will free after use. So, one of
4553 * these is tied to the presence of USHMF_LINKED.
4554 */
4555 reg->ushm_refcnt = 2;
4556 mtx_unlock(&umtx_shm_lock);
4557 *res = reg;
4558 return (0);
4559 }
4560
4561 static int
umtx_shm_alive(struct thread * td,void * addr)4562 umtx_shm_alive(struct thread *td, void *addr)
4563 {
4564 vm_map_t map;
4565 vm_map_entry_t entry;
4566 vm_object_t object;
4567 vm_pindex_t pindex;
4568 vm_prot_t prot;
4569 int res, ret;
4570 boolean_t wired;
4571
4572 map = &td->td_proc->p_vmspace->vm_map;
4573 res = vm_map_lookup(&map, (uintptr_t)addr, VM_PROT_READ, &entry,
4574 &object, &pindex, &prot, &wired);
4575 if (res != KERN_SUCCESS)
4576 return (EFAULT);
4577 if (object == NULL)
4578 ret = EINVAL;
4579 else
4580 ret = (object->flags & OBJ_UMTXDEAD) != 0 ? ENOTTY : 0;
4581 vm_map_lookup_done(map, entry);
4582 return (ret);
4583 }
4584
4585 static void
umtx_shm_init(void)4586 umtx_shm_init(void)
4587 {
4588 int i;
4589
4590 umtx_shm_reg_zone = uma_zcreate("umtx_shm", sizeof(struct umtx_shm_reg),
4591 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
4592 mtx_init(&umtx_shm_lock, "umtxshm", NULL, MTX_DEF);
4593 for (i = 0; i < nitems(umtx_shm_registry); i++)
4594 TAILQ_INIT(&umtx_shm_registry[i]);
4595 }
4596
4597 static int
umtx_shm(struct thread * td,void * addr,u_int flags)4598 umtx_shm(struct thread *td, void *addr, u_int flags)
4599 {
4600 struct umtx_key key;
4601 struct umtx_shm_reg *reg;
4602 struct file *fp;
4603 int error, fd;
4604
4605 if (__bitcount(flags & (UMTX_SHM_CREAT | UMTX_SHM_LOOKUP |
4606 UMTX_SHM_DESTROY| UMTX_SHM_ALIVE)) != 1)
4607 return (EINVAL);
4608 if ((flags & UMTX_SHM_ALIVE) != 0)
4609 return (umtx_shm_alive(td, addr));
4610 error = umtx_key_get(addr, TYPE_SHM, PROCESS_SHARE, &key);
4611 if (error != 0)
4612 return (error);
4613 KASSERT(key.shared == 1, ("non-shared key"));
4614 error = (flags & UMTX_SHM_CREAT) != 0 ?
4615 umtx_shm_create_reg(td, &key, ®) :
4616 umtx_shm_find_reg(&key, ®);
4617 umtx_key_release(&key);
4618 if (error != 0)
4619 return (error);
4620 KASSERT(reg != NULL, ("no reg"));
4621 if ((flags & UMTX_SHM_DESTROY) != 0) {
4622 umtx_shm_unref_reg(reg, true);
4623 } else {
4624 #if 0
4625 #ifdef MAC
4626 error = mac_posixshm_check_open(td->td_ucred,
4627 reg->ushm_obj, FFLAGS(O_RDWR));
4628 if (error == 0)
4629 #endif
4630 error = shm_access(reg->ushm_obj, td->td_ucred,
4631 FFLAGS(O_RDWR));
4632 if (error == 0)
4633 #endif
4634 error = falloc_caps(td, &fp, &fd, O_CLOEXEC, NULL);
4635 if (error == 0) {
4636 shm_hold(reg->ushm_obj);
4637 finit(fp, FFLAGS(O_RDWR), DTYPE_SHM, reg->ushm_obj,
4638 &shm_ops);
4639 td->td_retval[0] = fd;
4640 fdrop(fp, td);
4641 }
4642 }
4643 umtx_shm_unref_reg(reg, false);
4644 return (error);
4645 }
4646
4647 static int
__umtx_op_shm(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops __unused)4648 __umtx_op_shm(struct thread *td, struct _umtx_op_args *uap,
4649 const struct umtx_copyops *ops __unused)
4650 {
4651
4652 return (umtx_shm(td, uap->uaddr1, uap->val));
4653 }
4654
4655 static int
__umtx_op_robust_lists(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4656 __umtx_op_robust_lists(struct thread *td, struct _umtx_op_args *uap,
4657 const struct umtx_copyops *ops)
4658 {
4659 struct umtx_robust_lists_params rb;
4660 int error;
4661
4662 if (ops->compat32) {
4663 if ((td->td_pflags2 & TDP2_COMPAT32RB) == 0 &&
4664 (td->td_rb_list != 0 || td->td_rbp_list != 0 ||
4665 td->td_rb_inact != 0))
4666 return (EBUSY);
4667 } else if ((td->td_pflags2 & TDP2_COMPAT32RB) != 0) {
4668 return (EBUSY);
4669 }
4670
4671 bzero(&rb, sizeof(rb));
4672 error = ops->copyin_robust_lists(uap->uaddr1, uap->val, &rb);
4673 if (error != 0)
4674 return (error);
4675
4676 if (ops->compat32)
4677 td->td_pflags2 |= TDP2_COMPAT32RB;
4678
4679 td->td_rb_list = rb.robust_list_offset;
4680 td->td_rbp_list = rb.robust_priv_list_offset;
4681 td->td_rb_inact = rb.robust_inact_offset;
4682 return (0);
4683 }
4684
4685 static int
__umtx_op_get_min_timeout(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4686 __umtx_op_get_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4687 const struct umtx_copyops *ops)
4688 {
4689 long val;
4690 int error, val1;
4691
4692 val = sbttons(td->td_proc->p_umtx_min_timeout);
4693 if (ops->compat32) {
4694 val1 = (int)val;
4695 error = copyout(&val1, uap->uaddr1, sizeof(val1));
4696 } else {
4697 error = copyout(&val, uap->uaddr1, sizeof(val));
4698 }
4699 return (error);
4700 }
4701
4702 static int
__umtx_op_set_min_timeout(struct thread * td,struct _umtx_op_args * uap,const struct umtx_copyops * ops)4703 __umtx_op_set_min_timeout(struct thread *td, struct _umtx_op_args *uap,
4704 const struct umtx_copyops *ops)
4705 {
4706 if (uap->val < 0)
4707 return (EINVAL);
4708 td->td_proc->p_umtx_min_timeout = nstosbt(uap->val);
4709 return (0);
4710 }
4711
4712 #if defined(__i386__) || defined(__amd64__)
4713 /*
4714 * Provide the standard 32-bit definitions for x86, since native/compat32 use a
4715 * 32-bit time_t there. Other architectures just need the i386 definitions
4716 * along with their standard compat32.
4717 */
4718 struct timespecx32 {
4719 int64_t tv_sec;
4720 int32_t tv_nsec;
4721 };
4722
4723 struct umtx_timex32 {
4724 struct timespecx32 _timeout;
4725 uint32_t _flags;
4726 uint32_t _clockid;
4727 };
4728
4729 #ifndef __i386__
4730 #define timespeci386 timespec32
4731 #define umtx_timei386 umtx_time32
4732 #endif
4733 #else /* !__i386__ && !__amd64__ */
4734 /* 32-bit architectures can emulate i386, so define these almost everywhere. */
4735 struct timespeci386 {
4736 int32_t tv_sec;
4737 int32_t tv_nsec;
4738 };
4739
4740 struct umtx_timei386 {
4741 struct timespeci386 _timeout;
4742 uint32_t _flags;
4743 uint32_t _clockid;
4744 };
4745
4746 #if defined(__LP64__)
4747 #define timespecx32 timespec32
4748 #define umtx_timex32 umtx_time32
4749 #endif
4750 #endif
4751
4752 static int
umtx_copyin_robust_lists32(const void * uaddr,size_t size,struct umtx_robust_lists_params * rbp)4753 umtx_copyin_robust_lists32(const void *uaddr, size_t size,
4754 struct umtx_robust_lists_params *rbp)
4755 {
4756 struct umtx_robust_lists_params_compat32 rb32;
4757 int error;
4758
4759 if (size > sizeof(rb32))
4760 return (EINVAL);
4761 bzero(&rb32, sizeof(rb32));
4762 error = copyin(uaddr, &rb32, size);
4763 if (error != 0)
4764 return (error);
4765 CP(rb32, *rbp, robust_list_offset);
4766 CP(rb32, *rbp, robust_priv_list_offset);
4767 CP(rb32, *rbp, robust_inact_offset);
4768 return (0);
4769 }
4770
4771 #ifndef __i386__
4772 static inline int
umtx_copyin_timeouti386(const void * uaddr,struct timespec * tsp)4773 umtx_copyin_timeouti386(const void *uaddr, struct timespec *tsp)
4774 {
4775 struct timespeci386 ts32;
4776 int error;
4777
4778 error = copyin(uaddr, &ts32, sizeof(ts32));
4779 if (error == 0) {
4780 if (!timespecvalid_interval(&ts32))
4781 error = EINVAL;
4782 else {
4783 CP(ts32, *tsp, tv_sec);
4784 CP(ts32, *tsp, tv_nsec);
4785 }
4786 }
4787 return (error);
4788 }
4789
4790 static inline int
umtx_copyin_umtx_timei386(const void * uaddr,size_t size,struct _umtx_time * tp)4791 umtx_copyin_umtx_timei386(const void *uaddr, size_t size, struct _umtx_time *tp)
4792 {
4793 struct umtx_timei386 t32;
4794 int error;
4795
4796 t32._clockid = CLOCK_REALTIME;
4797 t32._flags = 0;
4798 if (size <= sizeof(t32._timeout))
4799 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4800 else
4801 error = copyin(uaddr, &t32, sizeof(t32));
4802 if (error != 0)
4803 return (error);
4804 if (!timespecvalid_interval(&t32._timeout))
4805 return (EINVAL);
4806 TS_CP(t32, *tp, _timeout);
4807 CP(t32, *tp, _flags);
4808 CP(t32, *tp, _clockid);
4809 return (0);
4810 }
4811
4812 static int
umtx_copyout_timeouti386(void * uaddr,size_t sz,struct timespec * tsp)4813 umtx_copyout_timeouti386(void *uaddr, size_t sz, struct timespec *tsp)
4814 {
4815 struct timespeci386 remain32 = {
4816 .tv_sec = tsp->tv_sec,
4817 .tv_nsec = tsp->tv_nsec,
4818 };
4819
4820 /*
4821 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4822 * and we're only called if sz >= sizeof(timespec) as supplied in the
4823 * copyops.
4824 */
4825 KASSERT(sz >= sizeof(remain32),
4826 ("umtx_copyops specifies incorrect sizes"));
4827
4828 return (copyout(&remain32, uaddr, sizeof(remain32)));
4829 }
4830 #endif /* !__i386__ */
4831
4832 #if defined(__i386__) || defined(__LP64__)
4833 static inline int
umtx_copyin_timeoutx32(const void * uaddr,struct timespec * tsp)4834 umtx_copyin_timeoutx32(const void *uaddr, struct timespec *tsp)
4835 {
4836 struct timespecx32 ts32;
4837 int error;
4838
4839 error = copyin(uaddr, &ts32, sizeof(ts32));
4840 if (error == 0) {
4841 if (!timespecvalid_interval(&ts32))
4842 error = EINVAL;
4843 else {
4844 CP(ts32, *tsp, tv_sec);
4845 CP(ts32, *tsp, tv_nsec);
4846 }
4847 }
4848 return (error);
4849 }
4850
4851 static inline int
umtx_copyin_umtx_timex32(const void * uaddr,size_t size,struct _umtx_time * tp)4852 umtx_copyin_umtx_timex32(const void *uaddr, size_t size, struct _umtx_time *tp)
4853 {
4854 struct umtx_timex32 t32;
4855 int error;
4856
4857 t32._clockid = CLOCK_REALTIME;
4858 t32._flags = 0;
4859 if (size <= sizeof(t32._timeout))
4860 error = copyin(uaddr, &t32._timeout, sizeof(t32._timeout));
4861 else
4862 error = copyin(uaddr, &t32, sizeof(t32));
4863 if (error != 0)
4864 return (error);
4865 if (!timespecvalid_interval(&t32._timeout))
4866 return (EINVAL);
4867 TS_CP(t32, *tp, _timeout);
4868 CP(t32, *tp, _flags);
4869 CP(t32, *tp, _clockid);
4870 return (0);
4871 }
4872
4873 static int
umtx_copyout_timeoutx32(void * uaddr,size_t sz,struct timespec * tsp)4874 umtx_copyout_timeoutx32(void *uaddr, size_t sz, struct timespec *tsp)
4875 {
4876 struct timespecx32 remain32 = {
4877 .tv_sec = tsp->tv_sec,
4878 .tv_nsec = tsp->tv_nsec,
4879 };
4880
4881 /*
4882 * Should be guaranteed by the caller, sz == uaddr1 - sizeof(_umtx_time)
4883 * and we're only called if sz >= sizeof(timespec) as supplied in the
4884 * copyops.
4885 */
4886 KASSERT(sz >= sizeof(remain32),
4887 ("umtx_copyops specifies incorrect sizes"));
4888
4889 return (copyout(&remain32, uaddr, sizeof(remain32)));
4890 }
4891 #endif /* __i386__ || __LP64__ */
4892
4893 typedef int (*_umtx_op_func)(struct thread *td, struct _umtx_op_args *uap,
4894 const struct umtx_copyops *umtx_ops);
4895
4896 static const _umtx_op_func op_table[] = {
4897 #ifdef COMPAT_FREEBSD10
4898 [UMTX_OP_LOCK] = __umtx_op_lock_umtx,
4899 [UMTX_OP_UNLOCK] = __umtx_op_unlock_umtx,
4900 #else
4901 [UMTX_OP_LOCK] = __umtx_op_unimpl,
4902 [UMTX_OP_UNLOCK] = __umtx_op_unimpl,
4903 #endif
4904 [UMTX_OP_WAIT] = __umtx_op_wait,
4905 [UMTX_OP_WAKE] = __umtx_op_wake,
4906 [UMTX_OP_MUTEX_TRYLOCK] = __umtx_op_trylock_umutex,
4907 [UMTX_OP_MUTEX_LOCK] = __umtx_op_lock_umutex,
4908 [UMTX_OP_MUTEX_UNLOCK] = __umtx_op_unlock_umutex,
4909 [UMTX_OP_SET_CEILING] = __umtx_op_set_ceiling,
4910 [UMTX_OP_CV_WAIT] = __umtx_op_cv_wait,
4911 [UMTX_OP_CV_SIGNAL] = __umtx_op_cv_signal,
4912 [UMTX_OP_CV_BROADCAST] = __umtx_op_cv_broadcast,
4913 [UMTX_OP_WAIT_UINT] = __umtx_op_wait_uint,
4914 [UMTX_OP_RW_RDLOCK] = __umtx_op_rw_rdlock,
4915 [UMTX_OP_RW_WRLOCK] = __umtx_op_rw_wrlock,
4916 [UMTX_OP_RW_UNLOCK] = __umtx_op_rw_unlock,
4917 [UMTX_OP_WAIT_UINT_PRIVATE] = __umtx_op_wait_uint_private,
4918 [UMTX_OP_WAKE_PRIVATE] = __umtx_op_wake_private,
4919 [UMTX_OP_MUTEX_WAIT] = __umtx_op_wait_umutex,
4920 [UMTX_OP_MUTEX_WAKE] = __umtx_op_wake_umutex,
4921 #if defined(COMPAT_FREEBSD9) || defined(COMPAT_FREEBSD10)
4922 [UMTX_OP_SEM_WAIT] = __umtx_op_sem_wait,
4923 [UMTX_OP_SEM_WAKE] = __umtx_op_sem_wake,
4924 #else
4925 [UMTX_OP_SEM_WAIT] = __umtx_op_unimpl,
4926 [UMTX_OP_SEM_WAKE] = __umtx_op_unimpl,
4927 #endif
4928 [UMTX_OP_NWAKE_PRIVATE] = __umtx_op_nwake_private,
4929 [UMTX_OP_MUTEX_WAKE2] = __umtx_op_wake2_umutex,
4930 [UMTX_OP_SEM2_WAIT] = __umtx_op_sem2_wait,
4931 [UMTX_OP_SEM2_WAKE] = __umtx_op_sem2_wake,
4932 [UMTX_OP_SHM] = __umtx_op_shm,
4933 [UMTX_OP_ROBUST_LISTS] = __umtx_op_robust_lists,
4934 [UMTX_OP_GET_MIN_TIMEOUT] = __umtx_op_get_min_timeout,
4935 [UMTX_OP_SET_MIN_TIMEOUT] = __umtx_op_set_min_timeout,
4936 };
4937
4938 static const struct umtx_copyops umtx_native_ops = {
4939 .copyin_timeout = umtx_copyin_timeout,
4940 .copyin_umtx_time = umtx_copyin_umtx_time,
4941 .copyin_robust_lists = umtx_copyin_robust_lists,
4942 .copyout_timeout = umtx_copyout_timeout,
4943 .timespec_sz = sizeof(struct timespec),
4944 .umtx_time_sz = sizeof(struct _umtx_time),
4945 };
4946
4947 #ifndef __i386__
4948 static const struct umtx_copyops umtx_native_opsi386 = {
4949 .copyin_timeout = umtx_copyin_timeouti386,
4950 .copyin_umtx_time = umtx_copyin_umtx_timei386,
4951 .copyin_robust_lists = umtx_copyin_robust_lists32,
4952 .copyout_timeout = umtx_copyout_timeouti386,
4953 .timespec_sz = sizeof(struct timespeci386),
4954 .umtx_time_sz = sizeof(struct umtx_timei386),
4955 .compat32 = true,
4956 };
4957 #endif
4958
4959 #if defined(__i386__) || defined(__LP64__)
4960 /* i386 can emulate other 32-bit archs, too! */
4961 static const struct umtx_copyops umtx_native_opsx32 = {
4962 .copyin_timeout = umtx_copyin_timeoutx32,
4963 .copyin_umtx_time = umtx_copyin_umtx_timex32,
4964 .copyin_robust_lists = umtx_copyin_robust_lists32,
4965 .copyout_timeout = umtx_copyout_timeoutx32,
4966 .timespec_sz = sizeof(struct timespecx32),
4967 .umtx_time_sz = sizeof(struct umtx_timex32),
4968 .compat32 = true,
4969 };
4970
4971 #ifdef COMPAT_FREEBSD32
4972 #ifdef __amd64__
4973 #define umtx_native_ops32 umtx_native_opsi386
4974 #else
4975 #define umtx_native_ops32 umtx_native_opsx32
4976 #endif
4977 #endif /* COMPAT_FREEBSD32 */
4978 #endif /* __i386__ || __LP64__ */
4979
4980 #define UMTX_OP__FLAGS (UMTX_OP__32BIT | UMTX_OP__I386)
4981
4982 static int
kern__umtx_op(struct thread * td,void * obj,int op,unsigned long val,void * uaddr1,void * uaddr2,const struct umtx_copyops * ops)4983 kern__umtx_op(struct thread *td, void *obj, int op, unsigned long val,
4984 void *uaddr1, void *uaddr2, const struct umtx_copyops *ops)
4985 {
4986 struct _umtx_op_args uap = {
4987 .obj = obj,
4988 .op = op & ~UMTX_OP__FLAGS,
4989 .val = val,
4990 .uaddr1 = uaddr1,
4991 .uaddr2 = uaddr2
4992 };
4993
4994 if ((uap.op >= nitems(op_table)))
4995 return (EINVAL);
4996 return ((*op_table[uap.op])(td, &uap, ops));
4997 }
4998
4999 int
sys__umtx_op(struct thread * td,struct _umtx_op_args * uap)5000 sys__umtx_op(struct thread *td, struct _umtx_op_args *uap)
5001 {
5002 static const struct umtx_copyops *umtx_ops;
5003
5004 umtx_ops = &umtx_native_ops;
5005 #ifdef __LP64__
5006 if ((uap->op & (UMTX_OP__32BIT | UMTX_OP__I386)) != 0) {
5007 if ((uap->op & UMTX_OP__I386) != 0)
5008 umtx_ops = &umtx_native_opsi386;
5009 else
5010 umtx_ops = &umtx_native_opsx32;
5011 }
5012 #elif !defined(__i386__)
5013 /* We consider UMTX_OP__32BIT a nop on !i386 ILP32. */
5014 if ((uap->op & UMTX_OP__I386) != 0)
5015 umtx_ops = &umtx_native_opsi386;
5016 #else
5017 /* Likewise, UMTX_OP__I386 is a nop on i386. */
5018 if ((uap->op & UMTX_OP__32BIT) != 0)
5019 umtx_ops = &umtx_native_opsx32;
5020 #endif
5021 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
5022 uap->uaddr2, umtx_ops));
5023 }
5024
5025 #ifdef COMPAT_FREEBSD32
5026 #ifdef COMPAT_FREEBSD10
5027 int
freebsd10_freebsd32__umtx_lock(struct thread * td,struct freebsd10_freebsd32__umtx_lock_args * uap)5028 freebsd10_freebsd32__umtx_lock(struct thread *td,
5029 struct freebsd10_freebsd32__umtx_lock_args *uap)
5030 {
5031 return (do_lock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid, NULL));
5032 }
5033
5034 int
freebsd10_freebsd32__umtx_unlock(struct thread * td,struct freebsd10_freebsd32__umtx_unlock_args * uap)5035 freebsd10_freebsd32__umtx_unlock(struct thread *td,
5036 struct freebsd10_freebsd32__umtx_unlock_args *uap)
5037 {
5038 return (do_unlock_umtx32(td, (uint32_t *)uap->umtx, td->td_tid));
5039 }
5040 #endif /* COMPAT_FREEBSD10 */
5041
5042 int
freebsd32__umtx_op(struct thread * td,struct freebsd32__umtx_op_args * uap)5043 freebsd32__umtx_op(struct thread *td, struct freebsd32__umtx_op_args *uap)
5044 {
5045
5046 return (kern__umtx_op(td, uap->obj, uap->op, uap->val, uap->uaddr1,
5047 uap->uaddr2, &umtx_native_ops32));
5048 }
5049 #endif /* COMPAT_FREEBSD32 */
5050
5051 void
umtx_thread_init(struct thread * td)5052 umtx_thread_init(struct thread *td)
5053 {
5054
5055 td->td_umtxq = umtxq_alloc();
5056 td->td_umtxq->uq_thread = td;
5057 }
5058
5059 void
umtx_thread_fini(struct thread * td)5060 umtx_thread_fini(struct thread *td)
5061 {
5062
5063 umtxq_free(td->td_umtxq);
5064 }
5065
5066 /*
5067 * It will be called when new thread is created, e.g fork().
5068 */
5069 void
umtx_thread_alloc(struct thread * td)5070 umtx_thread_alloc(struct thread *td)
5071 {
5072 struct umtx_q *uq;
5073
5074 uq = td->td_umtxq;
5075 uq->uq_inherited_pri = PRI_MAX;
5076
5077 KASSERT(uq->uq_flags == 0, ("uq_flags != 0"));
5078 KASSERT(uq->uq_thread == td, ("uq_thread != td"));
5079 KASSERT(uq->uq_pi_blocked == NULL, ("uq_pi_blocked != NULL"));
5080 KASSERT(TAILQ_EMPTY(&uq->uq_pi_contested), ("uq_pi_contested is not empty"));
5081 }
5082
5083 /*
5084 * exec() hook.
5085 *
5086 * Clear robust lists for all process' threads, not delaying the
5087 * cleanup to thread exit, since the relevant address space is
5088 * destroyed right now.
5089 */
5090 void
umtx_exec(struct proc * p)5091 umtx_exec(struct proc *p)
5092 {
5093 struct thread *td;
5094
5095 KASSERT(p == curproc, ("need curproc"));
5096 KASSERT((p->p_flag & P_HADTHREADS) == 0 ||
5097 (p->p_flag & P_STOPPED_SINGLE) != 0,
5098 ("curproc must be single-threaded"));
5099 /*
5100 * There is no need to lock the list as only this thread can be
5101 * running.
5102 */
5103 FOREACH_THREAD_IN_PROC(p, td) {
5104 KASSERT(td == curthread ||
5105 ((td->td_flags & TDF_BOUNDARY) != 0 && TD_IS_SUSPENDED(td)),
5106 ("running thread %p %p", p, td));
5107 umtx_thread_cleanup(td);
5108 td->td_rb_list = td->td_rbp_list = td->td_rb_inact = 0;
5109 }
5110
5111 p->p_umtx_min_timeout = 0;
5112 }
5113
5114 /*
5115 * thread exit hook.
5116 */
5117 void
umtx_thread_exit(struct thread * td)5118 umtx_thread_exit(struct thread *td)
5119 {
5120
5121 umtx_thread_cleanup(td);
5122 }
5123
5124 static int
umtx_read_uptr(struct thread * td,uintptr_t ptr,uintptr_t * res,bool compat32)5125 umtx_read_uptr(struct thread *td, uintptr_t ptr, uintptr_t *res, bool compat32)
5126 {
5127 u_long res1;
5128 uint32_t res32;
5129 int error;
5130
5131 if (compat32) {
5132 error = fueword32((void *)ptr, &res32);
5133 if (error == 0)
5134 res1 = res32;
5135 } else {
5136 error = fueword((void *)ptr, &res1);
5137 }
5138 if (error == 0)
5139 *res = res1;
5140 else
5141 error = EFAULT;
5142 return (error);
5143 }
5144
5145 static void
umtx_read_rb_list(struct thread * td,struct umutex * m,uintptr_t * rb_list,bool compat32)5146 umtx_read_rb_list(struct thread *td, struct umutex *m, uintptr_t *rb_list,
5147 bool compat32)
5148 {
5149 struct umutex32 m32;
5150
5151 if (compat32) {
5152 memcpy(&m32, m, sizeof(m32));
5153 *rb_list = m32.m_rb_lnk;
5154 } else {
5155 *rb_list = m->m_rb_lnk;
5156 }
5157 }
5158
5159 static int
umtx_handle_rb(struct thread * td,uintptr_t rbp,uintptr_t * rb_list,bool inact,bool compat32)5160 umtx_handle_rb(struct thread *td, uintptr_t rbp, uintptr_t *rb_list, bool inact,
5161 bool compat32)
5162 {
5163 struct umutex m;
5164 int error;
5165
5166 KASSERT(td->td_proc == curproc, ("need current vmspace"));
5167 error = copyin((void *)rbp, &m, sizeof(m));
5168 if (error != 0)
5169 return (error);
5170 if (rb_list != NULL)
5171 umtx_read_rb_list(td, &m, rb_list, compat32);
5172 if ((m.m_flags & UMUTEX_ROBUST) == 0)
5173 return (EINVAL);
5174 if ((m.m_owner & ~UMUTEX_CONTESTED) != td->td_tid)
5175 /* inact is cleared after unlock, allow the inconsistency */
5176 return (inact ? 0 : EINVAL);
5177 return (do_unlock_umutex(td, (struct umutex *)rbp, true));
5178 }
5179
5180 static void
umtx_cleanup_rb_list(struct thread * td,uintptr_t rb_list,uintptr_t * rb_inact,const char * name,bool compat32)5181 umtx_cleanup_rb_list(struct thread *td, uintptr_t rb_list, uintptr_t *rb_inact,
5182 const char *name, bool compat32)
5183 {
5184 int error, i;
5185 uintptr_t rbp;
5186 bool inact;
5187
5188 if (rb_list == 0)
5189 return;
5190 error = umtx_read_uptr(td, rb_list, &rbp, compat32);
5191 for (i = 0; error == 0 && rbp != 0 && i < umtx_max_rb; i++) {
5192 if (rbp == *rb_inact) {
5193 inact = true;
5194 *rb_inact = 0;
5195 } else
5196 inact = false;
5197 error = umtx_handle_rb(td, rbp, &rbp, inact, compat32);
5198 }
5199 if (i == umtx_max_rb && umtx_verbose_rb) {
5200 uprintf("comm %s pid %d: reached umtx %smax rb %d\n",
5201 td->td_proc->p_comm, td->td_proc->p_pid, name, umtx_max_rb);
5202 }
5203 if (error != 0 && umtx_verbose_rb) {
5204 uprintf("comm %s pid %d: handling %srb error %d\n",
5205 td->td_proc->p_comm, td->td_proc->p_pid, name, error);
5206 }
5207 }
5208
5209 /*
5210 * Clean up umtx data.
5211 */
5212 static void
umtx_thread_cleanup(struct thread * td)5213 umtx_thread_cleanup(struct thread *td)
5214 {
5215 struct umtx_q *uq;
5216 struct umtx_pi *pi;
5217 uintptr_t rb_inact;
5218 bool compat32;
5219
5220 /*
5221 * Disown pi mutexes.
5222 */
5223 uq = td->td_umtxq;
5224 if (uq != NULL) {
5225 if (uq->uq_inherited_pri != PRI_MAX ||
5226 !TAILQ_EMPTY(&uq->uq_pi_contested)) {
5227 mtx_lock(&umtx_lock);
5228 uq->uq_inherited_pri = PRI_MAX;
5229 while ((pi = TAILQ_FIRST(&uq->uq_pi_contested)) != NULL) {
5230 pi->pi_owner = NULL;
5231 TAILQ_REMOVE(&uq->uq_pi_contested, pi, pi_link);
5232 }
5233 mtx_unlock(&umtx_lock);
5234 }
5235 sched_lend_user_prio_cond(td, PRI_MAX);
5236 }
5237
5238 compat32 = (td->td_pflags2 & TDP2_COMPAT32RB) != 0;
5239 td->td_pflags2 &= ~TDP2_COMPAT32RB;
5240
5241 if (td->td_rb_inact == 0 && td->td_rb_list == 0 && td->td_rbp_list == 0)
5242 return;
5243
5244 /*
5245 * Handle terminated robust mutexes. Must be done after
5246 * robust pi disown, otherwise unlock could see unowned
5247 * entries.
5248 */
5249 rb_inact = td->td_rb_inact;
5250 if (rb_inact != 0)
5251 (void)umtx_read_uptr(td, rb_inact, &rb_inact, compat32);
5252 umtx_cleanup_rb_list(td, td->td_rb_list, &rb_inact, "", compat32);
5253 umtx_cleanup_rb_list(td, td->td_rbp_list, &rb_inact, "priv ", compat32);
5254 if (rb_inact != 0)
5255 (void)umtx_handle_rb(td, rb_inact, NULL, true, compat32);
5256 }
5257