1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2015, Joyent, Inc. 24 */ 25 26 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 27 /* All Rights Reserved */ 28 29 /* 30 * University Copyright- Copyright (c) 1982, 1986, 1988 31 * The Regents of the University of California 32 * All Rights Reserved 33 * 34 * University Acknowledgment- Portions of this document are derived from 35 * software developed by the University of California, Berkeley, and its 36 * contributors. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/systm.h> 41 #include <sys/param.h> 42 #include <sys/t_lock.h> 43 #include <sys/systm.h> 44 #include <sys/vfs.h> 45 #include <sys/vnode.h> 46 #include <sys/dnlc.h> 47 #include <sys/kmem.h> 48 #include <sys/cmn_err.h> 49 #include <sys/vtrace.h> 50 #include <sys/bitmap.h> 51 #include <sys/var.h> 52 #include <sys/sysmacros.h> 53 #include <sys/kstat.h> 54 #include <sys/atomic.h> 55 #include <sys/taskq.h> 56 57 /* 58 * Directory name lookup cache. 59 * Based on code originally done by Robert Elz at Melbourne. 60 * 61 * Names found by directory scans are retained in a cache 62 * for future reference. Each hash chain is ordered by LRU 63 * Cache is indexed by hash value obtained from (vp, name) 64 * where the vp refers to the directory containing the name. 65 */ 66 67 /* 68 * We want to be able to identify files that are referenced only by the DNLC. 69 * When adding a reference from the DNLC, call VN_HOLD_DNLC instead of VN_HOLD, 70 * since multiple DNLC references should only be counted once in v_count. The 71 * VN_HOLD macro itself is aliased to VN_HOLD_CALLER in this file to help 72 * differentiate the behaviors. (Unfortunately it is not possible to #undef 73 * VN_HOLD and retain VN_HOLD_CALLER. Ideally a Makefile rule would grep 74 * uncommented C tokens to check that VN_HOLD is referenced only once in this 75 * file, to define VN_HOLD_CALLER.) 76 */ 77 #define VN_HOLD_CALLER VN_HOLD 78 #define VN_HOLD_DNLC(vp) { \ 79 mutex_enter(&(vp)->v_lock); \ 80 if ((vp)->v_count_dnlc == 0) \ 81 (vp)->v_count++; \ 82 (vp)->v_count_dnlc++; \ 83 mutex_exit(&(vp)->v_lock); \ 84 } 85 #define VN_RELE_DNLC(vp) { \ 86 vn_rele_dnlc(vp); \ 87 } 88 89 /* 90 * Tunable nc_hashavelen is the average length desired for this chain, from 91 * which the size of the nc_hash table is derived at create time. 92 */ 93 #define NC_HASHAVELEN_DEFAULT 4 94 int nc_hashavelen = NC_HASHAVELEN_DEFAULT; 95 96 /* 97 * NC_MOVETOFRONT is the move-to-front threshold: if the hash lookup 98 * depth exceeds this value, we move the looked-up entry to the front of 99 * its hash chain. The idea is to make sure that the most frequently 100 * accessed entries are found most quickly (by keeping them near the 101 * front of their hash chains). 102 */ 103 #define NC_MOVETOFRONT 2 104 105 /* 106 * 107 * DNLC_MAX_RELE is used to size an array on the stack when releasing 108 * vnodes. This array is used rather than calling VN_RELE() inline because 109 * all dnlc locks must be dropped by that time in order to avoid a 110 * possible deadlock. This deadlock occurs when the dnlc holds the last 111 * reference to the vnode and so the VOP_INACTIVE vector is called which 112 * can in turn call back into the dnlc. A global array was used but had 113 * many problems: 114 * 1) Actually doesn't have an upper bound on the array size as 115 * entries can be added after starting the purge. 116 * 2) The locking scheme causes a hang. 117 * 3) Caused serialisation on the global lock. 118 * 4) The array was often unnecessarily huge. 119 * 120 * Note the current value 8 allows up to 4 cache entries (to be purged 121 * from each hash chain), before having to cycle around and retry. 122 * This ought to be ample given that nc_hashavelen is typically very small. 123 */ 124 #define DNLC_MAX_RELE 8 /* must be even */ 125 126 /* 127 * Hash table of name cache entries for fast lookup, dynamically 128 * allocated at startup. 129 */ 130 nc_hash_t *nc_hash; 131 132 /* 133 * Rotors. Used to select entries on a round-robin basis. 134 */ 135 static nc_hash_t *dnlc_purge_fs1_rotor; 136 static nc_hash_t *dnlc_free_rotor; 137 138 /* 139 * # of dnlc entries (uninitialized) 140 * 141 * the initial value was chosen as being 142 * a random string of bits, probably not 143 * normally chosen by a systems administrator 144 */ 145 int ncsize = -1; 146 volatile uint32_t dnlc_nentries = 0; /* current num of name cache entries */ 147 static int nc_hashsz; /* size of hash table */ 148 static int nc_hashmask; /* size of hash table minus 1 */ 149 150 /* 151 * The dnlc_reduce_cache() taskq queue is activated when there are 152 * ncsize name cache entries and if no parameter is provided, it reduces 153 * the size down to dnlc_nentries_low_water, which is by default one 154 * hundreth less (or 99%) of ncsize. 155 * 156 * If a parameter is provided to dnlc_reduce_cache(), then we reduce 157 * the size down based on ncsize_onepercent - where ncsize_onepercent 158 * is 1% of ncsize; however, we never let dnlc_reduce_cache() reduce 159 * the size below 3% of ncsize (ncsize_min_percent). 160 */ 161 #define DNLC_LOW_WATER_DIVISOR_DEFAULT 100 162 uint_t dnlc_low_water_divisor = DNLC_LOW_WATER_DIVISOR_DEFAULT; 163 uint_t dnlc_nentries_low_water; 164 int dnlc_reduce_idle = 1; /* no locking needed */ 165 uint_t ncsize_onepercent; 166 uint_t ncsize_min_percent; 167 168 /* 169 * If dnlc_nentries hits dnlc_max_nentries (twice ncsize) 170 * then this means the dnlc_reduce_cache() taskq is failing to 171 * keep up. In this case we refuse to add new entries to the dnlc 172 * until the taskq catches up. 173 */ 174 uint_t dnlc_max_nentries; /* twice ncsize */ 175 uint64_t dnlc_max_nentries_cnt = 0; /* statistic on times we failed */ 176 177 /* 178 * Tunable to define when we should just remove items from 179 * the end of the chain. 180 */ 181 #define DNLC_LONG_CHAIN 8 182 uint_t dnlc_long_chain = DNLC_LONG_CHAIN; 183 184 /* 185 * ncstats has been deprecated, due to the integer size of the counters 186 * which can easily overflow in the dnlc. 187 * It is maintained (at some expense) for compatability. 188 * The preferred interface is the kstat accessible nc_stats below. 189 */ 190 struct ncstats ncstats; 191 192 struct nc_stats ncs = { 193 { "hits", KSTAT_DATA_UINT64 }, 194 { "misses", KSTAT_DATA_UINT64 }, 195 { "negative_cache_hits", KSTAT_DATA_UINT64 }, 196 { "enters", KSTAT_DATA_UINT64 }, 197 { "double_enters", KSTAT_DATA_UINT64 }, 198 { "purge_total_entries", KSTAT_DATA_UINT64 }, 199 { "purge_all", KSTAT_DATA_UINT64 }, 200 { "purge_vp", KSTAT_DATA_UINT64 }, 201 { "purge_vfs", KSTAT_DATA_UINT64 }, 202 { "purge_fs1", KSTAT_DATA_UINT64 }, 203 { "pick_free", KSTAT_DATA_UINT64 }, 204 { "pick_heuristic", KSTAT_DATA_UINT64 }, 205 { "pick_last", KSTAT_DATA_UINT64 }, 206 207 /* directory caching stats */ 208 209 { "dir_hits", KSTAT_DATA_UINT64 }, 210 { "dir_misses", KSTAT_DATA_UINT64 }, 211 { "dir_cached_current", KSTAT_DATA_UINT64 }, 212 { "dir_entries_cached_current", KSTAT_DATA_UINT64 }, 213 { "dir_cached_total", KSTAT_DATA_UINT64 }, 214 { "dir_start_no_memory", KSTAT_DATA_UINT64 }, 215 { "dir_add_no_memory", KSTAT_DATA_UINT64 }, 216 { "dir_add_abort", KSTAT_DATA_UINT64 }, 217 { "dir_add_max", KSTAT_DATA_UINT64 }, 218 { "dir_remove_entry_fail", KSTAT_DATA_UINT64 }, 219 { "dir_remove_space_fail", KSTAT_DATA_UINT64 }, 220 { "dir_update_fail", KSTAT_DATA_UINT64 }, 221 { "dir_fini_purge", KSTAT_DATA_UINT64 }, 222 { "dir_reclaim_last", KSTAT_DATA_UINT64 }, 223 { "dir_reclaim_any", KSTAT_DATA_UINT64 }, 224 }; 225 226 static int doingcache = 1; 227 228 vnode_t negative_cache_vnode; 229 230 /* 231 * Insert entry at the front of the queue 232 */ 233 #define nc_inshash(ncp, hp) \ 234 { \ 235 (ncp)->hash_next = (hp)->hash_next; \ 236 (ncp)->hash_prev = (ncache_t *)(hp); \ 237 (hp)->hash_next->hash_prev = (ncp); \ 238 (hp)->hash_next = (ncp); \ 239 } 240 241 /* 242 * Remove entry from hash queue 243 */ 244 #define nc_rmhash(ncp) \ 245 { \ 246 (ncp)->hash_prev->hash_next = (ncp)->hash_next; \ 247 (ncp)->hash_next->hash_prev = (ncp)->hash_prev; \ 248 (ncp)->hash_prev = NULL; \ 249 (ncp)->hash_next = NULL; \ 250 } 251 252 /* 253 * Free an entry. 254 */ 255 #define dnlc_free(ncp) \ 256 { \ 257 kmem_free((ncp), sizeof (ncache_t) + (ncp)->namlen); \ 258 atomic_dec_32(&dnlc_nentries); \ 259 } 260 261 262 /* 263 * Cached directory info. 264 * ====================== 265 */ 266 267 /* 268 * Cached directory free space hash function. 269 * Needs the free space handle and the dcp to get the hash table size 270 * Returns the hash index. 271 */ 272 #define DDFHASH(handle, dcp) ((handle >> 2) & (dcp)->dc_fhash_mask) 273 274 /* 275 * Cached directory name entry hash function. 276 * Uses the name and returns in the input arguments the hash and the name 277 * length. 278 */ 279 #define DNLC_DIR_HASH(name, hash, namelen) \ 280 { \ 281 char Xc; \ 282 const char *Xcp; \ 283 hash = *name; \ 284 for (Xcp = (name + 1); (Xc = *Xcp) != 0; Xcp++) \ 285 hash = (hash << 4) + hash + Xc; \ 286 ASSERT((Xcp - (name)) <= ((1 << NBBY) - 1)); \ 287 namelen = Xcp - (name); \ 288 } 289 290 /* special dircache_t pointer to indicate error should be returned */ 291 /* 292 * The anchor directory cache pointer can contain 3 types of values, 293 * 1) NULL: No directory cache 294 * 2) DC_RET_LOW_MEM (-1): There was a directory cache that found to be 295 * too big or a memory shortage occurred. This value remains in the 296 * pointer until a dnlc_dir_start() which returns the a DNOMEM error. 297 * This is kludgy but efficient and only visible in this source file. 298 * 3) A valid cache pointer. 299 */ 300 #define DC_RET_LOW_MEM (dircache_t *)1 301 #define VALID_DIR_CACHE(dcp) ((dircache_t *)(dcp) > DC_RET_LOW_MEM) 302 303 /* Tunables */ 304 uint_t dnlc_dir_enable = 1; /* disable caching directories by setting to 0 */ 305 uint_t dnlc_dir_min_size = 40; /* min no of directory entries before caching */ 306 uint_t dnlc_dir_max_size = UINT_MAX; /* ditto maximum */ 307 uint_t dnlc_dir_hash_size_shift = 3; /* 8 entries per hash bucket */ 308 uint_t dnlc_dir_min_reclaim = 350000; /* approx 1MB of dcentrys */ 309 /* 310 * dnlc_dir_hash_resize_shift determines when the hash tables 311 * get re-adjusted due to growth or shrinkage 312 * - currently 2 indicating that there can be at most 4 313 * times or at least one quarter the number of entries 314 * before hash table readjustment. Note that with 315 * dnlc_dir_hash_size_shift above set at 3 this would 316 * mean readjustment would occur if the average number 317 * of entries went above 32 or below 2 318 */ 319 uint_t dnlc_dir_hash_resize_shift = 2; /* readjust rate */ 320 321 static kmem_cache_t *dnlc_dir_space_cache; /* free space entry cache */ 322 static dchead_t dc_head; /* anchor of cached directories */ 323 324 /* Prototypes */ 325 static ncache_t *dnlc_get(uchar_t namlen); 326 static ncache_t *dnlc_search(vnode_t *dp, const char *name, uchar_t namlen, 327 int hash); 328 static void dnlc_dir_reclaim(void *unused); 329 static void dnlc_dir_abort(dircache_t *dcp); 330 static void dnlc_dir_adjust_fhash(dircache_t *dcp); 331 static void dnlc_dir_adjust_nhash(dircache_t *dcp); 332 static void do_dnlc_reduce_cache(void *); 333 334 335 /* 336 * Initialize the directory cache. 337 */ 338 void 339 dnlc_init() 340 { 341 nc_hash_t *hp; 342 kstat_t *ksp; 343 int i; 344 345 /* 346 * Set up the size of the dnlc (ncsize) and its low water mark. 347 */ 348 if (ncsize == -1) { 349 /* calculate a reasonable size for the low water */ 350 dnlc_nentries_low_water = 4 * (v.v_proc + maxusers) + 320; 351 ncsize = dnlc_nentries_low_water + 352 (dnlc_nentries_low_water / dnlc_low_water_divisor); 353 } else { 354 /* don't change the user specified ncsize */ 355 dnlc_nentries_low_water = 356 ncsize - (ncsize / dnlc_low_water_divisor); 357 } 358 if (ncsize <= 0) { 359 doingcache = 0; 360 dnlc_dir_enable = 0; /* also disable directory caching */ 361 ncsize = 0; 362 cmn_err(CE_NOTE, "name cache (dnlc) disabled"); 363 return; 364 } 365 dnlc_max_nentries = ncsize * 2; 366 ncsize_onepercent = ncsize / 100; 367 ncsize_min_percent = ncsize_onepercent * 3; 368 369 /* 370 * Initialise the hash table. 371 * Compute hash size rounding to the next power of two. 372 */ 373 nc_hashsz = ncsize / nc_hashavelen; 374 nc_hashsz = 1 << highbit(nc_hashsz); 375 nc_hashmask = nc_hashsz - 1; 376 nc_hash = kmem_zalloc(nc_hashsz * sizeof (*nc_hash), KM_SLEEP); 377 for (i = 0; i < nc_hashsz; i++) { 378 hp = (nc_hash_t *)&nc_hash[i]; 379 mutex_init(&hp->hash_lock, NULL, MUTEX_DEFAULT, NULL); 380 hp->hash_next = (ncache_t *)hp; 381 hp->hash_prev = (ncache_t *)hp; 382 } 383 384 /* 385 * Initialize rotors 386 */ 387 dnlc_free_rotor = dnlc_purge_fs1_rotor = &nc_hash[0]; 388 389 /* 390 * Set up the directory caching to use kmem_cache_alloc 391 * for its free space entries so that we can get a callback 392 * when the system is short on memory, to allow us to free 393 * up some memory. we don't use the constructor/deconstructor 394 * functions. 395 */ 396 dnlc_dir_space_cache = kmem_cache_create("dnlc_space_cache", 397 sizeof (dcfree_t), 0, NULL, NULL, dnlc_dir_reclaim, NULL, 398 NULL, 0); 399 400 /* 401 * Initialise the head of the cached directory structures 402 */ 403 mutex_init(&dc_head.dch_lock, NULL, MUTEX_DEFAULT, NULL); 404 dc_head.dch_next = (dircache_t *)&dc_head; 405 dc_head.dch_prev = (dircache_t *)&dc_head; 406 407 /* 408 * Initialise the reference count of the negative cache vnode to 1 409 * so that it never goes away (VOP_INACTIVE isn't called on it). 410 */ 411 negative_cache_vnode.v_count = 1; 412 negative_cache_vnode.v_count_dnlc = 0; 413 414 /* 415 * Initialise kstats - both the old compatability raw kind and 416 * the more extensive named stats. 417 */ 418 ksp = kstat_create("unix", 0, "ncstats", "misc", KSTAT_TYPE_RAW, 419 sizeof (struct ncstats), KSTAT_FLAG_VIRTUAL); 420 if (ksp) { 421 ksp->ks_data = (void *) &ncstats; 422 kstat_install(ksp); 423 } 424 ksp = kstat_create("unix", 0, "dnlcstats", "misc", KSTAT_TYPE_NAMED, 425 sizeof (ncs) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL); 426 if (ksp) { 427 ksp->ks_data = (void *) &ncs; 428 kstat_install(ksp); 429 } 430 } 431 432 /* 433 * Add a name to the directory cache. 434 */ 435 void 436 dnlc_enter(vnode_t *dp, const char *name, vnode_t *vp) 437 { 438 ncache_t *ncp; 439 nc_hash_t *hp; 440 uchar_t namlen; 441 int hash; 442 443 TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_enter_start:"); 444 445 if (!doingcache) { 446 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 447 "dnlc_enter_end:(%S) %d", "not caching", 0); 448 return; 449 } 450 451 /* 452 * Get a new dnlc entry. Assume the entry won't be in the cache 453 * and initialize it now 454 */ 455 DNLCHASH(name, dp, hash, namlen); 456 if ((ncp = dnlc_get(namlen)) == NULL) 457 return; 458 ncp->dp = dp; 459 VN_HOLD_DNLC(dp); 460 ncp->vp = vp; 461 VN_HOLD_DNLC(vp); 462 bcopy(name, ncp->name, namlen + 1); /* name and null */ 463 ncp->hash = hash; 464 hp = &nc_hash[hash & nc_hashmask]; 465 466 mutex_enter(&hp->hash_lock); 467 if (dnlc_search(dp, name, namlen, hash) != NULL) { 468 mutex_exit(&hp->hash_lock); 469 ncstats.dbl_enters++; 470 ncs.ncs_dbl_enters.value.ui64++; 471 VN_RELE_DNLC(dp); 472 VN_RELE_DNLC(vp); 473 dnlc_free(ncp); /* crfree done here */ 474 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 475 "dnlc_enter_end:(%S) %d", "dbl enter", ncstats.dbl_enters); 476 return; 477 } 478 /* 479 * Insert back into the hash chain. 480 */ 481 nc_inshash(ncp, hp); 482 mutex_exit(&hp->hash_lock); 483 ncstats.enters++; 484 ncs.ncs_enters.value.ui64++; 485 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 486 "dnlc_enter_end:(%S) %d", "done", ncstats.enters); 487 } 488 489 /* 490 * Add a name to the directory cache. 491 * 492 * This function is basically identical with 493 * dnlc_enter(). The difference is that when the 494 * desired dnlc entry is found, the vnode in the 495 * ncache is compared with the vnode passed in. 496 * 497 * If they are not equal then the ncache is 498 * updated with the passed in vnode. Otherwise 499 * it just frees up the newly allocated dnlc entry. 500 */ 501 void 502 dnlc_update(vnode_t *dp, const char *name, vnode_t *vp) 503 { 504 ncache_t *ncp; 505 ncache_t *tcp; 506 vnode_t *tvp; 507 nc_hash_t *hp; 508 int hash; 509 uchar_t namlen; 510 511 TRACE_0(TR_FAC_NFS, TR_DNLC_ENTER_START, "dnlc_update_start:"); 512 513 if (!doingcache) { 514 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 515 "dnlc_update_end:(%S) %d", "not caching", 0); 516 return; 517 } 518 519 /* 520 * Get a new dnlc entry and initialize it now. 521 * If we fail to get a new entry, call dnlc_remove() to purge 522 * any existing dnlc entry including negative cache (DNLC_NO_VNODE) 523 * entry. 524 * Failure to clear an existing entry could result in false dnlc 525 * lookup (negative/stale entry). 526 */ 527 DNLCHASH(name, dp, hash, namlen); 528 if ((ncp = dnlc_get(namlen)) == NULL) { 529 dnlc_remove(dp, name); 530 return; 531 } 532 ncp->dp = dp; 533 VN_HOLD_DNLC(dp); 534 ncp->vp = vp; 535 VN_HOLD_DNLC(vp); 536 bcopy(name, ncp->name, namlen + 1); /* name and null */ 537 ncp->hash = hash; 538 hp = &nc_hash[hash & nc_hashmask]; 539 540 mutex_enter(&hp->hash_lock); 541 if ((tcp = dnlc_search(dp, name, namlen, hash)) != NULL) { 542 if (tcp->vp != vp) { 543 tvp = tcp->vp; 544 tcp->vp = vp; 545 mutex_exit(&hp->hash_lock); 546 VN_RELE_DNLC(tvp); 547 ncstats.enters++; 548 ncs.ncs_enters.value.ui64++; 549 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 550 "dnlc_update_end:(%S) %d", "done", ncstats.enters); 551 } else { 552 mutex_exit(&hp->hash_lock); 553 VN_RELE_DNLC(vp); 554 ncstats.dbl_enters++; 555 ncs.ncs_dbl_enters.value.ui64++; 556 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 557 "dnlc_update_end:(%S) %d", 558 "dbl enter", ncstats.dbl_enters); 559 } 560 VN_RELE_DNLC(dp); 561 dnlc_free(ncp); /* crfree done here */ 562 return; 563 } 564 /* 565 * insert the new entry, since it is not in dnlc yet 566 */ 567 nc_inshash(ncp, hp); 568 mutex_exit(&hp->hash_lock); 569 ncstats.enters++; 570 ncs.ncs_enters.value.ui64++; 571 TRACE_2(TR_FAC_NFS, TR_DNLC_ENTER_END, 572 "dnlc_update_end:(%S) %d", "done", ncstats.enters); 573 } 574 575 /* 576 * Look up a name in the directory name cache. 577 * 578 * Return a doubly-held vnode if found: one hold so that it may 579 * remain in the cache for other users, the other hold so that 580 * the cache is not re-cycled and the identity of the vnode is 581 * lost before the caller can use the vnode. 582 */ 583 vnode_t * 584 dnlc_lookup(vnode_t *dp, const char *name) 585 { 586 ncache_t *ncp; 587 nc_hash_t *hp; 588 vnode_t *vp; 589 int hash, depth; 590 uchar_t namlen; 591 592 TRACE_2(TR_FAC_NFS, TR_DNLC_LOOKUP_START, 593 "dnlc_lookup_start:dp %x name %s", dp, name); 594 595 if (!doingcache) { 596 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 597 "dnlc_lookup_end:%S %d vp %x name %s", 598 "not_caching", 0, NULL, name); 599 return (NULL); 600 } 601 602 DNLCHASH(name, dp, hash, namlen); 603 depth = 1; 604 hp = &nc_hash[hash & nc_hashmask]; 605 mutex_enter(&hp->hash_lock); 606 607 for (ncp = hp->hash_next; ncp != (ncache_t *)hp; 608 ncp = ncp->hash_next) { 609 if (ncp->hash == hash && /* fast signature check */ 610 ncp->dp == dp && 611 ncp->namlen == namlen && 612 bcmp(ncp->name, name, namlen) == 0) { 613 /* 614 * Move this entry to the head of its hash chain 615 * if it's not already close. 616 */ 617 if (depth > NC_MOVETOFRONT) { 618 ncache_t *next = ncp->hash_next; 619 ncache_t *prev = ncp->hash_prev; 620 621 prev->hash_next = next; 622 next->hash_prev = prev; 623 ncp->hash_next = next = hp->hash_next; 624 ncp->hash_prev = (ncache_t *)hp; 625 next->hash_prev = ncp; 626 hp->hash_next = ncp; 627 628 ncstats.move_to_front++; 629 } 630 631 /* 632 * Put a hold on the vnode now so its identity 633 * can't change before the caller has a chance to 634 * put a hold on it. 635 */ 636 vp = ncp->vp; 637 VN_HOLD_CALLER(vp); 638 mutex_exit(&hp->hash_lock); 639 ncstats.hits++; 640 ncs.ncs_hits.value.ui64++; 641 if (vp == DNLC_NO_VNODE) { 642 ncs.ncs_neg_hits.value.ui64++; 643 } 644 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 645 "dnlc_lookup_end:%S %d vp %x name %s", "hit", 646 ncstats.hits, vp, name); 647 return (vp); 648 } 649 depth++; 650 } 651 652 mutex_exit(&hp->hash_lock); 653 ncstats.misses++; 654 ncs.ncs_misses.value.ui64++; 655 TRACE_4(TR_FAC_NFS, TR_DNLC_LOOKUP_END, 656 "dnlc_lookup_end:%S %d vp %x name %s", "miss", ncstats.misses, 657 NULL, name); 658 return (NULL); 659 } 660 661 /* 662 * Remove an entry in the directory name cache. 663 */ 664 void 665 dnlc_remove(vnode_t *dp, const char *name) 666 { 667 ncache_t *ncp; 668 nc_hash_t *hp; 669 uchar_t namlen; 670 int hash; 671 672 if (!doingcache) 673 return; 674 DNLCHASH(name, dp, hash, namlen); 675 hp = &nc_hash[hash & nc_hashmask]; 676 677 mutex_enter(&hp->hash_lock); 678 if (ncp = dnlc_search(dp, name, namlen, hash)) { 679 /* 680 * Free up the entry 681 */ 682 nc_rmhash(ncp); 683 mutex_exit(&hp->hash_lock); 684 VN_RELE_DNLC(ncp->vp); 685 VN_RELE_DNLC(ncp->dp); 686 dnlc_free(ncp); 687 return; 688 } 689 mutex_exit(&hp->hash_lock); 690 } 691 692 /* 693 * Purge the entire cache. 694 */ 695 void 696 dnlc_purge() 697 { 698 nc_hash_t *nch; 699 ncache_t *ncp; 700 int index; 701 int i; 702 vnode_t *nc_rele[DNLC_MAX_RELE]; 703 704 if (!doingcache) 705 return; 706 707 ncstats.purges++; 708 ncs.ncs_purge_all.value.ui64++; 709 710 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 711 index = 0; 712 mutex_enter(&nch->hash_lock); 713 ncp = nch->hash_next; 714 while (ncp != (ncache_t *)nch) { 715 ncache_t *np; 716 717 np = ncp->hash_next; 718 nc_rele[index++] = ncp->vp; 719 nc_rele[index++] = ncp->dp; 720 721 nc_rmhash(ncp); 722 dnlc_free(ncp); 723 ncp = np; 724 ncs.ncs_purge_total.value.ui64++; 725 if (index == DNLC_MAX_RELE) 726 break; 727 } 728 mutex_exit(&nch->hash_lock); 729 730 /* Release holds on all the vnodes now that we have no locks */ 731 for (i = 0; i < index; i++) { 732 VN_RELE_DNLC(nc_rele[i]); 733 } 734 if (ncp != (ncache_t *)nch) { 735 nch--; /* Do current hash chain again */ 736 } 737 } 738 } 739 740 /* 741 * Purge any cache entries referencing a vnode. Exit as soon as the dnlc 742 * reference count goes to zero (the caller still holds a reference). 743 */ 744 void 745 dnlc_purge_vp(vnode_t *vp) 746 { 747 nc_hash_t *nch; 748 ncache_t *ncp; 749 int index; 750 vnode_t *nc_rele[DNLC_MAX_RELE]; 751 752 ASSERT(vp->v_count > 0); 753 if (vp->v_count_dnlc == 0) { 754 return; 755 } 756 757 if (!doingcache) 758 return; 759 760 ncstats.purges++; 761 ncs.ncs_purge_vp.value.ui64++; 762 763 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 764 index = 0; 765 mutex_enter(&nch->hash_lock); 766 ncp = nch->hash_next; 767 while (ncp != (ncache_t *)nch) { 768 ncache_t *np; 769 770 np = ncp->hash_next; 771 if (ncp->dp == vp || ncp->vp == vp) { 772 nc_rele[index++] = ncp->vp; 773 nc_rele[index++] = ncp->dp; 774 nc_rmhash(ncp); 775 dnlc_free(ncp); 776 ncs.ncs_purge_total.value.ui64++; 777 if (index == DNLC_MAX_RELE) { 778 ncp = np; 779 break; 780 } 781 } 782 ncp = np; 783 } 784 mutex_exit(&nch->hash_lock); 785 786 /* Release holds on all the vnodes now that we have no locks */ 787 while (index) { 788 VN_RELE_DNLC(nc_rele[--index]); 789 } 790 791 if (vp->v_count_dnlc == 0) { 792 return; 793 } 794 795 if (ncp != (ncache_t *)nch) { 796 nch--; /* Do current hash chain again */ 797 } 798 } 799 } 800 801 /* 802 * Purge cache entries referencing a vfsp. Caller supplies a count 803 * of entries to purge; up to that many will be freed. A count of 804 * zero indicates that all such entries should be purged. Returns 805 * the number of entries that were purged. 806 */ 807 int 808 dnlc_purge_vfsp(vfs_t *vfsp, int count) 809 { 810 nc_hash_t *nch; 811 ncache_t *ncp; 812 int n = 0; 813 int index; 814 int i; 815 vnode_t *nc_rele[DNLC_MAX_RELE]; 816 817 if (!doingcache) 818 return (0); 819 820 ncstats.purges++; 821 ncs.ncs_purge_vfs.value.ui64++; 822 823 for (nch = nc_hash; nch < &nc_hash[nc_hashsz]; nch++) { 824 index = 0; 825 mutex_enter(&nch->hash_lock); 826 ncp = nch->hash_next; 827 while (ncp != (ncache_t *)nch) { 828 ncache_t *np; 829 830 np = ncp->hash_next; 831 ASSERT(ncp->dp != NULL); 832 ASSERT(ncp->vp != NULL); 833 if ((ncp->dp->v_vfsp == vfsp) || 834 (ncp->vp->v_vfsp == vfsp)) { 835 n++; 836 nc_rele[index++] = ncp->vp; 837 nc_rele[index++] = ncp->dp; 838 nc_rmhash(ncp); 839 dnlc_free(ncp); 840 ncs.ncs_purge_total.value.ui64++; 841 if (index == DNLC_MAX_RELE) { 842 ncp = np; 843 break; 844 } 845 if (count != 0 && n >= count) { 846 break; 847 } 848 } 849 ncp = np; 850 } 851 mutex_exit(&nch->hash_lock); 852 /* Release holds on all the vnodes now that we have no locks */ 853 for (i = 0; i < index; i++) { 854 VN_RELE_DNLC(nc_rele[i]); 855 } 856 if (count != 0 && n >= count) { 857 return (n); 858 } 859 if (ncp != (ncache_t *)nch) { 860 nch--; /* Do current hash chain again */ 861 } 862 } 863 return (n); 864 } 865 866 /* 867 * Purge 1 entry from the dnlc that is part of the filesystem(s) 868 * represented by 'vop'. The purpose of this routine is to allow 869 * users of the dnlc to free a vnode that is being held by the dnlc. 870 * 871 * If we find a vnode that we release which will result in 872 * freeing the underlying vnode (count was 1), return 1, 0 873 * if no appropriate vnodes found. 874 * 875 * Note, vop is not the 'right' identifier for a filesystem. 876 */ 877 int 878 dnlc_fs_purge1(vnodeops_t *vop) 879 { 880 nc_hash_t *end; 881 nc_hash_t *hp; 882 ncache_t *ncp; 883 vnode_t *vp; 884 885 if (!doingcache) 886 return (0); 887 888 ncs.ncs_purge_fs1.value.ui64++; 889 890 /* 891 * Scan the dnlc entries looking for a likely candidate. 892 */ 893 hp = end = dnlc_purge_fs1_rotor; 894 895 do { 896 if (++hp == &nc_hash[nc_hashsz]) 897 hp = nc_hash; 898 dnlc_purge_fs1_rotor = hp; 899 if (hp->hash_next == (ncache_t *)hp) 900 continue; 901 mutex_enter(&hp->hash_lock); 902 for (ncp = hp->hash_prev; 903 ncp != (ncache_t *)hp; 904 ncp = ncp->hash_prev) { 905 vp = ncp->vp; 906 if (!vn_has_cached_data(vp) && (vp->v_count == 1) && 907 vn_matchops(vp, vop)) 908 break; 909 } 910 if (ncp != (ncache_t *)hp) { 911 nc_rmhash(ncp); 912 mutex_exit(&hp->hash_lock); 913 VN_RELE_DNLC(ncp->dp); 914 VN_RELE_DNLC(vp) 915 dnlc_free(ncp); 916 ncs.ncs_purge_total.value.ui64++; 917 return (1); 918 } 919 mutex_exit(&hp->hash_lock); 920 } while (hp != end); 921 return (0); 922 } 923 924 /* 925 * Utility routine to search for a cache entry. Return the 926 * ncache entry if found, NULL otherwise. 927 */ 928 static ncache_t * 929 dnlc_search(vnode_t *dp, const char *name, uchar_t namlen, int hash) 930 { 931 nc_hash_t *hp; 932 ncache_t *ncp; 933 934 hp = &nc_hash[hash & nc_hashmask]; 935 936 for (ncp = hp->hash_next; ncp != (ncache_t *)hp; ncp = ncp->hash_next) { 937 if (ncp->hash == hash && 938 ncp->dp == dp && 939 ncp->namlen == namlen && 940 bcmp(ncp->name, name, namlen) == 0) 941 return (ncp); 942 } 943 return (NULL); 944 } 945 946 #if ((1 << NBBY) - 1) < (MAXNAMELEN - 1) 947 #error ncache_t name length representation is too small 948 #endif 949 950 void 951 dnlc_reduce_cache(void *reduce_percent) 952 { 953 if (dnlc_reduce_idle && (dnlc_nentries >= ncsize || reduce_percent)) { 954 dnlc_reduce_idle = 0; 955 if ((taskq_dispatch(system_taskq, do_dnlc_reduce_cache, 956 reduce_percent, TQ_NOSLEEP)) == NULL) 957 dnlc_reduce_idle = 1; 958 } 959 } 960 961 /* 962 * Get a new name cache entry. 963 * If the dnlc_reduce_cache() taskq isn't keeping up with demand, or memory 964 * is short then just return NULL. If we're over ncsize then kick off a 965 * thread to free some in use entries down to dnlc_nentries_low_water. 966 * Caller must initialise all fields except namlen. 967 * Component names are defined to be less than MAXNAMELEN 968 * which includes a null. 969 */ 970 static ncache_t * 971 dnlc_get(uchar_t namlen) 972 { 973 ncache_t *ncp; 974 975 if (dnlc_nentries > dnlc_max_nentries) { 976 dnlc_max_nentries_cnt++; /* keep a statistic */ 977 return (NULL); 978 } 979 ncp = kmem_alloc(sizeof (ncache_t) + namlen, KM_NOSLEEP); 980 if (ncp == NULL) { 981 return (NULL); 982 } 983 ncp->namlen = namlen; 984 atomic_inc_32(&dnlc_nentries); 985 dnlc_reduce_cache(NULL); 986 return (ncp); 987 } 988 989 /* 990 * Taskq routine to free up name cache entries to reduce the 991 * cache size to the low water mark if "reduce_percent" is not provided. 992 * If "reduce_percent" is provided, reduce cache size by 993 * (ncsize_onepercent * reduce_percent). 994 */ 995 /*ARGSUSED*/ 996 static void 997 do_dnlc_reduce_cache(void *reduce_percent) 998 { 999 nc_hash_t *hp = dnlc_free_rotor, *start_hp = hp; 1000 vnode_t *vp; 1001 ncache_t *ncp; 1002 int cnt; 1003 uint_t low_water = dnlc_nentries_low_water; 1004 1005 if (reduce_percent) { 1006 uint_t reduce_cnt; 1007 1008 /* 1009 * Never try to reduce the current number 1010 * of cache entries below 3% of ncsize. 1011 */ 1012 if (dnlc_nentries <= ncsize_min_percent) { 1013 dnlc_reduce_idle = 1; 1014 return; 1015 } 1016 reduce_cnt = ncsize_onepercent * 1017 (uint_t)(uintptr_t)reduce_percent; 1018 1019 if (reduce_cnt > dnlc_nentries || 1020 dnlc_nentries - reduce_cnt < ncsize_min_percent) 1021 low_water = ncsize_min_percent; 1022 else 1023 low_water = dnlc_nentries - reduce_cnt; 1024 } 1025 1026 do { 1027 /* 1028 * Find the first non empty hash queue without locking. 1029 * Only look at each hash queue once to avoid an infinite loop. 1030 */ 1031 do { 1032 if (++hp == &nc_hash[nc_hashsz]) 1033 hp = nc_hash; 1034 } while (hp->hash_next == (ncache_t *)hp && hp != start_hp); 1035 1036 /* return if all hash queues are empty. */ 1037 if (hp->hash_next == (ncache_t *)hp) { 1038 dnlc_reduce_idle = 1; 1039 return; 1040 } 1041 1042 mutex_enter(&hp->hash_lock); 1043 for (cnt = 0, ncp = hp->hash_prev; ncp != (ncache_t *)hp; 1044 ncp = ncp->hash_prev, cnt++) { 1045 vp = ncp->vp; 1046 /* 1047 * A name cache entry with a reference count 1048 * of one is only referenced by the dnlc. 1049 * Also negative cache entries are purged first. 1050 */ 1051 if (!vn_has_cached_data(vp) && 1052 ((vp->v_count == 1) || (vp == DNLC_NO_VNODE))) { 1053 ncs.ncs_pick_heur.value.ui64++; 1054 goto found; 1055 } 1056 /* 1057 * Remove from the end of the chain if the 1058 * chain is too long 1059 */ 1060 if (cnt > dnlc_long_chain) { 1061 ncp = hp->hash_prev; 1062 ncs.ncs_pick_last.value.ui64++; 1063 vp = ncp->vp; 1064 goto found; 1065 } 1066 } 1067 /* check for race and continue */ 1068 if (hp->hash_next == (ncache_t *)hp) { 1069 mutex_exit(&hp->hash_lock); 1070 continue; 1071 } 1072 1073 ncp = hp->hash_prev; /* pick the last one in the hash queue */ 1074 ncs.ncs_pick_last.value.ui64++; 1075 vp = ncp->vp; 1076 found: 1077 /* 1078 * Remove from hash chain. 1079 */ 1080 nc_rmhash(ncp); 1081 mutex_exit(&hp->hash_lock); 1082 VN_RELE_DNLC(vp); 1083 VN_RELE_DNLC(ncp->dp); 1084 dnlc_free(ncp); 1085 } while (dnlc_nentries > low_water); 1086 1087 dnlc_free_rotor = hp; 1088 dnlc_reduce_idle = 1; 1089 } 1090 1091 /* 1092 * Directory caching routines 1093 * ========================== 1094 * 1095 * See dnlc.h for details of the interfaces below. 1096 */ 1097 1098 /* 1099 * Lookup up an entry in a complete or partial directory cache. 1100 */ 1101 dcret_t 1102 dnlc_dir_lookup(dcanchor_t *dcap, const char *name, uint64_t *handle) 1103 { 1104 dircache_t *dcp; 1105 dcentry_t *dep; 1106 int hash; 1107 int ret; 1108 uchar_t namlen; 1109 1110 /* 1111 * can test without lock as we are only a cache 1112 */ 1113 if (!VALID_DIR_CACHE(dcap->dca_dircache)) { 1114 ncs.ncs_dir_misses.value.ui64++; 1115 return (DNOCACHE); 1116 } 1117 1118 if (!dnlc_dir_enable) { 1119 return (DNOCACHE); 1120 } 1121 1122 mutex_enter(&dcap->dca_lock); 1123 dcp = (dircache_t *)dcap->dca_dircache; 1124 if (VALID_DIR_CACHE(dcp)) { 1125 dcp->dc_actime = ddi_get_lbolt64(); 1126 DNLC_DIR_HASH(name, hash, namlen); 1127 dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1128 while (dep != NULL) { 1129 if ((dep->de_hash == hash) && 1130 (namlen == dep->de_namelen) && 1131 bcmp(dep->de_name, name, namlen) == 0) { 1132 *handle = dep->de_handle; 1133 mutex_exit(&dcap->dca_lock); 1134 ncs.ncs_dir_hits.value.ui64++; 1135 return (DFOUND); 1136 } 1137 dep = dep->de_next; 1138 } 1139 if (dcp->dc_complete) { 1140 ret = DNOENT; 1141 } else { 1142 ret = DNOCACHE; 1143 } 1144 mutex_exit(&dcap->dca_lock); 1145 return (ret); 1146 } else { 1147 mutex_exit(&dcap->dca_lock); 1148 ncs.ncs_dir_misses.value.ui64++; 1149 return (DNOCACHE); 1150 } 1151 } 1152 1153 /* 1154 * Start a new directory cache. An estimate of the number of 1155 * entries is provided to as a quick check to ensure the directory 1156 * is cacheable. 1157 */ 1158 dcret_t 1159 dnlc_dir_start(dcanchor_t *dcap, uint_t num_entries) 1160 { 1161 dircache_t *dcp; 1162 1163 if (!dnlc_dir_enable || 1164 (num_entries < dnlc_dir_min_size)) { 1165 return (DNOCACHE); 1166 } 1167 1168 if (num_entries > dnlc_dir_max_size) { 1169 return (DTOOBIG); 1170 } 1171 1172 mutex_enter(&dc_head.dch_lock); 1173 mutex_enter(&dcap->dca_lock); 1174 1175 if (dcap->dca_dircache == DC_RET_LOW_MEM) { 1176 dcap->dca_dircache = NULL; 1177 mutex_exit(&dcap->dca_lock); 1178 mutex_exit(&dc_head.dch_lock); 1179 return (DNOMEM); 1180 } 1181 1182 /* 1183 * Check if there's currently a cache. 1184 * This probably only occurs on a race. 1185 */ 1186 if (dcap->dca_dircache != NULL) { 1187 mutex_exit(&dcap->dca_lock); 1188 mutex_exit(&dc_head.dch_lock); 1189 return (DNOCACHE); 1190 } 1191 1192 /* 1193 * Allocate the dircache struct, entry and free space hash tables. 1194 * These tables are initially just one entry but dynamically resize 1195 * when entries and free space are added or removed. 1196 */ 1197 if ((dcp = kmem_zalloc(sizeof (dircache_t), KM_NOSLEEP)) == NULL) { 1198 goto error; 1199 } 1200 if ((dcp->dc_namehash = kmem_zalloc(sizeof (dcentry_t *), 1201 KM_NOSLEEP)) == NULL) { 1202 goto error; 1203 } 1204 if ((dcp->dc_freehash = kmem_zalloc(sizeof (dcfree_t *), 1205 KM_NOSLEEP)) == NULL) { 1206 goto error; 1207 } 1208 1209 dcp->dc_anchor = dcap; /* set back pointer to anchor */ 1210 dcap->dca_dircache = dcp; 1211 1212 /* add into head of global chain */ 1213 dcp->dc_next = dc_head.dch_next; 1214 dcp->dc_prev = (dircache_t *)&dc_head; 1215 dcp->dc_next->dc_prev = dcp; 1216 dc_head.dch_next = dcp; 1217 1218 mutex_exit(&dcap->dca_lock); 1219 mutex_exit(&dc_head.dch_lock); 1220 ncs.ncs_cur_dirs.value.ui64++; 1221 ncs.ncs_dirs_cached.value.ui64++; 1222 return (DOK); 1223 error: 1224 if (dcp != NULL) { 1225 if (dcp->dc_namehash) { 1226 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *)); 1227 } 1228 kmem_free(dcp, sizeof (dircache_t)); 1229 } 1230 /* 1231 * Must also kmem_free dcp->dc_freehash if more error cases are added 1232 */ 1233 mutex_exit(&dcap->dca_lock); 1234 mutex_exit(&dc_head.dch_lock); 1235 ncs.ncs_dir_start_nm.value.ui64++; 1236 return (DNOCACHE); 1237 } 1238 1239 /* 1240 * Add a directopry entry to a partial or complete directory cache. 1241 */ 1242 dcret_t 1243 dnlc_dir_add_entry(dcanchor_t *dcap, const char *name, uint64_t handle) 1244 { 1245 dircache_t *dcp; 1246 dcentry_t **hp, *dep; 1247 int hash; 1248 uint_t capacity; 1249 uchar_t namlen; 1250 1251 /* 1252 * Allocate the dcentry struct, including the variable 1253 * size name. Note, the null terminator is not copied. 1254 * 1255 * We do this outside the lock to avoid possible deadlock if 1256 * dnlc_dir_reclaim() is called as a result of memory shortage. 1257 */ 1258 DNLC_DIR_HASH(name, hash, namlen); 1259 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1260 if (dep == NULL) { 1261 #ifdef DEBUG 1262 /* 1263 * The kmem allocator generates random failures for 1264 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE) 1265 * So try again before we blow away a perfectly good cache. 1266 * This is done not to cover an error but purely for 1267 * performance running a debug kernel. 1268 * This random error only occurs in debug mode. 1269 */ 1270 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1271 if (dep != NULL) 1272 goto ok; 1273 #endif 1274 ncs.ncs_dir_add_nm.value.ui64++; 1275 /* 1276 * Free a directory cache. This may be the one we are 1277 * called with. 1278 */ 1279 dnlc_dir_reclaim(NULL); 1280 dep = kmem_alloc(sizeof (dcentry_t) - 1 + namlen, KM_NOSLEEP); 1281 if (dep == NULL) { 1282 /* 1283 * still no memory, better delete this cache 1284 */ 1285 mutex_enter(&dcap->dca_lock); 1286 dcp = (dircache_t *)dcap->dca_dircache; 1287 if (VALID_DIR_CACHE(dcp)) { 1288 dnlc_dir_abort(dcp); 1289 dcap->dca_dircache = DC_RET_LOW_MEM; 1290 } 1291 mutex_exit(&dcap->dca_lock); 1292 ncs.ncs_dir_addabort.value.ui64++; 1293 return (DNOCACHE); 1294 } 1295 /* 1296 * fall through as if the 1st kmem_alloc had worked 1297 */ 1298 } 1299 #ifdef DEBUG 1300 ok: 1301 #endif 1302 mutex_enter(&dcap->dca_lock); 1303 dcp = (dircache_t *)dcap->dca_dircache; 1304 if (VALID_DIR_CACHE(dcp)) { 1305 /* 1306 * If the total number of entries goes above the max 1307 * then free this cache 1308 */ 1309 if ((dcp->dc_num_entries + dcp->dc_num_free) > 1310 dnlc_dir_max_size) { 1311 mutex_exit(&dcap->dca_lock); 1312 dnlc_dir_purge(dcap); 1313 kmem_free(dep, sizeof (dcentry_t) - 1 + namlen); 1314 ncs.ncs_dir_add_max.value.ui64++; 1315 return (DTOOBIG); 1316 } 1317 dcp->dc_num_entries++; 1318 capacity = (dcp->dc_nhash_mask + 1) << dnlc_dir_hash_size_shift; 1319 if (dcp->dc_num_entries >= 1320 (capacity << dnlc_dir_hash_resize_shift)) { 1321 dnlc_dir_adjust_nhash(dcp); 1322 } 1323 hp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1324 1325 /* 1326 * Initialise and chain in new entry 1327 */ 1328 dep->de_handle = handle; 1329 dep->de_hash = hash; 1330 /* 1331 * Note de_namelen is a uchar_t to conserve space 1332 * and alignment padding. The max length of any 1333 * pathname component is defined as MAXNAMELEN 1334 * which is 256 (including the terminating null). 1335 * So provided this doesn't change, we don't include the null, 1336 * we always use bcmp to compare strings, and we don't 1337 * start storing full names, then we are ok. 1338 * The space savings is worth it. 1339 */ 1340 dep->de_namelen = namlen; 1341 bcopy(name, dep->de_name, namlen); 1342 dep->de_next = *hp; 1343 *hp = dep; 1344 dcp->dc_actime = ddi_get_lbolt64(); 1345 mutex_exit(&dcap->dca_lock); 1346 ncs.ncs_dir_num_ents.value.ui64++; 1347 return (DOK); 1348 } else { 1349 mutex_exit(&dcap->dca_lock); 1350 kmem_free(dep, sizeof (dcentry_t) - 1 + namlen); 1351 return (DNOCACHE); 1352 } 1353 } 1354 1355 /* 1356 * Add free space to a partial or complete directory cache. 1357 */ 1358 dcret_t 1359 dnlc_dir_add_space(dcanchor_t *dcap, uint_t len, uint64_t handle) 1360 { 1361 dircache_t *dcp; 1362 dcfree_t *dfp, **hp; 1363 uint_t capacity; 1364 1365 /* 1366 * We kmem_alloc outside the lock to avoid possible deadlock if 1367 * dnlc_dir_reclaim() is called as a result of memory shortage. 1368 */ 1369 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1370 if (dfp == NULL) { 1371 #ifdef DEBUG 1372 /* 1373 * The kmem allocator generates random failures for 1374 * KM_NOSLEEP calls (see KMEM_RANDOM_ALLOCATION_FAILURE) 1375 * So try again before we blow away a perfectly good cache. 1376 * This random error only occurs in debug mode 1377 */ 1378 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1379 if (dfp != NULL) 1380 goto ok; 1381 #endif 1382 ncs.ncs_dir_add_nm.value.ui64++; 1383 /* 1384 * Free a directory cache. This may be the one we are 1385 * called with. 1386 */ 1387 dnlc_dir_reclaim(NULL); 1388 dfp = kmem_cache_alloc(dnlc_dir_space_cache, KM_NOSLEEP); 1389 if (dfp == NULL) { 1390 /* 1391 * still no memory, better delete this cache 1392 */ 1393 mutex_enter(&dcap->dca_lock); 1394 dcp = (dircache_t *)dcap->dca_dircache; 1395 if (VALID_DIR_CACHE(dcp)) { 1396 dnlc_dir_abort(dcp); 1397 dcap->dca_dircache = DC_RET_LOW_MEM; 1398 } 1399 mutex_exit(&dcap->dca_lock); 1400 ncs.ncs_dir_addabort.value.ui64++; 1401 return (DNOCACHE); 1402 } 1403 /* 1404 * fall through as if the 1st kmem_alloc had worked 1405 */ 1406 } 1407 1408 #ifdef DEBUG 1409 ok: 1410 #endif 1411 mutex_enter(&dcap->dca_lock); 1412 dcp = (dircache_t *)dcap->dca_dircache; 1413 if (VALID_DIR_CACHE(dcp)) { 1414 if ((dcp->dc_num_entries + dcp->dc_num_free) > 1415 dnlc_dir_max_size) { 1416 mutex_exit(&dcap->dca_lock); 1417 dnlc_dir_purge(dcap); 1418 kmem_cache_free(dnlc_dir_space_cache, dfp); 1419 ncs.ncs_dir_add_max.value.ui64++; 1420 return (DTOOBIG); 1421 } 1422 dcp->dc_num_free++; 1423 capacity = (dcp->dc_fhash_mask + 1) << dnlc_dir_hash_size_shift; 1424 if (dcp->dc_num_free >= 1425 (capacity << dnlc_dir_hash_resize_shift)) { 1426 dnlc_dir_adjust_fhash(dcp); 1427 } 1428 /* 1429 * Initialise and chain a new entry 1430 */ 1431 dfp->df_handle = handle; 1432 dfp->df_len = len; 1433 dcp->dc_actime = ddi_get_lbolt64(); 1434 hp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]); 1435 dfp->df_next = *hp; 1436 *hp = dfp; 1437 mutex_exit(&dcap->dca_lock); 1438 ncs.ncs_dir_num_ents.value.ui64++; 1439 return (DOK); 1440 } else { 1441 mutex_exit(&dcap->dca_lock); 1442 kmem_cache_free(dnlc_dir_space_cache, dfp); 1443 return (DNOCACHE); 1444 } 1445 } 1446 1447 /* 1448 * Mark a directory cache as complete. 1449 */ 1450 void 1451 dnlc_dir_complete(dcanchor_t *dcap) 1452 { 1453 dircache_t *dcp; 1454 1455 mutex_enter(&dcap->dca_lock); 1456 dcp = (dircache_t *)dcap->dca_dircache; 1457 if (VALID_DIR_CACHE(dcp)) { 1458 dcp->dc_complete = B_TRUE; 1459 } 1460 mutex_exit(&dcap->dca_lock); 1461 } 1462 1463 /* 1464 * Internal routine to delete a partial or full directory cache. 1465 * No additional locking needed. 1466 */ 1467 static void 1468 dnlc_dir_abort(dircache_t *dcp) 1469 { 1470 dcentry_t *dep, *nhp; 1471 dcfree_t *fep, *fhp; 1472 uint_t nhtsize = dcp->dc_nhash_mask + 1; /* name hash table size */ 1473 uint_t fhtsize = dcp->dc_fhash_mask + 1; /* free hash table size */ 1474 uint_t i; 1475 1476 /* 1477 * Free up the cached name entries and hash table 1478 */ 1479 for (i = 0; i < nhtsize; i++) { /* for each hash bucket */ 1480 nhp = dcp->dc_namehash[i]; 1481 while (nhp != NULL) { /* for each chained entry */ 1482 dep = nhp->de_next; 1483 kmem_free(nhp, sizeof (dcentry_t) - 1 + 1484 nhp->de_namelen); 1485 nhp = dep; 1486 } 1487 } 1488 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * nhtsize); 1489 1490 /* 1491 * Free up the free space entries and hash table 1492 */ 1493 for (i = 0; i < fhtsize; i++) { /* for each hash bucket */ 1494 fhp = dcp->dc_freehash[i]; 1495 while (fhp != NULL) { /* for each chained entry */ 1496 fep = fhp->df_next; 1497 kmem_cache_free(dnlc_dir_space_cache, fhp); 1498 fhp = fep; 1499 } 1500 } 1501 kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * fhtsize); 1502 1503 /* 1504 * Finally free the directory cache structure itself 1505 */ 1506 ncs.ncs_dir_num_ents.value.ui64 -= (dcp->dc_num_entries + 1507 dcp->dc_num_free); 1508 kmem_free(dcp, sizeof (dircache_t)); 1509 ncs.ncs_cur_dirs.value.ui64--; 1510 } 1511 1512 /* 1513 * Remove a partial or complete directory cache 1514 */ 1515 void 1516 dnlc_dir_purge(dcanchor_t *dcap) 1517 { 1518 dircache_t *dcp; 1519 1520 mutex_enter(&dc_head.dch_lock); 1521 mutex_enter(&dcap->dca_lock); 1522 dcp = (dircache_t *)dcap->dca_dircache; 1523 if (!VALID_DIR_CACHE(dcp)) { 1524 mutex_exit(&dcap->dca_lock); 1525 mutex_exit(&dc_head.dch_lock); 1526 return; 1527 } 1528 dcap->dca_dircache = NULL; 1529 /* 1530 * Unchain from global list 1531 */ 1532 dcp->dc_prev->dc_next = dcp->dc_next; 1533 dcp->dc_next->dc_prev = dcp->dc_prev; 1534 mutex_exit(&dcap->dca_lock); 1535 mutex_exit(&dc_head.dch_lock); 1536 dnlc_dir_abort(dcp); 1537 } 1538 1539 /* 1540 * Remove an entry from a complete or partial directory cache. 1541 * Return the handle if it's non null. 1542 */ 1543 dcret_t 1544 dnlc_dir_rem_entry(dcanchor_t *dcap, const char *name, uint64_t *handlep) 1545 { 1546 dircache_t *dcp; 1547 dcentry_t **prevpp, *te; 1548 uint_t capacity; 1549 int hash; 1550 int ret; 1551 uchar_t namlen; 1552 1553 if (!dnlc_dir_enable) { 1554 return (DNOCACHE); 1555 } 1556 1557 mutex_enter(&dcap->dca_lock); 1558 dcp = (dircache_t *)dcap->dca_dircache; 1559 if (VALID_DIR_CACHE(dcp)) { 1560 dcp->dc_actime = ddi_get_lbolt64(); 1561 if (dcp->dc_nhash_mask > 0) { /* ie not minimum */ 1562 capacity = (dcp->dc_nhash_mask + 1) << 1563 dnlc_dir_hash_size_shift; 1564 if (dcp->dc_num_entries <= 1565 (capacity >> dnlc_dir_hash_resize_shift)) { 1566 dnlc_dir_adjust_nhash(dcp); 1567 } 1568 } 1569 DNLC_DIR_HASH(name, hash, namlen); 1570 prevpp = &dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1571 while (*prevpp != NULL) { 1572 if (((*prevpp)->de_hash == hash) && 1573 (namlen == (*prevpp)->de_namelen) && 1574 bcmp((*prevpp)->de_name, name, namlen) == 0) { 1575 if (handlep != NULL) { 1576 *handlep = (*prevpp)->de_handle; 1577 } 1578 te = *prevpp; 1579 *prevpp = (*prevpp)->de_next; 1580 kmem_free(te, sizeof (dcentry_t) - 1 + 1581 te->de_namelen); 1582 1583 /* 1584 * If the total number of entries 1585 * falls below half the minimum number 1586 * of entries then free this cache. 1587 */ 1588 if (--dcp->dc_num_entries < 1589 (dnlc_dir_min_size >> 1)) { 1590 mutex_exit(&dcap->dca_lock); 1591 dnlc_dir_purge(dcap); 1592 } else { 1593 mutex_exit(&dcap->dca_lock); 1594 } 1595 ncs.ncs_dir_num_ents.value.ui64--; 1596 return (DFOUND); 1597 } 1598 prevpp = &((*prevpp)->de_next); 1599 } 1600 if (dcp->dc_complete) { 1601 ncs.ncs_dir_reme_fai.value.ui64++; 1602 ret = DNOENT; 1603 } else { 1604 ret = DNOCACHE; 1605 } 1606 mutex_exit(&dcap->dca_lock); 1607 return (ret); 1608 } else { 1609 mutex_exit(&dcap->dca_lock); 1610 return (DNOCACHE); 1611 } 1612 } 1613 1614 1615 /* 1616 * Remove free space of at least the given length from a complete 1617 * or partial directory cache. 1618 */ 1619 dcret_t 1620 dnlc_dir_rem_space_by_len(dcanchor_t *dcap, uint_t len, uint64_t *handlep) 1621 { 1622 dircache_t *dcp; 1623 dcfree_t **prevpp, *tfp; 1624 uint_t fhtsize; /* free hash table size */ 1625 uint_t i; 1626 uint_t capacity; 1627 int ret; 1628 1629 if (!dnlc_dir_enable) { 1630 return (DNOCACHE); 1631 } 1632 1633 mutex_enter(&dcap->dca_lock); 1634 dcp = (dircache_t *)dcap->dca_dircache; 1635 if (VALID_DIR_CACHE(dcp)) { 1636 dcp->dc_actime = ddi_get_lbolt64(); 1637 if (dcp->dc_fhash_mask > 0) { /* ie not minimum */ 1638 capacity = (dcp->dc_fhash_mask + 1) << 1639 dnlc_dir_hash_size_shift; 1640 if (dcp->dc_num_free <= 1641 (capacity >> dnlc_dir_hash_resize_shift)) { 1642 dnlc_dir_adjust_fhash(dcp); 1643 } 1644 } 1645 /* 1646 * Search for an entry of the appropriate size 1647 * on a first fit basis. 1648 */ 1649 fhtsize = dcp->dc_fhash_mask + 1; 1650 for (i = 0; i < fhtsize; i++) { /* for each hash bucket */ 1651 prevpp = &(dcp->dc_freehash[i]); 1652 while (*prevpp != NULL) { 1653 if ((*prevpp)->df_len >= len) { 1654 *handlep = (*prevpp)->df_handle; 1655 tfp = *prevpp; 1656 *prevpp = (*prevpp)->df_next; 1657 dcp->dc_num_free--; 1658 mutex_exit(&dcap->dca_lock); 1659 kmem_cache_free(dnlc_dir_space_cache, 1660 tfp); 1661 ncs.ncs_dir_num_ents.value.ui64--; 1662 return (DFOUND); 1663 } 1664 prevpp = &((*prevpp)->df_next); 1665 } 1666 } 1667 if (dcp->dc_complete) { 1668 ret = DNOENT; 1669 } else { 1670 ret = DNOCACHE; 1671 } 1672 mutex_exit(&dcap->dca_lock); 1673 return (ret); 1674 } else { 1675 mutex_exit(&dcap->dca_lock); 1676 return (DNOCACHE); 1677 } 1678 } 1679 1680 /* 1681 * Remove free space with the given handle from a complete or partial 1682 * directory cache. 1683 */ 1684 dcret_t 1685 dnlc_dir_rem_space_by_handle(dcanchor_t *dcap, uint64_t handle) 1686 { 1687 dircache_t *dcp; 1688 dcfree_t **prevpp, *tfp; 1689 uint_t capacity; 1690 int ret; 1691 1692 if (!dnlc_dir_enable) { 1693 return (DNOCACHE); 1694 } 1695 1696 mutex_enter(&dcap->dca_lock); 1697 dcp = (dircache_t *)dcap->dca_dircache; 1698 if (VALID_DIR_CACHE(dcp)) { 1699 dcp->dc_actime = ddi_get_lbolt64(); 1700 if (dcp->dc_fhash_mask > 0) { /* ie not minimum */ 1701 capacity = (dcp->dc_fhash_mask + 1) << 1702 dnlc_dir_hash_size_shift; 1703 if (dcp->dc_num_free <= 1704 (capacity >> dnlc_dir_hash_resize_shift)) { 1705 dnlc_dir_adjust_fhash(dcp); 1706 } 1707 } 1708 1709 /* 1710 * search for the exact entry 1711 */ 1712 prevpp = &(dcp->dc_freehash[DDFHASH(handle, dcp)]); 1713 while (*prevpp != NULL) { 1714 if ((*prevpp)->df_handle == handle) { 1715 tfp = *prevpp; 1716 *prevpp = (*prevpp)->df_next; 1717 dcp->dc_num_free--; 1718 mutex_exit(&dcap->dca_lock); 1719 kmem_cache_free(dnlc_dir_space_cache, tfp); 1720 ncs.ncs_dir_num_ents.value.ui64--; 1721 return (DFOUND); 1722 } 1723 prevpp = &((*prevpp)->df_next); 1724 } 1725 if (dcp->dc_complete) { 1726 ncs.ncs_dir_rems_fai.value.ui64++; 1727 ret = DNOENT; 1728 } else { 1729 ret = DNOCACHE; 1730 } 1731 mutex_exit(&dcap->dca_lock); 1732 return (ret); 1733 } else { 1734 mutex_exit(&dcap->dca_lock); 1735 return (DNOCACHE); 1736 } 1737 } 1738 1739 /* 1740 * Update the handle of an directory cache entry. 1741 */ 1742 dcret_t 1743 dnlc_dir_update(dcanchor_t *dcap, const char *name, uint64_t handle) 1744 { 1745 dircache_t *dcp; 1746 dcentry_t *dep; 1747 int hash; 1748 int ret; 1749 uchar_t namlen; 1750 1751 if (!dnlc_dir_enable) { 1752 return (DNOCACHE); 1753 } 1754 1755 mutex_enter(&dcap->dca_lock); 1756 dcp = (dircache_t *)dcap->dca_dircache; 1757 if (VALID_DIR_CACHE(dcp)) { 1758 dcp->dc_actime = ddi_get_lbolt64(); 1759 DNLC_DIR_HASH(name, hash, namlen); 1760 dep = dcp->dc_namehash[hash & dcp->dc_nhash_mask]; 1761 while (dep != NULL) { 1762 if ((dep->de_hash == hash) && 1763 (namlen == dep->de_namelen) && 1764 bcmp(dep->de_name, name, namlen) == 0) { 1765 dep->de_handle = handle; 1766 mutex_exit(&dcap->dca_lock); 1767 return (DFOUND); 1768 } 1769 dep = dep->de_next; 1770 } 1771 if (dcp->dc_complete) { 1772 ncs.ncs_dir_upd_fail.value.ui64++; 1773 ret = DNOENT; 1774 } else { 1775 ret = DNOCACHE; 1776 } 1777 mutex_exit(&dcap->dca_lock); 1778 return (ret); 1779 } else { 1780 mutex_exit(&dcap->dca_lock); 1781 return (DNOCACHE); 1782 } 1783 } 1784 1785 void 1786 dnlc_dir_fini(dcanchor_t *dcap) 1787 { 1788 dircache_t *dcp; 1789 1790 mutex_enter(&dc_head.dch_lock); 1791 mutex_enter(&dcap->dca_lock); 1792 dcp = (dircache_t *)dcap->dca_dircache; 1793 if (VALID_DIR_CACHE(dcp)) { 1794 /* 1795 * Unchain from global list 1796 */ 1797 ncs.ncs_dir_finipurg.value.ui64++; 1798 dcp->dc_prev->dc_next = dcp->dc_next; 1799 dcp->dc_next->dc_prev = dcp->dc_prev; 1800 } else { 1801 dcp = NULL; 1802 } 1803 dcap->dca_dircache = NULL; 1804 mutex_exit(&dcap->dca_lock); 1805 mutex_exit(&dc_head.dch_lock); 1806 mutex_destroy(&dcap->dca_lock); 1807 if (dcp) { 1808 dnlc_dir_abort(dcp); 1809 } 1810 } 1811 1812 /* 1813 * Reclaim callback for dnlc directory caching. 1814 * Invoked by the kernel memory allocator when memory gets tight. 1815 * This is a pretty serious condition and can lead easily lead to system 1816 * hangs if not enough space is returned. 1817 * 1818 * Deciding which directory (or directories) to purge is tricky. 1819 * Purging everything is an overkill, but purging just the oldest used 1820 * was found to lead to hangs. The largest cached directories use the 1821 * most memory, but take the most effort to rebuild, whereas the smaller 1822 * ones have little value and give back little space. So what to do? 1823 * 1824 * The current policy is to continue purging the oldest used directories 1825 * until at least dnlc_dir_min_reclaim directory entries have been purged. 1826 */ 1827 /*ARGSUSED*/ 1828 static void 1829 dnlc_dir_reclaim(void *unused) 1830 { 1831 dircache_t *dcp, *oldest; 1832 uint_t dirent_cnt = 0; 1833 1834 mutex_enter(&dc_head.dch_lock); 1835 while (dirent_cnt < dnlc_dir_min_reclaim) { 1836 dcp = dc_head.dch_next; 1837 oldest = NULL; 1838 while (dcp != (dircache_t *)&dc_head) { 1839 if (oldest == NULL) { 1840 oldest = dcp; 1841 } else { 1842 if (dcp->dc_actime < oldest->dc_actime) { 1843 oldest = dcp; 1844 } 1845 } 1846 dcp = dcp->dc_next; 1847 } 1848 if (oldest == NULL) { 1849 /* nothing to delete */ 1850 mutex_exit(&dc_head.dch_lock); 1851 return; 1852 } 1853 /* 1854 * remove from directory chain and purge 1855 */ 1856 oldest->dc_prev->dc_next = oldest->dc_next; 1857 oldest->dc_next->dc_prev = oldest->dc_prev; 1858 mutex_enter(&oldest->dc_anchor->dca_lock); 1859 /* 1860 * If this was the last entry then it must be too large. 1861 * Mark it as such by saving a special dircache_t 1862 * pointer (DC_RET_LOW_MEM) in the anchor. The error DNOMEM 1863 * will be presented to the caller of dnlc_dir_start() 1864 */ 1865 if (oldest->dc_next == oldest->dc_prev) { 1866 oldest->dc_anchor->dca_dircache = DC_RET_LOW_MEM; 1867 ncs.ncs_dir_rec_last.value.ui64++; 1868 } else { 1869 oldest->dc_anchor->dca_dircache = NULL; 1870 ncs.ncs_dir_recl_any.value.ui64++; 1871 } 1872 mutex_exit(&oldest->dc_anchor->dca_lock); 1873 dirent_cnt += oldest->dc_num_entries; 1874 dnlc_dir_abort(oldest); 1875 } 1876 mutex_exit(&dc_head.dch_lock); 1877 } 1878 1879 /* 1880 * Dynamically grow or shrink the size of the name hash table 1881 */ 1882 static void 1883 dnlc_dir_adjust_nhash(dircache_t *dcp) 1884 { 1885 dcentry_t **newhash, *dep, **nhp, *tep; 1886 uint_t newsize; 1887 uint_t oldsize; 1888 uint_t newsizemask; 1889 int i; 1890 1891 /* 1892 * Allocate new hash table 1893 */ 1894 newsize = dcp->dc_num_entries >> dnlc_dir_hash_size_shift; 1895 newhash = kmem_zalloc(sizeof (dcentry_t *) * newsize, KM_NOSLEEP); 1896 if (newhash == NULL) { 1897 /* 1898 * System is short on memory just return 1899 * Note, the old hash table is still usable. 1900 * This return is unlikely to repeatedy occur, because 1901 * either some other directory caches will be reclaimed 1902 * due to memory shortage, thus freeing memory, or this 1903 * directory cahe will be reclaimed. 1904 */ 1905 return; 1906 } 1907 oldsize = dcp->dc_nhash_mask + 1; 1908 dcp->dc_nhash_mask = newsizemask = newsize - 1; 1909 1910 /* 1911 * Move entries from the old table to the new 1912 */ 1913 for (i = 0; i < oldsize; i++) { /* for each hash bucket */ 1914 dep = dcp->dc_namehash[i]; 1915 while (dep != NULL) { /* for each chained entry */ 1916 tep = dep; 1917 dep = dep->de_next; 1918 nhp = &newhash[tep->de_hash & newsizemask]; 1919 tep->de_next = *nhp; 1920 *nhp = tep; 1921 } 1922 } 1923 1924 /* 1925 * delete old hash table and set new one in place 1926 */ 1927 kmem_free(dcp->dc_namehash, sizeof (dcentry_t *) * oldsize); 1928 dcp->dc_namehash = newhash; 1929 } 1930 1931 /* 1932 * Dynamically grow or shrink the size of the free space hash table 1933 */ 1934 static void 1935 dnlc_dir_adjust_fhash(dircache_t *dcp) 1936 { 1937 dcfree_t **newhash, *dfp, **nhp, *tfp; 1938 uint_t newsize; 1939 uint_t oldsize; 1940 int i; 1941 1942 /* 1943 * Allocate new hash table 1944 */ 1945 newsize = dcp->dc_num_free >> dnlc_dir_hash_size_shift; 1946 newhash = kmem_zalloc(sizeof (dcfree_t *) * newsize, KM_NOSLEEP); 1947 if (newhash == NULL) { 1948 /* 1949 * System is short on memory just return 1950 * Note, the old hash table is still usable. 1951 * This return is unlikely to repeatedy occur, because 1952 * either some other directory caches will be reclaimed 1953 * due to memory shortage, thus freeing memory, or this 1954 * directory cahe will be reclaimed. 1955 */ 1956 return; 1957 } 1958 oldsize = dcp->dc_fhash_mask + 1; 1959 dcp->dc_fhash_mask = newsize - 1; 1960 1961 /* 1962 * Move entries from the old table to the new 1963 */ 1964 for (i = 0; i < oldsize; i++) { /* for each hash bucket */ 1965 dfp = dcp->dc_freehash[i]; 1966 while (dfp != NULL) { /* for each chained entry */ 1967 tfp = dfp; 1968 dfp = dfp->df_next; 1969 nhp = &newhash[DDFHASH(tfp->df_handle, dcp)]; 1970 tfp->df_next = *nhp; 1971 *nhp = tfp; 1972 } 1973 } 1974 1975 /* 1976 * delete old hash table and set new one in place 1977 */ 1978 kmem_free(dcp->dc_freehash, sizeof (dcfree_t *) * oldsize); 1979 dcp->dc_freehash = newhash; 1980 } 1981