1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/disp.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dbuf.h> 32 #include <sys/dnode.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_impl.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dsl_dir.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/spa.h> 40 #include <sys/zio.h> 41 #include <sys/dmu_zfetch.h> 42 #include <sys/range_tree.h> 43 #include <sys/zfs_project.h> 44 45 dnode_stats_t dnode_stats = { 46 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 }, 47 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 }, 48 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 }, 49 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 }, 50 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 }, 51 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 }, 52 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 }, 53 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 }, 54 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 }, 55 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 }, 56 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 }, 57 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 }, 58 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 }, 59 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 }, 60 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 }, 61 { "dnode_allocate", KSTAT_DATA_UINT64 }, 62 { "dnode_reallocate", KSTAT_DATA_UINT64 }, 63 { "dnode_buf_evict", KSTAT_DATA_UINT64 }, 64 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 }, 65 { "dnode_alloc_race", KSTAT_DATA_UINT64 }, 66 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 }, 67 { "dnode_move_invalid", KSTAT_DATA_UINT64 }, 68 { "dnode_move_recheck1", KSTAT_DATA_UINT64 }, 69 { "dnode_move_recheck2", KSTAT_DATA_UINT64 }, 70 { "dnode_move_special", KSTAT_DATA_UINT64 }, 71 { "dnode_move_handle", KSTAT_DATA_UINT64 }, 72 { "dnode_move_rwlock", KSTAT_DATA_UINT64 }, 73 { "dnode_move_active", KSTAT_DATA_UINT64 }, 74 }; 75 76 static kstat_t *dnode_ksp; 77 static kmem_cache_t *dnode_cache; 78 79 static dnode_phys_t dnode_phys_zero; 80 81 int zfs_default_bs = SPA_MINBLOCKSHIFT; 82 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 83 84 #ifdef _KERNEL 85 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 86 #endif /* _KERNEL */ 87 88 static int 89 dbuf_compare(const void *x1, const void *x2) 90 { 91 const dmu_buf_impl_t *d1 = x1; 92 const dmu_buf_impl_t *d2 = x2; 93 94 int cmp = TREE_CMP(d1->db_level, d2->db_level); 95 if (likely(cmp)) 96 return (cmp); 97 98 cmp = TREE_CMP(d1->db_blkid, d2->db_blkid); 99 if (likely(cmp)) 100 return (cmp); 101 102 if (d1->db_state == DB_SEARCH) { 103 ASSERT3S(d2->db_state, !=, DB_SEARCH); 104 return (-1); 105 } else if (d2->db_state == DB_SEARCH) { 106 ASSERT3S(d1->db_state, !=, DB_SEARCH); 107 return (1); 108 } 109 110 return (TREE_PCMP(d1, d2)); 111 } 112 113 /* ARGSUSED */ 114 static int 115 dnode_cons(void *arg, void *unused, int kmflag) 116 { 117 dnode_t *dn = arg; 118 int i; 119 120 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 121 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 122 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 123 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 124 cv_init(&dn->dn_nodnholds, NULL, CV_DEFAULT, NULL); 125 126 /* 127 * Every dbuf has a reference, and dropping a tracked reference is 128 * O(number of references), so don't track dn_holds. 129 */ 130 zfs_refcount_create_untracked(&dn->dn_holds); 131 zfs_refcount_create(&dn->dn_tx_holds); 132 list_link_init(&dn->dn_link); 133 134 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 135 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 136 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 137 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 138 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 139 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 140 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 141 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid)); 142 143 for (i = 0; i < TXG_SIZE; i++) { 144 multilist_link_init(&dn->dn_dirty_link[i]); 145 dn->dn_free_ranges[i] = NULL; 146 list_create(&dn->dn_dirty_records[i], 147 sizeof (dbuf_dirty_record_t), 148 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 149 } 150 151 dn->dn_allocated_txg = 0; 152 dn->dn_free_txg = 0; 153 dn->dn_assigned_txg = 0; 154 dn->dn_dirty_txg = 0; 155 dn->dn_dirtyctx = 0; 156 dn->dn_dirtyctx_firstset = NULL; 157 dn->dn_bonus = NULL; 158 dn->dn_have_spill = B_FALSE; 159 dn->dn_zio = NULL; 160 dn->dn_oldused = 0; 161 dn->dn_oldflags = 0; 162 dn->dn_olduid = 0; 163 dn->dn_oldgid = 0; 164 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 165 dn->dn_newuid = 0; 166 dn->dn_newgid = 0; 167 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 168 dn->dn_id_flags = 0; 169 170 dn->dn_dbufs_count = 0; 171 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 172 offsetof(dmu_buf_impl_t, db_link)); 173 174 dn->dn_moved = 0; 175 return (0); 176 } 177 178 /* ARGSUSED */ 179 static void 180 dnode_dest(void *arg, void *unused) 181 { 182 int i; 183 dnode_t *dn = arg; 184 185 rw_destroy(&dn->dn_struct_rwlock); 186 mutex_destroy(&dn->dn_mtx); 187 mutex_destroy(&dn->dn_dbufs_mtx); 188 cv_destroy(&dn->dn_notxholds); 189 cv_destroy(&dn->dn_nodnholds); 190 zfs_refcount_destroy(&dn->dn_holds); 191 zfs_refcount_destroy(&dn->dn_tx_holds); 192 ASSERT(!list_link_active(&dn->dn_link)); 193 194 for (i = 0; i < TXG_SIZE; i++) { 195 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 196 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 197 list_destroy(&dn->dn_dirty_records[i]); 198 ASSERT0(dn->dn_next_nblkptr[i]); 199 ASSERT0(dn->dn_next_nlevels[i]); 200 ASSERT0(dn->dn_next_indblkshift[i]); 201 ASSERT0(dn->dn_next_bonustype[i]); 202 ASSERT0(dn->dn_rm_spillblk[i]); 203 ASSERT0(dn->dn_next_bonuslen[i]); 204 ASSERT0(dn->dn_next_blksz[i]); 205 ASSERT0(dn->dn_next_maxblkid[i]); 206 } 207 208 ASSERT0(dn->dn_allocated_txg); 209 ASSERT0(dn->dn_free_txg); 210 ASSERT0(dn->dn_assigned_txg); 211 ASSERT0(dn->dn_dirty_txg); 212 ASSERT0(dn->dn_dirtyctx); 213 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 214 ASSERT3P(dn->dn_bonus, ==, NULL); 215 ASSERT(!dn->dn_have_spill); 216 ASSERT3P(dn->dn_zio, ==, NULL); 217 ASSERT0(dn->dn_oldused); 218 ASSERT0(dn->dn_oldflags); 219 ASSERT0(dn->dn_olduid); 220 ASSERT0(dn->dn_oldgid); 221 ASSERT0(dn->dn_oldprojid); 222 ASSERT0(dn->dn_newuid); 223 ASSERT0(dn->dn_newgid); 224 ASSERT0(dn->dn_newprojid); 225 ASSERT0(dn->dn_id_flags); 226 227 ASSERT0(dn->dn_dbufs_count); 228 avl_destroy(&dn->dn_dbufs); 229 } 230 231 void 232 dnode_init(void) 233 { 234 ASSERT(dnode_cache == NULL); 235 dnode_cache = kmem_cache_create("dnode_t", 236 sizeof (dnode_t), 237 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 238 #ifdef _KERNEL 239 kmem_cache_set_move(dnode_cache, dnode_move); 240 241 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc", 242 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t), 243 KSTAT_FLAG_VIRTUAL); 244 if (dnode_ksp != NULL) { 245 dnode_ksp->ks_data = &dnode_stats; 246 kstat_install(dnode_ksp); 247 } 248 #endif /* _KERNEL */ 249 } 250 251 void 252 dnode_fini(void) 253 { 254 if (dnode_ksp != NULL) { 255 kstat_delete(dnode_ksp); 256 dnode_ksp = NULL; 257 } 258 259 kmem_cache_destroy(dnode_cache); 260 dnode_cache = NULL; 261 } 262 263 264 #ifdef ZFS_DEBUG 265 void 266 dnode_verify(dnode_t *dn) 267 { 268 int drop_struct_lock = FALSE; 269 270 ASSERT(dn->dn_phys); 271 ASSERT(dn->dn_objset); 272 ASSERT(dn->dn_handle->dnh_dnode == dn); 273 274 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 275 276 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 277 return; 278 279 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 280 rw_enter(&dn->dn_struct_rwlock, RW_READER); 281 drop_struct_lock = TRUE; 282 } 283 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 284 int i; 285 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots); 286 ASSERT3U(dn->dn_indblkshift, >=, 0); 287 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 288 if (dn->dn_datablkshift) { 289 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 290 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 291 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 292 } 293 ASSERT3U(dn->dn_nlevels, <=, 30); 294 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 295 ASSERT3U(dn->dn_nblkptr, >=, 1); 296 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 297 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen); 298 ASSERT3U(dn->dn_datablksz, ==, 299 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 300 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 301 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 302 dn->dn_bonuslen, <=, max_bonuslen); 303 for (i = 0; i < TXG_SIZE; i++) { 304 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 305 } 306 } 307 if (dn->dn_phys->dn_type != DMU_OT_NONE) 308 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 309 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 310 if (dn->dn_dbuf != NULL) { 311 ASSERT3P(dn->dn_phys, ==, 312 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 313 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 314 } 315 if (drop_struct_lock) 316 rw_exit(&dn->dn_struct_rwlock); 317 } 318 #endif 319 320 void 321 dnode_byteswap(dnode_phys_t *dnp) 322 { 323 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 324 int i; 325 326 if (dnp->dn_type == DMU_OT_NONE) { 327 bzero(dnp, sizeof (dnode_phys_t)); 328 return; 329 } 330 331 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 332 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 333 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots); 334 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 335 dnp->dn_used = BSWAP_64(dnp->dn_used); 336 337 /* 338 * dn_nblkptr is only one byte, so it's OK to read it in either 339 * byte order. We can't read dn_bouslen. 340 */ 341 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 342 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 343 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 344 buf64[i] = BSWAP_64(buf64[i]); 345 346 /* 347 * OK to check dn_bonuslen for zero, because it won't matter if 348 * we have the wrong byte order. This is necessary because the 349 * dnode dnode is smaller than a regular dnode. 350 */ 351 if (dnp->dn_bonuslen != 0) { 352 dmu_object_byteswap_t byteswap; 353 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 354 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype); 355 dmu_ot_byteswap[byteswap].ob_func(DN_BONUS(dnp), 356 DN_MAX_BONUS_LEN(dnp)); 357 } 358 359 /* Swap SPILL block if we have one */ 360 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 361 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t)); 362 363 } 364 365 void 366 dnode_buf_byteswap(void *vbuf, size_t size) 367 { 368 int i = 0; 369 370 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 371 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 372 373 while (i < size) { 374 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i); 375 dnode_byteswap(dnp); 376 377 i += DNODE_MIN_SIZE; 378 if (dnp->dn_type != DMU_OT_NONE) 379 i += dnp->dn_extra_slots * DNODE_MIN_SIZE; 380 } 381 } 382 383 void 384 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 385 { 386 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 387 388 dnode_setdirty(dn, tx); 389 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 390 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 391 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 392 dn->dn_bonuslen = newsize; 393 if (newsize == 0) 394 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 395 else 396 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 397 rw_exit(&dn->dn_struct_rwlock); 398 } 399 400 void 401 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 402 { 403 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 404 dnode_setdirty(dn, tx); 405 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 406 dn->dn_bonustype = newtype; 407 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 408 rw_exit(&dn->dn_struct_rwlock); 409 } 410 411 void 412 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 413 { 414 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1); 415 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 416 dnode_setdirty(dn, tx); 417 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 418 dn->dn_have_spill = B_FALSE; 419 } 420 421 static void 422 dnode_setdblksz(dnode_t *dn, int size) 423 { 424 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 425 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 426 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 427 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 428 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 429 dn->dn_datablksz = size; 430 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 431 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 432 } 433 434 static dnode_t * 435 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 436 uint64_t object, dnode_handle_t *dnh) 437 { 438 dnode_t *dn; 439 440 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 441 #ifdef _KERNEL 442 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 443 #endif /* _KERNEL */ 444 dn->dn_moved = 0; 445 446 /* 447 * Defer setting dn_objset until the dnode is ready to be a candidate 448 * for the dnode_move() callback. 449 */ 450 dn->dn_object = object; 451 dn->dn_dbuf = db; 452 dn->dn_handle = dnh; 453 dn->dn_phys = dnp; 454 455 if (dnp->dn_datablkszsec) { 456 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 457 } else { 458 dn->dn_datablksz = 0; 459 dn->dn_datablkszsec = 0; 460 dn->dn_datablkshift = 0; 461 } 462 dn->dn_indblkshift = dnp->dn_indblkshift; 463 dn->dn_nlevels = dnp->dn_nlevels; 464 dn->dn_type = dnp->dn_type; 465 dn->dn_nblkptr = dnp->dn_nblkptr; 466 dn->dn_checksum = dnp->dn_checksum; 467 dn->dn_compress = dnp->dn_compress; 468 dn->dn_bonustype = dnp->dn_bonustype; 469 dn->dn_bonuslen = dnp->dn_bonuslen; 470 dn->dn_num_slots = dnp->dn_extra_slots + 1; 471 dn->dn_maxblkid = dnp->dn_maxblkid; 472 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 473 dn->dn_id_flags = 0; 474 475 dmu_zfetch_init(&dn->dn_zfetch, dn); 476 477 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 478 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 479 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode)); 480 481 mutex_enter(&os->os_lock); 482 483 /* 484 * Exclude special dnodes from os_dnodes so an empty os_dnodes 485 * signifies that the special dnodes have no references from 486 * their children (the entries in os_dnodes). This allows 487 * dnode_destroy() to easily determine if the last child has 488 * been removed and then complete eviction of the objset. 489 */ 490 if (!DMU_OBJECT_IS_SPECIAL(object)) 491 list_insert_head(&os->os_dnodes, dn); 492 membar_producer(); 493 494 /* 495 * Everything else must be valid before assigning dn_objset 496 * makes the dnode eligible for dnode_move(). 497 */ 498 dn->dn_objset = os; 499 500 dnh->dnh_dnode = dn; 501 mutex_exit(&os->os_lock); 502 503 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 504 505 return (dn); 506 } 507 508 /* 509 * Caller must be holding the dnode handle, which is released upon return. 510 */ 511 static void 512 dnode_destroy(dnode_t *dn) 513 { 514 objset_t *os = dn->dn_objset; 515 boolean_t complete_os_eviction = B_FALSE; 516 517 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 518 519 mutex_enter(&os->os_lock); 520 POINTER_INVALIDATE(&dn->dn_objset); 521 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 522 list_remove(&os->os_dnodes, dn); 523 complete_os_eviction = 524 list_is_empty(&os->os_dnodes) && 525 list_link_active(&os->os_evicting_node); 526 } 527 mutex_exit(&os->os_lock); 528 529 /* the dnode can no longer move, so we can release the handle */ 530 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock)) 531 zrl_remove(&dn->dn_handle->dnh_zrlock); 532 533 dn->dn_allocated_txg = 0; 534 dn->dn_free_txg = 0; 535 dn->dn_assigned_txg = 0; 536 dn->dn_dirty_txg = 0; 537 538 dn->dn_dirtyctx = 0; 539 if (dn->dn_dirtyctx_firstset != NULL) { 540 kmem_free(dn->dn_dirtyctx_firstset, 1); 541 dn->dn_dirtyctx_firstset = NULL; 542 } 543 if (dn->dn_bonus != NULL) { 544 mutex_enter(&dn->dn_bonus->db_mtx); 545 dbuf_destroy(dn->dn_bonus); 546 dn->dn_bonus = NULL; 547 } 548 dn->dn_zio = NULL; 549 550 dn->dn_have_spill = B_FALSE; 551 dn->dn_oldused = 0; 552 dn->dn_oldflags = 0; 553 dn->dn_olduid = 0; 554 dn->dn_oldgid = 0; 555 dn->dn_oldprojid = ZFS_DEFAULT_PROJID; 556 dn->dn_newuid = 0; 557 dn->dn_newgid = 0; 558 dn->dn_newprojid = ZFS_DEFAULT_PROJID; 559 dn->dn_id_flags = 0; 560 561 dmu_zfetch_fini(&dn->dn_zfetch); 562 kmem_cache_free(dnode_cache, dn); 563 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 564 565 if (complete_os_eviction) 566 dmu_objset_evict_done(os); 567 } 568 569 void 570 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 571 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx) 572 { 573 int i; 574 575 ASSERT3U(dn_slots, >, 0); 576 ASSERT3U(dn_slots << DNODE_SHIFT, <=, 577 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))); 578 ASSERT3U(blocksize, <=, 579 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 580 if (blocksize == 0) 581 blocksize = 1 << zfs_default_bs; 582 else 583 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 584 585 if (ibs == 0) 586 ibs = zfs_default_ibs; 587 588 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 589 590 dprintf("os=%p obj=%" PRIu64 " txg=%" PRIu64 591 " blocksize=%d ibs=%d dn_slots=%d\n", 592 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots); 593 DNODE_STAT_BUMP(dnode_allocate); 594 595 ASSERT(dn->dn_type == DMU_OT_NONE); 596 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 597 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 598 ASSERT(ot != DMU_OT_NONE); 599 ASSERT(DMU_OT_IS_VALID(ot)); 600 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 601 (bonustype == DMU_OT_SA && bonuslen == 0) || 602 (bonustype != DMU_OT_NONE && bonuslen != 0)); 603 ASSERT(DMU_OT_IS_VALID(bonustype)); 604 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots)); 605 ASSERT(dn->dn_type == DMU_OT_NONE); 606 ASSERT0(dn->dn_maxblkid); 607 ASSERT0(dn->dn_allocated_txg); 608 ASSERT0(dn->dn_dirty_txg); 609 ASSERT0(dn->dn_assigned_txg); 610 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 611 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1); 612 ASSERT(avl_is_empty(&dn->dn_dbufs)); 613 614 for (i = 0; i < TXG_SIZE; i++) { 615 ASSERT0(dn->dn_next_nblkptr[i]); 616 ASSERT0(dn->dn_next_nlevels[i]); 617 ASSERT0(dn->dn_next_indblkshift[i]); 618 ASSERT0(dn->dn_next_bonuslen[i]); 619 ASSERT0(dn->dn_next_bonustype[i]); 620 ASSERT0(dn->dn_rm_spillblk[i]); 621 ASSERT0(dn->dn_next_blksz[i]); 622 ASSERT0(dn->dn_next_maxblkid[i]); 623 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i])); 624 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 625 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 626 } 627 628 dn->dn_type = ot; 629 dnode_setdblksz(dn, blocksize); 630 dn->dn_indblkshift = ibs; 631 dn->dn_nlevels = 1; 632 dn->dn_num_slots = dn_slots; 633 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 634 dn->dn_nblkptr = 1; 635 else { 636 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR, 637 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 638 SPA_BLKPTRSHIFT)); 639 } 640 641 dn->dn_bonustype = bonustype; 642 dn->dn_bonuslen = bonuslen; 643 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 644 dn->dn_compress = ZIO_COMPRESS_INHERIT; 645 dn->dn_dirtyctx = 0; 646 647 dn->dn_free_txg = 0; 648 if (dn->dn_dirtyctx_firstset) { 649 kmem_free(dn->dn_dirtyctx_firstset, 1); 650 dn->dn_dirtyctx_firstset = NULL; 651 } 652 653 dn->dn_allocated_txg = tx->tx_txg; 654 dn->dn_id_flags = 0; 655 656 dnode_setdirty(dn, tx); 657 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 658 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 659 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 660 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 661 } 662 663 void 664 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 665 dmu_object_type_t bonustype, int bonuslen, int dn_slots, 666 boolean_t keep_spill, dmu_tx_t *tx) 667 { 668 int nblkptr; 669 670 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 671 ASSERT3U(blocksize, <=, 672 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 673 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 674 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 675 ASSERT(tx->tx_txg != 0); 676 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 677 (bonustype != DMU_OT_NONE && bonuslen != 0) || 678 (bonustype == DMU_OT_SA && bonuslen == 0)); 679 ASSERT(DMU_OT_IS_VALID(bonustype)); 680 ASSERT3U(bonuslen, <=, 681 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)))); 682 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT)); 683 684 dnode_free_interior_slots(dn); 685 DNODE_STAT_BUMP(dnode_reallocate); 686 687 /* clean up any unreferenced dbufs */ 688 dnode_evict_dbufs(dn); 689 690 dn->dn_id_flags = 0; 691 692 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 693 dnode_setdirty(dn, tx); 694 if (dn->dn_datablksz != blocksize) { 695 /* change blocksize */ 696 ASSERT(dn->dn_maxblkid == 0 && 697 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 698 dnode_block_freed(dn, 0))); 699 dnode_setdblksz(dn, blocksize); 700 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 701 } 702 if (dn->dn_bonuslen != bonuslen) 703 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 704 705 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 706 nblkptr = 1; 707 else 708 nblkptr = MIN(DN_MAX_NBLKPTR, 709 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >> 710 SPA_BLKPTRSHIFT)); 711 if (dn->dn_bonustype != bonustype) 712 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 713 if (dn->dn_nblkptr != nblkptr) 714 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 715 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) { 716 dbuf_rm_spill(dn, tx); 717 dnode_rm_spill(dn, tx); 718 } 719 rw_exit(&dn->dn_struct_rwlock); 720 721 /* change type */ 722 dn->dn_type = ot; 723 724 /* change bonus size and type */ 725 mutex_enter(&dn->dn_mtx); 726 dn->dn_bonustype = bonustype; 727 dn->dn_bonuslen = bonuslen; 728 dn->dn_num_slots = dn_slots; 729 dn->dn_nblkptr = nblkptr; 730 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 731 dn->dn_compress = ZIO_COMPRESS_INHERIT; 732 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 733 734 /* fix up the bonus db_size */ 735 if (dn->dn_bonus) { 736 dn->dn_bonus->db.db_size = 737 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) - 738 (dn->dn_nblkptr - 1) * sizeof (blkptr_t); 739 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 740 } 741 742 dn->dn_allocated_txg = tx->tx_txg; 743 mutex_exit(&dn->dn_mtx); 744 } 745 746 #ifdef _KERNEL 747 static void 748 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 749 { 750 int i; 751 752 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 753 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 754 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 755 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 756 757 /* Copy fields. */ 758 ndn->dn_objset = odn->dn_objset; 759 ndn->dn_object = odn->dn_object; 760 ndn->dn_dbuf = odn->dn_dbuf; 761 ndn->dn_handle = odn->dn_handle; 762 ndn->dn_phys = odn->dn_phys; 763 ndn->dn_type = odn->dn_type; 764 ndn->dn_bonuslen = odn->dn_bonuslen; 765 ndn->dn_bonustype = odn->dn_bonustype; 766 ndn->dn_nblkptr = odn->dn_nblkptr; 767 ndn->dn_checksum = odn->dn_checksum; 768 ndn->dn_compress = odn->dn_compress; 769 ndn->dn_nlevels = odn->dn_nlevels; 770 ndn->dn_indblkshift = odn->dn_indblkshift; 771 ndn->dn_datablkshift = odn->dn_datablkshift; 772 ndn->dn_datablkszsec = odn->dn_datablkszsec; 773 ndn->dn_datablksz = odn->dn_datablksz; 774 ndn->dn_maxblkid = odn->dn_maxblkid; 775 ndn->dn_num_slots = odn->dn_num_slots; 776 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0], 777 sizeof (odn->dn_next_type)); 778 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 779 sizeof (odn->dn_next_nblkptr)); 780 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 781 sizeof (odn->dn_next_nlevels)); 782 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 783 sizeof (odn->dn_next_indblkshift)); 784 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 785 sizeof (odn->dn_next_bonustype)); 786 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 787 sizeof (odn->dn_rm_spillblk)); 788 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 789 sizeof (odn->dn_next_bonuslen)); 790 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 791 sizeof (odn->dn_next_blksz)); 792 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0], 793 sizeof (odn->dn_next_maxblkid)); 794 for (i = 0; i < TXG_SIZE; i++) { 795 list_move_tail(&ndn->dn_dirty_records[i], 796 &odn->dn_dirty_records[i]); 797 } 798 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 799 sizeof (odn->dn_free_ranges)); 800 ndn->dn_allocated_txg = odn->dn_allocated_txg; 801 ndn->dn_free_txg = odn->dn_free_txg; 802 ndn->dn_assigned_txg = odn->dn_assigned_txg; 803 ndn->dn_dirty_txg = odn->dn_dirty_txg; 804 ndn->dn_dirtyctx = odn->dn_dirtyctx; 805 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 806 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0); 807 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 808 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 809 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 810 ndn->dn_dbufs_count = odn->dn_dbufs_count; 811 ndn->dn_bonus = odn->dn_bonus; 812 ndn->dn_have_spill = odn->dn_have_spill; 813 ndn->dn_zio = odn->dn_zio; 814 ndn->dn_oldused = odn->dn_oldused; 815 ndn->dn_oldflags = odn->dn_oldflags; 816 ndn->dn_olduid = odn->dn_olduid; 817 ndn->dn_oldgid = odn->dn_oldgid; 818 ndn->dn_oldprojid = odn->dn_oldprojid; 819 ndn->dn_newuid = odn->dn_newuid; 820 ndn->dn_newgid = odn->dn_newgid; 821 ndn->dn_newprojid = odn->dn_newprojid; 822 ndn->dn_id_flags = odn->dn_id_flags; 823 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 824 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 825 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 826 827 /* 828 * Update back pointers. Updating the handle fixes the back pointer of 829 * every descendant dbuf as well as the bonus dbuf. 830 */ 831 ASSERT(ndn->dn_handle->dnh_dnode == odn); 832 ndn->dn_handle->dnh_dnode = ndn; 833 if (ndn->dn_zfetch.zf_dnode == odn) { 834 ndn->dn_zfetch.zf_dnode = ndn; 835 } 836 837 /* 838 * Invalidate the original dnode by clearing all of its back pointers. 839 */ 840 odn->dn_dbuf = NULL; 841 odn->dn_handle = NULL; 842 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 843 offsetof(dmu_buf_impl_t, db_link)); 844 odn->dn_dbufs_count = 0; 845 odn->dn_bonus = NULL; 846 odn->dn_zfetch.zf_dnode = NULL; 847 848 /* 849 * Set the low bit of the objset pointer to ensure that dnode_move() 850 * recognizes the dnode as invalid in any subsequent callback. 851 */ 852 POINTER_INVALIDATE(&odn->dn_objset); 853 854 /* 855 * Satisfy the destructor. 856 */ 857 for (i = 0; i < TXG_SIZE; i++) { 858 list_create(&odn->dn_dirty_records[i], 859 sizeof (dbuf_dirty_record_t), 860 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 861 odn->dn_free_ranges[i] = NULL; 862 odn->dn_next_nlevels[i] = 0; 863 odn->dn_next_indblkshift[i] = 0; 864 odn->dn_next_bonustype[i] = 0; 865 odn->dn_rm_spillblk[i] = 0; 866 odn->dn_next_bonuslen[i] = 0; 867 odn->dn_next_blksz[i] = 0; 868 } 869 odn->dn_allocated_txg = 0; 870 odn->dn_free_txg = 0; 871 odn->dn_assigned_txg = 0; 872 odn->dn_dirty_txg = 0; 873 odn->dn_dirtyctx = 0; 874 odn->dn_dirtyctx_firstset = NULL; 875 odn->dn_have_spill = B_FALSE; 876 odn->dn_zio = NULL; 877 odn->dn_oldused = 0; 878 odn->dn_oldflags = 0; 879 odn->dn_olduid = 0; 880 odn->dn_oldgid = 0; 881 odn->dn_oldprojid = ZFS_DEFAULT_PROJID; 882 odn->dn_newuid = 0; 883 odn->dn_newgid = 0; 884 odn->dn_newprojid = ZFS_DEFAULT_PROJID; 885 odn->dn_id_flags = 0; 886 887 /* 888 * Mark the dnode. 889 */ 890 ndn->dn_moved = 1; 891 odn->dn_moved = (uint8_t)-1; 892 } 893 894 /*ARGSUSED*/ 895 static kmem_cbrc_t 896 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 897 { 898 dnode_t *odn = buf, *ndn = newbuf; 899 objset_t *os; 900 int64_t refcount; 901 uint32_t dbufs; 902 903 /* 904 * The dnode is on the objset's list of known dnodes if the objset 905 * pointer is valid. We set the low bit of the objset pointer when 906 * freeing the dnode to invalidate it, and the memory patterns written 907 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 908 * A newly created dnode sets the objset pointer last of all to indicate 909 * that the dnode is known and in a valid state to be moved by this 910 * function. 911 */ 912 os = odn->dn_objset; 913 if (!POINTER_IS_VALID(os)) { 914 DNODE_STAT_BUMP(dnode_move_invalid); 915 return (KMEM_CBRC_DONT_KNOW); 916 } 917 918 /* 919 * Ensure that the objset does not go away during the move. 920 */ 921 rw_enter(&os_lock, RW_WRITER); 922 if (os != odn->dn_objset) { 923 rw_exit(&os_lock); 924 DNODE_STAT_BUMP(dnode_move_recheck1); 925 return (KMEM_CBRC_DONT_KNOW); 926 } 927 928 /* 929 * If the dnode is still valid, then so is the objset. We know that no 930 * valid objset can be freed while we hold os_lock, so we can safely 931 * ensure that the objset remains in use. 932 */ 933 mutex_enter(&os->os_lock); 934 935 /* 936 * Recheck the objset pointer in case the dnode was removed just before 937 * acquiring the lock. 938 */ 939 if (os != odn->dn_objset) { 940 mutex_exit(&os->os_lock); 941 rw_exit(&os_lock); 942 DNODE_STAT_BUMP(dnode_move_recheck2); 943 return (KMEM_CBRC_DONT_KNOW); 944 } 945 946 /* 947 * At this point we know that as long as we hold os->os_lock, the dnode 948 * cannot be freed and fields within the dnode can be safely accessed. 949 * The objset listing this dnode cannot go away as long as this dnode is 950 * on its list. 951 */ 952 rw_exit(&os_lock); 953 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 954 mutex_exit(&os->os_lock); 955 DNODE_STAT_BUMP(dnode_move_special); 956 return (KMEM_CBRC_NO); 957 } 958 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 959 960 /* 961 * Lock the dnode handle to prevent the dnode from obtaining any new 962 * holds. This also prevents the descendant dbufs and the bonus dbuf 963 * from accessing the dnode, so that we can discount their holds. The 964 * handle is safe to access because we know that while the dnode cannot 965 * go away, neither can its handle. Once we hold dnh_zrlock, we can 966 * safely move any dnode referenced only by dbufs. 967 */ 968 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 969 mutex_exit(&os->os_lock); 970 DNODE_STAT_BUMP(dnode_move_handle); 971 return (KMEM_CBRC_LATER); 972 } 973 974 /* 975 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 976 * We need to guarantee that there is a hold for every dbuf in order to 977 * determine whether the dnode is actively referenced. Falsely matching 978 * a dbuf to an active hold would lead to an unsafe move. It's possible 979 * that a thread already having an active dnode hold is about to add a 980 * dbuf, and we can't compare hold and dbuf counts while the add is in 981 * progress. 982 */ 983 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 984 zrl_exit(&odn->dn_handle->dnh_zrlock); 985 mutex_exit(&os->os_lock); 986 DNODE_STAT_BUMP(dnode_move_rwlock); 987 return (KMEM_CBRC_LATER); 988 } 989 990 /* 991 * A dbuf may be removed (evicted) without an active dnode hold. In that 992 * case, the dbuf count is decremented under the handle lock before the 993 * dbuf's hold is released. This order ensures that if we count the hold 994 * after the dbuf is removed but before its hold is released, we will 995 * treat the unmatched hold as active and exit safely. If we count the 996 * hold before the dbuf is removed, the hold is discounted, and the 997 * removal is blocked until the move completes. 998 */ 999 refcount = zfs_refcount_count(&odn->dn_holds); 1000 ASSERT(refcount >= 0); 1001 dbufs = odn->dn_dbufs_count; 1002 1003 /* We can't have more dbufs than dnode holds. */ 1004 ASSERT3U(dbufs, <=, refcount); 1005 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 1006 uint32_t, dbufs); 1007 1008 if (refcount > dbufs) { 1009 rw_exit(&odn->dn_struct_rwlock); 1010 zrl_exit(&odn->dn_handle->dnh_zrlock); 1011 mutex_exit(&os->os_lock); 1012 DNODE_STAT_BUMP(dnode_move_active); 1013 return (KMEM_CBRC_LATER); 1014 } 1015 1016 rw_exit(&odn->dn_struct_rwlock); 1017 1018 /* 1019 * At this point we know that anyone with a hold on the dnode is not 1020 * actively referencing it. The dnode is known and in a valid state to 1021 * move. We're holding the locks needed to execute the critical section. 1022 */ 1023 dnode_move_impl(odn, ndn); 1024 1025 list_link_replace(&odn->dn_link, &ndn->dn_link); 1026 /* If the dnode was safe to move, the refcount cannot have changed. */ 1027 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds)); 1028 ASSERT(dbufs == ndn->dn_dbufs_count); 1029 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 1030 mutex_exit(&os->os_lock); 1031 1032 return (KMEM_CBRC_YES); 1033 } 1034 #endif /* _KERNEL */ 1035 1036 static void 1037 dnode_slots_hold(dnode_children_t *children, int idx, int slots) 1038 { 1039 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1040 1041 for (int i = idx; i < idx + slots; i++) { 1042 dnode_handle_t *dnh = &children->dnc_children[i]; 1043 zrl_add(&dnh->dnh_zrlock); 1044 } 1045 } 1046 1047 static void 1048 dnode_slots_rele(dnode_children_t *children, int idx, int slots) 1049 { 1050 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1051 1052 for (int i = idx; i < idx + slots; i++) { 1053 dnode_handle_t *dnh = &children->dnc_children[i]; 1054 1055 if (zrl_is_locked(&dnh->dnh_zrlock)) 1056 zrl_exit(&dnh->dnh_zrlock); 1057 else 1058 zrl_remove(&dnh->dnh_zrlock); 1059 } 1060 } 1061 1062 static void 1063 dnode_slots_enter(dnode_children_t *children, int idx, int slots, 1064 kstat_named_t *statp) 1065 { 1066 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1067 1068 retry: 1069 for (int i = idx; i < idx + slots; i++) { 1070 dnode_handle_t *dnh = &children->dnc_children[i]; 1071 1072 if (!zrl_tryenter(&dnh->dnh_zrlock)) { 1073 for (int j = idx; j < i; j++) { 1074 dnh = &children->dnc_children[j]; 1075 zrl_exit(&dnh->dnh_zrlock); 1076 } 1077 1078 atomic_add_64(&statp->value.ui64, 1); 1079 kpreempt(KPREEMPT_SYNC); 1080 goto retry; 1081 } 1082 } 1083 } 1084 1085 static void 1086 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr) 1087 { 1088 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1089 1090 for (int i = idx; i < idx + slots; i++) { 1091 dnode_handle_t *dnh = &children->dnc_children[i]; 1092 dnh->dnh_dnode = ptr; 1093 } 1094 } 1095 1096 static boolean_t 1097 dnode_check_slots_free(dnode_children_t *children, int idx, int slots) 1098 { 1099 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1100 1101 /* 1102 * If all dnode slots are either already free or 1103 * evictable return B_TRUE. 1104 */ 1105 for (int i = idx; i < idx + slots; i++) { 1106 dnode_handle_t *dnh = &children->dnc_children[i]; 1107 dnode_t *dn = dnh->dnh_dnode; 1108 1109 if (dn == DN_SLOT_FREE) { 1110 continue; 1111 } else if (DN_SLOT_IS_PTR(dn)) { 1112 mutex_enter(&dn->dn_mtx); 1113 boolean_t can_free = (dn->dn_type == DMU_OT_NONE && 1114 zfs_refcount_is_zero(&dn->dn_holds) && 1115 !DNODE_IS_DIRTY(dn)); 1116 mutex_exit(&dn->dn_mtx); 1117 1118 if (!can_free) 1119 return (B_FALSE); 1120 else 1121 continue; 1122 } else { 1123 return (B_FALSE); 1124 } 1125 } 1126 1127 return (B_TRUE); 1128 } 1129 1130 static void 1131 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots) 1132 { 1133 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1134 1135 for (int i = idx; i < idx + slots; i++) { 1136 dnode_handle_t *dnh = &children->dnc_children[i]; 1137 1138 ASSERT(zrl_is_locked(&dnh->dnh_zrlock)); 1139 1140 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1141 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE); 1142 dnode_destroy(dnh->dnh_dnode); 1143 dnh->dnh_dnode = DN_SLOT_FREE; 1144 } 1145 } 1146 } 1147 1148 void 1149 dnode_free_interior_slots(dnode_t *dn) 1150 { 1151 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db); 1152 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT; 1153 int idx = (dn->dn_object & (epb - 1)) + 1; 1154 int slots = dn->dn_num_slots - 1; 1155 1156 if (slots == 0) 1157 return; 1158 1159 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK); 1160 1161 dnode_slots_enter(children, idx, slots, 1162 &dnode_stats.dnode_free_interior_lock_retry); 1163 1164 dnode_set_slots(children, idx, slots, DN_SLOT_FREE); 1165 dnode_slots_rele(children, idx, slots); 1166 } 1167 1168 void 1169 dnode_special_close(dnode_handle_t *dnh) 1170 { 1171 dnode_t *dn = dnh->dnh_dnode; 1172 1173 /* 1174 * Ensure dnode_rele_and_unlock() has released dn_mtx, after final 1175 * zfs_refcount_remove() 1176 */ 1177 mutex_enter(&dn->dn_mtx); 1178 if (zfs_refcount_count(&dn->dn_holds) > 0) 1179 cv_wait(&dn->dn_nodnholds, &dn->dn_mtx); 1180 mutex_exit(&dn->dn_mtx); 1181 ASSERT3U(zfs_refcount_count(&dn->dn_holds), ==, 0); 1182 1183 ASSERT(dn->dn_dbuf == NULL || 1184 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 1185 zrl_add(&dnh->dnh_zrlock); 1186 dnode_destroy(dn); /* implicit zrl_remove() */ 1187 zrl_destroy(&dnh->dnh_zrlock); 1188 dnh->dnh_dnode = NULL; 1189 } 1190 1191 void 1192 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1193 dnode_handle_t *dnh) 1194 { 1195 dnode_t *dn; 1196 1197 zrl_init(&dnh->dnh_zrlock); 1198 VERIFY3U(1, ==, zrl_tryenter(&dnh->dnh_zrlock)); 1199 1200 dn = dnode_create(os, dnp, NULL, object, dnh); 1201 DNODE_VERIFY(dn); 1202 1203 zrl_exit(&dnh->dnh_zrlock); 1204 } 1205 1206 static void 1207 dnode_buf_evict_async(void *dbu) 1208 { 1209 dnode_children_t *dnc = dbu; 1210 1211 DNODE_STAT_BUMP(dnode_buf_evict); 1212 1213 for (int i = 0; i < dnc->dnc_count; i++) { 1214 dnode_handle_t *dnh = &dnc->dnc_children[i]; 1215 dnode_t *dn; 1216 1217 /* 1218 * The dnode handle lock guards against the dnode moving to 1219 * another valid address, so there is no need here to guard 1220 * against changes to or from NULL. 1221 */ 1222 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1223 zrl_destroy(&dnh->dnh_zrlock); 1224 dnh->dnh_dnode = DN_SLOT_UNINIT; 1225 continue; 1226 } 1227 1228 zrl_add(&dnh->dnh_zrlock); 1229 dn = dnh->dnh_dnode; 1230 /* 1231 * If there are holds on this dnode, then there should 1232 * be holds on the dnode's containing dbuf as well; thus 1233 * it wouldn't be eligible for eviction and this function 1234 * would not have been called. 1235 */ 1236 ASSERT(zfs_refcount_is_zero(&dn->dn_holds)); 1237 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds)); 1238 1239 dnode_destroy(dn); /* implicit zrl_remove() for first slot */ 1240 zrl_destroy(&dnh->dnh_zrlock); 1241 dnh->dnh_dnode = DN_SLOT_UNINIT; 1242 } 1243 kmem_free(dnc, sizeof (dnode_children_t) + 1244 dnc->dnc_count * sizeof (dnode_handle_t)); 1245 } 1246 1247 /* 1248 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used 1249 * to ensure the hole at the specified object offset is large enough to 1250 * hold the dnode being created. The slots parameter is also used to ensure 1251 * a dnode does not span multiple dnode blocks. In both of these cases, if 1252 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases 1253 * are only possible when using DNODE_MUST_BE_FREE. 1254 * 1255 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0. 1256 * dnode_hold_impl() will check if the requested dnode is already consumed 1257 * as an extra dnode slot by an large dnode, in which case it returns 1258 * ENOENT. 1259 * 1260 * If the DNODE_DRY_RUN flag is set, we don't actually hold the dnode, just 1261 * return whether the hold would succeed or not. tag and dnp should set to 1262 * NULL in this case. 1263 * 1264 * errors: 1265 * EINVAL - invalid object number or flags. 1266 * ENOSPC - hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE) 1267 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE) 1268 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE) 1269 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED) 1270 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED) 1271 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED) 1272 * EIO - i/o error error when reading the meta dnode dbuf. 1273 * succeeds even for free dnodes. 1274 */ 1275 int 1276 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots, 1277 void *tag, dnode_t **dnp) 1278 { 1279 int epb, idx, err; 1280 int drop_struct_lock = FALSE; 1281 int type; 1282 uint64_t blk; 1283 dnode_t *mdn, *dn; 1284 dmu_buf_impl_t *db; 1285 dnode_children_t *dnc; 1286 dnode_phys_t *dn_block; 1287 dnode_handle_t *dnh; 1288 1289 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0)); 1290 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0)); 1291 IMPLY(flag & DNODE_DRY_RUN, (tag == NULL) && (dnp == NULL)); 1292 1293 /* 1294 * If you are holding the spa config lock as writer, you shouldn't 1295 * be asking the DMU to do *anything* unless it's the root pool 1296 * which may require us to read from the root filesystem while 1297 * holding some (not all) of the locks as writer. 1298 */ 1299 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1300 (spa_is_root(os->os_spa) && 1301 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1302 1303 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE)); 1304 1305 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT || 1306 object == DMU_PROJECTUSED_OBJECT) { 1307 if (object == DMU_USERUSED_OBJECT) 1308 dn = DMU_USERUSED_DNODE(os); 1309 else if (object == DMU_GROUPUSED_OBJECT) 1310 dn = DMU_GROUPUSED_DNODE(os); 1311 else 1312 dn = DMU_PROJECTUSED_DNODE(os); 1313 if (dn == NULL) 1314 return (SET_ERROR(ENOENT)); 1315 type = dn->dn_type; 1316 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1317 return (SET_ERROR(ENOENT)); 1318 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1319 return (SET_ERROR(EEXIST)); 1320 DNODE_VERIFY(dn); 1321 /* Don't actually hold if dry run, just return 0 */ 1322 if (!(flag & DNODE_DRY_RUN)) { 1323 (void) zfs_refcount_add(&dn->dn_holds, tag); 1324 *dnp = dn; 1325 } 1326 return (0); 1327 } 1328 1329 if (object == 0 || object >= DN_MAX_OBJECT) 1330 return (SET_ERROR(EINVAL)); 1331 1332 mdn = DMU_META_DNODE(os); 1333 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1334 1335 DNODE_VERIFY(mdn); 1336 1337 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1338 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1339 drop_struct_lock = TRUE; 1340 } 1341 1342 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1343 db = dbuf_hold(mdn, blk, FTAG); 1344 if (drop_struct_lock) 1345 rw_exit(&mdn->dn_struct_rwlock); 1346 if (db == NULL) { 1347 DNODE_STAT_BUMP(dnode_hold_dbuf_hold); 1348 return (SET_ERROR(EIO)); 1349 } 1350 /* 1351 * We do not need to decrypt to read the dnode so it doesn't matter 1352 * if we get the encrypted or decrypted version. 1353 */ 1354 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT); 1355 if (err) { 1356 DNODE_STAT_BUMP(dnode_hold_dbuf_read); 1357 dbuf_rele(db, FTAG); 1358 return (err); 1359 } 1360 1361 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1362 epb = db->db.db_size >> DNODE_SHIFT; 1363 1364 idx = object & (epb - 1); 1365 dn_block = (dnode_phys_t *)db->db.db_data; 1366 1367 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1368 dnc = dmu_buf_get_user(&db->db); 1369 dnh = NULL; 1370 if (dnc == NULL) { 1371 dnode_children_t *winner; 1372 int skip = 0; 1373 1374 dnc = kmem_zalloc(sizeof (dnode_children_t) + 1375 epb * sizeof (dnode_handle_t), KM_SLEEP); 1376 dnc->dnc_count = epb; 1377 dnh = &dnc->dnc_children[0]; 1378 1379 /* Initialize dnode slot status from dnode_phys_t */ 1380 for (int i = 0; i < epb; i++) { 1381 zrl_init(&dnh[i].dnh_zrlock); 1382 1383 if (skip) { 1384 skip--; 1385 continue; 1386 } 1387 1388 if (dn_block[i].dn_type != DMU_OT_NONE) { 1389 int interior = dn_block[i].dn_extra_slots; 1390 1391 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED); 1392 dnode_set_slots(dnc, i + 1, interior, 1393 DN_SLOT_INTERIOR); 1394 skip = interior; 1395 } else { 1396 dnh[i].dnh_dnode = DN_SLOT_FREE; 1397 skip = 0; 1398 } 1399 } 1400 1401 dmu_buf_init_user(&dnc->dnc_dbu, NULL, 1402 dnode_buf_evict_async, NULL); 1403 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu); 1404 if (winner != NULL) { 1405 1406 for (int i = 0; i < epb; i++) 1407 zrl_destroy(&dnh[i].dnh_zrlock); 1408 1409 kmem_free(dnc, sizeof (dnode_children_t) + 1410 epb * sizeof (dnode_handle_t)); 1411 dnc = winner; 1412 } 1413 } 1414 1415 ASSERT(dnc->dnc_count == epb); 1416 1417 if (flag & DNODE_MUST_BE_ALLOCATED) { 1418 slots = 1; 1419 1420 dnode_slots_hold(dnc, idx, slots); 1421 dnh = &dnc->dnc_children[idx]; 1422 1423 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1424 dn = dnh->dnh_dnode; 1425 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) { 1426 DNODE_STAT_BUMP(dnode_hold_alloc_interior); 1427 dnode_slots_rele(dnc, idx, slots); 1428 dbuf_rele(db, FTAG); 1429 return (SET_ERROR(EEXIST)); 1430 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) { 1431 DNODE_STAT_BUMP(dnode_hold_alloc_misses); 1432 dnode_slots_rele(dnc, idx, slots); 1433 dbuf_rele(db, FTAG); 1434 return (SET_ERROR(ENOENT)); 1435 } else { 1436 dnode_slots_rele(dnc, idx, slots); 1437 dnode_slots_enter(dnc, idx, slots, 1438 &dnode_stats.dnode_hold_alloc_lock_retry); 1439 1440 /* 1441 * Someone else won the race and called dnode_create() 1442 * after we checked DN_SLOT_IS_PTR() above but before 1443 * we acquired the lock. 1444 */ 1445 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1446 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses); 1447 dn = dnh->dnh_dnode; 1448 } else { 1449 dn = dnode_create(os, dn_block + idx, db, 1450 object, dnh); 1451 } 1452 } 1453 1454 mutex_enter(&dn->dn_mtx); 1455 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) { 1456 DNODE_STAT_BUMP(dnode_hold_alloc_type_none); 1457 mutex_exit(&dn->dn_mtx); 1458 dnode_slots_rele(dnc, idx, slots); 1459 dbuf_rele(db, FTAG); 1460 return (SET_ERROR(ENOENT)); 1461 } 1462 1463 /* Don't actually hold if dry run, just return 0 */ 1464 if (flag & DNODE_DRY_RUN) { 1465 mutex_exit(&dn->dn_mtx); 1466 dnode_slots_rele(dnc, idx, slots); 1467 dbuf_rele(db, FTAG); 1468 return (0); 1469 } 1470 1471 DNODE_STAT_BUMP(dnode_hold_alloc_hits); 1472 } else if (flag & DNODE_MUST_BE_FREE) { 1473 1474 if (idx + slots - 1 >= DNODES_PER_BLOCK) { 1475 DNODE_STAT_BUMP(dnode_hold_free_overflow); 1476 dbuf_rele(db, FTAG); 1477 return (SET_ERROR(ENOSPC)); 1478 } 1479 1480 dnode_slots_hold(dnc, idx, slots); 1481 1482 if (!dnode_check_slots_free(dnc, idx, slots)) { 1483 DNODE_STAT_BUMP(dnode_hold_free_misses); 1484 dnode_slots_rele(dnc, idx, slots); 1485 dbuf_rele(db, FTAG); 1486 return (SET_ERROR(ENOSPC)); 1487 } 1488 1489 dnode_slots_rele(dnc, idx, slots); 1490 dnode_slots_enter(dnc, idx, slots, 1491 &dnode_stats.dnode_hold_free_lock_retry); 1492 1493 if (!dnode_check_slots_free(dnc, idx, slots)) { 1494 DNODE_STAT_BUMP(dnode_hold_free_lock_misses); 1495 dnode_slots_rele(dnc, idx, slots); 1496 dbuf_rele(db, FTAG); 1497 return (SET_ERROR(ENOSPC)); 1498 } 1499 1500 /* 1501 * Allocated but otherwise free dnodes which would 1502 * be in the interior of a multi-slot dnodes need 1503 * to be freed. Single slot dnodes can be safely 1504 * re-purposed as a performance optimization. 1505 */ 1506 if (slots > 1) 1507 dnode_reclaim_slots(dnc, idx + 1, slots - 1); 1508 1509 dnh = &dnc->dnc_children[idx]; 1510 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) { 1511 dn = dnh->dnh_dnode; 1512 } else { 1513 dn = dnode_create(os, dn_block + idx, db, 1514 object, dnh); 1515 } 1516 1517 mutex_enter(&dn->dn_mtx); 1518 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) { 1519 DNODE_STAT_BUMP(dnode_hold_free_refcount); 1520 mutex_exit(&dn->dn_mtx); 1521 dnode_slots_rele(dnc, idx, slots); 1522 dbuf_rele(db, FTAG); 1523 return (SET_ERROR(EEXIST)); 1524 } 1525 1526 /* Don't actually hold if dry run, just return 0 */ 1527 if (flag & DNODE_DRY_RUN) { 1528 mutex_exit(&dn->dn_mtx); 1529 dnode_slots_rele(dnc, idx, slots); 1530 dbuf_rele(db, FTAG); 1531 return (0); 1532 } 1533 1534 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR); 1535 DNODE_STAT_BUMP(dnode_hold_free_hits); 1536 } else { 1537 dbuf_rele(db, FTAG); 1538 return (SET_ERROR(EINVAL)); 1539 } 1540 1541 ASSERT0(dn->dn_free_txg); 1542 1543 if (zfs_refcount_add(&dn->dn_holds, tag) == 1) 1544 dbuf_add_ref(db, dnh); 1545 1546 mutex_exit(&dn->dn_mtx); 1547 1548 /* Now we can rely on the hold to prevent the dnode from moving. */ 1549 dnode_slots_rele(dnc, idx, slots); 1550 1551 DNODE_VERIFY(dn); 1552 ASSERT3P(dn->dn_dbuf, ==, db); 1553 ASSERT3U(dn->dn_object, ==, object); 1554 dbuf_rele(db, FTAG); 1555 1556 *dnp = dn; 1557 return (0); 1558 } 1559 1560 /* 1561 * Return held dnode if the object is allocated, NULL if not. 1562 */ 1563 int 1564 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1565 { 1566 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag, 1567 dnp)); 1568 } 1569 1570 /* 1571 * Can only add a reference if there is already at least one 1572 * reference on the dnode. Returns FALSE if unable to add a 1573 * new reference. 1574 */ 1575 boolean_t 1576 dnode_add_ref(dnode_t *dn, void *tag) 1577 { 1578 mutex_enter(&dn->dn_mtx); 1579 if (zfs_refcount_is_zero(&dn->dn_holds)) { 1580 mutex_exit(&dn->dn_mtx); 1581 return (FALSE); 1582 } 1583 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag)); 1584 mutex_exit(&dn->dn_mtx); 1585 return (TRUE); 1586 } 1587 1588 void 1589 dnode_rele(dnode_t *dn, void *tag) 1590 { 1591 mutex_enter(&dn->dn_mtx); 1592 dnode_rele_and_unlock(dn, tag, B_FALSE); 1593 } 1594 1595 void 1596 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting) 1597 { 1598 uint64_t refs; 1599 /* Get while the hold prevents the dnode from moving. */ 1600 dmu_buf_impl_t *db = dn->dn_dbuf; 1601 dnode_handle_t *dnh = dn->dn_handle; 1602 1603 refs = zfs_refcount_remove(&dn->dn_holds, tag); 1604 if (refs == 0) 1605 cv_broadcast(&dn->dn_nodnholds); 1606 mutex_exit(&dn->dn_mtx); 1607 /* dnode could get destroyed at this point, so don't use it anymore */ 1608 1609 /* 1610 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1611 * indirectly by dbuf_rele() while relying on the dnode handle to 1612 * prevent the dnode from moving, since releasing the last hold could 1613 * result in the dnode's parent dbuf evicting its dnode handles. For 1614 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1615 * other direct or indirect hold on the dnode must first drop the dnode 1616 * handle. 1617 */ 1618 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1619 1620 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1621 if (refs == 0 && db != NULL) { 1622 /* 1623 * Another thread could add a hold to the dnode handle in 1624 * dnode_hold_impl() while holding the parent dbuf. Since the 1625 * hold on the parent dbuf prevents the handle from being 1626 * destroyed, the hold on the handle is OK. We can't yet assert 1627 * that the handle has zero references, but that will be 1628 * asserted anyway when the handle gets destroyed. 1629 */ 1630 mutex_enter(&db->db_mtx); 1631 dbuf_rele_and_unlock(db, dnh, evicting); 1632 } 1633 } 1634 1635 /* 1636 * Test whether we can create a dnode at the specified location. 1637 */ 1638 int 1639 dnode_try_claim(objset_t *os, uint64_t object, int slots) 1640 { 1641 return (dnode_hold_impl(os, object, DNODE_MUST_BE_FREE | DNODE_DRY_RUN, 1642 slots, NULL, NULL)); 1643 } 1644 1645 void 1646 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1647 { 1648 objset_t *os = dn->dn_objset; 1649 uint64_t txg = tx->tx_txg; 1650 1651 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1652 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1653 return; 1654 } 1655 1656 DNODE_VERIFY(dn); 1657 1658 #ifdef ZFS_DEBUG 1659 mutex_enter(&dn->dn_mtx); 1660 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1661 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1662 mutex_exit(&dn->dn_mtx); 1663 #endif 1664 1665 /* 1666 * Determine old uid/gid when necessary 1667 */ 1668 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1669 1670 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1671 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1672 1673 /* 1674 * If we are already marked dirty, we're done. 1675 */ 1676 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1677 multilist_sublist_unlock(mls); 1678 return; 1679 } 1680 1681 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) || 1682 !avl_is_empty(&dn->dn_dbufs)); 1683 ASSERT(dn->dn_datablksz != 0); 1684 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1685 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1686 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1687 1688 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1689 dn->dn_object, txg); 1690 1691 multilist_sublist_insert_head(mls, dn); 1692 1693 multilist_sublist_unlock(mls); 1694 1695 /* 1696 * The dnode maintains a hold on its containing dbuf as 1697 * long as there are holds on it. Each instantiated child 1698 * dbuf maintains a hold on the dnode. When the last child 1699 * drops its hold, the dnode will drop its hold on the 1700 * containing dbuf. We add a "dirty hold" here so that the 1701 * dnode will hang around after we finish processing its 1702 * children. 1703 */ 1704 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1705 1706 (void) dbuf_dirty(dn->dn_dbuf, tx); 1707 1708 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1709 } 1710 1711 void 1712 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1713 { 1714 mutex_enter(&dn->dn_mtx); 1715 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1716 mutex_exit(&dn->dn_mtx); 1717 return; 1718 } 1719 dn->dn_free_txg = tx->tx_txg; 1720 mutex_exit(&dn->dn_mtx); 1721 1722 dnode_setdirty(dn, tx); 1723 } 1724 1725 /* 1726 * Try to change the block size for the indicated dnode. This can only 1727 * succeed if there are no blocks allocated or dirty beyond first block 1728 */ 1729 int 1730 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1731 { 1732 dmu_buf_impl_t *db; 1733 int err; 1734 1735 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1736 if (size == 0) 1737 size = SPA_MINBLOCKSIZE; 1738 else 1739 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1740 1741 if (ibs == dn->dn_indblkshift) 1742 ibs = 0; 1743 1744 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1745 return (0); 1746 1747 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1748 1749 /* Check for any allocated blocks beyond the first */ 1750 if (dn->dn_maxblkid != 0) 1751 goto fail; 1752 1753 mutex_enter(&dn->dn_dbufs_mtx); 1754 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1755 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1756 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1757 db->db_blkid != DMU_SPILL_BLKID) { 1758 mutex_exit(&dn->dn_dbufs_mtx); 1759 goto fail; 1760 } 1761 } 1762 mutex_exit(&dn->dn_dbufs_mtx); 1763 1764 if (ibs && dn->dn_nlevels != 1) 1765 goto fail; 1766 1767 /* resize the old block */ 1768 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1769 if (err == 0) { 1770 dbuf_new_size(db, size, tx); 1771 } else if (err != ENOENT) { 1772 goto fail; 1773 } 1774 1775 dnode_setdblksz(dn, size); 1776 dnode_setdirty(dn, tx); 1777 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1778 if (ibs) { 1779 dn->dn_indblkshift = ibs; 1780 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1781 } 1782 /* rele after we have fixed the blocksize in the dnode */ 1783 if (db) 1784 dbuf_rele(db, FTAG); 1785 1786 rw_exit(&dn->dn_struct_rwlock); 1787 return (0); 1788 1789 fail: 1790 rw_exit(&dn->dn_struct_rwlock); 1791 return (SET_ERROR(ENOTSUP)); 1792 } 1793 1794 static void 1795 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx) 1796 { 1797 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1798 int old_nlevels = dn->dn_nlevels; 1799 dmu_buf_impl_t *db; 1800 list_t *list; 1801 dbuf_dirty_record_t *new, *dr, *dr_next; 1802 1803 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1804 1805 dn->dn_nlevels = new_nlevels; 1806 1807 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1808 dn->dn_next_nlevels[txgoff] = new_nlevels; 1809 1810 /* dirty the left indirects */ 1811 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1812 ASSERT(db != NULL); 1813 new = dbuf_dirty(db, tx); 1814 dbuf_rele(db, FTAG); 1815 1816 /* transfer the dirty records to the new indirect */ 1817 mutex_enter(&dn->dn_mtx); 1818 mutex_enter(&new->dt.di.dr_mtx); 1819 list = &dn->dn_dirty_records[txgoff]; 1820 for (dr = list_head(list); dr; dr = dr_next) { 1821 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1822 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1823 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1824 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1825 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1826 list_remove(&dn->dn_dirty_records[txgoff], dr); 1827 list_insert_tail(&new->dt.di.dr_children, dr); 1828 dr->dr_parent = new; 1829 } 1830 } 1831 mutex_exit(&new->dt.di.dr_mtx); 1832 mutex_exit(&dn->dn_mtx); 1833 } 1834 1835 int 1836 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx) 1837 { 1838 int ret = 0; 1839 1840 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1841 1842 if (dn->dn_nlevels == nlevels) { 1843 ret = 0; 1844 goto out; 1845 } else if (nlevels < dn->dn_nlevels) { 1846 ret = SET_ERROR(EINVAL); 1847 goto out; 1848 } 1849 1850 dnode_set_nlevels_impl(dn, nlevels, tx); 1851 1852 out: 1853 rw_exit(&dn->dn_struct_rwlock); 1854 return (ret); 1855 } 1856 1857 /* read-holding callers must not rely on the lock being continuously held */ 1858 void 1859 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read, 1860 boolean_t force) 1861 { 1862 int epbs, new_nlevels; 1863 uint64_t sz; 1864 1865 ASSERT(blkid != DMU_BONUS_BLKID); 1866 1867 ASSERT(have_read ? 1868 RW_READ_HELD(&dn->dn_struct_rwlock) : 1869 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1870 1871 /* 1872 * if we have a read-lock, check to see if we need to do any work 1873 * before upgrading to a write-lock. 1874 */ 1875 if (have_read) { 1876 if (blkid <= dn->dn_maxblkid) 1877 return; 1878 1879 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1880 rw_exit(&dn->dn_struct_rwlock); 1881 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1882 } 1883 } 1884 1885 /* 1886 * Raw sends (indicated by the force flag) require that we take the 1887 * given blkid even if the value is lower than the current value. 1888 */ 1889 if (!force && blkid <= dn->dn_maxblkid) 1890 goto out; 1891 1892 /* 1893 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff] 1894 * to indicate that this field is set. This allows us to set the 1895 * maxblkid to 0 on an existing object in dnode_sync(). 1896 */ 1897 dn->dn_maxblkid = blkid; 1898 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] = 1899 blkid | DMU_NEXT_MAXBLKID_SET; 1900 1901 /* 1902 * Compute the number of levels necessary to support the new maxblkid. 1903 * Raw sends will ensure nlevels is set correctly for us. 1904 */ 1905 new_nlevels = 1; 1906 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1907 for (sz = dn->dn_nblkptr; 1908 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1909 new_nlevels++; 1910 1911 if (!force) { 1912 if (new_nlevels > dn->dn_nlevels) 1913 dnode_set_nlevels_impl(dn, new_nlevels, tx); 1914 } else { 1915 ASSERT3U(dn->dn_nlevels, >=, new_nlevels); 1916 } 1917 1918 out: 1919 if (have_read) 1920 rw_downgrade(&dn->dn_struct_rwlock); 1921 } 1922 1923 static void 1924 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1925 { 1926 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1927 if (db != NULL) { 1928 dmu_buf_will_dirty(&db->db, tx); 1929 dbuf_rele(db, FTAG); 1930 } 1931 } 1932 1933 /* 1934 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid 1935 * and end_blkid. 1936 */ 1937 static void 1938 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid, 1939 dmu_tx_t *tx) 1940 { 1941 dmu_buf_impl_t db_search; 1942 dmu_buf_impl_t *db; 1943 avl_index_t where; 1944 1945 mutex_enter(&dn->dn_dbufs_mtx); 1946 1947 db_search.db_level = 1; 1948 db_search.db_blkid = start_blkid + 1; 1949 db_search.db_state = DB_SEARCH; 1950 for (;;) { 1951 1952 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1953 if (db == NULL) 1954 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1955 1956 if (db == NULL || db->db_level != 1 || 1957 db->db_blkid >= end_blkid) { 1958 break; 1959 } 1960 1961 /* 1962 * Setup the next blkid we want to search for. 1963 */ 1964 db_search.db_blkid = db->db_blkid + 1; 1965 ASSERT3U(db->db_blkid, >=, start_blkid); 1966 1967 /* 1968 * If the dbuf transitions to DB_EVICTING while we're trying 1969 * to dirty it, then we will be unable to discover it in 1970 * the dbuf hash table. This will result in a call to 1971 * dbuf_create() which needs to acquire the dn_dbufs_mtx 1972 * lock. To avoid a deadlock, we drop the lock before 1973 * dirtying the level-1 dbuf. 1974 */ 1975 mutex_exit(&dn->dn_dbufs_mtx); 1976 dnode_dirty_l1(dn, db->db_blkid, tx); 1977 mutex_enter(&dn->dn_dbufs_mtx); 1978 } 1979 1980 #ifdef ZFS_DEBUG 1981 /* 1982 * Walk all the in-core level-1 dbufs and verify they have been dirtied. 1983 */ 1984 db_search.db_level = 1; 1985 db_search.db_blkid = start_blkid + 1; 1986 db_search.db_state = DB_SEARCH; 1987 db = avl_find(&dn->dn_dbufs, &db_search, &where); 1988 if (db == NULL) 1989 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER); 1990 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) { 1991 if (db->db_level != 1 || db->db_blkid >= end_blkid) 1992 break; 1993 ASSERT(db->db_dirtycnt > 0); 1994 } 1995 #endif 1996 mutex_exit(&dn->dn_dbufs_mtx); 1997 } 1998 1999 void 2000 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 2001 { 2002 dmu_buf_impl_t *db; 2003 uint64_t blkoff, blkid, nblks; 2004 int blksz, blkshift, head, tail; 2005 int trunc = FALSE; 2006 int epbs; 2007 2008 blksz = dn->dn_datablksz; 2009 blkshift = dn->dn_datablkshift; 2010 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 2011 2012 if (len == DMU_OBJECT_END) { 2013 len = UINT64_MAX - off; 2014 trunc = TRUE; 2015 } 2016 2017 /* 2018 * First, block align the region to free: 2019 */ 2020 if (ISP2(blksz)) { 2021 head = P2NPHASE(off, blksz); 2022 blkoff = P2PHASE(off, blksz); 2023 if ((off >> blkshift) > dn->dn_maxblkid) 2024 return; 2025 } else { 2026 ASSERT(dn->dn_maxblkid == 0); 2027 if (off == 0 && len >= blksz) { 2028 /* 2029 * Freeing the whole block; fast-track this request. 2030 */ 2031 blkid = 0; 2032 nblks = 1; 2033 if (dn->dn_nlevels > 1) { 2034 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2035 dnode_dirty_l1(dn, 0, tx); 2036 rw_exit(&dn->dn_struct_rwlock); 2037 } 2038 goto done; 2039 } else if (off >= blksz) { 2040 /* Freeing past end-of-data */ 2041 return; 2042 } else { 2043 /* Freeing part of the block. */ 2044 head = blksz - off; 2045 ASSERT3U(head, >, 0); 2046 } 2047 blkoff = off; 2048 } 2049 /* zero out any partial block data at the start of the range */ 2050 if (head) { 2051 int res; 2052 ASSERT3U(blkoff + head, ==, blksz); 2053 if (len < head) 2054 head = len; 2055 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2056 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 2057 TRUE, FALSE, FTAG, &db); 2058 rw_exit(&dn->dn_struct_rwlock); 2059 if (res == 0) { 2060 caddr_t data; 2061 boolean_t dirty; 2062 2063 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, 2064 FTAG); 2065 /* don't dirty if it isn't on disk and isn't dirty */ 2066 dirty = db->db_last_dirty || 2067 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2068 dmu_buf_unlock_parent(db, dblt, FTAG); 2069 if (dirty) { 2070 dmu_buf_will_dirty(&db->db, tx); 2071 data = db->db.db_data; 2072 bzero(data + blkoff, head); 2073 } 2074 dbuf_rele(db, FTAG); 2075 } 2076 off += head; 2077 len -= head; 2078 } 2079 2080 /* If the range was less than one block, we're done */ 2081 if (len == 0) 2082 return; 2083 2084 /* If the remaining range is past end of file, we're done */ 2085 if ((off >> blkshift) > dn->dn_maxblkid) 2086 return; 2087 2088 ASSERT(ISP2(blksz)); 2089 if (trunc) 2090 tail = 0; 2091 else 2092 tail = P2PHASE(len, blksz); 2093 2094 ASSERT0(P2PHASE(off, blksz)); 2095 /* zero out any partial block data at the end of the range */ 2096 if (tail) { 2097 int res; 2098 if (len < tail) 2099 tail = len; 2100 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2101 res = dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 2102 TRUE, FALSE, FTAG, &db); 2103 rw_exit(&dn->dn_struct_rwlock); 2104 if (res == 0) { 2105 boolean_t dirty; 2106 /* don't dirty if not on disk and not dirty */ 2107 db_lock_type_t type = dmu_buf_lock_parent(db, RW_READER, 2108 FTAG); 2109 dirty = db->db_last_dirty || 2110 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr)); 2111 dmu_buf_unlock_parent(db, type, FTAG); 2112 if (dirty) { 2113 dmu_buf_will_dirty(&db->db, tx); 2114 bzero(db->db.db_data, tail); 2115 } 2116 dbuf_rele(db, FTAG); 2117 } 2118 len -= tail; 2119 } 2120 2121 /* If the range did not include a full block, we are done */ 2122 if (len == 0) 2123 return; 2124 2125 ASSERT(IS_P2ALIGNED(off, blksz)); 2126 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 2127 blkid = off >> blkshift; 2128 nblks = len >> blkshift; 2129 if (trunc) 2130 nblks += 1; 2131 2132 /* 2133 * Dirty all the indirect blocks in this range. Note that only 2134 * the first and last indirect blocks can actually be written 2135 * (if they were partially freed) -- they must be dirtied, even if 2136 * they do not exist on disk yet. The interior blocks will 2137 * be freed by free_children(), so they will not actually be written. 2138 * Even though these interior blocks will not be written, we 2139 * dirty them for two reasons: 2140 * 2141 * - It ensures that the indirect blocks remain in memory until 2142 * syncing context. (They have already been prefetched by 2143 * dmu_tx_hold_free(), so we don't have to worry about reading 2144 * them serially here.) 2145 * 2146 * - The dirty space accounting will put pressure on the txg sync 2147 * mechanism to begin syncing, and to delay transactions if there 2148 * is a large amount of freeing. Even though these indirect 2149 * blocks will not be written, we could need to write the same 2150 * amount of space if we copy the freed BPs into deadlists. 2151 */ 2152 if (dn->dn_nlevels > 1) { 2153 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 2154 uint64_t first, last; 2155 2156 first = blkid >> epbs; 2157 dnode_dirty_l1(dn, first, tx); 2158 if (trunc) 2159 last = dn->dn_maxblkid >> epbs; 2160 else 2161 last = (blkid + nblks - 1) >> epbs; 2162 if (last != first) 2163 dnode_dirty_l1(dn, last, tx); 2164 2165 dnode_dirty_l1range(dn, first, last, tx); 2166 2167 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 2168 SPA_BLKPTRSHIFT; 2169 for (uint64_t i = first + 1; i < last; i++) { 2170 /* 2171 * Set i to the blockid of the next non-hole 2172 * level-1 indirect block at or after i. Note 2173 * that dnode_next_offset() operates in terms of 2174 * level-0-equivalent bytes. 2175 */ 2176 uint64_t ibyte = i << shift; 2177 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 2178 &ibyte, 2, 1, 0); 2179 i = ibyte >> shift; 2180 if (i >= last) 2181 break; 2182 2183 /* 2184 * Normally we should not see an error, either 2185 * from dnode_next_offset() or dbuf_hold_level() 2186 * (except for ESRCH from dnode_next_offset). 2187 * If there is an i/o error, then when we read 2188 * this block in syncing context, it will use 2189 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 2190 * to the "failmode" property. dnode_next_offset() 2191 * doesn't have a flag to indicate MUSTSUCCEED. 2192 */ 2193 if (err != 0) 2194 break; 2195 2196 dnode_dirty_l1(dn, i, tx); 2197 } 2198 rw_exit(&dn->dn_struct_rwlock); 2199 } 2200 2201 done: 2202 /* 2203 * Add this range to the dnode range list. 2204 * We will finish up this free operation in the syncing phase. 2205 */ 2206 mutex_enter(&dn->dn_mtx); 2207 int txgoff = tx->tx_txg & TXG_MASK; 2208 if (dn->dn_free_ranges[txgoff] == NULL) { 2209 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, 2210 RANGE_SEG64, NULL, 0, 0); 2211 } 2212 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 2213 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 2214 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 2215 blkid, nblks, tx->tx_txg); 2216 mutex_exit(&dn->dn_mtx); 2217 2218 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 2219 dnode_setdirty(dn, tx); 2220 } 2221 2222 static boolean_t 2223 dnode_spill_freed(dnode_t *dn) 2224 { 2225 int i; 2226 2227 mutex_enter(&dn->dn_mtx); 2228 for (i = 0; i < TXG_SIZE; i++) { 2229 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 2230 break; 2231 } 2232 mutex_exit(&dn->dn_mtx); 2233 return (i < TXG_SIZE); 2234 } 2235 2236 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 2237 uint64_t 2238 dnode_block_freed(dnode_t *dn, uint64_t blkid) 2239 { 2240 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 2241 int i; 2242 2243 if (blkid == DMU_BONUS_BLKID) 2244 return (FALSE); 2245 2246 /* 2247 * If we're in the process of opening the pool, dp will not be 2248 * set yet, but there shouldn't be anything dirty. 2249 */ 2250 if (dp == NULL) 2251 return (FALSE); 2252 2253 if (dn->dn_free_txg) 2254 return (TRUE); 2255 2256 if (blkid == DMU_SPILL_BLKID) 2257 return (dnode_spill_freed(dn)); 2258 2259 mutex_enter(&dn->dn_mtx); 2260 for (i = 0; i < TXG_SIZE; i++) { 2261 if (dn->dn_free_ranges[i] != NULL && 2262 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 2263 break; 2264 } 2265 mutex_exit(&dn->dn_mtx); 2266 return (i < TXG_SIZE); 2267 } 2268 2269 /* call from syncing context when we actually write/free space for this dnode */ 2270 void 2271 dnode_diduse_space(dnode_t *dn, int64_t delta) 2272 { 2273 uint64_t space; 2274 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 2275 dn, dn->dn_phys, 2276 (u_longlong_t)dn->dn_phys->dn_used, 2277 (longlong_t)delta); 2278 2279 mutex_enter(&dn->dn_mtx); 2280 space = DN_USED_BYTES(dn->dn_phys); 2281 if (delta > 0) { 2282 ASSERT3U(space + delta, >=, space); /* no overflow */ 2283 } else { 2284 ASSERT3U(space, >=, -delta); /* no underflow */ 2285 } 2286 space += delta; 2287 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 2288 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 2289 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 2290 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 2291 } else { 2292 dn->dn_phys->dn_used = space; 2293 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 2294 } 2295 mutex_exit(&dn->dn_mtx); 2296 } 2297 2298 /* 2299 * Scans a block at the indicated "level" looking for a hole or data, 2300 * depending on 'flags'. 2301 * 2302 * If level > 0, then we are scanning an indirect block looking at its 2303 * pointers. If level == 0, then we are looking at a block of dnodes. 2304 * 2305 * If we don't find what we are looking for in the block, we return ESRCH. 2306 * Otherwise, return with *offset pointing to the beginning (if searching 2307 * forwards) or end (if searching backwards) of the range covered by the 2308 * block pointer we matched on (or dnode). 2309 * 2310 * The basic search algorithm used below by dnode_next_offset() is to 2311 * use this function to search up the block tree (widen the search) until 2312 * we find something (i.e., we don't return ESRCH) and then search back 2313 * down the tree (narrow the search) until we reach our original search 2314 * level. 2315 */ 2316 static int 2317 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 2318 int lvl, uint64_t blkfill, uint64_t txg) 2319 { 2320 dmu_buf_impl_t *db = NULL; 2321 void *data = NULL; 2322 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 2323 uint64_t epb = 1ULL << epbs; 2324 uint64_t minfill, maxfill; 2325 boolean_t hole; 2326 int i, inc, error, span; 2327 2328 dprintf("probing object %llu offset %llx level %d of %u\n", 2329 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 2330 2331 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock)); 2332 2333 hole = ((flags & DNODE_FIND_HOLE) != 0); 2334 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 2335 ASSERT(txg == 0 || !hole); 2336 2337 if (lvl == dn->dn_phys->dn_nlevels) { 2338 error = 0; 2339 epb = dn->dn_phys->dn_nblkptr; 2340 data = dn->dn_phys->dn_blkptr; 2341 } else { 2342 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 2343 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 2344 if (error) { 2345 if (error != ENOENT) 2346 return (error); 2347 if (hole) 2348 return (0); 2349 /* 2350 * This can only happen when we are searching up 2351 * the block tree for data. We don't really need to 2352 * adjust the offset, as we will just end up looking 2353 * at the pointer to this block in its parent, and its 2354 * going to be unallocated, so we will skip over it. 2355 */ 2356 return (SET_ERROR(ESRCH)); 2357 } 2358 error = dbuf_read(db, NULL, 2359 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT); 2360 if (error) { 2361 dbuf_rele(db, FTAG); 2362 return (error); 2363 } 2364 data = db->db.db_data; 2365 rw_enter(&db->db_rwlock, RW_READER); 2366 } 2367 2368 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 2369 db->db_blkptr->blk_birth <= txg || 2370 BP_IS_HOLE(db->db_blkptr))) { 2371 /* 2372 * This can only happen when we are searching up the tree 2373 * and these conditions mean that we need to keep climbing. 2374 */ 2375 error = SET_ERROR(ESRCH); 2376 } else if (lvl == 0) { 2377 dnode_phys_t *dnp = data; 2378 2379 ASSERT(dn->dn_type == DMU_OT_DNODE); 2380 ASSERT(!(flags & DNODE_FIND_BACKWARDS)); 2381 2382 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1); 2383 i < blkfill; i += dnp[i].dn_extra_slots + 1) { 2384 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 2385 break; 2386 } 2387 2388 if (i == blkfill) 2389 error = SET_ERROR(ESRCH); 2390 2391 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) + 2392 (i << DNODE_SHIFT); 2393 } else { 2394 blkptr_t *bp = data; 2395 uint64_t start = *offset; 2396 span = (lvl - 1) * epbs + dn->dn_datablkshift; 2397 minfill = 0; 2398 maxfill = blkfill << ((lvl - 1) * epbs); 2399 2400 if (hole) 2401 maxfill--; 2402 else 2403 minfill++; 2404 2405 *offset = *offset >> span; 2406 for (i = BF64_GET(*offset, 0, epbs); 2407 i >= 0 && i < epb; i += inc) { 2408 if (BP_GET_FILL(&bp[i]) >= minfill && 2409 BP_GET_FILL(&bp[i]) <= maxfill && 2410 (hole || bp[i].blk_birth > txg)) 2411 break; 2412 if (inc > 0 || *offset > 0) 2413 *offset += inc; 2414 } 2415 *offset = *offset << span; 2416 if (inc < 0) { 2417 /* traversing backwards; position offset at the end */ 2418 ASSERT3U(*offset, <=, start); 2419 *offset = MIN(*offset + (1ULL << span) - 1, start); 2420 } else if (*offset < start) { 2421 *offset = start; 2422 } 2423 if (i < 0 || i >= epb) 2424 error = SET_ERROR(ESRCH); 2425 } 2426 2427 if (db != NULL) { 2428 rw_exit(&db->db_rwlock); 2429 dbuf_rele(db, FTAG); 2430 } 2431 2432 return (error); 2433 } 2434 2435 /* 2436 * Find the next hole, data, or sparse region at or after *offset. 2437 * The value 'blkfill' tells us how many items we expect to find 2438 * in an L0 data block; this value is 1 for normal objects, 2439 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 2440 * DNODES_PER_BLOCK when searching for sparse regions thereof. 2441 * 2442 * Examples: 2443 * 2444 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 2445 * Finds the next/previous hole/data in a file. 2446 * Used in dmu_offset_next(). 2447 * 2448 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 2449 * Finds the next free/allocated dnode an objset's meta-dnode. 2450 * Only finds objects that have new contents since txg (ie. 2451 * bonus buffer changes and content removal are ignored). 2452 * Used in dmu_object_next(). 2453 * 2454 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 2455 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 2456 * Used in dmu_object_alloc(). 2457 */ 2458 int 2459 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 2460 int minlvl, uint64_t blkfill, uint64_t txg) 2461 { 2462 uint64_t initial_offset = *offset; 2463 int lvl, maxlvl; 2464 int error = 0; 2465 2466 if (!(flags & DNODE_FIND_HAVELOCK)) 2467 rw_enter(&dn->dn_struct_rwlock, RW_READER); 2468 2469 if (dn->dn_phys->dn_nlevels == 0) { 2470 error = SET_ERROR(ESRCH); 2471 goto out; 2472 } 2473 2474 if (dn->dn_datablkshift == 0) { 2475 if (*offset < dn->dn_datablksz) { 2476 if (flags & DNODE_FIND_HOLE) 2477 *offset = dn->dn_datablksz; 2478 } else { 2479 error = SET_ERROR(ESRCH); 2480 } 2481 goto out; 2482 } 2483 2484 maxlvl = dn->dn_phys->dn_nlevels; 2485 2486 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 2487 error = dnode_next_offset_level(dn, 2488 flags, offset, lvl, blkfill, txg); 2489 if (error != ESRCH) 2490 break; 2491 } 2492 2493 while (error == 0 && --lvl >= minlvl) { 2494 error = dnode_next_offset_level(dn, 2495 flags, offset, lvl, blkfill, txg); 2496 } 2497 2498 /* 2499 * There's always a "virtual hole" at the end of the object, even 2500 * if all BP's which physically exist are non-holes. 2501 */ 2502 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 2503 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 2504 error = 0; 2505 } 2506 2507 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 2508 initial_offset < *offset : initial_offset > *offset)) 2509 error = SET_ERROR(ESRCH); 2510 out: 2511 if (!(flags & DNODE_FIND_HAVELOCK)) 2512 rw_exit(&dn->dn_struct_rwlock); 2513 2514 return (error); 2515 } 2516