1 /*-
2 * Copyright (c) 2007 Doug Rabson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 /*
28 * Stand-alone ZFS file reader.
29 */
30
31 #include <stdbool.h>
32 #include <sys/endian.h>
33 #include <sys/stat.h>
34 #include <sys/stdint.h>
35 #include <sys/list.h>
36 #include <sys/zfs_bootenv.h>
37 #include <machine/_inttypes.h>
38
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41
42 #ifdef HAS_ZSTD_ZFS
43 extern int zstd_init(void);
44 #endif
45
46 struct zfsmount {
47 char *path;
48 const spa_t *spa;
49 objset_phys_t objset;
50 uint64_t rootobj;
51 STAILQ_ENTRY(zfsmount) next;
52 };
53
54 typedef STAILQ_HEAD(zfs_mnt_list, zfsmount) zfs_mnt_list_t;
55 static zfs_mnt_list_t zfsmount = STAILQ_HEAD_INITIALIZER(zfsmount);
56
57 /*
58 * The indirect_child_t represents the vdev that we will read from, when we
59 * need to read all copies of the data (e.g. for scrub or reconstruction).
60 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
61 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
62 * ic_vdev is a child of the mirror.
63 */
64 typedef struct indirect_child {
65 void *ic_data;
66 vdev_t *ic_vdev;
67 } indirect_child_t;
68
69 /*
70 * The indirect_split_t represents one mapped segment of an i/o to the
71 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
72 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
73 * For split blocks, there will be several of these.
74 */
75 typedef struct indirect_split {
76 list_node_t is_node; /* link on iv_splits */
77
78 /*
79 * is_split_offset is the offset into the i/o.
80 * This is the sum of the previous splits' is_size's.
81 */
82 uint64_t is_split_offset;
83
84 vdev_t *is_vdev; /* top-level vdev */
85 uint64_t is_target_offset; /* offset on is_vdev */
86 uint64_t is_size;
87 int is_children; /* number of entries in is_child[] */
88
89 /*
90 * is_good_child is the child that we are currently using to
91 * attempt reconstruction.
92 */
93 int is_good_child;
94
95 indirect_child_t is_child[1]; /* variable-length */
96 } indirect_split_t;
97
98 /*
99 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
100 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
101 */
102 typedef struct indirect_vsd {
103 boolean_t iv_split_block;
104 boolean_t iv_reconstruct;
105
106 list_t iv_splits; /* list of indirect_split_t's */
107 } indirect_vsd_t;
108
109 /*
110 * List of supported read-incompatible ZFS features. Do not add here features
111 * marked as ZFEATURE_FLAG_READONLY_COMPAT, they are irrelevant for read-only!
112 */
113 static const char *features_for_read[] = {
114 "com.datto:bookmark_v2",
115 "com.datto:encryption",
116 "com.delphix:bookmark_written",
117 "com.delphix:device_removal",
118 "com.delphix:embedded_data",
119 "com.delphix:extensible_dataset",
120 "com.delphix:head_errlog",
121 "com.delphix:hole_birth",
122 "com.joyent:multi_vdev_crash_dump",
123 "com.klarasystems:vdev_zaps_v2",
124 "org.freebsd:zstd_compress",
125 "org.illumos:lz4_compress",
126 "org.illumos:sha512",
127 "org.illumos:skein",
128 "org.open-zfs:large_blocks",
129 "org.openzfs:blake3",
130 "org.zfsonlinux:large_dnode",
131 "com.klarasystems:dynamic_gang_header",
132 NULL
133 };
134
135 /*
136 * List of all pools, chained through spa_link.
137 */
138 static spa_list_t zfs_pools;
139
140 static const dnode_phys_t *dnode_cache_obj;
141 static uint64_t dnode_cache_bn;
142 static char *dnode_cache_buf;
143
144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
145 static int zio_read_impl(const spa_t *spa, const blkptr_t *bp, void *buf,
146 bool print);
147 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
150 const char *name, uint64_t integer_size, uint64_t num_integers,
151 void *value);
152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
153 dnode_phys_t *);
154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
155 size_t);
156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
157 size_t);
158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
160 uint64_t);
161 vdev_indirect_mapping_entry_phys_t *
162 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
163 uint64_t, uint64_t *);
164
165 static void
zfs_init(void)166 zfs_init(void)
167 {
168 STAILQ_INIT(&zfs_pools);
169
170 dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
171
172 zfs_init_crc();
173 #ifdef HAS_ZSTD_ZFS
174 zstd_init();
175 #endif
176 }
177
178 static int
nvlist_check_features_for_read(nvlist_t * nvl)179 nvlist_check_features_for_read(nvlist_t *nvl)
180 {
181 nvlist_t *features = NULL;
182 nvs_data_t *data;
183 nvp_header_t *nvp;
184 nv_string_t *nvp_name;
185 int rc;
186
187 rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
188 DATA_TYPE_NVLIST, NULL, &features, NULL);
189 switch (rc) {
190 case 0:
191 break; /* Continue with checks */
192
193 case ENOENT:
194 return (0); /* All features are disabled */
195
196 default:
197 return (rc); /* Error while reading nvlist */
198 }
199
200 data = (nvs_data_t *)features->nv_data;
201 nvp = &data->nvl_pair; /* first pair in nvlist */
202
203 while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
204 int i, found;
205
206 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
207 found = 0;
208
209 for (i = 0; features_for_read[i] != NULL; i++) {
210 if (memcmp(nvp_name->nv_data, features_for_read[i],
211 nvp_name->nv_size) == 0) {
212 found = 1;
213 break;
214 }
215 }
216
217 if (!found) {
218 printf("ZFS: unsupported feature: %.*s\n",
219 nvp_name->nv_size, nvp_name->nv_data);
220 rc = EIO;
221 }
222 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
223 }
224 nvlist_destroy(features);
225
226 return (rc);
227 }
228
229 static int
vdev_read_phys(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t size)230 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
231 off_t offset, size_t size)
232 {
233 size_t psize;
234 int rc;
235
236 if (vdev->v_phys_read == NULL)
237 return (ENOTSUP);
238
239 if (bp) {
240 psize = BP_GET_PSIZE(bp);
241 } else {
242 psize = size;
243 }
244
245 rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
246 if (rc == 0) {
247 if (bp != NULL)
248 rc = zio_checksum_verify(vdev->v_spa, bp, buf);
249 }
250
251 return (rc);
252 }
253
254 static int
vdev_write_phys(vdev_t * vdev,void * buf,off_t offset,size_t size)255 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
256 {
257 if (vdev->v_phys_write == NULL)
258 return (ENOTSUP);
259
260 return (vdev->v_phys_write(vdev, offset, buf, size));
261 }
262
263 typedef struct remap_segment {
264 vdev_t *rs_vd;
265 uint64_t rs_offset;
266 uint64_t rs_asize;
267 uint64_t rs_split_offset;
268 list_node_t rs_node;
269 } remap_segment_t;
270
271 static remap_segment_t *
rs_alloc(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t split_offset)272 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
273 {
274 remap_segment_t *rs = malloc(sizeof (remap_segment_t));
275
276 if (rs != NULL) {
277 rs->rs_vd = vd;
278 rs->rs_offset = offset;
279 rs->rs_asize = asize;
280 rs->rs_split_offset = split_offset;
281 }
282
283 return (rs);
284 }
285
286 vdev_indirect_mapping_t *
vdev_indirect_mapping_open(spa_t * spa,objset_phys_t * os,uint64_t mapping_object)287 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
288 uint64_t mapping_object)
289 {
290 vdev_indirect_mapping_t *vim;
291 vdev_indirect_mapping_phys_t *vim_phys;
292 int rc;
293
294 vim = calloc(1, sizeof (*vim));
295 if (vim == NULL)
296 return (NULL);
297
298 vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
299 if (vim->vim_dn == NULL) {
300 free(vim);
301 return (NULL);
302 }
303
304 rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
305 if (rc != 0) {
306 free(vim->vim_dn);
307 free(vim);
308 return (NULL);
309 }
310
311 vim->vim_spa = spa;
312 vim->vim_phys = malloc(sizeof (*vim->vim_phys));
313 if (vim->vim_phys == NULL) {
314 free(vim->vim_dn);
315 free(vim);
316 return (NULL);
317 }
318
319 vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
320 *vim->vim_phys = *vim_phys;
321
322 vim->vim_objset = os;
323 vim->vim_object = mapping_object;
324 vim->vim_entries = NULL;
325
326 vim->vim_havecounts =
327 (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
328
329 return (vim);
330 }
331
332 /*
333 * Compare an offset with an indirect mapping entry; there are three
334 * possible scenarios:
335 *
336 * 1. The offset is "less than" the mapping entry; meaning the
337 * offset is less than the source offset of the mapping entry. In
338 * this case, there is no overlap between the offset and the
339 * mapping entry and -1 will be returned.
340 *
341 * 2. The offset is "greater than" the mapping entry; meaning the
342 * offset is greater than the mapping entry's source offset plus
343 * the entry's size. In this case, there is no overlap between
344 * the offset and the mapping entry and 1 will be returned.
345 *
346 * NOTE: If the offset is actually equal to the entry's offset
347 * plus size, this is considered to be "greater" than the entry,
348 * and this case applies (i.e. 1 will be returned). Thus, the
349 * entry's "range" can be considered to be inclusive at its
350 * start, but exclusive at its end: e.g. [src, src + size).
351 *
352 * 3. The last case to consider is if the offset actually falls
353 * within the mapping entry's range. If this is the case, the
354 * offset is considered to be "equal to" the mapping entry and
355 * 0 will be returned.
356 *
357 * NOTE: If the offset is equal to the entry's source offset,
358 * this case applies and 0 will be returned. If the offset is
359 * equal to the entry's source plus its size, this case does
360 * *not* apply (see "NOTE" above for scenario 2), and 1 will be
361 * returned.
362 */
363 static int
dva_mapping_overlap_compare(const void * v_key,const void * v_array_elem)364 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
365 {
366 const uint64_t *key = v_key;
367 const vdev_indirect_mapping_entry_phys_t *array_elem =
368 v_array_elem;
369 uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
370
371 if (*key < src_offset) {
372 return (-1);
373 } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
374 return (0);
375 } else {
376 return (1);
377 }
378 }
379
380 /*
381 * Return array entry.
382 */
383 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry(vdev_indirect_mapping_t * vim,uint64_t index)384 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
385 {
386 uint64_t size;
387 off_t offset = 0;
388 int rc;
389
390 if (vim->vim_phys->vimp_num_entries == 0)
391 return (NULL);
392
393 if (vim->vim_entries == NULL) {
394 uint64_t bsize;
395
396 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
397 size = vim->vim_phys->vimp_num_entries *
398 sizeof (*vim->vim_entries);
399 if (size > bsize) {
400 size = bsize / sizeof (*vim->vim_entries);
401 size *= sizeof (*vim->vim_entries);
402 }
403 vim->vim_entries = malloc(size);
404 if (vim->vim_entries == NULL)
405 return (NULL);
406 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
407 offset = index * sizeof (*vim->vim_entries);
408 }
409
410 /* We have data in vim_entries */
411 if (offset == 0) {
412 if (index >= vim->vim_entry_offset &&
413 index <= vim->vim_entry_offset + vim->vim_num_entries) {
414 index -= vim->vim_entry_offset;
415 return (&vim->vim_entries[index]);
416 }
417 offset = index * sizeof (*vim->vim_entries);
418 }
419
420 vim->vim_entry_offset = index;
421 size = vim->vim_num_entries * sizeof (*vim->vim_entries);
422 rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
423 size);
424 if (rc != 0) {
425 /* Read error, invalidate vim_entries. */
426 free(vim->vim_entries);
427 vim->vim_entries = NULL;
428 return (NULL);
429 }
430 index -= vim->vim_entry_offset;
431 return (&vim->vim_entries[index]);
432 }
433
434 /*
435 * Returns the mapping entry for the given offset.
436 *
437 * It's possible that the given offset will not be in the mapping table
438 * (i.e. no mapping entries contain this offset), in which case, the
439 * return value depends on the "next_if_missing" parameter.
440 *
441 * If the offset is not found in the table and "next_if_missing" is
442 * B_FALSE, then NULL will always be returned. The behavior is intended
443 * to allow consumers to get the entry corresponding to the offset
444 * parameter, iff the offset overlaps with an entry in the table.
445 *
446 * If the offset is not found in the table and "next_if_missing" is
447 * B_TRUE, then the entry nearest to the given offset will be returned,
448 * such that the entry's source offset is greater than the offset
449 * passed in (i.e. the "next" mapping entry in the table is returned, if
450 * the offset is missing from the table). If there are no entries whose
451 * source offset is greater than the passed in offset, NULL is returned.
452 */
453 static vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t * vim,uint64_t offset)454 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
455 uint64_t offset)
456 {
457 ASSERT(vim->vim_phys->vimp_num_entries > 0);
458
459 vdev_indirect_mapping_entry_phys_t *entry;
460
461 uint64_t last = vim->vim_phys->vimp_num_entries - 1;
462 uint64_t base = 0;
463
464 /*
465 * We don't define these inside of the while loop because we use
466 * their value in the case that offset isn't in the mapping.
467 */
468 uint64_t mid;
469 int result;
470
471 while (last >= base) {
472 mid = base + ((last - base) >> 1);
473
474 entry = vdev_indirect_mapping_entry(vim, mid);
475 if (entry == NULL)
476 break;
477 result = dva_mapping_overlap_compare(&offset, entry);
478
479 if (result == 0) {
480 break;
481 } else if (result < 0) {
482 last = mid - 1;
483 } else {
484 base = mid + 1;
485 }
486 }
487 return (entry);
488 }
489
490 /*
491 * Given an indirect vdev and an extent on that vdev, it duplicates the
492 * physical entries of the indirect mapping that correspond to the extent
493 * to a new array and returns a pointer to it. In addition, copied_entries
494 * is populated with the number of mapping entries that were duplicated.
495 *
496 * Finally, since we are doing an allocation, it is up to the caller to
497 * free the array allocated in this function.
498 */
499 vdev_indirect_mapping_entry_phys_t *
vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t * vd,uint64_t offset,uint64_t asize,uint64_t * copied_entries)500 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
501 uint64_t asize, uint64_t *copied_entries)
502 {
503 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
504 vdev_indirect_mapping_t *vim = vd->v_mapping;
505 uint64_t entries = 0;
506
507 vdev_indirect_mapping_entry_phys_t *first_mapping =
508 vdev_indirect_mapping_entry_for_offset(vim, offset);
509 ASSERT3P(first_mapping, !=, NULL);
510
511 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
512 while (asize > 0) {
513 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
514 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
515 uint64_t inner_size = MIN(asize, size - inner_offset);
516
517 offset += inner_size;
518 asize -= inner_size;
519 entries++;
520 m++;
521 }
522
523 size_t copy_length = entries * sizeof (*first_mapping);
524 duplicate_mappings = malloc(copy_length);
525 if (duplicate_mappings != NULL)
526 bcopy(first_mapping, duplicate_mappings, copy_length);
527 else
528 entries = 0;
529
530 *copied_entries = entries;
531
532 return (duplicate_mappings);
533 }
534
535 static vdev_t *
vdev_lookup_top(const spa_t * spa,uint64_t vdev)536 vdev_lookup_top(const spa_t *spa, uint64_t vdev)
537 {
538 vdev_t *rvd;
539 vdev_list_t *vlist;
540
541 vlist = &spa->spa_root_vdev->v_children;
542 STAILQ_FOREACH(rvd, vlist, v_childlink)
543 if (rvd->v_id == vdev)
544 break;
545
546 return (rvd);
547 }
548
549 /*
550 * This is a callback for vdev_indirect_remap() which allocates an
551 * indirect_split_t for each split segment and adds it to iv_splits.
552 */
553 static void
vdev_indirect_gather_splits(uint64_t split_offset,vdev_t * vd,uint64_t offset,uint64_t size,void * arg)554 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
555 uint64_t size, void *arg)
556 {
557 int n = 1;
558 zio_t *zio = arg;
559 indirect_vsd_t *iv = zio->io_vsd;
560
561 if (vd->v_read == vdev_indirect_read)
562 return;
563
564 if (vd->v_read == vdev_mirror_read)
565 n = vd->v_nchildren;
566
567 indirect_split_t *is =
568 malloc(offsetof(indirect_split_t, is_child[n]));
569 if (is == NULL) {
570 zio->io_error = ENOMEM;
571 return;
572 }
573 bzero(is, offsetof(indirect_split_t, is_child[n]));
574
575 is->is_children = n;
576 is->is_size = size;
577 is->is_split_offset = split_offset;
578 is->is_target_offset = offset;
579 is->is_vdev = vd;
580
581 /*
582 * Note that we only consider multiple copies of the data for
583 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
584 * though they use the same ops as mirror, because there's only one
585 * "good" copy under the replacing/spare.
586 */
587 if (vd->v_read == vdev_mirror_read) {
588 int i = 0;
589 vdev_t *kid;
590
591 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
592 is->is_child[i++].ic_vdev = kid;
593 }
594 } else {
595 is->is_child[0].ic_vdev = vd;
596 }
597
598 list_insert_tail(&iv->iv_splits, is);
599 }
600
601 static void
vdev_indirect_remap(vdev_t * vd,uint64_t offset,uint64_t asize,void * arg)602 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
603 {
604 list_t stack;
605 spa_t *spa = vd->v_spa;
606 zio_t *zio = arg;
607 remap_segment_t *rs;
608
609 list_create(&stack, sizeof (remap_segment_t),
610 offsetof(remap_segment_t, rs_node));
611
612 rs = rs_alloc(vd, offset, asize, 0);
613 if (rs == NULL) {
614 printf("vdev_indirect_remap: out of memory.\n");
615 zio->io_error = ENOMEM;
616 }
617 for (; rs != NULL; rs = list_remove_head(&stack)) {
618 vdev_t *v = rs->rs_vd;
619 uint64_t num_entries = 0;
620 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
621 vdev_indirect_mapping_entry_phys_t *mapping =
622 vdev_indirect_mapping_duplicate_adjacent_entries(v,
623 rs->rs_offset, rs->rs_asize, &num_entries);
624
625 if (num_entries == 0)
626 zio->io_error = ENOMEM;
627
628 for (uint64_t i = 0; i < num_entries; i++) {
629 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
630 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
631 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
632 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
633 uint64_t inner_offset = rs->rs_offset -
634 DVA_MAPPING_GET_SRC_OFFSET(m);
635 uint64_t inner_size =
636 MIN(rs->rs_asize, size - inner_offset);
637 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
638
639 if (dst_v->v_read == vdev_indirect_read) {
640 remap_segment_t *o;
641
642 o = rs_alloc(dst_v, dst_offset + inner_offset,
643 inner_size, rs->rs_split_offset);
644 if (o == NULL) {
645 printf("vdev_indirect_remap: "
646 "out of memory.\n");
647 zio->io_error = ENOMEM;
648 break;
649 }
650
651 list_insert_head(&stack, o);
652 }
653 vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
654 dst_offset + inner_offset, inner_size, arg);
655
656 /*
657 * vdev_indirect_gather_splits can have memory
658 * allocation error, we can not recover from it.
659 */
660 if (zio->io_error != 0)
661 break;
662 rs->rs_offset += inner_size;
663 rs->rs_asize -= inner_size;
664 rs->rs_split_offset += inner_size;
665 }
666
667 free(mapping);
668 free(rs);
669 if (zio->io_error != 0)
670 break;
671 }
672
673 list_destroy(&stack);
674 }
675
676 static void
vdev_indirect_map_free(zio_t * zio)677 vdev_indirect_map_free(zio_t *zio)
678 {
679 indirect_vsd_t *iv = zio->io_vsd;
680 indirect_split_t *is;
681
682 while ((is = list_head(&iv->iv_splits)) != NULL) {
683 for (int c = 0; c < is->is_children; c++) {
684 indirect_child_t *ic = &is->is_child[c];
685 free(ic->ic_data);
686 }
687 list_remove(&iv->iv_splits, is);
688 free(is);
689 }
690 free(iv);
691 }
692
693 static int
vdev_indirect_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)694 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
695 off_t offset, size_t bytes)
696 {
697 zio_t zio;
698 spa_t *spa = vdev->v_spa;
699 indirect_vsd_t *iv;
700 indirect_split_t *first;
701 int rc = EIO;
702
703 iv = calloc(1, sizeof(*iv));
704 if (iv == NULL)
705 return (ENOMEM);
706
707 list_create(&iv->iv_splits,
708 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
709
710 bzero(&zio, sizeof(zio));
711 zio.io_spa = spa;
712 zio.io_bp = (blkptr_t *)bp;
713 zio.io_data = buf;
714 zio.io_size = bytes;
715 zio.io_offset = offset;
716 zio.io_vd = vdev;
717 zio.io_vsd = iv;
718
719 if (vdev->v_mapping == NULL) {
720 vdev_indirect_config_t *vic;
721
722 vic = &vdev->vdev_indirect_config;
723 vdev->v_mapping = vdev_indirect_mapping_open(spa,
724 spa->spa_mos, vic->vic_mapping_object);
725 }
726
727 vdev_indirect_remap(vdev, offset, bytes, &zio);
728 if (zio.io_error != 0)
729 return (zio.io_error);
730
731 first = list_head(&iv->iv_splits);
732 if (first->is_size == zio.io_size) {
733 /*
734 * This is not a split block; we are pointing to the entire
735 * data, which will checksum the same as the original data.
736 * Pass the BP down so that the child i/o can verify the
737 * checksum, and try a different location if available
738 * (e.g. on a mirror).
739 *
740 * While this special case could be handled the same as the
741 * general (split block) case, doing it this way ensures
742 * that the vast majority of blocks on indirect vdevs
743 * (which are not split) are handled identically to blocks
744 * on non-indirect vdevs. This allows us to be less strict
745 * about performance in the general (but rare) case.
746 */
747 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
748 zio.io_data, first->is_target_offset, bytes);
749 } else {
750 iv->iv_split_block = B_TRUE;
751 /*
752 * Read one copy of each split segment, from the
753 * top-level vdev. Since we don't know the
754 * checksum of each split individually, the child
755 * zio can't ensure that we get the right data.
756 * E.g. if it's a mirror, it will just read from a
757 * random (healthy) leaf vdev. We have to verify
758 * the checksum in vdev_indirect_io_done().
759 */
760 for (indirect_split_t *is = list_head(&iv->iv_splits);
761 is != NULL; is = list_next(&iv->iv_splits, is)) {
762 char *ptr = zio.io_data;
763
764 rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
765 ptr + is->is_split_offset, is->is_target_offset,
766 is->is_size);
767 }
768 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
769 rc = ECKSUM;
770 else
771 rc = 0;
772 }
773
774 vdev_indirect_map_free(&zio);
775 if (rc == 0)
776 rc = zio.io_error;
777
778 return (rc);
779 }
780
781 static int
vdev_disk_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)782 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
783 off_t offset, size_t bytes)
784 {
785
786 return (vdev_read_phys(vdev, bp, buf,
787 offset + VDEV_LABEL_START_SIZE, bytes));
788 }
789
790 static int
vdev_missing_read(vdev_t * vdev __unused,const blkptr_t * bp __unused,void * buf __unused,off_t offset __unused,size_t bytes __unused)791 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
792 void *buf __unused, off_t offset __unused, size_t bytes __unused)
793 {
794
795 return (ENOTSUP);
796 }
797
798 static int
vdev_mirror_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)799 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
800 off_t offset, size_t bytes)
801 {
802 vdev_t *kid;
803 int rc;
804
805 rc = EIO;
806 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
807 if (kid->v_state != VDEV_STATE_HEALTHY)
808 continue;
809 rc = kid->v_read(kid, bp, buf, offset, bytes);
810 if (!rc)
811 return (0);
812 }
813
814 return (rc);
815 }
816
817 static int
vdev_replacing_read(vdev_t * vdev,const blkptr_t * bp,void * buf,off_t offset,size_t bytes)818 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
819 off_t offset, size_t bytes)
820 {
821 vdev_t *kid;
822
823 /*
824 * Here we should have two kids:
825 * First one which is the one we are replacing and we can trust
826 * only this one to have valid data, but it might not be present.
827 * Second one is that one we are replacing with. It is most likely
828 * healthy, but we can't trust it has needed data, so we won't use it.
829 */
830 kid = STAILQ_FIRST(&vdev->v_children);
831 if (kid == NULL)
832 return (EIO);
833 if (kid->v_state != VDEV_STATE_HEALTHY)
834 return (EIO);
835 return (kid->v_read(kid, bp, buf, offset, bytes));
836 }
837
838 /*
839 * List of vdevs that were fully initialized from their own label, but later a
840 * newer label was found that obsoleted the stale label, freeing its
841 * configuration tree. We keep those vdevs around, since a new configuration
842 * may include them.
843 */
844 static vdev_list_t orphans = STAILQ_HEAD_INITIALIZER(orphans);
845
846 static vdev_t *
vdev_find(vdev_list_t * list,uint64_t guid)847 vdev_find(vdev_list_t *list, uint64_t guid)
848 {
849 vdev_t *vdev, *safe;
850
851 STAILQ_FOREACH_SAFE(vdev, list, v_childlink, safe) {
852 if (vdev->v_guid == guid)
853 return (vdev);
854 if ((vdev = vdev_find(&vdev->v_children, guid)) != NULL)
855 return (vdev);
856 }
857
858 return (NULL);
859 }
860
861 static vdev_t *
vdev_create(uint64_t guid,vdev_read_t * _read)862 vdev_create(uint64_t guid, vdev_read_t *_read)
863 {
864 vdev_t *vdev;
865 vdev_indirect_config_t *vic;
866
867 if ((vdev = vdev_find(&orphans, guid))) {
868 STAILQ_REMOVE(&orphans, vdev, vdev, v_childlink);
869 return (vdev);
870 }
871
872 vdev = calloc(1, sizeof(vdev_t));
873 if (vdev != NULL) {
874 STAILQ_INIT(&vdev->v_children);
875 vdev->v_guid = guid;
876 vdev->v_read = _read;
877
878 /*
879 * root vdev has no read function, we use this fact to
880 * skip setting up data we do not need for root vdev.
881 * We only point root vdev from spa.
882 */
883 if (_read != NULL) {
884 vic = &vdev->vdev_indirect_config;
885 vic->vic_prev_indirect_vdev = UINT64_MAX;
886 }
887 }
888
889 return (vdev);
890 }
891
892 static void
vdev_set_initial_state(vdev_t * vdev,const nvlist_t * nvlist)893 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
894 {
895 uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
896 uint64_t is_log;
897
898 is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
899 is_log = 0;
900 (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
901 &is_offline, NULL);
902 (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
903 &is_removed, NULL);
904 (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
905 &is_faulted, NULL);
906 (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
907 NULL, &is_degraded, NULL);
908 (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
909 NULL, &isnt_present, NULL);
910 (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
911 &is_log, NULL);
912
913 if (is_offline != 0)
914 vdev->v_state = VDEV_STATE_OFFLINE;
915 else if (is_removed != 0)
916 vdev->v_state = VDEV_STATE_REMOVED;
917 else if (is_faulted != 0)
918 vdev->v_state = VDEV_STATE_FAULTED;
919 else if (is_degraded != 0)
920 vdev->v_state = VDEV_STATE_DEGRADED;
921 else if (isnt_present != 0)
922 vdev->v_state = VDEV_STATE_CANT_OPEN;
923
924 vdev->v_islog = is_log != 0;
925 }
926
927 static int
vdev_init(uint64_t guid,const nvlist_t * nvlist,vdev_t ** vdevp)928 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
929 {
930 uint64_t id, ashift, asize, nparity;
931 const char *path;
932 const char *type;
933 int len, pathlen;
934 char *name;
935 vdev_t *vdev;
936
937 if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
938 NULL) ||
939 nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
940 &type, &len)) {
941 return (ENOENT);
942 }
943
944 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
945 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
946 #ifdef ZFS_TEST
947 memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
948 #endif
949 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
950 memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
951 memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
952 memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
953 printf("ZFS: can only boot from disk, mirror, raidz1, "
954 "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
955 return (EIO);
956 }
957
958 if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
959 vdev = vdev_create(guid, vdev_mirror_read);
960 else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
961 vdev = vdev_create(guid, vdev_raidz_read);
962 else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
963 vdev = vdev_create(guid, vdev_replacing_read);
964 else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
965 vdev_indirect_config_t *vic;
966
967 vdev = vdev_create(guid, vdev_indirect_read);
968 if (vdev != NULL) {
969 vdev->v_state = VDEV_STATE_HEALTHY;
970 vic = &vdev->vdev_indirect_config;
971
972 nvlist_find(nvlist,
973 ZPOOL_CONFIG_INDIRECT_OBJECT,
974 DATA_TYPE_UINT64,
975 NULL, &vic->vic_mapping_object, NULL);
976 nvlist_find(nvlist,
977 ZPOOL_CONFIG_INDIRECT_BIRTHS,
978 DATA_TYPE_UINT64,
979 NULL, &vic->vic_births_object, NULL);
980 nvlist_find(nvlist,
981 ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
982 DATA_TYPE_UINT64,
983 NULL, &vic->vic_prev_indirect_vdev, NULL);
984 }
985 } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
986 vdev = vdev_create(guid, vdev_missing_read);
987 } else {
988 vdev = vdev_create(guid, vdev_disk_read);
989 }
990
991 if (vdev == NULL)
992 return (ENOMEM);
993
994 vdev_set_initial_state(vdev, nvlist);
995 vdev->v_id = id;
996 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
997 DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
998 vdev->v_ashift = ashift;
999
1000 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1001 DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
1002 vdev->v_psize = asize +
1003 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1004 }
1005
1006 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1007 DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
1008 vdev->v_nparity = nparity;
1009
1010 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1011 DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1012 char prefix[] = "/dev/";
1013
1014 len = strlen(prefix);
1015 if (len < pathlen && memcmp(path, prefix, len) == 0) {
1016 path += len;
1017 pathlen -= len;
1018 }
1019 name = malloc(pathlen + 1);
1020 bcopy(path, name, pathlen);
1021 name[pathlen] = '\0';
1022 vdev->v_name = name;
1023 } else {
1024 name = NULL;
1025 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1026 if (vdev->v_nparity < 1 ||
1027 vdev->v_nparity > 3) {
1028 printf("ZFS: invalid raidz parity: %d\n",
1029 vdev->v_nparity);
1030 return (EIO);
1031 }
1032 (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1033 vdev->v_nparity, id);
1034 } else {
1035 (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1036 }
1037 vdev->v_name = name;
1038 }
1039 *vdevp = vdev;
1040 return (0);
1041 }
1042
1043 /*
1044 * Find slot for vdev. We return either NULL to signal to use
1045 * STAILQ_INSERT_HEAD, or we return link element to be used with
1046 * STAILQ_INSERT_AFTER.
1047 */
1048 static vdev_t *
vdev_find_previous(vdev_t * top_vdev,uint64_t id)1049 vdev_find_previous(vdev_t *top_vdev, uint64_t id)
1050 {
1051 vdev_t *v, *previous;
1052
1053 previous = NULL;
1054 STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1055 if (v->v_id > id)
1056 return (previous);
1057
1058 if (v->v_id == id)
1059 return (v);
1060
1061 if (v->v_id < id)
1062 previous = v;
1063 }
1064 return (previous);
1065 }
1066
1067 static size_t
vdev_child_count(vdev_t * vdev)1068 vdev_child_count(vdev_t *vdev)
1069 {
1070 vdev_t *v;
1071 size_t count;
1072
1073 count = 0;
1074 STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1075 count++;
1076 }
1077 return (count);
1078 }
1079
1080 /*
1081 * Insert vdev into top_vdev children list. List is ordered by v_id.
1082 */
1083 static vdev_t *
vdev_insert(vdev_t * top_vdev,vdev_t * vdev)1084 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1085 {
1086 vdev_t *previous;
1087 size_t count;
1088
1089 /*
1090 * The top level vdev can appear in random order, depending how
1091 * the firmware is presenting the disk devices.
1092 * However, we will insert vdev to create list ordered by v_id,
1093 * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1094 * as STAILQ does not have insert before.
1095 */
1096 previous = vdev_find_previous(top_vdev, vdev->v_id);
1097
1098 if (previous == NULL) {
1099 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1100 } else if (previous->v_id == vdev->v_id) {
1101 /*
1102 * This vdev was configured from label config,
1103 * do not insert duplicate.
1104 */
1105 free(vdev);
1106 return (previous);
1107 } else {
1108 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1109 v_childlink);
1110 }
1111
1112 count = vdev_child_count(top_vdev);
1113 if (top_vdev->v_nchildren < count)
1114 top_vdev->v_nchildren = count;
1115 return (vdev);
1116 }
1117
1118 static int
vdev_from_nvlist(spa_t * spa,uint64_t top_guid,uint64_t label_guid,uint64_t txg,const nvlist_t * nvlist)1119 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, uint64_t label_guid,
1120 uint64_t txg, const nvlist_t *nvlist)
1121 {
1122 vdev_t *top_vdev, *vdev;
1123 nvlist_t **kids = NULL;
1124 int rc, nkids;
1125
1126 /* Get top vdev. */
1127 top_vdev = vdev_find(&spa->spa_root_vdev->v_children, top_guid);
1128 if (top_vdev == NULL) {
1129 rc = vdev_init(top_guid, nvlist, &top_vdev);
1130 if (rc != 0)
1131 return (rc);
1132 top_vdev->v_spa = spa;
1133 top_vdev->v_top = top_vdev;
1134 top_vdev->v_label = label_guid;
1135 top_vdev->v_txg = txg;
1136 (void )vdev_insert(spa->spa_root_vdev, top_vdev);
1137 }
1138
1139 /* Add children if there are any. */
1140 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1141 &nkids, &kids, NULL);
1142 if (rc == 0) {
1143 for (int i = 0; i < nkids; i++) {
1144 uint64_t guid;
1145
1146 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1147 DATA_TYPE_UINT64, NULL, &guid, NULL);
1148 if (rc != 0)
1149 goto done;
1150
1151 rc = vdev_init(guid, kids[i], &vdev);
1152 if (rc != 0)
1153 goto done;
1154
1155 vdev->v_spa = spa;
1156 vdev->v_top = top_vdev;
1157 vdev = vdev_insert(top_vdev, vdev);
1158 }
1159 } else {
1160 /*
1161 * When there are no children, nvlist_find() does return
1162 * error, reset it because leaf devices have no children.
1163 */
1164 rc = 0;
1165 }
1166 done:
1167 if (kids != NULL) {
1168 for (int i = 0; i < nkids; i++)
1169 nvlist_destroy(kids[i]);
1170 free(kids);
1171 }
1172
1173 return (rc);
1174 }
1175
1176 static void
vdev_set_state(vdev_t * vdev)1177 vdev_set_state(vdev_t *vdev)
1178 {
1179 vdev_t *kid;
1180 int good_kids;
1181 int bad_kids;
1182
1183 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1184 vdev_set_state(kid);
1185 }
1186
1187 /*
1188 * A mirror or raidz is healthy if all its kids are healthy. A
1189 * mirror is degraded if any of its kids is healthy; a raidz
1190 * is degraded if at most nparity kids are offline.
1191 */
1192 if (STAILQ_FIRST(&vdev->v_children)) {
1193 good_kids = 0;
1194 bad_kids = 0;
1195 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1196 if (kid->v_state == VDEV_STATE_HEALTHY)
1197 good_kids++;
1198 else
1199 bad_kids++;
1200 }
1201 if (bad_kids == 0) {
1202 vdev->v_state = VDEV_STATE_HEALTHY;
1203 } else {
1204 if (vdev->v_read == vdev_mirror_read) {
1205 if (good_kids) {
1206 vdev->v_state = VDEV_STATE_DEGRADED;
1207 } else {
1208 vdev->v_state = VDEV_STATE_OFFLINE;
1209 }
1210 } else if (vdev->v_read == vdev_raidz_read) {
1211 if (bad_kids > vdev->v_nparity) {
1212 vdev->v_state = VDEV_STATE_OFFLINE;
1213 } else {
1214 vdev->v_state = VDEV_STATE_DEGRADED;
1215 }
1216 }
1217 }
1218 }
1219 }
1220
1221 static int
vdev_update_from_nvlist(vdev_t * root,uint64_t top_guid,const nvlist_t * nvlist)1222 vdev_update_from_nvlist(vdev_t *root, uint64_t top_guid, const nvlist_t *nvlist)
1223 {
1224 vdev_t *vdev;
1225 nvlist_t **kids = NULL;
1226 int rc, nkids;
1227
1228 /* Update top vdev. */
1229 vdev = vdev_find(&root->v_children, top_guid);
1230 if (vdev != NULL)
1231 vdev_set_initial_state(vdev, nvlist);
1232
1233 /* Update children if there are any. */
1234 rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1235 &nkids, &kids, NULL);
1236 if (rc == 0) {
1237 for (int i = 0; i < nkids; i++) {
1238 uint64_t guid;
1239
1240 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1241 DATA_TYPE_UINT64, NULL, &guid, NULL);
1242 if (rc != 0)
1243 break;
1244
1245 vdev = vdev_find(&root->v_children, guid);
1246 if (vdev != NULL)
1247 vdev_set_initial_state(vdev, kids[i]);
1248 }
1249 } else {
1250 rc = 0;
1251 }
1252 if (kids != NULL) {
1253 for (int i = 0; i < nkids; i++)
1254 nvlist_destroy(kids[i]);
1255 free(kids);
1256 }
1257
1258 return (rc);
1259 }
1260
1261 static void
vdev_free(struct vdev * vdev)1262 vdev_free(struct vdev *vdev)
1263 {
1264 struct vdev *kid, *safe;
1265
1266 STAILQ_FOREACH_SAFE(kid, &vdev->v_children, v_childlink, safe)
1267 vdev_free(kid);
1268 if (vdev->v_phys_read != NULL)
1269 STAILQ_INSERT_HEAD(&orphans, vdev, v_childlink);
1270 else
1271 free(vdev);
1272 }
1273
1274 static int
vdev_init_from_nvlist(spa_t * spa,const nvlist_t * nvlist)1275 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1276 {
1277 uint64_t pool_guid, vdev_children;
1278 nvlist_t *vdevs = NULL, **kids = NULL;
1279 int rc, nkids;
1280
1281 if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1282 NULL, &pool_guid, NULL) ||
1283 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1284 NULL, &vdev_children, NULL) ||
1285 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1286 NULL, &vdevs, NULL)) {
1287 printf("ZFS: can't find vdev details\n");
1288 return (ENOENT);
1289 }
1290
1291 /* Wrong guid?! */
1292 if (spa->spa_guid != pool_guid) {
1293 nvlist_destroy(vdevs);
1294 return (EINVAL);
1295 }
1296
1297 spa->spa_root_vdev->v_nchildren = vdev_children;
1298
1299 rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1300 &nkids, &kids, NULL);
1301 nvlist_destroy(vdevs);
1302
1303 /*
1304 * MOS config has at least one child for root vdev.
1305 */
1306 if (rc != 0)
1307 return (rc);
1308
1309 for (int i = 0; i < nkids; i++) {
1310 uint64_t guid;
1311 vdev_t *vdev;
1312
1313 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1314 NULL, &guid, NULL);
1315 if (rc != 0)
1316 break;
1317 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
1318 /*
1319 * Top level vdev is missing, create it.
1320 * XXXGL: how can this happen?
1321 */
1322 if (vdev == NULL)
1323 rc = vdev_from_nvlist(spa, guid, 0, 0, kids[i]);
1324 else
1325 rc = vdev_update_from_nvlist(spa->spa_root_vdev, guid,
1326 kids[i]);
1327 if (rc != 0)
1328 break;
1329 }
1330 if (kids != NULL) {
1331 for (int i = 0; i < nkids; i++)
1332 nvlist_destroy(kids[i]);
1333 free(kids);
1334 }
1335
1336 /*
1337 * Re-evaluate top-level vdev state.
1338 */
1339 vdev_set_state(spa->spa_root_vdev);
1340
1341 return (rc);
1342 }
1343
1344 static bool
nvlist_find_child_guid(const nvlist_t * nvlist,uint64_t guid)1345 nvlist_find_child_guid(const nvlist_t *nvlist, uint64_t guid)
1346 {
1347 nvlist_t **kids = NULL;
1348 int nkids, i;
1349 bool rv = false;
1350
1351 if (nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1352 &nkids, &kids, NULL) != 0)
1353 nkids = 0;
1354
1355 for (i = 0; i < nkids; i++) {
1356 uint64_t kid_guid;
1357
1358 if (nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1359 NULL, &kid_guid, NULL) != 0)
1360 break;
1361 if (kid_guid == guid)
1362 rv = true;
1363 else
1364 rv = nvlist_find_child_guid(kids[i], guid);
1365 if (rv)
1366 break;
1367 }
1368
1369 for (i = 0; i < nkids; i++)
1370 nvlist_destroy(kids[i]);
1371 free(kids);
1372
1373 return (rv);
1374 }
1375
1376 static bool
nvlist_find_vdev_guid(const nvlist_t * nvlist,uint64_t guid)1377 nvlist_find_vdev_guid(const nvlist_t *nvlist, uint64_t guid)
1378 {
1379 nvlist_t *vdevs;
1380 bool rv;
1381
1382 if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
1383 &vdevs, NULL) != 0)
1384 return (false);
1385 rv = nvlist_find_child_guid(vdevs, guid);
1386 nvlist_destroy(vdevs);
1387
1388 return (rv);
1389 }
1390
1391 static spa_t *
spa_find_by_guid(uint64_t guid)1392 spa_find_by_guid(uint64_t guid)
1393 {
1394 spa_t *spa;
1395
1396 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1397 if (spa->spa_guid == guid)
1398 return (spa);
1399
1400 return (NULL);
1401 }
1402
1403 static spa_t *
spa_find_by_name(const char * name)1404 spa_find_by_name(const char *name)
1405 {
1406 spa_t *spa;
1407
1408 STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1409 if (strcmp(spa->spa_name, name) == 0)
1410 return (spa);
1411
1412 return (NULL);
1413 }
1414
1415 static spa_t *
spa_create(uint64_t guid,const char * name)1416 spa_create(uint64_t guid, const char *name)
1417 {
1418 spa_t *spa;
1419
1420 if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1421 return (NULL);
1422 if ((spa->spa_name = strdup(name)) == NULL) {
1423 free(spa);
1424 return (NULL);
1425 }
1426 spa->spa_uberblock = &spa->spa_uberblock_master;
1427 spa->spa_mos = &spa->spa_mos_master;
1428 spa->spa_guid = guid;
1429 spa->spa_root_vdev = vdev_create(guid, NULL);
1430 if (spa->spa_root_vdev == NULL) {
1431 free(spa->spa_name);
1432 free(spa);
1433 return (NULL);
1434 }
1435 spa->spa_root_vdev->v_name = spa->spa_name;
1436 STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1437
1438 return (spa);
1439 }
1440
1441 static const char *
state_name(vdev_state_t state)1442 state_name(vdev_state_t state)
1443 {
1444 static const char *names[] = {
1445 "UNKNOWN",
1446 "CLOSED",
1447 "OFFLINE",
1448 "REMOVED",
1449 "CANT_OPEN",
1450 "FAULTED",
1451 "DEGRADED",
1452 "ONLINE"
1453 };
1454 return (names[state]);
1455 }
1456
1457 #ifdef BOOT2
1458
1459 #define pager_printf printf
1460
1461 #else
1462
1463 static int
pager_printf(const char * fmt,...)1464 pager_printf(const char *fmt, ...)
1465 {
1466 char line[80];
1467 va_list args;
1468
1469 va_start(args, fmt);
1470 vsnprintf(line, sizeof(line), fmt, args);
1471 va_end(args);
1472 return (pager_output(line));
1473 }
1474
1475 #endif
1476
1477 #define STATUS_FORMAT " %s %s\n"
1478
1479 static int
print_state(int indent,const char * name,vdev_state_t state)1480 print_state(int indent, const char *name, vdev_state_t state)
1481 {
1482 int i;
1483 char buf[512];
1484
1485 buf[0] = 0;
1486 for (i = 0; i < indent; i++)
1487 strcat(buf, " ");
1488 strcat(buf, name);
1489 return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1490 }
1491
1492 static int
vdev_status(vdev_t * vdev,int indent)1493 vdev_status(vdev_t *vdev, int indent)
1494 {
1495 vdev_t *kid;
1496 int ret;
1497
1498 if (vdev->v_islog) {
1499 (void) pager_output(" logs\n");
1500 indent++;
1501 }
1502
1503 ret = print_state(indent, vdev->v_name, vdev->v_state);
1504 if (ret != 0)
1505 return (ret);
1506
1507 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1508 ret = vdev_status(kid, indent + 1);
1509 if (ret != 0)
1510 return (ret);
1511 }
1512 return (ret);
1513 }
1514
1515 static int
spa_status(spa_t * spa)1516 spa_status(spa_t *spa)
1517 {
1518 static char bootfs[ZFS_MAXNAMELEN];
1519 uint64_t rootid;
1520 vdev_list_t *vlist;
1521 vdev_t *vdev;
1522 int good_kids, bad_kids, degraded_kids, ret;
1523 vdev_state_t state;
1524
1525 ret = pager_printf(" pool: %s\n", spa->spa_name);
1526 if (ret != 0)
1527 return (ret);
1528
1529 if (zfs_get_root(spa, &rootid) == 0 &&
1530 zfs_rlookup(spa, rootid, bootfs) == 0) {
1531 if (bootfs[0] == '\0')
1532 ret = pager_printf("bootfs: %s\n", spa->spa_name);
1533 else
1534 ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1535 bootfs);
1536 if (ret != 0)
1537 return (ret);
1538 }
1539 ret = pager_printf("config:\n\n");
1540 if (ret != 0)
1541 return (ret);
1542 ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1543 if (ret != 0)
1544 return (ret);
1545
1546 good_kids = 0;
1547 degraded_kids = 0;
1548 bad_kids = 0;
1549 vlist = &spa->spa_root_vdev->v_children;
1550 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1551 if (vdev->v_state == VDEV_STATE_HEALTHY)
1552 good_kids++;
1553 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1554 degraded_kids++;
1555 else
1556 bad_kids++;
1557 }
1558
1559 state = VDEV_STATE_CLOSED;
1560 if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1561 state = VDEV_STATE_HEALTHY;
1562 else if ((good_kids + degraded_kids) > 0)
1563 state = VDEV_STATE_DEGRADED;
1564
1565 ret = print_state(0, spa->spa_name, state);
1566 if (ret != 0)
1567 return (ret);
1568
1569 STAILQ_FOREACH(vdev, vlist, v_childlink) {
1570 ret = vdev_status(vdev, 1);
1571 if (ret != 0)
1572 return (ret);
1573 }
1574 return (ret);
1575 }
1576
1577 static int
spa_all_status(void)1578 spa_all_status(void)
1579 {
1580 spa_t *spa;
1581 int first = 1, ret = 0;
1582
1583 STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1584 if (!first) {
1585 ret = pager_printf("\n");
1586 if (ret != 0)
1587 return (ret);
1588 }
1589 first = 0;
1590 ret = spa_status(spa);
1591 if (ret != 0)
1592 return (ret);
1593 }
1594 return (ret);
1595 }
1596
1597 static uint64_t
vdev_label_offset(uint64_t psize,int l,uint64_t offset)1598 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1599 {
1600 uint64_t label_offset;
1601
1602 if (l < VDEV_LABELS / 2)
1603 label_offset = 0;
1604 else
1605 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1606
1607 return (offset + l * sizeof (vdev_label_t) + label_offset);
1608 }
1609
1610 static int
vdev_uberblock_compare(const uberblock_t * ub1,const uberblock_t * ub2)1611 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1612 {
1613 unsigned int seq1 = 0;
1614 unsigned int seq2 = 0;
1615 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1616
1617 if (cmp != 0)
1618 return (cmp);
1619
1620 cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1621 if (cmp != 0)
1622 return (cmp);
1623
1624 if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1625 seq1 = MMP_SEQ(ub1);
1626
1627 if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1628 seq2 = MMP_SEQ(ub2);
1629
1630 return (AVL_CMP(seq1, seq2));
1631 }
1632
1633 static int
uberblock_verify(uberblock_t * ub)1634 uberblock_verify(uberblock_t *ub)
1635 {
1636 if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1637 byteswap_uint64_array(ub, sizeof (uberblock_t));
1638 }
1639
1640 if (ub->ub_magic != UBERBLOCK_MAGIC ||
1641 !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1642 return (EINVAL);
1643
1644 return (0);
1645 }
1646
1647 static int
vdev_label_read(vdev_t * vd,int l,void * buf,uint64_t offset,size_t size)1648 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1649 size_t size)
1650 {
1651 blkptr_t bp;
1652 off_t off;
1653
1654 off = vdev_label_offset(vd->v_psize, l, offset);
1655
1656 BP_ZERO(&bp);
1657 BP_SET_LSIZE(&bp, size);
1658 BP_SET_PSIZE(&bp, size);
1659 BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1660 BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1661 DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1662 ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1663
1664 return (vdev_read_phys(vd, &bp, buf, off, size));
1665 }
1666
1667 /*
1668 * We do need to be sure we write to correct location.
1669 * Our vdev label does consist of 4 fields:
1670 * pad1 (8k), reserved.
1671 * bootenv (8k), checksummed, previously reserved, may contian garbage.
1672 * vdev_phys (112k), checksummed
1673 * uberblock ring (128k), checksummed.
1674 *
1675 * Since bootenv area may contain garbage, we can not reliably read it, as
1676 * we can get checksum errors.
1677 * Next best thing is vdev_phys - it is just after bootenv. It still may
1678 * be corrupted, but in such case we will miss this one write.
1679 */
1680 static int
vdev_label_write_validate(vdev_t * vd,int l,uint64_t offset)1681 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1682 {
1683 uint64_t off, o_phys;
1684 void *buf;
1685 size_t size = VDEV_PHYS_SIZE;
1686 int rc;
1687
1688 o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1689 off = vdev_label_offset(vd->v_psize, l, o_phys);
1690
1691 /* off should be 8K from bootenv */
1692 if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1693 return (EINVAL);
1694
1695 buf = malloc(size);
1696 if (buf == NULL)
1697 return (ENOMEM);
1698
1699 /* Read vdev_phys */
1700 rc = vdev_label_read(vd, l, buf, o_phys, size);
1701 free(buf);
1702 return (rc);
1703 }
1704
1705 static int
vdev_label_write(vdev_t * vd,int l,vdev_boot_envblock_t * be,uint64_t offset)1706 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1707 {
1708 zio_checksum_info_t *ci;
1709 zio_cksum_t cksum;
1710 off_t off;
1711 size_t size = VDEV_PAD_SIZE;
1712 int rc;
1713
1714 if (vd->v_phys_write == NULL)
1715 return (ENOTSUP);
1716
1717 off = vdev_label_offset(vd->v_psize, l, offset);
1718
1719 rc = vdev_label_write_validate(vd, l, offset);
1720 if (rc != 0) {
1721 return (rc);
1722 }
1723
1724 ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1725 be->vbe_zbt.zec_magic = ZEC_MAGIC;
1726 zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1727 ci->ci_func[0](be, size, NULL, &cksum);
1728 be->vbe_zbt.zec_cksum = cksum;
1729
1730 return (vdev_write_phys(vd, be, off, size));
1731 }
1732
1733 static int
vdev_write_bootenv_impl(vdev_t * vdev,vdev_boot_envblock_t * be)1734 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1735 {
1736 vdev_t *kid;
1737 int rv = 0, err;
1738
1739 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1740 if (kid->v_state != VDEV_STATE_HEALTHY)
1741 continue;
1742 err = vdev_write_bootenv_impl(kid, be);
1743 if (err != 0)
1744 rv = err;
1745 }
1746
1747 /*
1748 * Non-leaf vdevs do not have v_phys_write.
1749 */
1750 if (vdev->v_phys_write == NULL)
1751 return (rv);
1752
1753 for (int l = 0; l < VDEV_LABELS; l++) {
1754 err = vdev_label_write(vdev, l, be,
1755 offsetof(vdev_label_t, vl_be));
1756 if (err != 0) {
1757 printf("failed to write bootenv to %s label %d: %d\n",
1758 vdev->v_name ? vdev->v_name : "unknown", l, err);
1759 rv = err;
1760 }
1761 }
1762 return (rv);
1763 }
1764
1765 int
vdev_write_bootenv(vdev_t * vdev,nvlist_t * nvl)1766 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1767 {
1768 vdev_boot_envblock_t *be;
1769 nvlist_t nv, *nvp;
1770 uint64_t version;
1771 int rv;
1772
1773 if (nvl->nv_size > sizeof(be->vbe_bootenv))
1774 return (E2BIG);
1775
1776 version = VB_RAW;
1777 nvp = vdev_read_bootenv(vdev);
1778 if (nvp != NULL) {
1779 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1780 &version, NULL);
1781 nvlist_destroy(nvp);
1782 }
1783
1784 be = calloc(1, sizeof(*be));
1785 if (be == NULL)
1786 return (ENOMEM);
1787
1788 be->vbe_version = version;
1789 switch (version) {
1790 case VB_RAW:
1791 /*
1792 * If there is no envmap, we will just wipe bootenv.
1793 */
1794 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1795 be->vbe_bootenv, NULL);
1796 rv = 0;
1797 break;
1798
1799 case VB_NVLIST:
1800 nv.nv_header = nvl->nv_header;
1801 nv.nv_asize = nvl->nv_asize;
1802 nv.nv_size = nvl->nv_size;
1803
1804 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1805 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1806 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1807 rv = nvlist_export(&nv);
1808 break;
1809
1810 default:
1811 rv = EINVAL;
1812 break;
1813 }
1814
1815 if (rv == 0) {
1816 be->vbe_version = htobe64(be->vbe_version);
1817 rv = vdev_write_bootenv_impl(vdev, be);
1818 }
1819 free(be);
1820 return (rv);
1821 }
1822
1823 /*
1824 * Read the bootenv area from pool label, return the nvlist from it.
1825 * We return from first successful read.
1826 */
1827 nvlist_t *
vdev_read_bootenv(vdev_t * vdev)1828 vdev_read_bootenv(vdev_t *vdev)
1829 {
1830 vdev_t *kid;
1831 nvlist_t *benv;
1832 vdev_boot_envblock_t *be;
1833 char *command;
1834 bool ok;
1835 int rv;
1836
1837 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1838 if (kid->v_state != VDEV_STATE_HEALTHY)
1839 continue;
1840
1841 benv = vdev_read_bootenv(kid);
1842 if (benv != NULL)
1843 return (benv);
1844 }
1845
1846 be = malloc(sizeof (*be));
1847 if (be == NULL)
1848 return (NULL);
1849
1850 rv = 0;
1851 for (int l = 0; l < VDEV_LABELS; l++) {
1852 rv = vdev_label_read(vdev, l, be,
1853 offsetof(vdev_label_t, vl_be),
1854 sizeof (*be));
1855 if (rv == 0)
1856 break;
1857 }
1858 if (rv != 0) {
1859 free(be);
1860 return (NULL);
1861 }
1862
1863 be->vbe_version = be64toh(be->vbe_version);
1864 switch (be->vbe_version) {
1865 case VB_RAW:
1866 /*
1867 * we have textual data in vbe_bootenv, create nvlist
1868 * with key "envmap".
1869 */
1870 benv = nvlist_create(NV_UNIQUE_NAME);
1871 if (benv != NULL) {
1872 if (*be->vbe_bootenv == '\0') {
1873 nvlist_add_uint64(benv, BOOTENV_VERSION,
1874 VB_NVLIST);
1875 break;
1876 }
1877 nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1878 be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1879 nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1880 }
1881 break;
1882
1883 case VB_NVLIST:
1884 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1885 break;
1886
1887 default:
1888 command = (char *)be;
1889 ok = false;
1890
1891 /* Check for legacy zfsbootcfg command string */
1892 for (int i = 0; command[i] != '\0'; i++) {
1893 if (iscntrl(command[i])) {
1894 ok = false;
1895 break;
1896 } else {
1897 ok = true;
1898 }
1899 }
1900 benv = nvlist_create(NV_UNIQUE_NAME);
1901 if (benv != NULL) {
1902 if (ok)
1903 nvlist_add_string(benv, FREEBSD_BOOTONCE,
1904 command);
1905 else
1906 nvlist_add_uint64(benv, BOOTENV_VERSION,
1907 VB_NVLIST);
1908 }
1909 break;
1910 }
1911 free(be);
1912 return (benv);
1913 }
1914
1915 static uint64_t
vdev_get_label_asize(nvlist_t * nvl)1916 vdev_get_label_asize(nvlist_t *nvl)
1917 {
1918 nvlist_t *vdevs;
1919 uint64_t asize;
1920 const char *type;
1921 int len;
1922
1923 asize = 0;
1924 /* Get vdev tree */
1925 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1926 NULL, &vdevs, NULL) != 0)
1927 return (asize);
1928
1929 /*
1930 * Get vdev type. We will calculate asize for raidz, mirror and disk.
1931 * For raidz, the asize is raw size of all children.
1932 */
1933 if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1934 NULL, &type, &len) != 0)
1935 goto done;
1936
1937 if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1938 memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1939 memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1940 goto done;
1941
1942 if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1943 NULL, &asize, NULL) != 0)
1944 goto done;
1945
1946 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1947 nvlist_t **kids;
1948 int nkids;
1949
1950 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1951 DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1952 asize = 0;
1953 goto done;
1954 }
1955
1956 asize /= nkids;
1957 for (int i = 0; i < nkids; i++)
1958 nvlist_destroy(kids[i]);
1959 free(kids);
1960 }
1961
1962 asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1963 done:
1964 nvlist_destroy(vdevs);
1965 return (asize);
1966 }
1967
1968 static nvlist_t *
vdev_label_read_config(vdev_t * vd,uint64_t txg)1969 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1970 {
1971 vdev_phys_t *label;
1972 uint64_t best_txg = 0;
1973 uint64_t label_txg = 0;
1974 uint64_t asize;
1975 nvlist_t *nvl = NULL, *tmp;
1976 int error;
1977
1978 label = malloc(sizeof (vdev_phys_t));
1979 if (label == NULL)
1980 return (NULL);
1981
1982 for (int l = 0; l < VDEV_LABELS; l++) {
1983 if (vdev_label_read(vd, l, label,
1984 offsetof(vdev_label_t, vl_vdev_phys),
1985 sizeof (vdev_phys_t)))
1986 continue;
1987
1988 tmp = nvlist_import(label->vp_nvlist,
1989 sizeof(label->vp_nvlist));
1990 if (tmp == NULL)
1991 continue;
1992
1993 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1994 DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1995 if (error != 0 || label_txg == 0) {
1996 nvlist_destroy(nvl);
1997 nvl = tmp;
1998 goto done;
1999 }
2000
2001 if (label_txg <= txg && label_txg > best_txg) {
2002 best_txg = label_txg;
2003 nvlist_destroy(nvl);
2004 nvl = tmp;
2005 tmp = NULL;
2006
2007 /*
2008 * Use asize from pool config. We need this
2009 * because we can get bad value from BIOS.
2010 */
2011 asize = vdev_get_label_asize(nvl);
2012 if (asize != 0) {
2013 vd->v_psize = asize;
2014 }
2015 }
2016 nvlist_destroy(tmp);
2017 }
2018
2019 if (best_txg == 0) {
2020 nvlist_destroy(nvl);
2021 nvl = NULL;
2022 }
2023 done:
2024 free(label);
2025 return (nvl);
2026 }
2027
2028 static void
vdev_uberblock_load(vdev_t * vd,uberblock_t * ub)2029 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
2030 {
2031 uberblock_t *buf;
2032
2033 buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
2034 if (buf == NULL)
2035 return;
2036
2037 for (int l = 0; l < VDEV_LABELS; l++) {
2038 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
2039 if (vdev_label_read(vd, l, buf,
2040 VDEV_UBERBLOCK_OFFSET(vd, n),
2041 VDEV_UBERBLOCK_SIZE(vd)))
2042 continue;
2043 if (uberblock_verify(buf) != 0)
2044 continue;
2045
2046 if (vdev_uberblock_compare(buf, ub) > 0)
2047 *ub = *buf;
2048 }
2049 }
2050 free(buf);
2051 }
2052
2053 static int
vdev_probe(vdev_phys_read_t * _read,vdev_phys_write_t * _write,void * priv,spa_t ** spap)2054 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2055 spa_t **spap)
2056 {
2057 vdev_t vtmp;
2058 spa_t *spa;
2059 vdev_t *vdev, *top;
2060 nvlist_t *nvl, *vdevs;
2061 uint64_t val;
2062 uint64_t guid, pool_guid, top_guid, txg;
2063 const char *pool_name;
2064 int rc, namelen;
2065
2066 /*
2067 * Load the vdev label and figure out which
2068 * uberblock is most current.
2069 */
2070 memset(&vtmp, 0, sizeof(vtmp));
2071 vtmp.v_phys_read = _read;
2072 vtmp.v_phys_write = _write;
2073 vtmp.v_priv = priv;
2074 vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2075 (uint64_t)sizeof (vdev_label_t));
2076
2077 /* Test for minimum device size. */
2078 if (vtmp.v_psize < SPA_MINDEVSIZE)
2079 return (EIO);
2080
2081 nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2082 if (nvl == NULL)
2083 return (EIO);
2084
2085 if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2086 NULL, &val, NULL) != 0) {
2087 nvlist_destroy(nvl);
2088 return (EIO);
2089 }
2090
2091 if (!SPA_VERSION_IS_SUPPORTED(val)) {
2092 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2093 (unsigned)val, (unsigned)SPA_VERSION);
2094 nvlist_destroy(nvl);
2095 return (EIO);
2096 }
2097
2098 /* Check ZFS features for read */
2099 rc = nvlist_check_features_for_read(nvl);
2100 if (rc != 0) {
2101 nvlist_destroy(nvl);
2102 return (EIO);
2103 }
2104
2105 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2106 NULL, &val, NULL) != 0) {
2107 nvlist_destroy(nvl);
2108 return (EIO);
2109 }
2110
2111 if (val == POOL_STATE_DESTROYED) {
2112 /* We don't boot only from destroyed pools. */
2113 nvlist_destroy(nvl);
2114 return (EIO);
2115 }
2116
2117 if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2118 NULL, &txg, NULL) != 0 ||
2119 txg == 0 ||
2120 nvlist_find(nvl, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
2121 NULL, &top_guid, NULL) != 0 ||
2122 nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2123 NULL, &pool_guid, NULL) != 0 ||
2124 nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2125 NULL, &pool_name, &namelen) != 0 ||
2126 nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2127 NULL, &guid, NULL) != 0) {
2128 /*
2129 * Cache, spare and replaced devices end up here - just ignore
2130 * them.
2131 */
2132 nvlist_destroy(nvl);
2133 return (EIO);
2134 }
2135
2136 /*
2137 * Create the pool if this is the first time we've seen it.
2138 */
2139 spa = spa_find_by_guid(pool_guid);
2140 if (spa == NULL) {
2141 char *name;
2142
2143 name = malloc(namelen + 1);
2144 if (name == NULL) {
2145 nvlist_destroy(nvl);
2146 return (ENOMEM);
2147 }
2148 bcopy(pool_name, name, namelen);
2149 name[namelen] = '\0';
2150 spa = spa_create(pool_guid, name);
2151 free(name);
2152 if (spa == NULL) {
2153 nvlist_destroy(nvl);
2154 return (ENOMEM);
2155 }
2156 }
2157
2158 /*
2159 * Check if configuration is already known. If configuration is known
2160 * and txg numbers don't match, we got 2x2 scenarios here. First, is
2161 * the label being read right now _newer_ than the one read before.
2162 * Second, is the vdev that provided the stale label _present_ in the
2163 * newer configuration. If neither is true, we completely ignore the
2164 * label.
2165 */
2166 STAILQ_FOREACH(top, &spa->spa_root_vdev->v_children, v_childlink)
2167 if (top->v_guid == top_guid) {
2168 bool newer, present;
2169
2170 if (top->v_txg == txg)
2171 break;
2172 newer = (top->v_txg < txg);
2173 present = newer ?
2174 nvlist_find_vdev_guid(nvl, top->v_label) :
2175 (vdev_find(&top->v_children, guid) != NULL);
2176 printf("ZFS: pool %s vdev %s %s stale label from "
2177 "0x%jx@0x%jx, %s 0x%jx@0x%jx\n",
2178 spa->spa_name, top->v_name,
2179 present ? "using" : "ignoring",
2180 newer ? top->v_label : guid,
2181 newer ? top->v_txg : txg,
2182 present ? "referred by" : "using",
2183 newer ? guid : top->v_label,
2184 newer ? txg : top->v_txg);
2185 if (newer) {
2186 STAILQ_REMOVE(&spa->spa_root_vdev->v_children,
2187 top, vdev, v_childlink);
2188 vdev_free(top);
2189 break;
2190 } else if (present) {
2191 break;
2192 } else {
2193 nvlist_destroy(nvl);
2194 return (EIO);
2195 }
2196 }
2197
2198 /*
2199 * Get the vdev tree and create our in-core copy of it.
2200 * If we already have a vdev with this guid, this must
2201 * be some kind of alias (overlapping slices, dangerously dedicated
2202 * disks etc).
2203 */
2204 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2205 /* Has this vdev already been inited? */
2206 if (vdev && vdev->v_phys_read) {
2207 nvlist_destroy(nvl);
2208 return (EIO);
2209 }
2210
2211 if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST, NULL,
2212 &vdevs, NULL)) {
2213 printf("ZFS: can't find vdev details\n");
2214 nvlist_destroy(nvl);
2215 return (ENOENT);
2216 }
2217
2218 rc = vdev_from_nvlist(spa, top_guid, guid, txg, vdevs);
2219 nvlist_destroy(vdevs);
2220 nvlist_destroy(nvl);
2221 if (rc != 0)
2222 return (rc);
2223
2224 /*
2225 * We should already have created an incomplete vdev for this
2226 * vdev. Find it and initialise it with our read proc.
2227 */
2228 vdev = vdev_find(&spa->spa_root_vdev->v_children, guid);
2229 if (vdev != NULL) {
2230 vdev->v_phys_read = _read;
2231 vdev->v_phys_write = _write;
2232 vdev->v_priv = priv;
2233 vdev->v_psize = vtmp.v_psize;
2234 /*
2235 * If no other state is set, mark vdev healthy.
2236 */
2237 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2238 vdev->v_state = VDEV_STATE_HEALTHY;
2239 } else {
2240 printf("ZFS: inconsistent nvlist contents\n");
2241 return (EIO);
2242 }
2243
2244 if (vdev->v_islog)
2245 spa->spa_with_log = vdev->v_islog;
2246
2247 /*
2248 * Re-evaluate top-level vdev state.
2249 */
2250 vdev_set_state(vdev->v_top);
2251
2252 /*
2253 * Ok, we are happy with the pool so far. Lets find
2254 * the best uberblock and then we can actually access
2255 * the contents of the pool.
2256 */
2257 vdev_uberblock_load(vdev, spa->spa_uberblock);
2258
2259 if (spap != NULL)
2260 *spap = spa;
2261 return (0);
2262 }
2263
2264 static int
ilog2(int n)2265 ilog2(int n)
2266 {
2267 int v;
2268
2269 for (v = 0; v < 32; v++)
2270 if (n == (1 << v))
2271 return (v);
2272 return (-1);
2273 }
2274
2275 static inline uint64_t
gbh_nblkptrs(uint64_t size)2276 gbh_nblkptrs(uint64_t size)
2277 {
2278 ASSERT(IS_P2ALIGNED(size, sizeof(blkptr_t)));
2279 return ((size - sizeof(zio_eck_t)) / sizeof(blkptr_t));
2280 }
2281
2282 static int
zio_read_gang(const spa_t * spa,const blkptr_t * bp,void * buf)2283 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2284 {
2285 blkptr_t gbh_bp;
2286 void *gbuf;
2287 char *pbuf;
2288 uint64_t gangblocksize;
2289 int err, i;
2290
2291 gangblocksize = UINT64_MAX;
2292 for (int dva = 0; dva < BP_GET_NDVAS(bp); dva++) {
2293 vdev_t *vd = vdev_lookup_top(spa,
2294 DVA_GET_VDEV(&bp->blk_dva[dva]));
2295 gangblocksize = MIN(gangblocksize, 1ULL << vd->v_ashift);
2296 }
2297
2298 /* Artificial BP for gang block header. */
2299 gbh_bp = *bp;
2300 BP_SET_PSIZE(&gbh_bp, gangblocksize);
2301 BP_SET_LSIZE(&gbh_bp, gangblocksize);
2302 BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2303 BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2304 for (i = 0; i < SPA_DVAS_PER_BP; i++)
2305 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2306
2307 gbuf = malloc(gangblocksize);
2308 if (gbuf == NULL)
2309 return (ENOMEM);
2310 /* Read gang header block using the artificial BP. */
2311 err = zio_read_impl(spa, &gbh_bp, gbuf, false);
2312 if ((err == EIO || err == ECKSUM) &&
2313 gangblocksize > SPA_OLD_GANGBLOCKSIZE) {
2314 /* This might be a legacy gang block header, try again. */
2315 gangblocksize = SPA_OLD_GANGBLOCKSIZE;
2316 BP_SET_PSIZE(&gbh_bp, gangblocksize);
2317 BP_SET_LSIZE(&gbh_bp, gangblocksize);
2318 err = zio_read(spa, &gbh_bp, gbuf);
2319 }
2320 if (err != 0) {
2321 free(gbuf);
2322 return (EIO);
2323 }
2324
2325 pbuf = buf;
2326 for (i = 0; i < gbh_nblkptrs(gangblocksize); i++) {
2327 blkptr_t *gbp = &((blkptr_t *)gbuf)[i];
2328
2329 if (BP_IS_HOLE(gbp))
2330 continue;
2331 if (zio_read(spa, gbp, pbuf)) {
2332 free(gbuf);
2333 return (EIO);
2334 }
2335 pbuf += BP_GET_PSIZE(gbp);
2336 }
2337
2338 free(gbuf);
2339 if (zio_checksum_verify(spa, bp, buf))
2340 return (EIO);
2341 return (0);
2342 }
2343
2344 static int
zio_read_impl(const spa_t * spa,const blkptr_t * bp,void * buf,bool print)2345 zio_read_impl(const spa_t *spa, const blkptr_t *bp, void *buf, bool print)
2346 {
2347 int cpfunc = BP_GET_COMPRESS(bp);
2348 uint64_t align, size;
2349 void *pbuf;
2350 int i, error;
2351
2352 /*
2353 * Process data embedded in block pointer
2354 */
2355 if (BP_IS_EMBEDDED(bp)) {
2356 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2357
2358 size = BPE_GET_PSIZE(bp);
2359 ASSERT(size <= BPE_PAYLOAD_SIZE);
2360
2361 if (cpfunc != ZIO_COMPRESS_OFF)
2362 pbuf = malloc(size);
2363 else
2364 pbuf = buf;
2365
2366 if (pbuf == NULL)
2367 return (ENOMEM);
2368
2369 decode_embedded_bp_compressed(bp, pbuf);
2370 error = 0;
2371
2372 if (cpfunc != ZIO_COMPRESS_OFF) {
2373 error = zio_decompress_data(cpfunc, pbuf,
2374 size, buf, BP_GET_LSIZE(bp));
2375 free(pbuf);
2376 }
2377 if (error != 0 && print)
2378 printf("ZFS: i/o error - unable to decompress "
2379 "block pointer data, error %d\n", error);
2380 return (error);
2381 }
2382
2383 error = EIO;
2384
2385 for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2386 const dva_t *dva = &bp->blk_dva[i];
2387 vdev_t *vdev;
2388 vdev_list_t *vlist;
2389 uint64_t vdevid;
2390 off_t offset;
2391
2392 if (!dva->dva_word[0] && !dva->dva_word[1])
2393 continue;
2394
2395 vdevid = DVA_GET_VDEV(dva);
2396 offset = DVA_GET_OFFSET(dva);
2397 vlist = &spa->spa_root_vdev->v_children;
2398 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2399 if (vdev->v_id == vdevid)
2400 break;
2401 }
2402 if (!vdev || !vdev->v_read)
2403 continue;
2404
2405 size = BP_GET_PSIZE(bp);
2406 if (vdev->v_read == vdev_raidz_read) {
2407 align = 1ULL << vdev->v_ashift;
2408 if (P2PHASE(size, align) != 0)
2409 size = P2ROUNDUP(size, align);
2410 }
2411 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2412 pbuf = malloc(size);
2413 else
2414 pbuf = buf;
2415
2416 if (pbuf == NULL) {
2417 error = ENOMEM;
2418 break;
2419 }
2420
2421 if (DVA_GET_GANG(dva))
2422 error = zio_read_gang(spa, bp, pbuf);
2423 else
2424 error = vdev->v_read(vdev, bp, pbuf, offset, size);
2425 if (error == 0) {
2426 if (cpfunc != ZIO_COMPRESS_OFF)
2427 error = zio_decompress_data(cpfunc, pbuf,
2428 BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2429 else if (size != BP_GET_PSIZE(bp))
2430 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2431 } else if (print) {
2432 printf("zio_read error: %d\n", error);
2433 }
2434 if (buf != pbuf)
2435 free(pbuf);
2436 if (error == 0)
2437 break;
2438 }
2439 if (error != 0 && print)
2440 printf("ZFS: i/o error - all block copies unavailable\n");
2441
2442 return (error);
2443 }
2444
2445 static int
zio_read(const spa_t * spa,const blkptr_t * bp,void * buf)2446 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2447 {
2448 return (zio_read_impl(spa, bp, buf, true));
2449 }
2450
2451 static int
dnode_read(const spa_t * spa,const dnode_phys_t * dnode,off_t offset,void * buf,size_t buflen)2452 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2453 void *buf, size_t buflen)
2454 {
2455 int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2456 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2457 int nlevels = dnode->dn_nlevels;
2458 int i, rc;
2459
2460 if (bsize > SPA_MAXBLOCKSIZE) {
2461 printf("ZFS: I/O error - blocks larger than %llu are not "
2462 "supported\n", SPA_MAXBLOCKSIZE);
2463 return (EIO);
2464 }
2465
2466 /*
2467 * Handle odd block sizes, mirrors dmu_read_impl(). Data can't exist
2468 * past the first block, so we'll clip the read to the portion of the
2469 * buffer within bsize and zero out the remainder.
2470 */
2471 if (dnode->dn_maxblkid == 0) {
2472 size_t newbuflen;
2473
2474 newbuflen = offset > bsize ? 0 : MIN(buflen, bsize - offset);
2475 bzero((char *)buf + newbuflen, buflen - newbuflen);
2476 buflen = newbuflen;
2477 }
2478
2479 /*
2480 * Note: bsize may not be a power of two here so we need to do an
2481 * actual divide rather than a bitshift.
2482 */
2483 while (buflen > 0) {
2484 uint64_t bn = offset / bsize;
2485 int boff = offset % bsize;
2486 int ibn;
2487 const blkptr_t *indbp;
2488 blkptr_t bp;
2489
2490 if (bn > dnode->dn_maxblkid)
2491 return (EIO);
2492
2493 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2494 goto cached;
2495
2496 indbp = dnode->dn_blkptr;
2497 for (i = 0; i < nlevels; i++) {
2498 /*
2499 * Copy the bp from the indirect array so that
2500 * we can re-use the scratch buffer for multi-level
2501 * objects.
2502 */
2503 ibn = bn >> ((nlevels - i - 1) * ibshift);
2504 ibn &= ((1 << ibshift) - 1);
2505 bp = indbp[ibn];
2506 if (BP_IS_HOLE(&bp)) {
2507 memset(dnode_cache_buf, 0, bsize);
2508 break;
2509 }
2510 rc = zio_read(spa, &bp, dnode_cache_buf);
2511 if (rc)
2512 return (rc);
2513 indbp = (const blkptr_t *) dnode_cache_buf;
2514 }
2515 dnode_cache_obj = dnode;
2516 dnode_cache_bn = bn;
2517 cached:
2518
2519 /*
2520 * The buffer contains our data block. Copy what we
2521 * need from it and loop.
2522 */
2523 i = bsize - boff;
2524 if (i > buflen) i = buflen;
2525 memcpy(buf, &dnode_cache_buf[boff], i);
2526 buf = ((char *)buf) + i;
2527 offset += i;
2528 buflen -= i;
2529 }
2530
2531 return (0);
2532 }
2533
2534 /*
2535 * Lookup a value in a microzap directory.
2536 */
2537 static int
mzap_lookup(const mzap_phys_t * mz,size_t size,const char * name,uint64_t * value)2538 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2539 uint64_t *value)
2540 {
2541 const mzap_ent_phys_t *mze;
2542 int chunks, i;
2543
2544 /*
2545 * Microzap objects use exactly one block. Read the whole
2546 * thing.
2547 */
2548 chunks = size / MZAP_ENT_LEN - 1;
2549 for (i = 0; i < chunks; i++) {
2550 mze = &mz->mz_chunk[i];
2551 if (strcmp(mze->mze_name, name) == 0) {
2552 *value = mze->mze_value;
2553 return (0);
2554 }
2555 }
2556
2557 return (ENOENT);
2558 }
2559
2560 /*
2561 * Compare a name with a zap leaf entry. Return non-zero if the name
2562 * matches.
2563 */
2564 static int
fzap_name_equal(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,const char * name)2565 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2566 const char *name)
2567 {
2568 size_t namelen;
2569 const zap_leaf_chunk_t *nc;
2570 const char *p;
2571
2572 namelen = zc->l_entry.le_name_numints;
2573
2574 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2575 p = name;
2576 while (namelen > 0) {
2577 size_t len;
2578
2579 len = namelen;
2580 if (len > ZAP_LEAF_ARRAY_BYTES)
2581 len = ZAP_LEAF_ARRAY_BYTES;
2582 if (memcmp(p, nc->l_array.la_array, len))
2583 return (0);
2584 p += len;
2585 namelen -= len;
2586 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2587 }
2588
2589 return (1);
2590 }
2591
2592 /*
2593 * Extract a uint64_t value from a zap leaf entry.
2594 */
2595 static uint64_t
fzap_leaf_value(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc)2596 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2597 {
2598 const zap_leaf_chunk_t *vc;
2599 int i;
2600 uint64_t value;
2601 const uint8_t *p;
2602
2603 vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2604 for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2605 value = (value << 8) | p[i];
2606 }
2607
2608 return (value);
2609 }
2610
2611 static void
stv(int len,void * addr,uint64_t value)2612 stv(int len, void *addr, uint64_t value)
2613 {
2614 switch (len) {
2615 case 1:
2616 *(uint8_t *)addr = value;
2617 return;
2618 case 2:
2619 *(uint16_t *)addr = value;
2620 return;
2621 case 4:
2622 *(uint32_t *)addr = value;
2623 return;
2624 case 8:
2625 *(uint64_t *)addr = value;
2626 return;
2627 }
2628 }
2629
2630 /*
2631 * Extract a array from a zap leaf entry.
2632 */
2633 static void
fzap_leaf_array(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,uint64_t integer_size,uint64_t num_integers,void * buf)2634 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2635 uint64_t integer_size, uint64_t num_integers, void *buf)
2636 {
2637 uint64_t array_int_len = zc->l_entry.le_value_intlen;
2638 uint64_t value = 0;
2639 uint64_t *u64 = buf;
2640 char *p = buf;
2641 int len = MIN(zc->l_entry.le_value_numints, num_integers);
2642 int chunk = zc->l_entry.le_value_chunk;
2643 int byten = 0;
2644
2645 if (integer_size == 8 && len == 1) {
2646 *u64 = fzap_leaf_value(zl, zc);
2647 return;
2648 }
2649
2650 while (len > 0) {
2651 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2652 int i;
2653
2654 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2655 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2656 value = (value << 8) | la->la_array[i];
2657 byten++;
2658 if (byten == array_int_len) {
2659 stv(integer_size, p, value);
2660 byten = 0;
2661 len--;
2662 if (len == 0)
2663 return;
2664 p += integer_size;
2665 }
2666 }
2667 chunk = la->la_next;
2668 }
2669 }
2670
2671 static int
fzap_check_size(uint64_t integer_size,uint64_t num_integers)2672 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2673 {
2674
2675 switch (integer_size) {
2676 case 1:
2677 case 2:
2678 case 4:
2679 case 8:
2680 break;
2681 default:
2682 return (EINVAL);
2683 }
2684
2685 if (integer_size * num_integers > ZAP_MAXVALUELEN)
2686 return (E2BIG);
2687
2688 return (0);
2689 }
2690
2691 static void
zap_leaf_free(zap_leaf_t * leaf)2692 zap_leaf_free(zap_leaf_t *leaf)
2693 {
2694 free(leaf->l_phys);
2695 free(leaf);
2696 }
2697
2698 static int
zap_get_leaf_byblk(fat_zap_t * zap,uint64_t blk,zap_leaf_t ** lp)2699 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2700 {
2701 int bs = FZAP_BLOCK_SHIFT(zap);
2702 int err;
2703
2704 *lp = malloc(sizeof(**lp));
2705 if (*lp == NULL)
2706 return (ENOMEM);
2707
2708 (*lp)->l_bs = bs;
2709 (*lp)->l_phys = malloc(1 << bs);
2710
2711 if ((*lp)->l_phys == NULL) {
2712 free(*lp);
2713 return (ENOMEM);
2714 }
2715 err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2716 1 << bs);
2717 if (err != 0) {
2718 zap_leaf_free(*lp);
2719 }
2720 return (err);
2721 }
2722
2723 static int
zap_table_load(fat_zap_t * zap,zap_table_phys_t * tbl,uint64_t idx,uint64_t * valp)2724 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2725 uint64_t *valp)
2726 {
2727 int bs = FZAP_BLOCK_SHIFT(zap);
2728 uint64_t blk = idx >> (bs - 3);
2729 uint64_t off = idx & ((1 << (bs - 3)) - 1);
2730 uint64_t *buf;
2731 int rc;
2732
2733 buf = malloc(1 << zap->zap_block_shift);
2734 if (buf == NULL)
2735 return (ENOMEM);
2736 rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2737 buf, 1 << zap->zap_block_shift);
2738 if (rc == 0)
2739 *valp = buf[off];
2740 free(buf);
2741 return (rc);
2742 }
2743
2744 static int
zap_idx_to_blk(fat_zap_t * zap,uint64_t idx,uint64_t * valp)2745 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2746 {
2747 if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2748 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2749 return (0);
2750 } else {
2751 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2752 idx, valp));
2753 }
2754 }
2755
2756 #define ZAP_HASH_IDX(hash, n) (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2757 static int
zap_deref_leaf(fat_zap_t * zap,uint64_t h,zap_leaf_t ** lp)2758 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2759 {
2760 uint64_t idx, blk;
2761 int err;
2762
2763 idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2764 err = zap_idx_to_blk(zap, idx, &blk);
2765 if (err != 0)
2766 return (err);
2767 return (zap_get_leaf_byblk(zap, blk, lp));
2768 }
2769
2770 #define CHAIN_END 0xffff /* end of the chunk chain */
2771 #define LEAF_HASH(l, h) \
2772 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2773 ((h) >> \
2774 (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2775 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2776
2777 static int
zap_leaf_lookup(zap_leaf_t * zl,uint64_t hash,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2778 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2779 uint64_t integer_size, uint64_t num_integers, void *value)
2780 {
2781 int rc;
2782 uint16_t *chunkp;
2783 struct zap_leaf_entry *le;
2784
2785 /*
2786 * Make sure this chunk matches our hash.
2787 */
2788 if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2789 zl->l_phys->l_hdr.lh_prefix !=
2790 hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2791 return (EIO);
2792
2793 rc = ENOENT;
2794 for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2795 *chunkp != CHAIN_END; chunkp = &le->le_next) {
2796 zap_leaf_chunk_t *zc;
2797 uint16_t chunk = *chunkp;
2798
2799 le = ZAP_LEAF_ENTRY(zl, chunk);
2800 if (le->le_hash != hash)
2801 continue;
2802 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2803 if (fzap_name_equal(zl, zc, name)) {
2804 if (zc->l_entry.le_value_intlen > integer_size) {
2805 rc = EINVAL;
2806 } else {
2807 fzap_leaf_array(zl, zc, integer_size,
2808 num_integers, value);
2809 rc = 0;
2810 }
2811 break;
2812 }
2813 }
2814 return (rc);
2815 }
2816
2817 /*
2818 * Lookup a value in a fatzap directory.
2819 */
2820 static int
fzap_lookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2821 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2822 const char *name, uint64_t integer_size, uint64_t num_integers,
2823 void *value)
2824 {
2825 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2826 fat_zap_t z;
2827 zap_leaf_t *zl;
2828 uint64_t hash;
2829 int rc;
2830
2831 if (zh->zap_magic != ZAP_MAGIC)
2832 return (EIO);
2833
2834 if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2835 return (rc);
2836 }
2837
2838 z.zap_block_shift = ilog2(bsize);
2839 z.zap_phys = zh;
2840 z.zap_spa = spa;
2841 z.zap_dnode = dnode;
2842
2843 hash = zap_hash(zh->zap_salt, name);
2844 rc = zap_deref_leaf(&z, hash, &zl);
2845 if (rc != 0)
2846 return (rc);
2847
2848 rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2849
2850 zap_leaf_free(zl);
2851 return (rc);
2852 }
2853
2854 /*
2855 * Lookup a name in a zap object and return its value as a uint64_t.
2856 */
2857 static int
zap_lookup(const spa_t * spa,const dnode_phys_t * dnode,const char * name,uint64_t integer_size,uint64_t num_integers,void * value)2858 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2859 uint64_t integer_size, uint64_t num_integers, void *value)
2860 {
2861 int rc;
2862 zap_phys_t *zap;
2863 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2864
2865 zap = malloc(size);
2866 if (zap == NULL)
2867 return (ENOMEM);
2868
2869 rc = dnode_read(spa, dnode, 0, zap, size);
2870 if (rc)
2871 goto done;
2872
2873 switch (zap->zap_block_type) {
2874 case ZBT_MICRO:
2875 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2876 break;
2877 case ZBT_HEADER:
2878 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2879 num_integers, value);
2880 break;
2881 default:
2882 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2883 zap->zap_block_type);
2884 rc = EIO;
2885 }
2886 done:
2887 free(zap);
2888 return (rc);
2889 }
2890
2891 /*
2892 * List a microzap directory.
2893 */
2894 static int
mzap_list(const mzap_phys_t * mz,size_t size,int (* callback)(const char *,uint64_t))2895 mzap_list(const mzap_phys_t *mz, size_t size,
2896 int (*callback)(const char *, uint64_t))
2897 {
2898 const mzap_ent_phys_t *mze;
2899 int chunks, i, rc;
2900
2901 /*
2902 * Microzap objects use exactly one block. Read the whole
2903 * thing.
2904 */
2905 rc = 0;
2906 chunks = size / MZAP_ENT_LEN - 1;
2907 for (i = 0; i < chunks; i++) {
2908 mze = &mz->mz_chunk[i];
2909 if (mze->mze_name[0]) {
2910 rc = callback(mze->mze_name, mze->mze_value);
2911 if (rc != 0)
2912 break;
2913 }
2914 }
2915
2916 return (rc);
2917 }
2918
2919 /*
2920 * List a fatzap directory.
2921 */
2922 static int
fzap_list(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,int (* callback)(const char *,uint64_t))2923 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2924 int (*callback)(const char *, uint64_t))
2925 {
2926 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2927 fat_zap_t z;
2928 uint64_t i;
2929 int j, rc;
2930
2931 if (zh->zap_magic != ZAP_MAGIC)
2932 return (EIO);
2933
2934 z.zap_block_shift = ilog2(bsize);
2935 z.zap_phys = zh;
2936
2937 /*
2938 * This assumes that the leaf blocks start at block 1. The
2939 * documentation isn't exactly clear on this.
2940 */
2941 zap_leaf_t zl;
2942 zl.l_bs = z.zap_block_shift;
2943 zl.l_phys = malloc(bsize);
2944 if (zl.l_phys == NULL)
2945 return (ENOMEM);
2946
2947 for (i = 0; i < zh->zap_num_leafs; i++) {
2948 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2949 char name[256], *p;
2950 uint64_t value;
2951
2952 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2953 free(zl.l_phys);
2954 return (EIO);
2955 }
2956
2957 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2958 zap_leaf_chunk_t *zc, *nc;
2959 int namelen;
2960
2961 zc = &ZAP_LEAF_CHUNK(&zl, j);
2962 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2963 continue;
2964 namelen = zc->l_entry.le_name_numints;
2965 if (namelen > sizeof(name))
2966 namelen = sizeof(name);
2967
2968 /*
2969 * Paste the name back together.
2970 */
2971 nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2972 p = name;
2973 while (namelen > 0) {
2974 int len;
2975 len = namelen;
2976 if (len > ZAP_LEAF_ARRAY_BYTES)
2977 len = ZAP_LEAF_ARRAY_BYTES;
2978 memcpy(p, nc->l_array.la_array, len);
2979 p += len;
2980 namelen -= len;
2981 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2982 }
2983
2984 /*
2985 * Assume the first eight bytes of the value are
2986 * a uint64_t.
2987 */
2988 value = fzap_leaf_value(&zl, zc);
2989
2990 /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2991 rc = callback((const char *)name, value);
2992 if (rc != 0) {
2993 free(zl.l_phys);
2994 return (rc);
2995 }
2996 }
2997 }
2998
2999 free(zl.l_phys);
3000 return (0);
3001 }
3002
zfs_printf(const char * name,uint64_t value __unused)3003 static int zfs_printf(const char *name, uint64_t value __unused)
3004 {
3005
3006 printf("%s\n", name);
3007
3008 return (0);
3009 }
3010
3011 /*
3012 * List a zap directory.
3013 */
3014 static int
zap_list(const spa_t * spa,const dnode_phys_t * dnode)3015 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
3016 {
3017 zap_phys_t *zap;
3018 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3019 int rc;
3020
3021 zap = malloc(size);
3022 if (zap == NULL)
3023 return (ENOMEM);
3024
3025 rc = dnode_read(spa, dnode, 0, zap, size);
3026 if (rc == 0) {
3027 if (zap->zap_block_type == ZBT_MICRO)
3028 rc = mzap_list((const mzap_phys_t *)zap, size,
3029 zfs_printf);
3030 else
3031 rc = fzap_list(spa, dnode, zap, zfs_printf);
3032 }
3033 free(zap);
3034 return (rc);
3035 }
3036
3037 static int
objset_get_dnode(const spa_t * spa,const objset_phys_t * os,uint64_t objnum,dnode_phys_t * dnode)3038 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
3039 dnode_phys_t *dnode)
3040 {
3041 off_t offset;
3042
3043 offset = objnum * sizeof(dnode_phys_t);
3044 return dnode_read(spa, &os->os_meta_dnode, offset,
3045 dnode, sizeof(dnode_phys_t));
3046 }
3047
3048 /*
3049 * Lookup a name in a microzap directory.
3050 */
3051 static int
mzap_rlookup(const mzap_phys_t * mz,size_t size,char * name,uint64_t value)3052 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
3053 {
3054 const mzap_ent_phys_t *mze;
3055 int chunks, i;
3056
3057 /*
3058 * Microzap objects use exactly one block. Read the whole
3059 * thing.
3060 */
3061 chunks = size / MZAP_ENT_LEN - 1;
3062 for (i = 0; i < chunks; i++) {
3063 mze = &mz->mz_chunk[i];
3064 if (value == mze->mze_value) {
3065 strcpy(name, mze->mze_name);
3066 return (0);
3067 }
3068 }
3069
3070 return (ENOENT);
3071 }
3072
3073 static void
fzap_name_copy(const zap_leaf_t * zl,const zap_leaf_chunk_t * zc,char * name)3074 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
3075 {
3076 size_t namelen;
3077 const zap_leaf_chunk_t *nc;
3078 char *p;
3079
3080 namelen = zc->l_entry.le_name_numints;
3081
3082 nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
3083 p = name;
3084 while (namelen > 0) {
3085 size_t len;
3086 len = namelen;
3087 if (len > ZAP_LEAF_ARRAY_BYTES)
3088 len = ZAP_LEAF_ARRAY_BYTES;
3089 memcpy(p, nc->l_array.la_array, len);
3090 p += len;
3091 namelen -= len;
3092 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
3093 }
3094
3095 *p = '\0';
3096 }
3097
3098 static int
fzap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,zap_phys_t * zh,char * name,uint64_t value)3099 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
3100 char *name, uint64_t value)
3101 {
3102 int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3103 fat_zap_t z;
3104 uint64_t i;
3105 int j, rc;
3106
3107 if (zh->zap_magic != ZAP_MAGIC)
3108 return (EIO);
3109
3110 z.zap_block_shift = ilog2(bsize);
3111 z.zap_phys = zh;
3112
3113 /*
3114 * This assumes that the leaf blocks start at block 1. The
3115 * documentation isn't exactly clear on this.
3116 */
3117 zap_leaf_t zl;
3118 zl.l_bs = z.zap_block_shift;
3119 zl.l_phys = malloc(bsize);
3120 if (zl.l_phys == NULL)
3121 return (ENOMEM);
3122
3123 for (i = 0; i < zh->zap_num_leafs; i++) {
3124 off_t off = ((off_t)(i + 1)) << zl.l_bs;
3125
3126 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
3127 if (rc != 0)
3128 goto done;
3129
3130 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
3131 zap_leaf_chunk_t *zc;
3132
3133 zc = &ZAP_LEAF_CHUNK(&zl, j);
3134 if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
3135 continue;
3136 if (zc->l_entry.le_value_intlen != 8 ||
3137 zc->l_entry.le_value_numints != 1)
3138 continue;
3139
3140 if (fzap_leaf_value(&zl, zc) == value) {
3141 fzap_name_copy(&zl, zc, name);
3142 goto done;
3143 }
3144 }
3145 }
3146
3147 rc = ENOENT;
3148 done:
3149 free(zl.l_phys);
3150 return (rc);
3151 }
3152
3153 static int
zap_rlookup(const spa_t * spa,const dnode_phys_t * dnode,char * name,uint64_t value)3154 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3155 uint64_t value)
3156 {
3157 zap_phys_t *zap;
3158 size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3159 int rc;
3160
3161 zap = malloc(size);
3162 if (zap == NULL)
3163 return (ENOMEM);
3164
3165 rc = dnode_read(spa, dnode, 0, zap, size);
3166 if (rc == 0) {
3167 if (zap->zap_block_type == ZBT_MICRO)
3168 rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3169 name, value);
3170 else
3171 rc = fzap_rlookup(spa, dnode, zap, name, value);
3172 }
3173 free(zap);
3174 return (rc);
3175 }
3176
3177 static int
zfs_rlookup(const spa_t * spa,uint64_t objnum,char * result)3178 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3179 {
3180 char name[256];
3181 char component[256];
3182 uint64_t dir_obj, parent_obj, child_dir_zapobj;
3183 dnode_phys_t child_dir_zap, snapnames_zap, dataset, dir, parent;
3184 dsl_dir_phys_t *dd;
3185 dsl_dataset_phys_t *ds;
3186 char *p;
3187 int len;
3188 boolean_t issnap = B_FALSE;
3189
3190 p = &name[sizeof(name) - 1];
3191 *p = '\0';
3192
3193 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3194 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3195 return (EIO);
3196 }
3197 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3198 dir_obj = ds->ds_dir_obj;
3199 if (ds->ds_snapnames_zapobj == 0)
3200 issnap = B_TRUE;
3201
3202 for (;;) {
3203 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3204 return (EIO);
3205 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3206
3207 /* Actual loop condition. */
3208 parent_obj = dd->dd_parent_obj;
3209 if (parent_obj == 0)
3210 break;
3211
3212 if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3213 &parent) != 0)
3214 return (EIO);
3215 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3216 if (issnap == B_TRUE) {
3217 /*
3218 * The dataset we are looking up is a snapshot
3219 * the dir_obj is the parent already, we don't want
3220 * the grandparent just yet. Reset to the parent.
3221 */
3222 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3223 /* Lookup the dataset to get the snapname ZAP */
3224 if (objset_get_dnode(spa, spa->spa_mos,
3225 dd->dd_head_dataset_obj, &dataset))
3226 return (EIO);
3227 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3228 if (objset_get_dnode(spa, spa->spa_mos,
3229 ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3230 return (EIO);
3231 /* Get the name of the snapshot */
3232 if (zap_rlookup(spa, &snapnames_zap, component,
3233 objnum) != 0)
3234 return (EIO);
3235 len = strlen(component);
3236 p -= len;
3237 memcpy(p, component, len);
3238 --p;
3239 *p = '@';
3240 issnap = B_FALSE;
3241 continue;
3242 }
3243
3244 child_dir_zapobj = dd->dd_child_dir_zapobj;
3245 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3246 &child_dir_zap) != 0)
3247 return (EIO);
3248 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3249 return (EIO);
3250
3251 len = strlen(component);
3252 p -= len;
3253 memcpy(p, component, len);
3254 --p;
3255 *p = '/';
3256
3257 /* Actual loop iteration. */
3258 dir_obj = parent_obj;
3259 }
3260
3261 if (*p != '\0')
3262 ++p;
3263 strcpy(result, p);
3264
3265 return (0);
3266 }
3267
3268 static int
zfs_lookup_dataset(const spa_t * spa,const char * name,uint64_t * objnum)3269 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3270 {
3271 char element[256];
3272 uint64_t dir_obj, child_dir_zapobj;
3273 dnode_phys_t child_dir_zap, snapnames_zap, dir, dataset;
3274 dsl_dir_phys_t *dd;
3275 dsl_dataset_phys_t *ds;
3276 const char *p, *q;
3277 boolean_t issnap = B_FALSE;
3278
3279 if (objset_get_dnode(spa, spa->spa_mos,
3280 DMU_POOL_DIRECTORY_OBJECT, &dir))
3281 return (EIO);
3282 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3283 1, &dir_obj))
3284 return (EIO);
3285
3286 p = name;
3287 for (;;) {
3288 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3289 return (EIO);
3290 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3291
3292 while (*p == '/')
3293 p++;
3294 /* Actual loop condition #1. */
3295 if (*p == '\0')
3296 break;
3297
3298 q = strchr(p, '/');
3299 if (q) {
3300 memcpy(element, p, q - p);
3301 element[q - p] = '\0';
3302 p = q + 1;
3303 } else {
3304 strcpy(element, p);
3305 p += strlen(p);
3306 }
3307
3308 if (issnap == B_TRUE) {
3309 if (objset_get_dnode(spa, spa->spa_mos,
3310 dd->dd_head_dataset_obj, &dataset))
3311 return (EIO);
3312 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3313 if (objset_get_dnode(spa, spa->spa_mos,
3314 ds->ds_snapnames_zapobj, &snapnames_zap) != 0)
3315 return (EIO);
3316 /* Actual loop condition #2. */
3317 if (zap_lookup(spa, &snapnames_zap, element,
3318 sizeof (dir_obj), 1, &dir_obj) != 0)
3319 return (ENOENT);
3320 *objnum = dir_obj;
3321 return (0);
3322 } else if ((q = strchr(element, '@')) != NULL) {
3323 issnap = B_TRUE;
3324 element[q - element] = '\0';
3325 p = q + 1;
3326 }
3327 child_dir_zapobj = dd->dd_child_dir_zapobj;
3328 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3329 &child_dir_zap) != 0)
3330 return (EIO);
3331
3332 /* Actual loop condition #2. */
3333 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3334 1, &dir_obj) != 0)
3335 return (ENOENT);
3336 }
3337
3338 *objnum = dd->dd_head_dataset_obj;
3339 return (0);
3340 }
3341
3342 #ifndef BOOT2
3343 static int
zfs_list_dataset(const spa_t * spa,uint64_t objnum)3344 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3345 {
3346 uint64_t dir_obj, child_dir_zapobj;
3347 dnode_phys_t child_dir_zap, dir, dataset;
3348 dsl_dataset_phys_t *ds;
3349 dsl_dir_phys_t *dd;
3350
3351 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3352 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3353 return (EIO);
3354 }
3355 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3356 dir_obj = ds->ds_dir_obj;
3357
3358 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3359 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3360 return (EIO);
3361 }
3362 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3363
3364 child_dir_zapobj = dd->dd_child_dir_zapobj;
3365 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3366 &child_dir_zap) != 0) {
3367 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3368 return (EIO);
3369 }
3370
3371 return (zap_list(spa, &child_dir_zap) != 0);
3372 }
3373
3374 int
zfs_callback_dataset(const spa_t * spa,uint64_t objnum,int (* callback)(const char *,uint64_t))3375 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3376 int (*callback)(const char *, uint64_t))
3377 {
3378 uint64_t dir_obj, child_dir_zapobj;
3379 dnode_phys_t child_dir_zap, dir, dataset;
3380 dsl_dataset_phys_t *ds;
3381 dsl_dir_phys_t *dd;
3382 zap_phys_t *zap;
3383 size_t size;
3384 int err;
3385
3386 err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3387 if (err != 0) {
3388 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3389 return (err);
3390 }
3391 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3392 dir_obj = ds->ds_dir_obj;
3393
3394 err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3395 if (err != 0) {
3396 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3397 return (err);
3398 }
3399 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3400
3401 child_dir_zapobj = dd->dd_child_dir_zapobj;
3402 err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3403 &child_dir_zap);
3404 if (err != 0) {
3405 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3406 return (err);
3407 }
3408
3409 size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3410 zap = malloc(size);
3411 if (zap != NULL) {
3412 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3413 if (err != 0)
3414 goto done;
3415
3416 if (zap->zap_block_type == ZBT_MICRO)
3417 err = mzap_list((const mzap_phys_t *)zap, size,
3418 callback);
3419 else
3420 err = fzap_list(spa, &child_dir_zap, zap, callback);
3421 } else {
3422 err = ENOMEM;
3423 }
3424 done:
3425 free(zap);
3426 return (err);
3427 }
3428 #endif
3429
3430 /*
3431 * Find the object set given the object number of its dataset object
3432 * and return its details in *objset
3433 */
3434 static int
zfs_mount_dataset(const spa_t * spa,uint64_t objnum,objset_phys_t * objset)3435 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3436 {
3437 dnode_phys_t dataset;
3438 dsl_dataset_phys_t *ds;
3439
3440 if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3441 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3442 return (EIO);
3443 }
3444
3445 ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3446 if (zio_read(spa, &ds->ds_bp, objset)) {
3447 printf("ZFS: can't read object set for dataset %ju\n",
3448 (uintmax_t)objnum);
3449 return (EIO);
3450 }
3451
3452 return (0);
3453 }
3454
3455 /*
3456 * Find the object set pointed to by the BOOTFS property or the root
3457 * dataset if there is none and return its details in *objset
3458 */
3459 static int
zfs_get_root(const spa_t * spa,uint64_t * objid)3460 zfs_get_root(const spa_t *spa, uint64_t *objid)
3461 {
3462 dnode_phys_t dir, propdir;
3463 uint64_t props, bootfs, root;
3464
3465 *objid = 0;
3466
3467 /*
3468 * Start with the MOS directory object.
3469 */
3470 if (objset_get_dnode(spa, spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3471 printf("ZFS: can't read MOS object directory\n");
3472 return (EIO);
3473 }
3474
3475 /*
3476 * Lookup the pool_props and see if we can find a bootfs.
3477 */
3478 if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof(props), 1, &props) == 0 &&
3479 objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3480 zap_lookup(spa, &propdir, "bootfs", sizeof(bootfs), 1, &bootfs) == 0 &&
3481 bootfs != 0) {
3482 *objid = bootfs;
3483 return (0);
3484 }
3485 /*
3486 * Lookup the root dataset directory
3487 */
3488 if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof(root), 1, &root) ||
3489 objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3490 printf("ZFS: can't find root dsl_dir\n");
3491 return (EIO);
3492 }
3493
3494 /*
3495 * Use the information from the dataset directory's bonus buffer
3496 * to find the dataset object and from that the object set itself.
3497 */
3498 dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3499 *objid = dd->dd_head_dataset_obj;
3500 return (0);
3501 }
3502
3503 static int
zfs_mount_impl(const spa_t * spa,uint64_t rootobj,struct zfsmount * mount)3504 zfs_mount_impl(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3505 {
3506
3507 mount->spa = spa;
3508
3509 /*
3510 * Find the root object set if not explicitly provided
3511 */
3512 if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3513 printf("ZFS: can't find root filesystem\n");
3514 return (EIO);
3515 }
3516
3517 if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3518 printf("ZFS: can't open root filesystem\n");
3519 return (EIO);
3520 }
3521
3522 mount->rootobj = rootobj;
3523
3524 return (0);
3525 }
3526
3527 /*
3528 * callback function for feature name checks.
3529 */
3530 static int
check_feature(const char * name,uint64_t value)3531 check_feature(const char *name, uint64_t value)
3532 {
3533 int i;
3534
3535 if (value == 0)
3536 return (0);
3537 if (name[0] == '\0')
3538 return (0);
3539
3540 for (i = 0; features_for_read[i] != NULL; i++) {
3541 if (strcmp(name, features_for_read[i]) == 0)
3542 return (0);
3543 }
3544 printf("ZFS: unsupported feature: %s\n", name);
3545 return (EIO);
3546 }
3547
3548 /*
3549 * Checks whether the MOS features that are active are supported.
3550 */
3551 static int
check_mos_features(const spa_t * spa)3552 check_mos_features(const spa_t *spa)
3553 {
3554 dnode_phys_t dir;
3555 zap_phys_t *zap;
3556 uint64_t objnum;
3557 size_t size;
3558 int rc;
3559
3560 if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3561 &dir)) != 0)
3562 return (rc);
3563 if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3564 sizeof (objnum), 1, &objnum)) != 0) {
3565 /*
3566 * It is older pool without features. As we have already
3567 * tested the label, just return without raising the error.
3568 */
3569 return (0);
3570 }
3571
3572 if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3573 return (rc);
3574
3575 if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3576 return (EIO);
3577
3578 size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3579 zap = malloc(size);
3580 if (zap == NULL)
3581 return (ENOMEM);
3582
3583 if (dnode_read(spa, &dir, 0, zap, size)) {
3584 free(zap);
3585 return (EIO);
3586 }
3587
3588 if (zap->zap_block_type == ZBT_MICRO)
3589 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3590 else
3591 rc = fzap_list(spa, &dir, zap, check_feature);
3592
3593 free(zap);
3594 return (rc);
3595 }
3596
3597 static int
load_nvlist(spa_t * spa,uint64_t obj,nvlist_t ** value)3598 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3599 {
3600 dnode_phys_t dir;
3601 size_t size;
3602 int rc;
3603 char *nv;
3604
3605 *value = NULL;
3606 if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3607 return (rc);
3608 if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3609 dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3610 return (EIO);
3611 }
3612
3613 if (dir.dn_bonuslen != sizeof (uint64_t))
3614 return (EIO);
3615
3616 size = *(uint64_t *)DN_BONUS(&dir);
3617 nv = malloc(size);
3618 if (nv == NULL)
3619 return (ENOMEM);
3620
3621 rc = dnode_read(spa, &dir, 0, nv, size);
3622 if (rc != 0) {
3623 free(nv);
3624 nv = NULL;
3625 return (rc);
3626 }
3627 *value = nvlist_import(nv, size);
3628 free(nv);
3629 return (rc);
3630 }
3631
3632 static int
zfs_spa_init(spa_t * spa)3633 zfs_spa_init(spa_t *spa)
3634 {
3635 struct uberblock checkpoint;
3636 dnode_phys_t dir;
3637 uint64_t config_object;
3638 nvlist_t *nvlist;
3639 int rc;
3640
3641 if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3642 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3643 return (EIO);
3644 }
3645 if (spa->spa_mos->os_type != DMU_OST_META) {
3646 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3647 return (EIO);
3648 }
3649
3650 if (objset_get_dnode(spa, &spa->spa_mos_master,
3651 DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3652 printf("ZFS: failed to read pool %s directory object\n",
3653 spa->spa_name);
3654 return (EIO);
3655 }
3656 /* this is allowed to fail, older pools do not have salt */
3657 rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3658 sizeof (spa->spa_cksum_salt.zcs_bytes),
3659 spa->spa_cksum_salt.zcs_bytes);
3660
3661 rc = check_mos_features(spa);
3662 if (rc != 0) {
3663 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3664 return (rc);
3665 }
3666
3667 rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3668 sizeof (config_object), 1, &config_object);
3669 if (rc != 0) {
3670 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3671 return (EIO);
3672 }
3673 rc = load_nvlist(spa, config_object, &nvlist);
3674 if (rc != 0) {
3675 printf("ZFS: failed to load pool %s nvlist\n", spa->spa_name);
3676 return (rc);
3677 }
3678
3679 rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3680 sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3681 &checkpoint);
3682 if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3683 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3684 sizeof(checkpoint));
3685 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3686 &spa->spa_mos_checkpoint)) {
3687 printf("ZFS: can not read checkpoint data.\n");
3688 return (EIO);
3689 }
3690 }
3691
3692 /*
3693 * Update vdevs from MOS config. Note, we do skip encoding bytes
3694 * here. See also vdev_label_read_config().
3695 */
3696 rc = vdev_init_from_nvlist(spa, nvlist);
3697 nvlist_destroy(nvlist);
3698 return (rc);
3699 }
3700
3701 static int
zfs_dnode_stat(const spa_t * spa,dnode_phys_t * dn,struct stat * sb)3702 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3703 {
3704
3705 if (dn->dn_bonustype != DMU_OT_SA) {
3706 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3707
3708 sb->st_mode = zp->zp_mode;
3709 sb->st_uid = zp->zp_uid;
3710 sb->st_gid = zp->zp_gid;
3711 sb->st_size = zp->zp_size;
3712 } else {
3713 sa_hdr_phys_t *sahdrp;
3714 int hdrsize;
3715 size_t size = 0;
3716 void *buf = NULL;
3717
3718 if (dn->dn_bonuslen != 0)
3719 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3720 else {
3721 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3722 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3723 int error;
3724
3725 size = BP_GET_LSIZE(bp);
3726 buf = malloc(size);
3727 if (buf == NULL)
3728 error = ENOMEM;
3729 else
3730 error = zio_read(spa, bp, buf);
3731
3732 if (error != 0) {
3733 free(buf);
3734 return (error);
3735 }
3736 sahdrp = buf;
3737 } else {
3738 return (EIO);
3739 }
3740 }
3741 hdrsize = SA_HDR_SIZE(sahdrp);
3742 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3743 SA_MODE_OFFSET);
3744 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3745 SA_UID_OFFSET);
3746 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3747 SA_GID_OFFSET);
3748 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3749 SA_SIZE_OFFSET);
3750 free(buf);
3751 }
3752
3753 return (0);
3754 }
3755
3756 static int
zfs_dnode_readlink(const spa_t * spa,dnode_phys_t * dn,char * path,size_t psize)3757 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3758 {
3759 int rc = 0;
3760
3761 if (dn->dn_bonustype == DMU_OT_SA) {
3762 sa_hdr_phys_t *sahdrp = NULL;
3763 size_t size = 0;
3764 void *buf = NULL;
3765 int hdrsize;
3766 char *p;
3767
3768 if (dn->dn_bonuslen != 0) {
3769 sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3770 } else {
3771 blkptr_t *bp;
3772
3773 if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3774 return (EIO);
3775 bp = DN_SPILL_BLKPTR(dn);
3776
3777 size = BP_GET_LSIZE(bp);
3778 buf = malloc(size);
3779 if (buf == NULL)
3780 rc = ENOMEM;
3781 else
3782 rc = zio_read(spa, bp, buf);
3783 if (rc != 0) {
3784 free(buf);
3785 return (rc);
3786 }
3787 sahdrp = buf;
3788 }
3789 hdrsize = SA_HDR_SIZE(sahdrp);
3790 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3791 memcpy(path, p, psize);
3792 free(buf);
3793 return (0);
3794 }
3795 /*
3796 * Second test is purely to silence bogus compiler
3797 * warning about accessing past the end of dn_bonus.
3798 */
3799 if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3800 sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3801 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3802 } else {
3803 rc = dnode_read(spa, dn, 0, path, psize);
3804 }
3805 return (rc);
3806 }
3807
3808 struct obj_list {
3809 uint64_t objnum;
3810 STAILQ_ENTRY(obj_list) entry;
3811 };
3812
3813 /*
3814 * Lookup a file and return its dnode.
3815 */
3816 static int
zfs_lookup(const struct zfsmount * mount,const char * upath,dnode_phys_t * dnode)3817 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3818 {
3819 int rc;
3820 uint64_t objnum;
3821 const spa_t *spa;
3822 dnode_phys_t dn;
3823 const char *p, *q;
3824 char element[256];
3825 char path[1024];
3826 int symlinks_followed = 0;
3827 struct stat sb;
3828 struct obj_list *entry, *tentry;
3829 STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3830
3831 spa = mount->spa;
3832 if (mount->objset.os_type != DMU_OST_ZFS) {
3833 printf("ZFS: unexpected object set type %ju\n",
3834 (uintmax_t)mount->objset.os_type);
3835 return (EIO);
3836 }
3837
3838 if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3839 return (ENOMEM);
3840
3841 /*
3842 * Get the root directory dnode.
3843 */
3844 rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3845 if (rc) {
3846 free(entry);
3847 return (rc);
3848 }
3849
3850 rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3851 if (rc) {
3852 free(entry);
3853 return (rc);
3854 }
3855 entry->objnum = objnum;
3856 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3857
3858 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3859 if (rc != 0)
3860 goto done;
3861
3862 p = upath;
3863 while (p && *p) {
3864 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3865 if (rc != 0)
3866 goto done;
3867
3868 while (*p == '/')
3869 p++;
3870 if (*p == '\0')
3871 break;
3872 q = p;
3873 while (*q != '\0' && *q != '/')
3874 q++;
3875
3876 /* skip dot */
3877 if (p + 1 == q && p[0] == '.') {
3878 p++;
3879 continue;
3880 }
3881 /* double dot */
3882 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3883 p += 2;
3884 if (STAILQ_FIRST(&on_cache) ==
3885 STAILQ_LAST(&on_cache, obj_list, entry)) {
3886 rc = ENOENT;
3887 goto done;
3888 }
3889 entry = STAILQ_FIRST(&on_cache);
3890 STAILQ_REMOVE_HEAD(&on_cache, entry);
3891 free(entry);
3892 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3893 continue;
3894 }
3895 if (q - p + 1 > sizeof(element)) {
3896 rc = ENAMETOOLONG;
3897 goto done;
3898 }
3899 memcpy(element, p, q - p);
3900 element[q - p] = 0;
3901 p = q;
3902
3903 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3904 goto done;
3905 if (!S_ISDIR(sb.st_mode)) {
3906 rc = ENOTDIR;
3907 goto done;
3908 }
3909
3910 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3911 if (rc)
3912 goto done;
3913 objnum = ZFS_DIRENT_OBJ(objnum);
3914
3915 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3916 rc = ENOMEM;
3917 goto done;
3918 }
3919 entry->objnum = objnum;
3920 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3921 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3922 if (rc)
3923 goto done;
3924
3925 /*
3926 * Check for symlink.
3927 */
3928 rc = zfs_dnode_stat(spa, &dn, &sb);
3929 if (rc)
3930 goto done;
3931 if (S_ISLNK(sb.st_mode)) {
3932 if (symlinks_followed > 10) {
3933 rc = EMLINK;
3934 goto done;
3935 }
3936 symlinks_followed++;
3937
3938 /*
3939 * Read the link value and copy the tail of our
3940 * current path onto the end.
3941 */
3942 if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3943 rc = ENAMETOOLONG;
3944 goto done;
3945 }
3946 strcpy(&path[sb.st_size], p);
3947
3948 rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3949 if (rc != 0)
3950 goto done;
3951
3952 /*
3953 * Restart with the new path, starting either at
3954 * the root or at the parent depending whether or
3955 * not the link is relative.
3956 */
3957 p = path;
3958 if (*p == '/') {
3959 while (STAILQ_FIRST(&on_cache) !=
3960 STAILQ_LAST(&on_cache, obj_list, entry)) {
3961 entry = STAILQ_FIRST(&on_cache);
3962 STAILQ_REMOVE_HEAD(&on_cache, entry);
3963 free(entry);
3964 }
3965 } else {
3966 entry = STAILQ_FIRST(&on_cache);
3967 STAILQ_REMOVE_HEAD(&on_cache, entry);
3968 free(entry);
3969 }
3970 objnum = (STAILQ_FIRST(&on_cache))->objnum;
3971 }
3972 }
3973
3974 *dnode = dn;
3975 done:
3976 STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3977 free(entry);
3978 return (rc);
3979 }
3980
3981 /*
3982 * Return either a cached copy of the bootenv, or read each of the vdev children
3983 * looking for the bootenv. Cache what's found and return the results. Returns 0
3984 * when benvp is filled in, and some errno when not.
3985 */
3986 static int
zfs_get_bootenv_spa(spa_t * spa,nvlist_t ** benvp)3987 zfs_get_bootenv_spa(spa_t *spa, nvlist_t **benvp)
3988 {
3989 vdev_t *vd;
3990 nvlist_t *benv = NULL;
3991
3992 if (spa->spa_bootenv == NULL) {
3993 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children,
3994 v_childlink) {
3995 benv = vdev_read_bootenv(vd);
3996
3997 if (benv != NULL)
3998 break;
3999 }
4000 spa->spa_bootenv = benv;
4001 }
4002 benv = spa->spa_bootenv;
4003
4004 if (benv == NULL)
4005 return (ENOENT);
4006
4007 *benvp = benv;
4008 return (0);
4009 }
4010
4011 /*
4012 * Store nvlist to pool label bootenv area. Also updates cached pointer in spa.
4013 */
4014 static int
zfs_set_bootenv_spa(spa_t * spa,nvlist_t * benv)4015 zfs_set_bootenv_spa(spa_t *spa, nvlist_t *benv)
4016 {
4017 vdev_t *vd;
4018
4019 STAILQ_FOREACH(vd, &spa->spa_root_vdev->v_children, v_childlink) {
4020 vdev_write_bootenv(vd, benv);
4021 }
4022
4023 spa->spa_bootenv = benv;
4024 return (0);
4025 }
4026
4027 /*
4028 * Get bootonce value by key. The bootonce <key, value> pair is removed from the
4029 * bootenv nvlist and the remaining nvlist is committed back to disk. This process
4030 * the bootonce flag since we've reached the point in the boot that we've 'used'
4031 * the BE. For chained boot scenarios, we may reach this point multiple times (but
4032 * only remove it and return 0 the first time).
4033 */
4034 static int
zfs_get_bootonce_spa(spa_t * spa,const char * key,char * buf,size_t size)4035 zfs_get_bootonce_spa(spa_t *spa, const char *key, char *buf, size_t size)
4036 {
4037 nvlist_t *benv;
4038 char *result = NULL;
4039 int result_size, rv;
4040
4041 if ((rv = zfs_get_bootenv_spa(spa, &benv)) != 0)
4042 return (rv);
4043
4044 if ((rv = nvlist_find(benv, key, DATA_TYPE_STRING, NULL,
4045 &result, &result_size)) == 0) {
4046 if (result_size == 0) {
4047 /* ignore empty string */
4048 rv = ENOENT;
4049 } else if (buf != NULL) {
4050 size = MIN((size_t)result_size + 1, size);
4051 strlcpy(buf, result, size);
4052 }
4053 (void)nvlist_remove(benv, key, DATA_TYPE_STRING);
4054 (void)zfs_set_bootenv_spa(spa, benv);
4055 }
4056
4057 return (rv);
4058 }
4059