1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2017 RackTop Systems.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/dbuf.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/spa.h>
39 #include <sys/zio.h>
40 #include <sys/dmu_zfetch.h>
41 #include <sys/range_tree.h>
42 #include <sys/zfs_project.h>
43
44 dnode_stats_t dnode_stats = {
45 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
46 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
52 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
58 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
60 { "dnode_allocate", KSTAT_DATA_UINT64 },
61 { "dnode_reallocate", KSTAT_DATA_UINT64 },
62 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
66 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
69 { "dnode_move_special", KSTAT_DATA_UINT64 },
70 { "dnode_move_handle", KSTAT_DATA_UINT64 },
71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
72 { "dnode_move_active", KSTAT_DATA_UINT64 },
73 };
74
75 static kstat_t *dnode_ksp;
76 static kmem_cache_t *dnode_cache;
77
78 static dnode_phys_t dnode_phys_zero;
79
80 int zfs_default_bs = SPA_MINBLOCKSHIFT;
81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
82
83 #ifdef _KERNEL
84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
85 #endif /* _KERNEL */
86
87 static int
dbuf_compare(const void * x1,const void * x2)88 dbuf_compare(const void *x1, const void *x2)
89 {
90 const dmu_buf_impl_t *d1 = x1;
91 const dmu_buf_impl_t *d2 = x2;
92
93 int cmp = TREE_CMP(d1->db_level, d2->db_level);
94 if (likely(cmp))
95 return (cmp);
96
97 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid);
98 if (likely(cmp))
99 return (cmp);
100
101 if (d1->db_state == DB_SEARCH) {
102 ASSERT3S(d2->db_state, !=, DB_SEARCH);
103 return (-1);
104 } else if (d2->db_state == DB_SEARCH) {
105 ASSERT3S(d1->db_state, !=, DB_SEARCH);
106 return (1);
107 }
108
109 return (TREE_PCMP(d1, d2));
110 }
111
112 /* ARGSUSED */
113 static int
dnode_cons(void * arg,void * unused,int kmflag)114 dnode_cons(void *arg, void *unused, int kmflag)
115 {
116 dnode_t *dn = arg;
117 int i;
118
119 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
123 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL);
124
125 /*
126 * Every dbuf has a reference, and dropping a tracked reference is
127 * O(number of references), so don't track dn_holds.
128 */
129 zfs_refcount_create_untracked(&dn->dn_holds);
130 zfs_refcount_create(&dn->dn_tx_holds);
131 list_link_init(&dn->dn_link);
132
133 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
134 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
135 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
136 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
137 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
138 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
139 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
140 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
141
142 for (i = 0; i < TXG_SIZE; i++) {
143 multilist_link_init(&dn->dn_dirty_link[i]);
144 dn->dn_free_ranges[i] = NULL;
145 list_create(&dn->dn_dirty_records[i],
146 sizeof (dbuf_dirty_record_t),
147 offsetof(dbuf_dirty_record_t, dr_dirty_node));
148 }
149
150 dn->dn_allocated_txg = 0;
151 dn->dn_free_txg = 0;
152 dn->dn_assigned_txg = 0;
153 dn->dn_dirty_txg = 0;
154 dn->dn_dirtyctx = 0;
155 dn->dn_dirtyctx_firstset = NULL;
156 dn->dn_bonus = NULL;
157 dn->dn_have_spill = B_FALSE;
158 dn->dn_zio = NULL;
159 dn->dn_oldused = 0;
160 dn->dn_oldflags = 0;
161 dn->dn_olduid = 0;
162 dn->dn_oldgid = 0;
163 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
164 dn->dn_newuid = 0;
165 dn->dn_newgid = 0;
166 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
167 dn->dn_id_flags = 0;
168
169 dn->dn_dbufs_count = 0;
170 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
171 offsetof(dmu_buf_impl_t, db_link));
172
173 dn->dn_moved = 0;
174 return (0);
175 }
176
177 /* ARGSUSED */
178 static void
dnode_dest(void * arg,void * unused)179 dnode_dest(void *arg, void *unused)
180 {
181 int i;
182 dnode_t *dn = arg;
183
184 rw_destroy(&dn->dn_struct_rwlock);
185 mutex_destroy(&dn->dn_mtx);
186 mutex_destroy(&dn->dn_dbufs_mtx);
187 cv_destroy(&dn->dn_notxholds);
188 cv_destroy(&dn->dn_nodnholds);
189 zfs_refcount_destroy(&dn->dn_holds);
190 zfs_refcount_destroy(&dn->dn_tx_holds);
191 ASSERT(!list_link_active(&dn->dn_link));
192
193 for (i = 0; i < TXG_SIZE; i++) {
194 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
195 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
196 list_destroy(&dn->dn_dirty_records[i]);
197 ASSERT0(dn->dn_next_nblkptr[i]);
198 ASSERT0(dn->dn_next_nlevels[i]);
199 ASSERT0(dn->dn_next_indblkshift[i]);
200 ASSERT0(dn->dn_next_bonustype[i]);
201 ASSERT0(dn->dn_rm_spillblk[i]);
202 ASSERT0(dn->dn_next_bonuslen[i]);
203 ASSERT0(dn->dn_next_blksz[i]);
204 ASSERT0(dn->dn_next_maxblkid[i]);
205 }
206
207 ASSERT0(dn->dn_allocated_txg);
208 ASSERT0(dn->dn_free_txg);
209 ASSERT0(dn->dn_assigned_txg);
210 ASSERT0(dn->dn_dirty_txg);
211 ASSERT0(dn->dn_dirtyctx);
212 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
213 ASSERT3P(dn->dn_bonus, ==, NULL);
214 ASSERT(!dn->dn_have_spill);
215 ASSERT3P(dn->dn_zio, ==, NULL);
216 ASSERT0(dn->dn_oldused);
217 ASSERT0(dn->dn_oldflags);
218 ASSERT0(dn->dn_olduid);
219 ASSERT0(dn->dn_oldgid);
220 ASSERT0(dn->dn_oldprojid);
221 ASSERT0(dn->dn_newuid);
222 ASSERT0(dn->dn_newgid);
223 ASSERT0(dn->dn_newprojid);
224 ASSERT0(dn->dn_id_flags);
225
226 ASSERT0(dn->dn_dbufs_count);
227 avl_destroy(&dn->dn_dbufs);
228 }
229
230 void
dnode_init(void)231 dnode_init(void)
232 {
233 ASSERT(dnode_cache == NULL);
234 dnode_cache = kmem_cache_create("dnode_t",
235 sizeof (dnode_t),
236 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
237 #ifdef _KERNEL
238 kmem_cache_set_move(dnode_cache, dnode_move);
239
240 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
241 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
242 KSTAT_FLAG_VIRTUAL);
243 if (dnode_ksp != NULL) {
244 dnode_ksp->ks_data = &dnode_stats;
245 kstat_install(dnode_ksp);
246 }
247 #endif /* _KERNEL */
248 }
249
250 void
dnode_fini(void)251 dnode_fini(void)
252 {
253 if (dnode_ksp != NULL) {
254 kstat_delete(dnode_ksp);
255 dnode_ksp = NULL;
256 }
257
258 kmem_cache_destroy(dnode_cache);
259 dnode_cache = NULL;
260 }
261
262
263 #ifdef ZFS_DEBUG
264 void
dnode_verify(dnode_t * dn)265 dnode_verify(dnode_t *dn)
266 {
267 int drop_struct_lock = FALSE;
268
269 ASSERT(dn->dn_phys);
270 ASSERT(dn->dn_objset);
271 ASSERT(dn->dn_handle->dnh_dnode == dn);
272
273 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
274
275 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
276 return;
277
278 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
279 rw_enter(&dn->dn_struct_rwlock, RW_READER);
280 drop_struct_lock = TRUE;
281 }
282 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
283 int i;
284 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
285 ASSERT3U(dn->dn_indblkshift, >=, 0);
286 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
287 if (dn->dn_datablkshift) {
288 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
289 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
290 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
291 }
292 ASSERT3U(dn->dn_nlevels, <=, 30);
293 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
294 ASSERT3U(dn->dn_nblkptr, >=, 1);
295 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
296 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
297 ASSERT3U(dn->dn_datablksz, ==,
298 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
299 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
300 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
301 dn->dn_bonuslen, <=, max_bonuslen);
302 for (i = 0; i < TXG_SIZE; i++) {
303 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
304 }
305 }
306 if (dn->dn_phys->dn_type != DMU_OT_NONE)
307 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
308 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
309 if (dn->dn_dbuf != NULL) {
310 ASSERT3P(dn->dn_phys, ==,
311 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
312 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
313 }
314 if (drop_struct_lock)
315 rw_exit(&dn->dn_struct_rwlock);
316 }
317 #endif
318
319 void
dnode_byteswap(dnode_phys_t * dnp)320 dnode_byteswap(dnode_phys_t *dnp)
321 {
322 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
323 int i;
324
325 if (dnp->dn_type == DMU_OT_NONE) {
326 bzero(dnp, sizeof (dnode_phys_t));
327 return;
328 }
329
330 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
331 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
332 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
333 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
334 dnp->dn_used = BSWAP_64(dnp->dn_used);
335
336 /*
337 * dn_nblkptr is only one byte, so it's OK to read it in either
338 * byte order. We can't read dn_bouslen.
339 */
340 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
341 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
342 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
343 buf64[i] = BSWAP_64(buf64[i]);
344
345 /*
346 * OK to check dn_bonuslen for zero, because it won't matter if
347 * we have the wrong byte order. This is necessary because the
348 * dnode dnode is smaller than a regular dnode.
349 */
350 if (dnp->dn_bonuslen != 0) {
351 dmu_object_byteswap_t byteswap;
352 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
353 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
354 dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp),
355 DN_MAX_BONUS_LEN(dnp));
356 }
357
358 /* Swap SPILL block if we have one */
359 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
360 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
361
362 }
363
364 void
dnode_buf_byteswap(void * vbuf,size_t size)365 dnode_buf_byteswap(void *vbuf, size_t size)
366 {
367 int i = 0;
368
369 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
370 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
371
372 while (i < size) {
373 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
374 dnode_byteswap(dnp);
375
376 i += DNODE_MIN_SIZE;
377 if (dnp->dn_type != DMU_OT_NONE)
378 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
379 }
380 }
381
382 void
dnode_setbonuslen(dnode_t * dn,int newsize,dmu_tx_t * tx)383 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
384 {
385 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
386
387 dnode_setdirty(dn, tx);
388 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
389 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
390 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
391 dn->dn_bonuslen = newsize;
392 if (newsize == 0)
393 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
394 else
395 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
396 rw_exit(&dn->dn_struct_rwlock);
397 }
398
399 void
dnode_setbonus_type(dnode_t * dn,dmu_object_type_t newtype,dmu_tx_t * tx)400 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
401 {
402 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
403 dnode_setdirty(dn, tx);
404 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
405 dn->dn_bonustype = newtype;
406 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
407 rw_exit(&dn->dn_struct_rwlock);
408 }
409
410 void
dnode_rm_spill(dnode_t * dn,dmu_tx_t * tx)411 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
412 {
413 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
414 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
415 dnode_setdirty(dn, tx);
416 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
417 dn->dn_have_spill = B_FALSE;
418 }
419
420 static void
dnode_setdblksz(dnode_t * dn,int size)421 dnode_setdblksz(dnode_t *dn, int size)
422 {
423 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
424 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
425 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
426 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
427 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
428 dn->dn_datablksz = size;
429 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
430 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
431 }
432
433 static dnode_t *
dnode_create(objset_t * os,dnode_phys_t * dnp,dmu_buf_impl_t * db,uint64_t object,dnode_handle_t * dnh)434 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
435 uint64_t object, dnode_handle_t *dnh)
436 {
437 dnode_t *dn;
438
439 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
440 #ifdef _KERNEL
441 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
442 #endif /* _KERNEL */
443 dn->dn_moved = 0;
444
445 /*
446 * Defer setting dn_objset until the dnode is ready to be a candidate
447 * for the dnode_move() callback.
448 */
449 dn->dn_object = object;
450 dn->dn_dbuf = db;
451 dn->dn_handle = dnh;
452 dn->dn_phys = dnp;
453
454 if (dnp->dn_datablkszsec) {
455 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
456 } else {
457 dn->dn_datablksz = 0;
458 dn->dn_datablkszsec = 0;
459 dn->dn_datablkshift = 0;
460 }
461 dn->dn_indblkshift = dnp->dn_indblkshift;
462 dn->dn_nlevels = dnp->dn_nlevels;
463 dn->dn_type = dnp->dn_type;
464 dn->dn_nblkptr = dnp->dn_nblkptr;
465 dn->dn_checksum = dnp->dn_checksum;
466 dn->dn_compress = dnp->dn_compress;
467 dn->dn_bonustype = dnp->dn_bonustype;
468 dn->dn_bonuslen = dnp->dn_bonuslen;
469 dn->dn_num_slots = dnp->dn_extra_slots + 1;
470 dn->dn_maxblkid = dnp->dn_maxblkid;
471 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
472 dn->dn_id_flags = 0;
473
474 dmu_zfetch_init(&dn->dn_zfetch, dn);
475
476 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
477 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
478 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
479
480 mutex_enter(&os->os_lock);
481
482 /*
483 * Exclude special dnodes from os_dnodes so an empty os_dnodes
484 * signifies that the special dnodes have no references from
485 * their children (the entries in os_dnodes). This allows
486 * dnode_destroy() to easily determine if the last child has
487 * been removed and then complete eviction of the objset.
488 */
489 if (!DMU_OBJECT_IS_SPECIAL(object))
490 list_insert_head(&os->os_dnodes, dn);
491 membar_producer();
492
493 /*
494 * Everything else must be valid before assigning dn_objset
495 * makes the dnode eligible for dnode_move().
496 */
497 dn->dn_objset = os;
498
499 dnh->dnh_dnode = dn;
500 mutex_exit(&os->os_lock);
501
502 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
503
504 return (dn);
505 }
506
507 /*
508 * Caller must be holding the dnode handle, which is released upon return.
509 */
510 static void
dnode_destroy(dnode_t * dn)511 dnode_destroy(dnode_t *dn)
512 {
513 objset_t *os = dn->dn_objset;
514 boolean_t complete_os_eviction = B_FALSE;
515
516 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
517
518 mutex_enter(&os->os_lock);
519 POINTER_INVALIDATE(&dn->dn_objset);
520 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
521 list_remove(&os->os_dnodes, dn);
522 complete_os_eviction =
523 list_is_empty(&os->os_dnodes) &&
524 list_link_active(&os->os_evicting_node);
525 }
526 mutex_exit(&os->os_lock);
527
528 /* the dnode can no longer move, so we can release the handle */
529 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
530 zrl_remove(&dn->dn_handle->dnh_zrlock);
531
532 dn->dn_allocated_txg = 0;
533 dn->dn_free_txg = 0;
534 dn->dn_assigned_txg = 0;
535 dn->dn_dirty_txg = 0;
536
537 dn->dn_dirtyctx = 0;
538 if (dn->dn_dirtyctx_firstset != NULL) {
539 kmem_free(dn->dn_dirtyctx_firstset, 1);
540 dn->dn_dirtyctx_firstset = NULL;
541 }
542 if (dn->dn_bonus != NULL) {
543 mutex_enter(&dn->dn_bonus->db_mtx);
544 dbuf_destroy(dn->dn_bonus);
545 dn->dn_bonus = NULL;
546 }
547 dn->dn_zio = NULL;
548
549 dn->dn_have_spill = B_FALSE;
550 dn->dn_oldused = 0;
551 dn->dn_oldflags = 0;
552 dn->dn_olduid = 0;
553 dn->dn_oldgid = 0;
554 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
555 dn->dn_newuid = 0;
556 dn->dn_newgid = 0;
557 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
558 dn->dn_id_flags = 0;
559
560 dmu_zfetch_fini(&dn->dn_zfetch);
561 kmem_cache_free(dnode_cache, dn);
562 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
563
564 if (complete_os_eviction)
565 dmu_objset_evict_done(os);
566 }
567
568 void
dnode_allocate(dnode_t * dn,dmu_object_type_t ot,int blocksize,int ibs,dmu_object_type_t bonustype,int bonuslen,int dn_slots,dmu_tx_t * tx)569 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
570 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
571 {
572 int i;
573
574 ASSERT3U(dn_slots, >, 0);
575 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
576 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
577 ASSERT3U(blocksize, <=,
578 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
579 if (blocksize == 0)
580 blocksize = 1 << zfs_default_bs;
581 else
582 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
583
584 if (ibs == 0)
585 ibs = zfs_default_ibs;
586
587 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
588
589 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64
590 " blocksize=%d ibs=%d dn_slots=%d\n",
591 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
592 DNODE_STAT_BUMP(dnode_allocate);
593
594 ASSERT(dn->dn_type == DMU_OT_NONE);
595 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
596 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
597 ASSERT(ot != DMU_OT_NONE);
598 ASSERT(DMU_OT_IS_VALID(ot));
599 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
600 (bonustype == DMU_OT_SA && bonuslen == 0) ||
601 (bonustype != DMU_OT_NONE && bonuslen != 0));
602 ASSERT(DMU_OT_IS_VALID(bonustype));
603 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
604 ASSERT(dn->dn_type == DMU_OT_NONE);
605 ASSERT0(dn->dn_maxblkid);
606 ASSERT0(dn->dn_allocated_txg);
607 ASSERT0(dn->dn_dirty_txg);
608 ASSERT0(dn->dn_assigned_txg);
609 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
610 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
611 ASSERT(avl_is_empty(&dn->dn_dbufs));
612
613 for (i = 0; i < TXG_SIZE; i++) {
614 ASSERT0(dn->dn_next_nblkptr[i]);
615 ASSERT0(dn->dn_next_nlevels[i]);
616 ASSERT0(dn->dn_next_indblkshift[i]);
617 ASSERT0(dn->dn_next_bonuslen[i]);
618 ASSERT0(dn->dn_next_bonustype[i]);
619 ASSERT0(dn->dn_rm_spillblk[i]);
620 ASSERT0(dn->dn_next_blksz[i]);
621 ASSERT0(dn->dn_next_maxblkid[i]);
622 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
623 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
624 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
625 }
626
627 dn->dn_type = ot;
628 dnode_setdblksz(dn, blocksize);
629 dn->dn_indblkshift = ibs;
630 dn->dn_nlevels = 1;
631 dn->dn_num_slots = dn_slots;
632 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
633 dn->dn_nblkptr = 1;
634 else {
635 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
636 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
637 SPA_BLKPTRSHIFT));
638 }
639
640 dn->dn_bonustype = bonustype;
641 dn->dn_bonuslen = bonuslen;
642 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
643 dn->dn_compress = ZIO_COMPRESS_INHERIT;
644 dn->dn_dirtyctx = 0;
645
646 dn->dn_free_txg = 0;
647 if (dn->dn_dirtyctx_firstset) {
648 kmem_free(dn->dn_dirtyctx_firstset, 1);
649 dn->dn_dirtyctx_firstset = NULL;
650 }
651
652 dn->dn_allocated_txg = tx->tx_txg;
653 dn->dn_id_flags = 0;
654
655 dnode_setdirty(dn, tx);
656 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
657 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
658 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
659 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
660 }
661
662 void
dnode_reallocate(dnode_t * dn,dmu_object_type_t ot,int blocksize,dmu_object_type_t bonustype,int bonuslen,int dn_slots,boolean_t keep_spill,dmu_tx_t * tx)663 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
664 dmu_object_type_t bonustype, int bonuslen, int dn_slots,
665 boolean_t keep_spill, dmu_tx_t *tx)
666 {
667 int nblkptr;
668
669 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
670 ASSERT3U(blocksize, <=,
671 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
672 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
673 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
674 ASSERT(tx->tx_txg != 0);
675 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
676 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
677 (bonustype == DMU_OT_SA && bonuslen == 0));
678 ASSERT(DMU_OT_IS_VALID(bonustype));
679 ASSERT3U(bonuslen, <=,
680 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
681 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
682
683 dnode_free_interior_slots(dn);
684 DNODE_STAT_BUMP(dnode_reallocate);
685
686 /* clean up any unreferenced dbufs */
687 dnode_evict_dbufs(dn);
688
689 dn->dn_id_flags = 0;
690
691 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
692 dnode_setdirty(dn, tx);
693 if (dn->dn_datablksz != blocksize) {
694 /* change blocksize */
695 ASSERT(dn->dn_maxblkid == 0 &&
696 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
697 dnode_block_freed(dn, 0)));
698 dnode_setdblksz(dn, blocksize);
699 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
700 }
701 if (dn->dn_bonuslen != bonuslen)
702 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
703
704 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
705 nblkptr = 1;
706 else
707 nblkptr = MIN(DN_MAX_NBLKPTR,
708 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
709 SPA_BLKPTRSHIFT));
710 if (dn->dn_bonustype != bonustype)
711 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
712 if (dn->dn_nblkptr != nblkptr)
713 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
714 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
715 dbuf_rm_spill(dn, tx);
716 dnode_rm_spill(dn, tx);
717 }
718 rw_exit(&dn->dn_struct_rwlock);
719
720 /* change type */
721 dn->dn_type = ot;
722
723 /* change bonus size and type */
724 mutex_enter(&dn->dn_mtx);
725 dn->dn_bonustype = bonustype;
726 dn->dn_bonuslen = bonuslen;
727 dn->dn_num_slots = dn_slots;
728 dn->dn_nblkptr = nblkptr;
729 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
730 dn->dn_compress = ZIO_COMPRESS_INHERIT;
731 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
732
733 /* fix up the bonus db_size */
734 if (dn->dn_bonus) {
735 dn->dn_bonus->db.db_size =
736 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
737 (dn->dn_nblkptr - 1) * sizeof (blkptr_t);
738 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
739 }
740
741 dn->dn_allocated_txg = tx->tx_txg;
742 mutex_exit(&dn->dn_mtx);
743 }
744
745 #ifdef _KERNEL
746 static void
dnode_move_impl(dnode_t * odn,dnode_t * ndn)747 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
748 {
749 int i;
750
751 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
752 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
753 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
754 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
755
756 /* Copy fields. */
757 ndn->dn_objset = odn->dn_objset;
758 ndn->dn_object = odn->dn_object;
759 ndn->dn_dbuf = odn->dn_dbuf;
760 ndn->dn_handle = odn->dn_handle;
761 ndn->dn_phys = odn->dn_phys;
762 ndn->dn_type = odn->dn_type;
763 ndn->dn_bonuslen = odn->dn_bonuslen;
764 ndn->dn_bonustype = odn->dn_bonustype;
765 ndn->dn_nblkptr = odn->dn_nblkptr;
766 ndn->dn_checksum = odn->dn_checksum;
767 ndn->dn_compress = odn->dn_compress;
768 ndn->dn_nlevels = odn->dn_nlevels;
769 ndn->dn_indblkshift = odn->dn_indblkshift;
770 ndn->dn_datablkshift = odn->dn_datablkshift;
771 ndn->dn_datablkszsec = odn->dn_datablkszsec;
772 ndn->dn_datablksz = odn->dn_datablksz;
773 ndn->dn_maxblkid = odn->dn_maxblkid;
774 ndn->dn_num_slots = odn->dn_num_slots;
775 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
776 sizeof (odn->dn_next_type));
777 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
778 sizeof (odn->dn_next_nblkptr));
779 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
780 sizeof (odn->dn_next_nlevels));
781 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
782 sizeof (odn->dn_next_indblkshift));
783 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
784 sizeof (odn->dn_next_bonustype));
785 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
786 sizeof (odn->dn_rm_spillblk));
787 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
788 sizeof (odn->dn_next_bonuslen));
789 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
790 sizeof (odn->dn_next_blksz));
791 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
792 sizeof (odn->dn_next_maxblkid));
793 for (i = 0; i < TXG_SIZE; i++) {
794 list_move_tail(&ndn->dn_dirty_records[i],
795 &odn->dn_dirty_records[i]);
796 }
797 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
798 sizeof (odn->dn_free_ranges));
799 ndn->dn_allocated_txg = odn->dn_allocated_txg;
800 ndn->dn_free_txg = odn->dn_free_txg;
801 ndn->dn_assigned_txg = odn->dn_assigned_txg;
802 ndn->dn_dirty_txg = odn->dn_dirty_txg;
803 ndn->dn_dirtyctx = odn->dn_dirtyctx;
804 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
805 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
806 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
807 ASSERT(avl_is_empty(&ndn->dn_dbufs));
808 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
809 ndn->dn_dbufs_count = odn->dn_dbufs_count;
810 ndn->dn_bonus = odn->dn_bonus;
811 ndn->dn_have_spill = odn->dn_have_spill;
812 ndn->dn_zio = odn->dn_zio;
813 ndn->dn_oldused = odn->dn_oldused;
814 ndn->dn_oldflags = odn->dn_oldflags;
815 ndn->dn_olduid = odn->dn_olduid;
816 ndn->dn_oldgid = odn->dn_oldgid;
817 ndn->dn_oldprojid = odn->dn_oldprojid;
818 ndn->dn_newuid = odn->dn_newuid;
819 ndn->dn_newgid = odn->dn_newgid;
820 ndn->dn_newprojid = odn->dn_newprojid;
821 ndn->dn_id_flags = odn->dn_id_flags;
822 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
823 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
824 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
825
826 /*
827 * Update back pointers. Updating the handle fixes the back pointer of
828 * every descendant dbuf as well as the bonus dbuf.
829 */
830 ASSERT(ndn->dn_handle->dnh_dnode == odn);
831 ndn->dn_handle->dnh_dnode = ndn;
832 if (ndn->dn_zfetch.zf_dnode == odn) {
833 ndn->dn_zfetch.zf_dnode = ndn;
834 }
835
836 /*
837 * Invalidate the original dnode by clearing all of its back pointers.
838 */
839 odn->dn_dbuf = NULL;
840 odn->dn_handle = NULL;
841 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
842 offsetof(dmu_buf_impl_t, db_link));
843 odn->dn_dbufs_count = 0;
844 odn->dn_bonus = NULL;
845 odn->dn_zfetch.zf_dnode = NULL;
846
847 /*
848 * Set the low bit of the objset pointer to ensure that dnode_move()
849 * recognizes the dnode as invalid in any subsequent callback.
850 */
851 POINTER_INVALIDATE(&odn->dn_objset);
852
853 /*
854 * Satisfy the destructor.
855 */
856 for (i = 0; i < TXG_SIZE; i++) {
857 list_create(&odn->dn_dirty_records[i],
858 sizeof (dbuf_dirty_record_t),
859 offsetof(dbuf_dirty_record_t, dr_dirty_node));
860 odn->dn_free_ranges[i] = NULL;
861 odn->dn_next_nlevels[i] = 0;
862 odn->dn_next_indblkshift[i] = 0;
863 odn->dn_next_bonustype[i] = 0;
864 odn->dn_rm_spillblk[i] = 0;
865 odn->dn_next_bonuslen[i] = 0;
866 odn->dn_next_blksz[i] = 0;
867 }
868 odn->dn_allocated_txg = 0;
869 odn->dn_free_txg = 0;
870 odn->dn_assigned_txg = 0;
871 odn->dn_dirty_txg = 0;
872 odn->dn_dirtyctx = 0;
873 odn->dn_dirtyctx_firstset = NULL;
874 odn->dn_have_spill = B_FALSE;
875 odn->dn_zio = NULL;
876 odn->dn_oldused = 0;
877 odn->dn_oldflags = 0;
878 odn->dn_olduid = 0;
879 odn->dn_oldgid = 0;
880 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
881 odn->dn_newuid = 0;
882 odn->dn_newgid = 0;
883 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
884 odn->dn_id_flags = 0;
885
886 /*
887 * Mark the dnode.
888 */
889 ndn->dn_moved = 1;
890 odn->dn_moved = (uint8_t)-1;
891 }
892
893 /*ARGSUSED*/
894 static kmem_cbrc_t
dnode_move(void * buf,void * newbuf,size_t size,void * arg)895 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
896 {
897 dnode_t *odn = buf, *ndn = newbuf;
898 objset_t *os;
899 int64_t refcount;
900 uint32_t dbufs;
901
902 /*
903 * The dnode is on the objset's list of known dnodes if the objset
904 * pointer is valid. We set the low bit of the objset pointer when
905 * freeing the dnode to invalidate it, and the memory patterns written
906 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
907 * A newly created dnode sets the objset pointer last of all to indicate
908 * that the dnode is known and in a valid state to be moved by this
909 * function.
910 */
911 os = odn->dn_objset;
912 if (!POINTER_IS_VALID(os)) {
913 DNODE_STAT_BUMP(dnode_move_invalid);
914 return (KMEM_CBRC_DONT_KNOW);
915 }
916
917 /*
918 * Ensure that the objset does not go away during the move.
919 */
920 rw_enter(&os_lock, RW_WRITER);
921 if (os != odn->dn_objset) {
922 rw_exit(&os_lock);
923 DNODE_STAT_BUMP(dnode_move_recheck1);
924 return (KMEM_CBRC_DONT_KNOW);
925 }
926
927 /*
928 * If the dnode is still valid, then so is the objset. We know that no
929 * valid objset can be freed while we hold os_lock, so we can safely
930 * ensure that the objset remains in use.
931 */
932 mutex_enter(&os->os_lock);
933
934 /*
935 * Recheck the objset pointer in case the dnode was removed just before
936 * acquiring the lock.
937 */
938 if (os != odn->dn_objset) {
939 mutex_exit(&os->os_lock);
940 rw_exit(&os_lock);
941 DNODE_STAT_BUMP(dnode_move_recheck2);
942 return (KMEM_CBRC_DONT_KNOW);
943 }
944
945 /*
946 * At this point we know that as long as we hold os->os_lock, the dnode
947 * cannot be freed and fields within the dnode can be safely accessed.
948 * The objset listing this dnode cannot go away as long as this dnode is
949 * on its list.
950 */
951 rw_exit(&os_lock);
952 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
953 mutex_exit(&os->os_lock);
954 DNODE_STAT_BUMP(dnode_move_special);
955 return (KMEM_CBRC_NO);
956 }
957 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
958
959 /*
960 * Lock the dnode handle to prevent the dnode from obtaining any new
961 * holds. This also prevents the descendant dbufs and the bonus dbuf
962 * from accessing the dnode, so that we can discount their holds. The
963 * handle is safe to access because we know that while the dnode cannot
964 * go away, neither can its handle. Once we hold dnh_zrlock, we can
965 * safely move any dnode referenced only by dbufs.
966 */
967 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
968 mutex_exit(&os->os_lock);
969 DNODE_STAT_BUMP(dnode_move_handle);
970 return (KMEM_CBRC_LATER);
971 }
972
973 /*
974 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
975 * We need to guarantee that there is a hold for every dbuf in order to
976 * determine whether the dnode is actively referenced. Falsely matching
977 * a dbuf to an active hold would lead to an unsafe move. It's possible
978 * that a thread already having an active dnode hold is about to add a
979 * dbuf, and we can't compare hold and dbuf counts while the add is in
980 * progress.
981 */
982 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
983 zrl_exit(&odn->dn_handle->dnh_zrlock);
984 mutex_exit(&os->os_lock);
985 DNODE_STAT_BUMP(dnode_move_rwlock);
986 return (KMEM_CBRC_LATER);
987 }
988
989 /*
990 * A dbuf may be removed (evicted) without an active dnode hold. In that
991 * case, the dbuf count is decremented under the handle lock before the
992 * dbuf's hold is released. This order ensures that if we count the hold
993 * after the dbuf is removed but before its hold is released, we will
994 * treat the unmatched hold as active and exit safely. If we count the
995 * hold before the dbuf is removed, the hold is discounted, and the
996 * removal is blocked until the move completes.
997 */
998 refcount = zfs_refcount_count(&odn->dn_holds);
999 ASSERT(refcount >= 0);
1000 dbufs = odn->dn_dbufs_count;
1001
1002 /* We can't have more dbufs than dnode holds. */
1003 ASSERT3U(dbufs, <=, refcount);
1004 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1005 uint32_t, dbufs);
1006
1007 if (refcount > dbufs) {
1008 rw_exit(&odn->dn_struct_rwlock);
1009 zrl_exit(&odn->dn_handle->dnh_zrlock);
1010 mutex_exit(&os->os_lock);
1011 DNODE_STAT_BUMP(dnode_move_active);
1012 return (KMEM_CBRC_LATER);
1013 }
1014
1015 rw_exit(&odn->dn_struct_rwlock);
1016
1017 /*
1018 * At this point we know that anyone with a hold on the dnode is not
1019 * actively referencing it. The dnode is known and in a valid state to
1020 * move. We're holding the locks needed to execute the critical section.
1021 */
1022 dnode_move_impl(odn, ndn);
1023
1024 list_link_replace(&odn->dn_link, &ndn->dn_link);
1025 /* If the dnode was safe to move, the refcount cannot have changed. */
1026 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1027 ASSERT(dbufs == ndn->dn_dbufs_count);
1028 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1029 mutex_exit(&os->os_lock);
1030
1031 return (KMEM_CBRC_YES);
1032 }
1033 #endif /* _KERNEL */
1034
1035 static void
dnode_slots_hold(dnode_children_t * children,int idx,int slots)1036 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1037 {
1038 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1039
1040 for (int i = idx; i < idx + slots; i++) {
1041 dnode_handle_t *dnh = &children->dnc_children[i];
1042 zrl_add(&dnh->dnh_zrlock);
1043 }
1044 }
1045
1046 static void
dnode_slots_rele(dnode_children_t * children,int idx,int slots)1047 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1048 {
1049 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1050
1051 for (int i = idx; i < idx + slots; i++) {
1052 dnode_handle_t *dnh = &children->dnc_children[i];
1053
1054 if (zrl_is_locked(&dnh->dnh_zrlock))
1055 zrl_exit(&dnh->dnh_zrlock);
1056 else
1057 zrl_remove(&dnh->dnh_zrlock);
1058 }
1059 }
1060
1061 static int
dnode_slots_tryenter(dnode_children_t * children,int idx,int slots)1062 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1063 {
1064 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1065
1066 for (int i = idx; i < idx + slots; i++) {
1067 dnode_handle_t *dnh = &children->dnc_children[i];
1068
1069 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1070 for (int j = idx; j < i; j++) {
1071 dnh = &children->dnc_children[j];
1072 zrl_exit(&dnh->dnh_zrlock);
1073 }
1074
1075 return (0);
1076 }
1077 }
1078
1079 return (1);
1080 }
1081
1082 static void
dnode_set_slots(dnode_children_t * children,int idx,int slots,void * ptr)1083 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1084 {
1085 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1086
1087 for (int i = idx; i < idx + slots; i++) {
1088 dnode_handle_t *dnh = &children->dnc_children[i];
1089 dnh->dnh_dnode = ptr;
1090 }
1091 }
1092
1093 static boolean_t
dnode_check_slots_free(dnode_children_t * children,int idx,int slots)1094 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1095 {
1096 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1097
1098 /*
1099 * If all dnode slots are either already free or
1100 * evictable return B_TRUE.
1101 */
1102 for (int i = idx; i < idx + slots; i++) {
1103 dnode_handle_t *dnh = &children->dnc_children[i];
1104 dnode_t *dn = dnh->dnh_dnode;
1105
1106 if (dn == DN_SLOT_FREE) {
1107 continue;
1108 } else if (DN_SLOT_IS_PTR(dn)) {
1109 mutex_enter(&dn->dn_mtx);
1110 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1111 zfs_refcount_is_zero(&dn->dn_holds) &&
1112 !DNODE_IS_DIRTY(dn));
1113 mutex_exit(&dn->dn_mtx);
1114
1115 if (!can_free)
1116 return (B_FALSE);
1117 else
1118 continue;
1119 } else {
1120 return (B_FALSE);
1121 }
1122 }
1123
1124 return (B_TRUE);
1125 }
1126
1127 static void
dnode_reclaim_slots(dnode_children_t * children,int idx,int slots)1128 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1129 {
1130 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1131
1132 for (int i = idx; i < idx + slots; i++) {
1133 dnode_handle_t *dnh = &children->dnc_children[i];
1134
1135 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1136
1137 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1138 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1139 dnode_destroy(dnh->dnh_dnode);
1140 dnh->dnh_dnode = DN_SLOT_FREE;
1141 }
1142 }
1143 }
1144
1145 void
dnode_free_interior_slots(dnode_t * dn)1146 dnode_free_interior_slots(dnode_t *dn)
1147 {
1148 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1149 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1150 int idx = (dn->dn_object & (epb - 1)) + 1;
1151 int slots = dn->dn_num_slots - 1;
1152
1153 if (slots == 0)
1154 return;
1155
1156 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1157
1158 while (!dnode_slots_tryenter(children, idx, slots))
1159 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1160
1161 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1162 dnode_slots_rele(children, idx, slots);
1163 }
1164
1165 void
dnode_special_close(dnode_handle_t * dnh)1166 dnode_special_close(dnode_handle_t *dnh)
1167 {
1168 dnode_t *dn = dnh->dnh_dnode;
1169
1170 /*
1171 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final
1172 * zfs_refcount_remove()
1173 */
1174 mutex_enter(&dn->dn_mtx);
1175 if (zfs_refcount_count(&dn->dn_holds) > 0)
1176 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx);
1177 mutex_exit(&dn->dn_mtx);
1178 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0);
1179
1180 ASSERT(dn->dn_dbuf == NULL ||
1181 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1182 zrl_add(&dnh->dnh_zrlock);
1183 dnode_destroy(dn); /* implicit zrl_remove() */
1184 zrl_destroy(&dnh->dnh_zrlock);
1185 dnh->dnh_dnode = NULL;
1186 }
1187
1188 void
dnode_special_open(objset_t * os,dnode_phys_t * dnp,uint64_t object,dnode_handle_t * dnh)1189 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1190 dnode_handle_t *dnh)
1191 {
1192 dnode_t *dn;
1193
1194 zrl_init(&dnh->dnh_zrlock);
1195 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock));
1196
1197 dn = dnode_create(os, dnp, NULL, object, dnh);
1198 DNODE_VERIFY(dn);
1199
1200 zrl_exit(&dnh->dnh_zrlock);
1201 }
1202
1203 static void
dnode_buf_evict_async(void * dbu)1204 dnode_buf_evict_async(void *dbu)
1205 {
1206 dnode_children_t *dnc = dbu;
1207
1208 DNODE_STAT_BUMP(dnode_buf_evict);
1209
1210 for (int i = 0; i < dnc->dnc_count; i++) {
1211 dnode_handle_t *dnh = &dnc->dnc_children[i];
1212 dnode_t *dn;
1213
1214 /*
1215 * The dnode handle lock guards against the dnode moving to
1216 * another valid address, so there is no need here to guard
1217 * against changes to or from NULL.
1218 */
1219 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1220 zrl_destroy(&dnh->dnh_zrlock);
1221 dnh->dnh_dnode = DN_SLOT_UNINIT;
1222 continue;
1223 }
1224
1225 zrl_add(&dnh->dnh_zrlock);
1226 dn = dnh->dnh_dnode;
1227 /*
1228 * If there are holds on this dnode, then there should
1229 * be holds on the dnode's containing dbuf as well; thus
1230 * it wouldn't be eligible for eviction and this function
1231 * would not have been called.
1232 */
1233 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1234 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1235
1236 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1237 zrl_destroy(&dnh->dnh_zrlock);
1238 dnh->dnh_dnode = DN_SLOT_UNINIT;
1239 }
1240 kmem_free(dnc, sizeof (dnode_children_t) +
1241 dnc->dnc_count * sizeof (dnode_handle_t));
1242 }
1243
1244 /*
1245 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1246 * to ensure the hole at the specified object offset is large enough to
1247 * hold the dnode being created. The slots parameter is also used to ensure
1248 * a dnode does not span multiple dnode blocks. In both of these cases, if
1249 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1250 * are only possible when using DNODE_MUST_BE_FREE.
1251 *
1252 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1253 * dnode_hold_impl() will check if the requested dnode is already consumed
1254 * as an extra dnode slot by an large dnode, in which case it returns
1255 * ENOENT.
1256 *
1257 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just
1258 * return whether the hold would succeed or not. tag and dnp should set to
1259 * NULL in this case.
1260 *
1261 * errors:
1262 * EINVAL - invalid object number or flags.
1263 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1264 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1265 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1266 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1267 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1268 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1269 * EIO - i/o error error when reading the meta dnode dbuf.
1270 * succeeds even for free dnodes.
1271 */
1272 int
dnode_hold_impl(objset_t * os,uint64_t object,int flag,int slots,void * tag,dnode_t ** dnp)1273 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1274 void *tag, dnode_t **dnp)
1275 {
1276 int epb, idx, err;
1277 int drop_struct_lock = FALSE;
1278 int type;
1279 uint64_t blk;
1280 dnode_t *mdn, *dn;
1281 dmu_buf_impl_t *db;
1282 dnode_children_t *dnc;
1283 dnode_phys_t *dn_block;
1284 dnode_handle_t *dnh;
1285
1286 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1287 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1288 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL));
1289
1290 /*
1291 * If you are holding the spa config lock as writer, you shouldn't
1292 * be asking the DMU to do *anything* unless it's the root pool
1293 * which may require us to read from the root filesystem while
1294 * holding some (not all) of the locks as writer.
1295 */
1296 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1297 (spa_is_root(os->os_spa) &&
1298 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1299
1300 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1301
1302 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1303 object == DMU_PROJECTUSED_OBJECT) {
1304 if (object == DMU_USERUSED_OBJECT)
1305 dn = DMU_USERUSED_DNODE(os);
1306 else if (object == DMU_GROUPUSED_OBJECT)
1307 dn = DMU_GROUPUSED_DNODE(os);
1308 else
1309 dn = DMU_PROJECTUSED_DNODE(os);
1310 if (dn == NULL)
1311 return (SET_ERROR(ENOENT));
1312 type = dn->dn_type;
1313 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1314 return (SET_ERROR(ENOENT));
1315 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1316 return (SET_ERROR(EEXIST));
1317 DNODE_VERIFY(dn);
1318 /* Don't actually hold if dry run, just return 0 */
1319 if (!(flag & DNODE_DRY_RUN)) {
1320 (void) zfs_refcount_add(&dn->dn_holds, tag);
1321 *dnp = dn;
1322 }
1323 return (0);
1324 }
1325
1326 if (object == 0 || object >= DN_MAX_OBJECT)
1327 return (SET_ERROR(EINVAL));
1328
1329 mdn = DMU_META_DNODE(os);
1330 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1331
1332 DNODE_VERIFY(mdn);
1333
1334 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1335 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1336 drop_struct_lock = TRUE;
1337 }
1338
1339 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1340 db = dbuf_hold(mdn, blk, FTAG);
1341 if (drop_struct_lock)
1342 rw_exit(&mdn->dn_struct_rwlock);
1343 if (db == NULL) {
1344 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1345 return (SET_ERROR(EIO));
1346 }
1347 /*
1348 * We do not need to decrypt to read the dnode so it doesn't matter
1349 * if we get the encrypted or decrypted version.
1350 */
1351 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1352 if (err) {
1353 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1354 dbuf_rele(db, FTAG);
1355 return (err);
1356 }
1357
1358 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1359 epb = db->db.db_size >> DNODE_SHIFT;
1360
1361 idx = object & (epb - 1);
1362 dn_block = (dnode_phys_t *)db->db.db_data;
1363
1364 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1365 dnc = dmu_buf_get_user(&db->db);
1366 dnh = NULL;
1367 if (dnc == NULL) {
1368 dnode_children_t *winner;
1369 int skip = 0;
1370
1371 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1372 epb * sizeof (dnode_handle_t), KM_SLEEP);
1373 dnc->dnc_count = epb;
1374 dnh = &dnc->dnc_children[0];
1375
1376 /* Initialize dnode slot status from dnode_phys_t */
1377 for (int i = 0; i < epb; i++) {
1378 zrl_init(&dnh[i].dnh_zrlock);
1379
1380 if (skip) {
1381 skip--;
1382 continue;
1383 }
1384
1385 if (dn_block[i].dn_type != DMU_OT_NONE) {
1386 int interior = dn_block[i].dn_extra_slots;
1387
1388 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1389 dnode_set_slots(dnc, i + 1, interior,
1390 DN_SLOT_INTERIOR);
1391 skip = interior;
1392 } else {
1393 dnh[i].dnh_dnode = DN_SLOT_FREE;
1394 skip = 0;
1395 }
1396 }
1397
1398 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1399 dnode_buf_evict_async, NULL);
1400 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1401 if (winner != NULL) {
1402
1403 for (int i = 0; i < epb; i++)
1404 zrl_destroy(&dnh[i].dnh_zrlock);
1405
1406 kmem_free(dnc, sizeof (dnode_children_t) +
1407 epb * sizeof (dnode_handle_t));
1408 dnc = winner;
1409 }
1410 }
1411
1412 ASSERT(dnc->dnc_count == epb);
1413 dn = DN_SLOT_UNINIT;
1414
1415 if (flag & DNODE_MUST_BE_ALLOCATED) {
1416 slots = 1;
1417
1418 while (dn == DN_SLOT_UNINIT) {
1419 dnode_slots_hold(dnc, idx, slots);
1420 dnh = &dnc->dnc_children[idx];
1421
1422 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1423 dn = dnh->dnh_dnode;
1424 break;
1425 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1426 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1427 dnode_slots_rele(dnc, idx, slots);
1428 dbuf_rele(db, FTAG);
1429 return (SET_ERROR(EEXIST));
1430 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1431 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1432 dnode_slots_rele(dnc, idx, slots);
1433 dbuf_rele(db, FTAG);
1434 return (SET_ERROR(ENOENT));
1435 }
1436
1437 dnode_slots_rele(dnc, idx, slots);
1438 if (!dnode_slots_tryenter(dnc, idx, slots)) {
1439 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1440 continue;
1441 }
1442
1443 /*
1444 * Someone else won the race and called dnode_create()
1445 * after we checked DN_SLOT_IS_PTR() above but before
1446 * we acquired the lock.
1447 */
1448 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1449 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1450 dn = dnh->dnh_dnode;
1451 } else {
1452 dn = dnode_create(os, dn_block + idx, db,
1453 object, dnh);
1454 }
1455 }
1456
1457 mutex_enter(&dn->dn_mtx);
1458 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1459 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1460 mutex_exit(&dn->dn_mtx);
1461 dnode_slots_rele(dnc, idx, slots);
1462 dbuf_rele(db, FTAG);
1463 return (SET_ERROR(ENOENT));
1464 }
1465
1466 /* Don't actually hold if dry run, just return 0 */
1467 if (flag & DNODE_DRY_RUN) {
1468 mutex_exit(&dn->dn_mtx);
1469 dnode_slots_rele(dnc, idx, slots);
1470 dbuf_rele(db, FTAG);
1471 return (0);
1472 }
1473
1474 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1475 } else if (flag & DNODE_MUST_BE_FREE) {
1476
1477 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1478 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1479 dbuf_rele(db, FTAG);
1480 return (SET_ERROR(ENOSPC));
1481 }
1482
1483 while (dn == DN_SLOT_UNINIT) {
1484 dnode_slots_hold(dnc, idx, slots);
1485
1486 if (!dnode_check_slots_free(dnc, idx, slots)) {
1487 DNODE_STAT_BUMP(dnode_hold_free_misses);
1488 dnode_slots_rele(dnc, idx, slots);
1489 dbuf_rele(db, FTAG);
1490 return (SET_ERROR(ENOSPC));
1491 }
1492
1493 dnode_slots_rele(dnc, idx, slots);
1494 if (!dnode_slots_tryenter(dnc, idx, slots)) {
1495 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1496 continue;
1497 }
1498
1499 if (!dnode_check_slots_free(dnc, idx, slots)) {
1500 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1501 dnode_slots_rele(dnc, idx, slots);
1502 dbuf_rele(db, FTAG);
1503 return (SET_ERROR(ENOSPC));
1504 }
1505
1506 /*
1507 * Allocated but otherwise free dnodes which would
1508 * be in the interior of a multi-slot dnodes need
1509 * to be freed. Single slot dnodes can be safely
1510 * re-purposed as a performance optimization.
1511 */
1512 if (slots > 1)
1513 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1514
1515 dnh = &dnc->dnc_children[idx];
1516 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1517 dn = dnh->dnh_dnode;
1518 } else {
1519 dn = dnode_create(os, dn_block + idx, db,
1520 object, dnh);
1521 }
1522 }
1523
1524 mutex_enter(&dn->dn_mtx);
1525 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1526 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1527 mutex_exit(&dn->dn_mtx);
1528 dnode_slots_rele(dnc, idx, slots);
1529 dbuf_rele(db, FTAG);
1530 return (SET_ERROR(EEXIST));
1531 }
1532
1533 /* Don't actually hold if dry run, just return 0 */
1534 if (flag & DNODE_DRY_RUN) {
1535 mutex_exit(&dn->dn_mtx);
1536 dnode_slots_rele(dnc, idx, slots);
1537 dbuf_rele(db, FTAG);
1538 return (0);
1539 }
1540
1541 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1542 DNODE_STAT_BUMP(dnode_hold_free_hits);
1543 } else {
1544 dbuf_rele(db, FTAG);
1545 return (SET_ERROR(EINVAL));
1546 }
1547
1548 ASSERT0(dn->dn_free_txg);
1549
1550 if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1551 dbuf_add_ref(db, dnh);
1552
1553 mutex_exit(&dn->dn_mtx);
1554
1555 /* Now we can rely on the hold to prevent the dnode from moving. */
1556 dnode_slots_rele(dnc, idx, slots);
1557
1558 DNODE_VERIFY(dn);
1559 ASSERT3P(dn->dn_dbuf, ==, db);
1560 ASSERT3U(dn->dn_object, ==, object);
1561 dbuf_rele(db, FTAG);
1562
1563 *dnp = dn;
1564 return (0);
1565 }
1566
1567 /*
1568 * Return held dnode if the object is allocated, NULL if not.
1569 */
1570 int
dnode_hold(objset_t * os,uint64_t object,void * tag,dnode_t ** dnp)1571 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1572 {
1573 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1574 dnp));
1575 }
1576
1577 /*
1578 * Can only add a reference if there is already at least one
1579 * reference on the dnode. Returns FALSE if unable to add a
1580 * new reference.
1581 */
1582 boolean_t
dnode_add_ref(dnode_t * dn,void * tag)1583 dnode_add_ref(dnode_t *dn, void *tag)
1584 {
1585 mutex_enter(&dn->dn_mtx);
1586 if (zfs_refcount_is_zero(&dn->dn_holds)) {
1587 mutex_exit(&dn->dn_mtx);
1588 return (FALSE);
1589 }
1590 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1591 mutex_exit(&dn->dn_mtx);
1592 return (TRUE);
1593 }
1594
1595 void
dnode_rele(dnode_t * dn,void * tag)1596 dnode_rele(dnode_t *dn, void *tag)
1597 {
1598 mutex_enter(&dn->dn_mtx);
1599 dnode_rele_and_unlock(dn, tag, B_FALSE);
1600 }
1601
1602 void
dnode_rele_and_unlock(dnode_t * dn,void * tag,boolean_t evicting)1603 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1604 {
1605 uint64_t refs;
1606 /* Get while the hold prevents the dnode from moving. */
1607 dmu_buf_impl_t *db = dn->dn_dbuf;
1608 dnode_handle_t *dnh = dn->dn_handle;
1609
1610 refs = zfs_refcount_remove(&dn->dn_holds, tag);
1611 if (refs == 0)
1612 cv_broadcast(&dn->dn_nodnholds);
1613 mutex_exit(&dn->dn_mtx);
1614 /* dnode could get destroyed at this point, so don't use it anymore */
1615
1616 /*
1617 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1618 * indirectly by dbuf_rele() while relying on the dnode handle to
1619 * prevent the dnode from moving, since releasing the last hold could
1620 * result in the dnode's parent dbuf evicting its dnode handles. For
1621 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1622 * other direct or indirect hold on the dnode must first drop the dnode
1623 * handle.
1624 */
1625 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1626
1627 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1628 if (refs == 0 && db != NULL) {
1629 /*
1630 * Another thread could add a hold to the dnode handle in
1631 * dnode_hold_impl() while holding the parent dbuf. Since the
1632 * hold on the parent dbuf prevents the handle from being
1633 * destroyed, the hold on the handle is OK. We can't yet assert
1634 * that the handle has zero references, but that will be
1635 * asserted anyway when the handle gets destroyed.
1636 */
1637 mutex_enter(&db->db_mtx);
1638 dbuf_rele_and_unlock(db, dnh, evicting);
1639 }
1640 }
1641
1642 /*
1643 * Test whether we can create a dnode at the specified location.
1644 */
1645 int
dnode_try_claim(objset_t * os,uint64_t object,int slots)1646 dnode_try_claim(objset_t *os, uint64_t object, int slots)
1647 {
1648 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN,
1649 slots, NULL, NULL));
1650 }
1651
1652 void
dnode_setdirty(dnode_t * dn,dmu_tx_t * tx)1653 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1654 {
1655 objset_t *os = dn->dn_objset;
1656 uint64_t txg = tx->tx_txg;
1657
1658 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1659 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1660 return;
1661 }
1662
1663 DNODE_VERIFY(dn);
1664
1665 #ifdef ZFS_DEBUG
1666 mutex_enter(&dn->dn_mtx);
1667 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1668 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1669 mutex_exit(&dn->dn_mtx);
1670 #endif
1671
1672 /*
1673 * Determine old uid/gid when necessary
1674 */
1675 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1676
1677 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1678 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1679
1680 /*
1681 * If we are already marked dirty, we're done.
1682 */
1683 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1684 multilist_sublist_unlock(mls);
1685 return;
1686 }
1687
1688 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1689 !avl_is_empty(&dn->dn_dbufs));
1690 ASSERT(dn->dn_datablksz != 0);
1691 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1692 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1693 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1694
1695 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1696 dn->dn_object, txg);
1697
1698 multilist_sublist_insert_head(mls, dn);
1699
1700 multilist_sublist_unlock(mls);
1701
1702 /*
1703 * The dnode maintains a hold on its containing dbuf as
1704 * long as there are holds on it. Each instantiated child
1705 * dbuf maintains a hold on the dnode. When the last child
1706 * drops its hold, the dnode will drop its hold on the
1707 * containing dbuf. We add a "dirty hold" here so that the
1708 * dnode will hang around after we finish processing its
1709 * children.
1710 */
1711 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1712
1713 (void) dbuf_dirty(dn->dn_dbuf, tx);
1714
1715 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1716 }
1717
1718 void
dnode_free(dnode_t * dn,dmu_tx_t * tx)1719 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1720 {
1721 mutex_enter(&dn->dn_mtx);
1722 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1723 mutex_exit(&dn->dn_mtx);
1724 return;
1725 }
1726 dn->dn_free_txg = tx->tx_txg;
1727 mutex_exit(&dn->dn_mtx);
1728
1729 dnode_setdirty(dn, tx);
1730 }
1731
1732 /*
1733 * Try to change the block size for the indicated dnode. This can only
1734 * succeed if there are no blocks allocated or dirty beyond first block
1735 */
1736 int
dnode_set_blksz(dnode_t * dn,uint64_t size,int ibs,dmu_tx_t * tx)1737 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1738 {
1739 dmu_buf_impl_t *db;
1740 int err;
1741
1742 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1743 if (size == 0)
1744 size = SPA_MINBLOCKSIZE;
1745 else
1746 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1747
1748 if (ibs == dn->dn_indblkshift)
1749 ibs = 0;
1750
1751 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1752 return (0);
1753
1754 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1755
1756 /* Check for any allocated blocks beyond the first */
1757 if (dn->dn_maxblkid != 0)
1758 goto fail;
1759
1760 mutex_enter(&dn->dn_dbufs_mtx);
1761 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1762 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1763 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1764 db->db_blkid != DMU_SPILL_BLKID) {
1765 mutex_exit(&dn->dn_dbufs_mtx);
1766 goto fail;
1767 }
1768 }
1769 mutex_exit(&dn->dn_dbufs_mtx);
1770
1771 if (ibs && dn->dn_nlevels != 1)
1772 goto fail;
1773
1774 /* resize the old block */
1775 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1776 if (err == 0) {
1777 dbuf_new_size(db, size, tx);
1778 } else if (err != ENOENT) {
1779 goto fail;
1780 }
1781
1782 dnode_setdblksz(dn, size);
1783 dnode_setdirty(dn, tx);
1784 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1785 if (ibs) {
1786 dn->dn_indblkshift = ibs;
1787 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1788 }
1789 /* rele after we have fixed the blocksize in the dnode */
1790 if (db)
1791 dbuf_rele(db, FTAG);
1792
1793 rw_exit(&dn->dn_struct_rwlock);
1794 return (0);
1795
1796 fail:
1797 rw_exit(&dn->dn_struct_rwlock);
1798 return (SET_ERROR(ENOTSUP));
1799 }
1800
1801 static void
dnode_set_nlevels_impl(dnode_t * dn,int new_nlevels,dmu_tx_t * tx)1802 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1803 {
1804 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1805 int old_nlevels = dn->dn_nlevels;
1806 dmu_buf_impl_t *db;
1807 list_t *list;
1808 dbuf_dirty_record_t *new, *dr, *dr_next;
1809
1810 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1811
1812 dn->dn_nlevels = new_nlevels;
1813
1814 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1815 dn->dn_next_nlevels[txgoff] = new_nlevels;
1816
1817 /* dirty the left indirects */
1818 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1819 ASSERT(db != NULL);
1820 new = dbuf_dirty(db, tx);
1821 dbuf_rele(db, FTAG);
1822
1823 /* transfer the dirty records to the new indirect */
1824 mutex_enter(&dn->dn_mtx);
1825 mutex_enter(&new->dt.di.dr_mtx);
1826 list = &dn->dn_dirty_records[txgoff];
1827 for (dr = list_head(list); dr; dr = dr_next) {
1828 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1829 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1830 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1831 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1832 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1833 list_remove(&dn->dn_dirty_records[txgoff], dr);
1834 list_insert_tail(&new->dt.di.dr_children, dr);
1835 dr->dr_parent = new;
1836 }
1837 }
1838 mutex_exit(&new->dt.di.dr_mtx);
1839 mutex_exit(&dn->dn_mtx);
1840 }
1841
1842 int
dnode_set_nlevels(dnode_t * dn,int nlevels,dmu_tx_t * tx)1843 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1844 {
1845 int ret = 0;
1846
1847 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1848
1849 if (dn->dn_nlevels == nlevels) {
1850 ret = 0;
1851 goto out;
1852 } else if (nlevels < dn->dn_nlevels) {
1853 ret = SET_ERROR(EINVAL);
1854 goto out;
1855 }
1856
1857 dnode_set_nlevels_impl(dn, nlevels, tx);
1858
1859 out:
1860 rw_exit(&dn->dn_struct_rwlock);
1861 return (ret);
1862 }
1863
1864 /* read-holding callers must not rely on the lock being continuously held */
1865 void
dnode_new_blkid(dnode_t * dn,uint64_t blkid,dmu_tx_t * tx,boolean_t have_read,boolean_t force)1866 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1867 boolean_t force)
1868 {
1869 int epbs, new_nlevels;
1870 uint64_t sz;
1871
1872 ASSERT(blkid != DMU_BONUS_BLKID);
1873
1874 ASSERT(have_read ?
1875 RW_READ_HELD(&dn->dn_struct_rwlock) :
1876 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1877
1878 /*
1879 * if we have a read-lock, check to see if we need to do any work
1880 * before upgrading to a write-lock.
1881 */
1882 if (have_read) {
1883 if (blkid <= dn->dn_maxblkid)
1884 return;
1885
1886 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1887 rw_exit(&dn->dn_struct_rwlock);
1888 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1889 }
1890 }
1891
1892 /*
1893 * Raw sends (indicated by the force flag) require that we take the
1894 * given blkid even if the value is lower than the current value.
1895 */
1896 if (!force && blkid <= dn->dn_maxblkid)
1897 goto out;
1898
1899 /*
1900 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1901 * to indicate that this field is set. This allows us to set the
1902 * maxblkid to 0 on an existing object in dnode_sync().
1903 */
1904 dn->dn_maxblkid = blkid;
1905 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1906 blkid | DMU_NEXT_MAXBLKID_SET;
1907
1908 /*
1909 * Compute the number of levels necessary to support the new maxblkid.
1910 * Raw sends will ensure nlevels is set correctly for us.
1911 */
1912 new_nlevels = 1;
1913 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1914 for (sz = dn->dn_nblkptr;
1915 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1916 new_nlevels++;
1917
1918 if (!force) {
1919 if (new_nlevels > dn->dn_nlevels)
1920 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1921 } else {
1922 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1923 }
1924
1925 out:
1926 if (have_read)
1927 rw_downgrade(&dn->dn_struct_rwlock);
1928 }
1929
1930 static void
dnode_dirty_l1(dnode_t * dn,uint64_t l1blkid,dmu_tx_t * tx)1931 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1932 {
1933 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1934 if (db != NULL) {
1935 dmu_buf_will_dirty(&db->db, tx);
1936 dbuf_rele(db, FTAG);
1937 }
1938 }
1939
1940 /*
1941 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1942 * and end_blkid.
1943 */
1944 static void
dnode_dirty_l1range(dnode_t * dn,uint64_t start_blkid,uint64_t end_blkid,dmu_tx_t * tx)1945 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1946 dmu_tx_t *tx)
1947 {
1948 dmu_buf_impl_t db_search;
1949 dmu_buf_impl_t *db;
1950 avl_index_t where;
1951
1952 mutex_enter(&dn->dn_dbufs_mtx);
1953
1954 db_search.db_level = 1;
1955 db_search.db_blkid = start_blkid + 1;
1956 db_search.db_state = DB_SEARCH;
1957 for (;;) {
1958
1959 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1960 if (db == NULL)
1961 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1962
1963 if (db == NULL || db->db_level != 1 ||
1964 db->db_blkid >= end_blkid) {
1965 break;
1966 }
1967
1968 /*
1969 * Setup the next blkid we want to search for.
1970 */
1971 db_search.db_blkid = db->db_blkid + 1;
1972 ASSERT3U(db->db_blkid, >=, start_blkid);
1973
1974 /*
1975 * If the dbuf transitions to DB_EVICTING while we're trying
1976 * to dirty it, then we will be unable to discover it in
1977 * the dbuf hash table. This will result in a call to
1978 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1979 * lock. To avoid a deadlock, we drop the lock before
1980 * dirtying the level-1 dbuf.
1981 */
1982 mutex_exit(&dn->dn_dbufs_mtx);
1983 dnode_dirty_l1(dn, db->db_blkid, tx);
1984 mutex_enter(&dn->dn_dbufs_mtx);
1985 }
1986
1987 #ifdef ZFS_DEBUG
1988 /*
1989 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1990 */
1991 db_search.db_level = 1;
1992 db_search.db_blkid = start_blkid + 1;
1993 db_search.db_state = DB_SEARCH;
1994 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1995 if (db == NULL)
1996 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1997 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
1998 if (db->db_level != 1 || db->db_blkid >= end_blkid)
1999 break;
2000 ASSERT(db->db_dirtycnt > 0);
2001 }
2002 #endif
2003 mutex_exit(&dn->dn_dbufs_mtx);
2004 }
2005
2006 void
dnode_free_range(dnode_t * dn,uint64_t off,uint64_t len,dmu_tx_t * tx)2007 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
2008 {
2009 dmu_buf_impl_t *db;
2010 uint64_t blkoff, blkid, nblks;
2011 int blksz, blkshift, head, tail;
2012 int trunc = FALSE;
2013 int epbs;
2014
2015 blksz = dn->dn_datablksz;
2016 blkshift = dn->dn_datablkshift;
2017 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2018
2019 if (len == DMU_OBJECT_END) {
2020 len = UINT64_MAX - off;
2021 trunc = TRUE;
2022 }
2023
2024 /*
2025 * First, block align the region to free:
2026 */
2027 if (ISP2(blksz)) {
2028 head = P2NPHASE(off, blksz);
2029 blkoff = P2PHASE(off, blksz);
2030 if ((off >> blkshift) > dn->dn_maxblkid)
2031 return;
2032 } else {
2033 ASSERT(dn->dn_maxblkid == 0);
2034 if (off == 0 && len >= blksz) {
2035 /*
2036 * Freeing the whole block; fast-track this request.
2037 */
2038 blkid = 0;
2039 nblks = 1;
2040 if (dn->dn_nlevels > 1) {
2041 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2042 dnode_dirty_l1(dn, 0, tx);
2043 rw_exit(&dn->dn_struct_rwlock);
2044 }
2045 goto done;
2046 } else if (off >= blksz) {
2047 /* Freeing past end-of-data */
2048 return;
2049 } else {
2050 /* Freeing part of the block. */
2051 head = blksz - off;
2052 ASSERT3U(head, >, 0);
2053 }
2054 blkoff = off;
2055 }
2056 /* zero out any partial block data at the start of the range */
2057 if (head) {
2058 int res;
2059 ASSERT3U(blkoff + head, ==, blksz);
2060 if (len < head)
2061 head = len;
2062 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2063 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2064 TRUE, FALSE, FTAG, &db);
2065 rw_exit(&dn->dn_struct_rwlock);
2066 if (res == 0) {
2067 caddr_t data;
2068 boolean_t dirty;
2069
2070 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER,
2071 FTAG);
2072 /* don't dirty if it isn't on disk and isn't dirty */
2073 dirty = db->db_last_dirty ||
2074 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2075 dmu_buf_unlock_parent(db, dblt, FTAG);
2076 if (dirty) {
2077 dmu_buf_will_dirty(&db->db, tx);
2078 data = db->db.db_data;
2079 bzero(data + blkoff, head);
2080 }
2081 dbuf_rele(db, FTAG);
2082 }
2083 off += head;
2084 len -= head;
2085 }
2086
2087 /* If the range was less than one block, we're done */
2088 if (len == 0)
2089 return;
2090
2091 /* If the remaining range is past end of file, we're done */
2092 if ((off >> blkshift) > dn->dn_maxblkid)
2093 return;
2094
2095 ASSERT(ISP2(blksz));
2096 if (trunc)
2097 tail = 0;
2098 else
2099 tail = P2PHASE(len, blksz);
2100
2101 ASSERT0(P2PHASE(off, blksz));
2102 /* zero out any partial block data at the end of the range */
2103 if (tail) {
2104 int res;
2105 if (len < tail)
2106 tail = len;
2107 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2108 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2109 TRUE, FALSE, FTAG, &db);
2110 rw_exit(&dn->dn_struct_rwlock);
2111 if (res == 0) {
2112 boolean_t dirty;
2113 /* don't dirty if not on disk and not dirty */
2114 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER,
2115 FTAG);
2116 dirty = db->db_last_dirty ||
2117 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr));
2118 dmu_buf_unlock_parent(db, type, FTAG);
2119 if (dirty) {
2120 dmu_buf_will_dirty(&db->db, tx);
2121 bzero(db->db.db_data, tail);
2122 }
2123 dbuf_rele(db, FTAG);
2124 }
2125 len -= tail;
2126 }
2127
2128 /* If the range did not include a full block, we are done */
2129 if (len == 0)
2130 return;
2131
2132 ASSERT(IS_P2ALIGNED(off, blksz));
2133 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2134 blkid = off >> blkshift;
2135 nblks = len >> blkshift;
2136 if (trunc)
2137 nblks += 1;
2138
2139 /*
2140 * Dirty all the indirect blocks in this range. Note that only
2141 * the first and last indirect blocks can actually be written
2142 * (if they were partially freed) -- they must be dirtied, even if
2143 * they do not exist on disk yet. The interior blocks will
2144 * be freed by free_children(), so they will not actually be written.
2145 * Even though these interior blocks will not be written, we
2146 * dirty them for two reasons:
2147 *
2148 * - It ensures that the indirect blocks remain in memory until
2149 * syncing context. (They have already been prefetched by
2150 * dmu_tx_hold_free(), so we don't have to worry about reading
2151 * them serially here.)
2152 *
2153 * - The dirty space accounting will put pressure on the txg sync
2154 * mechanism to begin syncing, and to delay transactions if there
2155 * is a large amount of freeing. Even though these indirect
2156 * blocks will not be written, we could need to write the same
2157 * amount of space if we copy the freed BPs into deadlists.
2158 */
2159 if (dn->dn_nlevels > 1) {
2160 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2161 uint64_t first, last;
2162
2163 first = blkid >> epbs;
2164 dnode_dirty_l1(dn, first, tx);
2165 if (trunc)
2166 last = dn->dn_maxblkid >> epbs;
2167 else
2168 last = (blkid + nblks - 1) >> epbs;
2169 if (last != first)
2170 dnode_dirty_l1(dn, last, tx);
2171
2172 dnode_dirty_l1range(dn, first, last, tx);
2173
2174 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2175 SPA_BLKPTRSHIFT;
2176 for (uint64_t i = first + 1; i < last; i++) {
2177 /*
2178 * Set i to the blockid of the next non-hole
2179 * level-1 indirect block at or after i. Note
2180 * that dnode_next_offset() operates in terms of
2181 * level-0-equivalent bytes.
2182 */
2183 uint64_t ibyte = i << shift;
2184 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2185 &ibyte, 2, 1, 0);
2186 i = ibyte >> shift;
2187 if (i >= last)
2188 break;
2189
2190 /*
2191 * Normally we should not see an error, either
2192 * from dnode_next_offset() or dbuf_hold_level()
2193 * (except for ESRCH from dnode_next_offset).
2194 * If there is an i/o error, then when we read
2195 * this block in syncing context, it will use
2196 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2197 * to the "failmode" property. dnode_next_offset()
2198 * doesn't have a flag to indicate MUSTSUCCEED.
2199 */
2200 if (err != 0)
2201 break;
2202
2203 dnode_dirty_l1(dn, i, tx);
2204 }
2205 rw_exit(&dn->dn_struct_rwlock);
2206 }
2207
2208 done:
2209 /*
2210 * Add this range to the dnode range list.
2211 * We will finish up this free operation in the syncing phase.
2212 */
2213 mutex_enter(&dn->dn_mtx);
2214 int txgoff = tx->tx_txg & TXG_MASK;
2215 if (dn->dn_free_ranges[txgoff] == NULL) {
2216 dn->dn_free_ranges[txgoff] = range_tree_create(NULL,
2217 RANGE_SEG64, NULL, 0, 0);
2218 }
2219 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2220 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2221 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2222 blkid, nblks, tx->tx_txg);
2223 mutex_exit(&dn->dn_mtx);
2224
2225 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2226 dnode_setdirty(dn, tx);
2227 }
2228
2229 static boolean_t
dnode_spill_freed(dnode_t * dn)2230 dnode_spill_freed(dnode_t *dn)
2231 {
2232 int i;
2233
2234 mutex_enter(&dn->dn_mtx);
2235 for (i = 0; i < TXG_SIZE; i++) {
2236 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2237 break;
2238 }
2239 mutex_exit(&dn->dn_mtx);
2240 return (i < TXG_SIZE);
2241 }
2242
2243 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2244 uint64_t
dnode_block_freed(dnode_t * dn,uint64_t blkid)2245 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2246 {
2247 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2248 int i;
2249
2250 if (blkid == DMU_BONUS_BLKID)
2251 return (FALSE);
2252
2253 /*
2254 * If we're in the process of opening the pool, dp will not be
2255 * set yet, but there shouldn't be anything dirty.
2256 */
2257 if (dp == NULL)
2258 return (FALSE);
2259
2260 if (dn->dn_free_txg)
2261 return (TRUE);
2262
2263 if (blkid == DMU_SPILL_BLKID)
2264 return (dnode_spill_freed(dn));
2265
2266 mutex_enter(&dn->dn_mtx);
2267 for (i = 0; i < TXG_SIZE; i++) {
2268 if (dn->dn_free_ranges[i] != NULL &&
2269 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2270 break;
2271 }
2272 mutex_exit(&dn->dn_mtx);
2273 return (i < TXG_SIZE);
2274 }
2275
2276 /* call from syncing context when we actually write/free space for this dnode */
2277 void
dnode_diduse_space(dnode_t * dn,int64_t delta)2278 dnode_diduse_space(dnode_t *dn, int64_t delta)
2279 {
2280 uint64_t space;
2281 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2282 dn, dn->dn_phys,
2283 (u_longlong_t)dn->dn_phys->dn_used,
2284 (longlong_t)delta);
2285
2286 mutex_enter(&dn->dn_mtx);
2287 space = DN_USED_BYTES(dn->dn_phys);
2288 if (delta > 0) {
2289 ASSERT3U(space + delta, >=, space); /* no overflow */
2290 } else {
2291 ASSERT3U(space, >=, -delta); /* no underflow */
2292 }
2293 space += delta;
2294 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2295 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2296 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2297 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2298 } else {
2299 dn->dn_phys->dn_used = space;
2300 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2301 }
2302 mutex_exit(&dn->dn_mtx);
2303 }
2304
2305 /*
2306 * Scans a block at the indicated "level" looking for a hole or data,
2307 * depending on 'flags'.
2308 *
2309 * If level > 0, then we are scanning an indirect block looking at its
2310 * pointers. If level == 0, then we are looking at a block of dnodes.
2311 *
2312 * If we don't find what we are looking for in the block, we return ESRCH.
2313 * Otherwise, return with *offset pointing to the beginning (if searching
2314 * forwards) or end (if searching backwards) of the range covered by the
2315 * block pointer we matched on (or dnode).
2316 *
2317 * The basic search algorithm used below by dnode_next_offset() is to
2318 * use this function to search up the block tree (widen the search) until
2319 * we find something (i.e., we don't return ESRCH) and then search back
2320 * down the tree (narrow the search) until we reach our original search
2321 * level.
2322 */
2323 static int
dnode_next_offset_level(dnode_t * dn,int flags,uint64_t * offset,int lvl,uint64_t blkfill,uint64_t txg)2324 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2325 int lvl, uint64_t blkfill, uint64_t txg)
2326 {
2327 dmu_buf_impl_t *db = NULL;
2328 void *data = NULL;
2329 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2330 uint64_t epb = 1ULL << epbs;
2331 uint64_t minfill, maxfill;
2332 boolean_t hole;
2333 int i, inc, error, span;
2334
2335 dprintf("probing object %llu offset %llx level %d of %u\n",
2336 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
2337
2338 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2339
2340 hole = ((flags & DNODE_FIND_HOLE) != 0);
2341 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2342 ASSERT(txg == 0 || !hole);
2343
2344 if (lvl == dn->dn_phys->dn_nlevels) {
2345 error = 0;
2346 epb = dn->dn_phys->dn_nblkptr;
2347 data = dn->dn_phys->dn_blkptr;
2348 } else {
2349 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2350 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2351 if (error) {
2352 if (error != ENOENT)
2353 return (error);
2354 if (hole)
2355 return (0);
2356 /*
2357 * This can only happen when we are searching up
2358 * the block tree for data. We don't really need to
2359 * adjust the offset, as we will just end up looking
2360 * at the pointer to this block in its parent, and its
2361 * going to be unallocated, so we will skip over it.
2362 */
2363 return (SET_ERROR(ESRCH));
2364 }
2365 error = dbuf_read(db, NULL,
2366 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2367 if (error) {
2368 dbuf_rele(db, FTAG);
2369 return (error);
2370 }
2371 data = db->db.db_data;
2372 rw_enter(&db->db_rwlock, RW_READER);
2373 }
2374
2375 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2376 db->db_blkptr->blk_birth <= txg ||
2377 BP_IS_HOLE(db->db_blkptr))) {
2378 /*
2379 * This can only happen when we are searching up the tree
2380 * and these conditions mean that we need to keep climbing.
2381 */
2382 error = SET_ERROR(ESRCH);
2383 } else if (lvl == 0) {
2384 dnode_phys_t *dnp = data;
2385
2386 ASSERT(dn->dn_type == DMU_OT_DNODE);
2387 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2388
2389 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2390 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2391 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2392 break;
2393 }
2394
2395 if (i == blkfill)
2396 error = SET_ERROR(ESRCH);
2397
2398 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2399 (i << DNODE_SHIFT);
2400 } else {
2401 blkptr_t *bp = data;
2402 uint64_t start = *offset;
2403 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2404 minfill = 0;
2405 maxfill = blkfill << ((lvl - 1) * epbs);
2406
2407 if (hole)
2408 maxfill--;
2409 else
2410 minfill++;
2411
2412 *offset = *offset >> span;
2413 for (i = BF64_GET(*offset, 0, epbs);
2414 i >= 0 && i < epb; i += inc) {
2415 if (BP_GET_FILL(&bp[i]) >= minfill &&
2416 BP_GET_FILL(&bp[i]) <= maxfill &&
2417 (hole || bp[i].blk_birth > txg))
2418 break;
2419 if (inc > 0 || *offset > 0)
2420 *offset += inc;
2421 }
2422 *offset = *offset << span;
2423 if (inc < 0) {
2424 /* traversing backwards; position offset at the end */
2425 ASSERT3U(*offset, <=, start);
2426 *offset = MIN(*offset + (1ULL << span) - 1, start);
2427 } else if (*offset < start) {
2428 *offset = start;
2429 }
2430 if (i < 0 || i >= epb)
2431 error = SET_ERROR(ESRCH);
2432 }
2433
2434 if (db != NULL) {
2435 rw_exit(&db->db_rwlock);
2436 dbuf_rele(db, FTAG);
2437 }
2438
2439 return (error);
2440 }
2441
2442 /*
2443 * Find the next hole, data, or sparse region at or after *offset.
2444 * The value 'blkfill' tells us how many items we expect to find
2445 * in an L0 data block; this value is 1 for normal objects,
2446 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2447 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2448 *
2449 * Examples:
2450 *
2451 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2452 * Finds the next/previous hole/data in a file.
2453 * Used in dmu_offset_next().
2454 *
2455 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2456 * Finds the next free/allocated dnode an objset's meta-dnode.
2457 * Only finds objects that have new contents since txg (ie.
2458 * bonus buffer changes and content removal are ignored).
2459 * Used in dmu_object_next().
2460 *
2461 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2462 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2463 * Used in dmu_object_alloc().
2464 */
2465 int
dnode_next_offset(dnode_t * dn,int flags,uint64_t * offset,int minlvl,uint64_t blkfill,uint64_t txg)2466 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2467 int minlvl, uint64_t blkfill, uint64_t txg)
2468 {
2469 uint64_t initial_offset = *offset;
2470 int lvl, maxlvl;
2471 int error = 0;
2472
2473 if (!(flags & DNODE_FIND_HAVELOCK))
2474 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2475
2476 if (dn->dn_phys->dn_nlevels == 0) {
2477 error = SET_ERROR(ESRCH);
2478 goto out;
2479 }
2480
2481 if (dn->dn_datablkshift == 0) {
2482 if (*offset < dn->dn_datablksz) {
2483 if (flags & DNODE_FIND_HOLE)
2484 *offset = dn->dn_datablksz;
2485 } else {
2486 error = SET_ERROR(ESRCH);
2487 }
2488 goto out;
2489 }
2490
2491 maxlvl = dn->dn_phys->dn_nlevels;
2492
2493 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2494 error = dnode_next_offset_level(dn,
2495 flags, offset, lvl, blkfill, txg);
2496 if (error != ESRCH)
2497 break;
2498 }
2499
2500 while (error == 0 && --lvl >= minlvl) {
2501 error = dnode_next_offset_level(dn,
2502 flags, offset, lvl, blkfill, txg);
2503 }
2504
2505 /*
2506 * There's always a "virtual hole" at the end of the object, even
2507 * if all BP's which physically exist are non-holes.
2508 */
2509 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2510 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2511 error = 0;
2512 }
2513
2514 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2515 initial_offset < *offset : initial_offset > *offset))
2516 error = SET_ERROR(ESRCH);
2517 out:
2518 if (!(flags & DNODE_FIND_HAVELOCK))
2519 rw_exit(&dn->dn_struct_rwlock);
2520
2521 return (error);
2522 }
2523